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Abstract: 

A multi-cycle three-dimensional CFD engine simulation programme has been developed and 

applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge 

compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved 

through the negative valve overlap method by means of a set of low lift camshafts. In the first part of 

the paper, the effect of single injection timing on combustion phasing and underlying physical and 

chemical processes involved was examined through a series of analytical studies using the multi-cycle 

3D engine simulation programme. The analyses showed that early injection into the trapped burned 

gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion 

phasing, due to localized heat release and the production of chemically reactive species. As the 

injection was retarded to the intake stroke, the charge cooling effect tended to slow down the 

autoignition process. However, further retard of fuel injection to the compression stroke caused the 

earlier start of main combustion as fuel stratification was produced in the cylinder. In order to 

optimize the engine performance and engine-out emissions, double injection was investigated by 

injecting part of the fuel first in the negative valve overlap period and the rest of fuel during the intake 

or compression strokes. By varying the fueling of each injection, the best engine performance was 

obtained with the 50/50 fuel injection split ratio, while the lowest total NOx and soot emissions were 

seen with the optimal split injection ratio of 10/90. 
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NOTATION 

A,  p1, q   reaction rate constants in the main propagation reaction 

ATDC      after top dead center 

B      branching agent 

BDC    bottom dead center 

CAD    crank angle degree 

CAI    controlled auto-ignition 

mn 2HC    hydrocarbon fuel 

CI    compression ignition 

EVC    exhaust valve closing 

1f , , ,     c ant parameters in the Shell model 2f 3f 4f onst

hf,i    heat formation of species i (J/kg) 

HCCI            homogeneous charge compression ignition 

HRR    heat release rate 

IMEP   indicated mean effective pressure 

IVC    intake valve closing 

IVO    intake valve opening 

qK , , ,  pK bK tK kinetic parameters in the Shell model 
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P    oxidized products (CO, CO2, H2O) 

PMEP   pumping mean effective pressure 

qfuel    exothermicity per cycle (J/cycle) 

Q    labile intermediate species 

chemQ    chemical heat release rate (J/s) 

R    radical formed from fuel 

SI    spark ignition 

TDC    top dead center 

mY     mass fraction of species m  

 

Greek symbols  

γ       a constant in shell model to determine the ratio of CO to CO2

φ     equivalence ratio 

 

 

Subscripts 

comb                combustion cylce 

overlap               valve overlap period 

 

 

 

 4



INTRODUCTION 

Improving fuel economy and reducing emissions are two major challenges faced by the 

automotive industry. Over the recent years, a new engine combustion concept, Controlled Auto 

Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), is 

receiving increased attention due to its potential for simultaneously reducing fuel consumption and 

NOx emissions in a gasoline engine, and its capability to remove soot and NOx emissions from a 

diesel engine. CAI/HCCI combustion is achieved by controlling the temperature, pressure, and 

composition of the fuel and air mixture, so that it spontaneously ignites in an engine. This unique 

characteristic of CAI/HCCI allows the combustion of very lean or diluted mixtures, resulting in low 

temperatures that dramatically reduce the engine-out NOx emissions. Similar to an SI engine, the 

combustible charge is well mixed and hence it minimizes particulate emissions. As it can be operated 

at wide open throttle, there is no pumping losses associated with throttling at part load and hence fuel 

economy of gasoline engines can be improved significantly.  

It has been demonstrated that gasoline CAI combustion can be promoted by using either an 

increased compression ratio (Ryan III et al., 1996; Christensen et al., 1999) or heating of the intake 

charge (Aoyama et al. 1996, Oakley et al. 2001, Yang. et al 2002, Zhao. et al 2005). Although those 

approaches have been used in many fundamental studies into CAI combustion, its practical 

applications are limited by transient response as required in vehicular applications. Nevertheless, 

Haraldsson et al, 2004 has demonstrated that fairly fast response can be achieved in an HCCI gasoline 

engine by means of closed loop control and fast thermal management of cold ambient air and exhaust 

heated hot air. From the practical viewpoint, the use of recirculated or retained exhaust gases seems to 

be one of the most effective ways of initiating CAI combustion, since it can lead to CAI combustion at 

conventional geometric compression ratio and ambient temperature. In a 4-stroke gasoline engine with 

flexible valve actuation, residual gas trapping by early exhaust valve closure, also known as negative 

valve overlap, (Lavy et al., 2000; Li et al., 2001; Law et al., 2001) and exhaust gases rebreathing 

during the intake stroke by late exhaust valve closure or re-opening of exhaust valves (Kahaaina et al., 

2001; Wolter et al., 2003) are amongst the two most successful approaches to achieve CAI/HCCI 

combustion in such engines. 

One of the main challenges facing CAI combustion is the control of combustion phasing and the 

rate of heat release. One possible way of controlling the combustion phasing and to some extent the 

rate of the heat release is by means of direct fuel injection technology (Willand et al., 1998; Marriot 

and Reitz, 2002), since this provides the potential to control combustion by altering the local fuel 
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distribution via varying the injection timing. In addition to this, Urushihara et al. (2003) have 

suggested that fuel reforming could occur with fuel injection during the negative valve overlap period 

in the presence of oxygen. The results from other studies (Koopmans et al., 2003; Standing et al., 

2005) have also shown that the fuel oxidation reactions could proceed to the stage of combustion 

reactions accompanied by a small amount of heat release, if the mixture temperature during the 

negative valve overlap period is sufficiently high. 

The benefits of using direct fuel injection in conjunction with negative valve overlap for CAI 

combustion phasing control were experimentally demonstrated (Urushihara et al., 2003; Koopmans et 

al., 2003; Standing et al., 2005). However, due to the inherent complexity of chemical kinetic 

mechanisms involved in the CAI combustion process and the lack of tools to provide the detailed 

understanding of in-cylinder transient thermal and chemical phenomena, the impacts of mixture 

quality, thermal and chemical effects associated with fuel evaporation and reforming, on CAI 

combustion are still not well understood. Consequently, the objective of this study is to systematically 

investigate the thermal and chemical effects of variable fuel injection timings and split injection ratios 

on mixture stratification, CAI combustion and its emissions, by using a multi-cycle 3D simulation 

approach. 

MODELING DESCRIPTION 

The multi-cycle 3D CFD engine simulation programme is based on the KIVA3V code (Amsden, 

1999), with improvements in turbulence, gas/wall heat transfer, spray breakup, ignition and 

combustion models. The RNG-κ--ε turbulence model is used for the engine flow simulation; the 

current wall heat transfer model (Han and Reitz 1997a) uses a modified temperature wall function to 

account for density variations in the boundary layers; a liquid sheet breakup spray model is applied to 

simulate pressure swirl spray atomization. Details of the theoretical development and validation of the 

model can be found in reference (Han et al., 1997b). Moreover, due to the fact that detailed chemical 

kinetics model coupled with multi-dimensional simulation is far beyond the current computing 

capacity, a realistic reduced kinetics model based on the multi-step Shell ignition model has been 

chosen to simulate the autoignition process.  

Reduced chemical kinetic ignition model 

Although the Shell model was originally developed to predict the onset of knocking combustion 

in a gasoline engine, it has been successfully extended to simulate the auto-ignition processes of a 
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number of hydrocarbon fuels in the compression-ignited engines. In the Shell model (Halstead et al., 

1977), the auto-ignition chemistry is reduced to an eight-step chain branching reaction mechanism 

incorporated into such four processes as follows: 

 

Initiation: 

                                                                                                                           (1) R2OHC 22 →+mn qK

Propagation: 

                                                  ++→ PRR Heat                                                                          (2) pK

                                                                                                                                    (3)  BRR +→ pKf1

                                                                                                                                   (4) QRR +→ pKf4

                                                  BRQR +→+                                                                            (5)  pKf2

Branching: 

                                                                                                                                           (6) 2RB→ bK

Termination: 

                                                  nonreactive species(eg.N→R 2)                                                (7) pKf3

                                                  nonreactive species (eg.N→2R 2)                                                  (8) tK

where  is the hydrocarbon fuel, R is radical formed from fuel, B is branching agent, Q is labile 

intermediate species and P is oxidized products, consisting of CO, CO

mn 2HC

2 and H2O in specified 

proportions. , , ,qK pK , bK tK 1f , ,  and  are the kinetic parameters given in Halstead et al. 

1977. 

2f 3f 4f
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In order to improve the generality and robustness of the Shell model, the original Shell model has 

been modified to take the mass contributions of the intermediate species into account.  As it has been 

shown previously (Kong et al. 1995), the propagation reactions (Eqs. (2) – (5)) can be combined into a 

main propagation cycle subject to mass conservation as: 

                                                  Q)BP(
1

1OHC 41212 ffq
A

pmn ++⋅
+

→+                                               (9) 

Where 

22mn O1HC

Q4B1

1 WpW
m

WfWf
A

+

+
= , 

2
)(2

1
mnp +−

=
γ  and mnq += ,  is the molecular weight of 

species, the coefficient 

W

δ  is a constant of 0.67, which determines the fixed ratio of burnt products of 

CO to CO2 via 
γ

γ
−1

, based on a general survey of analytical studies of hydrocarbon oxidation 

systems (Halstead et al. 1977). It is assumed that the main propagation cycle is the only step in which 

the heat is released. As a result, the heat release rate is calculated from the main propagation step    

(Eq. 9) by qfuel× fuel consumption rate, where qfuel is the exothermicity per cycle. The empirical 

parameter qfuel is dependant on the type of fuel used. In the current study, two changes have been made 

to the calculations related to the autoigntion process. The first modification is to calculate the heat 

release rate using the energy balance of the above propagation cycle.  

                                                  ∑∑ −=
reactantsproducts

f,jjf,iichem hmhmQ                                                          (10) 

where is the chemical heat release rate, is the conversion rate of species i,   is the heat 

formation of species i.  

chemQ im f,ih

The second modification is related to the inert products of the two termination reactions. In the 

original scheme (Halstead et al. 1977), the radical R is assumed to be removed by converting into an 

inert species such as N2. Based on the fact that auto-ignition and post-ignition combustion are closely 

related processes, it can be assumed that the products in the two termination reactions (Eq.7 and Eq.8) 

should be the same species as the final products in high temperature combustion (consisting of CO, 

CO2 and H2O). 

 In the Shell autoignition model, the elementary reaction steps are empirical, and only represent 

the gross behavior of detailed chemistry models. Thus, certain parameter fitting is necessary before the 
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autoignition model is extended to application of different fuels and operating conditions. By tuning 

against the available experimental data (Li et al. 2001), the pre-exponential constants and of 

the reaction rate in the reactions of Eqs. 3 and 4 were modified to 8.5×10

1fA 4fA

-3 and 5.0×103, respectively, 

while the other kinetics parameters used the values of RON 90 fuel. A comparison of heat release 

traces of the experimental and computational results is given in Fig.1.  As can be seen, both the 

standard and the modified Shell models slightly under-predict the low temperature heat release, due to 

the difficulties in reproducing the complete chemical behavior in the low-temperature reactions by the 

reduced autoignition mechanisms. Nevertheless, as shown in Fig.1, the prediction of heat release prior 

to the main combustion with the modified Shell model has been improved over the original model. 

More detailed model validations under different operating conditions were given in earlier publication 

(Cao et al., 2005). 

Characteristic-time combustion model 

Since the Shell model does not include any reaction for high-temperature heat release, the overall 

combustion is modeled by a characteristic-time combustion model (Kuo and Reitz, 1992) combined 

with the Shell autoignition model. The transition from the auto-ignition to the main combustion 

process is based on the local cell temperature: when the temperature of a cell exceeds 1080 K, which 

was obtained from the previous experimental validation (Cao et al., 2005), high temperature 

combustion model is activated for such a cell. With the characteristic-time combustion model, the rate 

of change in the mass fraction of species m is written as: 

c

*
mmm YY

dt
dY

τ
−

−=                                                                                  (11) 

where is the mass fraction of species m,  is the local and instantaneous thermodynamic 

equilibrium value of mass fraction, and

mY *
mY

cτ is the characteristic time to reach such equilibrium. The 

present computation considers 7 species: fuel, O2, N2, H2O, CO2, CO, and H2. 

 

 

NOx and soot production models 
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The extended Zel’dovich mechanism is used to predict NOx concentration, as given by the 

following reactions (Borman, 1975): 

NNONO +↔+ 2                                                                                     (12) 

ONOON +↔+ 2                                                                                      (13) 

HNOOHN +↔+                                                                                    (14) 

These reactions are solved by assuming a steady-state population of N and equilibrium for 

. The formation of NOHOOHO +↔+ 2 x from this model is governed by 

[ ] [ ] [ ]( ){ }
[ ] [ ]( ) ( ) NO

e

ex

RRRNONO
NONOR

dt
NOd β⋅

+⋅+
−

=
321

2
1

/1
12                                 (15) 

where means equilibrium state and [ ]e [ ] is assumed to be at steady state. , and  are the rate 

coefficients given in Heywood (1988). 

1R 2R 3R

NOβ  is a constant, which allows the model to be adjusted from 

converting  to NOx, comparable to the EPA NONO 2-based standard. 

The current model for soot production is based on a model proposed by Hiroyasu and Nishida 

(Hiroyasu et al., 1989), in which the production of soot mass is calculated by the rate of change in soot 

concentration from the formation and oxidation rates 

sosf
s MM

dt
dM

−=                                                                                      (16) 

where the formation rate is given by  sfM

fv
sf

sfsf MRT
EPAM ⋅⎟

⎠
⎞

⎜
⎝
⎛−= exp5.0                                                           (17) 

where is the fuel vapor mass, is the activation energy and is the Arrhenius pre-exponential 

factor set equal to 500 in the present study. 

fvM sfE sfA

To model soot oxidation rate , the Nagle and Strickland-Constable model (Nagle et al., 

1962) is used, which considers carbon oxidation by two mechanisms whose rates depend on surface 

soM
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chemistry involving the more reactive A sites and the less reactive B sites. The net reaction rate is 

given by 

( XPKX
PK

PKR OB
OZ

OA
total −⋅+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

= 1
1 2

2

2 )                                                  (18) 

where X is the proportion of A sites given by 

( )BTO

O

KKP
PX

+
=

2

2                                                                                    (19) 

In the above equations, is the oxygen partial pressure and , ,  and are the rate 

constants given by Rutland et al., (1994). 

2OP AK BK TK ZK

Finally, the soot mass oxidation rate  is given by soM

totals
ss

wc
so RM

d
MM ⋅=
ρ
6                                                                                (20) 

where is the molecular weight of carbon, wcM sρ is the soot density, is the soot diameter and is 

the soot mass. 

sd sM

 

MULTI-CYCLE 3D ENGINE SIMULATION AND FUEL INJECTION STRATEGE 

Most multi-dimensional CFD simulation studies of CAI combustion engines were carried out for 

the period of closed valves. Although the partial engine cycle simulation (Aceves et al. 2000) is useful 

when investigating fundamental issues, such as the effect of alternative chemistry schemes, or heat 

transfer treatments on ignition prediction, it does not capture the initial mixture state (i.e. the trapped 

internal residual gas and mixture compositions). This characteristic would be greatly disadvantageous 

in the context of investigation into the negative valve overlap method, in which the treatment of the 

gas exchange process is critical to the capturing of large amounts of trapped residual gases and thermal 

effect of fuel evaporation during valve opening period in the present study. The main advantage of the 

CAI full cycle simulation over the partial engine cycle simulation is that it directly computes gas 

exchange process, as well as the internal residuals trapped in the engine cylinder. Furthermore, it 
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converges to a steady state solution through a series of iterations in a manner of the multi-cycle 

simulation, and hence the uncertainties of initial condition in simulation can be progressively resolved 

by this approach. 

The method selected in the present CAI combustion study is the retention of large amounts of 

residual gases, in order to recuperate sufficient thermal energy from the exhaust gas to allow the fuel 

to auto-ignite and to dilute the charge mixtures to the level necessary to control the subsequent heat 

release rate. This method, referred to as the negative valve overlap approach, is achieved by closing 

the exhaust valves early and retarding the intake valves openings simultaneously, as illustrated in Fig. 

2. As shown in Fig.2, both the intake and exhaust valve opening durations have been reduced 

substantially, and their maximum valve lifts are modified to be about 20% of those of the standard 

camshafts. 

In the present study, multi-cycle simulation started in the SI combustion mode in the first cycle at 

IVC, so as to generate and trap sufficient residual gas to initiate CAI combustion for the next cycle. 

The simulation convergence was reached, only if the difference of in-cylinder temperature at 

TDCoverlap between the two consecutive cycles was within 1%. It usually took 5 or 6 full engine cycles 

of CAI combustion to reach a steady state cycle independent of the initial condition. All the model 

constants needed in the Shell autoignition and high-temperature combustion models have been tuned 

and validated against the relevant experimental data as detailed elsewhere (Cao et al., 2005).  

The burned gases trapped would contain excessive oxygen, if a lean mixture is burned from the 

previous cycle. It is considered that fuel injection into such residual gases during the negative valve 

overlap period could be used to assist the CAI combustion process. Figure 3 shows the fuel injection 

strategies used, in which the in-cylinder pressure trace indicated by solid line is also included. As 

shown in Fig. 3, the following three injection strategies are used to systematically investigate the 

effect of single fuel injection timing: 

1) Injection during the negative valve overlap period, in which fuel is injected into the hot 

oxygen containing residual gases in the cylinder for the purpose of reforming the fuel or 

initiating the minor combustion, if possible, to increase charge temperature for improving 

ignitability. (As such, fuel is injected at -75°, -40°, -20° ATDCoverlap and at TDCoverlap 

respectively) 
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2) Injection during the intake stroke to create a homogeneous mixture and increase volumetric 

efficiency by charge cooling effect. (As shown in Fig. 3, two injection timings of SOI at 98° 

and 150° ATDCoverlap are selected) 

3) Injection during the compression stroke (SOI at 218° ATDCoverlap) with the aim of forming a 

stratified-charge mixture and controlling ignition timing.  

The specifications of the modeled engine shown in Fig. 4 are listed in Table 1. The fuel injector is 

located on the intake side of the combustion chamber and its spray parameters are also included in 

Table 1. In all the injection cases studied, the same amount of fuel (9 mg and 30° CA injection 

duration) is injected in each engine cycle so as to maintain a constant fueling. It should be noted that 

the overall equivalence ratio for all the examined cases varies slightly around 0.8. This is due to the 

fact that the charge cooling effect occurring during the intake process would lead to extra air being 

trapped in the cylinder, and hence slightly lower equivalence ratio. The same initial and boundary 

conditions are used for all the computations. An intake air temperature of 320 K and the constant 

pressure boundary condition of 0.1013 MPa are used. The engine speed is fixed at 1500 rpm. Since the 

primary objective of this study is not to address the effect of valve timing on the CAI combustion 

process, the EVC and IVO timings are fixed at -85° and 88° ATDCoverlap to obtain stable CAI 

combustion. In addition to the single injection studies, double injection has been studied, in which the 

starts of the first and second injections are fixed at -75° and 98° ATDCoverlap, while the split injection 

ratio is varied between the two injections. 

 

RESULTS AND DISCUSSION 

1 Evaluation of Autoignition and Combustion Models for CAI Combustion in a DI 

Gasoline Engine  

In the Shell auto-ignition model, the low temperature reactions start from the initiation reaction 

where the fuel molecule and oxygen produce a radical R (Eq. 1). The main propagation reaction           

(Eq. 2) follows and releases heat. In the mean time, the radical R could also propagate and produce the 

branching agent B (Eq. 3). This reaction is responsible for the first-stage ignition. However, the 

dominance of this reaction decreases after a slight temperature rise and cool flame phenomena are 

observed. Therefore, a first-order termination reaction is set up for taking radicals out of propagation 

cycle (Eq. 7). This reaction dominates in the moderate temperature range and slows down the overall 
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reaction during the second induction period. During or after the appearance of cool flame, intermediate 

species Q is formed (Eq. 4), and then the branching agent is reproduced via the intermediate species 

(Eq. 5). Subsequently the branching reaction builds up the radical pool leading to hot ignition (Eq. 6). 

Finally, a quadratic termination serves as the terminator of radicals (Eq.8). As can be seen, the 

intermediate species Q and branching agent B are of special importance to this model. Based on the 

sensitivity studies undertaken by Kong et al., (1995), the formation of Q is thought to be a crucial 

reaction leading to hot ignition. 

In order to clarify the role of fuel reforming and heat release associated with fuel injection in the 

negative valve overlap period, a sensitivity study of the effect of chemical and thermal contributions 

on the CAI combustion process was first carried out by enabling either auto-ignition model or main 

combustion model, or both models during the negative valve overlap period, for a fixed injection 

timing of  -40° ATDCoverlap with all other conditions given in Table 1. 

1. Case 1: only the Shell auto-ignition model is activated within the whole temperature range 

during the negative valve overlap period, in order to investigate the chemical effect due to 

fuel reforming. 

2. Case 2: only the characteristic-time combustion model is activated during the negative valve 

overlap period, such that the heat release or thermal effect can be evaluated. 

3. Case 3: switch from the Shell auto-ignition model to the characteristic-time model at 1080 K 

during the negative valve overlap period. 

It should be noted that both Shell auto-ignition and characteristic-time combustion models were 

used during the rest of cycle. The predicted in-cylinder temperature and heat release profiles for all 

three cases with injection at -40° ATDCoverlap are shown in Fig. 5 (a). As shown in Fig. 5 (a), heat 

release predicted by the high temperature characteristic-time model is much greater than that predicted 

by the Shell auto-ignition model. As a result, the early heat release during the negative valve overlap 

period is almost exclusively due to high temperature combustion predicted by the characteristic-time 

combustion model used in Cases 2 and 3, contributing to higher mixture temperature before the 

appearance of the first-stage of ignition (310° CA ATDCoverlap). Case 1 is characterized with higher 

levels of intermediate species Q and radical R during the negative valve overlap period as shown in 

Fig. 6 and larger first heat release around 315° CA ATDCoverlap during the first-stage of ignition in the 

compression stroke, contributing to a faster temperature rising and much earlier auto-ignition than that 
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in Cases 2 and 3. As also shown in Fig. 5, Case 2 and Case 3 show similar heat release during the 

negative valve overlap period, but Case 3 has a slightly higher first-stage heat release at 315° CA 

ATDCoverlap and earlier start of main combustion. The difference in the first stage and main heat 

release between the two cases can be explained by the higher values of R and Q present in Case 3, due 

to fuel reforming effect during the negative valve overlap period. In order to assess the validity of the 

three cases studied, a net heat release curve from a DI gasoline engine running in CAI combustion 

with the negative valve method (Standing et al., 2005) is plotted in Fig. 5 (b). As it can be seen, using 

the Shell-auto-ignition model only (Case 1) does not predict the heat release during the negative valve 

overlap period, which is apparent in the experimentally derived heat release curve, and it over predicts 

the first stage heat release during compression and hence too early start of combustion. Case 2 (with 

the characteristic-time combustion model only during the negative valve overlap) fails to predict the 

first stage heat release around 315 ° CA ATDCoverlap, which are caused by the accumulation of radical 

R and labile intermediate species Q. However, the PLIF measurements (Koopmans et al., 2003) show 

that formaldehyde is formed with injection during the negative valve overlap, indicating some low 

temperature oxidation reactions taking place during this period. The above experimental results and 

the model sensitivity study demonstrate that the combined Shell and characteristic-time combustion 

models should be used so that the chemical and thermal contributions can be included due to fuel 

reforming and minor combustion during the negative valve overlap period. This combined combustion 

model should therefore be used for the following parametric studies.  

Perhaps, more importantly, the above analysis shows that fuel injection into a lean-burn mixture 

during the negative valve overlap period can cause both localized heat release during this period and 

promote fuel oxidation reactions or fuel reforming. The localized heat release during the negative 

valve overlap period is shown to be dominated by the high temperature reactions but its value is 

limited by the amount of oxygen available. The fuel reforming has been found to be responsible for 

the presence of the two-stage heat release in the compression stroke seen during the experimental 

studies. 

2 Effects of Single Fuel Injections 

2.1 Charge cooling effect due to direct injection 

As shown in Table 2 and Fig. 7, the charge cooling effect associated with fuel evaporation has 

been found to influence the engine performance by altering its volumetric efficiency, pumping loss, 

and compression temperature. In a direct injection gasoline engine, fuel is injected directly into the 
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cylinder and then vaporized completely by absorbing heat only from the in-cylinder charge mixture. 

Reducing the in-cylinder temperature results in decreased cylinder pressure, which can lead to an 

increase of intake airflow mass during the intake stroke. As shown in Table 2, the highest airflow rate 

can be seen with injection taking place at 98° CA ATDCoverlap near IVO, while the charge cooling 

induced volumetric efficiency benefit vanishes with injection after IVC. The reduced airflow rate with 

injection during the recompression process is due to the fact that the early heat release during the 

negative valve overlap period offsets the charge cooling effect to some extent. 

Another significant effect of charge cooling is on pumping loss. Higher pumping losses can be 

seen with injections during the negative valve overlap period, as compared with that of injections 

during the intake and compression strokes. This may be explained by referring to Fig. 7 (b), where in-

cylinder pressure traces are plotted for different injection timings. It can be seen from Fig. 7 that 

injection during the recompression process lowers the re-expansion pressure after TDCoverlap, due to 

fuel evaporation and its associated charge cooling effect, and hence increased pumping work. In 

addition, it is noted that advancing injection timing tends to lower pumping losses, when fuel injection 

takes place in the negative valve overlap period. This is mainly due to the fact that more heat is 

released in the re-expansion process owing to minor combustion, which in turn increases the re-

expansion work and hence reduces the pumping work associated with the recompression process.  

2.2 Early injections during the negative valve overlap period 

By injecting fuel directly into the trapped and recompressed hot residuals of lean-burn mixtures 

prior to the intake process, fuel could undergo varying degrees of chemical preconditioning reactions 

and even some heat release as discussed previously. Figure 8 shows the spatial distributions of charge 

temperature, equivalence ratio, local heat release rate and soot at TDCoverlap with injections during the 

negative valve overlap period. These results show that the heat release process always starts at the 

boundary of the fuel rich zone, where high temperature and oxygen availability favour the exothermic 

reactions, while the soot contours coincide with the fuel rich zones within the minor combustion 

region during the negative valve overlap period. The temperature evolution and the early heat release 

associated with minor combustion during the negative valve overlap period are given in Fig. 9. It is 

noted that the case with injection at -40° ATDCoverlap leads to more heat released during the negative 

valve overlap period than the other three injections. Approximately 3% of the total fuel energy is 

released during the negative valve overlap period with injection at -40° ATDCoverlap, as compared with 

1.5%, 2.6% and 0.5% with injections at -75°, -20° ATDCoverlap and TDCoverlap respectively. The amount 

of heat released during the negative valve overlap is limited by the oxygen available as well as local 
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charge temperature. As shown in Fig. 9, injection at -75° ATDCoverlap lowers the charge temperature 

during the negative valve overlap so much that the heat release is largely limited by charge 

temperature. By comparison, lower charge temperature in the re-expansion process due to charge 

cooling effect and downward piston motion contribute to less heat released during the negative valve 

overlap with injections -20° ATDCoverlap and TDCoverlap than that with injection at -40° ATDCoverlap.  

The corresponding pressure and heat release rate profiles during the negative valve overlap 

period and main combustion processes are given in Fig. 10. As can be seen, the highest peak pressure 

and earliest combustion phasing are seen with injection at -40° ATDCoverlap, which also has the largest 

amount of early heat release during the negative valve overlap period. This indicates that the early heat 

release associated with minor combustion during the negative valve overlap period is primarily 

responsible for the advanced start of main combustion, due to an elevated in-cylinder charge 

temperature during the intake and compression strokes shown in Fig. 9. As shown in Table 3, the 

crank angles of 10% MFB with injections at -40° and -20° ATDCoverlap are advanced by 7.4° and 6.0° 

CA respectively, as compared with the injection at TDCoverlap. This suggests that the thermal effect due 

to the early heat release in the negative valve overlap period is dominant in those two injections cases.  

For injections at -75° ATDCoverlap and TDCoverlap, the thermal effect becomes less significant due 

to a relatively small heat released during the negative valve overlap period. However, larger amount of 

heat is released during the first stage of ignition at 320° ATDCoverlap, although a slightly lower charge 

temperature during the intake and early part of compression strokes is observed, as shown in Figures 8 

and 9. This can be explained by referring to Fig. 11, which shows the trace of labile intermediate 

species Q. As can be seen, large amounts of intermediate species Q formed during the negative valve 

overlap period with injection at -75° ATDCoverlap can promote quick build-up of branching agent B, 

which leads to higher heat release at the first-stage of ignition as seen in Fig. 9. 

The main combustion characteristics for injections during the negative valve overlap period are 

summarized in Table 3. The value of net IMEP is closely related to combustion phasing and pumping 

loss. Both too early combustion phasing and higher pumping losses contribute to lower IMEP values 

with injections at -40° and -20° ATDCoverlap, as compared with the injection at -75° ATDCoverlap. 

Comparing the cases with injections at -75° ATDCoverlap and TDCoverlap, the combustion phasings of 

those two injection cases are quite similar, however the higher pumping losses result in lower IMEP 

with injection at TDCoverlap. 

2.3 Mid and late injections during the intake and compression strokes 
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Figure 12 shows the pressure and heat release rate varying with injection timings. Comparing the 

two injections during the intake stroke, the start of combustion is slightly retarded with later injection 

timing (SOI at 150° ATDCoverlap), leading to lower peak pressure. As shown in Table 4, there is little 

difference in the compression temperature between the two injections during the intake stroke. The 

delayed start of combustion with later injection is therefore likely related to the time available for fuel 

to mix with air and to be oxidized. However, the combustion phasing is advanced, as the injection is 

retarded further into the compression stroke (SOI at 218° ATDCoverlap). This is more likely due to the 

in-cylinder mixture stratification. A study of the scatter plot of equivalence ratio and temperature 

distributions in Fig. 13 reveals that the mixture stratification increases as the injection is retarded. The 

most stratified mixture charge can be seen with the late injection in the compression stroke, due to less 

mixing time and relatively weak flow interaction with spray. As shown in Fig. 14, the upward piston 

movement and the compression bulk flow force a small fraction of fuel droplets to impinge on the 

exhaust side of the cylinder wall, when the fuel is injected after IVC. Small amounts of both over-rich 

and very lean mixtures are presented in the combustion chamber at the end of compression stroke, 

owing to relatively weak compression bulk flow motion.  In order to investigate the effect of fuel 

stratification, a further analysis is carried out on the distributions of equivalence ratio, charge 

temperature and local heat release rate. As indicated in Fig. 15, at 350° CA ATDCoverlap, the presence 

of more fuel rich pockets with injection at 218° ATDCoverlap gives out more heat than that of 

homogeneous charge with injection at 98° ATDCoverlap, resulting in earlier start of combustion with 

late injection at the compression stroke. However, the presence of over-lean and over-rich mixtures 

due to late injection in the compression stroke decreases the combustion efficiency and hence lowering 

the IMEP value, as also shown in Table 4.  

Figure 16 qualitatively compares the crank angle of 10% MFB and IMEP for various injection 

timings from the current modeling studies with the experimental results obtained from a GDI engine 

with CAI combustion achieved by the negative valve overlap method (Standing et al., 2005). Although 

the engine used in the experiment is slightly different in compression ratio from the modeled engine, 

the modeling results show similar trend to that of experiments, confirming the validity of modeling 

study and its usefulness for better understanding of underlying physical and chemical processes 

involved in the CAI combustion. 

The predicted NOx and soot emissions are presented in Fig. 17. It shows that the early injections 

produce the highest NOx emission and lowest soot formation, while stratified charge operation 

increases NOx and soot formations simultaneously. The amount of NOx correlates well with the peak 
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charge temperature shown in Table 3 and Table 4. The highest NOx emissions is therefore seen with 

injection at -40° ATDCoverlap in Fig. 17. As also shown in Fig. 17, the soot formation rises rapidly with 

injections during the negative valve overlap period initially, as some of the fuel is burned in a very 

rich mixture during the negative valve overlap period, and then the soot formation and oxidation are 

frozen throughout the intake stroke. However, in the main combustion, the much faster soot oxidation 

rate with injection during the negative valve overlap period contributes to the lower soot emission than 

that with injections during the intake and compression strokes, due to the higher combustion 

temperature. In contrast, the late injection during the compression stroke is characterized with the 

fastest soot formation rate and slower soot oxidation rate in the main combustion, which in turn results 

in the highest final soot emission, due to the most stratified charge mixture shown in Fig. 13. 

Based on the above studies, the mechanisms of combustion phasing control by injection timing in 

a lean-burn CAI DI gasoline engine can be summarized as shown in Fig. 18. The factors include the 

thermal/chemical effects caused by early injection during the negative valve overlap period, or charge 

cooling effect by injection during the intake stroke, or fuel stratification effect by late injection at the 

compression stroke. Heat release or thermal effect associated with injection during the negative valve 

overlap period has a dominant effect on advancing the start of main combustion. The chemical effect 

is secondary and its presence promotes the first stage of ignition during the compression stroke. 

However, injection during the negative valve overlap period can also slow down the main combustion 

process, if the in-cylinder temperature during the recompression process is reduced significantly due to 

charge cooling effect and hence less or no heat release reactions can take place during the 

recompression and re-expansion processes. The late injection during the compression stroke can lead 

to an advanced combustion due to charge stratification, whilst the injection during the intake stroke 

slows down the start of main combustion by charge cooling effects. 

3 Effect of Split Fuel Injections 

 In the previous section, injection timing in the single fuel injection strategy has been shown to 

have a large effect on combustion characteristics. In order to optimize combustion phasing and engine-

out emissions, split fuel injection is investigated. The proportion of fuel injected in each of the two 

injections is varied from 10%, 15%, 25%, 50% and 75%, while the start of the first and second 

injections are fixed at -75° and 98° ATDCoverlap, respectively. The total amount of fuel in each engine 

cycle is kept constant (9 mg), with an overall equivalence ratio around 0.8. 
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 The heat release curves during the negative valve overlap period with variable split injection 

ratios are given in Fig. 19. It is noted that the early heat release during the negative valve overlap 

period decreases gradually with increasing amount of fuel injected during the recompression process. 

This could be explained by referring the corresponding temperature during the negative valve overlap 

period as shown in Table 5. It can be seen that the increased portion of fuel injected during the 

recompression process leads to significant reduction in temperature, due to fuel evaporation, resulting 

in smaller early heat release associated with minor combustion during the negative valve overlap 

period shown in Fig 19 (a) and Fig. 20. On the other hand, more fuel injected during the negative 

valve overlap promotes the build-up of radical and intermediate species, which leads to higher first 

stage heat release during compression stroke with 50/50 and 75/25 split injections as shown in        

Fig. 19 (b). Figure 19 (a) shows that there is a clear relationship between the amount of heat released 

during the negative valve overlap period and the start of main combustion: the higher the amount of 

heat released during the negative valve overlap, the earlier the start of main combustion. This indicates 

that the thermal effect due to early injection during the negative valve overlap period seems to play a 

predominant role in determining the combustion phasing. Furthermore, comparing 10/90, 15/85 and 

25/75 split injections, the earlier start of main combustion with 25/75 split injection is attributed to the 

higher level of radical and intermediate species present prior to the main combustion shown in         

Fig. 19(b), since similar amount of heat has been released during the negative valve overlap period as 

shown in Table 5 and Fig. 19(a). 

Table 5 shows the main combustion characteristics and engine performance with different split 

injection strategies. It is noted that the highest amount of heat release during the negative valve 

overlap period is obtained with 25/75 split injection, which leads to the most advanced crank angle of 

10% MFB or the start of main combustion, the shortest combustion duration and the highest peak 

cylinder temperature, and hence the highest NOx emissions. As also shown in Table 5, the pumping 

loss is at its lowest value with 25/75 split injection. This can be explained by the opposing effects of 

charge cooling and heat release on the pumping work during the negative valve overlap period. As 

more fuel is injected into the negative valve overlap period, the charge cooling effect lowers the 

charge temperature, and hence inhibits the fuel reforming and heat release process as shown in        

Fig. 19 (a) and Fig. 20, but more importantly the greater charge cooling effect due to the increased 

first fuel injection causes the cylinder pressure to drop more during the re-expansion stage, and hence 

higher PMEP. Whilst smaller amount of fuel injection experiences earlier and more heat release 

during the re-compression stage, which results in larger re-compression work than the re-expansion 

work during the negative valve overlap, leading to higher PMEP. Although the 25/75 split injection 
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has the lowest PMEP, it has the lowest IMEP or highest ISFC. This is due to the fact that ignition and 

combustion are too advanced (with the crank angle of 50% MFB just before TDCcomb ).  

 As discussed previously, early injection during the negative valve overlap period tends to 

advance the start of main combustion, whilst injection during the intake stroke leads to higher airflow 

rate into the cylinder and retarded combustion. In double injection, those two effects will counteract 

each other. Figure 21 shows that using split injection can improve IMEP and lower soot emissions 

simultaneously, as compared with the corresponding single injections. By varying the split fueling, the 

best overall engine performance is obtained with the 50/50 fuel injection split ratio, due to the optimal 

combustion phasing and relatively low pumping loss, whereas the lowest IMEP and highest ISFC are 

seen with the single injection at 98° ATDCoverlap (the extreme case of split injection). The soot traces of 

split injections are given in Fig. 22. It can be seen that increasing the amount of fuel injected during 

the negative valve overlap period dramatically increases the initial soot formation during the negative 

valve overlap period. In double injection, the split fuel injection with the 75/25 split ratio is 

characterized with the highest final soot emission, due to higher initial soot formation. In contrast, 

relatively lower initial soot formation and faster soot oxidation contribute to the lowest soot emission 

with the split injection ratio of 25/75. As shown in Table 5, the lowest total NOx and soot emissions 

are obtained with the optimal split injection ratio of 10/90, as compared to all injection cases.  

SUMMARY 

Following a sensitivity study on the role of auto-ignition chemistry and high temperature 

combustion, the effect of single fuel injection timing has been investigated on the CAI combustion 

with lean mixture. This was followed by a systematic investigation into the effect of split injections on 

engine performance and emissions characteristics. The conclusions can be summarized as follows: 

1. The heat release observed in both experiment and simulation studies during the negative valve 

overlap period is dominated by the high temperature combustion chemistry. 

2. The first heat release seen during the compression stroke is caused by the accumulation of 

active species and radicals from the low temperature auto-ignition chemistry. 

3. In single injection strategy, the mechanisms of combustion phasing control by injection timing 

can be explained by the thermal/chemical effect caused by early injection during the negative 

valve overlap period, charge cooling effect by mid injection during the intake stroke, or fuel 

stratification effect by late injection. 
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4. When fuel is injected, during the recompression period, into burned gases of a lean-burn 

mixture, early heat release resulting from minor combustion has a predominant effect on 

advancing the start of main heat release process. In addition, intermediate species formed 

during the negative valve overlap period also contribute to an advanced combustion phasing. 

5. When fuel injection takes place in the intake period, more air is inducted into the cylinder and 

the onset of combustion is slightly delayed as injection timing is retarded. 

6. In stratified charge operation associated with late fuel injection in the compression stroke, the 

creation of a fuel rich zone favours auto-ignition and can be used to promote an early 

combustion phasing, but with a penalty of higher NOx and soot emissions. 

7. For split fuel injection of fixed injection timings at -75° and 98° ATDCoverlap, the best engine 

performance is obtained with the optimal split injection ratio of 50/50, whilst the lowest total 

NOx and soot emissions are seen with the split injection ratio of 10/90, as compared to all 

injections under the constant total fueling in each engine cycle. 
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                         Table 1  Engine specification and its operating conditions. 

Engine Type Ford 1.7L Zetec 

Bore (mm) 80 

Stroke (mm) 83.5 

Displacement (cm3) 1679 

Compression ratio 10.3 

Engine Speed 1500 rpm 

Valve train (4-Valve) 

                          EVO: -195°CA  ATDCoverlap 

                          EVC: -85°CA  ATDCoverlap

                          IVO:   88°CA  ATDCoverlap

                          IVC:   208°CA  ATDCoverlap

Fuel supply system GDI, Hollow cone swirl spray injector 

Spray cone angle 70° 

 
Start of Injection (SOI) -75°, -40°, -20°, 0°, 98°, 150°, 218°CA  ATDCoverlap

Injection pressure (MPa) 10 

Injection duration 30° CA (9mg) 

Equivalence ratio ~ 0.8 

Intake temperature (K) 320 
 
 
 
 
 
 
 
 

Table 2 Effect of fuel injection on CAI engine performance. 
 

 
 SOI at -

75° 
ATDC 

SOI at -
40° 
ATDC 

SOI at 
-20° 
ATDC 

SOI at 
TDC 

SOI at 
98° 
ATDC 

SOI at 
150° 
ATDC 

SOI at 
218° 
ATDC 

Airflow  rate  [g/s] 7.70 7.22 7.31 7.85 8.03 7.91 7.61 
Temp. at 340° ATDC [K] 964 979 974 962 956 954 946 

PMEP [MPa] -0.0353 -0.0376 -0.0364 -0.0395 -0.0331 -0.0334 -0.0338 
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Table 3 Combustion characteristics and engine performance with injections during the 
negative valve overlap period 
 
 SOI at –75 

ATDC 
SOI at –40 

ATDC 
SOI at –20 

ATDC 
SOI at  
TDC 

10% MFB [°CA] 360.0 353.4 354.8 360.8 
50% MFB [°CA] 366.6 358.5 360.2 366.8 
90% MFB [°CA] 376.0 367.0 368.0 375.5 
10-50% MFB [°CA] 6.6 5.1 5.4 6.0 
50-90% MFB [°CA] 9.4 8.5 7.8 8.7 
10-90% MFB [°CA] 16.0 13.6 13.2 14.7 
Pmax  [MPa] 3.21 3.71 3.62 3.19 
Tmax  [K] 1880 2012 1987 1895 
Net IMEP  [MPa] 0.311 0.287 0.291 0.305 
ISFC [g/KW⋅h] 248 269 265 253 
Comb. efficiency 0.95 0.95 0.94 0.94 
ISNOx [g/Kg⋅fuel] 0.083 0.892 0.653 0.239 
Soot  [g/Kg⋅fuel] 0.883 0.595 0.493 0.531 

 
 
 

Table 4 Combustion characteristics and engine performance with injections during the intake 
and compression strokes. 

 
 SOI at 98 

ATDC 
SOI at 150 

ATDC 
SOI at 218 

ATDC 
10% MFB [°CA] 364.8 365.2 360.3 
50% MFB [°CA] 373.6 373.3 368.3 
90% MFB [°CA] 386.0 387.8 379.0 
10-50% MFB [°CA] 8.8 8.1 8.0 
50-90% MFB [°CA] 12.4 14.5 10.7 
10-90% MFB [°CA] 21.2 22.6 18.7 
Pmax  [MPa] 2.61 2.57 2.86 
Tmax  [K] 1746 1707 1763 
Net IMEP  [MPa] 0.304 0.292 0.279 
ISFC [g/KW⋅h] 254 264 276 
Comb. efficiency 0.93 0.90 0.85 
ISNOx [g/Kg⋅fuel] 0.0232 0.0383 0.0542 
Soot  [g/Kg⋅fuel] 0.958 1.313 2.210 
Temp. at 340° ATDC [K] 967 965 957 
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Table 5 Combustion characteristics and engine performance with variable split injection 
ratios. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 Inject. ratio 
10/90 

Inject. ratio  
15/85  

Inject. ratio        
25/75 

Inject. ratio 
      50/50 

Inject. ratio 
75/25 

Early heat release/total  0.055 0.056 0.060 0.036 0.021 
Temp. at TDCoverlap [K] 1452 1443 1413 1298 1218 
10% MFB [°CA] 355.5 354.5 353.5 358.3 360.4 
50% MFB [°CA] 361.5 360.5 359.4 364.8 367.1 
90% MFB [°CA] 372.1 371.0 369.1 375.0 377.4 
10-50% MFB [°CA] 6.0 6.0 5.9 6.5 6.7 
50-90% MFB [°CA] 10.6 10.5 9.7 10.2 10.3 
10-90% MFB [°CA] 16.6 16.5 15.6 16.7 17.0 
Pmax  [MPa] 3.50 3.55 3.61 3.31 3.15 
Tmax  [K] 1965 1979 2000 1912 1866 
PMEP [MPa] -0.0160 -0.0145 -0.0133 -0.0241 -0.0329 
Net IMEP  [MPa] 0.313 0.310 0.309 0.314 0.311 
ISFC [g/KW⋅h] 247 249 250 246 248 
Comb. efficiency 0.96 0.96 0.96 0.96 0.96 
ISNOx [g/Kg⋅fuel] 0.312 0.365 0.452 0.146 0.080 
Soot [g/kg.fuel] 0.175 0.168 0.164 0.636 1.003 
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Fig. 1 Comparison of pressure and heat release rate among the experimental data (Li, 2001) 

and predicted values with the standard and modified Shell models. (φ=1, RPM=1500, EVC at 

-85° ATDCoverlap, IVO at 88° ATDCoverlap) 
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 Fig. 4 3D numerical grid for the Ford engine 
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 (a) predicted temperature and heat release traces 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) derived net heat release rate from measured pressure trace in a DI 

gasoline engine [Standing, 2005]  
 
 Fig. 5 Predicted temperature and heat release profiles of all three cases with 

injection at -40° ATDCoverlap 
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     Fig. 6 Predicted radical/intermediate species traces of all three cases.          

(a)                                                                        (b)

 
 .)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
on

ce
nt

ra
tio

n 
(m

ol
/c

.c

100

0.1

1

0.5

50 500400300200

2

Lo
g 

In
-c

yl
in

de
r p

re
ss

ur
e 

(M
Pa

)

Log Cylinder volume (cm3)

 SOI at -75° ATDC
 SOI at -40° ATDC
 SOI at  TDC
 SOI at  98° ATDC
 SOI at  150° ATDC

-60 0 60 120 180 240 300
400

600

800

1000

1200

1400

 SOI at -75° ATDC
 SOI at -40° ATDC
 SOI at TDC
 SOI at 98° ATDC
 SOI at 150°ATDC

In
-c

yl
in

de
r t

em
pe

ra
tu

re
 (K

)

Crank angle (CA ATDCoverlap)

         (a) temperature history                               (b) log P-V diagram during NVO 

Fig. 7 Effect of charge cooling during the negative valve overlap and intake periods 
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 (a) TDCoverlap (Case of SOI at -75° ATDC)
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(c) TDCoverlap (Case of SOI at -20° ATDC)  
 
 

Fig. 8 Distributions of temperature, equivalence ratio, heat release rate and soot 
at TDCoverlap for the cases of SOI at -75°, -40° and -20° ATDC.  
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Fig. 9 Heat release rate and temperature traces during the negative valve overlap 
and compression processes. 
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Fig. 10 Pressure and heat release rate traces with injections during the 
negative valve overlap period. 
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Fig.11 Radical/intermediate species traces with injections during the 
negative valve overlap period. 
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Fig. 12 Pressure and heat release rate profiles of the mid 
and late injections during the intake and compression 
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 (c)  

Fig.13 Equivalence ratio-temperature distribution at 340° ATDCoverlap for 
the cases with injections at the intake and compression strokes. 
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    (a) 240°ATDC                        (b) 290°ATDC                      (c) 340°ATDC       
 
 Fig. 14 Computed spatial distribution of equivalence ratio for the case with 

injection at 218° ATDC. Top: the x-z plane is the central vertical plane of the intake 
valve. Bottom: the x-y plane is the middle plane along the z-axis. 
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Fig. 15 The spatial temperature, equivalence ratio and heat release rate distributions 
at 350° ATDCoverlap for the cases with injections at 98° and 218° ATDC. 
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               (a) 10% MFB                                                      (b) Net IMEP    
 

Fig. 16 Measured and predicted 10% MFB and net IMEP. 
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Fig. 17 Predicted NOx and soot histories varying with injection timings. 
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Late  Early Combustion phasing  
 
 Fig. 18 Mechanism of combustion phasing control by injection timings. 
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Fig. 19 Pressure and heat release rate, radical species traces with variable split fueling. 
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(b) Radical/intermediate species trace 

 (a) Pressure and heat release rate traces 
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 Fig. 20 Local heat release rate distribution of various split injections 
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 Fig. 21 Soot-NOx trade-off of single and split injections. Numbers in 

parentheses denote IMEP values.  
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Fig. 22 Predicted soot histories of split injections 
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