Exact solution of a generalised model for surface deposition
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We consider a model for surface deposition in one dimension in the presence of both precursor-layer
diffusion and desorption. The model is a generalisation that includes RSA, ARSA and growth-and-
coalescence models as special cases. Exact solutions are obtained for the model in both its lattice
and continuum version. Expressions are obtained for physically important quantities such as the
surface coverage, average island size, mass-adsorption efficiency and the process efficiency. The
connection between a limiting case of the model and epidemic models is discussed.
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Random sequential adsorption (RSA) [1-3] is a model
process by which particles are irreversibly deposited
without overlap and without positional correlation onto
a surface from a gas [4] or solution [5]. Once deposited
the particles cannot move on the surface, nor desorb back
into the fluid phase. The model describes a physical sit-
uation in which impenetrable particles interact weakly
with one another and where diffusion and desorption are
negligible. Many extensions of the RSA model have been
proposed in order to include, for example, diffusion on or
desorption from the substract [3, 6] and local rolling and
rearrangement of particles [7].

Motivated by theoretical [8] and experimental [9] work,
in [11] we introduced a model in which it is possible for
the particles to diffuse on top of previously deposited
particles. More precisely, in this model the deposition of
a particle is attempted at a randomly selected position
on the surface; if the position is full or partly occupied,
then the incident particle diffuses along the top of the
deposited particles until it finds a space large enough to
accommodate it; then the particle is deposited instantly
and irreversibly. In the language of surface chemistry
[4, 10], this model describes systems in which particles
can become physisorbed and diffuse in a precursor state,
until they become chemisorbed at some later time. In [12]
this process was called accelerated random sequential ad-
sorption (ARSA). Exact results were obtained for the gap
distribution function and for physically relevant quanti-
ties, such as the surface coverage, the average island size
and the probabilities of island nucleation, growth and ag-
gregation, in one dimension. The continuum version of
the model was also studied. Later, these results were
extended [13] to study the accelerated random sequen-
tial adsorption of particles on to a surface with random
impurities.

More recently, a new application has been proposed for
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the ARSA model. In [14] the model was used to study
a computer science algorithm called linear probing with
hashing [15]. This is an efficient and widely used algo-
rithm for inserting items into a table. The cost function
of the algorithm is related to the number sites that a
precursor-diffusing particle visits before being deposited.

In this paper we extend our previous results to include
the possibility of desorption from the precursor state. In
order to do so, we consider a generalised model for deposi-
tion which comprises RSA, ARSA and other processes as
particular cases. This extension is motivated by the fact
that the energy bond in the physisorbed state is weaker
than that in the chemisorbed state, so particles can more
easily desorb from the precursor state [4, 8, 10]. This
situation corresponds, in the computer table-filling algo-
rithm, to a probability of failure when the duration of
the search operation is too long.

We consider the ARSA of k-mers (i.e., particles of size
k) onto a linear lattice [11]. The rate of successful depo-
sitions following precursor diffusion is D and, as usual,
the rate of successful direct depositions on empty sites
is set to 1. The cases D = 0 and D = 1 correspond
to standard RSA and ARSA [11, 12] respectively. The
introduction of this parameter was first discussed in [11]
although only the case D = 1 was studied there. Allow-
ing D to vary between 1 and 0 accounts for additional
possibilities: that an incoming molecule might be more
likely to be scattered from an occupied region than from
an empty region, or that once in the precursor state it
might desorb before reaching an empty site where it can
be deposited. The complementary case D > 1 also has
physical meaning. For example, it represents situations
where molecules are more likely to stick to the substrate
at the edge of growing clusters of identical molecules. The
limit D — oo corresponds to a special case of ARSA, with
growth and coalescence (from an initial distribution of
‘seeds’ or impurities) but without subsquent nucleation.
The interval 0 < D < 1 is perhaps the most relevant to
surface adsorption systems.

Let C..(t) denote the average density of gaps of length



r between occupied regions at time ¢ (distribution of gap
sizes). By average density, we mean the total number of
occurrences of a gap of size r, divided by the system size
and averaged over the distribution of stochastic realisa-
tions from an empty substrate up to time ¢. As usual, ¢
measures (in arbitrary time units) the number of deposi-
tion attempts divided by the system size.

The evolution equations which the set of C).(¢) obeys
were derived in [12] for the case D = 1. Extension to
general rate D is obtained by multiplying by D the terms
representing precursor-mediated deposition; this gives

dC, (1)
dt

= 2) Cryssn(t) = [r = (k= 1] Cr(2)
+D q(t) [Cryi(t) — Cr(8)] (1)

for r > k, where the four terms represent the creation and
destruction of a gap of size r by direct and by precursor-
mediated deposition. For r < k there are no destruction
(negative) terms, and C,(t) is easily expressed as an in-
tegral involving the solution of Eqn. (1). The quantity

g(t) =[1=Y [r = (k=DIC®)/D_C-()]  (2)
r=Fk r=k

is the average number of positions (per gap with r > k)
where a particle can physisorb before diffusing towards an
edge site where chemisorption takes place. Correspond-
ing equations for the average density of occupied regions
of length r (islands) were derived in [11]. These equa-
tions do not have closed form, as a consequence of the
process of island coalescence, so they were solved in [11]
using truncation approximations.

Despite their nonlinearity, Eqgs. (1) can be solved for
general k using a similar method as in [12, 13, 16, 18]. As
argued and verified by simulation in [12, 13], we expect
the size of the gaps with » > k to be independent of the
evolving island structure. This is because new gaps form
(i.e., islands nucleate) by direct, random deposition. This
leads to the assumption that gaps of size r > k have the
Poisson distribution, C\.(¢t) = A(t) exp[—(r — k)t], where
A(t) is to be determined. For initial conditions C,(0) =0
and lim;_,o > =, rCy(¢) = 1, corresponding to an empty
substrate, the solution is

[L—e T (G() = D] sy

Cr(t) = 2_D

(3)
for r > k, and
C.(t) = /0 dull—e ] G(u)e ™ (4)

for r < k, with

6 - L2 dur ®

saturation time

0.0 0.5 1.0 1.5 2.0
2D/(1+D)
FIG. 1: Rescaled saturation time kt..
and
k-1 1— efrt
F(ty=exp [(1-D)t+(2-D)> ——|. (6)
r=1 T

This solution holds for ¢t < t., where t. is the saturation
time, after which no more particles can be deposited;
t. is a measure of the number of deposition attempts
made until saturation (in multiples of k lattice sites).
The saturation time ¢, is determined by C,(t.) = 0 for
all » > k, and obeys the equation G(t.) = D, or

Fit) + [ duF(u) =2/D. (7)

0

Fig. 1 plots kt., the total mass of particles that have
collided with the substrate until saturation, against D
for various particle sizes k, from D = 0 (RSA), through
D =1 (ARSA), to D = oo (on the right). There is a
point (D* = 0.125) at which all curves approximately
meet; for D > D* there is a small decrease of kt, with k
(which is maximum around D = 0.5); for D < D* there
is a large increase with k. This behaviour originates from
different trade-offs between the direct and precursor-
mediated deposition mechanisms, each of which yields
distinct forms of deposition failure. In the RSA limit
(D — 0) the saturation time has a logarithmic diver-
gence t. ~ Iln(1/D), as revealed by inspection of (7).

The central quantity in this system is the fraction of
surface occupied, or surface coverage, 6(t). The coverage
is directly related to the distribution of island sizes, which
is not known exactly. Fortunately, thanks to the binary
nature of the problem (sites are either empty or occu-
pied), €(t) also relates to the distribution of gap sizes,
6(t) =1 —3°2 rC,(t). Direct substitution of Egs.(3)-
(4) into this definition is cumbersome; it is much simpler
to use the relation

% = K{Pu(t) + D[1 - P(8)]} , (8)

between the sticking probability and Py (t) = Yoo ,.[r —
(k—1)]C,(t), the probability that a k-mer lands directly
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on an empty interval of size k. This gives

o(t) = 2kD[Db+1— /tma ], )

which behaves asymptotically as
6(t) = O(t.) — kD(t. — t) + O(t, — t)*

in the approach to saturation. Also of interest is the
average island size (L(t)) (and the average number of
particles per island (L(t)) /k). This is given by (L(t)) =
6/ > 2, Cy(t) where

ZC 1_67][ () D]+/(; du[e’“—efk"]G(u)

2—D

is the average number of islands. For D =0 and D = 1,
these results reduce to the standard RSA [17] and ARSA
[12] expressions, respectively. Note that, despite the ap-
pearance of the factor 1/(D—2) in some of the expressions
above, it can be shown, by expanding F'(¢) in powers of
D —2, that all the results are well defined and continuous
for D = 2; in particular, F(t) — et and G(t) — 2 in the
limit D — 2.

We define the mass-adsorption efficiency, €., as the
ratio of the mass adsorbed to the mass that has collided
with the substracte until saturation. We also define the
process efficiency, €, as the product of the mass efficiency
with the saturation coverage, i.e., € = 8(t.)?/[kT.], which
is plotted in Fig. 2.

In the special case of monomer deposition (k = 1), we
have

(10)

1 — exp[—(1 — D)t]
1-D ’
for t < t., an expression first derived in [11]. At the fi-
nite time ¢, = In(1/D)/(1 — D) the lattice becomes full
(0(te) = 1). Linear growth 6 o< ¢ [11, 12], typical of some
domain-growth models [19], occurs only for D = 1. When
D < 1(> 1) the sticking probability df/dt decreases (in-
creases) with 6. The average island size for k =1 is

0 1
1-01—et

o(t) =

(11)

(L(t)) = (12)

This result yields (L) = t/[(1—t)(1—e*)] for D = 1 and
(L) = €t for D = 0, and implies that (L) ~ 1/(1 —6) as
6 — 1 for all D. For dimer deposition (k = 2), Egs.(1-9)
simplify, but not sufficiently to allow the coverage to be
expressed in a simple closed form for arbitrary D.

We now return to discuss the general properties of k-
mer deposition. For D > 1, when the growth of islands
is preferred to their nucleation, the coverage 6 grows ex-
ponentially. In particular, in the scaling regime where
D — oo and t — 0 with 7 = Dt fixed, we find that

1 [2k-1

6(t) ~ 5l (e" —1) — (k- 17| , (13)

with 6(r.) = 1 — O(1/D) and 7. = (1/k)In[Dk/(2k —
1)] + O(1/D). In the limit D — oo there is full coverage
because there is no nucleation and, therefore, no gaps
smaller than k are created. However, if the initial con-
dition (which needs to contain at least one particle) has
a finite fraction of occupied sites, then the latter result
may need modification. The divergence of the saturation
time, 7. ~ In(D), is a consequence of unsuccessful direct
deposition attempts (the rate of success of these events
is, after rescaling, 1/D).

In the continuum version of this model, particles of
length 1 are deposited on a 1d continuum. This version
can be obtained from the lattice model in the same way
as the random carparking model is obtained from the lat-
tice RSA model [17], or the continuum ARSA is obtained
from its lattice counterpart [12]. This is done by taking
k — oo and t — 0 whilst keeping 7 = kt fixed. Carry-
ing out this procedure gives the following quantities for
continuum ARSA with desorption

F(1) = exp [(2—D) fOT dul_ueu] ,
G(r) = 2/F(r),
oy — DT 1—2_Df0 du/Flu) )

and the saturation time 7, is the solution of F'(1.) = 2/D.
Note that 6 has the expected forms when D = 0 and
D =1.

To summarise, we have derived exact results for 1d de-
position with both diffusion and desorption in the pres-
cursor state. Since the random sequential adsorption
and accelerated random sequential adsorption are spe-
cial cases of the current model, previous exact solutions
[12, 16, 17] can be derived from the solution presented
here. By changing the desorption rate D we can change
between a system in which islands can only nucleate,
through a system in which islands can both nucleate and
grow, to a system in which islands grow but there is no
nucleation. The system saturates for all values of the pa-
rameters and the rescaled saturation time kt. exhibits a
miniumum at D = 1 and diverges as D — 0 and D — oo.
Conversely, the process efficiency ¢ has a maximum at
D =1 and goes to 0 as D — 0 and D — oo.



In the limit of infinite desorption rate, D — oo, the
system has an absorbing state (§ = 0), i.e. a state from
which the system evolves no further. If the model in-
cluded desorption from the chemisorbed state, then it
would exhibit long-term quasi-equilibrium states and a
continuous phase transition between the absorbing state
and equilibrium states with § > 0. The limit D = oo is
analogous to an epidemic process in which sites at the
edge of a disease cluster are infected at rate proportional
to the area of the cluster. In this context, desorption,
if present, would correspond to the recovery of infectives
[20]; the model would then be similar to the Contact
Process [22], but with a rate of infection proportional to
area of the neighbouring cluster rather than the number
of infected nearest-neighbours.

In practice, two-dimensional models are usually more
relevant to physical applications. The 1d system is, nev-
ertheless, useful for obtaining analytic solutions and gain-
ing insight. There are two possible approaches for study-

ing this system in 2d. One approach is stochastic and
spatially-explicit simulation. The other approach is to
extend the above equations and to solve them using trun-
cation methods, such as cluster approximations [207 ].

A number of further extensions are possible to this
model. One of these would be to consider the deposi-
tion of mixtures of particles of different sizes, in order to
model the situation where the gaseous phase contains a
mixture of gases. One could also allow the chemisorbed
particles to diffuse in the empty spaces, as was done in
[23] where a 1d random sequential adsorption model with
diffusing chemisorbed particles was solved exactly. Such
extensions will be examined in future work.
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