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Abstract 

 

The Caspian Sea Level (CSL) has experienced large fluctuations with wide 

reaching impacts on the population on the coastal regions and on the 

economy. The CSL variability is dominated by the variability of 

precipitation over the Volga River basin. The precipitation during 

summer plays a dominant role and can explain the two major events that 

happened in the 1930s (drop) and after 1977 (rise). Impacts are expected 

from global warming due to enhanced greenhouse gas concentrations; 

especially the precipitation over the Volga River basin is expected to 

increase. It is, however, compensated more or less by increased 

evaporation over the Caspian Sea itself. It is shown that the Max -

Planck Institute for Meteorology (Hamburg) models are able to simulate 

most processes relevant for the CSL variability quite realistically, 

i.e. within the uncertainty of observational data. The simulations 

suggest a slight increase of the CSL in the 21st century; but due to a 

large variability of precipitation over the Volga River basin a 

statement concerning the future development of the CSL cannot be made 

with confidence at the moment. 

 

 

Keywords: Caspian Sea Level, Sea Level variability, model simulations, 

global warming 

 

1. Introduction 

 

The Caspian Sea (CS) is situated in a semi-arid area between southern 

Russia, Kazakhstan, Turkmenistan, Iran and Azerbaijan (36°-47°N, 47°-

54°E). It is a closed basin without any outlet. Its sea level lies about 

26 m below the mean sea level of the oceans (-25 to -29 m during the 

last 150 years). Its main water source is the Volga River whose 

catchment area reaches well into the humid mid-latitudes. The water 

inflow is compensated by evaporation over the CS itself. At the eastern 

coast there is a shallow gulf, the Kara-Bogaz Gol, that covers only 3 % 

of the total area of the CS but evaporates about 5 % of its total. 

 

The CS lies in an area of strong tectonic activity mostly a strike slip 

movement, but with a rise of land on its southern coast and a subsidence 

in the south basin (Allen et al., 2004). Such impacts can, however, be 

neglected for the investigated period of 200 years. 

 

The Caspian Sea Level (CSL) has experienced wide fluctuations during 

geological and historical times (Kazanci et al., 2004, Leroy et al., 

2006). These changes may be very rapid (13 cm per year between 1977 and 

1995), and have a drastic impact on the economies of the 5 countries 

surrounding the CS. The impact may reach even much wider areas as oil 

and gas exploitation is directly affected by both the rise and the drop 

of sea level. Scientists have tried to find out how much of such 

fluctuations are initiated locally, i.e. within the catchment area of 

the CS, and what are the possible forcings outside this area. Recently 



the impact of increased concentrations of greenhouse gases on 

temperature and precipitation has been added to the possible sources for 

the fluctuation of the CSL. Investigating the external forcings is the 

topic of the present study. In case of significant external forcings 

there is some hope that the variability of the CSL can be predicted. 

Section 2 gives an overview about observational findings, including a 

connection between the CSL variability and ENSO (El Niño/Southern 

Oscillation) shown by Arpe et al. (2000). 

 

The focus of this study is the search for an impact of global warming on 

the CSL. Recently scenario simulations have been carried out at the Max 

Planck Institute for Meteorology (MPI) with the ECHAM5 atmospheric model 

coupled with ocean, lake, ice and soil models which are used for this 

study. Roeckner et al. (2003, 2006) give a comprehensive description of 

these models that are shortly introduced in section 3. In section 4, the 

global aspect of global warming is shown on precipitation and heat flux. 

Its impact on the CSL is investigated in section 5. Further discussion 

on these topics in sections 6 and 7 deal with the validation of the 

simulations for the 20th century. This provides some ideas about their 

realism. Important for the evaporation over the sea is the Sea Surface 

Temperature (SST), generated by a coupled atmosphere-lake model, which 

is evaluated in section 7. By integrating the precipitation minus 

evaporation (P-E) in time one gets the CSL variability during the 

centuries (section 8). This leads to the conclusions in section 9. 

 

 

2. Caspian Sea Level variability in the 20th century 

 

The CSL has undergone during the 20th century an enormous variability 

with a fast drop of 1.7 m during the 1930s, a further drop until AD 1977 

by another 1.2 m and then a significant rise of 2.5 m from 1978 to 1995 

(Fig. 1). Between 1995 and 2001, a drop of the CSL can also be seen. 

This study helps to understand the important processes which lead to 

these changes in the CSL. An inspection of the annual water balance 

equation for the CS can give some clues: 

   CSLinc=R+P+S-E-KBG 

CSLinc is the annual CSL increment, R the total river inflow, P the 

precipitation over the sea, S the subsurface runoff into the sea, E the 

evaporation, and KBG the water discharge into the Kara-Bogaz Gol where 

the water is eventually evaporated. The CSLinc is the residual of mainly 

two large quantities, R and E, while the remainder is small compared to 

these two large quantities but comparable to the CSLinc itself. 

Estimates of the single components (units: cm/year change of CSL) are as 

follows (Golitsyn and Panin, 1989): 

R= 77, E-P=76, S=1, KBG=4, and under stationary conditions the CSLinc 

needs to be small when averaged over a longer period. However the CSL is 

never stationary and therefore the balance is not complete in this 

equation with the given data. 80% of the river discharge (R) is coming 

from the Volga River. This river and the precipitation over its 

catchment will be one of the main points for the following 

investigations. 

 

By comparing the time variability of CSLinc and the Volga River 

discharge one can see that the CSL variability can mainly be assigned to 

a variability of the Volga River discharge, which results from the 

variability of the precipitation over its catchment area (e.g. Arpe et 

al., 2000). Rodionov (1994) gives a detailed overview. In Figure 1, the 

effect of precipitation over the Volga River basin, and thus of the 

Volga discharge, is shown by integrating the precipitation anomalies 

over its catchment area from AD 1900 onward, using an initial value of  



-26 m and applying a factor which is the ratio between the Volga 

catchment area and the area of the CS. 

 

Anomalies are used here to compensate for the evaporation that is an 

unknown quantity. Because anomalies are integrated, the calculated CSL 

is forced to return to its initial values at the end of the integration. 

This depends of course also on the period, on which the mean is 

calculated. The period 1935-1995, i.e. a period when the CSL had the 

same level at the beginning and the end, has been tried as well but the 

difference was very small to the one shown. Therefore the whole period 

for performing the calculation for the anomalies was used. 

 

The CSL calculated from the annual mean precipitation is following the 

observed CSL, especially it reproduces the strong drop in the 1930s and 

the increase after 1977. However, there is a shift from 1950 onward, 

which can be assigned to the filling of water reserves along the newly 

built dams along the Volga as already shown by Rodionov (1994); it leads 

to a loss of water for the CS due to filling of the reservoirs, 

irrigation and enhanced evaporation over larger open water. It is 

interesting to note that the small drop of the CSL after 1995 cannot be 

explained by the precipitation over the Volga river catchment. 

 

The variability of evaporation (LHFX - latent heat flux) was not needed 

above to explain most of the CSL variability and is therefore less 

important for this. Correlating the summer precipitation over the Volga 

River with the MSLP or upper air height field at each grid point shows 

that precipitation maxima are connected with large- scale low pressure 

over the same area which reaches south to the CS. Low pressure normally 

goes hand in hand not only with enhanced precipitation but also with 

enhanced cloudiness which would suggest also less solar radiation 

reaching the ground leading to less evaporation not only over the Volga 

river but also over the CS. This agrees with investigations by 

Sidorenkov and Shveikina (2006) who assigned CSL changes to synoptic 

features. The data to our disposal are not accurate enough to show this 

but it is assumed that decreased evaporation contributed to the rise 

after 1977 though the increase of precipitation is sufficient to explain 

the increase, as shown in Figure 1.  

 

Figure 1 further shows the individual contributions from the four 

seasons. Here it is the summer precipitation, which has the closest 

similarity with the annual mean curve, not only because of the decrease 

in the 1930s and increase after 1977 but also in the year-by-year 

variability. The DJF (December-January-February) variability has still 

some similarities while the spring variability is even negatively 

correlated. 

 

Already Arpe et al. (2000) looked for global phenomena that might have 

affected the precipitation over the Volga River basin using several 

widely used indices, e.g. the North Atlantic Oscillation and ENSO. The 

only stable connections that have been found are with ENSO that, for 

most of the world, has its peak impact in northern winter and spring and 

less in summer. Perhaps the largest global- scale variability in summer 

is that connected to the Indian summer monsoon but a connection with the 

CSL variability could not be found. 

 

 

3. Methods 

 

It has been an important task to combine observational data to create a 

consistent gridded data set, and here it is the precipitation which is 



of special interest. The impact of different use and interpretation of 

observational precipitation data can be investigated by comparing CRU 

analyses (Climate Research Unit in East Anglia, UK) (Mitchell et al., 

2004) with those by the Global Precipitation Climate Project (GPCP) 

(Huffman et al., 1996). GPCP corrects the observations for the blowing 

off of precipitation out of the gauge by wind, which is especially 

effective with snow and can result in differences of 50 % (Sevruk, 

1982). Another difference is that the GPCP uses on top of the 

conventional gauge observations also estimates made from satellite 

observations. This is restricting the latter data set to the more recent 

period but provides also estimates over oceans and lakes. These 

differences lead to a 20% higher annual mean precipitation in the GPCP 

analysis over the Volga. Because of the longer time series the CRU data 

set is used but its possibly too low values have to be kept in mind. 

 

The present study is using recent scenario simulations with the ECHAM5 

atmospheric model coupled with ocean, lake, ice, snow and soil models. 

Roeckner et al. (2003, 2006) give a comprehensive description of these 

models. These runs were forced with increasing greenhouse gas 

concentrations as observed for the 20th century and predicted by IPCC 

SRES scenario A1B for the 21st century (Special Report on Emissions 

Scenarios; Nakicenovic et al., 2000). The changes in aerosols are 

prescribed but two-way interactions are not considered in the 

experiments discussed in this study. Before the scenario simulation 

could be started, the coupled system had to run for a couple of hundred 

years until a quasi steady state without any trends has been reached. 

Then it was run a few hundred of years further and the results had to be 

studied to see if the model is producing weather and climate data that 

are realistic. The model was restarted from 3 different randomly chosen 

initial atmospheric and oceanic data sets for January and these initial 

data sets were assigned the date 1 January 1870. The models were run 

without any external varying forcing, except an increasing concentration 

of greenhouse gases and aerosols from 1870 onward. The initial data sets 

do not have any information on the true atmosphere from 1 January 1870, 

because they are not available. Three experiments have been carried out. 

Below they will be called X1, X2 and X3. At least three experiments have 

been used because one would like to get some statistical information 

about the internal variability of the model and to find out if possible 

trends are independent of the initial data. 

 

 

4. Global warming - global impacts 

 

Quite a few simulations using different models forced with increasing 

greenhouse gas concentrations - as observed up to the present and 

estimated for the future - have been carried out and all show an 

increase of atmospheric and oceanic temperatures. As for many other 

scenario simulations, also the present one shows an increase of global 2 

m (above ground) temperatures (T2m) of about 4°C until 2100. If one uses 

only land points for calculating the global mean, the increase is even 

reaching 5°C in annual means and 6°C for the northern hemisphere in 

winter. With increased air temperatures, the atmosphere is able to carry 

more water vapour and increased greenhouse gas concentration forces a 

shift of energy transport between the surface (especially the ocean) and 

the atmosphere from radiative transfer to evaporation. Accordingly one 

finds as well an increase of precipitation. This increase is larger over 

the oceans probably due to the unlimited availability of water for 

evaporation at the surface. 

 



The geographical distributions of T2m and precipitation trends develop, 

however, quite differently. The T2m increases more uniformly all over 

the world with a clear land-sea contrast of 1-2°C higher values over 

land. The patterns of precipitation changes are much more structured. In 

DJF one finds a strong increase of precipitation north of about 45°N and 

south of 50°S and in a belt around the equator while over the 

subtropical belts the precipitation decreases. This nonlinear impact on 

the precipitation is illustrated in Figure 2, showing the latitudinal 

variability of zonal and annual means of T2m, precipitation, evaporation 

(LHFX) and precipitation minus evaporation (P-E). This nonlinearity is 

anti-social, i.e. areas that already have a lot of precipitation get 

even more while areas with insufficient precipitation get less. This 

applies also for P-E because the LHFX increases more uniformly like the 

T2m. P-E is the water that is available for life and which leads over 

continents to river discharge. It is therefore the most important 

quantity in our further discussion. 

 

The increase of precipitation with global warming in equatorial areas 

can be explained by the ability of a warmer atmosphere to carry more 

water vapour and a shift of energy transport from radiative transfer to 

evaporation. Increased precipitation near the equator releases more 

latent heat that is warming the atmosphere and enhances the updraft 

leading to a further enhancement of precipitation, a positive feedback. 

In the 21st century the Hadley circulation will increase with enhanced 

Trade Winds in the lower troposphere, its counter flow in the upper 

troposphere around 200 hPa, an updraft in connection with more 

precipitation near the equator and an enhancement of the downdraft at 

around 30°N and 30°S. This is connected also with an enhanced Ferrel 

cell in mid-latitudes. Enhanced downdraft means less precipitation as 

shown in Figure 2. 

 

This general impact of increased greenhouse gas concentration applies as 

well for the CS area because the CS lies in the down draft area. Figure 

3 shows annual mean maps of changes in 100 years (2070-2099 minus 1961-

1990) of precipitation, LHFX, P-E and cloudiness over the area of 

interest. Precipitation increases north of 50°N and decreases south of 

it to the border of the map (at least to 20°N). Over land the LHFX shows 

the same patterns as for precipitation, i.e. where there is more water 

available in the ground due to enhanced precipitation more water can be 

evaporated and vice versa. 

 

Over the Mediterranean, Black and Caspian Sea, one finds a clear 

increase of LHFX, independent of the precipitation changes because of 

unlimited water availability. In the area of downdraft the air becomes 

drier and that favours more evaporation. More LHFX requires for 

compensation more energy input at the sea surface. This results from the 

fact that downdraft reduces cloudiness as well, which leads to less 

reflection of solar radiation. Therefore more solar energy reaches the 

ground/sea-surface that is then available for enhanced evaporation. From 

the panel showing P-E (Fig. 3), one can see that a future climate would 

have enhanced Volga River discharge (positive numbers at 50°-60°N) and 

enhanced loss of water over the CS itself (negative numbers south of 

50°N) that is shown explicitly below. 

 

Generally the warming of the oceans in a future climate is relatively 

uniform; however, a closer inspection reveals that the eastern 

equatorial Pacific is warmed up more than the western Pacific, 2021-2050 

by 0.3°C and 2070-2099 by 0.5°C, i.e. a warming pattern similar to El 

Niño events (see also van Oldenborgh et al., 2005). Accordingly one can 

find world-wide impacts on several quantities that are typical for El 



Niño events. Especially an increase of the CSL can be expected, as 

discussed by Arpe et al. (2000). It is worth mentioning that the El Niño 

type pattern does not result from one more or less El Niño event within 

the investigated periods of 30 years, it results more from a steady 

differential increase of SSTs during the 21st century. 

 

 

5. Global warming - impacts on the Caspian Sea 

 

If one takes the data of scenario simulations with growing greenhouse 

gas concentrations, one can easily calculate the future development of 

the CSL though the interpretation might be a problem. Figure 4 shows 

time series of P-E for the Volga, all rivers of the CS basin and all 

rivers plus the CS for the scenario runs. P-E for the Volga and all 

rivers is eventually resulting in a river discharge into the CS and 

further together with P-E over the CS itself into CSL changes if a long-

term average is investigated. Here a 9 year running mean is shown. The 

river discharge of the Volga River will clearly increase during the 21st 

century due to enhanced precipitation as expected from the discussion 

above. In the units given here, all rivers provide lower values than the 

Volga alone; but the amount of water delivered to the CS is of course 

larger by all rivers because of the larger catchment area. For the whole 

CS catchment, this is at least partly compensated by increased 

evaporation over the sea and reduced precipitation over the sea and the 

more southerly rivers. Integrating this curve in time, as will be shown 

below explicitly, results in nearly constant CSL except some large 

decadal variabilities. 

 

An immediate question is, if one can rely on these results. We are 

looking here at model results and it is well known that models are not 

perfect. A known deficiency refers to the lake model, which is the same 

for all lakes on continents, which does not consider salinity, 

thermocline and depth of the lakes. The model addresses the 

anthropogenic influences only from the point of greenhouse gases; but 

also important for the CS and the rivers is irrigation that is 

extracting water from the rivers and might result in a water deficit 

that is not accounted for in these simulations. Moreover the dam 

building had an impact on the hydrological cycle. In addition there is a 

negative feed back in reality, which is not yet modelled, i.e. with 

reduced river-flow into the CS its level will drop and consequently its 

area will shrink and hence the evaporation will decrease. A further 

feedback not yet included is a possible higher efficiency of plants in 

their photosynthesis with increased CO2 that might reduce the evapo-

transpiration (Gedney et al., 2006). To address the question of realism 

of the simulations, we will look at different processes that are 

important for the CS and investigate if the model is representing them 

well and if possible deficiencies might influence the conclusions. 

 

 

6. Validation of the Volga River discharge 

 

The only good observational data for validating the model results are 

precipitation over the Volga River basin, its discharge into the CS and 

the CSL measurements. The variability of P-E for the whole CS catchment 

area is dominated by the Volga River (Fig. 4). This agrees with what was 

already found for observations by many authors, e.g. Arpe et al. (2000) 

as discussed above. In Ffigure 5, we compare the precipitation over the 

Volga River catchment as analysed from observations (CRU) with that from 

the three scenario runs (X1, X2, X3). The error margin of precipitation 

analysis is very large - GPCP values are 20% higher than CRU, of which 



the reasons have been given above. The values of the simulations exceed 

the analysed ones generally by less than 10%. This means that the model 

is able to reproduce the amount of precipitation quite well within the 

margin of uncertainty. Important for the discussion below is the 

difference in variability between analysis and simulations. In the 

simulations, there are two events of multi-decadal variations of 10 

mm/month while in the observations only a maximum of 5 mm/month is 

reached. This can also be found when comparing P-E and the observed 

river discharge. The time series of observations are too short to make a 

statement about its statistical significance. 

 

If one compares P-E in the simulations over the Volga catchment area 

with the observed river discharge one gets a confirmation of the above 

findings: The converted river discharge as observed (Dümenil et al., 

2000)in P-E units is 147 mm/month while the model gives 157 mm/month for 

the same time period, i.e. the values of the simulations exceed the 

observed ones by less than 7% as found above for the precipitation. 

 

 

7. Evaporation from the Caspian Sea 

 

The inflow from the Volga River into the CS is compensated in long-term 

means approximately by the evaporation on the surface of the sea 

(including the Kara-Bogaz Gol ). In Figure 4 it was clear that P-E 

averaged over the whole CS catchment including the sea is very small 

compared to the river discharge, although there are no constrains in 

this respect in the model. This balance is astonishingly well fulfilled 

by the model, which is an improvement with respect to older models. The 

averages for the two centuries are -0.05 and 0.20 mm/month respectively. 

These numbers are small compared to the decadal variability but a 0.2 

mm/month increase means a 2 m increase of CSL over a 100 year period as 

will be shown below. 

 

The evaporation itself cannot be validated because there are no 

observational data available. One important component for calculating 

the evaporation is the SST and because of the rather simple lake model 

used in the simulations it is worth looking into this. 

 

We have investigated the annual cycle of the SST of the CS for two 

extreme grid points, one in the north where the sea is quite shallow (5m 

on average), and one in the south where the sea is very deep (on average 

400 m). The annual cycle of the SST is generally well simulated for the 

present. Over the northern grid point where the sea is quite shallow the 

model produces for the present a too weak annual cycle with 1.5°C too 

low SSTs in summer and allows too little ice building in winter. This 

can be expected from a lake model that assumes a deeper lake than in 

reality. In the south the annual cycle is only slightly too weak (0.7°C 

too low summer and 0.5°C too high winter values, i.e. within the margin 

of observational accuracy of SST). In reality the sea at the southern 

point is much deeper than in the model and one might have expected the 

model to produce a too large annual cycle. However, the real sea 

develops a thermocline (20-30 m) by which the vertical exchange is 

inhibited or at least hampered and one has a much smaller effective 

depth (Tsuang et al., 2001). Model experiments have shown that 

temperature differences of up to 1.5°C are not important for the 

evaporation and the water balance of the CS and that the general 

circulation of the atmosphere is not significantly affected (Tsuang et 

al., 2001). So we assume that the SST of the CS is simulated well enough 

for our purposes. 

 



 

8. Summing up P-E to calculate the CSL variation 

 

The ultimate aim of the present study is the simulation of the variation 

of the CSL that can be calculated by integrating P-E in the scenario 

runs in time. Figure 6 displays the results from the three single 

scenario runs, their average and the observed CSL values. One finds 

inter-decadal variabilities in the mean simulations that are comparable 

to the real variability range (upper panel). In fact the similarity 

between the observations and mean simulation is extremely good. The only 

forcing which might have led to an initial drop of CSL during the first 

half of the 20th century is the increase of aerosols. If one examines 

the single simulations in the lower panel one finds a much longer, 

perhaps a centennial variability already in the 20th century. This has 

to be seen in connection with the very large variability of 

precipitation over the Volga River, which was already discussed above. 

The fact that the variability in the single scenario runs has nothing in 

common, except its amplitude, is not surprising, as there is no common 

forcing for timing events except the increase of greenhouse gases and 

aerosols. Also the initial data for the three runs were randomly chosen. 

 

Already when discussing P-E over the whole CS catchment area, it was 

mentioned that the average of the three simulations shows a slight 

increase for the 21st century which would lead to an increase of the 

CSL. However, from Ffigure 6 it can safely be concluded that this 

increase is not statistically significant because of the large 

variability between the single runs and adding another simulation run 

for creating an average might give quite different values. 

 

Elguindi and Giorgi (2006) have used the same model data and included 

the same mean over the CS plus river catchments in their figure 3, but 

the results are quite different from those shown here. They calculated 

from the same input data a strong decrease of the CSL. The two results 

are different because of problems with the numerics in their 

calculations as documented in their Table 3. They give a precipitation 

value of 18.6 cm/yr change of CSL and an evaporation value of 16.0 

cm/yr. The difference P-E, if calculated from these numbers, is +2.6 

cm/yr change of CSL, i.e. a small increase for the 21st century similar 

to that in the present study (2m in 100 years), but in their Table 3 P-E 

is given as -9.2 cm/yr, i.e. a strong decrease of CSL as in their figure 

3. 

 

From what has been said above, drastic changes as in the 1930s and 

1970/80s might reoccur in the 21st century. This statement could have 

been made safely without carrying out such scenario simulations. In this 

study a slight increase of the CSL for 21st century has been 

demonstrated but it was shown as well that this statement cannot be made 

with confidence. 

 

 

9. Conclusions 

 

It has been shown that the precipitation during the summer plays a 

dominant role for the variability of the CSL and that it can explain the 

two main events that happened in the 1930s and after 1977. Although ENSO 

has its largest signal in the northern hemisphere winter, it remains the 

only forcing which can explain the CSL variability. 

 



The most recent MPI coupled atmosphere-ocean model can reproduce 

features relevant for the CSL variability quite realistically. They are 

among others: 

a) The CSL is dominated by the Volga River discharge. 

b) The simulated and observed mean Volga River discharges agree well. 

c) Long-term means of P-E over the whole CS catchment including the sea 

are small compared to the precipitation over the Volga River and the 

evaporation over the CS. 

d) The annual cycle of the SST of the CS is generally well simulated. 

 

The variability of the Volga River precipitation and discharge in the 

simulations is very large. This is not understood and we even do not 

know if it is a model deficiency or if it might happen also in reality. 

It prevents us making a statement concerning the impact of the global 

warming on the CSL with confidence. A larger ensemble of scenario runs 

could remedy this problem, if the large multi-decadal variability of 

precipitation is a random model error. The fact that the simulated 

variability for the 20th century is so realistically simulated suggests 

that already the mean of three experiments may be useful also for the 

21st century. 

 

Although our results remain statistically insignificant, it is 

nevertheless important to present them. Our research indeed summarises 

the present state of our knowledge. It is therefore hoped that our 

publication will stimulate further research in this field as it is 

crucial to be able to make some prediction regarding the CSL in order to 

improve preparedness in a region of rapidly developing demography and 

economy. 
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Figure captions: 

 

Fig. 1: Caspian Sea Level (CSL) during the 20th century as observed and 

estimated from the observed precipitation anomalies over the Volga river 

catchment. Contributions from annual (year) and seasonal (spring, 

summer, fall and winter) mean precipitation are shown separately. 

http://service.gmx.net/de/cgi/derefer?DEST=http%3A%2F%2Fbalwois.mpl.ird.fr%2Fbalwois%2Fadministration%2Ffull_paper%2Fffp-539.pdf


 

Fig. 2: Latitudinal variability of zonal mean 2 m temperature (T2m), 

precipitation, evaporation (LHFX) and P-E. Simulated values for the 

present (1960-1991, now) are compared with values in 60 years (2021-

2050, +60) and in 100 years (2070-2099, +100). 

 

Fig. 3: Change of annual mean precipitation, LHFX, P-E and cloudiness in 

100 years time (2070-2099 minus 1961-1990). Contours for precipitation, 

LHFX and P-E at +/- 2,5,10,15,20,25 mm/month and shading for > 2 and < -

2 mm/month. Contours for cloudiness at +/- 1,2,4,6,8,10 % and shading 

for > 2% and < -2 %. Negative contours are dashed. 

 

Fig. 4: P-E in the scenario simulations averaged for the area of: 

   Volg: Volga catchment basin 

   allR: all rivers discharging into the Caspian Sea 

   R+Ca: all rivers discharging into the Caspian Sea plus the Caspian 

Sea. 

A smoothing over 9 years has been applied and the values from three 

experiments are averaged. 

 

Fig. 5: Annual mean precipitation over the Volga catchment area in the 

20th century as observed (analysed by CRU) or simulated (X1, X2, X3). A 

smoothing over 9 years has been applied 

 

Fig. 6: CSL as observed and simulated. 

  Upper panel: Observation and mean of three scenario simulations. 

  Lower panel: Three single scenario experiments. 

 


