
Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

184

DEVELOPING A GRID COMPUTING SYSTEM FOR
COMMERCIAL-OFF-THE-SHELF

SIMULATION PACKAGES

Chris Wood & Shane Kite
Saker Solutions
Upper Courtyard

Ragley Hall, Alcester, B49 5NJ, UK
{chris.wood | shane.kite}@sakersolutions.com

Simon J E Taylor
Distributed Systems Research Group

School of Information Systems, Computing & Mathematics
Brunel University

Uxbridge, Middlesex, UB8 3PH, UK
simon.taylor@brunel.ac.uk

Navonil Mustafee
School of Business and Economics

Swansea University
Singleton Park, Swansea, SA2 8PP, Wales UK

n.mustafee@swansea.ac.uk

ABSTRACT:
Today simulation is becoming an increasingly
pervasive technology across major business
sectors. Advances in COTS Simulation Packages
and Commercial Simulation Software have made
it easier for users to build models, often of large
complex processes. These two factors combined
are to be welcomed and when used correctly can
be of great benefit to organisations that make use
of the technology. However, it is also the case
that users hungry for answers do not always have
the time, or possibly the patience, to wait for
results from multiple replications and multiple
experiments as standard simulation practice
would demand. There is therefore a need to
support this advance in the use of simulation
within today’s business with improved computing
technology. Grid computing has been put forward
as a potential commercial solution to this
requirement. To this end, Saker Solutions and the
Distributed Systems Research Group at Brunel
University have developed a dedicated Grid
Computing System (SakerGrid) to support the
deployment of simulation models across a
desktop grid of PCs. The paper identifies route
taken to solve this challenging issue and suggests
where the future may lie for this exciting
integration of two effective but underused
technologies.

KEYWORDS: Simulation Modelling, Grid
Computing, Flexsim Simulation Software, COTS
Simulation Packages, Witness Simulation
Software, Simulation Experimentation

1. INTRODUCTION

In the experience of simulation modelling at
Saker Solutions, if there is a typical simulation
run time, and the authors are reticent to predict
such a thing, one would imagine that a time of
40mins to 80mins per replication would not be
untypical. Therefore, even a typical 10 replication
run would take 7 to14 hours to run. A replication
is a single run of the simulation model using a
specific set of random numbers. The author isn’t
trying to prescribe how many replications are
required to support a specific model but simply to
identify the time required to run a model with
even a modest number of replications. In the era
when it would have taken 7 hours to make a
simple change to a model then this may have
been acceptable. Now changes can often be made
in minutes and the user needs to be able to
receive a quick response to questions. Given that
the authors have seen (“commercial” not
“academic”) models sometimes take over 14
hours to run a single replication then this “need
for speed” can be extreme.

It is worth understanding the context of a ‘quick
response’. This is a comment which many users
will quote as a requirement of a simulation, i.e.
“Run Speed”. Indeed it is often quoted as an
enhancement request. However, this needs to be
put into context. When running a scenario on a
single PC, an instant response would be ideal, if
not practical. If it takes the time required to get a
coffee this would be seen to be instant (no pun



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

185

intended). Indeed 30 or 40 minutes would seem
to be the longest time that someone is prepared to
wait, and this would still not be ideal. However
conversely if it takes 6-12 hours, then realistically
it would be deemed to be an ‘overnight’
experiment. So, to make an impact on speed the
requirement is not to double a model’s run speed
but rather we need to decrease the time taken to
run a scenario by a factor of 10 at least.

The notion of “The Grid” offers an integrated
infrastructure providing geographically
distributed sites with secure access to
computational, data and instrumentation
resources (Foster and Kesselman, 1998). It has
been suggested as being potentially beneficial to
simulation modelling (Robinson, 2005; Taylor
and Robinson, 2006). Indeed, previous work has
investigated how a Grid based on a network of
PCs, a desktop grid, can be successfully used to
support different simulation applications
(Mustafee and Taylor 2008; Mustafee and Taylor,
2009). The question therefore that this paper
seeks to address is how far can “The Grid” be
taken in the world of simulation practice? The
paper is structured as follows: section 2 discusses
relevant issues in simulation practice using
practical experience from Saker Solutions,
section 3 reviews Grid computing and desktop
grid technology, section 4 presents the system
requirements for a Grid computing simulation
solution, section 5 outlines the resulting desktop
grid system called SakerGrid that has been
developed and has been successfully deployed by
Saker Solutions and the Distributed Systems
Research Group of Brunel University and section
6 draws the paper to a close with some
concluding remarks and future work.

2. SIMULATION AT SAKER SOLUTIONS

Discrete-event simulation (henceforth referred to
as simulation) has been used to analyse
production and logistics problems in many areas
such as commerce, defence, health,
manufacturing and logistics for many years. The
first discrete-event simulation languages appeared
in the late 1950s. These evolved during the 1960s
and 1970s. With the arrival of the IBM PC, the
1980s saw the rise of visual interactive modelling
environments that allowed simulation modellers
to visually create and simulate discrete-event
models (Ellarby and Kite, 2006). Today,
simulation is “practised” using Commercial-Off-
The-Shelf (COTS) Simulation Packages (CSPs).
They include packages such as AnyLogic™,
Flexsim™, Simul8™ and Witness™. Each has a
wide range of functionality including visual
model building, simulation run support,
animation, optimization and virtual reality. Some

allow model features to be developed in C++ or
Java, some have their own dedicated
programming language and all are able to be
linked to other COTS software (such as Microsoft
Excel). Nearly all CSPs only run under Microsoft
Windows™ which dictates that a discussion of
the integration of simulation products with other
software needs to be focused on a Windows
environment. Whilst this may necessarily
eliminate some Unix based software, the authors
make no apologies for following industry
standards.

In any project a certain amount of time is spent
running models for both testing and analysis. Our
experience has been that as simulations tools
have become easier to use and more graphically
expressive (Ellarby and Pattison, 2008) it has lead
to requests for ever larger models that result in
longer running times.

Experience from talking to Saker Solutions
clients shows some key pointers to the issues
facing simulation practitioners:
 Models are becoming larger in terms of the

number of components, event list, physical
file size and data files (associated databases
and data sources that are accessed during a
run). This leads to longer run times and end
user frustration.

 Models are longer lived and can exist for the
lifetime of the physical system. This allows
for a significantly higher investment in
simulation than if a model is developed for a
one-time problem.

 To make simulation more accessible to the
end user, sophisticated front-ends have been
developed that “hardwire” good simulation
practice. Saker Solutions have developed
such frontends which allow the user to
demand scenarios quickly and effectively but
the user is then left to wait for the response
as the simulation works through the
replications.

The introduction of SakerGrid has meant that not
only has the overall duration of a simulation
project been reduced, but the effectiveness of the
modeller has also been increased because in the
time that it takes to analyse the results from one
scenario another scenario has been run.

3. DESKTOP GRIDS

A desktop grid is one that aggregates non-
dedicated, de-centralised, commodity PCs
connected via a network (Mustafee and Taylor,
2009). As “typical” desktop applications do not
fully utilise the computing power available on a
machine, desktop grids can harvest spare



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

186

computing resources of desktop PCs (so-called
cycle scavenging) (Choi et al., 2004). There are
several different desktop grid middleware that
can be used to create such an infrastructure.
Examples include BOINC (Anderson, 2004),
Condor (Litzkow et al., 1988), Platform LSF
(Zhou, 1992), Entropia DCGrid (Kondo et al.,
2004), United Devices GridMP (United Devices,
2007) and Digipede Network (Digipede
Technologies, 2006). Of these, Condor is
arguably the most popular as it has a large
deployment base, it is relatively easy to use and is
available free of cost. However, it is also large (it
is general purpose), complex (there are many
features) and unsupported (the running of the
application using the middleware is the
responsibility of the user). Further, like all
distributed computing applications, grid desktop
middleware uses different communication
schemes that need to be matched with local
security policies. Some organisations may prefer
servers over peer-to-peer processes or vice versa,
or indeed only allow communication via web
services or through specific ports (for example
sharing port 80 – the port that supports the World
Wide Web). This can be problematic if the
scheme and policy do not match as the user
cannot control such things easily. Further, there
may well be the need for specific message
compression or encoding that the middleware
may not support. The fact that many CSPs only
work under Microsoft Windows means that some
middleware cannot be used because it either does
not run on that operating system or runs with
limited functionality.

Most desktop grid middleware works on the
Manager-Worker principle. The Manager is a job
dispatcher that receives and sends jobs out to
Workers. Workers work on these jobs and return
results. Most middleware also assumes that a
“job” consists of the application program and its
data. Over and above operating system
constraints, the use of a grid to support simulation
is more complex and follow different design
principles. These design principles (Mustafee and
Taylor, 2008) are summarised below.

3.1 Middleware Integration Approach

To expand the issue introduced above, jobs sent
from the Manager to a Worker typically run in a
“sandbox” that is implemented by the
middleware. This provides a logically separate
and secure execution environment to prevent
unauthorized access to a computer. However, to
do this, the application software (the CSP) must
be integrated with the middleware. A “job” would
therefore be the model plus the data needed for a
simulation run. This approach is more common

for applications such as the Java Virtual Machine,
i.e. the application needed to run Java programs.
To be successful, this approach would require the
CSP Vendor and the middleware supplier to
agree to either produce a specific version of the
middleware supporting the CSP or to bundle the
CSP as part of the middleware. Neither approach
is particularly attractive.

3.2 CSP-Runtime Installation Approach

This approach involves the installation of a CSP
package at runtime, i.e. just before the simulation
experiment is conducted. In this case the CSP is
sent to the Workers along with the model and
data. This approach allows for flexibility to send
jobs to machines which are free irrespective of
the configuration of that machine. However this
approach may not be feasible for a number of
reasons. (1) the size of CSPs frequently exceed
100s of MBs and it may not be feasible to transfer
such large amounts of data to multiple Clients
over the network, (2) the CSP will first need to be
installed on the desktop grid node before the
simulation can start, (3) such an installation is
normally an interactive process and requires
human intervention, (4) an installation normally
requires administrative privileges on the Client
computers, (5) transferring CSPs may lead to a
violation of the software licence agreement that
may be in place between the CSP vendor and the
organization (if the number of desktop grid nodes
executing simulations exceed the number of
licences purchased) and (6) time becomes an
issue here where the replications are relatively
short the time to load the software could be
prohibitive.

3.3 CSP-Preinstalled Approach

This involves installing the CSP at the Worker as
a normal installation. The jobs sent to the
Workers are therefore the model and the data,
removing the issues described above. As
simulations are created by trusted employees
running trusted software within the bounds of a
fire-walled network, security in this open access
scheme could be argued as being irrelevant. In
this environment the sandbox security mechanism
described above may be forfeited. This
methodology allows for flexibility in allowing
jobs to be packaged and sent to machines with the
right configuration.

4. SIMULATION REQUIREMENTS

Section 2 outlined relevant issues to simulation
practice and Section 3 has outlined desktop grid
middleware and CSP support strategies. Let us



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

187

now discuss this in detail with respect to
SakerGrid.

SakerGrid has been configured to support a range
of simulation tools. The current implementation
is focussed on the Flexsim simulation software.
Flexsim is a PC based, object-oriented simulation
tool used to model, simulate, and visualise any
manufacturing, material handling, logistics or
business process. Flexsim has been developed to
allow users to build models directly in a 3D
environment with the ease of conventional 2D
models whilst still allowing more advanced
modellers the flexibility to design new objects
and if required even embed their own C++ code
into the tool, thus allowing Flexsim's modelling
objects to be customized to exactly match the
processes being studied.

Flexsim requires a hardware dongle, the two most
common configurations of which are ‘local’ and
‘network’. A local license allows one instance of
Flexsim to run on the machine that it is connected
to. A network license allows multiple machines to
use a pool of licenses that are available from the
license server. Using a network license means
that any number of machines can have Flexsim
installed, but the number of instances that can be
run simultaneously is limited by the number of
licenses in the pool. This means that the Grid
Manager not only has to limit jobs to the
machines that have Flexsim installed but also has
to monitor the number of licenses available in the
pool.

The input and output data for a Flexsim model is
typically stored using one (or more) of three
different mechanisms: an internal Flexsim tables,
an Excel spreadsheet (either directly, via a DSN
or via an intermediate flat text file, such as a
CSV) or a database (via a DSN).

Handling unforeseen problems that occur whilst a
scenario is being run in a distributed environment
is one of the key issues of implementing a
desktop grid. Individual machines may crash or
be interrupted by a user returning to their
machine and network connectivity issues can also
cause a machine to leave the grid. In all of these
situations it is possible that a job will have been
sent to run on a machine, but no results are
returned. Replications which are not completed
because of a failure outside of the simulation
need to be automatically re run. Equally if the
failure is related to the simulation then this needs
to be logged ad reported to the user.

Whilst models are in development it is possible
that a bug will be encountered that prevents a
scenario from completing. In this event the grid

must ensure that the job is halted allowing other
jobs to use the computing resources and
communicate as much information as possible to
the modeller that submitted the suspended job to
aid them in eliminating the cause of the problem.

Given that even when using a desktop grid it may
take a considerable amount of time to run a large
number of scenarios of a particular model, it is
important that an appropriate prioritisation
strategy is employed by the Grid Manager to
allow more urgent jobs to supersede this work if
the need arises. Indeed the authors note that
ultimately this is the key to a successful grid
application. Scheduling is a complex topic in any
paradigm and in the case of distributing
simulations this is no less the case. Machines
(resources) have different speeds and capabilities,
models (jobs) require different amounts of time
from the resources and users (customers) have
different priorities.

Given the above, of the three CSP-grid
integration approaches discussed in section 3, the
CSP-preinstalled approach is considered the most
appropriate because (1) it does not require any
modification to the CSPs – thus, CSPs that
expose package functionality can be grid-enabled,
(2) it does not require any modification to the
grid middleware, (3) CSPs that are usually
installed on the PCs of the simulation
practitioners can be utilized for running
simulation experiments from other users in the
background and (4) it supports the restrictions
imposed by the license requiring the presence of a
hardware dongle.

In SakerGrid, the Worker has been designed to
integrate with commercial simulation packages
(CSPs) by using the “pre-installation approach”
(Mustafee and Taylor, 2008). When the Worker
is started it scans the machine of the desktop grid
for all of the available simulation packages and
registers these with the Grid Manager. In this way
SakerGrid supports different products and
versions of products transparently to the user.
When the Grid Manager is ready to distribute a
block of work it will use this information to
determine which of the Workers are capable of
handling it.

As we have discussed, the key elements to
creating a grid based solution is really in the
integration and support of the user interface and
the CSP. One might therefore take the view that it
does not matter which middleware is used.
However, our justification for developing our
own system is that we wish to supply a supported
grid solution in an unknown, possibly highly
restricted, security environment that is optimised



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

188

for simulation and provides for future expansion
to allow for distributed simulation and
optimisation. We now discuss our solution to this,
SakerGrid.

5. SAKERGRID

There are three components to SakerGrid; the
Manager, the Worker and the Client. Each grid
consists of one Manager that handles the job
queue and dispatches the jobs to Workers in
packages of work referred to as ‘blocks’. When
the block completes on the Worker the results are
returned to the Manager where they are combined
with the results from the other Workers. At this
point the Worker is available to receive the next
block of work from the Manager. The Client is
used by the analyst to submit jobs to the
Manager, monitor the progress of their execution
and to download the results when they are
complete.

Figure 1 shows how the SakerGrid middleware
isolates the CSP from the network and other
implementation details of the Grid. This means
that the CSP can be used unmodified out of the
box. All non-sensitive models and datasets are
cached by the Workers to reduce the amount of
network traffic and to reduce the start-up time of
the Worker when it is issued a job. The modular
architecture of the Manager allows the models
and data to be stored either locally or on a central
server whilst the jobs are pending in the queue
before they are dispatched to the appropriate
Worker when required.

The reduction in running time that has been
achieved can be clearly seen in Figure 3. It gives
a comparison of the overall running time of 1, 5,
10, 20, and 40 replication scenarios with a model

that runs for approximately 7.5 minutes per
replication The model used was a finished client
model which although a relatively small project,
the model was a ‘real’ model and typical for a
small simulation projects. This model had the
advantage of allowing us to experiment with
significant numbers of replications. Whereas
previously a 40 replication scenario would have
been termed an ‘overnight’ experiment it can now
be completed in less than 30 minutes giving
almost instant results. Similar reductions in
overall running time have also been observed on
larger models with some taking up to 14 hours
per replication.

Our experience of using SakerGrid to test models
during development has been that the overall
project duration is reduced by approximately
10%. However, the amount of testing that can
now be accomplished in this time is far greater
than if the test packs were run sequentially. This
enables the modeller to not only test the specific
area of the model that has been modified during
that phase of the development, but also to run a
comprehensive regression test without increasing
the duration of the project. This in turn has lead
to higher quality, more robust models.

Figure 2 is a screenshot of the Client application
showing a number of jobs queued on the
Manager. The list at the top shows the progress
and state of the jobs and statistics about their
running time. It is possible to drill-down into
each of the jobs by clicking the plus symbol to
see detailed statistics about the individual
replications and the Workers that have run them.
The chart at the bottom is currently displaying the
average running time by Worker of the
replications that have completed in the
highlighted scenario.

Figure 1 SakerGrid Architecture



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

189

Figure 2 Saker Grid Client GUI

Figure 3 Overall scenario time for a model with a running time of approximately 7.5 minutes per replication

.

6. CONCLUSIONS AND FUTURE WORK

This paper has reported on a successful
industrial-academic collaboration between Saker
Solutions and the Distributed Systems Research
Group of Brunel University that has resulted in
SakerGrid. This novel system enables users to
obtain a step change in performance. An
important advantage is that while other

incarnations of Grid-enabled simulation have
required users to be expert in computational
technology, SakerGrid is a packaged solution that
allows users to focus on building models,
experimenting (quickly) and analysing the results
where ultimately the true benefit of simulation
lies. SakerGrid, whilst taking significant
development effort, has already reaped benefits
and has now been in constant use for many
months. Saker Solutions are now in the process of
launching the software into the market.



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

190

SakerGrid still has limitations. In order to achieve
this step change in performance it requires a
significant expenditure in licences to support
multiple running of replications. Saker Solutions
is already working on the development of a
virtual grid which will allow users to ‘issue’
models to the Virtual SakerGrid where
replications will be distributed across numerous
nodes giving a performance ahead of what even
the largest simulation users can hope to achieve.
This is only part of the answer; Saker Solutions
are also working with Software vendors to look at
new licensing options to allow simulation models
to take a licence with them as they are allocated
across SakerGrid. Effectively allowing SakerGrid
to distribute temporary Grid run time licences,
thereby significantly reducing the investment cost
and allowing the users to define for any scenario
the balance between response time and cost.
Additionally, the authors perceive that as use of
SakerGrid grows so will the need for advanced
scheduling options. Future development is
therefore being targeted to increase the
functionality of the product particularly in
enabling more sophisticated scheduling rules to
facilitate multiple users with diverse model run
times and resource requirements. In addition
SakerGrid will shortly be enabled to support
other simulation software with Witness and
AnyLogic already under development and more
will then follow.

REFERENCES

D.P. Anderson (2004). “BOINC: a system for
public-resource computing and storage”. In
Proceedings of the 5th International Workshop
on Grid Computing, pp.4-10. IEEE Computer
Society, Washington, DC, USA.

S. Choi, M. Baik, C. Hwang, J. Gil, and H. Yu
(2004). “Volunteer availability based fault
tolerant scheduling mechanism in desktop grid
computing environment”. In Proceedings of the
3rd IEEE International Symposium on Network
Computing and Applications, pp. 366-371.
IEEE Computer Society, Washington, DC,
USA.

Digipede Technologies (2009). “The Digipede
Network”. Accessible online
http://www.digipede.net/products/digipede-
network.html. Last accessed 17 November
2009.

M. Ellarby, and S. Kite (2006). “Are Rich Visual
Environments a Gimmick or a Real Aid to the
Understanding and Acceptance of Results?” In
Proceedings of the 2006 OR Society Simulation

Workshop, Leamington Spa, UK, March 28-29,
2006, pp. 295-299.

M. Ellarby, and G. Patisson (2008). “Are State of
the Art Simulators Moving the Modelling
Goalposts?” In Proceedings of the 2008 OR
Society Simulation Workshop, Worcestershire,
England, April 1-2, 2008, pp. 291-296.

I. Foster, and C. Kesselman (1998). The grid:
blueprint for a new computing infrastructure.
San Francisco, CA: Morgan Kaufmann.

D. Kondo, A. Chien, and H. Casanova (2004).
“Resource management for rapid application
turnaround on enterprise desktop grids”. In
Proceedings of the 2004 Conference on
Supercomputing (SC’04), paper 17. IEEE
Computer Society, Washington, DC, USA.

M. Litzkow, M. Livny, and M. Mutka (1988).
“Condor - a hunter of idle workstations”. In
Proceedings of the 8th International
Conference of Distributed Computing Systems,
pp.104-111. IEEE Computer Society,
Washington, DC, USA.

N. Mustafee, and S.J.E. Taylor (2008).
“Investigating Grid Computing Technologies
for Use with Commercial Simulation
Packages”. In Proceedings of the 2008 UK
Operational Research Society Simulation
Workshop, Birmingham, UK, 297-307.

N. Mustafee, and S.J.E. Taylor (2009). “Speeding
Up Simulation Applications Using WinGrid”.
Concurrency and Computation: Practice and
Experience, 21(11): 1504-1523.

S. Robinson (2005). “Discrete-event simulation:
from the pioneers to the present, what next?”
Journal of the Operational Research Society, 56
(6): 619-629.

S.J.E. Taylor, and S. Robinson (2006). “So where
to next? A survey of the future for discrete-
event simulation”. Journal of Simulation, 1(1):
1-6.

United Devices. (2007). “Grid MP: The
technology for enterprise application
virtualization”. Accessible online
http://www.ud.com/products/gridmp.php. Last
accessed 18 March 2007.

S. Zhou (1992). “LSF: Load sharing in large-
scale heterogeneous distributed systems”. In
Proceedings of the 1992 Workshop on Cluster
Computing. Supercomputing Computations
Research Institute, Florida State University,
Florida, USA.



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

191

AUTHOR BIOGRAPHIES

CHRIS WOOD is a consultant at Saker
Solutions. Since completing his degree in
Computer Systems Engineering at Warwick in
2006 he has worked on a number of both
software engineering and simulation projects. His
email address is
<chris.wood@sakersolutions.com>

SHANE KITE has been involved in the
Simulation industry for over 25 years. With a
background in Manufacturing Engineering at
Ford, Shane developed early applications of
graphical simulation in the automotive industry,
using the Fortran based ‘See Why’ product
amongst others. Since then, Shane has had a
successful career in simulation. Prior to
becoming Managing Director of Saker Solutions
he was President of Lanner Inc. and a board
member and founder shareholder of Lanner
Group, the developers of the Witness Simulation
product. Shane is a member of the Informs
College on Simulation and the Society of
Computer Simulation as well as the UK
Operational Research society. His email address
is <shane.kite@sakersolutions.com>

SIMON J. E. TAYLOR is the co-founding
Editor-in-Chief of the UK Operational Research

Society’s (ORS) Journal of Simulation and the
Simulation Workshop series. He has served as the
Chair of the ORS Simulation Study Group from
1996 to 2006 and was appointed Chair of ACM’s
Special Interest Group on Simulation (SIGSIM)
in 2005. He is also the Founder and Chair of the
COTS Simulation Package Interoperability
Product Development Group (CSPI-PDG) under
the Simulation Interoperability Standards
Organization. He is a Reader in the Distributed
Systems Research Group in the School of
Information Systems, Computing and
Mathematics at Brunel. His email address is
<simon.taylor@brunel.ac.uk>.

NAVONIL MUSTAFEE is a lecturer in the
School of Business and Economics at Swansea
University. Prior to this, he was a Research
Fellow in Brunel University and Warwick
Business School. His research interests are in e-
Infrastructures and Grid Computing, Information
Systems, Operations Research and Healthcare
Simulation. He completed his PhD in Information
Systems and Computing from Brunel University
in 2007. He is a member of the drafting group of
the COTS Simulation Package Interoperability
Product Development Group (CSPI-PDG) under
the Simulation Interoperability Standards
Organization. His email address is
<n.mustafee@swansea.ac.uk>


