
Testing in The Distributed Test Architecture: An Extended Abstract

Robert M Hierons
School of Information Systems, Computing and Mathematics

Brunel University, UK
rob.hierons@brunel.ac.uk

Abstract

Some systems interact with their environment at a num-
ber of physically distributed interfaces/ports and when test-
ing such a system it is normal to place a local tester at
each port. If the local testers cannot interact with one an-
other and there is no global clock then we are testing in
the distributed test architecture and this can introduce ad-
ditional controllability and observability problems. While
there has been interest in test generation algorithms that
overcome controllability and observability problems, such
algorithms lack generality since controllability and observ-
ability problems cannot always be overcome. In addition,
traditionally only deterministic systems and models have
been considered despite distributed systems often being
non-deterministic. This paper describes recent work that
characterized the power of testing in the distributed test ar-
chitecture in the context of testing from a deterministic finite
state machine and also work that investigated testing from
a non-deterministic finite state machine and testing from an
input output transition system. This work has the potential
to lead to more general test generation algorithms for the
distributed test architecture.

1 Introduction

Many approaches to model based testing use either fi-
nite state machines (FSMs) or labelled transition systems
(LTSs). There has thus been much interest in automating
testing on the basis of FSM or LTS models. Some systems
have physically distributed interfaces, called ports, and in
testing we place a local tester at each port. Each local
tester applies a test script and observes the interactions at
its port: the sequence of inputs and outputs observed at a
port is called a local observation. If the local testers cannot
communicate with one another and there is no global clock
then we are testing in the distributed test architecture, which
has been formalized by ISO [7].

The use of the distributed test architecture leads to ad-

SpecificationTester p Tester q

xp

xqyp

Figure 1. A controllability problem

ditional problems in testing that have been called controlla-
bility problems and observability problems. Controllability
problems occur when a tester does not know when to apply
an input as a result of it not being able to observe events at
other ports. For example, if a test case starts with input xp

at port p, this should lead to output yp at p only and this is
to be followed by input xq at port q �= p then the tester at q
cannot know when to apply xq. This is because it does not
observe either the input or output from the previous opera-
tion and so cannot know whether xp has been applied. This
is illustrated in Figure 1.

Observability problems refer to fault masking that can
occur as a result of each local tester only being able to ob-
serve its own interface. Let us suppose, for example, that
the local tester at port p is to apply input xp, output yp at
p and yq at q �= p should be produced by the system under
test (SUT), xp is then input again and the expected output is
just yp at p. Then each local tester will observe the expected
sequence of inputs and outputs if the SUT produced yp only
in response to the first input and both yp and yq in response
to the second input since in each case the local tester at p ob-
serves xpypxpyp and the local tester at q observes yq. Fault
masking has occurred in this situation, which is illustrated
in Figure 2. Interestingly, this example shows that test effec-
tiveness is not monotonic in the distributed test architecture:
the test sequence xp leads to a failure being observed but if

The Eighth International Conference on Quality Software

Unrecognized Copyright Information

DOI 10.1109/QSIC.2008.11

11

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.11

11

Authorized licensed use limited to: Brunel University. Downloaded on May 28,2010 at 12:01:20 UTC from IEEE Xplore. Restrictions apply.

SpecificationTester p Tester q SpecificationTester p Tester q

xp xp

xp xp

yp

yp

yp

yp

yq

yq

Figure 2. An observability problem

we extend this to xpxp we no longer observe a failure.
The problem of testing in the distributed test architecture

was originally studied by the protocol conformance testing
community and here the focus was on testing from a de-
terministic FSM (DFSM). However, distributed systems are
often nondeterministic and so it is a little surprising that un-
til recently the problem of testing from a nondeterministic
model had not been considered. In addition, the focus has
been on overcoming the problems introduced by the dis-
tributed test architecture but in general these cannot be over-
come, even when testing from a DFSM. There is thus a need
for a better understanding of the impact of this test architec-
ture and the development of test generation algorithms that
achieve as much as possible given the fundamental restric-
tions. This paper describes some initial work that aims both
to lead to a better understand of the effect of the distributed
test architecture on testing and to extend the work to nonde-
terministic models and implementations.

2 Testing from Deterministic Finite State
Machines

The problem of testing in the distributed test architec-
ture was originally investigated in the context of protocol
conformance testing [2, 3] and almost all work has been on
testing from DFSMs (see for example [10, 11]). Since the
controllability and observability problems were identified
the focus has been on overcoming these problems, either by
choosing appropriate test sequences or by connecting the
local testers using an external network through which they
can exchange coordination messages [8]. However, deploy-
ing an external network can increase the cost of testing and
coordination messages cannot always be used if tests have
timing constraints. In addition, there may be no test se-
quence, that is free from controllability and observability
problems, that achieves a given test objective.

Recent work has defined the notion of two DFSMs being
locally s-equivalent: this essentially means that they cannot
be distinguished by applying an input sequence that causes
no controllability problems if we are only making local ob-
servations [5]. Thus, if we only apply test sequences that
are free of controllability problems then the notion of s-
equivalence captures the power of testing from a DFSM: we

can distinguish between a DFSM specification and a DFSM
implementation in testing if and only if they are not locally
s-equivalent. If we can only distinguish between two DF-
SMs if they are not locally s-equivalent, the challenge is to
produce practical test generation algorithms that recognize
this. For example, if we have a fault model Φ that describes
possible behaviours of the SUT then we could aim to pro-
duce a test suite that distinguishes between the specification
M and all elements of Φ that are not locally s-equivalent to
M .

Interestingly, it is possible to decide whether two given
DFSMs or two states of a DFSM are locally s-equivalent in
low order polynomial time [5]. If the states or DFSMs are
not locally s-equivalent and there are n states and m ports
then the algorithm returns an input sequence of length at
most m(n − 1) that demonstrates this and can be used in
testing in order to distinguish them. Since many DFSM test
generation algorithms use sequences that distinguish states,
there may be scope to use such sequences in testing from a
DFSM in the distributed test architecture.

3 Nondeterministic finite state machines

When testing from a DFSM we can produce a test se-
quence with no controllability problems by choosing an ap-
propriate path from the initial state of the DFSM. We then
use the corresponding input sequence. However, if an FSM
M is nondeterministic then there may be several possible
paths that can be followed when using a test sequence and
we have to check all of these.

It may seem that in order to determine whether a test
sequence causes a controllability problem we simply need
to check all of the paths that can be triggered by this se-
quence and determine whether any of these have controlla-
bility problems. However, we have a more general problem:
a tester at port p must be able to decide when to apply an
input on the basis of its observations. Figure 3 gives a sit-
uation in which we do not have this property, and so there
are controllability problems, but none of the corresponding
paths have controllability problems. The problem here is
the tester at q �= p has to apply input xq after the tester at
p has applied xpxp but for one allowed response it should
send xq after observing yq and for the other it should send
xq after yqyq. Thus, if the tester at q observes yq it does not
know whether to apply input xq or wait for another yq.

Interestingly, test sequences that have such controllabil-
ity problems define a set of input/output sequences that are
similar to message sequence charts (MSCs) that have im-
plied MSCs. The existence of such implied MSCs can be
decided in low order polynomial time [1]. A problem for
future work is adapting the approach of [1] to the problem
of deciding whether a test sequence causes controllability
problems for an FSM.

1212

Authorized licensed use limited to: Brunel University. Downloaded on May 28,2010 at 12:01:20 UTC from IEEE Xplore. Restrictions apply.

FSMTester at p Tester at q

xp

xp

xq

yp

yp

yq

FSMTester at p Tester at q

xp

xp

xq

yp

yp

yq

yq

Figure 3. A controllability problem with a non-
deterministic model

4 Input output transition systems

An input output transition system (IOTS) is a labelled
transition system in which we differentiate between inputs
and outputs (see, for example, [9]). An IOTS can be non-
deterministic but in addition it may have an infinite state
space and there is no need to alternate between input and
output. For example, an input could be followed by another
input and we might then have an infinite sequence of out-
puts. IOTSs are thus more general than FSMs. When testing
from an IOTS it is normal to use the ioco implementation
relation that states what it means for an implementation to
conform to a specification.

In testing it is usual for the tester to return a verdict: this
is pass if no failures are observed but otherwise it is fail.
In the distributed test architecture there are multiple local
testers and it is natural to have each local tester return a
verdict: the overall verdict is pass if and only if all of these
verdicts are pass. Let us suppose that we are testing against
IOTS s in which input of xp at port p is either followed by
output yp at p and then output yq at q �= p or by output y′

p

at p and then output y′
q at q. If testing involves applying

input xp and then observing output, output yp is observed
at p and y′

q is observed at q then each tester sees a local
observation that is consistent with s. However, if we bring
together these two local observations, xpyp and y′

q, we find
that no interleavings of these are in the specification and so
we know there has been a failure. Thus, testing loses power
if we only bring together verdicts made by the local testers
and as a result [4] assumes that we can bring together local
observations.

When testing from an FSM input and output alternate
and so a test run with a finite input sequence must terminate.
Once the test has terminated we can simply bring together
the local observations. However, this is not the case for an
IOTS: we can reach a state from which an infinite sequence
of outputs can be produced. It is thus necessary to define

the points at which local observations at the different ports
can be brought together and in [4] this can be done when the
SUT is quiescent: when it is in a state where it cannot pro-
duce any further output without first receiving input. The
approach of [4] is thus to say that a process p conforms to a
process s if the following conditions hold, and then we say
that p dioco s: For every trace σ of p that ends in quies-
cence, there is a trace σ′ of s such that σ and σ′ cannot be
distinguished if only local observations are made.

5 Equivalent and minimal machines

We often want the models we use to be minimal: there
is no smaller equivalent model. The notion of minimality
is well understood for FSMs and, for example, there are
efficient algorithms for converting a DFSM into an equiv-
alent minimal DFSM [6]. If the DFSM is a design then
the hope is that the use of a minimal DFSM will lead to a
relatively compact system. Let us suppose that we have a
DFSM M that represents a system design and the system
will have distributed ports with users or subsystems that are
not themselves connected and there is no global clock. As
a result, the expected usage of the system corresponds to
the distributed test architecture and so we do not require
the SUT to be equivalent to M : instead, it is sufficient that
the SUT and M cannot be distinguished in the distributed
test architecture. As a result, the SUT can be equivalent to
a smallest DFSM that cannot be distinguished from M in
the distributed test architecture and so we may obtain more
compact implementations [5]. There is the challenge of ex-
tending this to NFSMs and IOTSs.

6 Conclusions

If the system under test (SUT) has multiple physically
distributed interfaces/ports then we place a local tester at
each port. If these local testers cannot directly communi-
cate with one another and there is no global clock then we
are testing in the distributed test architecture. It has been
known for many years that the use of the distributed test
architecture can cause problems in testing and in the past
the focus has been overcoming these problems when test-
ing from a deterministic finite state machine (DFSM).

Recent work has characterized the power of testing in the
distributed test architecture by saying what it means for DF-
SMs to be indistinguishable in this architecture. The hope is
that this will lead to test generation algorithms that produce
test sequences that target the corresponding weaker notion
of equivalence, aiming to decide whether the SUT and the
specification can be distinguished in this architecture. If the
use of the SUT corresponds to the constraints imposed by
the architecture then we require such test generation algo-
rithms. Otherwise we need a better understanding of the

1313

Authorized licensed use limited to: Brunel University. Downloaded on May 28,2010 at 12:01:20 UTC from IEEE Xplore. Restrictions apply.

impact of the distributed test architecture in order to help
the tester decide, for example, whether it is worth introduc-
ing an external network that connects the local testers.

Until recently, the problem of testing in the distributed
test architecture was only investigated for deterministic
models and implementations. This appears to be a signifi-
cant limitation since distributed systems are often nondeter-
ministic. Interestingly, if we look at nondeterministic FSMs
(NFSMs) the notion of a test sequence being controllable is
quite different from that found with DFSMs. There are ad-
ditional differences and challenges if we are testing from in-
put output transition systems (IOTSs) since these can have
infinite state spaces and input and output need not alternate.

There are several possible avenues for future work. The
equivalences imposed on NFSMs and IOTSs when we use
the distributed test architecture require additional research.
Once a good understanding of such equivalences is obtained
there is the challenge of defining test generation algorithms
that return test sequences that target these notions of equiva-
lence. In addition, since we have a different notion of equiv-
alence we also have a new definition of minimality and there
is the problem of minimizing models.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of mes-
sage sequence charts. IEEE Transactions on Software Engi-
neering, 29(7):623–633, 2003.

[2] R. Dssouli and G. von Bochmann. Error detection with mul-
tiple observers. In Protocol Specification, Testing and Verifi-
cation V, pages 483–494. Elsevier Science (North Holland),
1985.

[3] R. Dssouli and G. von Bochmann. Conformance testing
with multiple observers. In Protocol Specification, Testing
and Verification VI, pages 217–229. Elsevier Science (North
Holland), 1986.

[4] R. M. Hierons, M. G. Merayo, and M. Nunez. Implemen-
tation relations for the distributed test architecture. In 20th
IFIP International Conference on Testing of Communicat-
ing Systems (TESTCOM 2008), Springer Lecture Notes in
Computer Science, page to appear. Springer, 2008.

[5] R. M. Hierons and H. Ural. The effect of the distributed test
architecture on the power of testing. The Computer Journal,
to appear.

[6] J. E. Hopcroft. An n log n algorithm for minimizing the
states in a finite automaton. In Z. Kohavi, editor, The theory
of Machines and Computation, pages 189–196. Academic
Press, 1971.

[7] J. T. C. ISO/IEC JTC 1. International Standard ISO/IEC
9646-1. Information Technology - Open Systems Intercon-
nection - Conformance testing methodology and framework
- Part 1: General concepts. ISO/IEC, 1994.

[8] O. Rafiq and L. Cacciari. Coordination algorithm for dis-
tributed testing. The Journal of Supercomputing, 24(2):203–
211, 2003.

[9] J. Tretmans. Test generation with inputs, outputs and repeti-
tive quiescence. Software - Concepts and Tools, 17(3):103–
120, 1996.

[10] H. Ural and C. Williams. Constructing checking sequences
for distributed testing. Formal Aspects of Computing,
18(1):84–101, 2006.

[11] Y. C. Young and K. C. Tai. Observational inaccuracy in con-
formance testing with multiple testers. In IEEE 1st work-
shop on application-specific software engineering and tech-
nology, pages 80–85, 1998.

1414

Authorized licensed use limited to: Brunel University. Downloaded on May 28,2010 at 12:01:20 UTC from IEEE Xplore. Restrictions apply.

