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Abstract Given a finite state machine M , a checking sequence is an input sequence

that is guaranteed to lead to a failure if the implementation under test is faulty and

has no more states than M . There has been much interest in the automated generation

of a short checking sequence from a finite state machine. However, such sequences can

contain reset transitions whose use can adversely affect both the cost of applying the

checking sequence and the effectiveness of the checking sequence. Thus, we sometimes

want a checking sequence with a minimum number of reset transitions rather than

a shortest checking sequence. This paper describes a new algorithm for generating a

checking sequence, based on a distinguishing sequence, that minimises the number of

reset transitions used.

Keywords Finite state machine · checking sequence generation · reset transition ·

distinguishing sequence · optimisation

1 Introduction

The importance and cost of testing has led to much interest in automated test genera-

tion. Automation is facilitated by the presence of a model or a formal specification that

describes the required behaviour of the implementation under test (IUT). State-based

systems are often specified or modelled using finite state machines (FSMs) or languages

such as Statecharts [13] and SDL [20] that are based on extended finite state machines
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(EFSMs). When testing from an EFSM it is common to produce a corresponding FSM

by either abstracting out the internal data or expanding this out, possibly after putting

limits on this data. FSM based test generation techniques can then be applied. If an

abstraction is used then it is possible to choose paths that are feasible in the abstrac-

tion and infeasible in the original EFSM, but this problem has been solved for certain

classes of EFSM [8]. Since state-based systems can be represented using FSMs there

has been much interest in the problem of automatically generating a test sequence from

an FSM [5,15,17,18,25].

FSM based test sequence generation has received attention in several domains. It is

normal to specify communications protocols and embedded systems using state-based

languages and here FSM based techniques are applicable [4,21]. The use of FSM based

techniques has also been proposed in the testing of object-oriented systems [3], web

services [14] and model-based testing [2,9]. It transpires that FSM based test generation

techniques assist testing from a specification in a formal language such as Z, VDM or

B [7].

It is normal to use a criterion that states what it means for a test sequence to be

adequate. One criterion is that the test sequence is a checking sequence: it is guaranteed

to determine correctness as long as the IUT has no more states than the specification

FSM. The notion of a checking sequence was introduced by Moore [24] and Hennie

showed how a checking sequence can be produced when the FSM has a known distin-

guishing sequence1 [15]. Hennie represented checking sequence generation in terms of

testing the transitions of an FSM but also showed that there are other types of check-

ing sequence. Since Hennie’s paper, research in this area has focussed on the problem

of producing a short checking sequence for an FSM that has a known distinguishing

sequence (see, for example, [12,17,18,25]). The resultant checking sequence generation

algorithms are based on a sufficient condition for an input sequence to be a checking

sequence, the sufficient condition requiring that each transition is tested, and aim to

produce a shortest input sequence that satisfies this condition.

This paper considers the testing of a resetable IUT: one that has a reset operation

that is known to (correctly) return the IUT to its initial state. The transitions triggered

by this reset operation are known as reset transitions. The reset of a system can require

the reconfiguration of the system and can involve human actions and so each use of

a reset transition significantly increases the cost of testing [10,11,16,27]. If a fault in

a system is associated with there being extra states then we may require long check-

ing sequences in order to detect this fault [4,10,11]. However, reset transitions split a

checking sequence into separate subsequences and so reduce the chance of finding such

faults: they reduce the effectiveness of a checking sequence. Since a reset transition can

significantly increase the cost of applying a checking sequence and reduce the effec-

tiveness of a checking sequence, for some applications we wish to produce a checking

sequence with a minimum number of reset transitions. This paper adapts a class of

algorithms for producing a checking sequence [17,18,25] so that we get a checking se-

quence that, amongst those that can be produced by this class of algorithms, has the

fewest reset transitions. Such a checking sequence is said to be optimal. In contrast to

other algorithms for generating a checking sequence, the proposed algorithm does not

require the FSM to be strongly connected. The use of adaptive checking sequences may

well provide additional benefits, and in particular the use of adaptive distinguishing se-

1 A distinguishing sequence for an FSM M is an input sequence that leads to different output
sequences for the different states of M . Distinguishing sequences are defined in Section 2
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quences [21]. However, this is left as a topic for future work. There has also been recent

work that shows how short checking sequences can be produced using weaker sufficient

conditions for an input sequence to be a checking sequence [6]. However, this work

produces many separate subsequences separated by resets and so is not appropriate

when we wish to minimise the number of resets.

The checking sequence generation algorithms described in [17,18,25] operate in the

following manner. First, they produce two sets of walks from the digraph G(M) that

represents the FSM M : a set Eα of walks that check that the distinguishing sequence

D̄ used works correctly in the IUT and a set Et of walks that use D̄ to test the

transitions. For each walk in Et ∪ Eα an edge is added to G(M) and this produces

a digraph TestG(M). A minimum cost walk of TestG(M) that includes each edge in

Et ∪Eα is produced and a checking sequence generated from this. This walk is devised

using two steps. In the first step, a minimum number of copies of edges from TestG(M)

are added to Et ∪ Eα in order to make the resultant digraph Aug(M) symmetric: for

each vertex v of Aug(M) there are the same number of edges that enter v as leave v.

If Aug(M) is connected then the checking sequence is produced from this. Otherwise

walks are added to connect the components of Aug(M) and a checking sequence is

generated. This approach chooses the set of edges and walks, added to Et ∪ Eα, in a

manner that guarantees that additions are acyclic as this is required in order to satisfy

the sufficient condition from [25] for an input sequence to be a checking sequence.

The algorithm given in this paper adapts this approach in several ways. First,

the edges in G(M) that represent resets are given a cost that is sufficiently high to

ensure that a minimum cost walk that contains every edge in Et ∪ Eα also minimises

the number of resets. Again, a walk is produced through two steps. First, a digraph

TestG(M) is defined and a minimum cost set of copies of edges from TestG(M) is added

to Et ∪Eα in order to produce a symmetric digraph Aug(M). If Aug(M) is connected

then we produce a checking sequence and it is guaranteed that this minimises the

number of resets. If Aug(M) is not connected then we need to add walks to connect it

but we wish to do so in a way that adds as few resets as possible. In this paper we prove

that the sufficient condition from [25], for an input sequence to be a checking sequence,

can be weakened and that we can always add a set of walks with no resets that connect

Aug(M) and does not invalidate the new sufficient condition. As a result, the step

that connects the components of Aug(M) adds no resets and so the resultant checking

sequence minimises the number of resets. Interestingly, while the checking sequence

generation algorithms in [17,18,25] require an NP-hard optimisation problem to be

solved if we want to be guaranteed to return a shortest checking sequence, the algorithm

given in this paper minimises the number of resets and has low order polynomial time

complexity.

The rest of the paper is organised as follows. Section 2 describes finite state ma-

chines and digraphs. Section 3 gives a sufficient condition, for a test sequence to be

a checking sequence, that forms the basis of checking sequence generations. Section 4

gives the algorithm for generating a checking sequence and Section 5 reports the results

of experiments. Finally, Section 6 draws conclusions.
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2 Preliminaries

2.1 Notation

Throughout this paper ǫ denotes the empty sequence. We will put a bar above the

name of a variable (e.g. x̄) if this variable represents a sequence. Given a sequence

ρ̄ = z1, . . . , zk, for all 1 ≤ i ≤ k we have that z1, . . . , zi is a prefix of ρ̄ and zi, . . . , zk

is a suffix of ρ̄.

2.2 Directed Graphs

Given a set L of labels, a directed graph (digraph) G is defined by a pair (V, E) where

V is a set of vertices and E ⊆ V ×V ×L is a set of directed edges between the vertices.

Given edge e = (v, v′, l), v is the starting vertex of e, v′ is the ending vertex of e, and

l is the label of e. G is symmetric if for every vertex v of V the number of edges whose

starting vertex is v is equal to the number of edges whose ending vertex is v.

The test generation algorithm proposed in this paper will require us to use digraphs

in which there can be more than one copy of an edge. In such situations we use a

multiset of edges rather than a set of edges. Multisets differ from sets in one important

way: each element of a multiset occurs a specified number of times in that multiset.

Thus, if E′ is a multiset of elements of set E then we can represent E′ as a set of pairs

of the form (e, k) where e ∈ E and k is the number of times that e occurs in E′.

A walk in G is a sequence e1, . . . , em of successive pairs of adjacent edges from G. If

ei = (vi, vi+1, li) for all 1 ≤ i ≤ m then e1, . . . , em has label l1, . . . , lm, starting vertex

v1, and ending vertex vm+1. Given a walk P̄ = e1, . . . , em, for all 1 ≤ i ≤ j ≤ m

we have that ei, . . . , ej is a subwalk of P̄ . If we assign a cost cost(e) to each edge

e of G then the cost of a walk is the sum of the costs of the edges in the walk:

cost(e1, . . . , em) =
∑

1≤i≤m cost(ei).

G is strongly connected if for every ordered pair (v, v′) of vertices of G there is a walk

from v to v′. G is weakly connected if the underlying undirected graph is connected: for

every ordered pair of vertices (v, v′) of G there is a sequence (v1, v2, l1), . . . , (vk, vk+1, lk)

with v = v1 and v′ = vk+1 such that for all 1 ≤ i ≤ k we have that either (vi, vi+1, li)

is an edge of G or (vi+1, vi, li) is an edge of G. A path is a walk in which no vertex

is repeated and a walk e1, . . . , em is a cycle if e1, . . . , em−1 is a path and the ending

vertex of em is the starting vertex of e1. If P̄1 is a subwalk of a path P̄ then P̄1 is a

subpath of P̄ . Walk e1, . . . , em is a tour if its starting and ending vertices are the same.

If we start tour e1, . . . , em with edge ei we get ei, . . . , em, e1, . . . , ei−1. A tour of G is

an Euler Tour if it contains each edge of G exactly once.

Given digraph G = (V, E) and a set E′ ⊆ E of edges, the rural Chinese postman

problem (RCPP) is to find a shortest tour of G that contains every edge from E′.

While the RCPP is NP-hard [22], a polynomial time heuristic is often applied when

test sequence generation is represented in terms of the RCPP. In this heuristic [1], we

first find a minimum cost symmetric augmentation of E′: a minimum cost symmetric

multiset of elements of E that contains E′. This is a multiset since it may be necessary

to include multiple copies of some edges. If the resultant digraph is strongly connected

then an Euler Tour of this digraph is a solution to the RCPP; if the digraph isn’t

strongly connected then we add edges to connect its components and the resultant

tour may be suboptimal.
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Fig. 1 Finite State Machine M0

Given digraph G = (V, E), digraph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V

and E′ ⊆ E. Given E′ ⊆ E, G[E′] denotes the smallest subgraph of G that has edge

set E′. Thus G[E′] = (V ′, E′) where V ′ is the set of vertices from V that are either

starting vertices or ending vertices of edges from E′: V ′ = {v ∈ V |∃e = (vi, vj , l) ∈

E′.v = vi ∨ v = vj}. A subgraph G′ = (V ′, E′) of G = (V, E) is a component of

G if G′ is strongly connected, there is no edge in G from a vertex in V ′ to a vertex

not in V ′, and every edge e in E that is between vertices from V ′ is also in E′:

E′ = {(vi, vj , l) ∈ E|vi, vj ∈ V ′}.

2.3 Finite State Machines and Resets

A (completely specified and deterministic) FSM M is defined by a tuple (S,X, Y, δ, λ, s1)

in which S is the finite set of states; s1 ∈ S is the initial state; X is the finite input al-

phabet ; Y is the finite output alphabet ; δ is the state transfer function of type S×X → S;

and λ is the output function of type S × X → Y . FSMs are sometimes called Mealy

machines or finite state transducers. If we input x ∈ X when M is in state s ∈ S then

we get output y = λ(s, x) and M moves to state s′ = δ(s, x). This defines a transition

(s, s′, x/y) that has starting state s and ending state s′. The functions δ and λ can be

extended to take input sequences in the usual way. Throughout this paper we assume

that a completely specified and deterministic FSM M = (S, X, Y, δ, λ, s1) with n states

describes the required behaviour of the IUT. Consider the FSM M0 in Figure 1. Here,

for example, δ(s2, a) = s4, λ(s2, a) = 0 and so M0 contains the transition (s2, s4, a/0).

If we consider the application of sequence ab from state s2 we find that δ(s2, ab) = s2

and λ(s2, ab) = 00.

The FSM M can be represented by a digraph G(M) = (V, E) in which each state

si is represented by a corresponding vertex vi, |V | = n, and E = {(vi, vj , x/y)|1 ≤

i, j ≤ n ∧ x ∈ X ∧ λ(si, x) = y ∧ δ(si, x) = sj). As a result we can use graph theory

terminology and notation when discussing FSMs.

If input sequence x̄ = x1, . . . , xk is applied when M is in state si then it takes M

to state sj = δ(si, x̄) and leads to output sequence ȳ = y1, . . . , yk = λ(si, x̄). This is
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achieved through a sequence ρ̄ = τ1, . . . , τk of consecutive transitions of M and ρ̄ is

said to be a transition sequence whose label is label(ρ̄) = x1/y1, . . . , xk/yk. Transition

sequence ρ̄ has starting state si and ending state sj . In addition, x1/y1, . . . , xk/yk is

an input/output sequence and can be represented by x̄/ȳ. We call x̄ the input portion of

x̄/ȳ while ȳ is the output portion of x̄/ȳ. The transition sequence ρ̄ can be represented

by the tuple (si, sj , x1/y1, . . . , xk/yk) or by the tuple (si, sj , x̄/ȳ). In addition, this

transition sequence is represented by an edge (vi, vj , x1/y1, . . . , xk/yk) that can be

added to G(M) when it is desired to construct an augmented version of G(M).

The digraph G(M) representing an FSM M is initially connected if each state s

of M can be reached from s1: for every state s ∈ S there is an input sequence x̄ such

that s = δ(s1, x̄). If G(M) is not initially connected then the unreachable states can

be deleted and thus only FSMs represented by initially connected digraphs will be

considered. G(M) is strongly connected if for each ordered pair of states (s, s′) there is

an input sequence x̄ that takes M from s to s′.

States s and s′ are equivalent if for every input sequence x̄ we have that λ(s, x̄) =

λ(s′, x̄). If for an input sequence x̄ we have that λ(s, x̄) 6= λ(s′, x̄) then x̄ distinguishes

between s and s′. Input sequence D̄ is a distinguishing sequence for M if D̄ distinguishes

between states s and s′ for all s, s′ ∈ S with s 6= s′. For example, in M0 we have that

λ(s1, aa) = 00, λ(s2, aa) = 01, λ(s3, aa) = 10, and λ(s4, aa) = 11 and so aa is a

distinguishing sequence. In this paper we assume that M has a known distinguishing

sequence D̄.

Two FSMs are equivalent if their initial states are equivalent. If FSMs M and M ′

are not equivalent, and x̄ distinguishes between their initial states, then x̄ distinguishes

between M and M ′. FSM M is minimal if there is no FSM equivalent to M that has

fewer states than M . We assume that any FSM considered is minimal since for an

FSM M with n states and p inputs an equivalent minimal FSM can be produced in

O(np log n) [19]2. If the FSM being considered is not minimal then we require an initial

preprocessing phase that minimises it.

The IUT has a reliable reset feature if there is a process that is known to correctly

take it from any state to its initial state. In this paper the use of such a process

is represented by the input of r; r takes the IUT from any state to its initial state

and produces no output. The transitions triggered by r are reset transitions and thus

for every state s of M we add the reset transition (s, s1, r/−) where − represents null

output. In order to simplify the exposition we assume that r is not contained within the

input alphabet X since there is no need to test the reset transitions; the reset transitions

are implicit. As a result the digraph G(M) that represents M does not include edges

that represent the reset transitions and so we define the set ER = {(vi, v1, r/−)|1 ≤

i ≤ n} of additional edges that represent these transitions. If we apply a reset then we

lose all information about the state before this and thus reset transitions cannot assist

in distinguishing states. We thus assume that the distinguishing sequence D̄ used does

not contain r. If D̄ contains r then we can produce a shorter distinguishing sequence

by deleting this instance of r from D̄ and all inputs that are after r. This is because

the response of M to the reset r and the inputs after r does not depend on the state

in which we applied D̄ and so provides no information about this state.

In testing it is normal to assume that the IUT behaves like an unknown FSM MI

from a given fault domain. One standard fault domain is the set ΦM of FSMs with the

2 While the minimisation algorithm was developed for finite automata, we can represent an
FSM M as a finite automaton whose alphabet is the set of input/output pairs of M .
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same input and output alphabets as M and no more states than M . An input sequence

x̄ is a checking sequence if it distinguishes between M and every FSM from ΦM that is

not equivalent to M . In this paper we assume that the IUT behaves like an unknown

FSM MI ∈ ΦM . An alternative that has been considered in the literature is to assume

that the IUT has at most k more states than M for some value k that is chosen by

the tester (see, for example, [5,23,26]). However, the size of the resultant test grows

exponentially as k increases. In addition, such methods produce (exponentially) many

test sequences and separate these using resets. As a result they are not suitable when

trying to produce a test sequence that contains very few resets.

Let P̄ denote a walk e1, . . . , em in G(M) with starting vertex v1 and Q̄ = label(P̄ ).

In order to reason about the state of the IUT reached by a prefix of Q̄, we will define

a digraph Linear(Q̄).

Definition 1 Given an input/output sequence Q̄ = x1/y1, . . . , xm/ym we let Linear(Q̄) =

(V (Q̄), E(Q̄)) where

1. V (Q̄) = {n1, . . . , nm+1}

2. E(Q̄) = {(n1, n2, x1/y1), . . . , (nm, nm+1, xm/ym)}.

The vertices of Linear(Q̄) are called nodes.

Given an input/output sequence Q̄ = x1/y1, . . . , xm/ym and a subsequence Q̄′ =

xi/yi, . . . , xj/yj of Q̄, 1 ≤ i < j ≤ m, we say that ni is the initial node of Q̄′ and nj+1

is the final node of Q̄′.

3 Defining checking sequences

Let us suppose that D̄ is a distinguishing sequence for FSM M with n states, we

apply an input sequence to the IUT MI , and for every state si of M the resulting

input/output sequence contains the subsequence D̄/λ(si, D̄). Then, since MI ∈ ΦM

and so has at most n states, D̄ must also be a distinguishing sequence for MI . Further,

D̄ defines a bijection between the states of M and MI . This motivates the following

definitions, based on those in [25], of what it means to recognise a node in the label Q̄

of a walk P̄ and to verify a transition in Q̄.

Definition 2 Let us suppose that P̄ is a walk of G(M) with starting vertex v1 and

label Q̄.

1. A node ni of Linear(Q̄) is d-recognised in Q̄ as state s of M if D̄/λ(s, D̄) is the

label of a walk of Linear(Q̄) with starting node ni. This is illustrated in Figure 2

part 1).

2. A node ni of Linear(Q̄) is d-recognised in Q̄ as state s1 of M if r/− is the label of

a walk of Linear(Q̄) that ends at node ni. This is illustrated in Figure 2 part 2).

3. Let us suppose that (nq , ni, T̄ ) and (nj , nk , T̄ ) are walks of Linear(Q̄) and D̄/λ(s, D̄)

is a prefix of T̄ (and thus nq and nj are d-recognised in Q̄ as state s). Suppose also

that node nk is d-recognised as state s′ of M . Then ni is t-recognised in Q̄ as s′.

This is illustrated in Figure 2 part 3).

4. Let us suppose that (nq , ni, T̄ ) and (nj , nk, T̄ ) are walks of Linear(Q̄) such that

nq and nj are either d-recognised or t-recognised in Q̄ as state s and nk is either

d-recognised or t-recognised in Q̄ as state s′. Then ni is t-recognised in Q̄ as s′.

This is illustrated in Figure 2 part 4).
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5. If node ni of Linear(Q̄) is either d-recognised or t-recognised in Q̄ as state s then

ni is recognised in Q̄ as state s.

6. Transition τ = (sa, sb, x/y) is verified in Q̄ if there is an edge (ni, ni+1, xi/yi) of

Linear(Q̄) such that ni is recognised in Q̄ as sa, ni+1 is recognised in Q̄ as sb,

xi = x and yi = y.

The difference between this and the definition in [25] is the inclusion of the rule

that the node following a reset is recognised as s1. This rule has been added in order

to reflect the reset being a reliable reset. Note that the distinguishing sequence D̄ is

an implicit parameter of this definition. These terms can be used to define a sufficient

condition for an input sequence to be a checking sequence. The following result is based

on Theorem 1 from [25].

Theorem 1 Let P̄ be a walk of G(M) that starts at v1, Q̄ = label(P̄ ), and let us

suppose that the initial node of Linear(Q̄) is d-recognised as state s1 in Q̄. If every

transition of M is verified in Q̄ then the input portion of Q̄ is a checking sequence of

M .

There is only one small difference between this result and Theorem 1 from [25].

This is that [25] gives a different definition of a checking sequence in that a checking

sequence is required to distinguish between M and any element of ΦM that is not

isomorphic to M . As a result, a checking sequence under the definition of [25] need

not detect the IUT starting in the wrong state. Since we require that the IUT and M

have equivalent initial states we add the condition that the initial node of Linear(Q̄)

is d-recognised as state s1.

In checking sequence generation we recognise the ending vertex of an edge of G(M)

that represents transition τ through the use of a distinguishing sequence D̄; the corre-

sponding subsequence included in a walk P̄ is called a test subsequence for τ .

4 Generating a checking sequence

This section gives an algorithm for generating a checking sequence from M on the

basis of a distinguishing sequence D̄. It starts by defining α′-sequences [18]. We then

adapt the algorithm of [18] in order to minimise the number of reset transitions in the

resultant checking sequence.

4.1 Defining α′-sequences

In previous work [18] input/output sequences called α′-sequences were used as the

basis for generating a checking sequence. The set of α′-sequences used is called an

α′-set. For each state si there is an α′-sequence that is the label of a walk of G(M),
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includes a subsequence D̄/λ(si, D̄)T̄i for some input/output sequence T̄i, and contains

this subsequence in a context in which its ending node of Linear(ᾱi) is d-recognised.

For each state si of M , T̄i is the label of a walk of G(M) that starts at the vertex

corresponding to δ(si, D̄) and ends at a vertex of G(M) corresponding to a state sj of

M . Each T̄i, 1 ≤ i ≤ n, is called a transfer sequence. The proposed approach will be

parameterised by the T̄i and in practice we will produce the α′-sequences once the T̄i

have been defined. First we define α′-sequences and we then outline how they can be

generated once the T̄i have been defined, explaining the algorithm of [18].

Before defining α′-sequences we define a set of transfer sequences.

Definition 3 Given FSM M , a transfer set T is a set {T̄1, . . . , T̄n} of labels of walks

of G(M) such that for each state si of M the sequence T̄i is the label of a walk of G(M)

whose starting vertex corresponds to the state δ(si, D̄). Each element of a transfer set

is called a transfer sequence.

The α′-sequences can be defined in the following way.

Definition 4 Given a transfer set T = {T̄1, . . . , T̄n} a set A of input/output sequences

that are labels of walks of G(M) is an α′-set if it satisfies the following conditions.

1. For each element ᾱi of A there exist some i1, . . . , ik such that ᾱi = D̄/λ(si1 , D̄)T̄i1 . . .

D̄/λ(sik
, D̄)T̄ik

.

2. For each state si of M , there is a sequence ᾱk in A and state sj of M such that

D̄/λ(si, D̄)T̄iD̄/λ(sj , D̄) is a subsequence of ᾱk.

3. For each element ᾱi of A there are states sj , s
′
j and an element ᾱk of A such

that ᾱi has a suffix of the form D̄/λ(sj , D̄)T̄j and D̄/λ(sj , D̄)T̄jD̄/λ(s′j , D̄) is a

subsequence of ᾱk.

Each element of an α′-set is called an α′-sequence.

Definition 4 ensures that the α′-sequences have the following properties when in-

cluded in an input/output sequence that is the input portion of the label Q̄ of a walk

P̄ in G(M) that starts at v1 and contains each α′-sequence.

1. As a result of the first requirement in the definition: The input portion of an α′-

sequence starts with D̄ and so an α′-sequence can be used to check the ending state

of a transition.

2. As a result of the second requirement in the definition: If the α′-sequences are labels

of walks in MI then D̄ must be a distinguishing sequence in MI since MI has at

most n states and n distinct responses to D̄ are observed in the α′-sequences.

3. As a result of the second requirement in the definition: If there is a walk of

Linear(Q̄) from node n to node n′ with label D̄/λ(si, D̄)T̄i then n′ is recognised

as the state sj reached from si by a transition sequence with label D̄/λ(si, D̄)T̄i

since n is d-recognised as si and the ending node of a walk with label D̄/λ(si, D̄)T̄i

is d-recognised as sj in an α′-sequence.

4. As a consequence the third requirement, the ending node of the walk for each

α′-sequence is recognised.

4.2 Generating α′-sequences

In this section we briefly outline the algorithm given in [18] for generating the α′-set.

This algorithm is parameterised by the T̄i, 1 ≤ i ≤ n, and the application of the
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Fig. 3 The digraph GD̄

D̄/λ(si, D̄)T̄i can be represented by a digraph GD̄ = (V, ED̄) in which an edge from

vi represents a walk with label D̄/λ(si, D̄)T̄i and has ending vertex vj such that the

transition sequence of M with label D̄/λ(si, D̄)T̄i has ending state sj . Each vertex of

GD̄ has one edge leaving it.

To construct an α′-set A we can first produce a set P = {ρ̄1, . . . , ρ̄q} of paths

and cycles of GD̄ such that every edge of GD̄ is included exactly once in an ele-

ment of P . For each ρ̄k ∈ P , we then produce the input/output sequence seq(ρ̄k) =

label(ρ̄k)D̄/λ(si, D̄)T̄i, where vi is the ending vertex of ρ̄k. This gives the α′-set

A = {seq(ρ̄k)|ρ̄k ∈ P}. The problem of generating an α′-set can thus be reduced

to that of producing such a set P of paths and cycles given GD̄ (and thus from the

T̄i). A low order polynomial algorithm has been devised for producing such an α′-set

that minimises its overall contribution to the checking sequence length [18]3. We do

not repeat this algorithm here.

Consider M0, distinguishing sequence D̄ = aa, and T̄i = ǫ for all 1 ≤ i ≤ 4. We have

that δ(s1, aa) = s4, δ(s2, aa) = s3, δ(s3, aa) = s4, and δ(s4, aa) = s2. The digraph

GD̄ produced for M0, using empty transfer sequences, is given in Figure 3. We could

choose any one of several sets of paths and cycles for P including the set that contains

a path of length 1 from v1 to v4 and a cycle of length 3 from v2 to v2. This leads to

the following α′-set:

1. sequence ᾱ1 = D̄D̄/0011 from state s1; and

2. sequence ᾱ2 = D̄D̄D̄D̄/01101101 from state s2.

We can see that this is an α′-set since in each case the final application of D̄ is

contained in the body of one of the α′-sequences: ᾱ1 ends in D̄ from s4 and this is

in the body of ᾱ2; ᾱ2 ends in D̄ from s2 and this is in the body of ᾱ2. There are

alternative choices such as one sequence D̄D̄D̄D̄D̄, which labels a walk of G(M) with

starting vertex v1.

3 We do not require an α′-set that has shortest overall length. This is because in checking
sequence generation, each α′-sequence will replace one D̄/λ(si, D̄)T̄i in checking the ending
state of a transition.
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4.3 A sufficient condition

We now give a sufficient condition, from [18], for a test sequence to be a checking

sequence. This defines a set of checking sequences, for an FSM M and α′-set A and

in Subsection 4.4 we consider the problem of finding a checking sequence from this set

with a minimum number of reset transitions. Note that later, in Theorem 4, we prove

a more general result and so we do not include a proof of Theorem 2 here.

Theorem 2 Let A denote an α′-set and let us suppose that edge set ET , that represents

transition sequences of M , has the following properties.

1. For each (non-reset) transition τ , with ending state sj , ET contains one edge rep-

resenting τ followed by either a walk with label D̄/λ(sj , D̄)T̄j or a walk with label

ᾱk for an α′-sequence ᾱk ∈ A with prefix D̄/λ(sj , D̄)T̄j .

2. For every α′-sequence ᾱk from A, ET contains one edge that represents either a

walk with label ᾱk or a (non-reset) transition τ followed by a walk with label ᾱk.

3. Every edge from ET represents either an α′-sequence or a (non-reset) transition

τ , with ending state sj , followed by either D̄/λ(sj , D̄)T̄j or an α′-sequence ᾱk ∈ A

with prefix D̄/λ(sj , D̄)T̄j .

Let Υ denote a tour of digraph (V, E∪ER ∪ET ) that includes every edge from ET .

Let e denote an edge from Υ that has starting vertex vi of G(M) reached from v1 by a

walk with label D̄/λ(s1, D̄)T̄1. Let P̄ denote the walk produced by starting Υ with e. Let

us suppose that Econ is the set of edges in Υ that are not in ER ∪ET and G(M)[Econ]

is acyclic. Then the input portion of Q̄ = D̄/λ(s1, D̄)T̄1label(P̄ ) is a checking sequence

for M .

Throughout the paper, when we generate a tour Υ with a required set of edges E′

we use Econ to denote the set of edges that are in Υ but not in E′.

Given M , distinguishing sequence D̄ and α′-set A, the set ET is not uniquely

defined. Thus, checking sequence generation can be seen in terms of choosing some ET

and generating a checking sequence from this. However, the two parts of this process

can be combined into one optimisation algorithm that chooses the optimal ET and a

corresponding optimal checking sequence [18].

The α′-sequences are defined in terms of a set of transfer sequences T̄1, . . . , T̄n.

The algorithm given in this paper can thus be seen as being parameterised by this

set of transfer sequences. Section 5 reports the results of experiments that explore a

heuristic: using empty transfer sequences in the α′-sequences. The intuition behind

this heuristic is that using empty T̄i allows greater freedom of choice regarding the

transitions that follow the verification of a transition and this might assist in limiting

the number of resets used. Note that this heuristic was used in the case where we

simply wish to produce a shortest checking sequence and do not consider the number

of resets included [18].

4.4 An optimisation algorithm

This section gives an algorithm that represents checking sequence generation as an

optimisation problem. The first step is to represent the problem as an instance of

the RCPP for a new digraph TestG(M) that is produced such that a minimum cost
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tour, that contains the required edges, defines an optimal checking sequence. We then

produce a minimum cost symmetric augmentation of the set of required edges. If the

resultant digraph Aug(M) is strongly connected then it has an Euler tour and we form

the checking sequence from this Euler Tour. If Aug(M) is not strongly connected then

we need to add walks from G(M) in order to connect its components. In Subsection

4.5 we show how such walks, that contain no reset transitions, can be generated. We

now describe the optimisation algorithm used.

Recall that M without reset transitions is represented by G(M) = (V, E) and the

edge set ER represents the reset transitions. We want to produce a walk P̄ of digraph

(V, E∪ER) that satisfies the conditions of Theorem 2. We can consider the problem as

being one of connecting a set of subsequences where each subsequence is either an α′-

sequence or is a (non-reset) transition τ = (si, sj , x/y) followed by either a walk with

label D̄/λ(sj , D̄)T̄j or an α′-sequence. Further, we require that the set of additional

connecting transitions defines an acyclic digraph.

In a similar way to [16] we define an upper bound on the length of the check-

ing sequence; this will be used to punish reset transitions in the checking sequence

generation algorithm. By Theorem 2, at worst the checking sequence is a set of test

subsequences and α′-sequences connected to form one sequence. The sum of the lengths

of the subsequences connected to form a checking sequence is bounded above by the

sum of the lengths of the subsequences formed by following each transition τ (with

ending state si) by a walk with label D̄/λ(si, D̄)T̄i and the sum of the lengths of the

α′-sequences. Let Tm = max{|T̄i|, 1 ≤ i ≤ n}. Since M has |X||S| transitions, this

gives an upper bound of |X||S|(1 + |D̄| + Tm) +
∑k

i=1 |ᾱi| on the overall length of

the subsequences to be connected. In forming a tour from these |X||S| + |A| subse-

quences, there are connecting walks between any two subsequences and each of these

has length at most |S|−1. Thus, the overall checking sequence length is bounded above

by U = |X||S|(1 + |D̄|+ Tm)+
∑k

i=1 |ᾱi|+ (|X||S|+ |A|)(|S| − 1). In the example M0,

we have Tm = 0, |X| = 2, |S| = 4, |D̄| = 2, |A| = 2, and
∑k

i=1 |ᾱi| = 12 and so we use

U = 2 × 4 × (1 + 2 + 0) + 12 + (2 × 4 + 2) × 3 = 66.

Given walk P̄ of G(M) we can associate a cost with P̄ . We give each edge in

E cost 1 and each edge in ER cost U . Since U is an upper bound on the overall

checking sequence length, a minimum cost tour is also a tour with a minimum number

of reset transitions (Proposition 3 below). We include a cost for each edge in E since

ideally we would like to produce a shortest checking sequence amongst those that

minimise the number of resets. We now give an algorithm for producing a minimum

cost tour. This algorithm represents the problem in terms of the RCPP in a digraph

TestG(M). Algorithm 1 shows how TestG(M) = (V ′, E′) can be produced, where

E′ = E ∪ Et ∪ ED̄ ∪ Eα ∪ Eǫ ∪ ER for sets of edges defined in the algorithm.

The digraph (V ′, Et ∪ ED̄ ∪ Eα) produced for M0 with distinguishing sequence

D̄ = aa and α′-set {ᾱ1, ᾱ2} is shown in Figure 4. Here only the edges from Et∪ED̄∪Eα

in TestG(M0) are given. Thus, the lines from vertices of the form vi represent edges of

G(M0) and there are eight such lines. The lines from vertices of the form v′i represent

the application of D̄ and the two α′-sequences and so there are six such lines.

The following is the key property of TestG(M) that corresponds to the require-

ments of Theorem 2.

Proposition 1 Let us suppose that Υ is a tour of TestG(M) that includes every edge

from Et ∪ Eα. Then label(Υ ) is the label of a tour of G(M) with subwalks from a set

PT that satisfies the following conditions.
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Algorithm 1 Generating TestG(M)

Input M = (S, X, Y, δ, λ, s1), D̄, T̄1, . . . , T̄n, and α-set A = {ᾱ1, . . . , ᾱq}
Let V ′ = V ∪ {v′i|vi ∈ V }.

Comment: We have two copies of each state si: vertices vi and v′i. Here vertex v′i
represents the situation in which we have reached si through a transition that is
part of a transition test and thus whose ending state must be checked (by either
D̄/λ(si, D̄)T̄i or an α′-sequence ᾱk ∈ A with prefix D̄/λ(si, D̄)T̄i).

Let E = {(vi, vj , x/y)|si, sj ∈ S ∧ x ∈ X ∧ δ(si, x) = sj ∧ λ(si, x) = y}.

Comment: The edges from E represent the transitions of M and allow us to connect
the transition tests.

Let Et = {(vi, v
′

j , x/y)|si, sj ∈ S ∧ x ∈ X ∧ δ(si, x) = sj ∧ λ(si, x) = y}.

Comment: Since each transition is to be tested by having its ending state checked,
for each transition (si, sj , x/y) there is a corresponding edge (vi, v′j , x/y).

Let ED̄ be the set of edges of the form (v′i, vj , D̄/λ(si, D̄)T̄i) for v′i, where vj is the ending
vertex of the walk in G(M) that has starting vertex vi and label D̄/λ(si, D̄)T̄i.

Comment: These edges represent the use of the D̄/λ(si, D̄)T̄i to recognise the ending
states of transitions with ending state si.

Let Eα denote the set of (v′i, vj , ᾱk) such that ᾱk ∈ A labels a walk of G(M) with starting
vertex vi and ending vertex vj .

Comment: These edges represent the use of α′-sequences to recognise the ending
states of transitions.

Let Eǫ = {(vi, v′i, ǫ)|vi ∈ V }.

Comment: If we just use the other edges then we can only execute an α′-sequence
as part of a transition test. The edges in Eǫ allow an α′-sequence to be executed
separately from the transition tests. Thus the inclusion of an edge from Eǫ in a
tour does not introduce additional input.

Let ER = {(vi, v1, r/−)|1 ≤ i ≤ n}.

Comment: These edges represent reset transitions.

Output TestG(M) = (V ′, E′) = (V ′, E ∪ Et ∪ ED̄ ∪ Eα ∪ Eǫ ∪ ER)

1. For each (non-reset) transition τ , with ending state sj , PT contains a walk repre-

senting τ followed by either a walk with label D̄/λ(sj , D̄)T̄j or a walk with label ᾱk

for an α′-sequence ᾱk ∈ A with prefix D̄/λ(sj , D̄)T̄j.

2. For every α′-sequence ᾱk from A, PT contains either a walk with label ᾱk or the

label of a (non-reset) transition τ followed by a walk with label ᾱk.

3. Every walk from PT represents either an α′-sequence or a (non-reset) transition

τ , with ending state sj , followed by either an α′-sequence ᾱk ∈ A with prefix

D̄/λ(sj , D̄)T̄j or D̄/λ(sj , D̄)T̄j .

Proof : We choose a set PT in the following way:

1. For every edge e ∈ Eα representing an α′-sequence choose a subwalk w̄ of Υ of

length two that has e as its second edge and include in PT a walk of G(M) with

label label(w̄). This is possible since we require that Υ contains every edge from

Eα.

2. For each transition τ = (si, sj , x/y) of M such that a walk representing τ followed

by an α′-sequence ᾱk ∈ A with prefix D̄/λ(sj , D̄)T̄j or D̄/λ(sj , D̄)T̄j has not been

chosen, include in PT a walk of G(M) with a label that is the label of a subwalk of
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Fig. 4 The digraph (V ′, Et ∪ ED̄ ∪ Eα) for FSM M0

Υ of length two whose first edge is (vi, v
′
j , x/y). We can always choose some such

walk since Υ is required to include every edge from Et.

We now consider the three properties in the proposition.

The first property follows from the fact that a transition τ = (si, sj , x/y) is repre-

sented by an edge in Et from vi to v′j and in a tour this must be followed by an edge

that either represents an α′-sequence ᾱk ∈ A with prefix D̄/λ(sj , D̄)T̄j or D̄/λ(sj , D̄)T̄j

since these are the only edges of TestG(M) that can have starting vertex v′j .

The second property is a consequence of the requirement that PT contains every

α′-sequence.

For the third property observe that the label of a walk in PT is the label of a walk

of TestG(M) with length two whose first edge has ending vertex v′j for some 1 ≤ j ≤ n.

In addition, the first edge of such a walk cannot represent a reset transition and can

only represent an edge from Eǫ if the second edge represents an α′-sequence. �

Each edge from E ∪ Et is given cost 1, as each of these edges represents a single

transition that is not a reset transition. Each edge from ER is given cost U . An edge
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from Eǫ is given cost 0, while edges from ED̄ and Eα are given a cost that represents

the length of the corresponding input/output sequence4. We introduce some notation

before proving that minimum cost tours minimise the number of resets.

Definition 5 Let Υ (Et, Eα) denote the set of tours of TestG(M) that include every

edge from Et ∪ Eα exactly once.

We have the following property, which tells us that we lose nothing by considering

only tours in Υ (Et, Eα).

Proposition 2 Every tour Υ of TestG(M) that includes every edge from Et ∪ Eα at

least once has the same label as a tour of TestG(M) that includes every edge from

Et ∪ Eα exactly once.

Proof : To see this let us first suppose that an edge e ∈ Et is repeated in a tour Υ

of Υ (Et, Eα). Then we can take a subwalk of Υ with length two that contains e and

does not include an edge from Eα only included once in Υ . We can then replace this

subwalk by a sequence of edges from E. We can repeat this process until the tour

contains exactly one instance of each edge from Et. Finally, if an edge from Eα with

label D̄/λ(si, D̄)T̄i is repeated then we can replace all but one of the copies of this

edge by the edge from ED̄ with starting vertex v′i followed by a walk in (V, E) with

label T̄ . �

Proposition 3 Let us suppose that Υ is a minimum cost element of Υ (Et, Eα). Then

Υ is an element of Υ (Et, Eα) with fewest reset transitions.

Proof : Let Υ ′(Et, Eα) denote the set of tours of TestG(M) in Υ (Et, Eα) with the

property that every cycle in a tour from Υ ′(Et, Eα) contains at least one edge from

Et ∪Eα. Given a tour Υ1 from Υ (Et, Eα) \Υ ′(Et, Eα), we can delete at least one cycle

from Υ1 to produce a shorter tour Υ2 from Υ (Et, Eα) such that Υ2 contains no more

reset transitions than Υ1. It is thus sufficient to only consider tours in Υ ′(Et, Eα).

Since Υ is a minimum cost element of Υ (Et, Eα) we have that Υ is in Υ ′(Et, Eα).

Further, it is a minimum cost member of Υ ′(Et, Eα). The result now follows from the

cost of each edge representing a reset transition having cost U for a value U that is an

upper bound on the length of the tours in Υ ′(Et, Eα). �

Checking sequence generation can be seen as the problem of finding a minimum

cost element of Υ (Et, Eα): this is an instance of the RCPP. Naturally, we must ensure

that the set Econ of connecting transitions defines an acyclic digraph. We apply the

following procedure, used in [1], for solving the RCPP5. First we find a minimum cost

symmetric augmentation Aug(M) = (V ′, EAug) of the set Et ∪ Eα in TestG(M) by

adding copies of some edges from the set E ∪ ED̄ ∪ Eǫ ∪ ER. This can be found in

polynomial time [1]. If Aug(M) is connected then it has an Euler Tour Υ and this

provides a solution to the RCPP.

Proposition 4 Let us suppose that Aug(M) = (V ′, EAug) is the minimum cost sym-

metric augmentation of the set Et ∪ Eα in TestG(M) and let Econ denote the set of

edges in EAug \(Et∪ED̄∪Eα∪ER∪Eǫ). Then the digraph TestG(M)[Econ] is acyclic.

4 These edges represent sequences that do not include reset transitions.
5 Since the RCPP is NP-hard, the polynomial time algorithm given in [1] does not always

return the shortest test sequence. In contrast, we show that this algorithm can be adapted so
that it is guaranteed to return a checking sequence with fewest reset transitions.
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Proof : Proof by contradiction: let us suppose that TestG(M)[Econ] contains cycles

and let e1, . . . , ek (k ≥ 1) denote a minimum length cycle of TestG(M)[Econ]. Now

consider the digraph Aug′(M) produced from Aug(M) by deleting one copy of each

of e1, . . . , ek. Then since e1, . . . , ek is a cycle and Aug(M) is symmetric, Aug′(M) is

symmetric. Further, Aug′(M) contains every edge from Et∪Eα and has lower cost than

Aug(M). This contradicts Aug(M) being a minimum cost symmetric augmentation of

Et ∪ Eα in TestG(M), as required. �

If Aug(M) is not strongly connected then it defines a set of components. In Sub-

section 4.5 we show how walks can be added in order to connect these components

without adding reset transitions. If Aug(M) is strongly connected then we produce a

checking sequence in the following way. We choose an edge e in Υ that starts at the

vertex vi reached from v1 by a walk with label D̄/λ(s1, D̄)T̄1. We start Υ with e to

give walk P̄ and return the input portion of D̄/λ(s1, D̄)T̄1label(P̄ ) as the checking

sequence. This is summarised in Algorithm 2.

Algorithm 2 Checking sequence generation algorithm if Aug(M) is connected

Calculate U = |X||S|(1 + |D̄| + Tm) +
∑k

i=1
|ᾱi| + (|X||S| + |A|)(|S| − 1), where A =

{ᾱ1, . . . , ᾱk} is the α′-set used, Tm is an upper bound on the lengths of the transfer sequences
used, X is the input alphabet of M and S is the state set of M .
Define the digraph TestG(M) and find a minimum cost symmetric augmentation Aug(M)
of Et ∪ Eα in TestG(M).
Find an Euler Tour Υ of Aug(M).
Let e denote an edge from Υ that has starting vertex vi reached from v1 by a walk with
label D̄/λ(s1, D̄)T̄1. Let P̄ denote the walk produced by starting Υ with e.
Return the input portion of Q̄ = D̄/λ(s1, D̄)T̄1label(P̄ ).

Theorem 3 Let us suppose that when Algorithm 2 is applied the digraph Aug(M) is

strongly connected. Then the resultant input portion of Q̄ = D̄/λ(s1, D̄)T̄1label(P̄ ) is

a checking sequence that has a minimal number of reset transitions amongst those that

satisfy the conditions of Theorem 2.

Proof : From Theorem 2, Proposition 1 and Proposition 4 we know that Q̄ is a checking

sequence. From Proposition 3 we know that it minimises the number of reset transitions.

�

Consider the FSM M0. Here, solving the RCPP for the digraph TestG(M) and

the set of required edges leads to a strongly connected digraph that has the following

Euler Tour.

v′1
ᾱ1→ v2

t2b→ v′3
D̄
→ v4

t4a→ v′3
D̄
→ v4

t4b→ v′2
ᾱ2→ v3

t3b→ v′4
D̄
→ v2

t2a→ v′4
D̄
→ v2

r/−
→ v1

t1a→ v′2
D̄
→ v3

t3a→ v′2
D̄
→ v3

r/−
→ v1

t1b→ v′4
D̄
→ v2

r/−
→ v1

ǫ
→ v′1

We can thus obtain the following checking sequence by starting the tour at v4 after

the application of D̄ since δ(s1, D̄) = s4. If we choose the first instance of v4 above we

get a checking sequence that contains three resets that is defined by:

D̄aD̄baaaaaaaa(= ᾱ2)bD̄aD̄raD̄aD̄rbD̄raaaa(= ᾱ1)bD̄
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This leads to the following checking sequence aaaaabaaaaaaaabaaaaaraaaaaarbaaraaaabaa.

In this case the tour contains the vertex v′1. Where this is the case, we have an alter-

native way of creating a checking sequence: we can start the tour at v′1 and add an

instance of D̄ to the end of the resultant sequence. In this case the final reset (and

additional D̄) can be eliminated giving a checking sequence with two resets.

aaaa(= ᾱ1)bD̄aD̄baaaaaaaa(= ᾱ2)bD̄aD̄raD̄aD̄rbD̄

There are two reasons why we can reduce the number of resets by one in this

example. First, an α′-sequence starts at state s1 and so we can start the checking

sequence with this α′-sequence. Second, no transition ends at state s1 and so in the

tour the α′-sequence is not used in order to check the final state of a transition and it

is preceded by a reset transition that can be eliminated. We require two resets since we

cannot return to state s1 once we have left it and the method requires us to have three

edges that start at s1: one for each transition with starting state s1 and one for the

α′-sequence α1. This concludes our analysis of the case in which Aug(M) is strongly

connected.

4.5 Connecting components

This subsection considers the case where Aug(M) is not strongly connected. We show

how walks from TestG(M) can be added to Aug(M) in order to produce a strongly

connected digraph Aug′(M) such that the walks added contain no reset transitions and

a checking sequence can be produced from Aug′(M). We could adapt the results in [16]

to show that we can add walks to Aug(M) to make it connected without using reset

transitions. However, such walks might introduce cycles into the set Econ of connecting

edges and this is not allowed under Theorem 2.

The following weakening, of the condition for a test sequence to be a checking

sequence, helps us to overcome this issue. This allows us to add walks, without including

them in the set Econ of connecting edges, if each walk P̄ added satisfies the following

condition: the label of P̄ ends in a subsequence of the form D̄/λ(si, D̄)T̄i for some

si ∈ S. The reason we can add such a walk is that its final node is t-recognised as the

corresponding state of M .

Theorem 4 Let A denote an α′-set and let us suppose that the sets ET and EC of

edges that correspond to transition sequences of M have the following properties.

1. For each (non-reset) transition τ = (si, sj , x/y) of M , the set ET contains one

edge representing τ followed by either a walk with label D̄/λ(sj , D̄)T̄j or a walk

with label ᾱk for an α′-sequence ᾱk ∈ A with prefix D̄/λ(sj , D̄)T̄j .

2. For every α′-sequence ᾱk from A, ET contains one edge that represents either a

walk with label ᾱk or a (non-reset) transition τ followed by a walk with label ᾱk.

3. Every edge from ET represents either an α′-sequence or a (non-reset) transition

τ , with ending state sj , followed by either an α′-sequence ᾱk ∈ A with prefix

D̄/λ(sj , D̄)T̄j or D̄/λ(sj , D̄)T̄j .

4. For every edge ej in EC there exists a vertex vi ∈ V such that ej represents a walk

whose label has suffix D̄/λ(si, D̄)T̄i.



18

Let Υ denote a tour of digraph (V ′, E ∪ ER ∪ ET ∪ EC) that includes every edge

from ET . Let e denote an edge from Υ that has starting vertex vi reached from v1 by

a walk with label D̄/λ(s1, D̄)T̄1. Let P̄ denote the walk produced by starting Υ with

e. Let us suppose that Econ is the set of edges in Υ that are not in ET ∪ EC ∪ ER

and G(M)[Econ] is acyclic. Then the input portion of Q̄ = D̄/λ(s1, D̄)T̄1label(P̄ ) is a

checking sequence for M .

Proof : From Theorem 1, it is sufficient to prove that each transition of M is verified

in Q̄. Since Econ is acyclic it is possible to place a partial ordering ∝ on V such that

vi ∝ vj if and only if there is a path in (V, Econ) from vi to vj . This partial ordering

can be extended to the nodes of Linear(Q̄), which are ordered according to their

corresponding vertices.

A proof by contradiction will be produced: assume that the input portion of Q̄

does not represent a checking sequence. Then, by Theorem 1, some of the nodes of

Linear(Q̄) are not recognised. By definition, any node that is not recognised must

follow an edge from Econ.

Amongst the nodes that are not recognised, take some ni that corresponds to a

vertex vj that is minimal according to ∝. Here node ni corresponds to vertex vj of

G(M) if the prefix of Q̄ of length i is a walk of M with ending state sj . There may be

more than one such minimal node, but any one will suffice.

It is now sufficient to look at the node ni−1 that precedes ni (i cannot be 1, as the

initial node is d-recognised as s1 by D̄/λ(s1, D̄)T̄1). The edge from ni−1 to ni must

represent some edge e ∈ Econ, as its final node is not recognised, and thus ni−1 ∝ ni.

By the minimality of ni, ni−1 is recognised.

The edge e represents a transition τ of M . Linear(Q̄) contains a subsequence, from

node nj say, that represents a test subsequence for τ . As nj ∝ ni, by the minimality

of ni the node nj must be recognised in Q̄. Thus, in e′, the transition τ exists within

a context in which it is followed by D̄/λ(s, D̄) for some state s (possibly as part of an

α′-sequence) and its initial node is recognised. Thus, by the definition of a node being

recognised, as ni−1 is recognised ni is also recognised. This provides a contradiction

as required. �

We now prove a number of results regarding Aug(M) that form the basis of the

algorithm for adding walks to connect the components of Aug(M).

Proposition 5 If Aug(M) is not strongly connected then it can be partitioned into a

set of components.

Proof : This follows from the fact that Aug(M) is symmetric and any weakly connected

symmetric subgraph is strongly connected. �

Thus the edge set EAug of Aug(M) can be partitioned into maximal sets C1, . . . , Cm

such that each Aug(M)[Ci] is strongly connected. We assume that such a partition ex-

ists and that v1 is a vertex of the component Aug(M)[C1]. We use the notion of the

closure of a set of edges defined in [16].

Definition 6 Let us suppose that C ⊆ EAug and Aug(M)[C] is strongly connected.

The closure, cl(C), of C in Aug(M) is the largest subset of (E′ \ ER) ∪ C such that

C ⊆ cl(C) and TestG(M)[cl(C)] is strongly connected.

If Ci is the edge set of a component Gi of Aug(M) then cl(Ci) contains an edge

with starting vertex v1.
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Theorem 5 Let us suppose that Aug(M) is the minimum cost symmetric augmenta-

tion of set Et∪Eα in TestG(M) and Aug(M) has components represented by edge sets

C1, . . . , Cm. Then for all 2 ≤ i ≤ m, the closure cl(Ci) of Ci contains an edge with

starting vertex v1.

Proof : Proof by contradiction: assume that for some 2 ≤ i ≤ m, cl(Ci) does not have

an edge with starting vertex v1. Note that each Ci must have an edge with a starting

vertex in V and an edge with an ending vertex in V . There are two cases to consider.

Case 1: There does not exist an edge of E \ cl(Ci) that has a starting vertex in

TestG(M)[cl(Ci)]. Since cl(Ci) does not contain an edge with starting vertex v1, some

edge e = (vl, vj , x/y) ∈ E \ cl(Ci) (some vl, vj ∈ V, x ∈ X, y ∈ Y ) has ending vertex

in TestG(M)[cl(Ci)]. Consider the corresponding edge e′ = (vl, v
′
j , x/y) from Et and

some edge e′′ in EAug that has starting vertex v′j . Since TestG(M) is symmetric there

must be some such e′′ and e′′ must represent either an α-sequence or a sequence whose

input portion starts with D̄. Recall that e′′ represents a sequence of edges from E and

thus contains no reset transitions and so since no edge of E\cl(Ci) has a starting vertex

from TestG(M)[cl(Ci)], the ending vertex of e′′ must be in TestG(M)[cl(Ci)]. Further,

e′ and e′′ must be in the same component of Aug(M) since the ending vertex of e′ is the

starting vertex of e′′. Thus since e ∈ E\cl(Ci), TestG(M)[cl(Ci)] is strongly connected

and vl is not a vertex of TestG(M)[cl(Ci)], e′ and e′′ must be in a component Cj such

that cl(Cj) 6= cl(Ci). Thus, cl(Ci) and cl(Cj) have edges connected to the ending vertex

of e′′ and so, since TestG(M)[cl(Ci)] and TestG(M)[cl(Cj)] are strongly connected,

TestG(M)[cl(Ci) ∪ cl(Cj)] is strongly connected. By the maximality of cl(Ci) and

cl(Cj), cl(Ci) = cl(Cj). This provides a contradiction as required.

Case 2: There exists an edge e = (vl, vj , x/y) ∈ E \cl(Ci) that has a starting vertex

in TestG(M)[cl(Ci)]. Consider the corresponding edge e′ = (vl, v
′
j , x/y) ∈ Et and

some edge e′′ in EAug that has starting vertex v′j . Since e′′ represents a sequence that

contains no reset transitions, TestG(M)[cl(Ci)] is strongly connected, and e 6∈ cl(Ci),

the ending vertex of e′′ cannot be in TestG(M)[cl(Ci)]. Since e′ and e′′ are in the same

component of TestG(M) they are in some Cj such that cl(Cj) 6= cl(Ci). Since cl(Ci)

and cl(Cj) both have edges connected to the starting vertex of e′, cl(Ci) = cl(Cj).

This provides a contradiction as required. �

In [16] a similar result is used to show that for each component Aug(M)[Ci] (2 ≤

i ≤ m) we can add a cycle of edges from E that connects Aug(M)[Ci] to v1 such

that the cycle contains no reset transitions (recall that the reset transitions are not

represented by edges from E). However, in producing a checking sequence as opposed

to a test sequence we require more: we need to ensure that the walks we add lead to a

tour that satisfies the conditions of Theorem 4 and thus lead to a checking sequence.

We will introduce an iterative algorithm, Algorithm 3, that adds edges to Aug(M)

in order to create a strongly connected symmetric digraph Aug′(M). This is based on

the following consequence of Theorem 5.

Proposition 6 Let us suppose that Aug′(M) has been formed from Aug(M) by adding

zero or more cycles formed by edges of E and Aug′(M) is not strongly connected. If

C is the edge set of the component of Aug′(M) that contains v1 then there is another

edge set Ca of a component of Aug′(M) such that there is an edge e in E from a vertex

from Aug′(M)[Ca] to a vertex of Aug′(M)[C].

Proof : Given Ci 6= C, the closure of Ci contains an edge with starting vertex v1

and is strongly connected. Thus, there must be a walk in TestG(M), that contains no
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reset transitions, from a vertex in Aug′(M)[Ci] to v1. In addition, Aug′(M)[Ci] must

contain vertices from V and since Aug′(M)[Ci] is strongly connected we can choose

a walk that starts at a vertex from V . Now observe that this walk starts at a vertex

vi in V , ends in a vertex v1 in V , and contains no resets and so there must also be a

walk in TestG(M) from vi to v1 that contains only edges from E. Since all vertices

of Aug′(M) are either starting or ending vertices of edges of the Cj , this path must

include an edge e from a vertex in Aug′(M)[Ca] to a vertex in Aug′(M)[C] for some

Ca 6= C and so the result follows. �

We can therefore choose such an edge e = (vi, vj , x/y) from a component Ca

of Aug(M) to the component C1. Aug(M) also contains a walk that represents the

testing of the transition corresponding to e by following edge (vi, v
′
j , x/y) by an edge

from v′j to some vk whose label T̄ is either a D̄/λ(siD̄)T̄i or an α′-sequence with prefix

D̄/λ(siD̄)T̄i. Since Aug(M)[Ca] is strongly connected, vk is a vertex in Aug(M)[Ca].

We can therefore define an edge e′ from vj to vk with label T̄ that corresponds to

a walk in TestG(M). Since Aug(M)[Ca] is strongly connected there is a path P̄1 in

Aug(M)[Ca] from the ending vertex vk of e′ to the starting vertex vi of e. If we add e,

e′, and an edge e1 representing P̄1 to Aug(M) then we have connected C and Ca and

the new digraph is symmetric since the edges added form a cycle. This is illustrated

in Figure 5. The edge e′ can be included in a tour without having to add it to the set

Econ of connecting edges in the conditions of Theorem 4, since it ends in a subsequence

of the form D̄/λ(siD̄)T̄i. We do not have to add any of the edges in P̄1 to Econ since

these are already in Aug(M). Below, in Proposition 7 we prove that the addition of e

to Econ cannot introduce cycles.

At each step of Algorithm 3 some edges e, e′ and e1 are added to connect some Ca

to C. Edge e′ represents a path that, according to Theorem 4, can be added without

including it in Econ. Edge e1 represents a sequence of edges already included in Ca

and thus it can be added without being added to Econ. Thus e is the only edge that

we have to add to Econ in an iteration. The edges added in an iteration connect the

components Aug(M)[C] and Aug(M)[Ca], do not include edges from ER, and preserve

the property of the digraph being symmetric.

Proposition 7 If Algorithm 3 is applied to digraph Aug(M) that is not strongly con-

nected then the edge set E′′ returned has the property that (V, E′′) is acyclic.

Proof : Each iteration of the algorithm involves adding an edge e to E′′ such that e

goes from a vertex of some Aug(M)[Ca] to a vertex of the current Aug(M)[C]. Let E′′
I

denote the set E′′ before the algorithm is applied, let E′′
F denote the set E′′ after the

algorithm is applied, and let E′′
F \ E′′

I = {e1, . . . , em} where the ith iteration of the

algorithm adds the edge ei to E′, 1 ≤ i ≤ m.
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Algorithm 3 Connecting the components

Input E′′ = Econ, C = C1, C′ = {C2, . . . , Cm}.
while C′ 6= ∅ do

Choose an edge e = (vi, vj , l) ∈ E such that vi is in Aug(M)[Ca] for some Ca ∈ C′ and
vj is in Aug(M)[C].

Comment: By Proposition 6, there must be some such e and Ca.

Find the edge e′′ = (v′j , vk , T̄ ) of Aug(M) that represents a sequence that can be used

to check the final state of the transition corresponding to e. Since Aug(M) is strongly
connected there must be some such e′′. In addition, T̄ is either D̄/λ(sjD̄)T̄j or an α′-
sequence.
Let e′ = (vj , vk, T̄ ).
Produce a walk P̄1 from the ending vertex vk of e′ to the starting vertex vi of e using
edges from Ca only and represent P̄1 by an edge e1.

Comment: This is possible since Aug(M)[Ca] is strongly connected. Further, we
know that Ca does not contain edges from ER since v1 is not in Aug(M)[Ca].

Let C = C ∪ Ca ∪ {e, e′, e1}, C′ = C′ \ {Ca}, and E′′ = E′′ ∪ {e}.
end while

Output C and E′′.

Proof by contradiction: let us suppose that (V, E′′
F ) contains at least one cycle.

First observe that, by Proposition 4, (V, E′′
I ) is acyclic. Let j be the integer such that

(V, E′′
I ∪{e1, . . . ej−1}) is acyclic and (V, E′′

I ∪{e1, . . . ej}) contains cycles and let P̄ be

a minimum length cycle in (V, E′′
I ∪ {e1, . . . ej}). Let us suppose that the jth iteration

involved adding an edge to connect Ca to C. Since Aug(M)[Ca] and Aug(M)[C] are

strongly connected components that have no vertices in common and E′′
I ∪ {e1, . . . ej}

contains no edge from Aug(M)[C] to Aug(M)[Ca], P̄ cannot contain ej and thus must

be a cycle in (V, E′′
I ∪ {e1, . . . ej−1}). This contradicts the minimality of j as required.

�

Proposition 8 Let us suppose that Algorithm 3 returns the sets C and E′′. Then

Aug′(M) = (V ′, C ∪ E′′) is symmetric and strongly connected.

Proof : We know that Aug′(M) is strongly connected since in each iteration the edges

added connect an element of C′ to C. In addition, Aug′(M) is symmetric since in each

iteration we add a set of edges that forms a cycle. �

4.6 The overall checking sequence generation algorithm

We can now state the complete checking sequence algorithm, Algorithm 4.

The proof of the following is equivalent to that of Proposition 3

Proposition 9 Let us suppose that Υ is a minimum cost tour of Aug′(M) that con-

tains every element of Et∪Eα. Then amongst all tours of Aug′(M) that contain every

element of Et ∪ Eα, Υ minimises the number of reset transitions.

Theorem 6 The input portion of Q̄ produced by Algorithm 4 is a checking sequence

that, amongst the checking sequences satisfying the conditions of Theorem 4, minimises

the number of reset transitions used.



22

Algorithm 4 The Overall Checking Sequence Algorithm

Calculate U = |X||S|(1 + |D̄| + Tm) +
∑k

i=1
|ᾱi| + (|X||S| + |A|)(|S| − 1).

Define the digraph TestG(M) and find a minimum cost symmetric augmentation Aug(M)
of Et ∪ Eα in TestG(M).
if Aug(M) is not strongly connected then

Apply Algorithm 3 to produce sets C and E′′ and form Aug′(M) = (V ′, C ∪ E′′)
else

Aug′(M) = Aug(M)
end if

Find an Euler Tour Υ of Aug′(M).
Let e denote an edge from Υ that has starting vertex vi reached from v1 by a walk with
label D̄/λ(s1, D̄)T̄1.
Let P̄ denote the walk produced by starting Υ with e.
Return the input portion of Q̄ = D̄/λ(s1, D̄)T̄1label(P̄ ).

Proof : We know that the input portion of Q̄ is a checking sequence from Theorem

4, Proposition 7, and Proposition 8. The optimality of Q̄ follows from Proposition 9

and the fact that the walks added to form Aug′(M) from Aug(M) contain no reset

transitions. �

We can now consider the time complexity of Algorithm 4.

Proposition 10 For an FSM with n states and p inputs, Algorithm 4 can be completed

in time of O(pn2 log n).

Proof : The most computationally intensive parts of Algorithm 4 are the steps that

produce Aug(M) and that apply Algorithm 3. The first of these involves finding a

min cost/max flow and for a digraph with v vertices and e edges this can be found in

O(ev log v) (see, for example, [1]). Thus, this step takes time of O(pn2 log n). Algorithm

3 has O(n) iterations. Each iteration of Algorithm 3 involves finding two paths in a

digraph with n vertices and pn edges; if a breadth-first search is used then each iteration

takes time of O(pn). Thus Algorithm 3 takes time of O(pn2) and the result follows. �

Observe that it is possible for the walk produced by Algorithm 4 to end with a

reset followed by connecting edges from Econ. If this is the case then the final reset

can be eliminated from the checking sequence.

We now make some final observations regarding the proposed method. This as-

sumed that the resets are implemented correctly and so are not included in the input

alphabet X. If the resets are not known to be reliable then it is necessary to test these by

following each by D̄/λ(s1, D̄)T̄1. This can be achieved by making the following changes

to the algorithm: replace X by X ∪ {r}, add the set Er = {(vi, v
′
1, r/−)|1 ≤ i ≤ n}

to the digraph TestG(M) and include Er in the set of required edges. The proposed

algorithm uses distinguishing sequences, as is usual in checking sequence generation.

Instead, it is possible to use adaptive distinguishing sequences and these provide a

number of benefits. However, this is a topic of future work.

5 Experimental results

The proposed algorithm is parameterised by the α′-sequences and thus by the T̄i,

1 ≤ i ≤ n. As explained in Section 4, we propose the heuristic of using empty transfer
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sequences. This is because the use of empty transfer sequences provides the optimisation

algorithm with greater flexibility in choosing a walk that follows the test of a transition.

In this section we report on the results of experiments, with randomly generated FSMs,

that investigated the following questions:

1. How good are the results if we produce the α′-sequences using empty transfer

sequences? This question concerns the effectiveness of the proposed heuristic of

using empty T̄i.

2. What impact does the choice of transfer sequences have on the number of resets

in the resultant checking sequence (what is the variability)? Here we are interested

in the effect of the choice of transfer sequences since we want to know how robust

our method is to a suboptimal choice of the T̄i.

3. How do the results compare with those produced using a method that does not

attempt to minimise the number of resets and instead aims to minimise the checking

sequence length? We consider this since we want to know whether the process of

attempting to minimise the number of resets does actually reduce the number of

resets.

The FSMs were randomly generated by inputting the number of states (n), the

number of inputs (p) and the number of outputs (q) and for each state s and input

x, randomly choosing the end state s′ and output y. For each FSM M produced in

this way we only kept M if it had a distinguishing sequence, was minimal and initially

connected, and was not strongly connected. In order to allow a fair comparison between

the proposed method and that described in [18] one small change was made to each of

the two methods.

1. The method in [18] finds a walk that goes through the required set of edges, rather

than a tour. The use of a walk can lead to shorter checking sequences, since there

is no need to return to the initial state. We adapted the proposed method so that

it produces a walk rather than a tour in order to avoid biasing the measurements

of checking sequence length against it6.

2. The method in [18] makes not attempt to avoid the use of resets in the T̄i. Instead,

in the experiments when random T̄i are generated for [18] we avoid the inclusion

of resets in order to avoid biasing the experiments against the method of [18].

While this paper is concerned with minimising the number of resets used, we wanted

to investigate the impact of this minimisation on the length of the resulting checking

sequences. Thus for each checking sequence produced we recorded its length as well as

the number of resets it contained. This also allowed us to compare the length of the

checking sequence produced by the proposed method with one that aims to minimise

the checking sequence length, not the number of resets [18]. For each FSM used in the

experiments we did the following:

1. We produced a checking sequence using α′-sequences with empty transfer sequences

and recorded the checking sequence length and the number of reset transitions

included in the checking sequence.

6 It is straightforward to change the proposed algorithm in order to achieve this. However,
the use of a tour is described in this paper since it simplifies the exposition and this has no
impact on the number of resets used, since we do not count the last reset (if any).
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Table 1 The number of resets in checking sequences with empty T̄i

FSM Number Alphabet Number of resets Number of resets Mult
of states size MR M06 factor

1 25 3 3 16 5.33
2 25 3 3 9 3
3 25 3 3 18 6
4 25 3 6 12 2
5 25 3 9 12 1.33
6 50 5 5 24 4.8
7 50 5 5 10 2
8 50 5 5 15 3
9 50 5 5 17 3.4
10 50 5 5 23 4.6
11 75 7 7 10 1.43
12 75 7 7 24 3.43
13 75 7 7 15 2.43
14 75 7 7 28 4
15 75 7 7 21 3
16 100 10 10 39 3.9
17 100 10 10 19 1.9
18 100 10 10 32 3.2
19 100 10 10 20 2
20 100 10 10 16 1.6

2. We randomly generated transfer sequences that did not contain reset transitions

and produced α′-sequences using this. Given state si the transfer sequence T̄i was

randomly chosen in the following way: randomly select state sj that can be reached

from si without using reset transitions and let T̄i be a minimum length path from

si to sj that contains no reset transitions. We produced a checking sequence, using

these α′-sequences, and determined its length and the number of reset transitions

it contained. For each FSM this process was repeated 100 times with independently

randomly selected transfer sequences.

A total of 20 FSMs were randomly generated. In Table 1, the first three columns

show the FSM number, the number of states of the FSM, and the size of the input

and output alphabets7 respectively. This is followed by two with MR denoting the

proposed method, modified to use walks rather than tours, and M06 denoting the

modified [18]. The two columns give the number of resets produced using empty T̄i. A

final column gives the number of resets produced with M06 divided by the number of

resets produced with MR. The number of resets are also shown in the graph in Figure

6.

We observe from Table 1 and Figure 6 that MR’s number of resets for empty T̄i is

always less than that produced using M06 and empty T̄i. Table 2 reports the results of

experiments with the same FSMs but using randomly generated T̄i. The first column

gives the FSM number and this is followed by columns giving number of resets. Again,

MR denotes the proposed method, modified to use walks rather than tours, and M06

denotes the modified [18]. There are four pairs of columns that report the number of

resets in the checking sequences produced in 100 experiments with randomly generated

T̄i: columns 2 and 3 give the minimum number of resets, columns 4 and 5 give the

mean, while columns 7 and 8 give the maximum. Column 6 gives the ratio between the

7 In all cases the input and output alphabets had the same size.
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Fig. 6 The number of resets with empty T̄i

mean number of resets using M06 and the mean number of resets using MR. The last

two columns give the number of checking sequences that ended in a reset in the 100

experiments for each method: such resets can be removed. The mean number of resets

are shown in Figure 7.

The first observation to make relates to the heuristic of using empty T̄i for the

proposed method. Here, in every case the proposed method did not find a checking

sequence with fewer resets than that produced using empty T̄i. From Table 1 we see

that MR’s number of resets for empty T̄i is always less then that produced using

M06 and empty T̄i. In addition, as shown in Figure 7, MR’s mean number of resets

for random T̄i is consistently lower than that of M06. It is interesting to note that

when we applied the method of [18] 100 times and used the checking sequence with

fewest resets we obtained a checking sequence with the same number of resets as that

produced using the proposed method with empty T̄i. In addition, the proposed method

always included the same number of resets when random T̄i were used while there is

much more variability in the method of [18] when considering the number of resets. For

example, with FSM 16 the minimum number of resets in a checking sequence found

by the method of [18] was 10 but with empty T̄i it produced a checking sequence with

39 resets and the experiments produced a checking sequence with 66 resets. These

experiments suggest that, as would be expected, the proposed method is better at

producing checking sequences with few resets than the method of [18].
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Table 2 The number of resets with randomly generated T̄i

FSM Min Min Mean Mean Mult Max Max ♯ ending in ♯ ending in
MR M06 MR M06 factor MR M06 reset MR reset M06

1 3 3 3.00 8.38 2.79 3 22 0 0
2 3 3 3.00 7.83 2.61 3 16 0 1
3 3 3 3.00 8.01 2.67 3 21 0 0
4 6 6 6.00 12.72 2.12 6 31 0 2
5 9 9 9.00 15.02 1.67 9 37 0 3
6 5 5 5.00 14.04 2.81 5 33 0 1
7 5 5 5.00 12.33 2.47 5 37 0 1
8 5 5 5.00 12.59 2.52 5 27 0 2
9 5 5 5.00 11.76 2.35 5 24 0 1
10 5 5 5.00 12.69 2.54 5 27 0 1
11 7 7 7.00 13.84 1.98 7 35 0 7
12 7 7 7.00 16.29 2.33 7 51 0 7
13 7 7 7.00 15.36 2.19 7 33 0 2
14 7 7 7.00 14.67 2.10 7 49 0 1
15 7 7 7.00 17.91 2.56 7 36 0 0
16 10 10 10.00 18.42 1.84 10 66 0 1
17 10 10 10.00 18.73 1.87 10 46 0 1
18 10 10 10.00 17.36 1.73 10 45 0 0
19 10 10 10.00 19.63 1.96 10 42 0 1
20 10 10 10.00 19.41 1.94 10 55 0 0
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Table 3 Checking sequence length with empty T̄i

FSM Number Alphabet Empty T̄i Empty T̄i Difference
states size MR M06

1 25 3 672 671 1
2 25 3 671 665 6
3 25 3 727 717 10
4 25 3 705 699 6
5 25 3 572 572 0
6 50 5 1717 1708 9
7 50 5 1668 1668 0
8 50 5 1720 1715 5
9 50 5 1746 1744 2
10 50 5 1734 1729 5
11 75 7 3461 3461 0
12 75 7 3461 3454 0
13 75 7 3393 3393 0
14 75 7 3432 3432 0
15 75 7 3383 3383 0
16 100 10 6279 6279 0
17 100 10 6198 6191 7
18 100 10 6185 6185 0
19 100 10 6114 6114 0
20 100 10 6284 6284 0

While the aim of the proposed algorithm is to minimise the number of resets used,

we often also want a short checking sequence. Table 3 reports on the lengths of the

checking sequences produced in the experiments with empty T̄i. From Table 3, we

observe that MR’s length of checking sequence for empty T̄i is very similar to that of

M06 and in half of the cases it is identical. The largest difference in checking sequence

length is 10 and this is for checking sequences of length greater than 700. Despite

these similarities in length, we have seen that there are considerable differences in the

number of resets in these sequences.

Table 4 gives the results for checking sequences with randomly generated T̄i. Again,

the results for MR and MR06 are similar when considering minimum length, mean

length and maximum length. In fact, the largest difference is for the minimum length

checking sequences for FSM 10 and this is just over 10%. If instead we consider the

mean figures, the largest difference is less than 3%. The results in Tables 3 and 4 also

show that as well as minimising the number of resets, the choice of empty T̄i leads to the

shortest checking sequences produced for each FSM. In the experiments the proposed

method produced checking sequences of similar length to those of [18] suggesting that

the process of minimising the number of resets has relatively little impact on the overall

checking sequence length.

The proposed algorithm can be applied with strongly connected FSMs and so we

ran experiments with six such FSMs. Tables 5 and 6 shows the number of resets in the

checking sequences returned, MR always returning checking sequences with no resets.

These are illustrated in Figures 8 and 9 respectively. In contrast, in all cases M06

included resets for some choice of T̄i and in half of the cases it included resets when

using empty T̄i. The lengths of the checking sequences are given in Tables 7 and 8,

which again shows that MR produced checking sequences of a similar length to those

returned by M06.
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Table 4 Checking sequence length with randomly generated T̄i

FSM min min mean mean max max
MR M06 MR M06 MR M06

1 879 854 936.31 915.86 994 980
2 862 840 912.90 896.94 970 955
3 874 841 931.69 915.32 987 976
4 861 825 931.14 904.60 991 972
5 727 697 786.94 768.58 843 817
6 2317 2271 2404.04 2370.71 2506 2464
7 2277 2253 2365.67 2344.02 2471 2503
8 2288 2234 2381.48 2359.99 2472 2501
9 2316 2222 2381.20 2352.43 2486 2450
10 2460 2230 2378.34 2352.41 2460 2447
11 4843 4480 4661.94 4627.62 4843 4747
12 4802 4479 4653.19 4612.32 4802 4750
13 4487 4467 4662.76 4643.34 4826 4816
14 4474 4492 4633.16 4607.13 4752 4782
15 4536 4495 4662.10 4629.26 4811 4864
16 8130 8096 8332.10 8284.05 8520 8559
17 8083 8021 8316.74 8266.96 8554 8463
18 8135 7988 8327.46 8277.78 8548 8472
19 8165 8125 8341.07 8304.46 8523 8489
20 8193 8123 8345.36 8308.63 8516 8508

Table 5 Number of resets for connected FSMs with empty T̄i

FSM Number of Number of Empty T̄i Empty T̄i

states inputs MR M06
S1 3 2 0 0
S2 5 3 0 0
S3 10 5 0 10
S4 15 4 0 4
S5 20 5 0 0
S6 25 7 0 7

Table 6 Number of resets for connected FSMs with randomly generated T̄i

FSM Min Min Mean Mean Max Max
MR M06 MR M06 MR M06

S1 0 0 0 0.61 0 2
S2 0 0 0 1.88 0 9
S3 0 0 0 2.58 0 15
S4 0 0 0 3.08 0 16
S5 0 0 0 3.04 0 18
S6 0 0 0 4.06 0 21

Table 7 Checking sequence length for connected FSMs with empty T̄i

FSM Number of Number of Empty T̄i Empty T̄i Difference
states inputs MR M06

S1 3 2 27 27 0
S2 5 3 75 75 0
S3 10 5 289 284 5
S4 15 4 363 355 8
S5 20 5 578 578 0
S6 25 7 1080 1080 0
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Table 8 Checking sequence length for connected FSMs with randomly generated T̄i

FSM Min Min Mean Mean Max Max
MR M06 MR M06 MR M06

S1 36 27 41.28 37.07 44 44
S2 76 76 91.16 90.60 122 119
S3 303 299 350.52 348.85 403 396
S4 444 424 500.60 491.68 604 573
S5 738 703 824.54 817.65 937 929
S6 1310 1263 1441.65 1429.81 1660 1668

6 Conclusions and Observations

A checking sequence for a finite state machine (FSM) M is an input sequence that is

guaranteed to lead to a failure if the implementation under test (IUT) is faulty and

has no more states than M . It is desirable to use a short checking sequence and there

has thus been much interest in automatically generating such a checking sequence.

However, in some situations the use of resets increases the cost of testing and reduces

the expected effectiveness of the checking sequence and in such cases we may want to

minimise the number of reset transitions used.

This paper investigated the problem of producing a checking sequence that has a

minimum number of resets. It considered a class of checking sequences that is defined

by recent checking sequence generation algorithms. The proposed algorithm returns

a checking sequence that, amongst those in this class, has a minimum number of re-

sets. For an FSM with n states and p inputs, the algorithm has time complexity of

O(pn2 log n). In contrast to other checking sequence generation algorithms, the ap-

proach given in this paper does not require the FSM to be strongly connected.

The proposed checking sequence generation algorithm is parameterised by a set of

transfer sequences. This paper reported on experiments used to investigate the effective-

ness of one heuristic: using empty transfer sequences. A total of 20 randomly generated

FSMs were used in the experiments: for each a checking sequence was produced using

empty T̄i and checking sequences were produced using 100 randomly generated T̄i.

In all of the experiments the checking sequence with empty T̄i was both the shortest

checking sequence and the checking sequence with fewest resets.

Experiments were used to compare the proposed method with a recent checking

sequence generation method that aims to minimise the checking sequence length [18].

As expected, it was found that the proposed method was never outperformed by the

algorithm of [18], when considering the number of resets in the checking sequence

returned. In addition, the heuristic of using empty T̄i appeared to be less effective with

the method of [18]. The lengths of the checking sequences returned by the proposed

method were similar to the lengths of the checking sequences returned by [18]. Similar

results were obtained when the two methods were applied to completely specified FSMs.

It should be remembered that the method of [18] requires us to solve an NP-hard

optimisation problem while the proposed method requires low order polynomial time.

The checking sequence generated by the proposed algorithm is the input portion

of D̄/λ(s1, D̄)T̄1 followed by the input portion of the label of a tour Υ started at the

vertex reached from v1 by a walk with label D̄/λ(s1, D̄)T̄1. If there is a walk P̄1 from

state si to s1 that contains no reset transitions, and Υ contains reset transitions, then

we can eliminate one reset transition from the checking sequence. If it is possible to

eliminate a reset transition when using non-empty transfer sequences, then it is also
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possible to eliminate a reset transition when using empty transfer sequences. Thus the

observation, that it is sometimes possible to eliminate one reset transition, does not

invalidate the experiments reported in Section 5, that investigated the effectiveness of

using empty transfer sequences.
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