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Abstract

The far-field response of a bi-axially pre-stressed incompressible elastic
plate, subjected to an instantaneous edge impulse loading, is studied us-
ing a refined long-wave low-frequency theory. The second order correction
introduced by the refined theory is demonstrated to smooth the disconti-
nuity associated with one of the wave fronts predicted by the leading order
hyperbolic theory. The character of so-called quasi-front is shown to de-
pend greatly both on the material parameters and pre-stress and may be
either classical receding or advancing. Additionally, and in contrast to the
analogous problem in linear isotropic elasticity, in a pre-stressed plate the
dilatational quasi-front may propagate slower than the shear wave front.
This situation is demonstrated to lead to the formation of a head-wave
quasi-front.

1 Introduction

Lamb’s problem, i.e. the problem of determining the response of an isotropic
elastic half-space to an instantaneous edge point loading, has become one of
the classical model problems for studying non-stationery phenomena in elastic
solids. The original problem, see Lamb (1904), is quite well understood now
due to works by Smirnov & Sobolev (1933), Petrashen’ et al. (1950), Cagniard
(1962), De Hoop (1960), etc. The formal equivalence between the plane strain
and plane stress problems of elasticity prompted Kaplunov & Nol’de (1992)
to consider a generalisation of Lamb’s problem, specifically the problem of in-
stantaneous loading of an edge point for a thin semi-infinite elastic plate. Their
study revealed considerable discrepancies between predictions of the plane stress
equations and the corresponding exact three-dimensional theory. It was in par-
ticular shown that the plane stress solution distorts the speed of propagation of
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the dilatational wave. The propagating discontinuity of the dilatational poten-
tial predicted by the plane stress theory should in fact be a smooth disturbance,
which we term as a quasi-front. It was also demonstrated that the principal fea-
tures of the response were well reproduced by a refined long-wave low-frequency
theory without having to resort to the exact equations of three-dimensional
elasticity. The complicated problem of refining edge boundary conditions was
avoided by using the method of matched asymptotic expansions. Specifically,
the outer problem was solved for non-refined plate theory and boundary con-
ditions. The effects of higher-order terms arising in the refined plate theory
were accounted for by the inner problem, considered in the vicinity of the char-
acteristics of hyperbolic outer problem. This approach was later successfully
extended to complicated geometries and other types of media by Kaplunov &
Nol’de (1995) and Emri et al. (2001).

This paper seeks to extend the aforementioned technique to the case of
pre-stressed incompressible elastic plates. The effects of pre-stress on elastic
wave propagation in incompressible media are considerable, see e.g. studies on
surface wave propagation by Dowaikh & Ogden (1990) and plane wave reflection
by Ogden & Sotiropoulos (1998). When studying the dynamics of pre-stressed
plates, Kaplunov et al. (2000) and Pichugin & Rogerson (2002) demonstrated
how variations in pre-stress may be used to change the type of generated quasi-
fronts from the classical receding to advancing. They also indicated the presence
of a new type of quasi-front in pre-stressed media, the bending quasi-front.
This front was studied by Kaplunov & Pichugin (2005). By introducing the
simplifying assumption of bi-axial primary deformations, the extensional long-
wave low-frequency theory for pre-stressed incompressible media may be made
formally equivalent to an analogous isotropic theory. This opportunity is used in
this paper to highlight possible deviations from the far-field responses normally
expected in respect of the isotropic plates.

2 Governing equations

2.1 Modelling of a bi-axially pre-stressed medium

We consider a body composed of an incompressible isotropic Green-elastic mate-
rial. It is pre-stressed, which implies here that it is statically and homogeneously
deformed from a natural unstressed state into a reference configuration Be. In-
cremental motions of the body may then be described by the following set of
equations of motion

Bmilkuk,lm − pt,i = ρüi , (1)

where comma and over-dot denote differentiation with respect to the indicated
space and time variables and the summation convention is employed, see Ogden
(1984). The vector function u specifies infinitesimal displacements of material
points in Be and the scalar pt is a time-dependant increment of the ‘pressure’
p ≡ p̄ + pt, the reaction stress necessary to accommodate the linearised incom-
pressibility constraint ui,i = 0. It is usually more convenient to relate the static
component of pressure p̄ to one of the principal Cauchy stresses; we therefore
note that p̄ = B2121 − B1212 − σ̄2, with σ̄2 denoting the normal Cauchy stress
at the upper layer face. It is also remarked that B is the fourth order tensor of
instantaneous elastic moduli evaluated in the Be.
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Figure 1: Semi-infinite plate subjected to an instantaneous impulse loading on
the edge segment.

In order to investigate transient wave phenomena in a semi-infinite layer,
it is convenient to introduce a Cartesian coordinate system with the origin in
the mid-plane of the layer, as shown in Figure 1. We further assume that
the principal axes of the primary homogeneous deformation coincide with the
coordinate axes. When the considered primary deformation is bi-axial, within
the plane of the layer, the only non-zero elastic moduli in (1) are given by

B1111 = B1133 = B3311 = B3333 , B1122 = B2211 = B2233 = B3322 ,

B1212 = B3232 , B2121 = B2323 , B1221 = B2112 = B2332 = B3223 , (2)
B2222 , B1313 =B3131 = −B1331 = −B3113 .

The incremental equivalent of the classical free face boundary conditions may
be derived from a linearised measure of incremental surface traction, which is
conveniently introduced in the following form

τn̄i = Bmilkuk,ln̄m + (B2121 −B1212 − σ2) um,in̄m − ptn̄i , (3)

in which vector n̄ defines the outward unit normal to a layer surface, σ2 is the
Cauchy stress in Be and summation over the repeated suffices is assumed.

2.2 Long-wave low-frequency theory for plate extension

It is a well known fact that for the majority of practical applications the far-
field transient response of thin structures is dominated by long waves, i.e. waves
whose wavelength is considerably greater than structure’s characteristic dimen-
sion, see Kaplunov et al. (1998). Use of various long-wave low-frequency struc-
tural theories has therefore become a customary approach when modelling tran-
sient phenomena in structures. In the case of a semi-infinite plate, the natural
choice of a small asymptotic parameter is η ≡ h/L, defined as ratio of the plate
half-thickness h to distance L from the point of loading O to an actual obser-
vation point. When η ¿ 1, it is possible to use a lower-dimensional asymptotic
plate theory to accurately describe the major features of the associated far-
field solution. The symmetry of a plate allows further simplifications by sep-
arating the long-wave low-frequency response into its symmetric (extensional)
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and anti-symmetric (flexural) components. These correspond to the classical
plate extension and bending theories, respectively. The anti-symmetric tran-
sient response of a semi-infinite pre-stressed incompressible plate subjected to
an instantaneous out-of-plane edge impulse loading has already been studied by
Kaplunov & Pichugin (2005), using the asymptotic theory derived by Pichugin &
Rogerson (2002). Thus, this investigation is focused on long-wave low-frequency
extensional motion, which may be described by the refined asymptotic theory1
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in which φ = φ(x1, x3, t) and ψ = ψ(x1, x3, t) are the usual dilatational and
distortional displacement potentials implicitly defined by
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where ui = u1(x1, x2, x3, t), i ∈ {1, 2, 3}, are the leading order plate displace-
ments. The material and pre-stress parameters in (4) and (5) are given by

ρc2
d = B1111 + B2222 − 2B1122 − 2B1221 + 2(B2121 − σ2) ,

ρc2
s = B1313 , ρE = ρc2

d −B1212 +
(B2121 − σ2)2

B2121
.

All quantities in (4), (5) are non-dimensional, assumed to be O(1), and related
to their dimensional counterparts through

x̂1 = Lx1 , x̂3 = Lx3 , t̂ = Lc0t , φ̂ = L2φ , ψ̂ = L2ψ , (7)

within which c0 is a chosen unit of speed and a hat denotes un-scaled dimensional
quantities. The non-dimensional dilatational cd and shear cs wave speeds are
both given in terms of c0, so that cd = ĉd/c0 and cs = ĉs/c0. This form of re-
scaling allows for clearer interpretation of the physical significance of subsequent
results.

Equations (4), (5) appear to be formally equivalent to the analogous long-
wave low-frequency models for isotropic plates. It is worth noting that the
decoupling of the dilatational and distortional wave fields, evident from these
equations, is only possible when the pre-stress within the plane of a plate is
bi-axial. As in the isotropic case, it is possible to demonstrate that the asymp-
totic theory (4), (5) can only be used to describe motions whose dominant
wavelength does not exceed η−4/5, see e.g. Kaplunov & Nol’de (1992). Also,
again in parallel with isotropic theories, we observe that higher-order correc-
tion terms only enter the governing equation for the dilatational wave potential.

1 The detailed derivation of a long-wave low-frequency model for extension of a bi-axially
pre-stressed plate is a laborious task and can hardly be justified within the scope of this paper.
A more general asymptotic model that is not limited to the requirement of bi-axial primary
deformations will become the subject of a separate forthcoming publication. Procedures for
the asymptotic derivation of structural models may be found in works by Kaplunov et al.
(1998) or Kaplunov et al. (2000).

4



This indicates the impossibility of a distortional quasi-front. However, possi-
ble parameter variations in the model demonstrate significant departures from
the classical isotropic theory. Firstly, while the coefficient E of higher-order
correction terms is always positive in isotropic elasticity, it may become nega-
tive in a pre-stressed medium, which in Section 3 will be demonstrated to alter
the type of generated quasi-front. Secondly, the local stability considerations
for isotropic media impose a requirement that cd > cs. This requirement no
longer holds for a pre-stressed medium, so that it is possible to choose finitely
deformed configurations where the dilatational wave will propagate behind the
shear wave, which we term configurations with slow quasi-fronts. It is not only
the order of arrival of the disturbances that is different in this situation; the
nature of the head-wave, generated by potential’s coupling at the plate edge,
changes from being essentially distortional to a dilatational. This also means
that the head-wave itself is to be smoothed by the higher-order correction of
our plate theory, a phenomenon discussed in Section 4.

2.3 Statement of the problem

We are ultimately interested in the far-field response of a plate, described by
the theory (4), (5), to an instantaneous impulse loading at an edge point, see
Figure 1. Thus, generally we need a method of prescribing three tractions at the
free edge of the plate. However, only two boundary conditions may be satisfied
with equations (4), (5). We therefore choose to prescribe the two tractions,
which are asymptotically leading for the considered motions, i.e. long-wave low-
frequency extensions. Specifically, the loading is applied according to

σ1 ≡ c2
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s)

∂2ψ

∂ξ2
3

= 0 , (9)

in which δ(·) is Dirac’s delta function, σ1 and τ13 are the normal and in-plane
tangential Cauchy stresses at the plate edge, respectively, Mn is the load mag-
nitude and

ρα = B2121 −B1221 − σ2 . (10)

As is customary for non-stationery loading problems, all functions occurring
in (4), (5) and (8), (9) are to be understood in the generalised sense. Thus pure
normal stress is to be applied instantaneously at the point O. This loading is
highly idealised; such degree of localisation both in space and time is hardly
realisable from the physical point of view. However, the far-field dilatational
response to this localised loading will be demonstrated to be smoothed and
strongly dispersive. For more realistic (less localised in space and/or time)
loadings the long-wave low-frequency analysis presented in this paper will be
even more relevant. We remark that the effects of an in-plane tangential loading
(τ13 6= 0) will not be considered in this paper.

Since τ12 is left unprescribed, we ought to expect the error of approxi-
mation for our boundary conditions to be O(η). Thus, generally the refined
theory (4), (5) cannot be used in conjunction with the leading order bound-
ary conditions (8), (9). In order to circumvent this difficulty the method of
matched asymptotic expansions may be applied, see e.g. Cole (1968). For an
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outer problem we use the leading order hyperbolic plate theory given by (4),
(5) with the higher-order terms omitted. This may be used in conjunction with
the boundary conditions (8), (9) to provide a leading order solution, which is
valid everywhere except in a vicinity of hyperbolic wave fronts predicted by the
leading order theory. The contribution of higher-order terms in (4) becomes
significant near the dilatational wave front. In an appropriately chosen inner
coordinate system these terms enter at leading order and describe the dispersive
smoothing of the discontinuity propagating along a characteristic. The asymp-
totic matching principle may then be applied to determine the leading order
solution valid in a vicinity of the dilatational quasi-front.

Validity of the described matching procedure may be justified by the fact
that any higher order correction terms, entering the boundary conditions (8),
(9), would only affect the second order amplitude of the outer solution, whilst
the phase would remain unchanged, see Kaplunov & Nol’de (1992). The leading
order far-field solution for a quasi-front is therefore essentially independent of
the boundary layers, predicted by the full three-dimensional theory near the
plate egde. This observation is by no means implying that these boundary
layers may be ignored when studying disturbance propagating near the edge.
However, the far-field response near the edge is usually dominated by the surface
(edge) wave, which makes solutions, describing any other features of the wave
field near plate’s edge, less useful.

3 Solution for a fast quasi-front

3.1 Outer problem

In solving the outer problem we closely follow the technique developed for the
isotropic plane strain problem by Petrashen’ et al. (1950). Their method of
contour integration is chosen because it offers clear physical interpretation for
the behaviour of obtained solutions. The leading order governing equations
corresponding to (4), (5) are considered in the form

c2
d
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∂x2
1

+ c2
d
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3
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3
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and are to be solved subject to the boundary conditions (8), (9) and zero initial
conditions, i.e. φout = φ̇out = ψout = ψ̇out = 0, when time t = 0. The formal
transform solution may then be derived by subsequent Fourier and Laplace
transforms of the leading order governing equations with respect to time t and
space variable x3, respectively. The resulting system of the ordinary differential
equations may be written as
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subject to the boundary conditions
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where zero initial conditions ensure the existance of the inverse Laplace trans-
form. General solutions of the boundary value problem (13)–(16) that decay as
s →∞ and therefore guarantee the necessary Laplace transform behaviour are
given by
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Using the symmetry of the solutions (17), (18) with respect to k3 we represent
the formal transform solution of the outer problem in the following form
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Equations (19) and (20) provide an exact solution to the outer problem. It is
complicated and computationally inefficient. However, this form of the solution
permits detailed asymptotic analysis for the principal features of the generated
disturbance, see Petrashen’ et al. (1950). Since we are interested in studying
the effects of the higher-order terms in equation (4), only the parts of response
featuring rapid variations of the dilatational potential φ are of primary interest.
With this in mind, we concentrate our further analysis on (19), omitting all
results for the distortional potential ψ for the sake of brevity.

For waves propagating in linear isotropic elastic media it is always the case
that cd > cs, meaning that the dilatational wave front, which is to be smoothed
by the higher-order plate theory correction, propagates faster than its distor-
tional counterpart. The situation is therefore termed here the case of fast quasi-
front. A solution in the vicinity of a wave front is dominated by short waves
(k3 À 1), which enables us to use the steepest descent method to evaluate the
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Figure 2: (a) The phase plane for the Laplace transform parameter p when
cd > cs. ± ips are the saddle points, ± icd and ± ics the branch points, ± icR

and 0 the poles of the Mellin integral within (19) and <(f(p)) 6 0 in the shaded
area. (b) The corresponding wave front configuration at the time instant t = 1,
where the bold line denotes dilatational disturbance.

Mellin integral within (19). First, it is convenient to introduce p ≡ s/k3 in (19)
so that

φF
out(x1, k3, t) =

icdcsMn

2π2k3
×

∫ σ′+ i∞

σ′− i∞

(α + p2)
R(p)
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(
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√
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})
dp , (21)

R(p) = cdcs(α + p2)2 − α2
√

c2
s + p2

√
c2
d + p2 .

Square root values are fixed by requiring that arg
√

c2
d + p2 = arg

√
c2
s + p2 = 0

when p > 0. Branch cuts are introduced from the points ± icd and ± ics parallel
to the negative part of the real axis, see the phase plane depicted in Figure 2(a).
In order to ensure that the transient disturbance decays as it propagates away
from the plate edge, we need the real part of the phase function

f(p) ≡ pt− x1

cd

√
c2
d + p2 , (22)

to be negative along the integration contour. This occurs when <(p) < 0, as
well as when p is within the ellipse

<(p)2

x2
1

+
=(p)2

c2
dt

2
=

c2
d

c2
dt

2 − x2
1

, (23)

see the shaded area within Figure 2(a). The saddle points of f(p) are given
by ps = ± icd/ζ, where ζ2 ≡ 1 − x2

1/c2
dt

2, hence behind the dilatational wave
front |ps| > |cd| (both potentials must be equal to zero before the arrival of
wave fronts). The integration contour may therefore be chosen to go through
the saddle points while remaining in the shaded area, as shown in Figure 2(a)

8



by the thin solid curve. The corresponding leading order steepest descent ap-
proximation of (21) has the form

φF
out(x1, k3, t) =

Mn

√
2cdζcsx1(c2

d − αζ2)<(
exp

(
i
{
k3cdtζ + π

4

}))
√

π2t3k3
3

(
cscd(c2

d − αζ2)2 + α2ζ2 x1
t

√
c2
d − c2

sζ
2
) + O(k−1

3 ) ,

(24)
see Erdélyi (1987). The approximation (24) is only valid provided k3 À ζ−1,
which in particular means that (24) is invalid at the tip of the wave front. This
does not indicate a non-uniformity of the behaviour of solution (21), but only a
non-uniformity of the approximation itself; for account of a similar problem see
Kaplunov & Pichugin (2005).

It is worth remarking that although the contour that we have chosen satisfies
all of the necessary requirements for the steepest descent method, approxima-
tion (24) may become quite inaccurate away from the dilatational wave front,
especially for relatively small values of k3. The results may be considerably
improved by moving the integration contour across the =(p) axis as shown in
Figure 2(a) by the dashed line. The contributions from the Rayleigh poles2 ± icR

and the double static solution pole at 0 will then enter the approximation, see
Petrashen’ et al. (1950). However, for our purposes the outer solution (24) is
sufficient.

3.2 Inner solution

The contribution of the higher-order terms in the refined equation (4) is partic-
ularly significant in the vicinity of the dilatational wave front predicted by (11).
This is best accounted for by introducing an appropriate system of coordinates
associated with the wave front. Thus, we introduce inner coordinates defined
implicitly by

x1 = cdτ cos θ , x3 = cd

(
τ sin θ +

ηεξ

sin θ

)
, t = τ . (25)

This coordinate system is very similar to the one developed by Kaplunov &
Nol’de (1995). An arbitrary point M is characterised by its distance ξ from the
dilatational wave front along Ox3 and the angle θ between Ox1 and the point
where ξ = 0, see Figure 3. The scaling parameter ηε ‘magnifies’ the vicinity of
the wave front, so that the parameter ε serves as a logarithmic measure of the
quasi-front width, which is O(η−ε). It may then be established that the fourth
order derivative terms in (11) are balanced with the second order derivative
terms when ε = 2/3, with an appropriate leading order inner governing equation
having the form

φin

τ
+ 2

∂φin

∂τ
+

E
3c4

d

∂3φin

∂ξ3
= 0 , (26)

in which φin ≡ φin(ξ, θ, τ). This one-dimensional equation is easy to solve using
the Fourier transform with respect to ξ. The general transform solution of the

2 In the context of the dynamics for semi-infinite plates the Rayleigh-type denominator
R(p) and the associated poles characterise the long-wave low-frequency component of an edge
wave, i.e. the wave confined to the plate edge and exponentially decaying away from it.

9



O
x1

x3

cst

cdt

M

θ

ξ

Figure 3: The system of inner coordinates for the dilatational quasi-front.

inner problem is then given by

φF
in(ξ, θ, τ) =

Cin(kξ, θ)√
τ

exp

(
i
Eτk3

ξ

6c4
d

)
, (27)

where kξ is the wave number associated with ξ.

3.3 Asymptotic matching procedure

The unknown function Cin(kξ, θ) in (27) is to be determined by the method of
matched asymptotic expansions. Here we use a simple matching principle of the
following form: an inner limit of the outer solution must be equal to an outer
limit of the inner solution. We begin by substituting the outer variables, defined
by (25), into the inner transform solution (27) and taking the asymptotic limit
as η → 0. The outer limit of (27) may then conveniently be given in terms of
inner variables as

φF
in(ξ, θ, τ) ∼ Cin(kξ, θ)√

τ
. (28)

The inner limit of the steepest descent approximation (24) of the outer solution
is found using the similar procedure. In terms of the inner variables it has the
following form

φout(ξ, θ, τ) ∼ Mncscdη
1/3

√
2π3τRin(θ)

∫ ∞

0

sin
(
ξkξ +

π

4

) dkξ√
k3

ξ

, η → 0 , (29)

where we have defined

Rin(θ) =
cs(c2

d − α sin2 θ)
cos θ

+
α2 sin2 θ

√
c2
d − c2

s sin2 θ

(c2
d − α sin2 θ)

. (30)

The divergent integral in (29) must only be understood as a formal statement of
the fact that within the vicinity of the wave front φout(ξ, θ, τ) is asymptotically
equal to the high frequency contributions of the Fourier transform. The contri-
bution of the pole kξ = 0 must be ignored. The divergence of this integral is
caused by the (essentially local) change of variables p ≡ s/k3 performed in (21).
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The matching procedure is implemented by re-casting (29) in the form of a
double-sided Fourier transform integral and then comparing the result with (28).
The resulting function Cin(kξ, θ) may be written as

Cin(kξ, θ) =
(1 + i )Mncscdη

1/3

2
√

πk3
ξRin(θ)

. (31)

By inserting (31) into the inner solution (27), and using the symmetry of the
resulting inverse Fourier transform integral, the quasi-front asymptotic repre-
sentation for the dilatational wave potential may be given in the following form

φin(ξ∗, θ, τ) =
Mncscd

√
|sin θ|√

2π3τRin(θ)

∫ ∞

0

sin

(
ζξ∗ − Eτζ3η2

6c4
d

∣∣sin3 θ
∣∣ +

π

4

)
dζ√
ζ3

, (32)

within which ξ∗ = ξη2/3/ sin θ. This in particular means that

ξ∗ =
1
cd

(
x3 −

√
c2
dτ

2 − x2
1

)
, (33)

see (25). By combining this relationship with the high wave number approxi-
mation (32) we arrive at the following asymptotic expressions for the in-plane
displacements in terms of the (ξ∗, θ, τ) coordinate system

u1 =
Mncsc

2
d

√
τ3 cos θ√

2π3Rin(θ)
√
|sin θ| Φ

(
ξ∗,− Eτη2

6c4
d

∣∣sin3 θ
∣∣

)
, (34)

u3 =
Mncs sgn θ

√
|sin θ|√

2π3τRin(θ)
Φ

(
ξ∗,− Eτη2

6c4
d

∣∣sin3 θ
∣∣

)
, (35)

in which we introduced the following special function

Φ(x, ε) =
∫ ∞

0

cos
(
xk + εk3 +

π

4

) dk√
k
≡ 2

∫ ∞

0

cos
(
xt2 + εt6 +

π

4

)
dt , (36)

related to the one encountered by Kaplunov & Nol’de (1995). The general prop-
erties and asymptotic behaviour of this function were previously investigated by
Kaplunov & Pichugin (2005).

It is a good time now to discuss the range of applicability of the solution (34),
(35). We already mentioned in Section 2.2, that our asymptotic plate theory
can only be used for motions dominated by wave numbers k ¿ η−4/5. On
the other hand, the steepest descent approximation of the outer solution (24)
is valid only provided k À ζ−1 = | sin θ |−1. This means that generally we
need to ensure that | sin θ |−1 ¿ k ¿ η−4/5. Let us now estimate the area,
where the solution (34), (35) is valid for times τ ∼ 1. Bounds on θ may be
determined from the second order terms, omitted from the leading order inner
governing equation (26), which is valid provided | sin θ | À η2/3. There can be
no upper bound for θ as within the realm of two-dimensional theory the solution
is valid even at the plate edge. A typical way to deal with this difficulty would
be to assume that the three-dimensional edge boundary layer decays within
a plate thickness off the edge, so that cos θ > η. At last, it is necessary to
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determine the range of ξ∗ where our approximation may be used. It is easy to
see from the definition (36) of function Φ(x, ε) that the effect of the higher-order
dispersion correction terms is related to the introduction of a stationery point
k ∼ √−Eξ∗/η, which is essentially a wave number dominating our solution in the
vicinity of a wave front. Thus, by relating this wave number to the applicability
ranges of the plate theory and steepest descent approximations, we conclude
that η2| sin θ | ¿ −Eξ∗ ¿ η2/5| sin3 θ |. Depending on the particular sign of
E , this indicates that the smoothing effect of the higher-order theory is only
apparent at one side of the wave front.

The obtained asymptotic solution is not valid along the quasi-front uni-
formly. Specifically, the asymptotic solution fails at the tip of the quasi-front,
which is caused by the failure of the steepest descent approximation (24) when
k3 ∼ 1/ sin θ, as well as singularity inherent within the inner coordinate sys-
tem (25). It is worth noting that both of these issues may be dealt with. The
uniform approximation for the outer solution near the wave front may, for ex-
ample, be obtained using Hankel transform followed by the steepest descent
approximation, see Ogurtsov & Petrashen’ (1951). The system of inner coordi-
nates may also easily be modified to avoid the singularity at sin θ = 0. Note that
the governing equation for the inner problem would not be affected. However,
these modifications would greatly complicate the matching procedure.

4 Solution for a head-wave quasi-front

4.1 Outer solution

Before discussing an approximation for a smoothed head-wave, let us study
some implications of the situation when cs > cd, i.e. when the shear wave speed
is higher than dilatational wave speed. It is worth reiterating that this can
never happen for unstressed isotropic elastic materials, as it requires λ < −µ in
terms of the Lamé modules. The outer transform solution (21) remains valid
in this case. But the saddle points ps = ± icd/ζ of the associated Laplace
transform integral may now cross the branch points ± ics. This means that
the integration contour used to obtain the steepest descent approximation (24),
shown in Figure 2(a), generally has to be continued around the branch cuts
from ± ics, as it is pictured in Figure 4(a). The saddle points coincide with
branch points when csx1 = cdc∆t, within which we introduced c2

∆ = c2
s −

c2
d. When csx1 > cdc∆t, the steepest descent approximation (24) is valid, but

not particularly useful because it fails for small x3. When csx1 < cdc∆t, the
dilatational wave potential consists of contributions associated with the saddle
points ps and the branch cuts from ± ics, see Ogurtsov & Petrashen’ (1951).
The saddle point contributions asymptotically dominate the outer solution in
the vicinity of dilatational wave front, whereas the branch cut contributions
dominate the outer solution in the vicinity of the head-wave, see Figure 4(b).

For the outer solution we only construct a high wave number asymptotic,
which is valid within the vicinity of the head-wave. This is done by assuming
that contributions of the branch cuts from ± ics asymptotically dominate the
saddle point contributions. An asymptotic approximation of this type for outer
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−cd

−cs

cR

−cR

O
x1

x3

cs

cd

−cs

−cd

(a) (b)

Figure 4: (a) The phase plane for the Laplace transform parameter p when
cd < cs. ± ips are the saddle points, ± icd and ± ics the branch points, ± icR

and 0 the poles of the Mellin integral within (19) and <(f(p)) 6 0 in the shaded
area. (b) The corresponding wave front configuration at the time instant t = 1,
where the bold line denotes dilatational disturbance.

solution transform may be given by

φF
out(x1, k3, t) =

Mn

√
2cdc5

∆α2 sin
(

k3
cd

(cdcst− c∆x1) + π
4

)
√

csπ3k5
3(cdc∆t− csx1)3(α− c2

s)3
+ O(k−3

3 ) . (37)

Approximation (37) is obviously not valid near the point where dilatational and
head-wave fronts touch. The techniques of uniform steepest descent approxima-
tion would have to be used in this case, as in the limit it corresponds to integrals
in which saddle points coincide with branch cut origins.

4.2 Inner solution

In order to produce an appropriate inner expansion, a better knowledge of the
head-wave geometry is necessary. A first quarter touching point between the
dilatational front and the head-wave is shown as point A in the Figure 5. It
corresponds to the situation when the saddle points of the Laplace integral
within (21) coincide with ± ics. The coordinates of A are therefore given by
(cdc∆t/cs, c

2
dt/cs). A further point of the head-wave is conveniently given by

(0, cst). This information is sufficient to introduce a new Cartesian system of
coordinates Aξχ with the origin A and the axes ξ orthogonal to the head-wave
and χ tangential to it, see Figure 5. Again, as in Section 3, we use the idea
of magnifying the vicinity of the head-wave and introduce an inner coordinate
system of the following form

csx1 = ηεc∆ξ − cdχ + cdc∆τ , (38)

csx3 = ηεcdξ + c∆χ + c2
dτ , t = τ , (39)

where ε serves as a logarithmic measure of the quasi-front width.
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cdt
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ξ

χ

Figure 5: The system of inner coordinates for the dilatational head-wave.

By switching to the system of inner coordinates (38)–(39), and balancing
the leading order dispersion terms with time-dependent terms, we are able to
conclude that the width of the quasi-front in this case remains unchanged and
ε = 2/3. The corresponding leading order governing equation, valid within the
vicinity of the head-wave, may be written as

2
∂φin

∂τ
+

E
3cd

∂3φin

∂ξ3
= 0 . (40)

The general solution of this equation may again be determined by using a Fourier
transform with respect to the inner space coordinate ξ (with corresponding wave
number kξ) and given by

φF
in(ξ, τ) = Cin(kξ) exp

(
i
Eτk3

ξ

6cd

)
. (41)

The governing equation (40) is well known and usually arises in plane strain
problems, see e.g. Kaplunov et al. (2000). Typically, this equation is used in
plane strain problems to describe configuration of the Airy quasi-front that is
often given in the form of an integral of the Airy function Ai(·). However, the
next section demonstrates that the configuration of the resulting disturbance is
different in the present case.

4.3 Asymptotic matching procedure

The outer limit of the inner expansion (37) is determined by the same procedure
as used in Section 3 and may be very simply written as

φF
in(ξ, τ) ∼ Cin(kξ) , η → 0 , (42)

where the function Cin(kξ) may of course depend on χ as well. Its second
argument is omitted because the governing equation (40) is independent of
χ. The corresponding inner limit of the outer expansion (37) is obtained by
switching to the coordinate system (39) and taking the limit as η → 0. By
averaging over the rapidly oscillating terms, the resulting expansion takes the
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form

φF
out(ξ, τ) ∼ Mn(1 + i )α2csc

5/2
∆ η

4
√

π3χ3c5
dk

5
ξ(c2

s − α)3
, η → 0 . (43)

This high wave number approximation is similar in its form to expansion (29),
however the higher degree of the wave number in the denominator indicates that
the intensity of the head-wave disturbance is lower (which is obviously not true
in the vicinity of the point where the head-wave touches the dilatational wave
front). Expansion (42) is now matched with (43) to determine a particular value
of Cin(kξ) that does not need to be written down explicitly. Since the intensity
of the head-wave quasi-front is lower, the configuration of the quasi-front is best
presented in terms of stresses, not displacements. The appropriate asymptotics
may be given by

σ1 ∼ Mnα2c
5/2
∆√

2csπ3χ3cd(α− c2
s)2

Φ
(

c2
s

c2
d

ξ∗,
Eτc3

sη
2

6c4
d

)
, (44)

τ13 ∼ Mnα3c
7/2
∆√

2csπ3χ3c2
d(c2

s − α)3
Φ

(
c2
s

c2
d

ξ∗,
Eτc3

sη
2

6c4
d

)
. (45)

The structure of the obtained solutions is generally similar to the known so-
lutions for two-dimensional quasi-fronts and is described by the same special
function Φ(·). The only principal difference is the fact that the type of head-
wave quasi-front, determined by the sign of the second parameter of Φ(·), see
Kaplunov & Pichugin (2005), is always opposite to the type of dilatational
quasi-front.

5 Conclusion

A presence of dilatational head-wave quasi-fronts is demonstrated for a pre-
stressed incompressible elastic plate in plane stress. Although the dilatational
head-waves were previously studied in the context of anisotropic media, see
Musgrave & Payton (1981), the associated aspects of the plane stress problem
and influence of its higher-order correction are the principal results of this paper.
Far-field asymptotic solutions, valid for the vicinity of quasi-fronts, are presented
in a simple and computationally efficient form. An analysis of the model inte-
grals, occurring in the solutions, is performed in Kaplunov & Pichugin (2005).
The obtained asymptotics are not uniform, however their asymptotic ranges of
applicability are known.

Directions for further research involve investigation of the practicalities of ap-
plication of uniform asymptotics to problems in structural dynamics. A deeper
investigation of the matching procedure is also of particular interest, as it would
shed more light on the physics of quasi-fronts in structures and the precise na-
ture of the associated dispersion.
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