
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS 1

Correspondence
On Passivity and Passification of Stochastic Fuzzy Systems

With Delays: The Discrete-Time Case

Jinling Liang, Zidong Wang, and Xiaohui Liu

Abstract—Takagi–Sugeno (T-S) fuzzy models, which are usually repre-
sented by a set of linear submodels, can be used to describe or approximate
any complex nonlinear systems by fuzzily blending these subsystems,
and so, significant research efforts have been devoted to the analysis of
such models. This paper is concerned with the passivity and passification
problems of the stochastic discrete-time T-S fuzzy systems with delay.
We first propose the definition of passivity in the sense of expectation.
Then, by utilizing the Lyapunov functional method, the stochastic analysis
combined with the matrix inequality techniques, a sufficient condition in
terms of linear matrix inequalities is presented, ensuring the passivity
performance of the T-S fuzzy models. Finally, based on this criterion,
state feedback controller is designed, and several criteria are obtained
to make the closed-loop system passive in the sense of expectation. The
results acquired in this paper are delay dependent in the sense that they
depend on not only the lower bound but also the upper bound of the
time-varying delay. Numerical examples are also provided to demonstrate
the effectiveness and feasibility of our criteria.

Index Terms—Discrete-time fuzzy system, linear matrix inequality
(LMI), Lyapunov functional, passivity, stochastic disturbance, time-
varying delay.

I. INTRODUCTION

The last decade has seen a wealth of research on passivity and
passification problems in the area of systems and control. The reason
is mainly twofold: 1) passivity is an expected system behavior, since
the storage function induced by passivity is closely related to system
energy and therefore serves as a natural candidate for Lyapunov func-
tions, and 2) stability and stabilization problems can be solved once the
passivity property is assured. The passivity theory was first proposed in
the circuit analysis [1] and has then been applied in many areas such as
stability, signal processing, complexity, fuzzy control, chaos control,
and synchronization [2], [5], [28], [30]. Recently, it has been recog-
nized that the time delays exist naturally in various engineering and
biological systems which constitute a source of instability. Therefore,
the passivity and passification problems have been considered in [6],
[22] for continuous linear/neutral time-delay systems with or without
parameter uncertainties. Note that the passivity analysis has also been
conducted in [23] for neural networks, in [7] under the topic of positive
realness, and in [8], [9] for networked control systems.

In the past 30 years, the fuzzy-logic theory has been proven to
be effective in dealing with the analysis and synthesis problems of
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nonlinear systems. In particular, the Takagi–Sugeno (T-S) fuzzy model
has used a set of IF–THEN rules that are formed from linguistic
variables and values by quantifying the meaning of the linguistic
values using membership functions. As a result, the conventional linear
system theory can be applied to the analysis and synthesis of the class
of nonlinear systems, and numerous nonlinear analysis problems have
been studied based on this T-S fuzzy model. For example, the robust
stability analysis and synthesis problems have been addressed in [3]
for T-S fuzzy models, and the time delay has been further introduced
in [4]. Recently, there has been a rich body of results on the stability
problems for time-delay fuzzy T-S systems by using various delay-
dependent or delay-independent approaches (see, e.g., [14] and [19]
for a survey). In addition, since discrete-time systems have come to
play a more important role than their continuous-time counterparts
in today’s digital world, the stability analysis results on discrete-time
time-delay fuzzy-model-based control systems have recently drawn an
increasing research interest (see, e.g., [10], [13], [17], [33]).

Given the conceptual importance of passivity theory and the prac-
tical convenience of T-S fuzzy model, it seems quite natural to
generalize the passivity theory to T-S fuzzy models with or without
time delays. For instance, the passivity for continuous-time T-S fuzzy
systems with constant delays has been considered in [18]. On the
other hand, since Itô-type stochastic systems are suitable in modeling
many practical systems in engineering, biology, and economy, the
robust stability, stabilization, and control, as well as filtering problems
for stochastic systems, have been intensively investigated, and many
results have been reported in the literature (see, e.g., [25]–[27]). In
particular, stochastic fuzzy T-S systems with or without time delays
have recently received much attention [15], [16], [24], [32]. For
example, in [16] and [24], both parameter uncertainties and stochastic
disturbances have been studied for the T-S model, and the exponential
mean-square stability has been discussed in [24]. In [15], the sliding-
mode-control problem for nonlinear stochastic time-delay systems has
been dealt with by means of fuzzy approach.

It should be pointed out that most of aforementioned literatures have
been concerned with the continuous-time systems only. To date, there
have been very few results on the passivity and passification problems
of discrete-time T-S fuzzy systems with or without time delays, not to
mention the case when stochastic disturbances are taken into account.
It is, therefore, the purpose of this paper to pave a way for investigating
the passivity problem of discrete stochastic T-S fuzzy systems.

In this paper, we aim to deal with the passivity and passification
problems of the stochastic discrete-time T-S fuzzy systems with time-
varying delay. First, we define the so-called stochastic passivity (i.e.,
in the sense of expectation) for discrete-time stochastic systems. We
then derive several sufficient conditions in order to make sure that
the nominal and controlled T-S fuzzy systems are globally passive
in the sense of expectation, where the Lyapunov functional method
and stochastic analysis tools are utilized. The obtained conditions are
expressed in terms of linear matrix inequalities (LMIs) that can be
readily solved by using MATLAB LMI toolbox.

Notations: Throughout this paper, Im is the m-dimensional identity
matrix. P > 0 means that matrix P is real, symmetric, and positive
definite. Let E{·} be the mathematical expectation operator with
respect to the given probability measure P , and (Ω,F ,P) be a com-
plete probability space with a natural filtration {Ft}t≥0. For integers
α, β with α < β, N[α, β] denotes the discrete interval given by
N[α, β] = {α, α + 1, . . . , β − 1, β}. Sometimes, when no confusion
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would arise, the dimensions of a function or a matrix will be omitted
for convenience.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we consider a discrete-time T-S fuzzy system with
stochastic disturbances and time-varying delay with the ith rule for-
mulated in the following form:

Plant Rule i :

IF θ1(k) is ηi1 and . . . θp(k) is ηip, THEN⎧⎪⎨
⎪⎩

x(k + 1) = Aix(k) + Cix (k − τ(k)) + GiJ(k)
+ σi (k, x(k), x (k − τ(k)))ωi(k)

y(k) = Bix(k) + Dix (k − τ(k)) + WiJ(k)
x(k) = ϕ(k), k ∈ N[−τ2, 0]

(1)

where i = 1, 2, . . . , r; k = 1, 2, . . ., and r is the number of IF–THEN
rules; θ(k) = {θ1(k), θ2(k), . . . , θp(k)} is the premise variable set
and ηij (j = 1, 2, . . . , p) is the fuzzy set; x(k) ∈ R

n is the state vector
and y(k) ∈ R

m is the measurement output vector; ϕ(·) represents the
initial function and J(k) ∈ R

m is a deterministic exogenous input; and
ωi(k) is a scalar Wiener process (Brownian motion) defined on the
complete probability space (Ω,F ,P) with

E {ωi(k)} =0

E
{
ω2

i (k)
}

=1

E {ωi(l)ωi(k)} =0, (l �= k). (2)

Moreover, the noise processes ω1(k), ω2(k), . . . , ωr(k) are indepen-
dent. It is assumed that the premise variables do not depend on
the noise-input variables ωi(k) explicitly [15], [16], [24], [32]. The
diffusion coefficient vector σi(·, ·, ·) : R × R

n × R
n → R

n satisfies
the Lipschitz condition, and there exist matrices Σi1 and Σi2 of
appropriate dimensions such that

σT
i (t, u, v)σi(t, u, v) ≤ ‖Σi1u‖2 + ‖Σi2v‖2 (3)

for all (t, u, v) ∈ R × R
n × R

n. Ai, Ci, Gi, Bi, Di, and Wi are
system matrices with compatible dimensions, and τ(k) is the time-
varying delay satisfying

τ1 < τ(k) < τ2 (4)

where τ1 and τ2 are known positive integers.
Let

μi (θ(k)) =

p∏
j=1

ηij (θj(k)) hi (θ(k)) =
μi (θ(k))

r∑
j=1

μj (θ(k))

where ηij(θj(k)) is the grade of membership of θj(k) in ηij .
It is always assumed that μi(θ(k)) ≥ 0 (i = 1, 2, . . . , r) and∑r

j=1
μj(θ(k)) > 0 for all k = 1, 2, . . .. Obviously, one has that for

i = 1, 2, . . . , r and k = 1, 2, . . .

hi (θ(k)) ≥ 0

r∑
i=1

hi (θ(k)) = 1.

Then, the defuzzied output of the T-S fuzzy system (1) can be repre-
sented as (5), shown at the bottom of the page.

In the literature, different definitions of passivity have been used.
Taking into account the stochastic nature of the T-S fuzzy systems
considered in this paper, we define the following notion of passivity
in the sense of expectation, which is an extension of the concept of
passivity proposed in [21], [31] to the stochastic systems.

Definition 1: The fuzzy system (1) is called globally passive in the
sense of expectation if there exists a scalar γ ≥ 0 such that

2

T∑
k=0

E
{
yT(k)J(k)

}
≥ −γ

T∑
k=0

E
{
JT(k)J(k)

}
for all integers T ≥ 0 and the solution of (1) with ϕ ≡ 0.

Remark 1: The Itô-type stochastic noise ωi(k) appears in the state
equation. It would be interesting to look at the case when the stochastic
noise also enters into the output equation, which is more complicated
and deserves further investigation.

Before starting the main results, we need to introduce the following
lemma which will be used in the next section.

Lemma 1 [13]: For any real matrices Xi, Yi, and P > 0 with
compatible dimensions, then

2

r∑
i=1

r∑
j=1

γiγjX
T
i PYj ≤

r∑
i=1

γi

(
XT

i PXi + Y T
i PYi

)

where γi (i = 1, 2, . . . , r) are nonnegative scalars with
∑r

i=1
γi = 1.

III. PASSIVITY ANALYSIS

In this section, based on the Lyapunov functional method, the
stochastic analysis combined with the matrix-inequality techniques,
we will derive a delay-dependent passivity criterion which will play
an important role in the passification problem of the stochastic
discrete-time T-S fuzzy system (1). For simplicity, let σi(k) denote
σi(k, x(k), x(k − τ(k))).

Theorem 1: The system (1) is globally passive in the sense of
expectation if there exist matrices Pi > 0, Q > 0, R1 > 0, R2 > 0,
Z > 0; matrices M , N ; and scalars γ ≥ 0, λi > 0 such that the
following LMIs hold for all i, l = 1, 2, . . . , r:

Pi + τ2Z < λiI (6)⎡
⎢⎢⎣

Ξil (τ2 − τ1)M τ2N ĀT
i Pl τ2Ã

T
i Z

∗ −(τ2 − τ1)Z 0 0 0
∗ ∗ −τ2Z 0 0
∗ ∗ ∗ −Pl 0
∗ ∗ ∗ ∗ −τ2Z

⎤
⎥⎥⎦ < 0 (7)

where Ξil = Φil + MT1 + TT
1 MT + NT2 + TT

2 NT

Φil =

⎡
⎢⎢⎣

Ξ̃il 0 0 0 −BT
i

∗ −R1 0 0 0
∗ ∗ λlΣ

T
i2Σi2 − Q 0 −DT

i

∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ Ξ̂i

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

x(k + 1) =
r∑

i=1

hi (θ(k)) [Aix(k) + Cix (k − τ(k)) + GiJ(k) + σi (k, x(k), x (k − τ(k)))ωi(k)]

y(k) =
r∑

i=1

hi (θ(k)) [Bix(k) + Dix (k − τ(k)) + WiJ(k)]
(5)
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and Ξ̃il =(τ2− τ1+ 1)Q + R1+ R2− Pi+ λlΣ
T
i1Σi1, Ξ̂i =−γI −

(Wi + WT
i ); Āi = [Ai 0 Ci 0 Gi], Ãi = [(Ai − I) 0 Ci

0 Gi], T1 = [0 0 I − I 0], and T2 = [I 0 − I 0 0].
Proof: Denoting ξT(k) = (xT(k) xT(k − τ1) xT(k −

τ(k)) xT(k − τ2) JT(k)) and by the well-known Schur Lemma,
we know that LMI (7) is equivalent to the following inequality:

Φil + MT1 + TT
1 MT + NT2 + (τ2 − τ1)MZ−1MT

+ TT
2 NT + τ2NZ−1NT + ĀT

i PlĀi + τ2Ã
T
i ZÃi < 0. (8)

Choose a Lyapunov functional V (k, x(k)) as

V (k, x(k)) =

4∑
i=1

Vi (k, x(k)) (9)

where

V1 (k, x(k)) = xT(k)

(
r∑

i=1

hi (θ(k))Pi

)
x(k)

V2(k, x(k))=

k−1∑
i=k−τ(k)

xT(i)Qx(i)+

k−τ1∑
j=k−τ2+1

k−1∑
i=j

xT(i)Qx(i)

V3 (k, x(k)) =

k−1∑
i=k−τ1

xT(i)R1x(i) +

k−1∑
i=k−τ2

xT(i)R2x(i)

V4 (k, x(k)) =

−1∑
j=−τ2

k−1∑
i=k+j

ηT(i)Zη(i)

with η(i) = x(i + 1) − x(i).
Calculating the difference of Vi(k, x(k)) (i = 1, 2, 3, 4) along the

trajectories of (5), taking the mathematical expectation and notic-
ing that

x(k + 1) =

r∑
i=1

hi (θ(k))
[
Āiξ(k) + σi(k)ωi(k)

]
(10)

η(k) =

r∑
i=1

hi (θ(k))
[
Ãiξ(k) + σi(k)ωi(k)

]
(11)

we have

E {ΔV1 (k, x(k))} = E

{
r∑

l=1

h+
l

r∑
i=1

r∑
j=1

hi (θ(k))hj (θ(k))

×
[
ξT(k)ĀT

i PlĀjξ(k) + σT
i (k)Plσi(k)

]
−

r∑
i=1

hi (θ(k))xT(k)Pix(k)

}

≤E

{
r∑

l=1

h+
l

r∑
i=1

hi (θ(k))

×
[
ξT(k)ĀT

i PlĀiξ(k) − xT(k)Pix(k)

+ σT
i (k)Plσi(k)

]}
(12)

where h+
l = hl(θ(k + 1)). Note that, to obtain (12), Lemma 1 and the

independent property of stochastic processes ω1(k), ω2(k), . . . , ωr(k)
have been utilized.

Similarly, we can obtain that

E {ΔV2 (k, x(k))}

= E

{
xT(k)Qx(k) − xT (k − τ(k))Qx (k − τ(k))

+

⎛
⎝ k−τ1∑

i=k+1−τ(k+1)

+

k−1∑
i=k−τ1+1

−
k−1∑

i=k−τ(k)+1

⎞
⎠xT(i)Qx(i)

+

−τ1∑
j=1−τ2

(
k∑

i=k+1−j

−
k−1∑

i=k+j

)
xT(i)Qx(i)

}

≤ E
{
(τ2 − τ1 + 1)xT(k)Qx(k)

−xT (k − τ(k))Qx (k − τ(k))
}

(13)
E {ΔV3 (k, x(k))}
= E

{
xT(k)(R1 + R2)x(k) − xT(k − τ1)R1x(k − τ1)

−xT(k − τ2)R2x(k − τ2)
}

(14)
E {ΔV4 (k, x(k))}

= E

{
τ2η

T(k)Zη(k) −
k−1∑

i=k−τ2

ηT(i)Zη(i)

}

≤ E

⎧⎪⎨
⎪⎩τ2

r∑
i=1

hi (θ(k))
[
ξT(k)ÃT

i ZÃiξ(k) + σT
i (k)Zσi(k)

]

−
k−τ(k)−1∑
i=k−τ2

ηT(i)Zη(i) −
k−1∑

i=k−τ(k)

ηT(i)Zη(i)

⎫⎪⎬
⎪⎭. (15)

On the other hand, for any matrices M and N with appropriate
dimensions, the following equalities hold:

2ξT(k)M

(
x (k − τ(k)) − x(k − τ2) −

k−τ(k)−1∑
i=k−τ2

η(i)

)
= 0 (16)

2ξT(k)N

⎛
⎝x(k) − x (k − τ(k)) −

k−1∑
i=k−τ(k)

η(i)

⎞
⎠= 0. (17)

Combing (12)–(17) yields

E {ΔV (k, x(k))}

≤ E

{
r∑

l=1

h+
l

r∑
i=1

hi (θ(k))

×
[
ξT(k)

(
ĀT

i PlĀi + τ2Ã
T
i ZÃi

)
ξ(k)

+ 2ξT(k)MT1ξ(k) + 2ξT(k)NT2ξ(k)

+ σT
i (k)(Pl + τ2Z)σi(k) − xT(k − τ1)R1x(k − τ1)

+ xT(k) ((τ2 − τ1 + 1)Q − Pi + R1 + R2)x(k)

− xT (k − τ(k))Qx (k − τ(k))

− xT(k − τ2)R2x(k − τ2)
]}

−
k−τ(k)−1∑
i=k−τ2

E
{
ηT(i)Zη(i) + 2ξT(k)Mη(i)

}

−
k−1∑

i=k−τ(k)

E
{
ηT(i)Zη(i) + 2ξT(k)Nη(i)

}
. (18)
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From the conditions (3) and (6), it follows:

E
{
σT

i (k)(Pl + τ2Z)σi(k)
}

≤ λlE
{
σT

i (k)σi(k)
}

≤ λlE
{
xT(k)ΣT

i1Σi1x(k) + xT(k − τ(k))ΣT
i2Σi2x(k − τ(k))

}
.

(19)

Substituting (19) into (18) and noticing (8), one has

E
{
ΔV (k, x(k)) − 2yT(k)J(k) − γJT(k)J(k)

}
≤ E

{
r∑

l=1

h+
l

r∑
i=1

hi (θ(k)) ξT(k)

×
[
Φil + MT1 + TT

1 MT + τ2Ã
T
i ZÃi

+ ĀT
i PlĀi + NT2 + TT

2 NT
]
ξ(k)

}

+

k−τ(k)−1∑
i=k−τ2

E
{
ξT(k)MZ−1MTξ(k)

}

+

k−1∑
i=k−τ(k)

E
{
ξT(k)NZ−1NTξ(k)

}

≤ E

{
r∑

l=1

h+
l

r∑
i=1

hi (θ(k)) ξT(k)

×
[
Φil + ĀT

i PlĀi + MT1 + τ2Ã
T
i ZÃi + TT

1 MT

+ NT2 + TT
2 NT + (τ2 − τ1)MZ−1MT

+ τ2NZ−1NT
]
ξ(k)

}
≤ 0

and therefore we have

2

T∑
k=0

E
{
yT(k)J(k)

}

≥
T∑

k=0

E {ΔV (k, x(k))} − γ

T∑
k=0

E
{
JT(k)J(k)

}

≥ −E {V (0, x(0))} − γ

T∑
k=0

E
{
JT(k)J(k)

}

= −γ

T∑
k=0

E
{
JT(k)J(k)

}
(20)

for all integers T ≥ 0. From Definition 1, (20) implies that the stochas-
tic fuzzy system (1) is globally passive in the sense of expectation, and
the proof is then completed. �

Example 1: In order to illustrate Theorem 1, we consider the
stochastic discrete-time fuzzy system (1) with r = 2, where r is the
number of IF–THEN rules. The time-varying delay τ(k) is assumed
to have τ1 = 2 and τ2 = 5. Other parameters are given as follows:

A1 =

[
−0.21 0.12

0 −0.19

]
A2 =

[
−0.23 0
0.1 −0.15

]

C1 =

[
0.12 −0.12
−0.1 0.1

]
C2 =

[
−0.13 0.1
−0.1 0.12

]

G1 =

[
0.1 0.2
0.15 −0.14

]
G2 =

[
−0.2 −0.1
0.18 −0.23

]

B1 =

[
−0.4 0.1
0.12 −0.31

]
B2 =

[
−0.25 0.16
0.05 −0.36

]

D1 =

[
−0.35 0.13
0.16 −0.29

]
D2 =

[
0.1 −0.11
0.17 −0.4

]

W1 =

[
0.21 −0.1
0.1 0.31

]
W2 =

[
−0.42 0
0.11 0.32

]
.

The noise diffusion coefficient vectors σi(·, ·, ·) (i = 1, 2) satisfy
the condition (3) with

Σ11 =Σ21 =

[
0.1 0.16
−0.1 0.21

]

Σ12 =Σ22 =

[
0.2 0.13

−0.15 −0.3

]
.

By using the MATLAB LMI Toolbox, LMIs (6) and (7) can be
solved with the feasible solutions. For simplicity, only some of the
solutions are given as follows:

P1 =

[
969.4 18.4
18.4 1117.9

]
λ1 = 1190.8.

According to Theorem 1, the discrete-time fuzzy model (1) with
parameters above is globally passive in the sense of expectation.

IV. PASSIFICATION

Now, we are ready to consider the passification problem, i.e., the
problem of designing a state feedback controller that makes the closed-
loop fuzzy system passive. Consider the following stochastic discrete-
time T-S fuzzy model with control input:

Plant Rule i :

IF θ1(k) is ηi1 and . . . θp(k) is ηip, THEN⎧⎨
⎩

x(k + 1) = Aix(k) + Cix (k − τ(k)) + GiJ(k)

+ σi(k)ωi(k) + Siu(k)
y(k) = Bix(k) + Dix (k − τ(k)) + WiJ(k)

(21)

where k = 1, 2, . . .; i = 1, 2, . . . , r; Si is a constant matrix with
appropriate dimensions, and u(k) ∈ R

l is the control input.
In this paper, the state feedback controller is taken to be as follows:

u(k) =

r∑
j=1

hj (θ(k))Kjx(k). (22)

Then, the closed-loop fuzzy system can be represented as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1)=
r∑

i=1

r∑
j=1

hi (θ(k))hj (θ(k))

× [GiJ(k) + Cix (k − τ(k))

+ (Ai + SiKj)x(k) + σi(k)ωi(k)]

y(k)=
r∑

i=1

hi (θ(k)) [Bix(k)+Dix (k−τ(k))+WiJ(k)] .

(23)

Theorem 2: The feedback closed-loop fuzzy system (23) is globally
passive in the sense of expectation if there exist matrices Pi > 0, Xi >
0, Q > 0, R1 > 0, R2 > 0, Z > 0, Y > 0; matrices M , N , Ki; and
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scalars γ ≥ 0, λi > 0 such that the following matrix inequalities hold
for all i, j, l = 1, 2, . . . , r:

Pi + τ2Z < λiI (24)

PiXi = I ZY = I (25)⎡
⎢⎢⎣

Ξil (τ2 − τ1)M τ2N ĀT
ij τ2Ã

T
ij

∗ −(τ2 − τ1)Z 0 0 0
∗ ∗ −τ2Z 0 0
∗ ∗ ∗ −Xl 0
∗ ∗ ∗ ∗ −τ2Y

⎤
⎥⎥⎦ < 0 (26)

where Āij = [(Ai + SiKj) 0 Ci 0 Gi], Ãij = [(Ai +
SiKj − I) 0 Ci 0 Gi]; Ξil is defined as that in Theorem 1.

Proof: From (23) and the definition of η(k), one has

x(k + 1) =

r∑
i=1

r∑
j=1

hi (θ(k))hj (θ(k))
[
Āijξ(k) + σi(k)ωi(k)

]
(27)

η(k) =

r∑
i=1

r∑
j=1

hi (θ(k))hj (θ(k))
[
Ãijξ(k) + σi(k)ωi(k)

]
.

(28)

Choose the same Lyapunov functional V (k, x(k)) as in Theorem 1.
Calculating the difference of V1(k, x(k)) along the solutions of (23)
and taking the mathematical expectation, we have

E {ΔV1 (k, x(k))}

= E

{
r∑

l=1

h+
l

r∑
i=1

r∑
j=1

r∑
p=1

r∑
q=1

× hi (θ(k))hj (θ(k))hp (θ(k))hq (θ(k))

×
[
ξT(k)ĀT

ijPlĀpqξ(k)+σT
i (k)Plσi(k)−xT(k)Pix(k)

]}

≤ E

{
r∑

l=1

h+
l

r∑
i=1

r∑
j=1

hi (θ(k))hj (θ(k))

×
[
ξT(k)ĀT

ijPlĀijξ(k)+σT
i (k)Plσi(k)−xT(k)Pix(k)

]}
.

(29)

Here, to obtain (29), Lemma 1 has been utilized.
Along the similar lines of the proof of Theorem 1, we can get

E
{
ΔV (k, x(k)) − 2yT(k)J(k) − γJT(k)J(k)

}
≤ E

{
r∑

l=1

h+
l

r∑
i=1

r∑
j=1

hi (θ(k))hj (θ(k)) ξT(k)

×
[
Φil + MT1 + ĀT

ijPlĀij + τ2Ã
T
ijZÃij + TT

1 MT + NT2

+ TT
2 NT + (τ2 − τ1)MZ−1MT + τ2NZ−1NT

]
ξ(k)

}
.

By noting that Pl = X−1
l , Z = Y −1, and from the well-known

Schur Lemma, we know that conditions (24)–(26) ensure that
E{ΔV (k, x(k)) − 2yT(k)J(k) − γJT(k)J(k)} ≤ 0. The remain-
ing part of the proof of Theorem 2 is similar to that of Theorem 1
and is therefore omitted. �

Remark 2: The conditions acquired in Theorem 2 are not strict
LMIs, but they can be computed by resorting to the cone comple-
mentarity linearization (CCL) method which could also be found
in [10].

An alternative computational procedure for the passification is given
in the following corollary.

Corollary 1: The feedback closed-loop fuzzy system (23) is glob-
ally passive in the sense of expectation if there exist matrices P̄ > 0,
Q̄ > 0, R̄1 > 0, R̄2 > 0; matrices Fj ; and scalars γ ≥ 0, λ̄ > 0 such
that the following LMIs hold for all i, j = 1, 2, . . . , r:

P̄ > λ̄I (30)⎡
⎢⎢⎢⎢⎢⎢⎣

Γ′ 0 0 0 −P̄BT
i Ξ̌ij ℵi1

∗ −R̄1 0 0 0 0 0
∗ ∗ −Q̄ 0 −P̄DT

i P̄CT
i ℵi2

∗ ∗ ∗ −R̄2 0 0 0
∗ ∗ ∗ ∗ Ξ̂i GT

i 0
∗ ∗ ∗ ∗ ∗ −P̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −λ̄I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (31)

where Γ′ = (τ2 − τ1 + 1)Q̄ + R̄1 + R̄2 − P̄ , Ξ̌ij = P̄AT
i + FjS

T
i ,

ℵi1 = [P̄ΣT
i1, 0], ℵi2 = [0, P̄ΣT

i2], and Ξ̂i is defined in Theorem 1.
Moreover, the feedback controller gain can be constructed as

Kj = FT
j P̄−1.

Remark 3: Compared to Theorem 2, the conditions expressed in
Corollary 1 are expressed in terms of LMIs which could be more
easily computed and checked in practice at the expense of making
Pl ≡ P (l = 1, 2, . . . , r) and losing some free matrices, i.e., Z = 0,
M = N = 0.

Remark 4: Using the methods given earlier, it is not difficult to
deal with the robust passivity and passification problems of uncertain
stochastic discrete-time delayed fuzzy systems as follows:

Plant Rule i :

IF θ1(k) is ηi1 and . . . θp(k) is ηip, THEN⎧⎪⎨
⎪⎩

x(k + 1)=(Ai+ΔAi)x(k)+(Ci+ΔCi)x (k−τ(k))
+ (Gi + ΔGi)J(k) + σi(k)ωi(k)

y(k) = (Bi + ΔBi)x(k) + (Di + ΔDi)x (k − τ(k))
+ (Wi + ΔWi)J(k), i = 1, 2, . . . , r

where k = 1, 2, . . .; ΔAi, ΔCi, ΔGi, ΔBi, ΔDi, and ΔWi are
real matrices representing the norm-bounded parameter uncertainties.
To tackle the parameter uncertainties, the techniques in [20] could
be borrowed, and the results are omitted here to keep this paper
concise.

Example 2: Consider the passification problem of the stochastic
discrete-time closed-loop fuzzy system (23) with parameters as in
Example 1. Take

S1 =

[
0.1 −0.2
−0.1 0.11

]
S2 =

[
−0.13 0.11
0.2 0.1

]
.

By using the MATLAB LMI Toolbox, LMIs (30) and (31) can
be solved with feasible solutions. According to Corollary 1, we can
construct a state feedback controller to make the closed-loop fuzzy
system (23) passive with the feedback gain as follows:

K1 =

[
−0.1365 −0.0157
−0.0120 0.0412

]

K2 =

[
−0.2280 −0.0714
−0.0228 0.2583

]
.
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V. CONCLUSION

In this paper, the passivity and passification problems have been in-
vestigated for a general class of stochastic discrete-time fuzzy systems
with time-varying delay. To reflect more realistic dynamical behaviors
of the system, stochastic disturbances have been considered in the form
of Brownian motions. By employing the Lyapunov functional method
combined with the matrix-inequality techniques, several sufficient
criteria have been acquired to ensure the original T-S fuzzy system
and the closed-loop fuzzy model to be globally passive in the sense
of expectation. Further research topics include extending the main
results of this paper to a class of stochastic or descriptor systems
[11], [12].
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