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Abstract—In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time

series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene

measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for

identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online

estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative

procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the

effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.
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1 INTRODUCTION

THE DNA microarray technology has made it possible to
conduct simultaneous expression measurements from

tens of thousands of genes, and a global view on the
expression levels of all genes is enabled when the cell
undergoes specific conditions or processes. Measuring gene
expression levels in different conditions may prove useful
in medical diagnosis, treatment, and drug design. Many
gene expression experiments produce short time series data
with only a few time points due to the high measurement
costs. The time series usually represents the dynamic
response of an organism to a change in conditions, e.g.,
application of some drug or other treatment. Therefore, it is
highly desired to extract the functional information from
gene expression time series data, and the modeling of gene
expression time series has become an area attracting
increasing research attention.

Among many methods for modeling gene expression

data, the clustering approach has gained a particular

research focus. For example, cluster analysis of the gene

expression data was studied as early as in [12] and, since

then, many clustering algorithms have been applied to

gene expression data, such as hierarchical clustering [12],

self-organizing map [38], k-means [39], and Gaussian
model-based clustering [33], [46]; see [23] for an overview.
It has now been recognized that the cluster analysis is
based on the assumption that there exists the correlation
similarity between genes, which is essentially a static
approach. Recently, dynamic modeling of gene regulatory
networks from time series data has received more and
more research interest [10], [35]. A number of dynamical
models have been put forward with examples including
Boolean network model [1], [21], [27], [36], linear differ-
ential equation model [5], [9], [11], [20], [43], Bayesian
model [19], [24], [28], [31], state-space model [3], [34], [44],
and stochastic model [7], [41], [42].

Since it is well known that the gene expression is an
inherently stochastic phenomenon [25], [29], [31], [40], the
network should be of a “stochastic” nature. Recently,
stochastic modeling of gene expression time series has
been paid a great deal of research attention. For example,
dynamic Bayesian networks (DBNs) have been proposed to
model gene expression time series data [24], [28], [31]
because DBNs can model stochasticity and handle noisy/
hidden variables. However, DBNs need more complex
algorithms such as the genetic algorithm [24], [37] to infer
gene regulatory networks. The state-space model [3], [34],
[44] assumes that the gene expression value depends not
only on the current internal state variables but also on the
external inputs, which reflects the nature of a dynamic
network. Unfortunately, most results reported on state-
space models have been focused on linear systems, and
therefore, the nonlinear phenomenon of the gene networks
cannot be taken into account.

In addition to the stochastic behavior, there are still two
typical features that contribute to the complexity of a gene
regulatory network: 1) the network is essentially nonlinear
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(for example, the activation function regulating the gene
activity profile is highly nonlinear) and 2) the available gene
expression time series usually consists of a large number of
variables but with a small number of observations.
However, most available literature concerning modeling
gene expression time series has not explicitly dealt with
these two features, and therefore, there is a need to seek
alternative approaches to identifying parameters of a
nonlinear stochastic gene regulatory network through
real-time gene expression time series. In search of such an
approach, the extended Kalman filtering (EKF) approach
appears to be an appropriate candidate.

The traditional Kalman filter addresses the general
problem of trying to estimate the state of a discrete-time
system governed by a linear stochastic difference equation,
see, e.g., [13], [14], [15], [16], [17], [18]. EKF linearizes about
the current mean and covariance, and can therefore handle
nonlinearities that can be associated either with the process
model or with the observation model or with both. On the
other hand, EKF is known as an effective online (recursive)
estimator of process variables, which can be suitable for
identifying large number of parameters using a short time
series [8]. However, despite its potential in modeling gene
regulatory networks (GRNs), so far, the EKF approach with
applications to identify nonlinear dynamic GRNs via short

gene expression time series has received little research
attention. Note that the unscented Kalman filtering (UKF)
has been utilized in [32] to the estimation of both
parameters and hidden variables of nonlinear state-space
models, but the UKF approach would require a sufficiently
long time series for the statistical inference. Hence, it is our
intention in this paper to fill the gap by investigating the use
of EKF in the presence of nonlinearities, short time series,
and high dimension of the variables.

In this paper, the gene regulatory network is considered
as a nonlinear dynamic stochastic model that consists of the
gene measurement equation and the gene regulation
equation. In order to reflect the reality, we consider the
gene measurement from microarray as noisy, and assume
that the gene regulation equation is a nonlinar autoregres-
sive stochastic dynamic process, where the nonlinearity
stems from the inherently nonlinear regulatory relationship
and degree among genes. After specifying the model
structure, we apply the EKF algorithm for identifying both
the model parameters and the actual value of gene
expression levels. Note that the EKF algorithm is an online
estimation algorithm that can identify a large number of
parameters (including parameters of nonlinear functions)
through iterative procedure by using a small number of
observations. Four real-world gene expression data sets are
employed to demonstrate the effectiveness of the EKF
algorithm, and the obtained models are evaluated from the
viewpoint of bioinformatics.

2 GENE MODEL AND PROBLEM FORMULATION

The measured gene expression levels can be modeled as

yiðkÞ ¼ xiðkÞ þ viðkÞ; i ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;m; ðIÞ

where yðkÞ ¼ ½y1ðkÞ; y2ðkÞ; . . . ; ynðkÞ�T is the measurement
data from microarray experiments at time k with yiðkÞ
describing the ith gene expression levels at time k, xiðkÞ is
the ith actual gene expression levels which stand for mRNA
concentrations and/or protein concentrations at time k,
viðkÞ is the measurement noise, n is the number of the
genes, and m is the number of the measurement time
points. Here, vðkÞ ¼ ½v1ðkÞ; v2ðkÞ; . . . ; vnðkÞ�T is assumed to
be a zero-mean Gaussian white noise sequence with
constant covariance R > 0, i.e., vðkÞ � N ð0; RÞ.

The gene regulatory network containing n genes is
described by the following discrete-time nonlinear stochas-
tic dynamical system [6]:

xiðkþ 1Þ ¼
Xn
j¼1

aijxjðkÞ þ
Xn
j¼1

bijfjðxjðkÞ; �jÞ þ I0i þ �iðkÞ;

i ¼ 1; 2; . . . ; n; k ¼ 0; 1; 2; . . . ;m� 1;

ðIIÞ

where A ¼ ðaijÞn�n is the linear regulatory relationship and
degree among genes; B ¼ ðbijÞn�n represents the nonlinear
regulatory relationship and degree among genes; I0 ¼
½I01; I02; . . . ; I0n�T is the constant vector with I0i standing
for the external bias on the ith gene; �ðkÞ ¼ ½�1ðkÞ; �2ðkÞ;
. . . ; �nðkÞ�T � Nð0; Q0Þ; and the nonlinear function fjðxj; �jÞ
is given by

fjðxj; �jÞ ¼
1

1þ e��jxj ;

with �j being a parameter to be identified.
Setting � ¼ ½�1; �2; . . . ; �n�T and fðxðkÞ; �Þ ¼ ½f1ðx1ðkÞ;

�1Þ; f2ðx2ðkÞ; �2Þ; . . . ; fnðxnðkÞ; �nÞ�T , we can rewrite (I) and
(II) in the following vector form:

xðkþ 1Þ ¼ AxðkÞ þBfðxðkÞ; �Þ þ I0 þ �ðkÞ; ð1Þ

yðkÞ ¼ xðkÞ þ vðkÞ: ð2Þ

Letting

Ae ¼ ½a11; a21; . . . ; an1; a12; a22; . . . ; an2; . . . ; a1n; a2n; . . . ; ann�T ;
ð3Þ

Be ¼ ½b11; b21; . . . ; bn1; b12; b22; . . . ; bn2; . . . ; b1n; b2n; . . . ; bnn�T ;
ð4Þ

� ¼ ½�1; �2; . . . ; �n�T ; ð5Þ

� ¼ ½AT
e BT

e �T IT0 �
T ; ð6Þ

all the parameters to be estimated are denoted by

� ¼ ½AT
e BT

e �T IT0 �
T : ð7Þ

In order to establish the gene expression model (II), it is
necessary to identify the parameter vector �. In this paper,
we aim at estimating the parameters of the model (II) via
the EKF method from the measurement data.

Remark 1. In many papers, dealing with modeling problems
of genetic regulatory networks, Hill functions are used as
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the regulatory functions instead of the logistic function. It

is worth mentioning that the developed EKF algorithm

could also estimate the parameters of the Hill functions

since these parameters can be arranged in a similar form

to (5). On the other hand, gene regulatory networks are

sometimes more appropriate to include delays when

describing the characteristics of transcription and transla-

tion. In the case that the time delay is small, the state

augmentation can be used to convert the model into a

delay-free one and the EKF approach can be applied.

For the large time delays, traditional EKF approach

needs to be modified that constitutes one of the future

research topics.

3 THE EXTENDED KALMAN FILTER APPROACH TO

PARAMETER ESTIMATION

In this section, we introduce the Kalman filter, the EKF

approach to parameter identification, respectively; see,

e.g., [8], [45].

3.1 The Discrete Kalman Filter

The Kalman filter addresses the general problem of trying

to estimate the state xðkÞ 2 IRn of a discrete-time process

that is governed by the linear stochastic difference equation

xðkþ 1Þ ¼ Gkþ1;kxðkÞ þHkþ1;kuðkÞ þ �kþ1;kwðkÞ; ð8Þ

with the measurement zðkÞ 2 IRm given by

zðkÞ ¼ CkxðkÞ þDkuðkÞ þ vðkÞ; ð9Þ

where the random variables wðkÞ and vðkÞ represent the

process and measurement noise, respectively. They are

assumed to be independent (of each other), white, and with

normal probability distributions

E½wðkÞ� ¼ E½vðkÞ� ¼ 0; E½wðkÞwT ðjÞ� ¼ Qk�kj;

E½vðkÞvT ðjÞ� ¼ Rk�kj; E½vðkÞwT ðjÞ� ¼ 0;

where

�kj ¼
1; k ¼ j;
0; k 6¼ j:

�

We define x̂ðkþ 1jkÞ to be our a priori state estimate at

step kþ 1 given knowledge of the process prior to step

kþ 1, and x̂ðkþ 1jkþ 1Þ 2 IRn to be our a posteriori state

estimate at step kþ 1 given measurement zðkþ 1Þ.
Discrete-time Kalman filter algorithm.
Initialization. For k ¼ 0, set

x̂ð0j0Þ ¼ E½xð0Þ� ¼ x0;

P ð0j0Þ ¼ E½ðxð0Þ � x0Þðxð0Þ � x0ÞT � ¼ Px0
:

Step 1 (Time update). Given xðkjkÞ and P ðkjkÞ apply the

time update (effect of system dynamics)

x̂ðkþ 1jkÞ ¼ Gkþ1;kx̂ðkjkÞ þHkþ1;kuðkÞ;
P ðkþ 1jkÞ ¼ Gkþ1;kP ðkjkÞGT

kþ1;k þ �kþ1;kQk�
T
kþ1;k;

to obtain x̂ðkþ 1jkÞ; P ðkþ 1jkÞ.

Step 2. Then, after obtaining the new measurement
zðkþ 1Þ, apply the following measurement update (effect of
measurement):

Kkþ1 ¼ P ðkþ 1jkÞCT
kþ1ðCkþ1P ðkþ 1jkÞCT

kþ1

þRkþ1Þ�1;

P ðkþ 1jkþ 1Þ ¼ ðI �Kkþ1Ckþ1ÞP ðkþ 1jkÞ;
x̂ðkþ 1jkþ 1Þ ¼ Gkþ1;kx̂ðkjkÞ þHkþ1;kuðkÞ

þKkþ1

�
Zðkþ 1Þ �Dkþ1uðkþ 1Þ

� Ckþ1ðGkþ1;kx̂ðkjkÞ þHkþ1;kuðkÞÞ
�

to obtain the optimal estimates P ðkþ 1jkþ 1Þ; x̂ðkþ 1j
kþ 1Þ. Kkþ1 is called the Kalman gain.

Set k ¼ kþ 1 and go to step 1.

3.2 Extended Kalman Filtering

The Kalman filter is the optimum state estimator for a linear
system with the assumptions as described. If the system is
nonlinear, then we may use a linearization process at every
time step to approximate the nonlinear system with a linear
time varying (LTV) system. This LTV system is then used in
the Kalman filter, resulting in an EKF on the true nonlinear
system. Note that although EKF is not necessarily optimal,
it often works very well.

Consider the following nonlinear system:

xðkþ 1Þ ¼ fðxðkÞÞ þ wðkÞ; ð10Þ

yðkÞ ¼ gðxðkÞÞ þ vðkÞ; ð11Þ

where k is a nonnegative integer, xðkÞ 2 IRn is the system
state vector, yðkÞ 2 IRr is the observation vector, wðkÞ and
vðkÞ are the system noise and the measurement noise,
respectively, and wðkÞ and vðkÞ are the zero-mean white
Gaussian stochastic processes with covariance matrices Qk

and Rk, respectively. Here, f : IRn ! IRn is a nonlinear state
transition function and g: IRn ! IRr is a nonlinear measure-
ment function.

The EKF is implemented by the following consecutive
steps:

1. Consider the last filtered state estimate x̂ðkjkÞ.
2. Linearize the system dynamics (10) around x̂ðkjkÞ.
3. Apply the prediction step of the Kalman filter to the

linearized system dynamics just obtained, yielding
x̂ðkþ 1jkÞ and P ðkþ 1jkÞ.

4. Linearize the observation equation (11) around
x̂ðkjkÞ.

5. Apply the filtering or update cycle of the Kalman
filter to the linearized observation dynamics, yield-
ing x̂ðkþ 1jkþ 1Þ and P ðkþ 1jkþ 1Þ.

Let

ÂðkÞ ¼ @fðxðkÞÞ
@xðkÞ

����
xðkÞ¼x̂ðkjkÞ

; ĈðkÞ ¼ @gðxðkÞÞ
@xðkÞ

����
xðkÞ¼x̂ðkjk�1Þ

:

ð12Þ

Assume that xð0Þ � N ðx0; Px0
Þ; wðkÞ � N ð0; QkÞ; vðkÞ �

N ð0; RkÞ with Rk > 0, and that fwðkÞg and fvðkÞg are the
white noise processes uncorrelated with xð0Þ and with each
other. Then, the EKF algorithm can be stated as follows:
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Initialization.
For k ¼ 0, set

x̂ð0j0Þ ¼ E½xð0Þ� ¼ x0;

P ð0j0Þ ¼ E½ðxð0Þ � x0Þðxð0Þ � x0ÞT � ¼ Px0
:

For k ¼ 1; 2; 3; . . . compute.
Time update (“Predict”)
State estimate time update: x̂ðkjk� 1Þ ¼ fðx̂ðk� 1j

k� 1ÞÞ.
Error covariance time update: P ðkjk� 1Þ ¼ Âðk� 1Þ

P ðk� 1jk� 1ÞÂðk� 1ÞT þQk�1.
Measurement update (“Correct”)
Compute the Kalman gain matrix: Kk ¼ P ðkjk� 1Þ

ĈT ðkÞ½ĈðkÞP ðkjk� 1ÞCðkÞT þRk��1.
Update the estimate with measurement yðkÞ: x̂ðkjkÞ ¼

x̂ðkjk� 1Þ þKk½yðkÞ � gðx̂ðkjk� 1ÞÞ�.
Error covariance measurement update: P ðkjkÞ ¼ ðI �

KkĈðkÞÞP ðkjk� 1Þ.
Remark 2. The convergence of EKF has been a research

topic of recurring interest for some decades, and a

variety of criteria have been proposed to guarantee the

convergence. Recently, it has been shown in [26] that if

the system is C2 and uniformly observable with bounded

second partial derivatives, then the EKF converges

locally for a broad class of nonlinear systems. In this

case, if the initial estimation error of the filter is not too

large, then the error goes to zero exponentially as time

goes to infinity. More detailed discussions on the

convergence can be found in [22], [26] and the references

therein.

3.3 The EKF for Parameter Identification

EKF is a very practical method in identification of nonlinear

systems. Augmenting the unknown parameters to the state

vector makes it possible to use EKF for parameter

identification, too. In general, the nonlinear system dy-

namics can be described by

xðkþ 1Þ ¼ fðxðkÞ; �Þ þ �ðkÞ; ð13Þ

with a measurement given by

zðkÞ ¼ gðxðkÞ; �Þ þ vðkÞ; ð14Þ

where xðkÞ and zðkÞ are the state vector and the measure-

ment vector, respectively, �ðkÞ and vðkÞ are the zero-mean

white noise processes, and the parameters to be estimated

are denoted as �. In many applications as well as in our

system, it is natural to assume that the parameters are

constant. In order to estimate a vector of parameters � from

the nonlinear state-space model, the state vector xðkÞ is

augmented to include the parameters as states

XðkÞ ¼ xðkÞ
�ðkÞ

� �
;

and the parameters are modeled as constants with

uncertain initial conditions: � � Nð�0; P�Þ. The resulting

dynamic equation is

Xðkþ 1Þ ¼ F ðXðkÞÞ þ wðkÞ; ð15Þ

zðkÞ ¼ GðXðkÞÞ þ vðkÞ; ð16Þ

where wðkÞ¼ �T ðkÞ; 0
� �T

; F ðXðkÞÞ¼½fT ðxðkÞ; �ðkÞÞ; �T ðkÞ�T ,

and GðXðkÞÞ ¼ gðxðkÞ; �ðkÞÞ. Then, the standard EKF algo-

rithm can be applied.

4 APPLICATIONS TO REAL-WORLD GENE

EXPRESSION TIME SERIES DATA

In this section, we focus our attention on the model (1)

and show how to estimate its parameters via the EKF

approach.
For presentation convenience, we denote

AðkÞ ¼ ðaijðkÞÞn�n; ð17Þ

BðkÞ ¼ ðbijðkÞÞn�n; ð18Þ

AeðkÞ ¼ ½a11ðkÞ; a21ðkÞ; . . . ; an1ðkÞ; a12ðkÞ; a22ðkÞ; . . . ;

an2ðkÞ; . . . ; a1nðkÞ; a2nðkÞ; . . . ; annðkÞ�T ;
ð19Þ

BeðkÞ ¼ ½b11ðkÞ; b21ðkÞ; . . . ; bn1ðkÞ; b12ðkÞ; b22ðkÞ; . . . ;

bn2ðkÞ; . . . ; b1nðkÞ; b2nðkÞ; . . . ; bnnðkÞ�T ;
ð20Þ

�ðkÞ ¼ ½�1ðkÞ; �2ðkÞ; . . . ; �nðkÞ�T ; ð21Þ

I0ðkÞ ¼ ½I01ðkÞ; I02ðkÞ; . . . ; I0nðkÞ�T ; ð22Þ

�ðkÞ ¼ ½AT
e ðkÞ BT

e ðkÞ �T ðkÞ IT0 ðkÞ�
T ; ð23Þ

XðkÞ ¼ ½xT ðkÞ �T ðkÞ�T : ð24Þ

Let In be the n� n identity matrix, and the matrix H ¼
½Im 0� with appropriate dimension.. In order to facilitate the

application of the EKF in the parameter estimation problem,

we rewrite (1) as follows:

Xðkþ 1Þ ¼ F ðXðkÞÞ þ wðkÞ; ð25Þ

yðkÞ ¼ HXðkÞ þ vðkÞ; ð26Þ

where

F ðXðkÞÞ ¼
AðkÞxðkÞ þBðkÞfðxðkÞ; �ðkÞÞ þ I0ðkÞ

�ðkÞ

� �
;

wðkÞ ¼
�ðkÞ

0

� �
;

ð27Þ

with fðx; �Þ ¼ ½f1ðx1; �1Þ; f2ðx2; �2Þ; . . . ; fnðxn; �nÞ�T and

fjðxj; �jÞ ¼
1

1þ e��jxj :
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Since �ðkÞ � N ð0; R0Þ, it is obvious that wðkÞ � N ð0; RÞ
with R ¼ HTR0H, and it is also not difficult to see that

@F ðXðkÞÞ
@XðkÞ ¼

�1ðXðkÞÞ �2ðXðkÞÞ �3ðXðkÞÞ �4ðXðkÞÞ I

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

2
6666664

3
7777775
;

ð28Þ

where

�1ðXðkÞÞ ¼ AðkÞ þBðkÞ
@fðxðkÞ; �ðkÞÞ

@xðkÞ ;

�2ðXðkÞÞ ¼ ½x1ðkÞI; x2ðkÞI; . . . ; xnðkÞI�;
�3ðXðkÞÞ ¼ ½fðx1ðkÞ; �1ðkÞÞI; fðx2ðkÞ; �2ðkÞÞI; . . . ;

fðxnðkÞ; �nðkÞÞI�;

�4ðXðkÞÞ ¼ BðkÞdiag
x1ðkÞe��1ðkÞx1ðkÞ

ð1þ e��1ðkÞx1ðkÞÞ2
;

(

x2ðkÞe��2ðkÞx2ðkÞ

ð1þ e��2ðkÞx2ðkÞÞ2
; . . . ;

xnðkÞe��nðkÞxnðkÞ

ð1þ e��nðkÞxnðkÞÞ2

)
;

with

@fðxðkÞ; �ðkÞÞ
@xðkÞ ¼ diag

(
�1ðkÞe��1ðkÞx1ðkÞ

ð1þ e��1ðkÞx1ðkÞÞ2
;

�2ðkÞe��2ðkÞx2ðkÞ

ð1þ e��2ðkÞx2ðkÞÞ2
; . . . ;

�nðkÞe��nðkÞxnðkÞ

ð1þ e��nðkÞxnðkÞÞ2

)
:

Remark 3. Based on the EKF approach, we can identify

2n2 þ 2n parameters. Specifically, we can estimate

n2 parameters aijs, n2 parameters bijs, n parameters �is,

and n parameters I0is. It is also worth pointing out that

we can identify the n state variables as well.

4.1 Identifying the Malaria Model Parameters
from Time Series

The first data set is from the Malaria gene expression time

series [4]. It consists of 530 genes expressed 48 equally

spaced time points. We select the first six genes expression

time series given by

ZZ ¼ ½Z1 Z2 Z3 Z4 Z5 Z6�;

where

Z1 ¼
4:3140 3:2789 1:6684 1:7445 1:0716 0:9868 0:9900 0:7780

2:2710 1:8179 0:7923 1:2726 0:7282 0:5669 0:5280 0:4488

2:7890 2:3653 1:4219 1:3902 1:0680 0:8739 0:6490 0:7413

3:7880 2:5943 1:2601 1:8115 0:9243 0:8472 0:8310 0:6240

4:1620 2:9244 0:9809 2:1758 0:9998 0:8891 0:7450 0:5897

2:2080 2:0724 0:9977 1:3763 0:7307 0:4528 0:4890 0:5092

2
666666664

3
777777775
;

Z2 ¼
0:8355 0:5796 0:4910 0:3782 0:3446 0:1460 0:1465 0:2114

0:5778 0:3129 0:2540 0:2401 0:2036 0:1260 0:1608 0:1577

0:5219 0:5056 0:3680 0:3691 0:3232 0:1730 0:1002 0:1133

0:9553 0:4316 0:4230 0:2943 0:2634 0:1360 0:1280 0:1028

0:9722 0:3823 0:3700 0:3343 0:3019 0:1280 0:1482 0:1168

0:4854 0:3545 0:2580 0:2504 0:2264 0:1170 0:1313 0:1554

2
666666664

3
777777775
;

Z3 ¼
0:2061 0:1720 0:1678 0:1700 0:2155 0:2226 0:2101 0:1976

0:1710 0:2110 0:2138 0:2620 0:3233 0:2806 0:3582 0:4357

0:1239 0:1010 0:0642 0:0630 0:0632 0:0655 0:0467 0:0280

0:0811 0:0970 0:0518 0:0490 0:0427 0:0524 0:0496 0:0469

0:1129 0:1180 0:0839 0:0810 0:0948 0:0917 0:0995 0:1074

0:1666 0:2140 0:2089 0:2790 0:2675 0:3096 0:3894 0:4691

2
666666664

3
777777775
;
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Fig. 1. The estimated time series of parameters a11; a21; a31; a41; a51; a61

(Malaria).

Fig. 2. The estimated time series of parameters b11; b21; b31; b41; b51; b61

(Malaria).
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Z4 ¼
0:2375 0:2131 0:2530 0:1947 0:2148 0:2349 0:2650 0:6056

0:3711 0:4639 0:6410 0:6707 0:8082 0:9458 1:1440 1:3391

0:0608 0:0410 0:0440 0:0391 0:0850 0:1309 0:2050 0:3874

0:0544 0:0475 0:0750 0:0707 0:1066 0:1425 0:2100 0:5808

0:1016 0:1090 0:1280 0:1381 0:1739 0:2098 0:3030 0:5905

0:4062 0:5582 0:5920 0:7738 0:8656 0:9574 1:2510 1:2578

2
666666664

3
777777775
;

Z5 ¼
1:0130 1:4945 1:9910 2:5285 1:7578 1:8211 2:5851 3:8840

1:9144 2:0826 2:3190 2:5555 2:9656 2:3457 3:3361 3:2779

0:9661 1:3078 1:8535 2:4930 1:7872 2:0033 3:4185 4:6765

1:0017 1:7174 1:9343 2:2905 2:0121 1:9548 4:0059 4:5845

0:8967 1:6631 1:7467 2:3982 1:8186 1:5144 3:6226 2:8834

1:9266 2:0004 2:4258 2:4844 2:8291 2:3201 7:6102 2:9527

2
666666664

3
777777775
;

Z6 ¼
3:8805 6:0726 5:4836 4:6334 3:2207 1:0636 1:5610 1:1717

3:1208 4:1553 2:2738 2:0388 1:8348 1:5575 1:9512 1:4513

4:7711 6:6787 4:1907 4:6189 2:5593 2:3816 2:9104 2:3003

5:1805 6:1378 4:4675 4:1250 3:2643 1:9541 2:6247 1:9389

3:6588 6:9146 5:1801 4:6347 3:9337 2:8011 3:4341 2:1344

2:7262 4:1970 2:3114 2:3628 2:0484 1:6607 2:0003 1:3854

2
666666664

3
777777775
:

Here, the ith row of matrix ZZ stands for the expression time
series of the ith gene. We take P ð0j0Þ ¼ 0:5I, and let �ðkÞ �
N ð0; 0:32IÞ and vðkÞ � N ð0; 0:42IÞ. Then, based on the EKF
algorithm, we can identify all the parameters, which consist
of 2n2 þ 2n system parameters and n system variables. Both
the identified parameters and variables are expressed in the
form of time series, and the time series for error covariances
is also obtained simultaneously.

For the purpose of space saving, we only select partial
parameters . They are a11; a21; . . . ; a61; b11; b21; . . . ; b61;
�1; �2; . . . ; �6; I01; I02; . . . ; I06. The time series of the corre-
sponding estimated parameters are depicted in Figs. 1, 2,
3, and 4.
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Fig. 4. The estimated time series of parameters I01; I02; I03; I04; I05; I06

(Malaria).

Fig. 3. The estimated time series of parameters �1; �2; �3; �4; �5; �6

(Malaria).

Fig. 5. The variances of estimated time series of parameters

a11; a21; a31; a41; a51; a61 (Malaria).

Fig. 6. The variances of estimated time series of parameters

b11; b21; b31; b41; b51; b61 (Malaria).
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In identifying the parameters by EKF approach, we can

obtain the error covariance matrix P ðkjkÞ simultaneously.

Note that the time series for error covariance matrix gives a

quantitative criterion to evaluate the identification errors.

Here, we display the individual parameter error variance in

Figs. 5, 6, 7, and 8. In these figures, for a parameter �, we

denote its variance by V ar�. We can observe in Figs. 5, 6, 7,

and 8 that, when time points increase, the estimation error

variances decrease. This shows that the EKF algorithm

works well when modeling nonlinear dynamic gene

regulatory networks via short gene expression time series.

4.2 Identifying the Worm Model Parameters
from Time Series

The second data set is from the Worm gene expression time

series [2], [30]. It consists of 98 genes expressed 123 equally

spaced time points. We select the first 12 genes expression

time series for our purpose. Here, we take P ð0j0Þ ¼ 0:5I,

and let �ðkÞ � N ð0; 0:32IÞ and vðkÞ � N ð0; 0:42IÞ. Then,

based on EKF algorithm, we can identify all the para-

meters. For the same purpose of saving room, we select

only partial parameters. They are a11; a21; . . . ; a61; b11; b21;

. . . ; b61;�1; �2; . . . ; �6; I01; I02; . . . ; I06. The time series of the

corresponding estimated parameters are demonstrated in

Figs. 9, 10, 11, and 12.

Remark 4. We can also specify the individual parameter

error variance as done previously. However, in order to

keep this paper concise, we omit the related figures

hereafter.

4.3 Identifying the Yeast Model Parameters
from Time Series

The third data set is from the Worm gene expression time

series [46]. It consists of 237 genes expressed 17 equally

spaced time points. We select the first 12 genes expression

time series for our purpose. Here, we take P ð0j0Þ ¼ 0:5I,

and let �ðkÞ � N ð0; 0:32IÞ and vðkÞ � N ð0; 0:42IÞ. Then,

based on EKF algorithm, we can identify all the parameters.

For the same purpose of saving room, we select only partial

parameters. They are a11; a21; . . . ; a61; b11; b21; . . . ; b61; �1; �2;

. . . ; �6; I01; I02; . . . ; I06. The time series of the corresponding
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Fig. 7. The variances of estimated time series of parameters

�1; �2; �3; �4; �5; �6 (Malaria).

Fig. 8. The variances of estimated time series of parameters

I01; I02; I03; I04; I05; I06 (Malaria).

Fig. 9. The estimated time series of parameters a11; a21; a31; a41; a51; a61

(Worm).

Fig. 10. The estimated time series of parameters b11; b21; b31; b41; b51; b61

(Worm).
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estimated parameters are demonstrated in Figs. 13, 14, 15,

and 16.

4.4 Identifying the Virus Model Parameters
from Time Series

The fourth data set is for the virus gene expression

microarray data from [24], which consists of 106 genes

expressed at eight equally spaced time points. Similar to the

previous cases, we can select partial parameters and display

the time series of the corresponding estimated parameters.

To keep this paper concise, we have omitted the figures.

5 CONCLUSIONS

In this paper, the EKF algorithm has been applied to model

the gene regulatory network from gene time series data. We

assume that the dynamics of the gene regulatory network

under investigation is governed by a class of nonlinear

stochastic differential equation. With the help of the EKF

approach, we have identified all the parameters of the
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Fig. 11. The estimated time series of parameters �1; �2; �3; �4; �5; �6

(Worm).

Fig. 12. The estimated time series of parameters I01; I02; I03; I04; I05; I06

(Worm).

Fig. 13. The estimated time series of parameters a11; a21; a31; a41; a51; a61

(Yeast).

Fig. 14. The estimated time series of parameters b11; b21; b31; b41; b51; b61

(Yeast).

Fig. 15. The estimated time series of parameters �1; �2; �3; �4; �5; �6

(Yeast).
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system. The numerical examples have shown that the EKF

approach works well for modeling the given gene regula-

tory network.
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