
0

The Use of Non-Formal Information

in

Reverse Engineering and Software Reuse

A thesis submitted for the degree of

Doctor of Philosophy

by

Alan J. Brown

Department of Computer Science, Brunel University

1992

1

Abstract

Within the field of software maintenance, both reverse engineering and

software reuse have been suggested as ways of salvaging some of the

investment made in software that is now out of date. One goal that is shared

by both reverse engineering and reuse is a desire to be able to redescribe

source code, that is to produce higher level descriptions of existing code.

The fundamental theme of this thesis is that from a maintenance

perspective, source code should be considered primarily as a text. This

emphasizes its role as a medium for communication between humans rather

than as a medium for human-computer communication. Characteristic of this

view is the need to incorporate the analysis of non-formal information, such

as comments and identifier names, when developing tools to redescribe code.

Many existing tools fail to do this.

To justify this text-based view of source code, an investigation into the

possible use of non-formal information to index pieces of source code was

undertaken. This involved attempting to assign descriptors that represent the

code's function to pieces of source code from IBM's CICS project.

The results of this investigation support the view that the use of non-

formal information can be of practical value in redescribing source code.

However, the results fail to suggest that using non-formal information will

overcome any of the major difficulties associated with developing tools to

redescribe code. This is used to suggest future directions for research.

Table of Contents

Chapter 1 Introduction

1.1 Background
	

1

1.2 Overview of Thesis
	

3

1.3 Chapter Summaries
	

6

Chapter 2 Software Maintenance, Reverse Engineering and Reuse
2.1 Software Maintenance	 8

2.2 Reverse Engineering	 11

2.3 Reverse Engineering Tools	 14

2.3.1 Program analysis tools 	 15

2.3.2 Database repositories	 17

2.3.3 User interface design	 17

2.3.4 Source code redescription tools	 18

2.4 Software Reuse 	 20

2.4.1 Domain analysis	 22

2.5 Software Reuse and Reverse Engineering	 23

Chapter 3 Redescribing Source Code

3.1 Introduction	 25

3.2 Approaches to Redescribing Source Code 	 27

3.2.1 Transformational approaches	 27

3.2.2 Plan based approaches	 31

3.2.3 Reuse based approaches	 37

3.3 Summary	 40

Chapter 4 Source Code as Text

4.1 Introduction	 41

4.2 Formal and Non-formal Information	 42

4.3 Difficulties with a Formalist Approach 	 46

4.3.1 Formal systems	 46

4.3.2 Interpretation of a formal structure 	 48

4.4 Texts and Textual Interpretation 	 54

4.4.1 Ambiguity and Context 	 58

4.5 Source Code as Text 	 59

4.5.1 The meaning of source code is not a formal program model	 60

4.5.2 The importance of pragmatic considerations	 65

4.6 Using Properties of Source Code as Text	 69

4.6.1 Information retrieval	 70

4.6.2 Natural language analysis 	 71

4.6.3 Knowledge acquisition 	 73

4.7 Conclusions	 74

Chapter 5 Automatic Indexing of Source Code

5.1 Introduction	 75

5.2 Information Retrieval	 77

5.3 Software Classification	 78

5.4 Vocabulary Control	 81

5.4.1 The thesaurus	 83

5.5 Automatic Indexing 	 84

5.5.1 The Darmstadt Indexing Approach 	 86

5.5.2 Decision Theory	 86

5.5.3 Estimating parameters and non-informative priors	 90

5.6 Evaluation	 93

5.6.1 Recall, precision and fallout 	 93

5.6.2 Interpreting the recall-rejection graph 	 98

5.6.3 Tests of significance	 99

5.7 Summary	 100

Chapter 6 Experimental Design

6.1 Introduction	 102

6.2 Aims and Assumptions 	 102

6.3 The Source Code 	 103

6.4 The Classification and Thesaurus 	 104

6.4.1 The lexicon	 106

6.5 Representing Source Code	 108

6.5.1 Basic blocks and program trees 	 109

6.6 Implementation	 113

6.7 The Indexing Functions 	 114

6.8 The Simple Indexing Functions 	 114

6.8.1 Frequency	 115

6.8.2 Keyword	 115

6.9 Generalised Linear Functions	 116

6.9.1 Generalised linear indexing functions	 120

6.10 The 2-Binomial Model	 120

6.10.1 Modelling source code generation	 121

6.10.2 Estimating p and q	 123

6.10.3 Explaining the observed decrease in the value of p	 125

6.10.4 The 2-binomial indexing function	 127

6.11 Term Weighting	 128

6.12 Tree Weighting	 129

Chapter 7 Results and Analysis

7.1 Introduction	 132

7.2 The Design Set	 132

7.3 The Test Set	 132

7.3.1 The simple indexing functions 	 134

7.3.2 Generalised linear functions	 135

7.3.3 The 2-binomial functions 	 136

7.4 General Results	 138

7.5 Analysis of Errors	 139

7.5.1 Type I errors 	 140

7.5.2 Type II errors 	 142

7.6 The Effect of the Vocabulary on Performance	 143

7.7 Comparison with Other Experiments	 145

7.8 Applications	 146

7.8.1 Application to redescribing source code	 146

7.8.2 Application to software reuse 	 148

7.9 Extensions	 150

7.9.1 Extending the thesaurus	 150

7.9.2 Extending the analyses	 151

7.10 Limitations	 154

7.11 Summary	 156

Chapter 8 Future Directions

8.1 Introduction	 157

8.2 Maintenance in the Large	 161

8.3 Future Directions	 163

8.4 Summary	 164

References	 167

Appendix 1: Thesaurus Classes	 181

Appendix 2: Lexicon Entries	 182

Acknowledgements

I would like to thank my two supervisors during this project; Professor

P.A.V. Hall now of The Open University, and Professor L. Johnson of Brunel

University for their guidance and insight. I would also like to thank the

members of IBM UK (Hursley) who have been involved with this project, in

particular Mark Phillips and Pete Collins.

I am also indebted to many of the members of staff in the Department of

Computer Science at Brunel, and also to the research students and support

staff who have helped in the course of this project. A special thanks must be

given to the members of staff of CRICT (Centre for Research in Information

Culture and Technology), and in particular Dr Janet Low, who helped provide

me with much needed direction.

Finally, I would like to thank my parents and my sister for their enduring

support not only during this project but throughout the whole of my life.

The work reported in this thesis was jointly funded by SERC and IBM UK

Labs (Hursley) as CASE award, Ref No. 88503626.

1

Chapter 1

Introduction

1.1 Background

The original brief of this project was to develop tools and techniques to

abstract Z specifications from existing code. The motivation behind such a

reverse engineering project was clear. IBM UK (Hursley) who helped fund

this work had an ongoing project to respecify much of the code which makes

up their CICS product in the formal specification language Z.

CICS is a large (about 750,000 lines) product which has been in

development for over twenty years. It provides an applications programmer

with a suite of programs with which to build transaction processing systems.

This work to respecify parts of CICS was (and still is) being carried out to

produce up to date documentation for existing code that may have been

written many years earlier. This new documentation increases the

maintainability of the code for which it has been developed thus making it

easier to modify, and also brings the documentation of old code into line with

the documentation standards of newly produced code.

It soon became apparent that there was to be no magical philosophers

stone for transforming dowdy, base source code into shining new (and much

more valuable) formal specifications. However, there did seem to be

considerable room in which to develop tools for analysing source code and

extracting predicates and invariants which may eventually form part of a

formal specification, or similarly tools for replacing sections of source code

(that were congruent with certain predefined forms) with higher level

descriptions of that code.

2

The difficulty of the task of producing Z specifications from source code

seemed not to be directly related to the problems of analysing source, but

seemed more to do with the huge gulf in what is often termed "the level of

abstraction" between the source code and the specification that was to be

derived from it. This gap between code and specification was the one that

needed bridging if reverse engineering was to be successful, and yet, very

little of the current work on reverse engineering tools seemed to accept the

enormous difference between these two levels.

In general most attempts at developing reverse engineering tools seemed

to take the view that any new information or expression that we can derive

from a piece of code will surely make the reverse engineering task easier,

rather than considering what constituted the difference between these two

levels of abstraction. This "more is better" approach was to be done without

considering what role such information might play in the final specification.

Predicates representing the action of code can be automatically generated

from code, but this predicate in itself is useless unless it can be integrated into

the framework of a formal specification which as a whole acts as a description

of the original source code.

This frequently seemed to be the case in many approaches to what has

been termed in this thesis redescribing source code. Redescribing source code

aims semi-automatically to derive higher level descriptions of existing code,

for example a tool which semi-automatically derives Z specifications from

CICS source code.

Although the importance of comments and documentation in

understanding source code is well documented, nearly all the approaches to

redescribing source code seemed to pay very little attention to using this non-

formal information in their analysis of source code. Instead tools for

redescribing source code seemed to concentrate exclusively on analysing the

formal structure of the code.

3

This omission seemed at odds with the aims of redescribing source code.

Frequently it is the non-formal information that is closely related to the high

level operation of a piece of code, that is to the sort of operations that a

formal specification might describe, rather than lower level features of the

code's structure. This observation seemed to suggest that using non-formal

information as part of a reverse engineering tool may well help to bridge the

gap between code and specification.

The drawbacks of using non-formal information in code analysis though

were quickly pointed out by other researchers, namely the inconsistency and

unreliability traditionally associated with comments in code. To convince

people of the value of such information it seemed necessary to achieve two

goals. Firstly to theoretically argue not just for the potential utility of non-

formal information, but for the necessity of using this information in

redescribing source code, and secondly to demonstrate the practicality of

using non-formal information in tools for redescribing source code. It is these

two goals that this thesis seeks to accomplish.

1.2 Overview of Thesis

This thesis is about highlighting a view of source code as being primarily

a text. In particular it aims to highlight the potential role of non-formal

information, characteristic of this textual viewpoint, in providing information

about the nature of source code for use in tools to facilitate reverse

engineering and software reuse.

Frequently within software engineering, talk about "the software crisis" or

"the maintenance crisis" is heard. These terms refer to the increasing

proportion of costs associated with software when developing computer

systems, and to the increasing costs incurred in the maintenance of existing

software. Perhaps one of the most alarmist expressions consistent with the

4

idea of a maintenance crisis is the view that eventually a point will be

reached where organisations will no longer be able to develop software

because all the resources of the organisation are tied up in maintenance

activities pressman

Among solutions to the growing problems associated with software are

reverse engineering and software reuse. Reverse engineering aims to improve

the maintainability of existing systems by redocumenting them, often in a

style that was not used during the development of the original code (ie formal

specifications or object-oriented languages). Software reuse aims to reduce

development costs by reusing code and other artifacts of software

development such as designs and specifications in the development of new

systems.

Both reverse engineering and software reuse have a need to be able to

develop high level descriptions of existing source code (ie specifications and

designs). Whilst software reuse has mainly restricted itself to finding a

suitable representation with which to describe source code components,

research on reverse engineering has produced a number of approaches which

attempt to automatically or semi-automatically produce high level

descriptions from existing source code. These approaches attempt to

redescribe source code in a new form. Ultimately, the aim of this work is to

facilitate the production of designs and specifications of existing code where

these documents are either missing or inaccurate.

The main argument presented in this thesis is that existing approaches to

redescribing source code are biased far to heavily towards considering only

the formal information contained in source code. That is the kind of

information that relates directly to the compilation and eventual running of

the code as opposed to considering the importance of non-formal information.

This is the component of source code that is normally associated with

improving the comprehensibility of code such as comments and the use of

5

meaningful identifier names.

This argument is based around viewing existing approaches as having a

formalist view of source code. They consider source code as defining a formal

object. This formal object is identified with the 'meaning' of source code and

serves as a basis for drawing inferences about the functionality of the source

code.

Whilst such a view works well for the needs of code optimisation and for

program validation, the aims of producing a higher level description of the

original code render this formalist viewpoint as too restrictive since it is

unable to account for factors which affect the comprehensibility of source

code.

The view expressed in this thesis is that source code should be seen

primarily as a text rather than as a formal object. This enables non-formal

features of source code to be considered as an integral part of the text rather

than as annotations of the formal object defined by source code. Considering

source code as a text is used to suggest some potentially useful methods of

analysing source code, consistent with the needs of reverse engineering and

software reuse. One particular approach, based upon research done in

information retrieval is investigated in an attempt to empirically demonstrate

the potential usefulness of non-formal information in redescribing source

code.

This experimental work aims to use the occurrence of terms within code

as the basis for automatically indexing pieces of source code according to

their function. A number of different indexing functions for the automatic

indexing of source code were developed and evaluated using code from

IBM's CICS product. Thus this experimental work was performed on

commercially developed code. The results of this investigation demonstrate

the potential usefulness of non-formal information in providing information

6

about the high level goals of source code, and so adds support to the claim

that approaches to redescribing source code should make more use of non-

formal information.

The results also indicate that whilst utilising non-formal information may

be of benefit, the use of non-formal information fails to overcome any of the

major problems associated with redescribing source code. It is suggested this

failure is due to the assumptions on which attempts to redescribe code are

based because these fail to note the importance of the environment in defining

the role of information systems.

1.3 Chapter Summaries

Chapter 2 introduces the field of software maintenance, and the view that

software maintenance should not be seen as a process of 'correction' but as a

process of program evolution. This program evolution is both necessary and

unavoidable, however this leads to a general degradation of software quality.

Reverse engineering is a means of slowing this degradation and increasing the

lifetime of software by redocumenting existing software. Tools for reverse

engineering are categorised and described. The field of software reuse is

introduced as a means of improving the efficiency of software development

and of salvaging parts of existing systems that have become obsolete. Finally

the relationship between software reuse and reverse engineering is discussed.

Chapter 3 provides a more detailed discussion of the idea of redescribing

source code as an approach to reverse engineering, describing the goals and

characterising the approaches taken. This is then followed by describing

existing approaches to automatically redescribing source code in more detail.

Chapter 4 aims to provide reasons for the necessity of using non-formal

information in redescribing source code. It begins with a description of some

of the problems faced by a formalist view of meaning. This is followed by an

7

alternative view of meaning and representation based upon the interpretation

of texts in general. Source code and other artifacts of software development

are then viewed as texts and this leads to a critique of current approaches to

redescribing source code. Ways are suggested in which non-formal

information could be extracted from source code and used to supplement the

analysis of code given by existing approaches.

Chapter 5 provides the background theory to an investigation intended to

demonstrate the feasibility of using non-formal information in the analysis of

source code. This investigates the use of natural language terms in source

code as a basis for automatically indexing pieces of code according to their

function. This chapter introduces the background theory from information

retrieval and decision theory necessary for the experimental work.

Chapter 6 provides more specific details of the investigation. It describes

how the investigation was performed and introduces the different indexing

functions that were evaluated.

Chapter 7 presents the results of the applying the indexing functions

developed in chapter 6 to previously unseen pieces of code. These results are

then followed by a more detailed analysis of the general approach used and

the way such results could be of practical use. This is then followed by

describing possible extensions and some limitations of the approach.

Chapter 8 attempts to explain why a variety of approaches to redescribing

source code, including the method investigated in this thesis, have failed to

overcome the fundamental difficulties affecting this process. This leads to

suggestions for the direction that future research should take.

8

Chapter 2

Software Maintenance, Reverse Engineering

and Reuse

2.1 Software Maintenance

It is currently estimated that between 40% and 70% of all expenditure on

software by organisations is concerned with activities usually covered by the

term software maintenance (Foster, Jolly and Norris 1989). Given this large

amount of expenditure, it is clearly necessary to ensure that maintenance

activities are properly understood and managed effectively.

Software maintenance is something of a blanket term which tends to cover

almost all alterations to software which occur after the software has been

delivered, hence terms such as "enhancement", "adaptation", "support" and

"further development" are used to describe maintenance activities. Usually,

maintenance activities are classified into four categories (Pressman 1987):

1. Corrective Maintenance - diagnosis and correction of errors in the

software.

2. Adaptive Maintenance - modification of software to cope with new

environments.

3. Perfective Maintenance - modifications and enhancements of the

software, usually in response to user requests.

4. Preventative Maintenance - improvements to the future maintainability

of the system.

This characterisation of software maintenance suggests that maintenance

is not simply an activity that occurs to correct errors introduced by the

original development process, and hence could be eliminated by a sufficiently

9

rigorous development process, but rather suggests that the need for

maintenance is an intrinsic property of all software.

This view of maintenance and of software lead Lehman and Belady to use

the term program evolution (Lehman and Belady 1985) to describe this ever

changing nature of software. They argue that all software will need to

undergo significant changes whilst in use, regardless of the original intentions

of the developers. They encapsulate this view of software in their law of

continuing change:

"A program that is used and that as an implementation of its

specification reflects some other reality, undergoes continual change

or becomes progressively less useful. The change or decay process

continues until it is judged more cost-effective to replace the system

with a recreated version."

As a consequence of this law, they also formulate the law of increasing

complexity:

"As an evolving program is continually changed its complexity,

reflecting deteriorating structure, increases unless work is done to

maintain of reduce it."

These two laws express both the inevitable need for software maintenance,

and the inevitable degradation of software quality over time (from Lehman

and Belady 1985, p412).

For many organisations, the software that they use constitutes a major

investment and can be seen as a significant asset of the organisation. The law

of increasing complexity suggests that over time, the value of this asset will

depreciate.

Eventually, the software will reach a point where it has become

unmaintainable. At this point the software has become either too difficult or

10

too expensive to maintain. Corbi (Corbi 1989, p40) calls this phase of

maintenance the phase of obsolescence and notes that the beginning of this

phase may be caused by:

• The loss of the only person who understood the workings of an

undocumented program.

• Inability to maintain the support software or hardware.

• The loss of the source code and other documentation through fire, flood,

poor configuration management etc.

Although the software may still be used during this phase, the lack of

maintenance ensures that eventually the software will become obsolete. At

this point, the investment that the organisation has made in this software has

become moribund. The software has ceased to be a company asset. Clearly,

this loss of an asset, especially one that has had money invested in it over a

long period of time, is undesirable.

Not only does the obsolete software represent an investment in a financial

sense, but it can also be viewed as an investment in an intellectual sense. The

software can be viewed as representing knowledge about the operation of the

organisation that has been accumulated through its development. This is

particularly true in the case of many applications systems where the system

can clearly be seen as encapsulating knowledge about many of the processes

that constitute the organisation itself.

It is therefore very important for organisations to prevent this stage of

obsolescence being reached by software. If such a stage is reached for

unavoidable reasons, it would be of great value to an organisation to be able

to salvage something from the now defunct software.

Reverse engineering represents one way of delaying the onset of

obsolescence and of salvaging already obsolete software, whilst one

11

motivation for software reuse is to provide a mechanism for this salvaging

since it allows some of the original investment made in software to be

recovered in a realisable form. Thus both reverse engineering and software

reuse aim to provide a partial solution to the problems of software

maintenance.

2.2 Reverse Engineering

The degradation in the quality of software over time implied by the law of

increasing complexity leads to the source code of a particular system

becoming very difficult to maintain. As more alterations are made to code, the

structure of the code tends to deteriorate making the code harder to

understand. At the same time, documentation is frequently not kept up to date

when these alterations are made and this further increases the difficulties of

maintaining such code. Source code that has deteriorated in this way is often

referred to as "old" even though it is not necessarily old in a chronological

sense. Corbi (Corbi 1989, p298) lists six attributes which characterise old

code:

1. Design was done with methods and techniques that do not clearly

communicate the program structure, data abstractions and function

abstractions.

2. Code was written with a programming language and techniques that do

not quickly and clearly communicate the program structure, the

program interfaces, data structures and types, and functions of the

system.

3. Documentation is non-existent, incomplete or not current.

4. Design and code are not organised in such a way as to be insulated from

changing external hardware or software.

12

5. Design was targeted to system constraints that no longer exist.

6. Code contains parts where nonstandard or unorthodox coding

techniques were used.

The presence of any one of these attributes can make maintenance

difficult. The presence of most or all of these can make maintenance

extremely expensive and time consuming if not impossible. Any process that

can either remove these features from software or ease the maintenance

problems caused by them would significantly aid software maintenance.

Any activity which involves modifying the operation of existing source

code can be divided into two phases. Firstly, the engineer performing the

modification must come to an understanding of the operation of the software,

then secondly, the alteration must be implemented. Although in practice these

two phases are interlinked, with the nature of the alteration influencing the

understanding that is arrived at, and the process of making the alteration

leading to a still greater understanding, this distinction often proves useful

when discussing software maintenance.

If we consider the attributes of old code listed above, (1), (2), (3), (6), and

to a lesser extent (5) can all be seen as applying to the ease with which code

can be understood, whilst only (4) and (6) can be seen as relating to the ease

with which the modification itself can be implemented.

Further, a study of the process of modifying existing software has found

that over half the time spent in this activity was related to program

understanding (Fjeldstad and Hamlen 1983) rather than to actually

implementing the modification. It seems reasonable to suggest that program

understanding is a major component of maintenance activities.

Reverse engineering is directly aimed at providing a way of overcoming

some of the problems associated with old code by providing up to date

13

documentation for that code and so facilitating the task of program

understanding. Chikofsky and Cross (Chikofsky and Cross 1990, p15)

describe reverse engineering as:

the process of analysing a subject system to

• identify the system's components and their interrelationships and

• create representations of the system in another form or at a higher

level of abstraction

The most important characteristic of reverse engineering is that it is not to

involve altering the source code in any way. Reverse engineering does not

alter the operation of the system but is a process of examination and

description.

This makes reverse engineering distinct from what is often termed re-

engineering which does involve altering the structure of the source code.

Often re-engineering involves an element of reverse engineering before the

code is altered and is often related to adaptive maintenance, eg the porting of

an existing system to a new environment. This thesis is not concerned with the

process of re-engineering but concentrates primarily on the aims of reverse

engineering. It is accepted that occasionally reverse engineering results in the

discovery of errors in the original program which may then need to be fixed,

however this is considered as a significant example of re-engineering.

It is important to make clear the goal of reverse engineering. The aim of

reverse engineering is to improve the future maintainability of a system. The

process of reverse engineering does not produce any immediate gain. The

success (or otherwise) of reverse engineering a system is solely to be judged

on the future ability to maintain a system. As a secondary goal, by providing

documentation for existing code reverse engineering may also be used to

identify and document code for software reuse. In this case the success of

14

reverse engineering again depends upon the ability of the produced

documentation to describe the code and allow it to be 'maintained' in a new

environment.

The future maintainability of a system is clearly very hard to quantify,

however it is important to keep this goal in mind when discussing reverse

engineering. This goal does not necessarily entail that reverse engineering is

somehow the "inverse" of forward development, neither does it mean that

reverse engineering can be seen as an attempt to somehow uncover the

"original" design of a system. It is often the case that one of the reasons for

reverse engineering is to produce up-to-date documentation of a system in a

style, such as an object oriented description, that was not in existence when

the software was developed. Reverse engineering is a process of

redocumentation.

This goal of improved maintainability places great emphasis on the quality

of documentation that is produced in reverse engineering. It is clearly

insufficient to automatically (or otherwise) produce a large volume of new

documentation if that documentation is too unwieldy or too inaccurate to be

used. In sum, this means that the decision to perform reverse engineering

needs to be seen as a long term strategic decision, and to be managed as such.

It is likely to be counter-productive to see reverse engineering as yet another

"quick fix" that will hold a creaking system together for a short while longer.

2.3 Reverse Engineering Tools

Recently, there have been many tools that have been developed primarily

with the aim of facilitating reverse engineering. Chikofsky and Cross

(Chikofsky and Cross 1990) note two sub-areas of tools developed for reverse

engineering that they term redocumentation and design recovery.

Redocumentation is intended to refer to those tools that automatically

15

generate new documentation from existing source code, such as pretty

printers or cross-referencers. Design recovery aims to incorporate domain

models and other external sources of information to reproduce all the

information that is necessary for a person to understand the workings of a

piece of code at the design level.

The characteristics of these distinctions are hard to discern, and as

Chikofsky and Cross are aware, there is much research into reverse

engineering tools that does not fit into these categories. Since many tools use

a number of techniques, for example design recovery (in the above sense) is

quite likely to involve the use of redocumentation tools, it seems more natural

to categorise the main functional components that one finds in reverse

engineering tools as opposed to attempting to categorise tools and systems per

se.

There are four main functional components which are to be found in

reverse engineering tools; program analysis tools, database repositories, user

interface, and tools for redescribing source code. The last of these is to form

the main focus of this thesis. I will now give a brief description of each of

these components and provide some examples of systems which have been

developed that concentrate on each of these areas.

2.3 .1 Program analysis tools

These tools implement algorithms that allow information about the nature

of source code to be extracted. Most commonly, they perform static analysis

on the source code to allow control flow, data flow and cross referencing

information to be obtained. More sophisticated approaches may implement

symbolic execution algorithms or dynamic analysis on the source code. This

information may then be used as a basis for modularising the code according

to fixed criteria.

16

Many of these techniques derive from techniques originally used in the

design of compilers, although some (modularisation) are more specifically

concerned with the demands of reverse engineering. The algorithms they

employ are characteristically "non-heuristic" and their goals well defined. As

such, the algorithms themselves are implemented to be fully automatic.

Examples - Sneeds' SOFTDOC package (Sneed 1985) is a static analysis

tool aimed at re-engineering and reverse engineering. SOFTDOC statically

analyses source code to produce a number of tables which carry information

about the control flow, data flow and interfaces of the original program.

These tables can then be used as a basis for modularising and re-engineering

existing COBOL programs. For examples of its use as a re-engineering tool

see (Sneed and Jandrasics 1987) and (Sneed and Merey 1985).

Some work in the programmers' apprentice project has also concentrated

on the development of analysis tools, particularly to analyse loops in

programs (Waters 1979). The work done by Mark Weiser on program slicing

also falls into this category (Weiser 1984). These approaches aim to produce

information about the action a program has on specific variables.

More advanced approaches to using program analysis for reverse and re-

engineering is given in (Hausler et al. 1990) and (Rugaber, Ornburn and

LeBlanc 1990). Both of these approaches are based upon using properties of

the control flow of a program to try and abstract a canonical expression for

the control structures. This then forms a basis for identifying and

restructuring significant sections of code.

Nearly all the systems cited in the following sections have a significant

program analysis component.

17

2.3.2 Database repositories

Database repositories are used to store information extracted from the

source code by program analysis tools. They are intended to make this

information easier to retrieve and supplement, and to allow manipulation of

this information making re-implementation and alterations to the code easier.

They generally store information about objects located in the source code,

and relationships. Many commercial tools for reverse and re-engineering are

based around this component, often abstracting objects and relationships held

in an out-of-date application and allowing the migration of the software into a

new environment, such as a more modern database. Thus such tools are often

directly intended to facilitate software reuse as well as reverse engineering.

Examples - The two most frequently cited research projects which

concentrate on this particular aspect (although in no way exclusively) are The

C Information Abstractor and SRE. The C Information Abstractor (Chen and

Ramamoorthy 1986; Chen et al. 1990) abstracts information about C programs

into a database to allow analysis and manipulation of the programs. SRE is

primarily interested in assisting in the maintenance and reuse of large

transaction processing systems (Kozaczynski and Ning 1989)

2.3.3 User interface design

Many reverse engineering tools are based around the development of a

user interface which allows the user to display and manipulate information

about the code being investigated. Very simple tools such as pretty printing

can be considered as being concerned with the user interface since such a tool

deals with the display of already available information rather than the

generation of any new information. With recent interest in program

understanding and reverse engineering more complex user interfaces have

been developed which allow multiple views of software (such as those

18

generated by program analysis), code browsing (easy movement from one

area of code to another) and other features typical of modern interface design.

The aim is to facilitate the understanding and manipulation of source code

and provide an integrated way of displaying the results of other reverse

engineering tools. Although user interface design for reverse engineering is

likely to benefit greatly from general research in human computer interaction,

there is clearly some way in which design should pay heed to the specific

needs of program understanding and reverse engineering.

Examples - developments which are placing a large importance on the

user interface component of reverse engineering tools include PUNS which

has been developed to assist in the maintenance of IBM System/370

assembler (Cleveland 1989) and also Biggerstaff's design recovery tool

Desire (Biggerstaff et al. 1989). MicroScope, a prototype tool to aid in the

maintenance of LISP programs, is also placing a large emphasis on the

development of a sophisticated user interface (Ambras et al. 1988).

All these tools are similar in that they provide for the display and

manipulation of program information in a WIMP (Window Icon Mouse

Pointer) environment. As well as displaying information, they allow

additional information to be recorded and appended to the existing program

representation.

2.3.4 Source code redescription tools

All the above components of reverse engineering tools have strong links

to other fields of research not directly related to reverse engineering itself.

Many program analysis tools are derived from work in software metrics,

compiler design and program verification, while databases and user interfaces

have constituted relatively major fields of interest within computer science

for a long while.

19

In contrast, the goal of tools for redescribing source code are far more

specifically related to the goals of reverse engineering. The goal of

redescribing source code can be described as corresponding to the second part

of Chikofsky and Cross's definition of reverse engineering, namely, the aim

of redescribing source code is to "create representations of the system in

another form or at a higher level of abstraction" (Chikofsky and Cross 1990,

p 15)

Key in this definition is the notion that redescribing source code is a

creative process. Tools to redescribe source code attempt to 'mimic' some

aspect of human behaviour that may be associated with the ability of humans

to successfully perform this task, such as theorem proving or the use of

heuristics. As such, redescription tools can be characterised by their use of

techniques traditionally associated with artificial intelligence research.

The second important feature of this definition is that the representations

created are intended to be sufficiently comprehensive to allow the user to

understand the operation of the system (or part of) at the given level of

abstraction. This is as opposed to views of the system which are only partial

(for example a control flow graph) and need to be supplemented with other

information to allow the workings of the system to be comprehensible.

The general approach taken by these systems is to use a sophisticated

pattern matching technique (such as graph parsing) to attempt to match

patterns from a knowledge base to a representation of source code. There is

considerable difference in the nature of the knowledge base, the pattern

matching algorithm used and in the goals of such systems. A more detailed

discussion of the different approaches to redescribing source code will be

given in the next chapter.

20

2.4 Software Reuse

One motivation behind software reuse has been mentioned above, namely,

that many organisations have invested a lot of money and effort on software.

When software becomes obsolete, this investment has to be written off.

However, there are other reasons for interest in software reuse.

Software development is very capital intensive, but as nearly all software

development occurs as a one off process the investment made on developing

one product can rarely be used to benefit subsequent development projects.

The aim of software reuse is to prevent some of this wastage by allowing

some of the investment that has been made in a particular piece of software to

be reused in future projects. This should improve software productivity and

quality.

There are many examples of the reuse of software, such as the use of Unix

programming utilities and libraries of mathematical routines (such as the

NAG library). In general though the field of software reuse is primarily

concerned with promoting the reuse of software components. The original

conception of reuse through software components is usually credited to

McIllroy (see Wegner 1984).

The usage of the term software component here is intended to be

consistent with that of Hooper and Chester that

"the term software component (or component) is used to mean any

type of software resource that may be reused (eg. code, modules,

designs, requirements specifications, domain knowledge,

development experience, or documentation)." (Hooper and Chester

1991, p3)

The process of reuse through components is frequently described through

the use of a "nuts and bolts" metaphor. The idea being that it should be

21

possible to construct software using reliable, off the shelf, components in a

manner analogous to the way more traditional engineering constructs artifacts

out of standard building blocks.

Problems in the uptake of software reuse can be broadly divided into two

areas, managerial and technical. Managerial difficulties consist of problems in

encouraging people to use "off the shelf" items rather than producing all new

software from scratch. Technical difficulties are concerned with allowing

components to be developed, located, and linked together to form new

software.

It is the technical aspects of software reuse that are of interest here. The

technical obstacles to reuse mainly consist of:

1. Creating (either from scratch or through modifying existing products of

software development) enough software components to make reuse

viable, and defining the necessary characteristics of such components.

2. Developing mechanisms to allow components to be stored and then

located when needed.

3. Ensuring that components, when located, can be suitably combined to

produce new software.

The issues involved in software reuse are many and complicated and it is

only the symbiotic relationship between reverse engineering and reuse that

will be discussed here. It is particularly the issues surrounding the

development and subsequent location of components that will be pursued in

this thesis. For a fuller account of some of the problems involved in furthering

software reuse, and on the next subject of domain analysis, the following

should be referred to (Hooper and Chester 1991; Biggerstaff and Perlis 1989,

Vold; Biggerstaff and Perlis 1989, Vol.2).

22

2.4.1 Domain analysis

The subject of domain analysis is one of the major points of convergence

between research in reverse engineering and software reuse. Prieto-Diaz

defines domain analysis as

"a process by which information used in developing software systems

is identified, captured, and organised with the purpose of making it

reusable when creating new systems" (Prieto-Diaz 1990)

This involves analysing a problem domain and describing it in terms of

processes, objects and relationships.

This is very similar to systems analysis. However, whilst systems analysis

is concerned with specific problems, domain analysis aims to look at a variety

of systems within a given sphere of interest with the goal of abstracting

generic objects and processes which characterise the domain. Once

adequately described, these generic models become the basis for software

reuse.

Typically the domain analysis process proceeds through a process of

refinement. A model of the domain is developed through consultations with

domain experts and through the analysis of documents associated with the

domain. These can be considered as sources of domain knowledge. The

complexity of the model developed may range from a simple taxonomy or

classification scheme to fully functional models and formal domain

languages.

Domain analysis can be viewed as a particular set of knowledge

acquisition problems. Many of the issues encountered in developing a domain

model such as knowledge representation, validation, and choice of

methodology, are well established problems in the design of knowledge-based

systems. Domain analysis can be seen as an attempt to 'capture' the

23

knowledge used in systems design. This viewpoint is particularly apparent in

work on The Programmers' Apprentice Project (Rich and Waters 1990) where

the aim is to formalise the knowledge used by experts in constructing

computer programs.

Clearly, one of the sources of domain knowledge for a domain analyst (or

knowledge engineer) is the source code associated with existing systems. All

of the systems discussed in the next chapter for redescribing source code are

based upon the use of a domain model as a basis for their analysis of source

code. The precise nature of this model can be used as a basis for

discriminating between the different approaches these systems take.

2.5 Software Reuse and Reverse Engineering

Software reuse does not necessarily mean the reuse of actual code. One

extreme form of reuse which demonstrates the relationship between reuse and

reverse engineering is where a large, unmaintainable system is first reverse

engineered to provide an adequate description of the old system, and this

description is then used as the basis for the development of a new system.

Such a process can be viewed as the reuse of some of the effort spent in

developing the old system. Reverse engineering can be seen as necessary for

the effective reuse of some of the investment that has been made in existing

systems.

On a different scale, many approaches to reuse advocate the use of a

repository for software components. These components can then be used as

the basis for future development. One way of populating such a component

library is to analyse existing systems for suitable components. For these

components to be reusable they need to be adequately described, and hence

this involves an element of reverse engineering. Some of the problems

encountered in trying to recover reusable components from existing code as

24

well as some possible solutions are outlined in (Basili 1988; Boldyreff and

Zhang 1989; Garnett and Mariani 1990). Some other partial solutions to this

problem are discussed in the next chapter and one particular approach forms

the basis for the experimental work reported later in this thesis.

We have a situation whereby the reuse of much of the investment that is

represented by existing systems is dependent upon reverse engineering.

Similarly, later on, we shall see that the development of tools that are capable

of providing a high level of support for reverse engineering, ie those that aim

to redescribe systems, are to a large extent dependent upon the existence of

the kind of domain models that are being developed to facilitate software

reuse.

The following chapter will describe in more detail some of these

approaches to redescribing source code.

25

Chapter 3

Redescribing Source Code

3.1 Introduction

The goals of redescribing source code equate with those of reverse

engineering, to produce new documentation to improve the maintainability of

software. However, whilst reverse engineering is a blanket term for a process

of redocumenting a software system at many levels of detail, redescribing

source code specifically aims at producing design level documentation from

source code.

Reverse engineering is often described as if it could be performed as a

bottom up process, that is, start from the source code and produce

successively higher level descriptions of this code until a high level

specification is produced. However, this is to ignore the importance of the

application domain, and particularly the importance of a high level

specification in providing a model of the application domain as well as

describing the behaviour of the source code. This is what Turski and Maibaum

describe as the way the specification "binds together a program and its

application" (Turski and Maibaum 1987, p10).

The importance of the application domain in formulating a high level

model of a software system means that there is a limit to the level of

description we can expect to reach from source code alone without

performing more analysis of the environment in which the system operates

(Brown 1992).

If we are looking to semi-automate reverse engineering from source code,

then we should limit ourselves to considering how to produce relatively low

level descriptions of the code, and not expect to be able to automatically

26

derive high level, abstract, descriptions of the system. Attempting to automate

the process of redescribing source code therefore involves attempting to

produce such relatively low level designs and specifications of code primarily

from the source code. Tools that aim to (semi-)automate the process of

redescribing source code can be considered as performing a form of source

code analysis.

The distinguishing feature of automatic redescription as opposed to other

source code analysis techniques is that the resulting description is intended to

be able to take the place of the original source code at a higher level of

abstraction. This description may be in the form of a formal specification of

the code, or a description of the code's high level goals. Unlike other source

code analysis techniques this derived description functions as an abstraction

of the source code.

Wasserman (Wasserman 1983, p43) considers abstraction to be essential in

allowing humans to manage the complexity inherent in software. Abstraction

makes this complexity easier manage since it:

II ... permits one to concentrate on a problem at some level of

generalisation without regard to irrelevant low level details; ..(and) to

work with concepts and terms that are familiar in the problem

environment without having to transform them to an unfamiliar

structure."

The redescription should represent source code by using terms and concepts

that are closer to the application domain than those present in the source

code. In this way the process of redescribing source code can be seen as an

attempt to improve the link between the program and the application, the

importance of which is described above.

Many source code analysis techniques that are used as tools in program

understanding and reverse engineering do not attempt to automatically

27

perform this abstraction. For example, redocumentation techniques such as

those that produce cross reference information or provide details of the

control and data flow of a program, do not attempt any abstraction in the

above sense. In general these techniques are intended to automatically

produce supplementary information about the code when current

documentation is deficient and not to produce comprehensive documentation

alone.

Similarly pretty printers and code restructurers also fail to qualify as

redescription tools. Although such techniques produce new source code that

can take the place of the old, they fail to perform any significant abstraction

of the original code.

3.2 Approaches to Redescribing Source Code

Current research into redescribing source code can be divided into three

according to the general approach that they take. Transformational approaches

are based on mathematical notions of program equivalence. Plan based

approaches are based upon a psychological theory of programming founded

on the notion of a programming plan. Reuse based approaches are based

around a domain analysis of the relevant area of software design for the

purposes of software maintenance and reuse.

3.2.1 Transformational approaches

There has been considerable interest for some time in approaches to

software development based upon the idea of stepwise refinement as first

described by (Wirth 1971). This is a software development methodology

which advocates moving from a high level specification to an implementation

through a series of steps in which the description of the planned system is

transformed successively to a more concrete version (ie nearer to

28

implementation). The big advantage of developing systems by using stepwise

refinement is that each individual step can be rigorously checked to ensure

that errors are not introduced into the final system through the development

process.

One common approach to software reuse is to develop a library of abstract

programs that can be automatically transformed into more concrete forms

through the application of a series of program transformations (see

Biggerstaff and Perlis 1989, Vol.1, pp321-413). Transformational approaches

to redescribing source code aim to reverse this process, and to use program

transformations to transform existing into a more abstract representation.

There have been two main attempts to use program transformations to

redescribe source code. One attempt has been developed by Ward as part of

work on the Maintainers Assistant (Ward 1989; Ward, Callis and Munro

1989). The other has been developed by Lano and Breuer as part of the

REDO (Restructuring, Maintenance and Validation of Software Systems)

project (Lano and Breuer 1990). There has also been a less ambitious

approach to using program transformations in a reverse engineering context

as part of the Practitioner project (Boldyreff et al. 1990; Boldyreff and Zhang

1989).

The technology of the above tools is very similar to that used in tools for

formal program verification such as SPADE (Carre and Clutterbuck 1988).

The use to which these tools are put are distinct. Program verification tools

are intended to verify that code conforms to a preexisting specification, whilst

transformational tools for redescribing source code aim to produce a

specification by applying transformations to the original code.

The general transformational approach is depicted in figure 3.1. The first

stage converts source code into an intermediate language. This is a

straightforward translation aimed to allow such systems to deal with code

Intermeadiate
representation

29

written using different source languages. This intermediate language is

typically small and well defined and this allows properties of the

transformations to be checked easily.

Specification

4	 A

i Transformations ...

Figure 3.1: The generalised transformational approach

Once this intermediate representation has been generated, transformations

can be selected and applied to the program. The choice of which

transformation to apply is made either automatically or with user direction.

The aim of these transformations is to successively transform the description

of the source code from a low, implementation, level to a high level

mathematical description that is functionally equivalent to the original code.

This transformed program is then intended to function as a specification for

the source code.

The transformations used by these systems are intended so to be

correctness preserving. In this way the derived specification is shown to be

correctly implemented by the code.

30

The approaches of Ward (Ward 1989; Ward, Callis and Munro 1989) and

of Lano and Breuer (Lano and Breuer 1990). are very similar. The

differences between the two stem from the theoretical basis they use for

developing their theories of program transformation. Ward bases his theory on

an infinitary logic language whilst Lano and Breuer's work uses a

combination of category theory and the theory of monads as their basis for

developing similar theories. It is unclear as to what practical difference this

may make in the implementation of such theories, but it seems unlikely that

there would be any major divergence in the performance of two otherwise

similar systems.

The approach of Ward has been implemented as part of a tool for reverse

engineering and software maintenance, "The Maintainers Assistant". This tool

aims to assist in the maintenance of assembler code from IBM's CICS

product. It is unclear how much of Lano and Breuer's work has been

incorporated into a particular tool.

The use of program transformations in the Practitioner project has been

far less ambitious (Boldyreff and Zhang 1989). Program transformations are

used to transform programs into equivalent recursive versions. In this way

pieces of code can be decomposed into a collection of recursive procedures

that, with the addition of manually supplied comments, function as a higher

level description of the original code. In practice this approach is more of a

code redocumentation tool, in the sense of pretty printers and code

restructurers, rather than an attempt to automatically redescribe code at a

higher level of abstraction. The transformational component of the tool is

fairly straightforward and the increase in the level of abstraction of the code

is relatively low.

One of the main advantages of transformational approaches in general is

their ability to deal with any source code. We will see later that recognition

based approaches are unable to deal with some source code and this limits

31

their applicability.

The disadvantage of the transformation based approach mainly stems from

the difficulty involved in manipulating programs as mathematical objects. This

is a difficult and time consuming task as the results of work in program

verification has shown. Attempting to obtain formally correct specifications

from existing code is likely to present the same problems of complexity.

There is also the danger of producing specifications that are difficult to

understand since the quality of a specification does not rest solely on its

formal correctness but also on its ability to link the code to the application

domain.

3.2.2 Plan-based approaches

These approaches are all based on a psychological theory of programming

skill centered around the notion of a programming plan. Programming plans

are posited as a major way in which experienced programmers organise their

knowledge about programming. Their use as a way of explaining

programming expertise has been explored by a number of different people,

most notably Elliot Soloway and others at Yale University (Soloway et al.

1982; Soloway and Ehrlich 1984a; Soloway and Ehrlich 1984b) but also in a

slightly different form by work on the Programmers Apprentice at MIT (Rich

1981; Rich and Waters 1990), and others (Gilmore and Green 1988; Rist

1986).

Although the precise nature of programming plans varies, the essential

idea remains relatively constant. A programming plan encodes knowledge

about how to implement a particular goal. This goal may be high level, such

as "implement a payroll program", or much nearer to implementation such as

"swap values of variables".

32

These plans are intended to correspond to the fundamental and language

independent structures used by expert programmers to organise knowledge of

programs and programming. Examples of such programming plans are list-

length, calculate-average and linear search.

Plan-based approaches to redescribing source code can all be seen as

attempting to automate some aspect of "program understanding". Whilst this is

not explicitly equivalent to attempting to redescribe source code, all these

systems consider a major motivation of such automation as the production of

new documentation for existing code. Thus they can correctly be considered

as attempts to redescribe source code.

The basis of all plan-based approaches to redescribing code is perhaps

best summed up by the view of Letovsky, that to understand a program

"means knowing the entire goal hierarchy" (Letovsky 1988, p9). The high

level nodes of this hierarchy then correspond to the goals of the program

while lower level nodes correspond to the way that a particular goal has been

implemented.

Currently there have been four approaches to redescribing source code

that fit into this category. At MIT there has been the development of Wills'

Recogniser (Wills 1986; Wills and Rich 1990; Wills 1990), and the work of

Letovsky in developing a system called CPU (Letovsky 1988). These

developments have been part of the Programmers Apprentice project which

aims to develop a system to act as an 'intelligent' assistant to software

engineers (Rich and Waters 1988; Rich and Waters 1990).

At the University of Illinois, Jim. Q. Ning (Ning 1989; Harandi and Ning

1990) has developed a system called PAT (Program Analysis Tool). The most

recent approach to plan based analysis of programs is Hartman's UNPROG

system developed at the University of Texas at Austin (Hartman 1991).

33

It should be noted that there are a number of other systems developed for

the automatic debugging of programs that are related to the systems described

here, for example PROUST (Johnson and Soloway 1984), PELAS (Korel

1988), LAURA (Adam, A. Laurent and J-P. Laurent 1980) and also (Wertz

1987). However, these systems do not attempt to generate new descriptions

of the source code they are given, and many of them work by comparing the

programs they are given with model programs. For these reasons they are not

considered here.

The first three of these systems; The Recogniser, CPU, and PAT, are very

similar in their general approach. They aim to demonstrate the feasibility of

their approaches on small student programs before attempting to scale the

systems up to deal with larger and more realistic examples. Thus they aimed

for detailed analysis of simple programs, this analysis forming the basis for a

computerised "understanding" of the program. The general approach taken by

Will's, Letovsky and Ning is illustrated in figure 32.

These three systems all convert a library of plans (or clichés as Wills

refers to them) into a knowledge base which contains the information

required for identifying these plans in source code. Input source code is

translated into an intermediate form which is intended to promote language

independence, and to reduce the amount of variation in the way a particular

plan can be implemented in source code. This aims to improve the efficiency

of the matching algorithm which attempts to match plans from the knowledge

base onto this intermediate form. A comparison of the different

representations and matching algorithms used is given in table 3.1.

Wills' recogniser (Wills 1986; Wills and Rich 1990; Wills 1990), first

transforms LISP source code into a flow graph representation, where a flow

graph is a labelled, directed, acyclic graph (Wills 1990, p 125). This is done

through an analysis of the control and data flow of the original source code.

Plans, or clichés as they are referred to in this work, have to be translated

34

K-11-Srary
.,.,...of plans

knowledge
base

3tir
code_

intermeadiate
form

pattern
matching

Eutput

Figure 3.2: The generalised plan based approach

(currently manually) from the plan calculus form on which the Programmers

Apprentice work is based to generate a graph grammar.

A graph parsing algorithm based on an algorithm developed by Brotsky at

MIT (Brotsky 1984) is then used to parse the transformed source code

according to the rules of this grammar and generating a goal hierarchy for the

program. Once a successful parse has been achieved, natural language

documentation for the recognised code is produced. Even if a fully successful

parse is not achieved, some clichés can still be identified in code as part of a

partial parse of the program flow graph.

Letovsky's CPU (Letovsky 1988), also developed as part of the

programmers' apprentice project, is in practice very similar to the

35

Author System Knowledge

Base

Intermediate

Representation

Matching

Algorithm

Wills Recogniser Graph-grammar Flow graph Graph parsing

Letovsky CPU Transformations Lambda calculus Canonicalisation

Ning PAT Inference rules Program events Inference

Table 3.1: A comparison of different plan based approaches

transformational systems described earlier. Its analysis is based on plans that

are represented by correctness preserving transformations between lambda

calculus expressions. Source code is translated into lambda calculus

expressions and then these transformations are applied to rewrite the code in

a semantically equivalent form. The aim is to reduce the representation of

plans and of the source code to a canonical form so that the problem of

pattern matching becomes trivial. In practice only a limited degree of

canonicalisation, termed by Letovsky "quasi-canonicalisation", is achieved.

This is still sufficient to allow some recognition to occur although CPU does

suffer from considerable performance problems, being unable to successfully

analyse the 300 line FORTRAN program it was specifically designed for.

The reasons for considering CPU as a plan based system rather than a

transformational system are twofold. Firstly, the transformations are

explicitly derived from programming plans rather than from mathematical

theories of equivalence (in fact it is not clear on what basis Letovsky makes

his claim that derived descriptions are semantically equivalent). Secondly,

unlike transformational approaches, the intermediate steps in the

transformation process are considered to be 'meaningful' in that they

36

constitute the goal hierarchy represented by the source code.

The approach used by Ning (Ning 1989; Harandi and Ning 1990) in the

development of PAT is very similar to that taken by Wills' Recogniser,

although the actual realisation of the mechanism is very different. PAT

represents source code as a series of program events. Program events are

organised as a hierarchy, with the lowest level corresponding to simple

programming language structures, whilst the higher level events correspond

to more plan like structures. These higher level structures are inferred to be

present in the source code by the analysis PAT performs.

Program plans are represented as inference rules. Analysis proceeds

through the repeated application of these pattern-directed inference rules to

derive new program events from existing ones. A truth maintenance system is

used to monitor and control this application of rules. In this way a goal tree

for the program is constructed.

The most significant difference between PAT and The Recogniser is that

PAT encodes knowledge about common errors made when implementing

plans. This enables PAT to identify errors in code by recognising incorrect

instances of a particular plan. This increases the range of code that PAT can

identify.

Hartman's approach (Hartman 1991) is slightly different in that he

considers that the hierarchical analysis as performed by the three systems

outlined above is too detailed to allow such systems to operate successfully

on commercial source code. Thus Hartman has attempted a less ambitious

analysis of code with the intention of being able to apply and verify his

approach on commercial programs.

He has restricted himself to trying to identify simple plan like structures

within programs. This is done by representing source code as a hierarchical

control flow/data flow graph. This graph is then decomposed into primes

37

which reduces the complexity of the analysis. Flow graph primes are to flow

graphs what prime numbers are to the natural number system. Any flow graph

can be decomposed into a prime decomposition which represents the original

graph as a combination of primes. Moreover, as with prime numbers, the

decomposition of any particular graph is unique and so a proper decomposition

of the original flow graph can be produced. (This process is similar to the

decomposition used by Fenton and Kaposi (Fenton and Kaposi 1987) to

produce software structure metrics.)

Plans are identified in the original code by matching flow graph

representations of them against this proper decomposition of the program flow

graph. The results of this work suggest that such an approach is generally

applicable and may lead to useful applications in redocumenting and

restructuring source code. However, the plans that UNIPROG currently

identifies in source code are at a very low level, corresponding only to very

simple control structures. It will probably be necessary for the system to be

able to identify higher level structures before this kind of approach finds

useful application.

3.2.3 Reuse based approaches

In contrast to plan based approaches which are based upon psychological

theories of programming skill, reuse based approaches are based on a domain

model of the relevant area of expertise. In contrast to plans, the structures

searched for in source code tend to correspond to higher level, application

knowledge rather than low level programming structures. The two reuse

based approaches to be described are that of Biggerstaff (Biggerstaff 1989;

Biggerstaff et al. 1989) and the far smaller project carried out by Karakostas

(Karakostas 1991).

38

These approaches are characterised by their use of an expectation-based

approach to identifying design and application concepts in source code, and

also by the relative informality of their approach. That is, they place far less

emphasis on obtaining formally correct descriptions of the source code than

the transformational and plan based approaches described so far.

Karakostas' system IRENE (Karakostas 1991) aims to identify concepts

from the application domain in source code by using a combination of

knowledge about relationships between concepts and prototypical

implementations of such concepts.

IRENE analyses COBOL code that has been "reverse parsed" into an

intermediate frame like language. Analysis knowledge is encoded in frames

which describe prototypical features of implementations of particular

concepts. The analysis of various hypotheses about concepts present in the

original code involves comparing features of the code with the prototypes.

This leads to calculating a degree of plausibility for the hypothesis based

upon the weights associated with particular pieces of evidence. At the time of

writing many intended features of IRENE have yet to be implemented.

Biggerstaff's project (Biggerstaff 1989; Biggerstaff et al. 1989) aims to

assist in what Biggerstaff terms "design recovery". Design recovery aims to

produce a detailed and multi-faceted description of the design of existing

software. Central to this is the goal of identifying "conceptual abstractions" in

code. To this goal, two related systems are being developed, DESIRE and

TAO.

DESIRE is based upon the development of a rich domain model in the

form of a semantic net. This is used as the basis for an analysis of source code

based on both formal and non-formal features. DESIRE uses this domain

model provide the information to perform an expectation driven search of

source code for "conceptual abstractions" which are used to represent

39

application specific knowledge of software design.

It is intended to use the domain model initially to produce high level

expectations about the conceptual abstractions that may be present in the

code. This initial search is to be mainly for "linguistic idioms", lexical

patterns that indicate the occurrence of specific conceptual abstractions. Once

expectations have been set up the semantic net is used to perform a more

detailed analysis of the code based upon the fine grained structures and

relations that may be present. In this way a detailed model of the code in

terms of the design abstractions that it implements is built up.

TAO is intended to help in the search for conceptual abstraction by

utilising a connectionist approach to source code analysis (see Rumelhart and

McClelland 1986 for an overview of approaches to connectionism). A richly

connected network of nodes and links are to provide a distributed

representation of the conceptual abstractions contained in the domain model.

Knowledge is encoded in the connections between nodes and the weights

associated with these connections.

The hope for such an approach is that by representing domain knowledge

in a connectionist network it should be possible to integrate many different

sources of information into the analysis. Connectionist networks are also able

to learn from experience by adjusting the weights associated with the links

between nodes when given examples. It is possible that a system like TAO

could learn domain knowledge in this way through being given examples of

source code, although there are many difficulties associated with learning in

this fashion.

At the time of writing, most of Biggerstaff's work (as published) is at an

early stage of development, with development concentrating on the domain

model and user interface. The rest of the work, and in particular the work on

TAO, is at a very early stage and so it is difficult to comment on it in detail.

40

3.3 Summary

This section has characterised the notion of redescribing source code and

classified current approaches into three categories.

• Transformational - These are based on mathematical theories of program

equivalence. They aim to derive formal specifications from source code.

These approaches place great importance on the code being a formally

correct implementation of the derived specification.

• Plan Based - These are based on psychological theories of programming

skill, centered around the notion of a programming plan as a fundamental

mechanism used for structuring programming knowledge. They aim to

produce a hierarchy of plans present in source code, and to use this as a

basis for automatic program understanding. They place varying degrees of

importance on the correctness of their output.

• Reuse Based - These are based on the development of an application

specific domain model of areas of software design. They aim to extract

information from source code in the form of design and application level

concepts embodied in the code. Being able to extract useful information

from code is considered to be more important (initially) than the formal

correctness of such information.

41

Chapter 4

Source Code as Text

4.1 Introduction

The aim of this chapter is to emphasise the textual nature of source code

and to describe the role that non-formal information in source code plays in

the interpretation of such a text. This viewpoint is used to provide a critique

of the research described in the previous chapter, and suggest some possible

directions for research into redescribing source code.

Firstly, the distinction between formal and non-formal information in

source code is described. This distinction is used to characterise the formalist

position regarding the meaning of source code which appears to have been

adopted by many of the researchers involved in work to redescribe source

code.

The difficulties of such a formalist position are illustrated, and a view of

the meaning of source code as being generated by its interpretation as a text

developed. Applied to the work described in the previous chapter this

orientation provides a critique, the main conclusion of which is to suggest that

approaches to redescribing source code should pay more attention to the use

of non-formal information in their code analysis.

The final part of this chapter then attempts to suggest ways in which a

view of source code as text could lead to useful methodologies and tools for

source code analysis, one such approach being the basis of the experimental

work reported in this thesis.

42

4.2 Formal and Non-formal Information

Biggerstaff in his paper on design recovery (Biggerstaff 1989) makes a

distinction between formal and informal information in source code. He fails

to fully explicate this distinction but illustrates it by way of an example using

three different versions of a program written in C. These examples constitute

a movement from source code containing much informal information to an

equivalent piece of source code with no informal information included. The

two extremes of these examples are equivalent to the examples of Pascal

source code in figure 4.1 and figure 42.

(The following procedure writes a line of text to the
standard output and terminates with a new line 	 }

PROCEDURE writeline(line:lines)

VAR i:O..linemax:

BEGIN

i =1;
while line[i] <> slash do begin (slash marks end of line}

write(line[i]);
i := i+1;

end;
writeln;

END; (writeline)

Figure 4.1: Pascal program with informal information

Figure 4.1 has comments and meaningful identifier names, such as "line"

and "slash". These are what Biggerstaff terms informal information as these do

not relate directly to the operation of the code but relate to its 'readability'. In

figure 4.2 this informal information has been removed to leave code which is

very difficult to understand. Biggerstaff notes that whilst the complier will

treat these two programs equivalently, for the version with no informal

43

information (ie figure 4.2) "Interpretation and understanding of the program

has become impossible in any deep sense" (Biggerstaff 1989, p41).

PROCEDURE #001(#002:#003)

VAR #004:0..#005:

BEGIN

#004 := 1;
while #002[#004] <>#006 do begin

write(#002[#004]);
#004 := #004+1;

end;
writeln;

END;

Figure 4.2: Pascal program with informal information removed

Biggerstaff, however, has not gone far enough in removing all the features

of the text that are unnecessary to produce compiled code. His second version

of the program still has a neat layout, this is not strictly necessary for

compilation. Also the names of the programming language constructs (eg

"LOOP", ":=", "+", etc.) are not entirely arbitrary but appeal to an intuitive

grasp of their intended operation. A compiler could be designed to compile

code where each of the constructs of the language are given meaningless

names in the same way that identifiers have been given such names in figure

4.2. The net result of such a translation would be source code in the form of a

string of seemingly arbitrary terms. One possible example of such source code

for the example program is given in figure 4.3.

Figure 4.3 can be considered the "compilers eye view" of the source code

of figure 4.1. Figure 4.3 is clearly even less informative about the code's

function than figure 4.2. Yet the organisation of figure 4.3 still has enough

structure (in fact the same structure) that allowed the first two examples to be

44

#007 #001 a #002 10 #003 s #008 #004 10 0 #005 cc 9 #004 20 144
cc %1 #002 d #004 f+ #006 - e a #002 d #004 f s cc #00420 #004
k 1 cc ** cc cc ** cc

Figure 4.3: Pascal program with non-formal information removed

compiled into equivalent code. Biggerstaff appears to have been too

conservative in his notion of informal information. There are clearly many

features of ordinary source code that are not included in Biggerstaff's usage

of the term informal that are used to improve readability but are not strictly

necessary to define the eventual action of the code.

I wish to revise Biggerstaff's distinction to take into account the above

example. The distinction I believe Biggerstaff was intending to make was

between those features of the source code that are semiotic in nature, that is

those that are constitutive of the system of codes that allow source code to be

interpreted as a text, and those that form part of the closed system of the text.

The former will be termed non-formal information to distinguish between this

definition given here and Biggerstaff's informal information. This distinction

is necessary since Biggerstaff's usage of informal does not include such

features as the layout of the code or the semiotic role of the program language

statements.

The label formal information will continue to be used to refer to those

aspects of the internal structure of source code that relate to the nature of the

compiled code, and more specifically to those aspects that are used in the

construction of what will later be termed a formal program model.

To fully explicate this position I wish to use a general semiotic approach

as a basis for discussing the approaches to redescribing source code outlined

in the previous chapter. Semiotics aims to study the nature of sign systems

and signification in general, as such it encompasses the study of language and

45

text. In the first half of this century, the philosopher C.W. Morris

distinguished three branches of semiotic enquiry; syntax, semantics and

pragmatics. Morris defined syntax as the study of the relations of signs to one

another, semantics as the study of the relation between signs and the objects

to which they are applicable, and pragmatics as the study of the relationship

of signs to the users of the signs. (This account is derived from Levinson

1983, p1).

A precise distinction between these particular branches of study has

proved very difficult to obtain, however the study of semantics has

increasingly become identified with the notion of 'meaning'. Part of the

argument expanded here is that in certain fields of computer science the role

of pragmatics in generating meaning in a broad sense has been overly

neglected.

It is possible to view source code and design descriptions as texts and

hence as complex signs. Such texts can then be analysed from a semiotic

perspective, that is from their ability to stand for something other than

themselves and so be used as representational devices (Tippets 1988). From

this semiotic orientation, two main criticisms will be made of current

approaches to redescribing source code. It will be claimed that most

approaches make the following questionable assumptions:

1. That the 'object' described by source code is primarily a formal program

model, that is a mathematical model of the anticipated operation of the

source code.

2. That the pragmatic properties of the original source code and the

derived design description can be neglected in favour of considering

primarily the correspondence between the formal semantics of the

design description and the formal program model.

46

In fact, both these assumptions are based upon viewing the relationship

between an object and a description of that object as straightforward, ignoring

the problems raised by the nature of representational devices such as texts

and diagrams etc. These assumptions can broadly be described as formalist

(see Leith 1990, chapter 2, for a fuller description of this term) since they are

both based upon considering the 'meaning' of some text to be some formal

and decontextualised expression of the text's semantics.

4.3 Difficulties with a Formalist Approach

To show the complex nature of the relationship between some textual

description of an object and the object itself will involve examining the

relationship between some formal object and its associated description. This

necessitates defining some of the notions that will be used later on,

particularly the notions of formal system, formal structure and formal

equivalence.

4.3.1 Formal systems

A formal system consists of a syntax and a relation of derivability. The

syntax, which is defined over an alphabet of symbols, defines the sentences or

well formed formulae (wff's) which constitute the formal language of the

system. This formal syntax enables sentences to be parsed as wff's. (Once

parsed these sentences can be given a semantics, this semantic form defines

the wff's relation to the rest of the formal system.)

The relation of derivability is a relation between the wff's of the system

such that for any wff to be a theorem of the system then it is either:

1. An axiom of the system (that is a member of a given set of wffs)

47

2. Derivable from the axioms of the system

So, for example, this derivability relation can be used to prove that a

particular sentence in the predicate calculus is a logical consequent of some

other sentence, or similarly prove that a formal model of a piece of source

code possesses a particular property. In both these cases the formal system is

being used to manipulate meaningless (to the system) symbols in the same

way that computers do.

The importance of formal systems to computer science is in the

connection between formal systems and mechanical operation since we can

define a mechanical, and hence automatable, operation directly (eg in terms

of a Turing Machine) and then define a formal system as one whose set of

theorems can be generated by such a machine. Conversely, we can define a

formal system directly and then define a mechanical operation as one that is

computable in some formal system (Smullyan 1961, p1). Given this we can

see computers as machines for automating formal systems. This is the basis of

The Turing Thesis that for any deterministic formal system there exists an

equivalent Turing Machine (Haugeland 1985). Thus for any process to be

automatable necessarily entails that the 'rules' of the process can be captured

as part of a formal system.

Within a particular mathematical framework it is possible to define

notions of formal equivalence. These can be used to determine when two

expressions in a particular system can be considered the same, or when two

formal systems themselves can be considered equivalent. This notion of

formal equivalence is very important for all mathematics and for formal

systems in particular. It is this ability to re-express a statement in a

mathematically equivalent form that is central to many approaches to

redescribing source code.

48

The notion of a formal structure aims to capture what is common to

equivalent representations such as the two example programs of figure 4.1 and

figure 42. Any text written using a formal language, that is a language which

has been formally defined so that expressions of the language are able to form

part of a formal system, can be considered as defining a formal structure with

respect to a particular notion of equivalence. This is how two different

examples of source code can be said to define the same 'program', and how

two different predicates in a logic language can pick out the same property.

There are many different notions of equivalence that can be imposed upon

a formal system. Any particular mathematical definition of equivalence can

be considered as providing an aspect from which to view and compare two

systems or expressions. This view defines the formal structure of the object.

However, the particular notion of equivalence used is often chosen to accord

with some intuitively held notion, such as program or logical equivalence,

which exists only as an informal ideal. Whilst this formal definition of an

intuitive notion provides a way of mechanising tests for equivalence (and

other properties of formal structures), this formal definition usually fails to

capture all the properties entailed by the original ideal.

One of the arguments to be developed here is that the notion that source

code is about "something" (ie about the operation of a computer) has been

mathematicised in this way by considering that source code defines a formal

object. Unfortunately this often leads to an ovelly simple view of source code

as fully equivalent to a particular formal object often termed a "program".

4.3.2 Interpretation of a formal structure

By definition any particular formal structure, regardless of what this

structure is intended to represent, can be presented in many different ways.

Given a suitable formal definition, all these representations can be considered

49

as equivalent. However, from a different perspective these equivalent

representations can have very different properties.

When a text is considered as a representation or description of some

object of interest, it is precisely the relation between the text and the object as

perceived by the reader that determines the accuracy or correctness of the

description. This relationship depends upon the power of the text to stand in

place of the object that is being described, and not directly on the

mathematical properties assigned to the text through the definition of some

formal structure. Often though, the formalist perspective overlooks the

importance of this pragmatic relationship, preferring to view the ability of a

text or formal system to represent an object in terms of the semantic

relationship between the expressions of the text and the object of interest.

The relationship of description to object can be considered as analogous to

that of a map to the land that it represents, this relationship perhaps being the

clearest example of the correspondence between an object and its description.

The limitations that can be seen to apply to the map as a representational

device can also be seen to apply to all other types of representation including

texts.

The map does not simply replicate the land that it covers as a life size

model. If it did it would be 'equivalent' to the land in every way and so would

cease to have any value as a 'map' as distinct from the territory itself. What a

map does is to leave out many of the features of the land in favour of

highlighting those that are useful to travellers, and also by including

additional information that could not be easily be gained from inspecting the

land directly, such as contours lines. In short, it is important to remain aware

that "The map is not the territory" (Korsybski 1958)

The description of the land provided by a map is always an abstraction

away from the 'reality' that it seeks to describe. This is true of any

50

representational device. Even the most rigorously defined formal

representations, are unable to represent the object of interest in some 'neutral'

or 'objective' way. But instead can only represent an object from a particular

viewpoint.

The objections to a view of mathematical descriptions as objective that

will are highlighted are two fold. Firstly, the correspondence between any

formal language expression and the object that such an expression is referring

to cannot be simply defined within a mathematical system. Secondly,

providing a definition of a formal structure is not the same as providing a

useful description of that structure.

The first objection stems from the problem of defining the correspondence

between an expression and the object that it represents. Consider the

following expression in some formal logic:

All men are mortal

This expression has two roles, firstly it can be considered as part of a formal

system that implements logical inferences. Thus such a statement can be used

within a formal system to produce logically correct inferences, ie given some

other axioms, it might conclude that,

Socrates is mortal

The symbolic manipulation used to produce the above conclusion occurs

entirely within the formal system and so can be mechanised as part of a

system of logic. But the first expression also has a second role. As well as

forming part of a closed system, it is also intended to be interpreted as

representing some 'fact' about the world. It is intended to correspond to some

empirical knowledge. As such the expression represents some state of affairs,

in this case that all members of the human race only live for a finite period of

time.

51

The accuracy of this correspondence between expression and the state of

affairs that it represents is always dependent upon interpretation. The

interpretation of the term "men" in the above example depends upon the

conventional usage of the term. It is this usage which enables us to interpret

what "men" is intended to signify. The apparent transparency of logic as a

representational language is deceptive, since before a transparent expression

can be arrived at, the definition of the terms to be used in the expression must

be resolved. Thus the ambiguity of the term "men" leads to doubt as to

whether the expression is intended to refer to the whole of the human race or

only to the adult males of the species.

Often some form of truth conditional semantics is suggested to allow the

meaning of such terms to be unambiguously defined. However such a

definition still rests upon the interpretation applied to other natural language

terms and so on. Any form of truth-conditional or model-theoretic semantics

is based upon the existence of an objective world containing given, ready

made objects and concepts. Linguistic expressions function as 'pointers' to

this objective universe with the truth of an expression being based around

some notion of correspondence between the expression and this universe.

If the Sapir-Whorf hypothesis that language influences the way we

perceive the universe is accepted (Whorl 1956), then the existence of an

independant and objective universe becomes an over-simplification of the

actual situation. In many cases, where there is considerable agreement and

stability in the conventional interpretation given to terms this idea of an

objective universe is an adequate approximation to the real state of affairs.

This explains the success of formalisms in fields such as the natural sciences

and engineering. However, even in these fields the construction of this stable

consensus which allows the application of formalisms has occurred over time.

To expand upon the above point, even when the object that is being

described is formally defined (as in the case of source code) we still need to

52

consider the distiction between definition and description. The formalism

defines the object, but it is the role of the representational device, usually a

text, to describe the object. This involves not only considering notions of

correspondence between representation and objects, but also considering the

pragmatic aspects of the use of the representation in providing a channel for

communication.

Let us take an example from mathematics to illustrate this distinction.

Hilbert's program of axiomatisation in mathematics has led to the structure of

whole fields of mathematics being defined in terms of a small number of

axioms. Hilbert's aim was to provide an epistemic foundation for

mathematical knowledge by providing objective definitions of basic

mathematical concepts such as `theoremhood' and 'proof' based upon the

manipulation of meaningless symbols within a formal system.

One field of mathematics that was successfully axiomatised was that of

Number Theory. A set of axioms are used to define a formal system which

corresponds to the structure of the natural numbers. In this way, any

expression in the formalism of number theory is a theorem if and only if it is

derivable from the original axioms. What is required for an expression to be a

theorem is rigidly defined.

This formulation of the natural numbers defines the formal structure of the

natural number system, however, it does not describe this structure.

Describing this structure, and identifying which theorems are of interest and

which are not is the role of mathematics and mathematicians. In this sense,

the role of the mathematician is in finding an adequate description for a

complex structure. This role is no different to that of any one who aims to

produce a description of some object of interest, such as a scientist or

knowledge engineer. For a description to be adequate it must accord with the

conventions that are commonly used by other mathematicians so that it can be

comprehended by others. In this way, mathematical discovery can be viewed

53

as the development and acceptance of such conventions.

This view of the development of mathematical concepts is well illustrated

by the work of Imre Lakatos (Lakatos 1976). His work into the nature of

mathematics, and particularly the nature of proof, has demonstrated the major

role of social processes in mathematical discovery and in the the definition of

mathematical notions.

For similar reasons Wittgenstein has argued against the the view of

mathematics as having some privileged access to truth, preferring to see

mathematics and logic as specialised language games within the larger sphere

of natural language. This view of mathematics is perhaps well summed up by

Wittgenstein when he states that

"The mathematician is an inventor, not a discoverer." (Wittgenstein

1978, 1-168).

A system written by Doug Lenat (Lenat 1982) called AM demonstrates the

importance of this distinction between definition and description in a practical

way through an artificial intelligence attempt to mimic the process of

"discovering" mathematical concepts. AM was provided with some heuristics

for producing such concepts from older concepts within the domain of

number theory. An example of such a concept would be that of prime

numbers (a concept that AM did manage to "discover"). After about an hour

of run time, after which the rate at which AM discovers new concepts slows

significantly, the system had discovered about 300 such concepts. Of these

only about 25 where deemed to be mathematically interesting, whilst about

175 were considered to be worthless.

Similar problems to those encountered by AM are likely to become

manifest in attempts to use the formal structure of source code as the sole

basis for redescription tools. To adequately describe source code it is

necessary to use expressions that are defined by consensus. Unfortunately, the

54

establishment of this consensus is not a formal process but a social one. This

point is particularly important when dealing with expressions that represent

application domain concepts. To obtain definitions of these objects in a form

that enables them to be recognised within source code it is necessary to step

outside the world of formal objects and into the application domain itself.

Even when there is a reasonably stable consensus concerning the formal

definition of objects, such as that of certain abstract data types, there is still

the problem of finding a representation for these objects which allows them to

be identified within code. Only in very special cases will a formal definition

of an object be sufficient to define the conditions of appropriateness which

determine when that definition can be applied. This is much like natural

language parsing where a dictionary style definition for a term is far to

simplistic a representation of the 'meaning' of that term to allow parsing on

any reasonable scale to be practical.

To try to overcome some of the problems associated with a formalist

viewpoint, as described above, the next section considers work from fields

associated with describing how humans are able to interpret and

communicate. This involves considering work within the general fields of

hermeneutics, semiotics and linguistics.

4.4 Texts and Textual Interpretation

Having discussed some of the problems involved with the correspondence

between descriptions and the objects that they represent. It is necessary to

discuss an approach to the problem of how a particular representational

device, namely text, is able to provide a medium for communication. In the

main this section will center around the semiotic theories of Umberto Eco

although it will also be necessary to introduce some of the ideas characteristic

of the hermeneutics of Heidegger, Gadamer and Ricoeur. (A prior application

55

of some of these ideas to computer science, though primarily oriented towards

artificial intelligence research, can be found in (Winograd and Flores 1986).)

What are the characteristics of a text? Paul Ricoeur defines a text to be

"any discourse fixed by writing" (Ricoeur 1981, p145). This is a very general

definition, and clearly includes source code and design level descriptions

since these are used as a means of conveying information to other people.

Such a definition concentrates on the role of the text as a medium for

communication. We can view a text as being produced by someone, the

author, with the purpose of communicating a message to the intended readers

of the text. How does the organisation of a text provide for such

communication.

Eco considers a text as being multilevelled (Eco 1976, p57-58). A text

does not express a single content or denotation but conveys many interrelated

messages. Through these interelated messages a text is able to describe or

create a possible world. This world is appropriated by the reader through

interpretation. Such a world can be imaginary as with novels, or refer to

objects present in the empirical world. The distinction between real and

imaginary is not important here since the mechanisms involved in interpreting

texts are identical regardless of the nature of the object or objects they seek to

describe.

To be intelligible a text has to use symbols and codes that are defined by

convention to convey its message. This is a feature of texts regardless of the

nature of the object being described.

56

"To organise a text, its author has to rely upon a series of codes that

assign given contents to the expressions he uses. To make his text

communicative, the author has to assume that the ensemble of codes

he relies upon is the same as that shared by his possible reader." (Eco

1979, p7).

It is only through such shared codes that communication is possible. These

codes govern the correlation between an expression and its content and so

such codes are responsible for the way linguistic expressions are interpreted.

Biggerstaff talks about source code having an "informal semantics" as well

as a formal denotation. However, the use of the word "informal" leaves it

vague as to what such semantics are referring to and suggests that such

semantics are somehow arbitrary. This is another reason for preferring to use

the term non-formal here.

What is the nature of these non-formal semantics? Eco's semiotic

approach considers that:

"The semiotic object of a semantics is the content, not the referent,

and the content has to be defined as a cultural unit" (Eco 1976, p62,

italics in original)

A cultural unit is anything that is defined or distinguished as an entity by a

culture. A cultural unit acquires its meaning from its position within a

semantic field. So for example the term <dog> does not denote some physical

object or objects, or some set such as that which contains all possible dogs.

The meaning of the term is an abstract entity which is defined by cultural

convention.

This definition of a cultural unit, based upon the communicative role of

texts, frees us from having to make distinctions between texts and terms that

refer to abstract or imaginary objects and those that attempt to represent some

57

state of the empirical world. Note, however, that to state that a cultural unit is

defined by convention is not to say that such a definition is necessarily

arbitrary (in fact such definitions are very rarely truly arbitrary).

A good example from computer science of the way a semantic field

becomes delineated and described through language is the field of data

structures. There are an infinite number of different data structures that could

be used in design and programming, but this field has been sliced up into

discrete units, such as those that correspond to the cultural units; <stack>,

<queue>, and <linked list>. These are used to represent data structures with

certain properties and so provide a channel for communicating information

about data structures.

Viewing these cultural units as being defined by convention entails that

they are not necessarily fixed in meaning. The use of expressions evolve over

time, and so also will the connotations associated with a particular term or

expression. As well as varying over time, there will also be variations in the

way individuals use and interpret expressions. Even in the case where rigid

definitions exist, for example dictionary definitions or formal definitions of

programming constructs, the usage and hence the 'meaning' of particular

expressions are still capable of undergoing evolutionary change.

The evolutionary nature of any culturally based system of signification has

implications for the possibility of formalising the content of such systems, and

hence for formalising any domain such as that of software design. This has

implications for the work done to attempt automatically to redescribe source

code since much of this work involves attempting to formalise some of the

'knowledge' used in software design.

58

4.4.1 Ambiguity and context

One of the frequently cited properties of natural languages is ambiguity.

One particular reason for the use of formal languages is that they are intended

to reduce this ambiguity by providing a rigid denotation for the expressions of

the language.

One reason for the ambiguity of natural language stems from the

polysemic nature of many of its expressions. Thus a single term, eg "ball", can

be interpreted as referring to a content in more than one semantic field. This

ambiguity of meaning is reduced when a term is used within a text or a

sentence since the surrounding material provides a context for the

interpretation of the term. The interpretation of such a term can be said to be

context dependent in that its denotation depends upon its context of use.

In contrast, the denotations of terms from formal languages are fixed by

the definition of the language. So for example, in a formal language a fixed

denotation can be given to the expression "IF a THEN b", independent of its

context of use. The meaning of this construct within the formal system has

been decontextualised. However, this decontextualisation does not render the

interpretation of a formal text as being similarly context free. The

interpretation of a text is not only a function of the text's denotation, but also

involves connotation.

As a text is read, the reader is constantly creating expectations and

hypotheses about possible interpretations. These expectations may be

described as occurring in the form of contextual frames. These frames provide

the mechanism through which simple expressions can be interpreted as part of

a larger structure. The granularity of this context can vary from the particular

language being used, down to the immediate neighbours of a particular term.

A large part of interpretation work involves the selection of an appropriate

contextual frame with which to continue interpretation.

59

The selection of appropriate contextual frames is not just the mechanism

through which interpretation occurs, they are the interpretation. The text

structures of which individual expressions are a part, are identified within text

as instances of the system of shared codes which enables communication. Any

particular interpretation of a text involves establishing many interconnected

correlations between expression and content. It is these correlations that

create the many connotations associated with a text, and it is these

connotations that allow the text to escape from the page on which it is written

and stand for something other than itself.

The correlation of these text structures with a content is not usually

established by formal means. Even when a formal definition for this content

does exist, for example a definition for a sort routine, it is not this formal

definition that is used in practice to provide the expression with a content.

This content will depend upon the totality of the interpretation applied to the

text. Thus while a formal language may be used to fix the denotation of a text

it cannot similarly define the connotation of the text, although certainly the

denotation will constrain the choice of adequate interpretations.

4.5 Source Code as Text

At the beginning of this chapter I stated two formalist assumptions upon

which much of the work in redescribing source code has been based. Firstly

that many researchers implicitly assume that the 'meaning' of a piece of

source code can be captured in a formal program model, and secondly that the

problem of producing an appropriate redescription of code can be reduced to

a problem of ensuring a formal correspondence between the source code and

the new description.

The previous sections have tried to demonstrate some of the difficulties

surrounding these assumptions that are caused by viewing descriptions of any

60

form as representational devices (in particular as texts) rather than as formal

objects. These observations lead to the suggestion that source code, designs,

specifications and other products of software development should be viewed

primarily as texts rather than as formal objects. This is not to suggest that

these artifacts should not be analysed for their formal properties, but that it is

important to remain aware that these formal properties are subsidiary to the

role of these artifacts as representational devices.

The following sections aim to show the way that these formalist

assumptions have been incorporated into much of the research work directed

toward redescribing source code, and some of the practical effects of the

embodiment of these assumptions in actual systems. In practice much of this

is part of a much larger argument to show the way that the term 'program' has

tended to become identified with some mathematical description that is

capable of acting as an oracle, providing absolute answers to any question

about the behaviour of a computer system.

4.5.1 The meaning of source code is not a formal program model

A programming language can be given some formal semantics which

model the intended action of the code when run. In this way the source code

can be translated into a mathematical model of the code's anticipated

operation. This model will be termed here a formal program model. This model

is often considered to be able to capture all the properties of the original

source code. This formal program model is not always explicitly constructed,

however, the assumption that the 'meaning' of source code is contained

within this model still forms a basis for the code analysis that is performed.

The reason for terming this a formal program model as opposed to simply

a formal model is to distinguish two specific properties of this model. Firstly,

formal applies not only to the nature of the model itself, but to the fact that it

61

is constructed using only formal information in the source code. Secondly, the

use of the term program indicates that this model is in some way intended to

capture the essence of what the source code (or higher level description) is

referring to.

The term program is frequently used to refer to some implicit kernel of the

process of software development. However, the term program is used in many

different ways by different people (see Fetzer 1988 for examples). Within

many of the approaches to redescribing software, the term program is

frequently used synonymously with that of the formal program model, thus

suggesting that such a model somehow captures the essence of the software

without actually explaining why this is.

Viewing the intended object of source code and other products of software

engineering (such as designs and specifications) as a formal program model is

typically associated with researchers involved with formal methods. This

view is well summed up by one of the main proponents and originators of the

formal methods approach to software engineering, C.A.R. Hoare, when he

states that:

"Programming is an exact science in that all the properties of a

program and all the consequences of executing it in any given

environment can, in principle, be found out from the text of the

program itself from purely deductive reasoning." (Hoare 1969, italics

added)

The view of researchers such as Hoare and Dijkstra as illustrated in the

above quote is that by producing a formal program model from the program

text (ie the source code) then the 'program' itself becomes a mathematical

object, even though this clearly ignores the importance of commenting and

labelling when writing "computer programs".

62

A similar identification is apparent in approaches to redescribing source

code, and particularly transformational approaches. For example

"We define the semantics or 'meaning' or 'effect' of a program to be a

function which maps the initial state to a set of possible final states"

(Ward 1989, p3)

similarly

"...once a formal representation of the software has been obtained

properties and theorems about the program can be more easily

derived..." (Lano and Breuer 1990, p22).

Plan based approaches are similar, both in the way all their analyses are

based upon properties of a formal program model constructed from the source

code, and also from the nature of the plans which they attempt to recognise in

code.

"Rather than dealing with a program in its source code form, the

Recognizer uses the Plan Calculus representation for programs... In

the Plan Calculus, a program is represented by an annotated directed

graph, called a plan" (Wills 1990, p116)

This quote clearly illustrates the way that a "program" as a formal program

model is considered to exist independently of any particular representation (ie

source code or the Plan Calculus) and can be easily translated from one

representation to another without any loss of content. This translation can be

performed (indeed can only be performed) by concentrating on the formal

information present in the source code and by excluding most of the non-

formal information.

All other plan-based approaches also initially transform source code into

some representation that is based only on formal properties of the original

source code. Such a representation still contains potentially useful non-formal

63

information in the names of the identifiers, but none of these approaches have

attempted to use this information. Also in this initial transformation all

comments and labels are discarded and so are not even potentially available

to any analysis.

Only the approach of Biggerstaff (Biggerstaff 1989) seems to recognise

the potentially rich nature of source code. His reuse-based approach to

redescribing source code is the only one that does not intend to base code

analysis on an impoverished representation of the original code based purely

on its formal denotation.

"we can see that connotation plays an important role in the process by

which people deal with, interpret, and understand programs."

(Biggerstaff 1989, p41)

The discussion earlier in this chapter argued that it is not possible to move

from one representation to another, ie from source code to formal program

model, in a neutral and objective way since the old representation becomes

the 'object' that the new representation aims to describe. This process of

description is always analogous to a process of map making, involving

choices as to what features of the original to highlight, scale or repress in the

new description.

Whilst it is clearly necessary and advantageous in many situations to

translate source code into a new form which facilitates a particular type of

analysis, none of the work in redescribing source code makes it clear that in

performing this translation much information is lost from the original source

code, information that cannot easily be recovered. This is despite

considerable experimental work into human program comprehension which

suggest that the understandability of code (and presumably of other derived

descriptions) is a consequence of the interaction of a number of different

features of the representation (eg Gilmore and Green 1988; Sheil 1981; Tenny

64

1988; and Oman and Cook 1990). This feature of source code is again

something that would naturally be associated with source code by considering

it as a text.

The difficulties associated with this view that one can translate a

'program' from one form to another without losing essential properties of the

original source code are manifest in the reluctance of approaches based upon

this assumption to use, or even consider as valuable, much of the non-formal

information associated with source code. This is because such features of the

source code are not considered to be part of the 'meaning' of the program as

they do not form part of the formal program model.

For example, in a demonstration of how transformations can aid program

analysis Ward explicitly includes a heuristic to remove any labels present in

the code (Ward 1989, p16). This information is discarded since one of the

goals of this approach is to make unstructured code (in Dijkstra's sense)

structured. However, names of labels can be a rich source of information

about the intention behind a piece of code, whilst there is little evidence to

suggest that code that is restructured in this algorithmic way is in general

easier to understand than the original in all but extreme cases of tangled code.

If source code is seen as a text, then clearly the structure of the text itself is

being altered in a way that has little regard for the original intention of the

text. This will almost inevitably lead to a loss in the comprehensibility of the

source code.

Ward states that later in the process mentioned above it is necessary to use

information about the purpose and domain of the program to give a usable

specification. This is precisely the sort of information contained in labels and

immediately discarded by transformational approaches. Similar examples

could be provided for many of the other approaches to redescribing source

code and for many reverse engineering tools in general.

65

4.5.2 The importance of pragmatic considerations

The second formalist assumption associated with work on redescribing

source code involves a concentration on the correspondence between the new

description and the original source code to the exclusion of considering

pragmatic features associated with these descriptions. This coupled with the

assumption that the meaning of these descriptions is to be identified with

some formal program model leads to more difficulties. In general this is

symptomatic of a concentration on the semantic properties of a description

rather than on the pragmatic features which render a description

comprehensible.

Whilst the implicit assumption of a formal program model was exhibited

similarly by both transformational and plan based approaches, this assumption

is embodied in different ways by these approaches.

Dealing first with transformational approaches, this assumption is clear.

For example the notion of a 'specification' as considered by these approaches

is defined by Ward as:

"We consider the "specification" of a program to be any equivalent

program written in a very high level language (ie closer to

mathematics)." (Ward 1989, pl, italics added).

and the mechanism for obtaining such a specification from source code, via an

intermediate representations is formal and mechanical

"The	 intermediate	 language...allows logical analysis	 and

transformations into specifications" (Lano and Breuer 1990, p2).

This usage of the term "specification" seems at odds with the linking role

of specifications described earlier in this chapter. In fact, the usage suggests

that simply by expressing the function of the code in a high level,

mathematical, language a specification results. This ignores the importance of

66

such properties as comprehensibility and conciseness as components of a

specification in favour of ensuring the correctness of the final specification

defined as a correspondence with the original code.

What transformational approaches call "a specification" is actually an

attempt to find a more explicit representation of the formal semantics of the

code. This overlooks the fact that explicitness is not a mathematical property,

but a property of a representation. The importance of the final form of the

specification is implicitly recognised by these approaches, but these

approaches consider that the formalisms themselves are capable of

determining this final form, rather than the formalisms being a tool through

which the representational goals can be achieved.

All transformational approaches are centered on a notion of program

equivalence. This ensures that the final description is equivalent to the

original formal program model and so ensures the correctness of the

"specification".

If each transformation that is applied to the original code leaves an

equivalent description then these systems are not making major alterations to

the structure of the initial program model. If all transformed programs are

equivalent in this way, then clearly the motivations behind such a

transformation must be representational. However, little attention is given

explicitly to addressing the communicative role of the final and intermediate

products of the transformational process.

Transformational approaches are mainly intended to be operated in a

semi-automatic fashion with the user guiding the choice of transformations

applied to source code in a manner similar to that of program proof systems.

In this way the user can supply the missing criteria of readability and

understandability.

67

The library of transformations and parts of the system which automatically

suggest transformations to apply can be seen as implicitly implementing a

model of 'specification' readability. Unfortunately the implicitness of such a

model will make alterations and modifications of this model very difficult to

implement. This is important since for transformational systems to go beyond

producing simple improvements to low level code, such as eliminating

dummy variables or converting unstructured to structured code, these

transformations will also have to include some domain specific knowledge.

This implicit domain model needs to be verified for a system to maintain

its claim to produce 'correct' specifications from code. As Lehman points out

(Lehman 1980) the correctness of a specification depends not only on the

relationship between the code and the specification, but also between the

specification and the domain that it is representing. For the specifications

produced by a transformational system to be correct in the wider sense, this

domain knowledge encoded in the transformations need to be capable of

being checked against properties of the domain that it is modeling. The

implicitness of the knowledge encoded in the transformations will make this

difficult to accomplish.

Ultimately, the failure to provide an explicit domain model is caused by

the failure to recognise the importance of pragmatic features of specifications.

This will limit the ability of such systems to produce useful, genuine, code

specifications.

Plan based approaches suffer different problems when faced with

producing useful descriptions of code. Whilst plan based approaches all

include explicit domain models and also recognise the importance of the final

description of code being able to link the code with higher level domains, it is

the psychological basis of these approaches which proves to be problematic.

68

Why should a psychological theory of programming be inadequate for

approaches to redescribing software? The fundamental basis of plan based

theories of programming as stated by Soloway and Ehrlich are that:

"The basis of our approach is that expert programmers encode their

higher level knowledge in the form of plans which represent many of

the stereotypic actions in a program." (Soloway and Ehrlich 1984a)

Such an approach presupposes that there is relatively little variation

between programmers in both the way they understand code, and in the nature

of the plans in which their knowledge is encoded. Such an assumption is

questionable. The view of source code as text given earlier in this chapter

highlights the complex and interelated nature of source code when seen as a

communicative device. Together with specific results of experiments

(Gilmore and Green 1988; Davies 1990) this indicates that neither the

process, nor the end results of program comprehension are generalisable

across populations of programmers.

Rather than attempting to model the psychological processes which are

involved in program comprehension, that is considering the internal processes

that render a piece of source code intelligible, we should consider the way

that a piece of code (or design) is used externally as a medium of

communication by software engineers. The usefulness of a design level

description of source code ultimately depends upon the ability of this

description to communicate the operation of code across a community of

software engineers, and not to any particular individual.

The psychological bias of plan-based theories of programming skill

prevent these models from considering this pragmatic use of source code and

designs. The characterisation of pragmatics given earlier in this chapter was

that pragmatics is the study of the relationship of signs to the users of the

signs. Since plan based theories concentrate on the individual and the internal

69

rather than on the social and the external they are unable to fully grasp the

role of source code and designs in software development.

A text based view of source code suggests that to understand the role of

source code in communication we should attempt to identify the cultural units

which are manifest in the code. Plan based approaches do not explicitly

recognise this goal and in practice tend to get bogged down with excessive

detail by attempting to postulate models which explain the states and

processes which enable program understanding. Many of these states (often

formalised as plans) have no clear correlate with any cultural unit that plays a

role in communication since plan-based theories are primarily concerned with

modeling internal rather than external processes.

It is only in reuse based approaches that the knowledge that is used for the

analysis is based upon the way source code is described and characterised by

a community of programmers. This is because these approaches explicitly

perform a domain analysis of software design. This domain analysis identifies

features related to cultural units and then attempts to formalise these features.

Unfortunately the nature of cultural units means that they do not easily

succumb to formal definition. They only exist by way of a convention shared

by a community and these conventions as subject to a constant evolution and

so any formal definition of a cultural unit is necessarily an approximation. For

example, given a concept such as <stack> we need to find some way to

formalise a notion of "stackness" so that we can recognise an instance of this

concept in source code. This vagueness of definition limits the degree of

correctness that we can expect to achieve in redescribing source code.

4.6 Using Properties of Source Code as Text

The limitations of using only formal information in tools for redescribing

source code and the importance of considering the role of source code and

70

derived descriptions as a medium for communication between software

engineers all stem directly from viewing source code as a text rather than as a

formal object. This viewpoint suggests that in attempting to automatically

redescribe source code we should pay more attention to features

characteristic of source code's textual nature.

There has been considerable research effort directed towards automatic

text analysis from the related areas of information retrieval, natural language

processing and, to a lesser extent, knowledge acquisition. Although some of

this research has informed current approaches to redescribing source code,

this link has rarely been fully explicated and frequently has had relatively

little practical influence.

This section aims to make some of these connections apparent, and to

suggest some more direct ways in which techniques of text analysis could be

used in the analysis of source code. It will consider briefly how techniques

developed in the three fields mentioned above could be used to provide

methods of analysing source code with the goal of producing high level

information from the code, and to show where these techniques are related to

some existing approaches to source code analysis.

4.6.1 Information retrieval

During the late sixties and early seventies, there was considerable interest

in using the occurrence of simple lexical items or textual structures as a basis

for the analysis of texts.

Most of this work was carried out within the field of information retrieval

(van Rijsbergen 1979; Salton and McGill 1983). This field is primarily

interested in developing systems to retrieve documents relevant to requests

from users from large document collections. Most of the work in this field

involved trying to find correlations between the occurrence of lexical items

71

within a document with the perceived content of the document. Within this

field a large number of different procedures for analysis were developed and

evaluated.

The experimental work reported later in this thesis aims to apply

techniques derived from research in information retrieval to demonstrate the

potential use of non-formal information in source code. The approach

followed will attempt to use the occurrence of particular terms within source

code to suggest the possible function of the code. The use of techniques of

text analysis developed in information retrieval research will be explored in

more detail in the remainder of this thesis.

4.6.2 Natural language analysis

If we are considering source code as a text, then we should look at

approaches to understanding natural language texts. If we look at work

directed at the computerised understanding of narratives we see many

approaches using the notion of plans as central to their analysis.

The development of scripts and plans as a means of understanding natural

language text is in part responsible for the development of the theory of

programming plans (cf 3.2.2). The use of scripts and plans to represent

information about stereotypical situations for use in text understanding was

initially developed by Schank and Abelson (Schank and Abelson 1977).

Within natural language texts, plans and scripts are used as methods of

encoding high level structures to be identified in text. This is similar to the

role they play in theories of program understanding, however, in natural

language text analysis systems have been developed that implement the use of

plans in a way distinct from their use in plan based approaches to redescribing

source code.

72

FRUMP (DeJong 1982), was designed for summarising stories in

newspaper texts, a task which can be seen analogous to the task of

summarising source code to produce design level descriptions. This system

used words or phrases found in the text to instantiate hypotheses about the

content of the story in the form of a plan (actually a sketchy script). This plan

created expectations about the more detailed content of the story and is used

as the basis for further processing.

Further processing is achieved by attempting to fill the slots in the plan

based on further analysis of the text, each slot having rules relating to how

they may be filled. A refinement of the approach to text analysis taken by

FRUMP was used to developing IPP (Riesbeck 1982). This differed from

FRUMP in that it allowed predictions to be ranked according to their interest,

and the processing used had a more bottom-up flavour than FRUMP.

This use of plans for text processing has two significant differences from

the use made of programming plans in approaches to redescribing source code

• These systems use a predictive strategy, based upon the occurrence of

particular words or phrases in the text to drive the text analysis. This has a

number of advantages over the bottom-up strategies pursued by

programming plan based system. Namely this strategy allows irrelevant or

un-analysable areas of text (source code) to be ignored and it allows high

level contextual concerns to be incorporated into the analysis at an early

stage.

• The use of this predictive strategy also removes the need for complex

grammars to be developed. One of the main reasons for the development

of FRUMP and IPP was to attempt to process texts to a high level without

the need for developing a detailed grammar to be used in parsing the text.

Both these features suggest that this style of approach may be of considerable

73

use in analysing source code. In practice this predictive approach appears

similar to that employed by Karakostas (Karakostas 1991) in his source code

analysis tool, although no explicit reference is made to natural language

approaches in his work.

4.6.3 Knowledge acquisition

Rather than attempting to redescribe source code using design and

application level concepts, in keeping with the view of software reuse as a

way of recovering some of the investment in existing systems we may wish to

use the view of source code as text to provide a means of acquiring such

domain knowledge directly from source code.

There has been some research on producing knowledge acquisition tools.

These attempt to automatically acquire domain knowledge from natural

language texts, mainly manuals and technical documentation (Frey, Reyle and

Rohrer 1983; Nishida et al. 1986; Szpakowicz 1990). In general, these

approaches use a small skeletal knowledge base containing high level

information about the domain of interest to identify lower level domain

structures within the code. This is done using specific lexical knowledge of

the domain and using the structure provided by the text to uncover new

domain knowledge. Much of this work is at an early stage, but the goals of the

systems that Karakostas and Biggerstaff are developing seem very similar to

this kind of work and may prove to have much in common.

Similarly, there is work in reverse engineering that aims to identify

"design decisions" in source code using only formal information (Rugaber,

Ornburn and LeBlanc 1990; Reynolds, Maletic and Porvin 1990; Selfridge

1990), and then to use this as a basis for the acquisition of new domain

knowledge. These approaches might similarly benefit from considering some

of the techniques used by approaches to knowledge acquisition from natural

74

language texts, and also from considering source code as primarily a text

itself.

4.7 Conclusions

This chapter has tried to present a view of source code as primarily a text.

This view has been used as a basis for a critique of approaches to redescribing

source code. Particular attention has been drawn to the failure of many of

these approaches to recognise the importance of non-formal information in

source code, and to appreciate the communicative role of source code and

derived descriptions.

Non-formal information is not an embellishment of source code, designs,

and specifications that enables the formal 'program' described by source code

to be more easily grasped, but is an integral part of these texts. By way of

providing empirical justification for this point of view, the remainder of this

thesis describes the results of an experiment which aims to use non-formal

information only to provide information about the nature of pieces of source

code. This is not intended to suggest that the formal analysis of source code

can be discarded, but to show that to consider formal information only is an

unnecessary restriction on the range of source code analysis techniques.

In the final chapter of this thesis, the semiotic perspective introduced

above is returned to to suggest some future lines of investigation for work in

software maintenance.

75

Chapter 5

Automatic Indexing of Source Code

5.1 Introduction

The previous chapter made a case for using non-formal information in the

analysis of source code. The rest of this thesis is concerned with investigating

one particular way of extracting such information. This chapter introduces the

basic ideas from information retrieval and related fields used in the

experimental work that was undertaken. This work attempts to automatically

index pieces of source code by utilising the non-formal information present in

the code. The approach adopted is based upon viewing source code as a text

rather than as a formal object, and using techniques of text analysis to obtain

an indication of the function of pieces of source code.

Many approaches to software reuse take a similar textual view of source

code and other reusable products of software development, considering these

artifacts to be documents. These are documents that need to be described,

stored and retrieved to enable reuse to occur. This is the idea of a library of

software components (Frakes and Nejmeh 1986-87).

To effectively retrieve software components from such a library it is

necessary to develop some form of classification scheme for software

components, and to index components accordingly. This indexing of

components allows the system to achieve effective retrieval.

For descriptions of components to act successfully as indexing devices,

they must reflect the 'content' of the component. Thus a good description

should present a high level view of the component, providing a link between

the goals of indexing and redescribing source code.

76

Research in Information Retrieval has informed much of the work on

software component libraries. One area of Information Retrieval research

which has received only limited attention within the context of software reuse

is automatic indexing. Automatic indexing aims to find ways of using the

structure of documents and document collections to assign appropriate index

terms to the elements of a collection, eliminating the need for the expensive

manual indexing of documents.

Some of the techniques developed for automatic indexing have been

applied in a limited way to software documentation (Wood 1987; Maarek

1989), however they have yet to be applied directly to source code. If these

techniques were applied directly to source code they could generate high

level information about the content of the code. It is the feasibility of this

approach to source code analysis that is investigated here.

Specifically, the work reported here aims to use a classification scheme

and an associated thesaurus as a basis for assigning descriptors to pieces of

source code, the descriptors being indicative of the function of the code.

The motivations behind undertaking such an investigation are as follows:

1. Using non-formal information to automatically index source code

according to function would demonstrate one possible mechanism for

incorporating non-formal information into transformational and plan

based approaches to redescribing source code.

2. Both Biggerstaff's (Biggerstaff 1989) and Karakostas' (Karakostas

1991) approaches to redescribing software rely in part upon utilising

non-formal information in a manner similar to that being investigated

here. The study presented here aims to provide some evidence as to the

potential performance of such systems.

77

3. There is a need to be able to identify and index potential software

components within existing source code to populate reuse libraries (see

Basili 1988; Garnett and Mariani 1990). The approach suggested here

should facilitate such a process.

5.2 Information Retrieval

A software component library is a form of document retrieval system. The

performance of such systems has been widely investigated under the heading

of information retrieval (see van Rijsbergen 1979; Salton and McGill 1983; or

Heaps 1978 for an overview of this field). The interests of information

retrieval can be characterised thus:

"Information retrieval (IR) is concerned with the representation,

storage, organisation and accessing of information items." (Salton

and McGill 1983, pl)

A typical scenario for the use of information retrieval systems is as follows.

Access to a large collection of documents relating to a particular field of

interest (such as aeronautical engineering) is required by a group of users. An

information retrieval system aims to allow documents to be retrieved from the

collection which are relevant to particular, user formulated, requests.

Information retrieval research is interested in finding ways to satisfy users'

requests for information.

To be able to effectively retrieve documents from a collection, firstly a

suitable classification scheme must be developed to arrange the elements of the

document collection. These elements must then be indexed according to the

classification scheme. The final performance of the system must then be

evaluated.

78

5.3 Software Classification

Classification schemes aim to group similar objects from a given universe

together into classes. There have been a number of approaches to classifying

software for reuse, an overview of these approaches is given in (Albrechtsen

and Boldyreff 1990).

Classification schemes can be divided into enumerative and faceted

schemes. Enumerative schemes divide a given universe into successively

narrower and narrower classes. These classes are usually arranged to display

the hierarchical relationship between classes. Thus classification is achieved

by breaking down a universe into smaller and smaller pieces. An example of

such a classification is the Dewey decimal classification.

An alternative approach to classification is to use a faceted scheme. In a

faceted scheme, a classification is synthesised from a small number of

elemental classes or facets. A facet can be considered as a viewpoint or

dimension on a particular domain.

Prieto-Diaz claims that faceted schemes are more suitable than

enumerative schemes for classifying software components because

"Faceted schemes are more flexible, more precise, and better suited

for large, continuously expanding collections." (Prieto-Diaz and

Freeman 1987, p8)

Prieto-Diaz has developed a faceted classification scheme for software

components based on six facets.

1. Three functionality facets which describe what the component does:

• Function - the primitive function of a component, eg add, move.

• Object - the objects manipulated by the component, eg characters,

lists.

79

• Medium - the medium on which the action is executed, eg keyboard,

file.

2. Three environment facets which describe the environment in which the

component performs its action

• System type - the application-independent environment of the

component, eg lexical analyser, file handler

• Functional area - the application-dependent environment of the

component, eg transaction processing, CAD.

• Setting - where the component is exercised, eg advertising, car

dealer.

The triple, <function, object, medium> can be used to describe the

functionality of the code, whilst the other three facets can be used to limit the

range of components retrieved with a given functionality.

Murray Wood (Wood 1987; Wood and Sommerville 1988) has developed a

related approach to the classification of components. His classification

scheme is based around the development of Component Descriptor Frames

(CDF's) which describe the functionality of a component.

Rather than simply use the triple, <action, object, medium>, to describe the

functionality of a component, Wood uses the action of the component to

specify a skeletal CDF with which to describe the component. This skeletal

CDF provides slots to be filled with appropriate descriptors. These descriptors

broadly correspond to those that may be used in the object and medium facets

of Prieto-Diaz's scheme.

However, the skeletal CDF form recognises that actions are not

necessarily always specified by one object and one medium facet, but instead

the action itself will usually determine the number and the role of the entities

80

manipulated by the component. This makes clear the central role of function

or action in describing a component. These CDF's are usually displayed

diagrammatically, examples are given below in figure 5.1 for the action edit

and the action communicate.

EDIT 	 	 object to be edited

object to be communicated

it
source -c	 COMMUNICATE 	 destination

Figure 5.1: Examples of Component Descriptor Frames

5.3.1 Formal specifications as component descriptors

As stated in chapter I the original brief of this project was to develop tools

and techniques for obtaining formal specifications from source code. Given

the work that was subsequently undertaken it is worth taking a detour at this

point to explain why formal specifications are not suitable for describing and

indexing the components of a software library, and hence why no attempt was

made to automatically index pieces of code with formal specifications.

The difficulty with using formal specifications as a basis for describing and

retrieving components from a component library are caused by the precision

of formal specifications. The precision with which a formal specification can

represent a piece of code is the major advantage of formal specifications over

other specification techniques, however this very precision is anathema to the

goals of retrieval.

81

The aim of classification is to group like elements of a universe together.

A suitable mechanism for describing a classification then needs to be able to

capture notions of "aboutness" (Beghtol 1986). Formal specifications are

unable to capture notions of aboutness since there are no general techniques

available for either proving the semantic equivalence of syntactic variants of

a specification, nor of defining criteria of "goodness of fit" between a

specification and a component.

These problems, together with the effort involved in creating and

maintaining such precise descriptions of components, render formal

specifications unsuitable as a mechanism for describing and retrieving

components from a software library. This is not to say that a formal

specification is not of use in providing a precise description of a component

once retrieved, but as a basis for retrieval formal specifications are highly

unsuitable.

5.4 Vocabulary Control

Information retrieval systems can be divided into two according to the

vocabulary they use for retrieval purposes (and hence indexing). Systems can

either be described as free text systems or controlled term systems.

In free text systems there is no restriction on the natural language terms

that can be used in queries or as document descriptors. In general, free text

systems tend only to be applicable to areas where there already exists a well

defined and precise terminology, for example areas of law or mathematics. In

less well defined domains, such as software design, such systems suffer from

problems of achieving exhaustivity in retrieval. That is, such systems fail to

retrieve a large proportion of the documents that might be considered relevant

to a particular request. This is because the term or terms used to specify the

request will only occur in a small number of the relevant documents.

82

To increase the exhaustivity of retrieval in such cases, systems of

controlled terms are used. The role of a controlled vocabulary is to "facilitate

communication in the information retrieval process" (Lancaster 1979, p178).

In such systems the number of terms that can be used in retrieval requests and

document indexing is restricted to specific index terms only. The set formed

by the union of these index terms defines the vocabulary or index language of

the system. The vocabulary used by an information retrieval system has

considerable effect upon the systems performance

In deciding upon which index terms to include in a vocabulary it is

necessary to consider the intended role of such terms in retrieval. The aim of

using a controlled vocabulary is to render the documents in a collection as

dissimilar as possible, and so make it easier to distinguish between one

document and another (Yu and Salton 1977). Thus a good index term can be

defined as one that renders the documents of a collection more dissimilar,

whilst a bad term decreases this dissimilarity. In this way the discrimination

value of an index term can be assessed with respect to a particular document

collection.

In empirical studies, Yu and Salton (Yu and Salton 1977) found a

relationship between the discrimination value of a term and the frequency

with which a term is assigned to the members of a collection (document

frequency). They found that the best index terms (in terms of discrimination

value) were those that were assigned to between 1-10% of the documents in

the collection. Terms with a higher or lower document frequency than this

tended to be poor discriminators.

However, most significantly for this study, this theory is used to suggest

that terms with a document frequency of less than 1% can have their

discriminatory power improved by including such terms in term classes. These

term classes then have a higher document frequency than the individual terms

contained within these classes. Hence using these classes as content

83

identifiers rather than the individual terms leads to a higher discrimination

value.

A common way in which terms are combined together into term classes is

in a thesaurus. The use of a thesaurus is central to the work reported here

since it is the thesaurus which ultimately provides the information necessary

for the automatic indexing of source code.

5.4.1 The thesaurus

Lancaster describes a thesaurus in an information retrieval context as

follows:

"A thesaurus is a limited vocabulary of terms,...,(it) provides control

over synonyms, it distinguishes homographs, and it brings related

terms together." (Lancaster 1979, p181)

The thesaurus is a device used to provide vocabulary control. This is achieved

by grouping related words together to form thesaurus classes, and by relating

classes to each other. The simplest form of thesaurus is one in which terms

are grouped together into discrete classes. This is often used to control

problems in retrieval caused by considering synonyms or near synonyms as

distinct terms.

Thesauri can be constructed in two ways, either manually or

automatically. Automatically generated thesauri are produced by analysing

the document collection for terms that increase the dissimilarity between

classes of the collection. This approach is often associated with the automatic

generation of a classification scheme for the document collection. The

difficulty with such approaches is that although they can lead to reasonable

retrieval performance, often the grouping of terms within the thesaurus

appears to lack any real semantic cohesion. This is because the association of

84

terms is based upon statistical properties of the document collection rather

than semantic properties of the terms themselves.

The application of some techniques of automatic classification and

thesaurus generation to collections of source code has been briefly

investigated as part of the Practitioner Project (Boldyreff 1989). However,

the results of this analysis revealed that the automatically derived thesaurus

entries failed to correspond to the categories people use when describing such

objects. As Boldyreff states in reference to an analysis of source code to

identify suitable terms for indexing a collection

"The terms used within the source code, whilst they might be usefully

employed as indexing terms, do not appear to be descriptive of the

source as a whole." (Boldyreff 1989, p2).

In contrast, manually developed thesauri are based on semantic relations

between terms (based either on congruence of terms or hierarchical

relationships). These thesauri are produced through performing an analysis of

the domain of interest and so the groupings of terms used correspond to those

used within the domain. This is consistent with the need for redescribing

source code by using descriptions derived from understanding the way these

descriptions are used as communication medium, as described in chapter 4.

For these reasons most approaches to software classification have relied

upon the use of manually constructed thesauri to provide vocabulary control.

It is only the use of manually developed thesauri for automatic indexing that

will be investigated here.

5.5 Automatic Indexing

The problem being tackled here is to be formulated as an automatic

indexing problem. Automatic indexing assigns descriptors to the documents of

85

a collection. These descriptors are then used to stand in place of the document

for retrieval purposes.

Automatic indexing can be performed in unison with the automatic

development of a classification scheme and an associated index language (see

Salton and McGill 1983, chapter 3; Sparck Jones 1971). However, the

approach here is based upon the idea of there having been the prior

development of a classification scheme and index language for reuse purposes

and so these 'unsupervised' approaches to indexing and classification are not

considered here.

The indexing problem can be viewed as a pattern recognition problem. We

have an external conceptual system defined by some process (such as manual

indexing) which is capable of assigning descriptors to documents. We wish to

develop an automatic process to approximate the performance of this external

system. To do this is it necessary to identify features contained within

documents which correlate with the assignment of certain descriptors.

In this particular scenario the documents are pieces of source code, whilst

descriptors correspond to high level descriptions of the code's function.

Clearly this task has much in common with the approaches to redescribing

source code described in the previous chapter. However, whilst the

approaches described in the previous section relied mainly upon techniques of

syntactic pattern recognition, such as parsing and graph matching, the

approach taken here will be based on techniques of statistical pattern

recognition.

Statistical approaches to pattern recognition firstly extract measurements

from the object of interest and then use statistical properties of these

measurements as a basis for assigning an object to a particular class

(Schalkoff 1992). This often involves assuming some underlying state of

nature that forms the basis for the generation of these patterns.

86

In practice, most approaches to automatic indexing are based on the

occurrence of natural language terms or expressions in documents rather than

the formal or structural properties of documents. In attempting to

automatically index source code using non-formal information, it will

similarly be terms and expressions occurring in the code that will be used for

indexing rather than any formal properties.

5.5.1 The Darmstadt Indexing Approach

The probabilistic formulation of the indexing problem given here is based

upon the Darmstadt Indexing Approach (DIA) (Knorz 1982; Fuhr 1989; Fuhr

and Buckley 1990). This formulation considers the indexing task to consist of

two steps, a description step and a decision step. In the description step,

information about the relationship between a descriptor s and a document d is

collected. This is information is captured in the relevance description

x=x(s,d). This relevance description forms the basis for the decision step.

In the decision step the relevance description is used to estimate the

probability P(C Ix) that given x, assigning descriptor s to the document would

be considered as correct, where correctness is defined by some external

procedure (such as the results of manual indexing). This involves the

development of an indexing function a (x) to perform this estimation.

This indexing function can be considered as a specific instance of a more

general discriminant function. To understand the use of discriminant functions

in indexing it is necessary to describe some of the basics of decision theory.

5.52 Decision Theory

Decision theory aims to form a rational basis for making decisions based

upon classifying and discriminating between objects. Given an object and a

87

set of classes (o.) 1 , ... , con) to which the object may belong, a decision rule, 5,

aims to assign the object to an appropriate class on the basis of some

measurements taken on the object. These measurements are expressed as a

feature vector x.

A decision rule formalises the process of decision making by partitioning

the description space, as defined by x, into regions, (C2 i , ... , On) such that x

is classified according to which region of the description space it lies in.

The description step that generates x is often referred to as feature

extraction in pattern recognition, but these two processes can be considered

as equivalent. (Whilst the DIA formulation above does not insist that the

relevance description x (s,d) should be a vector, we can assume that this will

be the case without losing any of the expressive power associated with the

DIA.)

The indexing problem can be formulated as a two class classification

problem with classes co l and 0)2 corresponding to the correct and incorrect

assignment of a descriptor s to a document d respectively, based on the

relevance description x. Given a relevance description x for a given document

d and descriptor s, we wish to find a decision rule 8 that partitions the

description space, K2, into two regions, n i and 02 , such that if x lies within

1/ 1 then s is assigned as a correct descriptor of d, whilst if x lies within C22

then s is rejected as a correct descriptor of d.

The most fundamental decision rule is known as Bayes Minimum Error

rule. This decision rule minimises the overall error associated with the

decision regardless of the possible relative costs associated with making

particular decisions. This rule assigns the relevance description x to the class

that has the highest posterior probability, P(coi Ix). That is, to the class that is

most likely to be the correct class based on the value of the feature vector x.

Formally we can express this as

(5.2)

(5.3)

88

P(co i I X) > P(CO2 I X)	 XE ni else XE �22	 (5.1)

Estimating these posterior probabilities directly is often difficult but a

more useful way of expressing this decision rule is obtained by applying

Bayes theorem

p(x I cok)P(cok)
P(cok I x) =

to give

p(x I co l)P(co i) > p(xl w2)P(w2)	 XE ill else XE

P(coi) is the prior probability of an object belonging to class cui . This is the

probability of an object coming from class co i before we make any

observations. While p(x I coi) are the class conditional probability density

functions (pdfs). These are functions that represent the likelihood of

observing x given that the object in question belongs to class co.

In this 2-class case we can rewrite (5.3) in a more convenient likelihood

ratio form:

p(x I co l)	 P(o2)

XE ni else XE g22
P(xk02)	 P(C01)

P(x)

(5.4)

The ratio on the right hand side of this inequality is the ratio of the prior

probabilities. This expresses the likelihood of a piece of code being an

89

instance of class 0.) i given that we have no information about the nature of the

code. Whilst the left hand side of (5.4) is known as the likelihood ratio, since

this expresses the likelihood of a feature vector, x originating from an

instance of class 0)1.

Bayes Minimum Error rule implicitly assumes that there is an equal cost

associated with deciding that x is a member of co l or 0)2 . However it is often

the case that there is a greater cost associated with one misclassification (ie

classifying an element of co as an element of class 0)2) than vice versa. For

example, in indexing source code we are likely to be far more concerned

about failing to index a document with a correct descriptor than we might be

with incorrectly assigning a descriptor to a document.

The relative importance attached to each misclassification is formalised

by a cost function cij which is the cost of misclassifying an element of co i as an

element of cop If we set the cost of making a correct decision to zero (ie

c 1 i =c 22 .0) then the revised version of the minimum error rule which takes

into account the different costs associated with misclassification becomes

p(x I co l)	 c 12 P(0)2)

>	 xe 12 1 else xe �22
p(x I 0)2)	 C21 P(0)1)

Far more conveniently, we can replace the right hand side of this equation

with a single value, A., which we can use as a cutoff value for our decision rule.

(5.5)

p(x 0)1)

P(x 0)2)
> X XE ni else XE L22 	(5.6)

Since the value of all the prior probabilities for the descriptors will be

considered to be equal due to problems of estimation (see next section) this

90

considerably simplifies the problem. By varying the value of X we vary the

value at which we accept or reject a descriptor as a correct descriptor of a

document. In practice this is equivalent to varying the relative costs

associated with the two different misclassifications that can occur.

We can treat the ratio on the left hand side of the inequality as being

equivalent to an estimate of P (C I x), the performance of this estimate being

evaluated by varying the value of the cutoff, X.

The likelihood ratio, p(x I co i)/p(x I w2), whilst not equal to the probability

p (C I x) that the decision step in indexing aims to estimate, clearly contains

the same information. The greater the probability that x represents a correct

indexing of a document, the greater the value of the likelihood ratio. In

general any monotonic function of the likelihood ratio is equivalent in this

sense. Therefore we can write our decision rule as

g (x) > X.	 xe 1-2 1 else XE 02	 (5.7)

where g (x) is a discriminant function.

The problem of finding an indexing function a (x) is now the more general

problem of finding a suitable discriminant function g (x) to use in the decision

rule (5.7). This discriminant function should, ideally, approximate the

likelihood ratio (or a monotonic function of the likelihood ratio) since this

gives optimum solutions to the decision problem.

5.5.3 Estimating parameters and non-informative priors

Most pattern recognition tasks are based around using a design set or

training set of objects with known classification as a basis for developing a

classifier, and then using an independent test set of objects for evaluation. The

91

main use of the design set is in informing the development of the discriminant

function g (x).

There are two general approaches we can take to finding a function g (x)

with which to approximate the likelihood ratio. We can either try to estimate

the likelihood ratio directly by estimating the probability distribution

functions p (coi I x) directly from the design set, or we can use the design set to

estimate the parameters of a more general discriminant function.

The training set is often used to estimate the value of various parameters

used in the indexing process, for example estimating the value of the priors,

P (coi), for the different descriptors or estimating the coefficients of a

polynomial discriminant function.

This problem of estimating parameters highlights one of the main

restrictions on the approach here, namely the size of the training set. The

motivation behind the work undertaken here is to try to automatically obtain

high level descriptions of existing code. For any approach to be of value, it

must be possible to develop such an approach based upon a relatively small

training set. If a large training set is necessary to enable effective

performance then the development effort required would render such an

approach useless.

This is a major constraint upon the development of an automatic indexing

approach, particularly as applied to source code. For example, if we have

twenty different descriptors of program function that we wish to apply to code

these will tend to be mutually exclusive. That is, in general, a piece of code

will perform only one main function that we will wish to index it by. The

question to be addressed is how large a training set will we require to achieve

a reliable estimate for the distribution of code functions across the general

population (ie obtain a reliable estimate for the prior distribution of code

functions)?

92

A rough estimate, based upon the optimistic assumption that examples of

each code function are evenly distributed throughout the code and that

examples of each function occur with equal frequency, suggests that a

training set of more than 1000 pieces of source code would be necessary for

reliable estimates to be obtained. (This estimate assumes that an estimate

should be within +1-10% of the true figure, with a confidence of 90%). In

practice the assumptions on which this estimate are based will not hold and an

even larger sample would be required. Even so, 1000 pieces of code is still a

large volume of code to examine in detail for the sole purpose of allowing

subsequent code analysis. To make automatic indexing of code practical, a

method of parameter estimation that uses a far smaller training set is required.

An alternative approach to estimation of priors to that applied above is to

assume that we no nothing about the distribution of priors and assign values

that favour no possible assignment of one descriptor over another. This means

using a non-informative prior (see Berger 1980, pp82-90). In this case the use

of a non-informative prior involves setting the value of all the prior

probabilities, P (w e) equal. This is not the same as estimating that in the

population as a whole instances of all the function classes are equally likely

to occur across a particular population, it is simply using an estimate which

introduces the least assumptions about the population as a whole into our

calculations.

This use of a non-informative prior for indexing has empirical, as well as

theoretical, justification in the work of Fuhr (Fuhr 1989). In this work it was

found that setting all the values representing the probability of a document

being relevant to an arbitrary request to 0.5 produced better indexing results

on the test set than when values were assigned based upon the properties of

the training set. Of course, this will not always be the case, but the lack of

bias introduce by using a non-informative prior may often result in more

reliable performance. The use of non-informative priors will be used again

93

later to justify other parameter assignments.

5.6 Evaluation

The indexing problem is that of obtaining a document-descriptor relation

for a set of documents, this relation representing those descriptors that are

used to index particular documents. Evaluation attempts to quantify the

ability of a particular indexing approach to rank each document-descriptor

pair according to the suitability of the descriptor as an index term for the

document.

In addition to being able to evaluate the effectiveness of an indexing

strategy at providing a ranking of document-descriptor pairs, we also need to

be able to interpret the results of this evaluation with respect to the differing

goals of the research.

The motivations behind this work differ in their needs. To identify

software components in existing code it is necessary to rank documents across

a population of source code according to a particular descriptor, whilst for

redescribing source code we wish to rank a single piece of code with respect

to different descriptors. The approach to evaluation needs to be capable of

being interpreted as related either to the retrieval of code relating to

particular function across code, or to the ranking of document-descriptor pairs

for a particular piece of code.

5.6.1 Recall, precision and fallout

The effectiveness of various strategies for ranking documents has been the

focus of much research in information retrieval, mainly with respect to

document retrieval. The most commonly used measures of retrieval

effectiveness are the measures of recall, precision and fallout. The definition of

94

these measures are based upon partitioning the document collection up

according to the results of a request for documents.

A retrieval system can be thought of as determining a document-request

relation. The document collection can partitioned with respect to a particular

request into relevant and non-relevant documents. The collection can

similarly be partitioned, according to the results of retrieval, into retrieved

and non-retrieved documents. Recall, precision and fallout are then defined as

follows:

Recall —
No of documents retrieved and relevant
No of documents relevant in collection

Precision—
No of documents retrieved and relevant

No of documents retrieved

No of non-relevant documents retrieved
Fallout—

No of non-relevant documents in collection

The performance of a retrieval system is then often illustrated by

calculating an average of these values over a number of different requests, as

obtained at different values of the cutoff parameter which is used to control

the number of documents retrieved. These results can then be displayed

graphically either as a precision-recall graph or, less commonly, a recall-

fallout graph.

The notion of relevance as used in retrieval is directly analogous to the

role of correctness in indexing. In practice, both involve a subjective

judgement as to the content of a particular document. We can extend the

definitions of the above retrieval measures to act as measures of indexing

effectiveness as follows.

IC -II
Recall-

IC I

95

The set of possible document-descriptor pairs can be partitioned into two

sets representing correct, C, and incorrect C, assignments of descriptors to

documents in a way directly analogous to the partitioning of document-

request pairs into relevant and non-relevant sets.

Similarly given a particular cutoff value, we can partition the same set of

document-descriptor pairs into those that are accepted or rejected as correct

descriptors for the document by a particular indexing rule. This partitioning is

analogous to that of documents into retrieved and not retrieved. Using these

partitions we can reformulate the measures of recall, precision and fallout as

measures of indexing performance.

Given a set of documents (pieces of source code) D and a set of

descriptors, S, with which to index the documents of the collection, we can

define a set of all possible document-descriptor pairs X =DxS. We can then

partition this set, according to whether a particular element x =(d, ․) e X

represents an a priori correct indexing of d with s, into C and C as outlined

above.

The indexing procedure that is being evaluated can also been seen as

partitioning the set X into two subsets, I and I as follows:

xe I iffs is assigned as an index term of document d

xe I ifs is not assigned as an index term of document d

This formulation leads to the following definitions of the three measures:

IC/1	 I II
Precision-	 Fallout- 	 -

Ill	 ICI

Since there is a finite and small number of possible descriptors, we can

consider the performance of an indexing procedure over all possible

96

descriptors. This is unlike retrieval where we are considering retrieval

performance with respect to a very large number of possible queries. Thus in

the above definitions, the averaging of indexing performance over different

descriptors is implicit in the definition. Indeed, the averaging strategy used

implicitly here is equivalent to the strategy of micro-evaluation as used in

retrieval experiments (see van Rijsbergen 1979, p150). This averaging

strategy sees each document-descriptor pair as an independent test of the

performance of the indexing function.

It can immediately be seen from the above definitions that the pair of

measures most commonly used in retrieval evaluation, recall and precision,

are not suitable for our purposes. These two measures are not 'parallel' in the

sense that neither of these measures take into account the number of

documents incorrectly indexed. This is a recognised deficiency of recall-

precision output (Salton and McGill 1983, p176).

Recall and fallout are better in that recall measures the proportion of

document-descriptor relationships that are correctly accepted by the indexing

procedure, whilst fallout measures the proportion of document-descriptor

pairs incorrectly accepted. It is recognised that as a measure of retrieval

performance, recall-precision output is deficient in indicating the ability to

reject non-relevant documents .

It was also found to be more convenient to introduce a new measure,

based on fallout, which measures the proportion of document-descriptor pairs

correctly rejected. This measure is called rejection and is defined as follows:

ICfl	 III
rejection = 1—fallout = 1—	 _	 —	 _

	

id	 I	 I C I

This measure was introduced for the increased readability that it affords.

97

Using rejection instead of fallout allows the recall-rejection graph to be read

from left to right as the value of the cutoff X, is increased as opposed to the

less natural right to left reading necessary with a recall-fallout graph.

Intuitively, recall measures the proportion of correct assignments

compared to the total number of possible assignments that are 'retained' by

the indexing procedure, whilst rejection measures the proportion of incorrect

assignments that are 'filtered out' by the procedure. Thus we can envisage the

indexing procedure as a sieve which is intended to only allow the correct

document-descriptor pairs through.

By varying the value of the cutoff, different values of recall and rejection

will be produced. These can then be plotted to produce a graph. An example

of a recall-rejection graph is given in Graph 5.1.

100 —

80 —

60 —
Recall

(%)
40 —

20 —

I	 I	 1	 1	 I
20	 40	 60	 80	 100

Rejection (%)

o 	
o

Graph 5.1: An example of a recall - rejection graph

98

The recall-rejection graph will form the main medium for presenting the

results of the analysis. There is much information about the performance of a

particular decision procedure missing from the graph, but generally, the

closer the experimental curve is to the top right hand corner of the graph, then

the better the performance.

5.6.2 Interpreting the recall-rejection graph

Because of the nature of this particular experiment, we can make a

number of simplifications which make the results obtained easier to interpret

whilst still allowing the results to be compared with those obtained from other

information retrieval experiments. These simplification occur since in the

majority of cases source code can be considered as performing a single

function and hence is correctly indexed by a single descriptor. Further, this

assignment of descriptors is relatively clear cut so we do not need to consider

the problems involved in assessing degrees of 'correctness' or 'relevance'

often associated with other information retrieval domains.

If we wish to consider retrieval performance, then we can realistically

consider that most requests would be for code that performs a single function,

rather than for the retrieval of a document that is relevant to a set of

properties. Indeed, in a faceted classification scheme such as Prieto-Diaz's

(Prieto-Diaz and Freeman 1987), even the extension of the classification

scheme and indexing to other facets (such as object and medium) will not

destroy this property since these facets are treated as disjoint.

In sum this means we can see the problem of indexing source code as far

more of a pattern classification problem, where we wish to assign each piece

of code to a single class, than is usually the case in information retrieval

systems. However, it was not possible to initially frame the problem in this

way since this formulation ignores the possibility that a piece of source code

99

may be assigned none, one, or more correct descriptors, and it ignores the

importance of ranking in the evaluation.

This approximation means that given a particular point on a recall-

rejection graph, we can interpret that point as describing the misclassification

rate of the indexing procedure. In this view we can use the recall measure to

estimate the proportion of misclassifications due to failing to assign a correct

descriptor to a particular document, whilst the value of the rejection measure

can be used to estimate the proportion of misclassifications due to incorrectly

assigning a descriptor to a document. Given additional information, these

estimates can be used to estimate the overall misclassification rate for the

indexing procedure and so provide a good indication of the overall

performance of an indexing strategy.

5.6.3 Tests of significance

Given two recall-rejection graphs such as that it would be desirable to be

able to demonstrate that the one curve shows significantly better performance

than another. To do this would involve performing some statistical test of

significance.

Unfortunately, because of the nature of the investigation, very few of the

assumptions necessary for powerful statistical analysis of such data are met.

Most tests (such as Students t-test and the Wilcoxon signed rank test) depend

upon assumptions of normality and or symmetry. Neither of these assumptions

can be considered as holding in the data under investigation here.

The only test that is considered suitable for this kind of data by van

Rijsbergen (van Rijsbergen 1979, pp178-181) is the Ordinary Sign Test (see

Gibbons 1985, pp 100-106). Unfortunately this is a very weak test. Applying

this test to two plots, a and b, on a recall-rejection graph involves comparing

recall performance at fixed values of rejection along the graph. Values of + or

100

- are then assigned to each pair of values that show a significant difference.

Pairs of values that are considered equivalent are discarded. The numbers of

+ or - values observed are then compared with a significance value based

upon the possibility of such a distribution of + and - values occurring given

that there is no significant difference between the two curves.

This test is only of limited use because of problems in selecting which

points on the graph to use, and due to problems in deciding what counts as a

significant difference between points on the two graphs. However, this does

provide some indication of significance when graphs are close together.

5.7 Summary

Information retrieval aims to provide mechanisms for supplying users with

information (usually in the form of documents) which is relevant to a

particular query. Within software engineering the ability to retrieve

documents derived from previous projects, such as source code and designs,

and to be able to use these in new projects is seen as a major way of

facilitating the reuse of these software components.

To be able to retrieve components effectively it is necessary to be able to

classify them according to a software classification scheme. Current research

suggests that faceted classification schemes are better suited to software than

other approaches. Associated with such a classification scheme there is

usually a thesaurus. This allows control over the vocabulary of the retrieval

system by grouping related terms together to form term classes. This allows

control over synonyms and in most cases will improve retrieval performance.

To allow retrieval, software components must be indexed according to the

classification scheme. This involves assigning descriptors to the components.

Ideally, these descriptors should be indicative of the nature of the component.

The experimental work detailed in the following two chapters aims to use

101

information contained in a thesaurus as the basis of an approach to the

automatic indexing of source code.

The automatic indexing problem can be formalised using decision theory

as a series of independent decisions as to whether to assign a particular

descriptor to a piece of code. The success (or failure) of the indexing

approach can then be evaluated in a manner analogous to that used in the

evaluation of a retrieval system. The evaluation of the various indexing

approaches investigated here primarily use the measures of recall and

rejection.

102

Chapter 6

Experimental Design

6.1 Introduction

This chapter describes in more detail the experimental work carried out to

automatically index pieces of source code. Much of this chapter is concerned

with documenting the various indexing functions that were used to perform

this indexing. This is necessary to allow the results obtained from the different

approaches to be compared, and to allow these results to be compared with

any future experiments into the automatic indexing of source code.

6.2 Aims and Assumptions

The investigation into the automatic indexing of source code using non-

formal information was conducted using source code derived from IBM's

CICS on-line transaction processing product. Code derived from this product

was divided into two independent sets. One of these sets was used as a design

set to develop discriminant functions that were used to index the code. The

performance of these different functions was then evaluated using code from

the test set.

Two of the indexing functions developed represented simple measures of

thesaurus term occurrence within code, whilst the other indexing functions

were used to compare two different approaches to the development of

discriminant functions. One approach, the probabilistic approach was based

upon modelling the underlying 'mechanism' that is responsible for the

occurrence of thesaurus terms within code, whilst the Generalised Linear

Functions (GLF) approach uses the data obtained from the design set directly

to generate an indexing function.

103

The main assumptions on which the following work is based on are:

1. Statistical information about the occurrence of certain terms in a

section of source code can be used to provide information about the

nature of the code.

2. A piece of code can have zero (when no suitable class exists), one, or

more than one correct descriptor. Code that has more than one correct

descriptor corresponds to code that performs more than one function.

3. It is possible to develop a reliable indexing function based upon a

relatively small design set.

6.3 The Source Code

The code used for the investigation was derived from IBM's CICS

product. The CICS product has been on the market now for over 25 years and

consists of a suite of programs to allow application programmers to build

transaction processing systems. As such it is a complex and involved product

which has been developed over a long period of time.

The system is implemented as a series of modules with the code contained

in each module performing a number of related functions such as controlling

access to data structures, controlling concurrency, and configuring different

terminal types.

CICS is written in a mixture of 370/assembler and PL/AS. The source

code used in this study was written in PL/AS. This a fairly low level

procedural language similar to PL/1. PL/AS is what would be termed a

'structured' language apart from the following:

1. PL/AS allows multiple exit loops.

104

2. PL/AS allows 370 assembler to be interleaved in a PL/AS program

through the use of a GENERATE statement. This allows for

performance critical pieces of code to be written in assembler rather

than the slower PL/AS.

It should be noted that whilst these features of PL/AS have little effect on

the analysis performed here, the low level nature of much of PL/AS and

embedded assembler code would make detailed formal analysis of the code

very difficult to implement as part of a semi-automatic system for code

analysis. The difficulties encountered in formally verifying such code, even

when using verification tools such as SPADE, support this view (see Cane

and Clutterbuck 1988).

6.4 The Classification and Thesaurus

A scheme for classifying pieces of source code from the CICS product

according to the function performed was developed. This scheme was

developed to be in accordance with Prieto-Diaz's faceted scheme (Prieto-Diaz

1985). In practice, only the function facet of this classification was

implemented although this has subsequently been extended.

The classification provides 23 distinct classes which correspond to the

function that a piece of source code might be considered as implementing.

These classes are listed in appendix I. The classification scheme was

developed primarily through the examination of CICS source code and

associated documentation. Other software classification schemes and

consultation with CICS developers at IBM were also used in the development

and validation of this classification.

Terms used to describe the function of a program were collected and

grouped together to form a thesaurus class. These terms were derived from the

design set, and also from general literature on programming and design and

105

from the thesauri developed as part of the classification schemes of Prieto-

Diaz and Wood.

Each class was assigned a class descriptor. It is these descriptors that are

assigned to source code as result of the indexing process (manual or

automatic). For example, the thesaurus class which corresponds to the

programming function of performing a "search routine" is given below:

search = find, locate, look, scan, search, traverse

Each thesaurus class is intended to represent a particular cultural unit (see

Chapter 4) which delineates the field of software design. These cultural units

can frequently be considered as synonymous with the more colloquial

'concept'. Unlike some thesauri where a thesaurus entry is represented by a

meaningless identifier such as a number, the classes here are intended to

represent a cognitively meaningful unit.

One can consider each thesaurus class as having an intention and an

extension. The intention relates the thesaurus class to the intuitive notion that

the class is attempting to capture, for example the notion of <search> as

common to all the pieces of source code that are considered as "implementing

a search".

However, this intuitive definition is not sufficient to allow us to

automatically assign source code to a class that describes the functionality of

the code. We need a rule which allows us to determine whether or not to

assign a particular piece of code to a particular class. This is what the

approach to automatic indexing described here is attempting to do. It is trying

to supply a rule, based upon the elements of a thesaurus class, that allow us to

mechanically perform this assignation.

The decision was taken to use a classification for source code without any

hierarchical relationships (ie no generalisation/specialisation relationships

106

between classes), and to implement the thesaurus as sets of semantically

related terms for the following reasons:

• This approach is in accordance with the more general faceted schemes for

software classification developed by Prieto-Diaz (Prieto-Diaz 1985) and

by Wood (Wood 1987). This compatibility is important since one of the

assumptions on which the eventual applicability of this work is based is

that the classification and thesaurus are likely to be developed as part of a

domain model to enable software reuse. It is not expected that in general

the classification scheme and thesaurus will be developed solely for the

automatic indexing of source code.

• This classification makes evaluation of the results easier since either a

piece of code is clearly either correctly indexed as an instance of a

particular class or not. If a hierarchical classification were used, the

problem of evaluation would be complicated because of the need to assess

the accuracy of indexing in the case when code is indexed as belonging to

a more general or more specific class than might be considered ideal.

6.4.1 The lexicon

Any term from the thesaurus can occur in many different forms in the

program text, for example the term "add" may occur within text as "adds" or

"added". To be able to recognise these alternative forms it is necessary to

implement each term of the thesaurus as a set of lexical patterns that are

searched for in the source code. There are two ways of ensuring that lexical

patterns within source code are correctly identified as instances of terms from

the thesaurus. We can either use a stemming algorithm to automatically

normalise the terms that occur within the source code and the thesaurus, or we

can manually implement a lexicon which explicitly associates terms from the

thesaurus with patterns to be searched for.

107

Stemming algorithms can be used to reduce the variability associated with

the terms occurring in texts. In general such algorithms remove suffixes to

reduce words in the input to normalised stems, so for example "added" would

be reduced to "add". These word stems can then be used as the basis for

matching. This process is not error free since the removal of a suffix is not

necessarily context free, so for example, one would wish to remove the suffix

"ual" from "factual" but not from "equal". This problem can be partially

overcome by introducing context specific rules to the algorithm although this

adds to the complexity of the approach.

However, there is an additional drawback to using a stemming algorithm

to identify thesaurus terms within source code. The frequent use of

abbreviations within code and comments means that there are many non-

standard ways in which a thesaurus term may occur. Many of these shortened

forms would not be identified by a standard stemming algorithm. For example,

the use of "clefs" as an abbreviation for "definitions" or "tbl" for "table" would

not be recognised by a stemming approach to matching.

The frequent use of abbreviations in code suggests that to recognise

particular words it makes more sense to explicitly define a set of patterns that

are searched for as instances of that particular word. This involves developing

a lexicon which associates each word of the vocabulary of the system with a

set of patterns to search for within source code. The relationship between

class descriptors, the thesaurus, and the lexicon is illustrated in figure 6.1. The

lexicon developed for this project is listed in appendix 2 (this lexicon excludes

words which are assumed by default to exist as a plural, by adding suffix "s",

and in the past tense by adding the suffix "ed").

Lexicon entries: find I finds I found I fnd search* I srch
I
i

108

Class Descriptor: SEARCH

Thesaurus entries: find I locate I look I match I scan search I traverse

Figure 6.1: The relationship between the thesaurus and the lexicon.

6.5 Representing Source Code

In section (5.5.1) the idea of a relevance description, x=x(s,d), obtained

from document s with respect to descriptor d was introduced as the basis for

an indexing function. This section describes the form of the relevance

description used in this project.

In Chapter 5 it was assumed that x was a vector. The form of the relevance

descriptor used here uses a tree-like representation and so is not strictly

speaking a vector. However for each indexing function described, x can be

109

transformed into a vector and so for practical purposes there is no need to

make a distinction between these representations.

The two basic pieces of information recorded within the relevance

description, x, are to be

1. The number of descriptor instances found within the source code, s. That

is the number of times that a thesaurus entry relating to the descriptor d

is found within the code.

2. The length of the source code. This is defined as the number of words

(alphabetic strings of more than two characters excluding program

language keywords) contained within the code. It is only words that are

potential descriptor instances and so the measure of code length used

excludes any other expressions. This is so that in the probabilistic

indexing functions, length correctly relates to probability of occurence

of particular words.

Whilst for some of the indexing functions considered these two basic

measurements are sufficient, for some of the measures we need to consider

where in the source code descriptor instances have been identified. This is

done by considering the basic block structure of the code.

6.5.1 Basic blocks and program trees

PL/AS, in common with most programming languages, has a well defined

hierarchical structure. An example of some PL/AS code is given in figure 6.2.

The structure of code written in PL/AS can be considered as consisting of a

tree of basic blocks, with each basic block containing a linear sequence of

instructions. This tree is known as a program tree. The notion of a basic block

is frequently used in the program analysis techniques associated with

compilers and program verification (see Muchnick and Jones 1981, p10).

110

In practice, the use of a basic block here is slightly different from the use

made in other program analysis techniques since we explicitly wish to include

comments and labels within each block, rather than discarding them. In

practice this means that with each basic block derived from code we associate

the comments that are on the same line as the program statements and any

comments that precede the block. An example of part of the block structure

derived from the example source code from figure 61 is given in figure 6.3.

The approach taken here considers each basic block as an independent

section of code on which a measurement is taken. Thus, rather than consider

the source code as a monolithic whole, we can consider it as consisting of a

tree of basic blocks, with an independent relevance descriptions being

generated for each individual block. The set of these blocks then defines the

relevance description x for the whole code. This use of basic block structure

is not only of use in capturing structural information about the source code,

but is also of use in implementing some of the calculations required for

indexing functions.

Formalising this basic block representation, the relevance description x of

a piece of code s consists of a set of nodes A = fao, ... ,a,), where each

node represents a basic block of the original source code and sac, is the root of

the program tree tree. This situation is illustrated in figure 6.3.

We can define three functions on A which encode the information about

the source code and the program tree from which x is derived. These three

functions g, s and t, all map an aj EA to a positive integer. These enable us to

represent certain attributes of each block of the tree as follows:

• g(ai), or more conveniently gi , is the level of nesting of the node a i in the

program tree, with the level of nesting of the root node g0.

• si is the length (as defined above) of the basic block represented by ai.

111

	/*This procedure searches a hash table for a key
	 *1

HT_FIND: PROCEDURE;

/*get the hash value */
CALL DT_HASH;
INDEX = HASH_VALUE;
SEARCH_LENGTH = 1;
FIND_LOOP:
/*Scan the hash table looking for an entry which */
/*matches the given key	 *1

DO FOREVER;
IF EMPTY(INDEX) THEN /*empty slot*/

DO;
RESPONSE = EXCEPTION;
REASON = NOT_FOUND;
LEAVE FIND_LOOP;
END;

IF DELETED(INDEX) THEN
DO;
IF DATA(INDEX) = KEY THEN /*key matches! */

DO;
IF TMP(INDEX) THEN

TRACE = ADDR(DATA); /*save if nec*/
RESPONSE = OK;
LEAVE FIND_LOOP;
END;

END;
IF INDEX < HASH_MASK THEN /*wrap round*/
INDEX = INDEX + 1;

ELSE
INDEX =0;

SEARCH_LENGTH = SEARCH_LENGTH + 1;/*inc search length*/
END; /*FIND_LOOP*/

END; /*HT_FIND*/

Figure 6.2: An example of PLIAS code

• ti is the number of descriptor instances associated with the basic block

represented by cli.

The complete relevance description x=x(s,d) then consists of a 4-tuple

(A, v,s,g)

/*This procedure searches a
hash table for a key*/
HT_FIND: PROCEDURE

/*get the hash value*/
CALL DT_HASH
INDEX = HASH_VALUE
SEARCH_LENGTH = 1

,,,,,--

112

Figure 6.3: An example of block structure

From this representation we can easily recover the basic measurements of

the number of descriptor instances and of code length by defining two new

terms,

i =n
S = E Si
	 (6.1)

i =0

and

113

i=n
T = Eti
	

(6.2)
i=o

These terms, and the form of the relevance description described above will

be used to formulate the different indexing functions used.

6.6 Implementation

The system used for experimentation was implemented using Intellicorp's

KEE (Knowledge Engineering Environment) on a sun workstation. In

practice, most of the code was written in LISP with KEE being used to

provide support for object oriented programming and a graphical interface.

A simple parser was written which converted PL/AS source code into a

tree of basic blocks as described in the previous section, each block being

represented by a KEE unit (a unit is effectively a frame-like data structure).

These blocks could then be searched for the lexical patterns corresponding

to descriptor instances, the number of such instances found then being added

to the information contained in the unit. Code measurements could be

extracted from this representation, or in some cases, indexing functions were

applied directly to this tree structure. The values produced by applying an

indexing function then formed the basis for evaluation.

The system was implemented to be an experimental system and as such

the performance of the system was not considered as being a major issue

during development. Since the main function of the system was to perform

string searching and matching there is clearly scope for considerable

optimisation. In practice the system performed at an adequate speed for the

purposes of experimentation, taking about twenty minutes to process a

module of about 7000 'words'.

114

6.7 The Indexing Functions

A number of indexing functions were developed to automatically index

the design set. These functions were then evaluated on the test set to compare

their effectiveness. The indexing functions that were applied can be divided

into three groups.

• The Simple Indexing Functions - Measures of basic attributes of source

code are used directly as discriminant functions.

• Generalised Linear Functions - The design set is used to estimate the value

of the coefficients of a given function directly. The resulting function is

then used as a discriminant function.

• The 2-Binomial Model - A model of the occurrence of descriptor instances

within source code is described in terms of the Binomial distribution. This

model of source code is used to develop an indexing function based upon

the distribution of descriptor instances across the design set. This 2-

Binomial indexing function is then extended in two ways; one that aims to

provide a correction to this indexing function by taking account of terms

that have a high document frequency, and one that aims to use information

about where in the source code descriptor instances have been found.

6.8 The Simple Indexing Functions

Two simple indexing functions were used as a basis for comparison with

the more sophisticated techniques used later, and in the case of the keyword

function to provide evidence as to how the non-formal component of

proposed systems for redescribing source code might be expected to perform.

115

6.8.1 Frequency

This indexing function uses the frequency with which descriptor instances

occur within a piece of code as an estimate for the likelihood that such a

descriptor is a correct index term for the code. Formally, this frequency

indexing function is expressed as:

total descriptor instances	 T
g(x) —

length of code	 S

6.82 Keyword

Biggerstaff's and other approaches to redescribing software have

suggested using the presence of particular keywords in code to generate

hypotheses about the nature of the code. Specifically, they suggest using the

comments that introduce a procedure or similar section of code to generate

hypotheses concerning the function of the code.

To evaluate the performance of such an approach, an indexing function

based upon the number of descriptor instances identified in the root node of

the program-tree was implemented. This keyword function is defined as:

g (x) = to	 (F2)

The recall-rejection graph for this function consists only of a small

number of discrete points, corresponding to cutoff values of 2t..� 1,2,3,4,5.

_ (F1)

116

Although these points are joined together for clarity, there can be no

significance attached to any points other than those actually derived from one

of the above cutoff values.

6.9 Generalised Linear Functions

The use of generalised linear discriminant functions in pattern

classification applications is well established (see Duda and Hart 1973,

Chapter 5; Hand 1981, Chapter 4). This approach to pattern classification has

also been applied to automatic indexing of standard document collections

with good results (Fuhr and Buckley 1990; Fuhr 1989).

The technique applied here is one of a family of approaches which aim to

use the design set to estimate the coefficients of a given form of discriminant

function. These functions are defined to be linear functions of the elements of

the feature vector x= fx 1 ,x 2 , ... ,xd), so the aim of the approach is to

estimate the coefficients in a discriminant function of the form

g(x) -= a i z i +a 2x 2 +,...,+adxd	(6.3)

However, by transforming the feature vector into a vector of functions of x

and by and by generating the corresponding measurements on the design set,

x can be replaced by

0130 (x)= ((Di (x), 02 (x), ..., (D i (x) }	 (6.4)

In view of this transformation, we are no longer restricted to functions linear

in the xi . So for example we can consider polynomial functions of the x i , or

transformations of these elements, as our discriminant functions. Such

117

functions are termed generalised linear discriminant functions. We must now

describe how such functions can be estimated from the design set.

In Chapter 5 we stated that our decision rule based upon an indexing

function g (x) should be in the form of (5.7)

	

g (x) > X xe ni else xe 02	(6.5)

If we restrict the form of the indexing function g (x) to being linear in the

coefficients of the elements of x, then we can use the design set to estimate the

coefficients of this function. This is done by seeking to minimise the error

associated with this function according to some criterion, the result of which

is a discriminant function g (x). This is the approach described briefly below.

Firstly, we need to rewrite the form of (5.7) so that we can express the

problem of estimating the coefficients of g (x) in the form of matrices. Firstly,

we begin by attempting to find a linear indexing function

g (x) = vTx+v 0	 (6.6)

such that the decision rule (5.7) becomes

	

vTx+v 0 > 0 XE �21 else XE 02
	

(6.7)

We can further simplify by defining

zT = (1,xT) and wT = (vo,vT)	 (6.8)

We wish to find an estimate for the weight vector w using the elements of the

z...WT y i = ui (6.10)

118

design set. Given the decision rule above, a reasonable estimate would be one

for which:

wTzi > 0, xi is a member of col

wTzi < 0, xi is a member of (02

Where zr = (1,xT) and the xi are the elements of the design set.

To further simplify, we can define a new term yi such that:

1. yi = zi for xi a member of col

2. yi = —zi for xi a member of 0o2

Now our estimate of w requires that

wT yi > 0, for all yi derived from the design set 	 (6.9)

It is possible to estimate a value of the vector w using this inequality,

however, the approach taken here aims to find a vector w which satisfies the

set of linear equations

where the bi are positive constants associated with each of element of the

design set.

By setting Y= (
r i ,Y2, ... , y„)T and B .(b 1 ,b 2 , . . . , b,z)T we can express

the set of linear equations that we wish to solve in matrix form as

119

Yw = B	 (6.11)

For a given vector B we can minimise the least squares criterion

(Yw—B) T (Yw—B)	 (6.12)

to give a solution

iv = (yTy)_l yTB	 (6.13)

Given a particular value of B, the value of s7v can easily be computed using a

multiple regression algorithm.

The approach used here used a value for the vector B which corresponds

to solving the set of equations

n
wT yi =	 , for all xi a member of col

ni
(6.14)

n
wT y i =	 , for all x . a member of co2i

n2

where n 1 is the number of design set vectors from class w i (ie 'correct'

relevance descriptions) and n 2 is the number of design set vectors from class

co2 so n=n 1 +n 2 . The use of this vector is equivalent to calculating a solution

according to Fisher's criterion (see Hand 1981, p82-84).

120

6.9.1 Generalised Linear Indexing Functions

The performance of two functions, with coefficients calculated from the

design set as described above, was investigated. Both of these used the

natural logarithm of the length of the code, rather than the raw length, since

this improved performance.

The first function was linear in T and In(S)

g(x)=a i T +a 2 1n(S)	 (F3)

The second function was a quadratic in these two elements of x

g (x)=a 1 T+a 2 1n(S)+a 3 Tln(S)+a 4 T2 +a 5 1n(S) 2	 (F4)

6.10 The 2-Binomial Model

All the previous indexing functions have made no attempt to model the

underlying process responsible for the occurrence of thesaurus terms within

source code. The probabilistic model presented in this section aims to provide

such a model.

Provided such a model is appropriate, an indexing function based upon the

model should provide better and more flexible indexing. The disadvantages

are that the development of such a model tends to require the use of a large

amount of design data to obtain accurate estimates for the parameters in the

model. In practice, to enable a reasonable model to be developed using the

relatively small design set available here, a large number of simplifications

are required to enable the value of these parameters to be estimated.

n!
p (x) - Px!(n-x)! x(1-Pr-x (6.15)

121

The first part of this section describes a model of thesaurus term

production in source code. This is then used to develop an indexing function.

Two further extensions of this indexing function are then proposed.

6.10.1 Modelling source code generation

The model described here considers the occurrence of thesaurus terms

within source code to be the outcome of a Bernoulli process. A Bernoulli

process consists of a series of Bernoulli trials. Each trial can be considered as

an experiment which has only two possible outcomes, for example tossing a

coin. The outcome of a series of Bernoulli trials is modelled by the Binomial

distribution.

The model of the occurrence of index terms within source code presented

here views the production of each word of the original source code as a

Bernoulli trial. The production of each word is considered to be part of a

'random' process that generates the entire text. There is a probability p, that a

word produced will be a member of a particular thesaurus class, and a

probability (1-p) that it will not be a member of this class.

Given a particular value for p then the likelihood of finding x such terms

in a piece of code of size n is given by the Binomial distribution:

_
If we partition the set of relevance descriptions into the two sets C and C

corresponding to correct and incorrect descriptors for a piece of code as in

section (5.6) then we can suggest that the value of p responsible for the

occurrence of descriptor instances will be higher for those xe C than for those
_

XE C. This situation is shown in figure 6.4.

P

122

Figure 6.4: The two populations

If we can assume that the observed distributions of descriptor instances

are consistent with such a process, and provide estimates of the two values p

and q which represent the probability with which descriptor instances are
_

produced within source code corresponding to the sets C and C respectively

(this will be discussed later), then we can substitute the binomial distribution

directly into the likelihood ratio (5.4) to provide us with an indexing function.

(Note: This modelling of the occurrence of terms within a document is

very similar to that described in the 2-Poisson model that is often used in

information retrieval (van Rijsbergen 1979, p29; Fuhr and Buckley 1990).

The Poisson distribution is an approximation to the binomial for large n, but

this condition is not always satisfied here since we wish to apply calculations

to individual program blocks which may be of insufficiently large size.)

Substituting the binomial probability function in for p(x I wi) in (5.4) and

cancelling the binomial coefficient gives the following expression for the

likelihood ratio

px (1—p)z_x

qx (1-01-x
(6.16)

123

If we take the log of this we get a more convenient form to use as an indexing

function g (x)

g (x) = xlog2- + (n—x)log
q	 1—q

(6.17)

Rewriting this logarithmic version to calculate R at each node, and then

summing the resulting values we obtain the following expression for the code

as a whole

i =n
g (x) = E [vi log2 + (si —vi)log	 1

i =o	 q	 1—q
(6.18)

It is easy to show that this expression is equivalent to evaluating (6.17)

over the entire code since both are sums of sequences of Bernoulli trials.

6.10.2 Estimating p and q

The most detailed approach to indexing would involve estimating values

of p and q for each term in the vocabulary of the indexing system. However

this is not practical because of the restrictions we have placed on the size of

the design set.

Rather than estimating the values of p and q for each word of the

vocabulary, it is more sensible to conflate the terms and use values of p and q

estimated for the class as a whole. It has been shown theoretically that the

124

ability of specific terms to discriminate between documents is affected by the

frequency with which such terms occur across the document collection (Yu

and Salton 1977). For terms with a low document frequency (that is terms

that occur in very few of the documents of the collection) Yu and Salton have

shown that the ability of these terms to discriminate between documents can

be improved by conflating the terms into a thesaurus class (cf 5.4). Thus,

rather than attempting to estimate the values of p and q for each individual

term, we wish to estimate the values of p and q for the thesaurus classes.

However, there is a difficulty with estimating these values with respect to

a particular class based on the properties of the design set. The probabilistic

model presented above assumes that the values of p and q remain constant

regardless of the size of the code. This would entail that as the sat of the

source code increases, our certainty in any prediction about the nature would

increase (ie the larger the piece of code, the 'easier' it is to classify

correctly). Not only is this counter intuitive but measurements made on the

design set contradict this assumption. In practice the measured value of p

tended to decrease as the size of the code increased. To a lesser extent, q

tended to increase as the size of the code increases but this increase was

regarded as negligible. These results were backed up by the poor performance

of a likelihood estimate based on (6.18) with fixed values of p and q.

Unfortunately, this makes estimating p and q for each thesaurus class

infeasible since different estimates would have to be produced for different

ranges of size of source code. This would lead to very small samples upon

which to base any estimate and so a high degree of error would necessarily be

associated with any such empirical approach. Instead it was decided to

develop a model to explain the observed decrease in the value of p as size

increases. This again necessitated considering all thesaurus classes as being

identical in nature to enable the design set to provide enough information for

parameter estimation.

125

6.10.3 Explaining the observed decrease in the value of p

Initially the decrease in the observed value of p as size increased was

thought to be due to a reduction in the number of comments used as the size

of code increases, with most comments occurring as header comments to

describe the operation of the code and relatively few comments occurring

within code. However, an investigation of the variation of the size of

comments with the size of code conducted on the design set strongly

suggested that there was no such reduction in comment "density" as the size

of code increased (a linear relationship between code and comment size with

a correlation coefficient of 0.997 was observed).

An alternative explanation for the reduction in the apparent value of p

leads to a new model as to how descriptor instances are distributed within a

piece of code. The model is based upon the assumption that the decrease in

the value of p occurs because as the size of the code grows, a larger

proportion of the code performs operations not directly related to the main

function of the code, where the main function of the code is represented by the

thesaurus class which would correctly index the code. (In practice the source

code may implement more than one "main function" but including this

possibility here would only cloud the discussion and make no difference to the

model).

Since only the sections of code which directly implement this main

function will produce descriptor instances related to this function with the

higher probability p, then the frequency with which they occur over the whole

code will tend to decrease as the size of the code increases.

If we consider source code as a program tree of basic blocks (see figure

6.3), we can view this tree as possessing a subtree which contains only those

blocks of code that are directly related to the main function of the code. This

situation is illustrated in figure 63.

g1

g 2

g 3

126

g 0

Figure 6.5: The "relevant" subtree

In this figure, the complete tree represents the code as a whole, whilst the

tree which is marked by dashed nodes corresponds to those blocks of code

that directly implement the main function of the code. As code increases in

size, the ratio of the sizes of these two trees changes. This leads to a decrease

in the observed frequency of descriptor instances relating to the main function

of the code as the size of the tree increases.

We wish to find an expression for p either in terms of program size or the

number of nodes in the program tree. Two assumptions simplify the resulting

expression without making any significant difference to its final form. Firstly

log((n +1)(r-1)+1)
p — d

(n +1)logr
(6.19)

127

we can assume that the value of q is negligible (this is acceptable since q is

considerably smaller than p and so its effect can be ignored). This allows us to

disregard any contribution to the number of relevant index terms contributed

by blocks that are not concerned with the main function of the code. Secondly

we can assume that the growth of the sub-tree that implements the main

function of the code (dashed boxes) is linear. This is not strictly speaking a

correct assumption, but in practice it is the ratio between the growth rates of

the two trees and not their absolute values that is significant.

Given these two assumptions we get the following estimate for p in terms

of; the number of nodes in the program tree n +1, the mean rate of growth of

the program tree r, and d the frequency with which descriptor instances occur

within blocks that implement the function associated with that descriptor.

The value of d and r were estimated from the design set to be d=0.08,

r=1.5. Using these vales to estimate p was found to produce reasonably good

agreement with the observed frequency of descriptor instances from the

design set.

6.10.4 The 2-binomial indexing function

The 2-binomial indexing function is obtained by substituting (6.19) into

(6.18) to give an expression for the likelihood ratio for a piece of code based

upon the model of code generation described above. The value of q is

assumed to remain constant as the size of the code increases. This gives the

following expression for this indexing function

128

g (x) =
i=n

 Z rvi log2 + (si —vi)log-1-721	 (F5)

i =.9	 q	 1—q

where

log(0.5(n +1)+1)
p = 0.08

(n +1)log1.5

6.11 Term Weighting

Roughly speaking, the ability of a particular word to discriminate between

instances of classes depends upon the relative frequency with which that term

occurs in instances and non-instances of the class. The larger the ratio of

these two frequencies, the greater the discriminatory power of the term.

Initially, the idea of weighting the contribution of terms to an indexing

function to take into account the difference in the discriminatory power of

terms was considered to be undesirable. This was due to the advantages to

conflating low document frequency terms into a term class and because of

problems in producing reliable estimates of these term frequencies. For these

reasons, the values of p and q were left constant in the calculation. This

decision can again be viewed as the use of a non-informative prior, and so an

attempt to introduce the least bias into the indexing.

However it was noted that three terms from the thesaurus occurred far

more frequently in source code whose function was unrelated to their

respective thesaurus classes than other terms in the vocabulary. These words

were "set", "initialise" and "validate". It was decided to weight these terms to

reduce the influence that they had on the the 2-Binomial indexing function

(F5).

The difficulty associated with weighting is that the estimates of p and q

related to the frequency with which any term from the thesaurus class

129

occurred, rather than to the frequency with which individual members of the

thesaurus class occurred in code. Rather than readjust the system to deal with

individual weight for each member of the vocabulary it was decided to

implement the weighting by associating a weight c i with words that were to

be weighted, and considering the default weighting of all other terms to be

unity. Then, for each thesaurus term that is present in the source code, there

will be an associated weight ci . If we use equation (6.17) then there will be

precisely x such terms. The revised indexing function is as follows (with p

calculated according to (6.19) again):

g(x) = xlog + (n —x)log
1—p
— + E logci

q	 1—q

In practice, this involves associating a value with each term we wish to

weight, the contribution of this term to the final value of the calculation being

reduced by this value every time that particular term occurs.

To estimate the value of ci , note that this method of weighting is

equivalent to substituting ci (plq) for (p /q). Thus for the terms which we wish

to weight, we can estimate the value of c by considering the increase in the

value of q associated with the term. This leads to the values of logc i shown in

table 6.1 being estimated from the design set.

6.12 Tree Weighting

The final indexing function evaluated uses the structure of the program

code to weight the contribution of descriptor instances to the final ranking

value assigned to a relevance description. This involves incorporating the

assumption that terms closer to the root node in the program tree are likely to

be more indicative of the code's function than those lower in the tree.

(F6)

gi-F1
1

(6.20)

130

word ci logci

set 0.55 -0.6

initialise 0.6 -0.51

validate 0.65 -0.43

Table 6.1

The intention was to weight the whole tree, but primarily to increase the

importance of the high level nodes in the calculation but without rapidly

reducing the contribution of lower level nodes to a negligible level. This goal

was implemented by weighting the value of the evidence contributed by a

particular node in the program tree by

where gi is the generation of node ai , with the generation of the root node,

g o =0.

The choice of this function for weighting was based upon experimental

results that suggested that this weighting was the more effective than an

exponential denominator. This is prehaps because the proportion of the

indexing value contributed by successive generations decreases slower than

in the case of an exponential denominator although this hardly qualifies as an

explanation. The choice of an effective method of weighting requires further

investigation.

131

When applied to the probabilistic estimate (F5), this gives the following

expression for the tree weighted estimate (with p defined as a function of the

number of nodes in the program tree as in (6.19) again)

i=n 1
g(x) = E —

gi+1
[vi log2 + (si–vi)log-H

i .o	 q	 1–q
(F7)

132

Chapter 7

Results and Analysis

7.1 Introduction

This chapter describes the results obtained from applying the indexing

functions (F1-F7) defined in the previous chapter to code from IBM's CICS

product. This is then followed by a more detailed analysis of the results of the

experimentation.

7.2 The Design Set

The design set consisted of 155 pieces of source code of between 10 and

200 lines of PL/AS. These were derived from ten different modules that form

part of IBM's CICS transaction processing system. The only criterion used for

selection of code from the modules was that the code should be of suitable

size.

Each piece of code was manually assigned to zero, one, or more classes

according to the perceived function of the code. In most cases this assignment

was relatively straightforward with the vast majority of elements of the design

set being assigned to a single class which clearly corresponded to the function

of the code. This manual indexing of the design set was then used to allow

values to be estimated for the parameters used in some of the indexing

functions.

7.3 The Test Set

The test set was constructed in a similar way to the design set and

consisted of 149 pieces of source code. A comparison of some of the

133

Design set Test set

Number of pieces
of code

155 149

Mean length of
pieces of code

196 230

Pieces of code assigned
at least one appropriate
descriptor

148 122

Frequency of 'correct'
descriptor instances
in code

0.042 0.025

Frequency of 'incorrect'
descriptor instances
in code
(all thesaurus classes)

0.020 0.013

Best misclassification rate
(Tree-weighted F7)

0.12 0.26

Table 7 .1

properties of the two sets are given in table 7.1.

There were many more members of the test set that could not be clearly

identified (manually) as an instance of any of the classes of the classification,

27 as opposed to 7 for the design set. In these cases, the pieces of code were

not considered to have any correct descriptors. However it was found that in

both the design and test sets, whenever a piece of code could be assigned a

correct descriptor, the code always contained at least one related descriptor

instance. Thus all indexing functions apart from the keyword function (F2)

could achieve 100% recall given a sufficiently low value of the cutoff?.

Similarly, both the design and test sets had a minimum rejection rate of

around 75% since the indexing functions were not applied for a particular

thesaurus class unless at least one descriptor instance was found within the

- - - --,.	 ,
1
1
1

60 —
Recall

(%)
40 —

134

code.

A discussion of the results obtained on the test set are given below, before

making some more general observations about the performance of the

approach to automatic indexing of source code developed here.

7.3.1 The simple indexing functions

80	 85	 90	 95
	

100
Rejection (%)

test set

- - - - design set

Graph 7.1

A comparison between the use of the frequency (F1) and keyword (F2)

estimates on the design and test set are given in graph 7.1. In both cases, the

keyword function is illustrated by the jagged line whilst the results of the

frequency indexing function give a smoother curve. This graph illustrates the

poorer performance of the indexing functions on the test set as opposed to the

design set.

135

It also illustiates the way that the keyword indexing function (F2) is

volatile in its performance. Although this function performed very well on the

design set, performing far better than the frequency indexing function, its

performance degraded considerably when applied to the test set.

Perhaps most significantly, whilst the frequency indexing function could

achieve a recall value of 100% on the test set the keyword function could

only achieve a recall of 86.7% on the same set. This suggests that when

analysing source code for the presence of terms that may be indicative of

code function, analysing the entire code significantly improves the likelihood

of locating a relevant term.

7.32 Generalised linear functions

Graph 72 illustrates the results obtained by applying the two indexing

functions (F3) and (F4) to the test set. The results obtained by applying the

frequency indexing function (F1) to the test set are also included for the

purposes of comparison.

These results support those obtained by applying a similar approach to

automatic indexing to more standard document collections (Fuhr and Buckley

1990; Fuhr 1989) in showing significantly better indexing performance

obtained through the use of a quadratic rather than a linear indexing function.

The quadratic indexing function performed only slightly better than the

frequency function. This was disappointing since on the design set, this

function (F4) performed considerably better than the frequency function. This

was because the increased average length of the code in the test set made

apparent the poor performance of the indexing function on large pieces of

code. Because of the low proportion of large pieces of code in the design set

the discriminant function estimated from the design set did not perform well

on code of large size.

136

100 —

80 —

60 —
Recall

(5') 40 —

frequency (Fl)

_ _ - - linear GLF (F3)

........ quadratic GLF (F4)

20 —

0 	 1	 I	 1	 I
80	 85	 90	 95	 100

Rejection (%)

Graph 72

7.33 The 2-Binomial functions

Graph 7.3 displays the results for the 2-Binomial indexing function (F5)

and the tree weighted version of this function (F7). Again, the frequency

function (F1) is included for comparison.

Clearly, both these two functions perform better than the frequency

measure, with the tree weighted version providing the best performance of all

the indexing functions (significantly better than the unweighted version (F5)

using the sign test at a confidence level of >99%). This result supports the

hypothesis that terms found near to the root node of a program tree tend to be

more indicative of the code's function than those found lower down in the

tree.

In contrast, the term weighted refinement of the 2-Binomial approach (F6)

was found to make very little difference to the performance of the indexing

function. For this reason these results are not illustrated on a graph here. It

100 —

80 —

60 —
Recall

(67°) 40 —

20 —

frequency (F1)

- - - - 2-Binomial (F5)

	 tree weighted (F7)

137

0 	 1	 1	 1
	

1

80	 85	 90	 95	 100
Rejection (%)

Graph 7.3

was not considered that an extension of this approach would lead to

significantly improved performance, especially considering the effort required

to obtain values for the term weights. (Indeed, one study of approaches to

automatic indexing found that by replacing weighted values estimated from

the design set by values equivalent to the use of a non-informative prior

indexing performance was improved (Fuhr 1989))

In practice, the 2-Binomial approach proved to be relatively unaffected by

differing values of the parameters used in the function. This is just as well

since the frequency with which terms from the thesaurus were identified in

source code was considerably lower for the test set than for the design set. By

readjusting these parameters, better performance could be achieved on the

test set although not to any major degree.

138

7.4 General Results

The graphs; graph 7.1, graph 72 and graph 7.3 illustrate the more

significant results obtained from the test. In general the results obtained for

the different indexing functions on the test set were comparable to those

obtained from the design set, however, the performance of the indexing

functions was significantly poorer on the test set. This is to be anticipated

since the design set was used for the initial construction of the thesaurus and

the indexing functions.

On closer analysis this poorer performance was related to two features of

the test set:

• The average length of the code in the test set was greater than that of the

design set (mean length of 230 words for the test set as compared with 196

for the design set). As the length of code to be classified increases, the

difficulty of classifying it also increases. This feature of source code is

predicted theoretically by the model proposed in section (6.9.3), and was

also observed in practice.

• The frequency with which correct descriptor instances occurred in the test

set was lower than that of the design set (independent of code size). There

were two reasons for this; firstly that the vocabulary of the classifier was

not extensive enough (that is there were some terms that should have been

included in the thesaurus but were not), and secondly in the test set the

conjoining of terms to make compound words (such as "addchar") was far

more common than in the design set.

Although no formal analysis of the relative contribution of these two

features was undertaken, the problem of compound words was far more

significant in producing misclassifications. In practice it was found that the

thesaurus was relatively adequate as is shown by the result that in both the

design and the test set, all pieces of code were found to contain at least one

139

descriptor instance from the thesaurus class by which the code was a priori

indexed.

Unsurprisingly, the more sophisticated approaches provided better

performance, with the tree weighted extension of the 2-Binomial model

performing the best. In comparing the results of the GLF functions and the 2-

Binomial functions it is necessary to consider the difference in development

the two approaches take.

The GLF approach is very easy to implement and the development of such

an indexing strategy is more straightforward than that associated with the 2-

Binomial model. However, this ease of development also leads to a lack of

flexibility of the approach with respect to the 2-Binomial approach. In a

sense, this can be seen as a consequence of the large number of parameters

available for 'tuning' in the 2-Binomial model, which makes the model very

flexible although this does raise problems of obtaining values for these

parameters.

Perhaps the most important distinction to be made is in the ability of the

tree-weighted function to utilise information about where in a piece of code a

descriptor instance has occurred. It is difficult to see how such information

(which was included in the 2-binomial model as a built-in assumption about

the nature of source code) could be utilised in a GLF style approach without

leading to a large increase in the size of the design set required for this

approach.

7.5 Analysis of Errors

The performance of an indexing function can be seen as a test of a

decision rule which is used to assign a relevance description x to one of two

classes, co l and o02 as described in section (5.5).

140

If g(x) is the calculated value of an indexing function, then the decision

rule can be seen as a test between two hypotheses. The null hypothesis Ho

that x was not derived from code that is correctly indexed by descriptor d, or

the alternative hypothesis H 1 that x was derived from code that is correctly

indexed by descriptor d.

We can then divide the errors of the decision procedure into errors of type

I and errors of type II. Type I errors are those that result in the null hypothesis

Ho being wrongly rejected, that is a piece of code is erroneously assigned a

descriptor d. Type II errors are those that result in Ho being wrongly

accepted, that is a descriptor d is wrongly rejected as being a correct index

term for the source code.

The values of these errors at any particular point can be derived from the

rejection-recall graphs since the type I error rate (%) is equal to 100-rejection

whilst the type II error rate (%) is equal to 100-recall. The following provides

some specific reasons for misclassification.

7.5.1 Type I errors

There were observed to be three main causes of type I errors:

1. The main reason for pieces of code being wrongly assigned a descriptor

was due to a words from the thesaurus being located in code when the

word is being used in a different context from that intended by its

inclusion in the thesaurus. This often took the form of a verb intended to

indicate the occurrence of and action being used as a noun to describe

some data-structure related to the verb function.

An example of this would be the use of the term "deletes" to

describe objects that have been marked as deleted as opposed to

signifying the operation of deleting some entity from a composite

141

structure.

2. In some pieces of source code, sections of the code performed functions

peripheral to the main function(s) of the code. In some cases this led to

the code being incorrectly considered as implementing this peripheral

function. This was particularly common in large pieces of code where

much of the code deals with ensuring that preconditions are met before

performing the main operation.

3. The final reason for this form of error came about through the common

use of terms from the vocabulary of the system to describe aspects of

the code's operation, or in some cases the mechanisms through which

the main function of the code was implemented. An example of this sort

of usage would be the following in the comments for a procedure,

"/*This procedure sets the delete flag to '0'*/.

This final sort of error was generally restricted to the use of commonly

occurring terms. It was the elimination of this sort of error that lead co an

attempt to weight these terms accordingly in the term weighted function (F6),

although this attempt was unsuccessful in practice.

The difficulty of using such frequently occurring terms (as shown by the

results of this weighting) is that they tend to be very poor discriminators of

the function of the code. However, removing such terms from the vocabulary

of the indexing system leads to a reduction in the recall performance of the

particular indexing function over the thesaurus class of which that term was

previously a member. However, it will improve the rejection performance of

the classifier over the other classes of the classification.

Yu and Salton (Yu and Salton 1977) suggest that such commonly

occurring terms should be combined with other terms to improve their

performance as document discriminators, however it is hard to see what terms

one could combine to improve performance of indexing on source code.

142

Whilst in natural language text, the use of synonyms and near synonyms is

commonplace to prevent the overuse of a particular word, within source code

the terms used to describe particular operations are normally used

consistently throughout a piece of code.

7.52 Type II errors

Errors of failing to correctly assign a descriptor to a piece of code again

fell into three categories.

1. Descriptor instances were present and identified in the code but not in a

high enough frequency to enable indexing.

2. Descriptor instances were present in the code but frequently were not

identified as one of patterns specified by the lexicon. The most usual

reason for this was that words were run together to form compound

identifiers. For example, due to the workings of the string matcher, the

token "add" would be recognised in "add_pct" it would not be

recognised in "addpct", thus information that could be used in indexing

is lost in this second version.

In one module, used as part of the test set, nearly all the names of

the procedures were in this compound and un-analysable form. This

inevitably lead to poor performance (at least, poorer than possible) on

this sample of code. It is difficult to see how this problem could be

overcome without the implementation of a complex and time consuming

pattern matching algorithm. To be able to split compound expressions

such as "addpct" would require considerable information concerning

specific naming conventions, and any implementation is likely to lead to

side effects in the sense of introducing more incorrect matches into the

indexing process.

143

3. Descriptor instances were present in the code but these words had not

been included as part of the vocabulary of the system. In practice, this

was rare.

7.6 The Effect of the Vocabulary on Performance

The effect of the vocabulary on performance was not studied directly,

however the results of work on document retrieval systems are comprehensive

enough to allow generalisation to this study. In considering how the

vocabulary of the system could be extended, we must consider two different

ways in which this extension may occur. Either new terms may be added to

existing thesaurus classes, or entirely new classes may be added to the

classification scheme.

The addition of new terms to an existing thesaurus class will tend to

increase recall at the expense of the rejection rate. Clearly any increase in the

vocabulary must improve (or at least, not diminish) the recall performance of

the system. However such an increase in the vocabulary often leads to an

increase in the number of type II errors, that is an increase in the number of

pieces of code wrongly indexed by a particular class descriptor.

In this particular case however, most of the terms that are likely to be

added to the existing classification scheme will be terms that occur with very

low frequency across samples of source code, the more frequently occurring

ones will already being included as part of the vocabulary of the system.

These new terms will be highly specific, only occurring in code where the

code's function corresponds to that of the thesaurus class to which the term is

a member. Thus recall is likely to be improved due to a small number of cases

that are now correctly indexed by the enlarged vocabulary but were not so

with the original thesaurus classes. However, the low document frequency of

these new terms implies a high specificity, that is, these new terms are

144

unlikely to introduce any extra "noise" into the system since they will

probably only occur in the context of code that is correctly indexed by the

relevant descriptor.

In the second case where new classes are added to the classification

scheme, a different effect should occur. There is likely to be little effect on the

recall performance (unless the new thesaurus class proves particularly good

or bad at classifying code according to function), whilst there will be a

considerable decrease in the rate of rejection associated with the automatic

indexing.

The introduction of a new class is will probably introduce new terms into

the vocabulary with a high document frequency. If this does occur then terms

from this new class will significantly increase the amount of "noise" terms

identified in source code. Individual pieces of code will contain descriptor

instances from the new class, as well as descriptor instances of the pre-

existing classes. This is will necessarily increase the number of type-II errors

associated with any particular value of recaff.

There are further problems associated with the expansion of the

vocabulary through the addition of new thesaurus classes. These involve the

way that as more classes are used to cover the domain, the classes are bound

to become less disjoint and leading to problems caused by the occurrence of

homographs, that is words with the same spelling but different meanings.

As the number of thesaurus classes increases, we can expect the

conceptual distance (see Prieto-Diaz 1985, p115) between the classes in the

classification to decrease. In practice this means we can expect to see the

same or closely related terms present in distinct thesaurus classes. This will

lead to an increase in the number of misclassifications of code through type II

errors. Similarly, as more classes are added to the classification we can

expect problems with homographs occurring in the vocabulary. An example

145

of such a homograph might be the use of the term "add" to describe both a

numerical calculation and an operation on a data structure.

These difficulties begin to define an upper limit to the accuracy that can be

obtained by an approach to the automatically indexing source which is based

upon statistical pattern recognition. Some of these problems could possibly be

overcome by increasing the sophistication of the thesaurus as is outlined in

the next chapter. In general though, the statistical approach is limited since it

considers only the raw data. No attempt is made to consider the context of

occurrence of certain terms (apart from their position in the program tree).

Many of the problems associated with this kind of statistical approach are

directly related to this failure to use context.

7.7 Comparison with Other Experiments

To further assess the performance of the approach to the automatic

indexing of source code investigated here it would be useful to compare its

performance with that of other, similar, experiments. Unfortunately, the only

comparable experiments are a small and relatively informal study carried out

by Wood as part of his work in developing a software components library

(Wood 1987, p61) and a similar study by Maarek and Smadja (Maarek and

Smadja 1989).

In his study, Wood used the presence of keywords in the description of

Unix utility components to enter that component in the related class of the

classification. Stemming software was used to improve the performance of his

system in recognising keywords. He reports that about 70% of these

components were inserted into appropriate classes although he does not report

the percentage incorrectly entered into categories.

This compares with 86.7% of pieces of code from the test set entered in an

appropriate class using the keyword estimate and 100% when considering the

146

whole code. It is difficult to draw any conclusions here because of the

informality and lack of information about Wood's experiment. However, this

result does suggest that the use of thesaurus classes and the use of explicit

lexical patterns to recognise index terms within text, as opposed to using

stemming software, does improve performance.

The study by Maarek and Smadja (Maarek and Smadja 1989) was similar

to Wood's. They attempt to index Unix components through the analysis of

the associated manual documentation. Unlike Wood's approach which relied

on the prescence of keywords, they make considerable use of lexical relations

identified within the documentation as a basis for indexing. They report that

their indexing approach produced significantly better retrieval performance

than that achieved by the Unix "man -k" command but they do not provide

any more detailed results than this.

7.8 Applications

The reason for conducting this investigation was to show that non-formal

information can be made use of in tools for redescribing source code and in

software reuse. The next two sections describe how the results of this work

can inform these goals.

7.8.1 Application to redescribing source code

Perhaps the most significant result obtained from this study for approaches

to redescribing source code is the observation that for both the design and test

sets, in every case where the classification provided an appropriate descriptor

for the code then a relevant descriptor instance was identified somewhere

within the code. This result runs contrary to the common belief that non-

formal information, and particularly comments, are unreliable.

147

It is accepted that this result is to some degree specific to this set of

experiments since the code used was generally well commented, and that

different code could produce different results. However this does show that in

some cases non-formal analysis can be used to produce useful information

from code.

The most likely use for the kind of information produced here is to

generate high level hypotheses about the code's function. In this scenario,

given a piece of source code to analyse a system for redescribing source code

would first use non-formal information in source code to produce hypotheses

about the code's function, possibly through the use of an indexing function

similar to those developed here. These hypotheses would then be investigated

in more detail by the system.

The results from the test set strongly suggest that an analysis of the entire

code can produce far more information than considering only the root node of

the program-tree. This latter approach is the one being suggested by

Biggerstaff as a way of generating high level hypotheses about the code's

function. By only considering the root node some correct hypotheses may not

be generated when compared to analysing the entire code.

The penalty paid for analysing the whole code instead of just the root

node is in computational time because of an increase in the number of false

hypotheses generated. However computationally the approach is relatively

inexpensive, and in practice the ranking of hypotheses produced by an

indexing function could be used to effectively reduce the number of false

hypotheses investigated.

By ranking the hypotheses according to non-formal information only the

most interesting hypotheses need be investigated. The results obtained here

show that in most cases these would be those most descriptive of the code's

functionality and in only a very few cases would the hypothesis that

148

corresponded to the actual function of the code not be generated. This

suggests that such a top-down approach to redescribing source code could

produce considerable benefits.

Given a system similar to Wills' Recogniser (Wills 1990) or Ning's PAT

(Ning 1989; Harandi and Ning 1990) where high level design concepts are

related to code via a grammar of some form, dramatic improvements could be

made to performance by including non-formal analysis of the kind

demonstrated here. If one considers each high level concept to broadly

correspond to a class in a classification as developed here then even operating

without any cutoff this would leave only approx 4.5 classes (as opposed to 22)

to be investigated. (The ratio of 1:3.5 of the size of the sets corresponding to

correct and incorrect indexings when no cutoff was applied was surprisingly

constant between the design and test sets.) Clearly, in most cases, using non-

formal information of this form to limit the search space would produce very

significant improvements in performance.

7.8.2 Application to software reuse

There are two prospective uses for the approach to automatic indexing of

source code investigated here. Firstly, such an approach could be used to

index existing collections of software components, Secondly, such an

approach could be used to identify potentially reusable components in

existing source code.

The results here suggest that automatic indexing of software components

using non-formal information is feasible. To use such an approach in practice

would depend upon such code being reasonably well commented, however

this is not necessarily a drawback since good commenting and good

documentation is a prerequisite for software to be reusable.

149

The use of automatic indexing, based on an existing classification scheme,

is unlikely to perform as well in component retrieval as manual indexing

however it could present a cheap and labour saving alternative particularly

where there are large volumes of code to be indexed. More research though

would need to be done before undertaking such a task

Using non-formal information to locate potentially reusable components

in existing source code is one possible way of identifying components with

which to populate a reuse library. An approach similar to the one investigated

here could be used to trawl through large volumes of existing code to identify

code that performs a particular function. Candidates can then be ranked

according to the likelihood of them implementing that function(s), ie being

correctly indexed by a descriptor. Combined with other parameters to restrict

the volume of code retrieved such as code size, specific reusable components

could be identified within code at relatively little cost.

Furthermore, using non-formal information in the way described here is

likely to rank code that is well commented much higher than code that is

poorly commented which improves the likelihood of such code being suitable

for reuse. In this application, using non-formal information does not suffer

from the draw back of possible inaccuracy since potential components would

not be entered into a component library without further (human) analysis.

This should eliminate the possibility of a component being erroneously

assigned a descriptor.

7.9 Extensions

There are two main ways in which the approach presented here can be

extended to extract more detailed information from source code. Firstly, the

ability of a thesaurus based approach to classifying code according to

function could be extended by developing a more extensive thesaurus. This

150

mainly applies to the use of non-formal information in redescribing source

code. Secondly, the approach outlined here could be extended to index code

according to the objects that a piece of code manipulates as well as the code's

function. This mainly applies to the use of non-formal information as a means

of automatically indexing source code for reuse.

7.9.1 Extending the thesaurus

The thesaurus that was developed as part of this project is more correctly

described as a synonym dictionary. The reasons for using a very simple

thesaurus in these experiments were twofold, firstly to accord with the kind of

thesauri used in the classification schemes of Prieto-Diaz (Prieto-Diaz 1985)

and of Wood (Wood 1987) and secondly to reduce the difficulty of evaluating

the performance of the resulting indexing system.

The kind of use of non-formal information that Biggerstaff seems to be

intending to implement in his Desire system (Biggerstaff et al. 1989) would

appear to implicitly involve the implementation of a more detailed thesaurus

than the one used here. This thesaurus would appear to have many links to

both more general and more specific terms. These links are to be used to

guide the search for conceptual abstractions within source code.

Implementing such a thesaurus as part of an attempt to use non-formal

information in source code presents far more difficulties than the approach

suggested here, although potentially it could lead to far more powerful

analysis.

Using a thesaurus with links to related terms presents problems of

controlling "noise". Generally, as the vocabulary of the thesaurus increases

and the number of interconnections also increases there is likely to be an

increasing problem with controlling ambiguous and spurious relationships

between terms. Examples of these problems have already been given with the

151

use of "deletes" as both a verb and a noun, and the different interpretations

that can be applied to the term "add".

Controlling these problems generally involves being careful in the design

of the thesaurus, and also through using context to disambiguate terms. The

use of context could be particularly useful in linking together formal and

non-formal forms of analyses. For example, resolving the context of the term

"add" in source code may simply involve checking for the presence or

absence of a relevant numerical calculation. Many other ambiguities may be

resolvable in a similar way.

In general, the structure of source code and the limited vocabulary used

within code (as opposed to the full range of natural language) would suggest

that controlling the vocabulary used by a more complex thesaurus should be

possible with a little care. The results of the analysis here, as compared to the

results of similar experiments on general documents, further suggest that

source code is likely to be amenable to this form of analysis.

7.92 Extending the analyses

Currently, only the use of non-formal information to identify the function

of pieces of code has been pursued. Clearly, an important aspect of the nature

of a piece of code is not only what it does, but also what it does 'it' to.

Any practical software classification scheme must have the ability to

distinguish between components that manipulate different data structures or

entities. With the increasing popularity of object oriented approaches to

software development, particularly with respect to software reuse, it would be

useful to be able to extend the approach described here to include information

about the entities manipulated by a piece of code.

152

To do this is necessarily more complex than automatically indexing a

piece of code according to the function. Prieto-Diaz's faceted classification

scheme contains facets that are used to describe the objects manipulated by

the code. However, unlike the function facet where most code can be

adequately considered as performing a single function, Prieto-Diaz uses two

facets to describe the objects which are manipulated by the code.

These two facets, object and medium, describe what object(s) is

manipulated by the code, and what entity forms the medium in which this

manipulation occurs. In this way, software components can be retrieved

through queries of the form <function, object, medium>. Examples of such

triples might be:

<add, character, string>

<search, string, file>

<copy, list, buffer>

The difficulty with attempting to automatically classify code by the

entities it uses is illustrated in the above examples. In the first two examples,

the entity <string> appears both as object and as medium. It is quite common

for the same entity type to be able to appear as entries in different facets of a

component description. As far as automatic indexing is concerned, this means

that it is not enough to simply identify the entities used by a piece of code, it

is also necessary to identify the role that these entities fill.

One possible approach to the above difficulty is to partially order the

classes that used to describe the medium facet of the classification using a

"component_or relationship. This relationship would indicate when one such

class can potentially be components of a different class.

A more complex, but more powerful approach could be based upon the

use of templates to limit the number of combinations of descriptors that can

be applied. Wood's component descriptor frame representations could be used

153

to provide such a mechanism (cf 5.3).

Wood's (Wood 1987) approach to describing software components is

based upon conceptual dependency theory (Schank 1975). Component

descriptor frames (CDF's) describe a software component through the use of

an action which describes the function of the code. Each action provides a

skeletal CDF which is a frame like structure which specifies additional slots

representing objects associated with the action. These slots need to be filled

with appropriate objects to complete the CDF representation for a component.

For a particular domain, a number of skeletal CDF's and objects can be

defined.

Although Wood does not do so (though he does suggest such an extension)

it would be possible to constrain the range of possible object fillers for each

of the slots in a particular skeletal CDF. So for example, the range of values

for the destination slot of the skeletal CDF for the action of input-output could

be restricted to the subset of the possible objects that can function as input-

output destinations. Similarly, constraints could be applied between slots of a

particular CDF to represent information such as that contained in the

"component_of" relation above.

Applying these constraints would limit the number of possible

descriptions that could be applied to a particular piece of code. Implementing

such an approach to provide automatic indexing of source code could involve

developing some form of frame-based, predictive approach possibly similar to

that used in natural language summarisers such as Frump (DeJong 1982) and

IPP (Riesbeck 1982). These natural language based approaches, in common

with the development of CDF's, were based on conceptual dependency

theory.

Such an approach would involve using predictions as to the function

performed by the code (possibly in the manner investigated as part of this

154

thesis) to provide a range of hypotheses with which to describe the code,

represented by skeletal CDF's. Attempts would then be made to attempt to

find evidence in the source code to suggest particular fillers for the empty

slots in the description.

At this point here, the complexity of the approach increases dramatically

and rather than having a relatively simple and transparent approach to

analysing source code we begin to encounter problems more traditionally

associated with research in Artificial Intelligence and Natural Language

Processing in particular. These problems would include difficulty with

knowledge acquisition to supply the necessary domain knowledge, and

technical difficulties surrounding solving problems which involve satisfying

many competing constraints.

Also, the level of the description produced by such an analysis of source

code makes clear the similarity between redescribing source code and the

automatic indexing of code. This is because to effectively index source code,

the description must reflect the 'content' or `aboutness' of the code. In this

sense the content of the code can be considered to be reified in a redescription

of the code.

7.10 Limitations

The experimental results described above show how applications within

reverse engineering and software reuse may benefit from performing some

analysis of the non-formal information present in source code. In particular,

the results suggest that tools for redescribing source code could achieve

considerable improvements in performance due to the focusing of the search

space achieved by analysing the non-formal information in code.

However, these are improvements in performance rather than significant

improvements in the range and depth of code analysis that is possible. The

155

analysis technique itself is also limited. Code that is very sparsely commented

and poorly labelled will yield little information when its non-formal content is

analysed. Code in which comments and labels are inaccurate or misleading

will fail to produce any useful information via an analysis of its non-formal

content.

The experimental work here can be seen as one more approach which

aims to tackle the problem of the variety of ways that an individual 'design

concept' can be implemented. The approach to this problem taken here is to

attempt to correlate the occurrence of certain terms within source code with

the function of the code. This has been achieved with some success, but the

problem of the variation in the nature of source code still remains. This is

demonstrated by the considerably higher minimum misclassification rate

observed with the test set (0.26) as opposed to the design set (0.12). This is

despite both samples of code being derived from the same system.

Ways of extending the analysis to improve this performance have been

suggested. However, all the extensions and refinements to this analysis that

have been suggested above involve a considerable increase in complexity. In

general, these extensions all involve a move away from a straightforward

statistical analysis of the code towards approaches with far more in common

with the development of a 'knowledge based system'.

This trend towards increasing complexity of the systems required for

redescribing source code is echoed by the redescription tools described in

chapter 3. The penalty paid for this greater complexity is in increased

development effort. This increased development effort is usually manifested

by an increased proportion of time spent in performing domain analysis or in

'knowledge acquisition'. That is, less time (proportionately) will be spent on

technical aspects of development and more time will be spent in domain

specific tasks. This raises the question of how widely applicable such systems

may be.

156

The similarity in results and conclusions from this work and from other

attempts at developing redescription tools, despite widely disparate

techniques, strongly suggests that these results are a consequence of the

problem itself rather than the specific solution pursued. This hypothesis is to

be examined in the final chapter.

7.11 Summary

This chapter has described the results of an experiment to automatically

index pieces of source code by utilising the non-formal information present in

the code. The results of this experiment demonstrate how applications in

reverse engineering and software reuse could benefit from using a similar

analysis of the non-formal content of source code.

Ways in which this kind of code analysis could be extended to provide

more information about the nature of source code were outlined. However,

the results of the experiment here show that non-formal analysis fails to

significantly overcome the problems associated with the variety of ways thata

particular 'design concept' or 'plan' can be implemented in source code.

157

Chapter 8

Future Directions

8.1 Introduction

Much of the research work on tools to automatically redescribe source

code is based upon the assumption that the majority code can be adequately

described by a set of stereotypical 'design concepts' or 'plans'. A domain

analysis can identify these 'design concepts' and the different ways that they

can be implemented.

The major difficulty of this process, as perceived by the designers of such

systems, is to find a way to overcome the large variety of ways in which a

particular 'concept' or 'plan' can be implemented. Most research work has

focussed on finding ways to combat this variety. This has involved the use of

transformations based on mathematical properties of the code, the

development of grammars which explicitly list all the variants, and the use of

pattern matching techniques based upon distributed representations of domain

knowledge.

The experimental work described in the previous three chapters has

similarly aimed to attack this problem by analysing non-formal information in

source code. Whilst partially successful, the results of this experiment fail to

indicate that such an approach will significantly improve the ability of

redescription tools to identify different implementations of 'design concepts'.

This failure, and the similar failure of other redescription tools, motivates a

closer look at the assumptions underlying attempts to redescribe source code.

Any approach to automatically redescribe code uses some form of fixed

'classification', this can be considered as the set of higher level descriptions

or structures which are to form the basis of the new description (this is true

158

even for transformational approaches which search for patterns in the code

that can be transformed to a more abstract representation).

If we apply some of the arguments against the existence of a neutral and

objective universe of given objects and classes developed in chapter 4 to the

use of a classification for redescribing source code, the problem of the

variability of source code is recast. Rather than consider the problem of

accurately classifying source code as a problem of overcoming the diversity

of implementation, we need to consider the suitability of the classification

itself for describing the code.

Obtaining some form of higher level description of existing source code

can be seen as a problem of capturing the `aboutness' of a piece of code. The

notion of `aboutness' refers to the intrinsic subject of a document. This is

assumed to be to independent of the temporary use to which an individual

user may put the document (for a fuller discussion of `aboutness' see (Beghtol

1986)).

Once produced this higher level description of code can be considered as

a text in its own right. This text is obviously related to the original source

code, but what is the nature of this relationship? Beghtol (Beghtol 1986),

drawing upon the textual semantics of Van Dijk, notes that the aboutness of a

document depends not only on the contents of the original text, but also on

four extra-textual elements. These are given as:

1. The cultural tradition - this is broadly equatable to Eco's notion of

cultural units (cf 4.4)

2. The reality of the moment - this includes the reason why the reader is

reading the text.

3. The original author of the text - what was the intention behind the writing

of the text?

159

4. The percipient (reader) of the text - the person attempting to redescribe

the text (source code).

This list of extra-textual features which affect the `aboutness' of a

document (ie source code) suggests that the source code itself is far from the

sole determinant of what qualifies as a good description of the code. The

assumptions which underly attempts to automatically redescribe source code

insist that this aboutness relation can be approximated by a function of the

source code alone. This ignores the variability that can be associated with

these extra-textual features. The contribution of the cultural tradition is

especially important as has already been emphasised in chapter 4.

In certain areas, for example simple programming constructs and data

types, it is reasonable to expect some success in attempting to identify

(classify) these structures within code. With such fundamental and well

established structures, the redescription problem may well reduce to a

problem of formalising the cultural conventions which account for the

implementation and interpretation of these structures. As current research has

demonstrated, this is a difficult enough undertaking in itself.

However, identifying such simple structures in source code is far from

automatically producing designs and specifications from code. If we wish our

redescriptions of code to be at a high enough level of abstraction to enable us

to re-establish the link between code and the application, then the extra-

textual elements influencing the aboutness of a document presents more

serious obstacles to the automation of this process. We may find that our

understanding of the system will be affected by the way that the system is

currently used, we may wish to document the reasons as to why a particular

piece of code was implemented the way it is, and we will probably find that

different people conceptualise the workings of the same system in different

ways.

160

Reverse engineering can be viewed as the construction of a description of

an existing system, but this description is not constructed exclusively from

fixed, given, structures. The importance of the link with the application

ensures that, in a process similar to that which occurs in the early stages of

forward engineering, reverse engineering must construct not only a

description of the system but more importantly a language with which to

describe the system (Holmqvist and Andersen 1991, Turner 1987).

Any reverse engineering tool must be sufficiently flexible to allow this

construction of a description language. There must be flexibility in the tool

which will allow the extra-textual influences on the `aboutness' of the

original code to be incorporated into the new description. This is an

alternative way of noting the embeddedness of software systems. That is the

way that a software system acts on, and is acted on by its environment. This

environment includes not only software and hardware, but also the system's

users and the organisation within which the system works.

Any description of a system must take into account this embeddedness. In

redescribing source code this means that tools to support the redescription of

code must be able to incorporate concerns originating from the system's use

into the new description. Any tool which overly constrains the range of

descriptions which can be applied to code is likely to inhibit, rather than

facilitate, the reverse engineering process. This view also has implications for

the practice of software reuse since it suggests that there are limits to the

effectiveness of classifying software components in a manner that considers

them independently of their use.

The inherent originality and embeddedness of software systems would

seem to limit the usefulness of tools which aim to automatically redescribe

source code. Tools to redescribe source code will inevitably remain as tools,

and are unlikely to produce dramatic improvements to the practicality of

reverse engineering systems. Given that this is the case, then it is necessary to

161

give more consideration to the way these tools might actually be used than

has been done at present.

8.2 Maintenance in the Large

The tools described in chapter 3 have all been envisaged as being used to

analyse small parts of computer systems, either individual modules or

procedures. The process of analysing such small parts of a system as

compared to performing maintenance activities on the system are quite

distinct.

In practice, the source code is only one component of a large system. The

source code is one document amongst the many that are associated with a

piece of software. Specifications, designs, technical manuals, user manuals

etc. are all important parts of the system. Further, all such systems are

embedded in the real world, and so the way that the system is used and the

effect that the system has on users is also of importance in maintenance.

Systems development depends upon using an implicit set of values to

narrow down the focus of the development activity. Similarly, the way the

system is used and the way system features are communicated by users

constitutes a language which is central in determining the way the system is

perceived (Holmqvist and Andersen 1991). For successful large scale

maintenance, both these implicit values used and the meaning given to the

system by its users need to be uncovered.

Identifying these features associated with a system is not possible simply

by analysing source code. Thus the process of reverse engineering, and

similar maintenance activities, needs to consider the operation of the system

in situ, considering the systems situatedness both in terms of its original

development and the perceived need for the system at that time. Much of this

can involve studying the way that users give meaning to the operation of the

162

system by the interpretation of its actions (see for example Boland 1991).

Analysing a system in this way presents far more difficulties and is

perhaps far more central to successful maintenance than the process of

redescribing source code. It is this kind of shift in emphasis that motivated the

view of source code as text, and considering the semiotics of the text as a

basis for analysis.

This view of systems development and maintenance is consistent with a

process oriented view as opposed to a product oriented view (Floyd 1988).

The product-oriented perspective regards software as a stand alone product.

Such a product (which includes programs and documentations) is considered

to be independent of use. The process-oriented perspective considers software

to be embedded within a constantly evolving world. The software is viewed in

its connection to human learning, communication and work.

If the process oriented perspective is fully adopted the idea of

maintenance as a separate phase of the software lifecycle has to be rejected.

When a software system is considered within the context in which it is used,

the notion of software maintenance is replaced with seeing a software system

present in a constant cycle of change. This is a cycle of change in which there

is reciprocal action between the system and its environment, where the

interaction between the system and its environment is tailored by the users of

the system so that the system can support the needs of the users work

processes. Such a viewpoint suggests that future research in software

maintenance should place more emphasis on finding ways of analysing the

nature of this relationship between system and environment rather than on

tools which analyse the system in isolation.

163

8.3 Future Directions

The adoption of the process-oriented viewpoint is dependent upon the

rejection of a simplistic view of meaning, and in particular semantics, as

being concerned with ways of referring to an objective universe of fixed and

discrete objects. Chapter 4 was partly written in an attempt to refute this view

and so pave the way for a conception of meaning which emphasises the role

of culture, convention and communication. Whilst there have been many

generalised discussions about various conceptions of meaning, it seemed

useful to apply these arguments directly to the specific case in question,

namely source code, and so demonstrate the practical differences between

these two viewpoints.

On a wider basis, this perspective requires that research work notes the

situatedness of both the software system and the observer. This requires the

adoption of research techniques derived from the realm of the social sciences,

fields such as cultural anthropology and linguistics.

Key issues to be addressed in such studies would be the way in which

tools and methodologies for software development (including maintenance)

contribute to the way these activities are understood and conceptualised. Of

particular relevance to this thesis would be an investigation into the way tools

for redescribing source code may be used in practice, and the effect that this

may have on software maintenance and the way maintenance activities are

perceived.

Of particular use in this kind of study would be a semiotic framework

which recognises that when people act in an organisation (say in performing

maintenance) they do so through a variety of symbol systems, such as

language, technology and process. Semiotics, and in particular semantics, can

be used as a basis for studying many aspects of a software system. As well as

considering texts and verbal communication as sign systems, actions (both

164

human and computer) can also be interpreted as signs to be analysed.

Similarly tools, such as those for redescribing source code, and

methodologies can also be considered as constituents of sign systems

(Stamper 1987).

The nature of these sign systems will have effect on the process of

maintenance, and on the interpretation of the eventual outcome of

maintenance. An analysis of these sign systems may yield useful insights into

issues surrounding software development. These kind of studies focus on the

way that sign systems enable users to give meaning to system outputs,

including documentation. For examples of this approach to research in

information systems see (Boland 1991, Truex and Klein 1990, Boland and

Hirshheim 1987, Hirchheim and Klein 1986).

8.4 Summary

This thesis has tried to present a view that the field of software

maintenance could benefit from considering source code as a text. This

involves considering the role source code plays in providing a channel of

communication from human to human as opposed to the more restricted view

of its role in human-computer communication.

To accomplish this aim, this thesis has described one particular task which

a number of researches from different backgrounds are attempting to tackle -

that of producing high level descriptions of existing source code. This task

has been called here the task of redescribing source code and has been related

to research within the areas of reverse engineering and software reuse.

Some of the difficulties associated with viewing source code merely as a

means of human-computer communication have been highlighted in chapter 4.

The intention being to point to deficiencies of some existing approaches to

redescribing source and hence show that there is a need to consider non-

165

formal information in source code analysis. Using non-formal information in

the analysis of source code is characteristic of considering textual properties

of the code.

This view of source code is used to provide a new perspective on some of

the approaches to redescribing source code by relating these approaches to

similar work that aims to analyse natural language text. This also leads to

suggestions for new methods for analysing source code.

In addition to presenting a theoretical argument for considering source

code as text, an empirical investigation designed to support this view was

undertaken. This investigation attempted to use non-formal information in

source code as a basis for automatically indexing the code with descriptors

that correspond to the function of the code.

This practical work was carried out on commercially developed code. The

results obtained demonstrated that information about the nature of source

code can be obtained from considering non-formal features of source code.

This information could be made use of by tools to redescribe source code and

by tools to locate and index software components for reuse.

However, the results of the experimental work suggests that the use of

non-formal information by source code redescription tools will fail to

significantly reduce the problems associated with the wide variety of ways

that individual 'design concepts' or 'plans' can be implemented. This suggests

that some of the assumptions underlying attempts to develop tools to

redescribe source code may be inappropriate.

An application of the line of argument used in chapter 4 to critique current

approaches to redescribing source code to the process of redescribing source

code concludes that most attempts to develop redescription tools are overly

constricting in their conception of software maintenance and reverse

engineering. Following this line of reasoning suggests that future research

166

should consider in far more detail the way that redescription tools might be

used in practice. In particular, this research should be aware of the wider

environment in which system use and maintenance occurs and not consider

software systems and source code as existing independently of this

environment.

167

References

James P. Ambras, Lucy M. Berlin, Mark L. Chiarelli, Alan L. Foster, Vikki

O'Day, and Randolph N. Splitter, "MicroScope: An Integrated Program

Analysis Tool," Hewlett-Packard Journal, August 1988.

Victor R. Basili, "Reusing Existing Software," Report UMIACS-TR-88-72,

Institute for Advanced Computer Studies, University of Maryland, USA, Oct

1988.

C. Beghtol, "Bibliographic Classification Theory and Text Linguistics:

Aboutness, Intertextuality and the Cognitive Act of Classifying Documents,"

Journal of Documentation, vol. 42, no. 2, pp. 84-113, June 1986.

James 0. Berger, Statistical Decision Theory and Bayesian Analysis, Springer-

Verlag, 1980.

Ted J. Biggerstaff, J.C. Hoskins, and D. Webster, "DESIRE: A System for

Design Recovery," MCC Technical Report STP-081-89, May 1989.

Ted J. Biggerstaff and Alan J. Perlis Eds., Software Reusability: Concepts and

Models, 1, ACM Press, 1989.

Ted J. Biggerstaff and Alan J. Perlis Eds., Software Reusability: Applications

and Experience, 2, ACM Press, 1989.

Ted J. Biggerstaff, "Design Recovery for Maintenance and Reuse,"

Computer, July 1989.

168

R.J. Boland and R.A. Hirschheim (Eds), Critical Issues in Information Systems

Research, Wiley, 1987.

R.J. Boland, "Information System Use as a Hermeneutic Process,"

Weatherhead School of Management, Cleveland, Ohio, 1991.

C. Boldyreff, "Automating the Analysis of Source Code to Support Reuse: A

Survey of Relevant Work and Available Tools," Working Paper, Brunel

University, Uxbridge, 1989.

Cornelia Boldyreff and Jian Zhang, "From Recursion Extraction to

Automated Commenting," in Reuse, Maintenance and Reverse Engineering of

Software: Current Practice and New Directions, Unicorn Seminar, 29 Nov-1 Dec

1989..

C. Boldyreff, P. Elzer, P.A.V. Hall, U. Kaaber, J. Keilmann, and J. Witt,

"PRACTITIONER: Pragmatic Support for the Reuse of Concepts in Existing

Software ," in SE 90, Proceedings of Software Engineering 90, Brighton, July

1990.

C. Boldyreff and H. Albrechtsen, "Software Classification - A Brief Review

of Approaches," Working Paper, Brunel University, Uxbridge, Feb 1990.

Ruven Brooks, "Towards a Theory of the Comprehension of Computer

Programs," International Journal of Man-Machine Studies, vol. 18, 1983.

D. Brotsky, "An Algorithm for Parsing Flow Graphs," Tech. Report 704

(M.S. Thesis), Artificial Intelligence Lab. MIT., Cambridge, MA, 1984.

A.J. Brown, "Specifications and Reverse Engineering," Journal of Software

169

Maintenance, To be published 1993.

B. Carre and D.L. Clutterbuck, "The Verification of low level code,"

Software Engineering Journal, May 1988.

Yih-Farn Chen and C.V. Ramamoorthy, "The C Information Abstractor,"

IEEE, 1986.

Yih-Farn Chen, Michael Y. Nishimoto, and C.V. Ramamoorthy, "The C

Information Abstraction System," IEEE Transactions on Software Engineering,

vol. 16, no. 3, March 1990.

E.J. Chikofsky and J.H. Cross II, "Reverse Engineering and Design

Recovery: A Taxonomy," IEEE Software, Jan 1990.

T.A. Corbi, "Program Understanding: Challenge for the 1990's," IBM

Systems Journal, vol. 28, no. 2, Feb 1989.

S.P. Davies, "The Nature and Development of Programming Plans,"

International Journal of Man Machine Studies, vol. 32, 1990.

Gerald DeJong, "An Overview of the Frump System," in Strategies for

Natural Language Processing, ed. W.G.Lehnert and M.H. Ringle, L. Erlbaum,

1982.

F. Detienne and E. Soloway, "An Empirically-Derived Control Structure for

the Process of Program Understanding," Int. J. Man-Machine Studies, vol. 33,

pp. 323-342, 1990.

E.W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

170

Umberto Eco, A Theory of Semiotics, Indiana University Press, 1976.

Umberto Eco, The Role of the Reader, Hutchinson, 1979.

Norman E. Fenton and Agnes A. Kaposi, "Metrics and software structure,"

Information and software technology, vol. 9, no. 6, July/Aug 1987.

J.H. Fetzer, "Program Verification: The Very Idea," Communications of the

ACM, vol. 31, no. 9, September 1988.

R.K. Fjeldstad and W.T. Hamlen, "Application program maintenance study -

report to our respondents.," in Tutorial on Software Maintenance, ed. N

Zvegintzov, IEEE Computer Society Press, 1983.

C. Floyd, "Outline of a Paradigm Change in Software Engineering," Software

Engineering Notes, vol. 13, no. 2, pp. 25-39, April 1988.

J.R. Foster, A.E.P. Jolly, and M.T. Norris, "An Overview of Software

Maintenance," British Telecom Technology Journal, vol. 7, no. 4, Oct 1989.

W.B. Frakes and B.A. Nejmeh, "Software Reuse through Information

Retrieval," SIGIR Forum, vol. 21, no. 1-2, 1986-1987.

W. Frey, U. Reyle, and C. Rohrer, "Automatic Construction of a Knowledge

Base by Analysing Texts in Natural Language," in Proceedings 8th

International Joint Conference on Artificial Intelligence IJCAI 83, pp. 727-729,

Karlsruhe, 1983.

Norbert Fuhr, "Models for Retrieval with Probabilistic Indexing,"

Information Processing and Management, vol. 25, no. 1, pp. 55-72, 1989.

171

Norbert Fuhr, "Optimum Polynomial Retrieval Functions," in Research and

Development in Information Retrieval, ed. C.J. van Rijsbergen, ACM Press,

1989.

Norbert Fuhr and Chris Buckley, "Probabilistic Indexing from Relevance

Feedback Data," in Proceedings of the 13th International Conference on

Research and Development in Information Retrieval, Brussels, 5-7 September

1990, ed. Jean-Luc Vidick, Pub. Presses Universitaires De Bruxelles, 1990.

E.S. Garnett and J.A. Mariani, "Software Reclamation," Software

Engineering Journal, vol. 5, no. 3, pp. 185-91, May 1990.

J.D. Gibbons, Nonparametric Statistical Inference, Marcel Dekker, Inc., 1985.

D.J. Gilmore and T.R.G. Green, "Programming Plans and Programming

Expertise," The Quarterly Journal of Experimental Psychology, vol. 40A, no. 3,

1988.

Raymonde Guindon, "Knowledge exploited by experts during software

system design," Int. J. Man-Machine Studies, vol. 33, pp. 279-304, 1990.

M.T. Harandi and J.Q. Ning, "Knowledge Based Program Analysis," IEEE

Software, Jan 1990.

John Hartman, "Understanding Natural Programs Using Proper

Decomposition," in 13th I.C.S.E., May 1991.

John Haugeland, Artificial Intelligence: The Very Idea, MIT Press, 1985.

P.A. Haulser, M.G. Pleszkoch, R.C. Linger, and A.R. Hevner, "Using

172

Function Abstraction to Understand Program Behaviour," IEEE Software, Jan

1990.

H.S. Heaps, Information Retrieval, Academic Press, 1978.

R. Hirchheim and H. Klein, "The Emergence of Pluralism in Information

Systems Development," RDP 86115, Oxford Institvre of Information

Management, Templeton College, Oxford, 1986.

C.A.R. Hoare, "An axiomatic basis for computer programming,"

Communications of the ACM, vol. 12, 1969.

B. Holmqvist and P.B. Andersen, "Language, Perspectives and Design," in

Design at Work, ed. Greenbaum and Kyng, Earlbaum, 1991.

James W. Hooper and Rowena 0. Chester, Software Reuse: Guidelines and

Methods, Plenum Press, 1991.

W.L. Johnson and E. Soloway, "Proust: Knowledge-based program

understanding," in Proceedings of the Seventh International Conference on

Software Engineering, Orlando, Florida, March 1984.

V. Karakostas, Automated Business Knowledge Acquisition from Programs,

Department of Computation, UMIST, Privately obtained 1991.

Gerhard Knorz, "A Decision Theory Approach to Automatic Indexing," in

Research and Development in Information Retrieval, ed. Gerard Salton and

Hans-Jochen Schneider, Lecture Notes in Computer Science, Springer-

Verlag, 1982.

173

Bogdan Korel, "PELAS - Program Error Locating Assistant System," IEEE

Transactions on Software Engineering, vol. SE-14, no. 9, Sept 1988.

A. Korzybski, Science and Sanity, The International Non-Aristotelian Library,

1958.

Wojtek Kozaczynski and Jim Q. Ning, "SRE: A Knowledge-based

Environment for Large Scale Software Re-engineering Activities," in

Proceedings of the International Conference on Software Engineering, IEEE CS

Press, 1989.

Imre Lakatos, Proofs and Refutations, Cambridge University Press, 1976.

F.W. Lancaster, Information Retrieval Systems - Characteristics, Testing, and

Evaluation, John Wiley and Sons, 1979.

K. Lano and P.T. Breuer, "From Programs to Z Specifications," in Z User

Workshop, Oxford 1989, ed. J. E. Nicholls, Springer-Verlag, 1990.

Adam, Anne and Jean-Piere Laurent, "LAURA. A System to Debug Student

Programs," Artificial Intelligence, vol. 15, 1980.

M.M. Lehman, "Programs, Life Cycles, and Laws of Program Evolution,"

Proceedings of the IEEE, vol. 68, no. 9, 1980.

M.M. Lehman and L.A. Belady, Program Evolution, Academic Press, 1985.

Philip Leith, Formalism in Al and Computer Science, Ellis Horwood, 1990.

D. B. Lenat, "AM: An Artificial Intelligence Approach to Discovery in

174

Mathematics," in Knowledge-Based Systems in Artificial Intelligence, McGraw

Hill, 1982.

Stanley Letovsky, "Cognitive Processes in Program Understanding," in

Empirical Studies of Programmers, ed. S. Iyengar, Ablex, Norwood NJ, 1986.

Stanley Letovsky, "Plan Analysis of Programs," YALEU/CSD/RR 662, Yale

University, December 1988.

Stephen C. Levinson, Pragmatics, Cambridge University Press, 1983.

Y.S. Maarek and F.Z. Smadja, "Full Text Indexing Based on Lexical

Relations," in SIGIR 89, ed. C.J. van Rijsbergen, pp. 198-206, ACM Press,

June 1989.

J.Q. Ning, "A Knowledge Based Approach to Automatic Program Analysis,"

Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana,

Illinois., 1989.

F. Nishida, S. Takamatsu, T. Tani, and H. Kusaka, "Text Analysis and

Knowledge Extraction," in Proceedings 11th International Conference on

Computational Linguistics COLING 1986, pp. 241-243, Bonn, 1986.

Paul W. Oman and Curtis R. Cook, "Typographic Style is More than

Cosmetic," Communications of the ACM, vol. 33, no. 5, May 1990.

Roger S. Pressman, Software Engineering: A Practitioners Approach, McGraw-

Hill, 1987.

R. Prieto-Diaz, "A Software Classification Scheme," Doctoral Dissertation,

175

Department of Information and Computer Science, University of California,

1985.

R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability," IEEE

Software, January 1987.

R. Prieto-Diaz, "Domain Analysis-. An Introduction," ACM Software

Engineering Notes, April 1990.

R.G. Reynolds, J.I. Maletic, and S.E. Porvin, "PM: A System to Support the

Automatic Acquisition of Programming Knowledge," IEEE Transactions on

Software Engineering, vol. 2, no. 3, Sept 1990.

Charles Rich, "A Formal Representation for Plans in the Programmer's

Apprentice," Proc of the 7th International Conference on Artificial Intelligence,

vol. 2, 1981.

Charles Rich, "The Layered Architecture of a System for Reasoning about

Programs," in Proceedings of the 9th International Joint Conference on

Artificial Intelligence, Morgan Kaufmann, 1985.

Charles Rich and Richard C. Waters, "The Programmer's Apprentice: A

Research Overview," Computer, Nov 1988.

Charles Rich and Richard C. Waters, The Programmers Apprentice, ACM

Press, 1990.

Paul Ricoeur, Hermeneutics and the Human Sciences, Cambridge University

Press, 1981.

176

C.K. Riesbeck, "Realistic Language Comprehension," in Strategies for

Natural Language Processing, ed. W.G. Lehnert and M.H. Ringle, L. Erlbaum,

1982.

C.J. van Rijsbergen, Information Retrieval, Butterworths, 1979.

R.S. Rist, "Plans in Programming: Definition, Demonstration and

Development," in Empirical Studies of Programmers, ed. E. Soloway and S.

Iyengar, Ablex, Norwood NJ, 1986.

S. Rugaber, S.B. Ornburn, and R.J. LeBlanc Jr, "Recognising Design

Decisions in Programs," IEEE Software, Jan 1990.

D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing, MIT

Press, 1986.

Gerard Salton and Michael J. McGill, Introduction to Modern Information

Retrieval, McGraw-Hill, 1983.

Robert J. Schalkoff, Pattern Recognition: Statistical, Structural and Neural

Approaches, John Wiley and Sons Inc., 1992.

R. C. Schank, Conceptual Information Processing, North-Holland/American

Elsevier, 1975.

R.C. Schank and R. Abelson, Scripts, Plans, Goals and Understanding,

Erlbaum, 1977.

Peter G. Selfridge, "Integrating Code Knowledge with a Software

Information System," in Proceedings 5th Annual Knowledge-Based Software

177

Assistant Conference, Syracruse NY, Sept 24-28 1990.

B. Sheil, "The Psychological Study of Programming," Computing Surveys,

no. 13, 1981.

Raymond M. Smullyan, Theory of Formal Systems, Princeton University Press,

1961.

Harry M. Sneed, "SOFTDOC Static Analyser," System Documentation,

Vers. 5, Munich, 1985.

Harry M. Sneed and Andras Merey, "Automated software quality

assurance," IEEE Transactions on Software Engineering, vol. SE-11, no. 9,

Sept 1985.

Harry M. Sneed and Gabor Jandrasics, "Software recycling," in Proceedings

from the Conference on Software Maintenance, Austin, Texas., Sept 21-24 1987.

E. Soloway and K. Ehrlich, "An Empirical Investigation of the Tacit Plan

Knowledge in Programming," in Human Factors in Computer Systems, ed. J.C.

Thomas and M.L. Schneider, Ablex, 1984a.

E. Soloway and K. Ehrlich, "Empirical Studies of Programming

Knowledge," IEEE Transactions on Software Engineering, vol. SE-10, no. 5,

September 1984b.

E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, "What Do Novices Know

About Programming?," in Directions in Human Computer Interaction, ed. B.

Shneiderman, Ablex, 1982.

178

J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,

pp. 42-51, Addison-Wesley, 1984.

K. Sparck-Jones, Automatic Keyword Classification, Butterworths, 1971.

Ronald Stamper, "Semantics," in Critical Issues in Information Systems

Research, ed. R.J. Boland and R.A. Hirschheim, Wiley, 198 -) .

Stan Szpakowicz, "Semi-automatic acquisition of conceptual structure from

technical texts," International Journal of Man-Machine Studies, vol. 33, 1990.

385-397

Ted Tenny, "Program Readability: Procedures Versus Comments," IEEE

Transactions on Software Engineering, vol. 14, no. 9, September 1988.

P. Tibbetts, "Representation and the realist-constructivist controversy," in

Representation in Scientific Practice, ed. S. Woolgar, pp. 69-84, Kluwer

Academic Publishers, 1988.

D. Truex and H. Klein, The Rejection of Structure as a Basis for Information

System Design, Presented at COSCIS, 1990.

Jon A. Turner, "Understanding the Elements of System Design," in Critical

Issues in Information Systems Research, ed. R.J. Boland and R.A. Hirschheim,

Wiley, 1987.

W.M. Turski and T.S.E. Maibaum, The Specification of Computer Programs,

Addison-Wesley, 1987.

Martin Ward, F.W. Callis, and M. Munro, The Use of Transformations in The

179

Maintainer's Assistant, Centre for Software Maintenance, University of

Durham, Privately obtained, Dec 1989.

Martin Ward, The Formal Derivation of Specifications from Code, Centre for

Software Maintenance, University of Durham, Computer Science Technical

Report, Privately obtained, Dec 1989.

A. Wasserman, "Information System Design Methodology," '111 Software

Design Techniques, ed. A. Wasserman, IEEE Computet Society Press, 1983.

Richard C. Waters, "A Method For Analysing Loop Programs," IEEE

Transactions on Software Engineering, vol. SE-5, no. 3, May 1979.

P. Wegner, "Capital-Intensive Software Technology," IEEE Software, vol. 1,

no. 3, July 1984.

Mark Weiser, "Program Slicing," IEEE Transactions on Software Engineering,

vol. 10, no. 4, July 1984.

H. Wertz, Automatic Correction and Improvement of Programs, Ellis Horwood

series in Al, 1987.

B.L. Whorf, Language, Thought and Reality, MIT Press, 1956.

S. Wiedenbeck, "Processes in Program Comprehension," in Empirical Studies

of Programmers, ed. S Iyengar, Ablex, Norwood NJ, 1986.

L.M. Wills, "Automated Program Recognition," Tech. Report 904 (M.S.

Thesis), Artificial Intelligence Lab. MIT., 1986.

180

L.M. Wills and C. Rich, "Recognising a Programs Design: A Graph Parsing

Approach.," IEEE Software, Jan 1990.

L.M. Wills, "Automated Program Recognition: A Feasibility

Demonstration," Artificial Intelligence, no. 45, pp. 113-171, 1990.

T. Winograd and F.C. Flores, Understanding Computers and Cognition, Ablex,

1986.

N. Wirth, "Program Development through Stepwise Refinement,"

Communications of the ACM, vol. 14, no. 4, pp. 221-227, April 1971.

Ludwig Wittgenstein, Remarks on the Foundations of Mathematics, Basil

Blackwell, 1978.

Murray Wood, "Component Data Frames: A Representation to Support the

Storage and Retrieval of Reusable Software Components," PhD. Thesis,

University of Strathclyde, 1987.

Murray Wood and Ian Sommerville, "An Information Retrieval System for

Software Components," Software Engineering Journal, Sept 1988..

C.T. Yu and G. Salton, "Effective Information Retrieval using Term

Accuracy," Communications of the ACM, vol. 20, no. 3, pp. 135-142, March

1977.

181

Appendix 1

Thesaurus Classes

abend = (abend abort quit)

activate = (activate initiate start)

add = (add include insert push)

allocate = (allocate allot assign)

backout = (backout undo)

commit = (commit consign)

create = (assemble build create generate make)

delete = (cancel delete erase purge remove strip)

free = (free discharge release)

get = (acquire choose extract get obtain)

initialise = (clear initialise)

process = (handle process)

quiesce = (quiesce shutdown silence sleep)

reply = (answer reply respond)

search = (find locate look match scan search traverse)

select = (choose decide extract pick select)

send = (communicate inform send tell)

set = (assign define reset set)

sort = (arrange order organise rank sort)

terminate = [cease complete finish stop terminate}

update = [change insert modify update}

validate = (check confirm validate verify)

wait = (hold remain wait)

182

Appendix 2

Lexicon Entries

acquire = acquir*

add = add I adds I added

answer = answer*

allocate = alloc*

arrange = arrange*

build = build I builds I built I bid

change = chang*

commit = commit*

communicate = communicat*

confirm = confirm*

create = create* I creation

delete = del I delete I deleted

free = free I freed I frees I freemain*

find = find I finds I found I fnd

get = get I gets I getmain*

handle = handl*

include = include*

inform = inform I informed

initialise = init I initiali*

insert = ins*rt*

make = make I made I rnk

process = process*

quiesce = quiesc*

release = release I released

reply = reply I replied

respond = respond*

scan = scan*

183

send = send*

search = search* I srch

sleep = sleep*

sort = sort I sorted

tell = tell I told

terminate = terminat*

update = updat* I upd

verify = verif*

	DX175215_1_0001.tif
	DX175215_1_0002.tif
	DX175215_1_0003.tif
	DX175215_1_0004.tif
	DX175215_1_0005.tif
	DX175215_1_0006.tif
	DX175215_1_0007.tif
	DX175215_1_0008.tif
	DX175215_1_0009.tif
	DX175215_1_0010.tif
	DX175215_1_0011.tif
	DX175215_1_0012.tif
	DX175215_1_0013.tif
	DX175215_1_0014.tif
	DX175215_1_0015.tif
	DX175215_1_0016.tif
	DX175215_1_0017.tif
	DX175215_1_0018.tif
	DX175215_1_0019.tif
	DX175215_1_0020.tif
	DX175215_1_0021.tif
	DX175215_1_0022.tif
	DX175215_1_0023.tif
	DX175215_1_0024.tif
	DX175215_1_0025.tif
	DX175215_1_0026.tif
	DX175215_1_0027.tif
	DX175215_1_0028.tif
	DX175215_1_0029.tif
	DX175215_1_0030.tif
	DX175215_1_0031.tif
	DX175215_1_0032.tif
	DX175215_1_0033.tif
	DX175215_1_0034.tif
	DX175215_1_0035.tif
	DX175215_1_0036.tif
	DX175215_1_0037.tif
	DX175215_1_0038.tif
	DX175215_1_0039.tif
	DX175215_1_0040.tif
	DX175215_1_0041.tif
	DX175215_1_0042.tif
	DX175215_1_0043.tif
	DX175215_1_0044.tif
	DX175215_1_0045.tif
	DX175215_1_0046.tif
	DX175215_1_0047.tif
	DX175215_1_0048.tif
	DX175215_1_0049.tif
	DX175215_1_0050.tif
	DX175215_1_0051.tif
	DX175215_1_0052.tif
	DX175215_1_0053.tif
	DX175215_1_0054.tif
	DX175215_1_0055.tif
	DX175215_1_0056.tif
	DX175215_1_0057.tif
	DX175215_1_0058.tif
	DX175215_1_0059.tif
	DX175215_1_0060.tif
	DX175215_1_0061.tif
	DX175215_1_0062.tif
	DX175215_1_0063.tif
	DX175215_1_0064.tif
	DX175215_1_0065.tif
	DX175215_1_0066.tif
	DX175215_1_0067.tif
	DX175215_1_0068.tif
	DX175215_1_0069.tif
	DX175215_1_0070.tif
	DX175215_1_0071.tif
	DX175215_1_0072.tif
	DX175215_1_0073.tif
	DX175215_1_0074.tif
	DX175215_1_0075.tif
	DX175215_1_0076.tif
	DX175215_1_0077.tif
	DX175215_1_0078.tif
	DX175215_1_0079.tif
	DX175215_1_0080.tif
	DX175215_1_0081.tif
	DX175215_1_0082.tif
	DX175215_1_0083.tif
	DX175215_1_0084.tif
	DX175215_1_0085.tif
	DX175215_1_0086.tif
	DX175215_1_0087.tif
	DX175215_1_0088.tif
	DX175215_1_0089a.tif
	DX175215_1_0090.tif
	DX175215_1_0091.tif
	DX175215_1_0092.tif
	DX175215_1_0093.tif
	DX175215_1_0094.tif
	DX175215_1_0095.tif
	DX175215_1_0096.tif
	DX175215_1_0097.tif
	DX175215_1_0098.tif
	DX175215_1_0099.tif
	DX175215_1_0100.tif
	DX175215_1_0101.tif
	DX175215_1_0102.tif
	DX175215_1_0103.tif
	DX175215_1_0104.tif
	DX175215_1_0105.tif
	DX175215_1_0106.tif
	DX175215_1_0107.tif
	DX175215_1_0108.tif
	DX175215_1_0109.tif
	DX175215_1_0110.tif
	DX175215_1_0111.tif
	DX175215_1_0112.tif
	DX175215_1_0113.tif
	DX175215_1_0114.tif
	DX175215_1_0115.tif
	DX175215_1_0116.tif
	DX175215_1_0117.tif
	DX175215_1_0118.tif
	DX175215_1_0119.tif
	DX175215_1_0120.tif
	DX175215_1_0121.tif
	DX175215_1_0122.tif
	DX175215_1_0123.tif
	DX175215_1_0124.tif
	DX175215_1_0125.tif
	DX175215_1_0126.tif
	DX175215_1_0127.tif
	DX175215_1_0128.tif
	DX175215_1_0129.tif
	DX175215_1_0130.tif
	DX175215_1_0131.tif
	DX175215_1_0132.tif
	DX175215_1_0133.tif
	DX175215_1_0134.tif
	DX175215_1_0135.tif
	DX175215_1_0136.tif
	DX175215_1_0137.tif
	DX175215_1_0138.tif
	DX175215_1_0139.tif
	DX175215_1_0140.tif
	DX175215_1_0141.tif
	DX175215_1_0142.tif
	DX175215_1_0143.tif
	DX175215_1_0144.tif
	DX175215_1_0145.tif
	DX175215_1_0146.tif
	DX175215_1_0147.tif
	DX175215_1_0148.tif
	DX175215_1_0149.tif
	DX175215_1_0150.tif
	DX175215_1_0151.tif
	DX175215_1_0152.tif
	DX175215_1_0153.tif
	DX175215_1_0154.tif
	DX175215_1_0155.tif
	DX175215_1_0156.tif
	DX175215_1_0157.tif
	DX175215_1_0158.tif
	DX175215_1_0159.tif
	DX175215_1_0160.tif
	DX175215_1_0161.tif
	DX175215_1_0162.tif
	DX175215_1_0163.tif
	DX175215_1_0164.tif
	DX175215_1_0165.tif
	DX175215_1_0166.tif
	DX175215_1_0167.tif
	DX175215_1_0168.tif
	DX175215_1_0169.tif
	DX175215_1_0170.tif
	DX175215_1_0171.tif
	DX175215_1_0172.tif
	DX175215_1_0173.tif
	DX175215_1_0174.tif
	DX175215_1_0175.tif
	DX175215_1_0176.tif
	DX175215_1_0177.tif
	DX175215_1_0178.tif
	DX175215_1_0179.tif
	DX175215_1_0180.tif
	DX175215_1_0181.tif
	DX175215_1_0182.tif
	DX175215_1_0183.tif
	DX175215_1_0184.tif
	DX175215_1_0185.tif
	DX175215_1_0186.tif
	DX175215_1_0187.tif
	DX175215_1_0188.tif
	DX175215_1_0189.tif
	DX175215_1_0190.tif
	DX175215_1_0191.tif

