Robust H_{∞} Filtering for Time-Delay Systems With Probabilistic Sensor Faults

Xiao He, Zidong Wang, Senior Member, IEEE, and Donghua Zhou, Senior Member, IEEE

Abstract—In this paper, a new robust H_{∞} filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval $[\alpha, \beta]$, which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H_{∞} filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H_{∞} performance level. A sufficient condition for the existence of such a filter is illustrated in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology.

Index Terms—Linear matrix inequality (LMI), parameter uncertainties, robust H_{∞} filtering, sensor gain reduction.

I. INTRODUCTION

The state estimation problem of dynamic systems has attracted persistent research attention and has found many practical applications during the last decades. Fundamentally, two classes of performance indices have been considered in the literature based on the assumptions on the input noise [5]. In the classical H_2 filtering approach, the noise characteristics are assumed to be known, leading to the minimization of the H_2 norm of the transfer function from the process noise to the estimation error. The alternative H_{∞} filtering, which was first introduced in 1989 [2], has relaxed the boundedness assumption of the noise variance [12]. Over the past decades, much work has been done on the robust H_{∞} filtering problem in the presence of parameter uncertainties in various settings [3], [4], [18].

In most literature concerning with the H_{∞} filtering problems, the assumption of consecutive measurements has been made, which means that the true measurement signal can always be obtained by the filtering node. Unfortunately, this is not always the case in practice. Taking the networked control system (NCS) [11] for instance, the limited capacity communication networks that are generally shared by a group of systems have brought us new challenges in the analysis and design of H_{∞} filters with missing and/or delayed measurements, which can be collectively called “incomplete measurements” [8].

Recently, the binary switching sequence approach has been introduced to model the missing measurements for its simplicity and practicality [15]–[17]. However, in many cases such as the signal transmission process in unreliable analog communication channel [10] and sensor gain variation under abnormal work conditions [14], the measurement may be stochastically distorted. Such kind of “stochastic sensor faults” cannot be simply described by 0 (completely missing) or 1 (completely normal). Therefore, there is an urgent need to look into a more general description for the measurement with probabilistic sensor faults, and this constitutes the main motivation of the present study.

In this paper, we are concerned with a new filtering problem for a class of nonlinear time-varying systems with parameter uncertainties and probabilistic sensor faults. It is assumed that the “range” of the possible sensor faults can be estimated statistically and therefore the faulty sensor gain obeys a specific distribution law, which is a natural reflection of the signal stochastic attenuation in unreliable analog channel as well as the random sensor gain reduction in severe environment. The main task is to design a robust H_{∞} filter such that for all norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults, the filtering error system is asymptotically mean-square stable and a prescribed H_{∞} noise attenuation level is achieved. A linear matrix inequality (LMI) approach is developed to solve the addressed problem.

II. PROBLEM FORMULATION

We consider the time-varying nonlinear system with

\[
\begin{align*}
 x_{k+1} &= A_k x_k + A_{dk} x_k - d_k + E_k f(x_k) + B_k u_k, \\
 z_k &= C_k x_k + D_k u_k, \\
 x_k &= x_k, \quad k = -d, -d+1, \ldots, 0,
\end{align*}
\]

where $x_k \in \mathbb{R}^n$ is the state vector; $z_k \in \mathbb{R}^p$ is the signal to be estimated; $u_k \in l_2[0, \infty) \subset \mathbb{R}$ is disturbance signal; A_k, A_{dk}, E_k, B_k are time-varying matrices with appropriate dimensions, which are assumed to be of the form $A_k = A + \Delta A_k$, $A_{dk} = A_d + \Delta A_{dk}$, $E_k = E + \Delta E_k$, and $B_k = B + \Delta B_k$. Here, A, A_d, E, and B are known constant matrices; ΔA_k, ΔA_{dk},
filtering for time-delay systems are unknown matrices satisfying the following norm-bounded condition
\[\Delta A_k \Delta E_k \Delta B_k = N F_k [H_1 \ H_2 \ H_3 \ H_4] \] (2)
with \(N, H_1, H_2, H_3, H_4 \) being known matrices and \(F_k \) satisfying \(F_k F_k^T \leq I \).
Let \(d_k \) denote the time-varying state delay with lower and upper bounds \(d \leq d_k \leq \bar{d} \). \(\varphi_k \) is a given real initial sequence on \([\bar{d}, 0] \). \(f(x_k) \) is a vector-valued nonlinear function satisfying the sector-bounded condition (6)
\[[f(x_k) - T_1 x_k]_2 = [f(x_k) - T_2 x_k]_2 \leq 0, \forall x_k \in \mathbb{R}^n \] (3)
where \(T_1 \) and \(T_2 \) are known real constant matrices and \(T = T_1 - T_2 \) is symmetric positive definite matrices.
Consider the following measurement model with probabilistic gain reduction faults
\[y_k = \lambda_k C x_k + D w_k \] (4)
where \(C \) and \(D \) are real constant matrices and the stochastic variable \(\lambda_k \) distributes in the interval \([\alpha, \beta] \) \((0 \leq \alpha \leq \beta \leq 1) \), with its mathematical expectation \(\mathbb{E}[\lambda_k] = \tau \) and variance \(\text{Cov}[\lambda_k] = \sigma^2 \). \(\alpha, \beta, \tau \) and \(\sigma \) are known scalars.
Remark 1: One can use (4) to describe the measurements affected by stochastic signal attenuation or sensor gain faults. Note that the gain degradation parameter \(\lambda_k \) can be obtained by statistic inference.
Remark 2: In our assumption, only the mathematical expectation and the variance of the stochastic variable \(\lambda_k \) are required. Note that if we take the distribution law as
\[P\{\lambda_k\} = \begin{cases} p_k, & \lambda_k = 0, \\ 1 - p_k, & \lambda_k = 1 \end{cases} \]
where \(P\{\lambda_k\} \) represents the probability of \(\lambda_k \), and \(p \) is a known value satisfying \(0 \leq p \leq 1 \), the our measurement model can be specialized to those studied in [15], [16].
Consider a full-order filter of the form
\[\hat{x}_{k+1} = G \hat{x}_k + K (y_k - \tau C \hat{x}_k), \]
(5)
where \(G, K \) are the parameters to be determined. By defining \(\eta_k = [x_k^T \ \hat{x}_k^T]^T \), we have the following augmented filtering dynamics:
\[\left\{ \begin{array}{l}
\eta_{k+1} = A_k \eta_k + (\lambda_k - \tau) A_0 \eta_k + A_{dk} Z \eta_k \eta_L
+ \mathcal{E}_k f(Z \eta_k) + B_k w_k,
\hat{x}_k = \eta_k - \hat{x}_k = C \eta_k + D_0 w_k
\end{array} \right. \] (6)
where
\[A_k = \begin{bmatrix}
A & 0 \\
\tau K C & G - \tau K C
\end{bmatrix} + \begin{bmatrix} N \end{bmatrix} F_k [H_1 \ 0] = A + NF_k H_1,
\]
\[A_{dk} = \begin{bmatrix} A_d & 0 \end{bmatrix} + \begin{bmatrix} N \end{bmatrix} F_k H_2 = A_d + NF_k H_2,
\]
\[\mathcal{E}_k = \begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} N \end{bmatrix} F_k H_3 = \mathcal{E} + NF_k H_3,
\]
\[B_k = \begin{bmatrix} B \\
K D
\end{bmatrix} + \begin{bmatrix} N \end{bmatrix} F_k H_4 = B + NF_k H_4,
\]
\[A_0 = \begin{bmatrix} 0 & 0 \\
0 & KC \end{bmatrix}, \quad \mathcal{C} = [C - L \ L], \quad Z = [I \ 0]. \]
Consider the existence of the stochastic variable \(\lambda_k \) in the rest of this paper, we aim to design a filter such that the filtering error system satisfies both the requirements (R1) and (R2):
(R1) The filtering error system (6) is asymptotically mean-square stable [9].
(R2) Under the zero-initial condition, the filtering error \(\tilde{z}_k \) satisfies
\[\sum_{k=0}^{\infty} \mathbb{E} \left\{ \| \tilde{z}_k \|^2 \right\} < \gamma^2 \sum_{k=0}^{\infty} \mathbb{E} \left\{ \| w_k \|^2 \right\}, \] (7)
for all nonzero \(w_k \), where \(\gamma > 0 \) is a prescribed scalar.
III. MAIN RESULTS
In this section, we give the main results of our paper. Firstly we consider the \(H_\infty \) filtering performance analysis for system (6).

Theorem 1: Given a scalar \(\gamma > 0 \) and the filter parameters \(G, K \) and \(L \). If there exist a scalar \(\delta \), positive definite matrices \(P = P^T > 0 \) and \(Q = Q^T > 0 \) satisfying
\[\Phi = \left[\Phi_{ij} \right]_{4 \times 4} < 0 \] (8)
where \(\Phi_{11} = A_k^T P A_k + \sigma^2 T^T Q T - P + \sigma^2 A_k^T P A_0 + CT C - \delta T_1, \Phi_{12} = A_k^T P A_{dk}, \Phi_{13} = A_k^T \mathcal{E} \mathcal{E}_k - \delta T_2, \Phi_{14} = A_k^T P B_k, \Phi_{22} = A_k^T P A_k - \delta Q, \Phi_{23} = A_k^T \mathcal{E} \mathcal{E}_k, \Phi_{24} = A_k^T P B_k, \Phi_{33} = \mathcal{E}_k \mathcal{E}_k - \delta L, \Phi_{34} = \mathcal{E}_k \mathcal{E}_k - \delta L, \Phi_{44} = B_k^T P B_k - \gamma^2 T_1, T_1 = (T_1^T T_1 + T_2^T T_2)/2, T_2 = -(T_1^T + T_2^T)/2, T_1 = \mathbb{E} \left\{ D \eta_k \eta_k^T \right\}, T_2 = \mathbb{E} \left\{ D \eta_k \eta_k^T \right\} \right.^T, \quad \text{and} \quad \delta > \bar{d} - d + 1, \] then the filtering error system (6) satisfies (R1) and (R2).
Proof: Consider the Lyapunov–Krasovskii functional
\[V_k = V_{1k} + V_{2k} + V_{3k} \]
with
\[V_{1k} = \eta_k^T P \eta_k, \quad V_{2k} = \sum_{i=k-d}^{k-1} \eta_i^T [Z T^T Q Z] \eta_i, \quad V_{3k} = \sum_{j=k-d+1}^{j=k-1} \sum_{i=j-k}^{j-k+1} \eta_i^T [Z T^T Q Z] \eta_i. \]
Noticing that \(\mathbb{E} \left\{ (\lambda_k - \tau)^2 \right\} = \sigma^2 \), we calculate the difference of \(V_k \) with \(w_k = 0 \), take the mathematical expectation and obtain
\[\mathbb{E} \left\{ \Delta V_k \right\} = \eta_{k+1}^T P \eta_{k+1} - \eta_k^T P \eta_k, \quad \mathbb{E} \left\{ \Delta V_k + V_{3k} \right\} = 0 T^T Q Z \eta_{k-d} \]
where \(\eta_{k+1} = A_k \eta_k + \sigma^2 A_0 \eta_k + A_{dk} Z \eta_k - \delta \eta_k \eta_k^T \eta_k \]
Also, noting that (3) implies
\[\left[\begin{array}{l}
x \end{array} \right]_2 = \left[\begin{array}{l}
T_1 \ T_2 \ T_1^T \ I
\end{array} \right] \left[\begin{array}{l}
x \end{array} \right] - \left[\begin{array}{l}
f(x_k)
\end{array} \right] \leq 0 \]
and by defining \(\xi_k = \left[\begin{array}{l}
\hat{\Phi}_{11} \ \hat{\Phi}_{12} \ \hat{\Phi}_{13} \ \hat{\Phi}_{22} \ \hat{\Phi}_{23} \ \hat{\Phi}_{33} \ \hat{\Phi}_{34} \ \hat{\Phi}_{44}
\end{array} \right] \eta_k \]
(9)
From (8), we can verify that
\[
\begin{bmatrix}
\Phi_{11} & \Phi_{12} & \Phi_{13} \\
* & \Phi_{22} & \Phi_{23} \\
* & * & \Phi_{33}
\end{bmatrix}
+
\begin{bmatrix}
C^T C & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} < 0
\]
and then it follows \(E\{\Delta V_k\} < 0 \). We can now confirm that the filtering error system (6) is asymptotically mean-square stable [9].

Next, for any nonzero \(u_k \), it follows from (8) and (9) that \(E\{\Delta V_k\} + E\{\xi_k^T \xi_k\} - \gamma^2 E\{u_k^T u_k\} = E\{\xi_k^T \xi_k\} < 0 \), where \(\xi_k = \begin{bmatrix} \xi_k^T, u_k^T \end{bmatrix}^T, f^T(Z_{nk}), u_k^T \). Summing up this relationship from 0 to \(\infty \) with respect to \(k \) yields
\[
\sum_{k=0}^{\infty} E\{\xi_k^T \xi_k\} < \gamma^2 \sum_{k=0}^{\infty} E\{u_k^T u_k\} - E\{V_{\infty}\} + E\{V_0\}.
\]
Since the system (6) is asymptotically mean-square stable, it is straightforward to see that (7) holds under the zero initial condition. The proof is completed.

Next, we will provide a solution to the \(H_\infty \) filtering problem for time-varying nonlinear system (1)–(4) with probabilistic sensor faults.

Theorem 2: For the time-varying nonlinear system (1)–(4), an \(H_\infty \) filter of the form (5) can be designed such that the filtering error system (6) is asymptotically mean-square stable with norm constraints (7) fulfilled for all nonzero \(u_k \) if, for a given scalar \(\gamma > 0 \), there exist positive definite matrices \(R = R^T > 0, S = S^T > 0, Q = Q^T > 0 \), real matrices \(U_1, U_2, U_3 \) and real scalars \(\rho, \varepsilon > 0 \), such that the following LMI holds
\[
\Psi = [\Psi_{ij}]_{12 \times 12} < 0
\]
where \(\Psi \) is a symmetric block-matrix with its entities being
\[
\begin{align*}
\Psi_{1,1} &= \Psi_{1,2} = \theta Q - \rho T_1 - S, \\
\Psi_{1,4} &= \Psi_{2,4} = -\rho T_2, \\
\Psi_{1,6} &= \Psi_{2,6} = \rho T_3, \\
\Psi_{1,10} &= C_0^T - U_3^T, \\
\Psi_{1,12} &= \Psi_{2,12} = \varepsilon H_1^T, \\
\Psi_{2,2} &= \theta Q - \rho T_1, \\
\Psi_{2,7} &= (R + \rho^2 C^T U_2^T, \\
\Psi_{2,9} &= \sigma C^T U_2^T, \\
\Psi_{2,11} &= C_0^T, \\
\Psi_{3,3} &= Q, \\
\Psi_{3,6} &= A_3^T S, \\
\Psi_{3,7} &= A_3^T R, \\
\Psi_{4,4} &= -\rho I, \\
\Psi_{4,6} &= E^T S, \\
\Psi_{4,7} &= E^T R, \\
\Psi_{5,5} &= -\gamma^2 I, \\
\Psi_{5,6} &= B^T S, \\
\Psi_{5,7} &= B^T R + \rho^2 T^T U_2^T, \\
\Psi_{5,10} &= D_0^T, \\
\Psi_{5,12} &= \varepsilon H_1^T, \\
\Psi_{6,6} &= \varepsilon H_2^T, \\
\Psi_{6,7} &= \varepsilon H_3^T, \\
\Psi_{8,9} &= -S, \\
\Psi_{8,11} &= S N, \\
\Psi_{7,7} &= \Psi_{9,9} = -R, \\
\Psi_{7,11} &= R N, \\
\Psi_{10,10} &= -I, \\
\Psi_{11,11} &= \Psi_{12,12} = -\varepsilon I,
\end{align*}
\]
and all other entries being zeros. Moreover, if (10) is true, the desired filter parameters are given by
\[
G = X_{12}^{-1} U_1 (S - R)^{-1} X_{12} + \sigma K, \\
K = X_{12}^{-1} U_2, \\
L = U_3 (S - R)^{-1} X_{12}
\]
where \(X_{12} \) comes from the factorization of \(I - RS^{-1} = X_{12} Y_{12}^{-1} X_{12} < 0 \).

Proof: The proof is similar with the treatment in [7], and is therefore omitted here for the limitation of space.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the system (1)–(4) with parameters as follows:
\[
A = \begin{bmatrix} -0.1 & 0.2 \\ 0.1 & -0.3 \end{bmatrix}, \quad H = \begin{bmatrix} 0.2 \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0.3 \\ 0.4 \end{bmatrix},
\]
\[
E = \begin{bmatrix} 0.2 & 0.1 \\ 0.1 & 0.2 \end{bmatrix}, \quad N = \begin{bmatrix} 0.2 \\ 0.1 \end{bmatrix}, \quad H_1 = \begin{bmatrix} 0.2 \\ 0 \end{bmatrix},
\]
\[
H_2 = \begin{bmatrix} 0.1 \\ 0 \end{bmatrix}, \quad H_3 = \begin{bmatrix} 0.3 \\ 0.1 \end{bmatrix}, \quad H_4 = \begin{bmatrix} 0.2 \end{bmatrix},
\]
\[
C_0 = \begin{bmatrix} 0.5 \\ 0.2 \end{bmatrix}^T, \quad D_0 = 0.4 C = \begin{bmatrix} 0.2 \\ 0.5 \end{bmatrix}^T, \quad D = 0.3
\]
\[
\gamma_R = 1, \quad \gamma_F = 2, \quad \lambda_k \text{ in (4) is supposed to obey the truncated standardized normal distribution in } [0.4, 1],
\]
with \(\tau = 0.7 \) and \(\sigma = 0.1719 \). The nonlinear term \(f(x_k) = [f_1(x_k)^T f_2(x_k)^T]^T \) is defined as
\[
f_1(x_k) = \begin{cases} \frac{0.5}{\sqrt{2}} x_{1k}, & |x_{1k}| \leq 0.25, \\
0.2 \text{sgn}(x_{1k}), & \text{otherwise}
\end{cases}, \quad f_2(x_k) = \begin{cases} 0.2 x_{2k}, & |x_{2k}| \leq 0.15, \\
-0.1 \text{sgn}(x_{2k}), & \text{otherwise}
\end{cases}
\]
which can be bounded by
\[
T_1 = \begin{bmatrix} 0.25 & 0 \\ 0 & 0 \end{bmatrix}, \quad T_2 = \begin{bmatrix} 0 & 0 \\ 0 & -0.15 \end{bmatrix}.
\]
We are interested in finding an \(H_\infty \) filter with the minimal \(H_\infty \) attenuation level. For this purpose, we can minimize \(\gamma^2 \) when solving the feasibility problem (10). With help from LMI Toolbox [1], we obtain the minimum disturbance attenuation level as \(\gamma^2 = 0.6134 \), which is the sub-optimal solution of the corresponding convex optimization problem. A sub-optimal \(H_\infty \) filter can then be obtained as
\[
G = \begin{bmatrix} -0.0877 & 0.3286 \\ -0.0813 & -0.6207 \end{bmatrix}, \quad K = \begin{bmatrix} 0.5529 \\ -1.001 \end{bmatrix},
\]
\[
L = \begin{bmatrix} 0.6544 \\ -0.9936 \end{bmatrix}.
\]
Let \(u_k = \exp(-k/10) \times u_k \) and \(F_k = \sin(k/2) \). Using the above designed \(H_\infty \) filter, we depict time-domain simulation within 50 time steps in Fig. 1. Fig. 1(a) illustrates the signal to be estimated \(\tilde{z}_k \) and the output of the above robust \(H_\infty \) filter. Fig. 1(b) shows the estimation error \(\tilde{z}_k \) which tends to 0 as time tends to \(\infty \). In Fig. 1(c), the real time proportion between the error energy and the noise energy \(\gamma_k \) versus time \(k \) is provided, from which we can see that \(\gamma_k \) is always less than the worst case disturbance attenuation level \(\gamma^2_{opt} \).

Next, let us provide a comparison with the case of binary variable perturbation on the measurements [16], where \(\lambda_k \) is of the form as stated in Remark 2 with \(p = 0.7 \). Considering the \(H_\infty \) filter with binary missing measurements in the design process...
FILTERING FOR TIME-DELAY SYSTEMS

... attenuations at higher levels, and thus the performance is robust against uncertainties. The proposed mechanism in this paper demonstrates its effectiveness.

V. CONCLUSION

In this paper, the robust H_∞ filtering problem for a class of nonlinear systems has been studied in the presence of probabilistic sensor faults, where the system is subject to time-varying norm-bounded parameters, sector-bounded nonlinearities, time-varying bounded state delays, and energy bounded disturbance input. The sensor fault is described using a sequence of stochastic variables that are of any distribution in an interval $[\alpha, \beta]$, with only the mathematical expectation and the covariance of the stochastic variables being required. A numerical example has been given to show the usefulness of the results derived.

REFERENCES