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Abstract 

 

Three dimensional product design models are widely used in conceptual design 

and in the early stage of prototyping during the design processes.  A product 

design specification often demands a substantial amount of 3D models to be 

constructed within a short period of time.  Current methods begin with designers 

sketching product concepts in 2D using pencil and paper, which in turn are then 

translated into 3D models by a design individual with CAD expertise, using a 3D 

modelling software package such as Pro Engineer, Solid Works, Auto CAD etc.  

Several novel methods have been used to incorporate hand motion as a way of 

interacting with computers.   There are three main types of technology available to 

capture motion data, capable of translating human motion into numeric data which 

can be read by a computer system.  The first being, hand gesture glove-based 

systems such as ―Cyberglove‖, these systems are generally used to capture hand 

gesture and joint angle information.  The second is full body motion capture 

systems, optical and non-optical-based, and finally vision based gesture 

recognition systems which capture full degree of - freedom (DOF) hand motion 

estimation.  There has yet to be a method using any of the above mentioned input 

devices to rapidly produce 3D product design models in real time, using hand 

motion and gestures.  In this research, a novel method is presented, using a motion 

capture system to capture hand gestures and motion in real time, to recreate 3D 

curves and surfaces, which can be translated into 3D product design models.  The 

main aim of this research is to develop a hand motion and gesture-based rapid 3D 

product modelling method, allowing designers to interactively sketch out 3D 

concepts in real time using a virtual workspace. 

A database of a number of hand signs was built for both architectural hand signs 

(preliminary study) and Product Design hand signs.  A marker set model with a 

total of eight markers (five on the left hand and three on right hand/marker pen) 
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was designed and used in the capture of hand gestures with the use of an Optical 

Motion Capture System.  A preliminary testing session was successfully 

completed to determine whether the Motion Capture system would be suitable for 

a real-time application, by effectively modelling a train station in an offline state 

using hand motion and gesture.  An OpenGL software application was 

programmed using C++ and the Microsoft Foundation Classes which was used to 

communicate and pass information of captured motion from the EVaRT system to 

the user.       

 

Abbreviations 

Throughout this Thesis, several programs, hardware, and software‘s are referred to 

in abbreviated form.  Please see the list below showing each abbreviation and its 

associated full meaning. 

OpenGL - (Open Graphics Library), is a cross-platform API for writing 

applications that produce 2D and 3D computer graphics. 

EVaRT - EVa Real-Time Software is an application provided by Motion Analysis 

which allows the user to set up, calibrate, capture motion in real-time, capture 

motion for post processing, edit and save data in the format of their choice. 

MFC - Microsoft Foundation Classes is a library that wraps portions of the 

Windows API in C++ classes. 

Mocap - Motion capture is a term used to describe the process of recording 

movement and translating that movement into a digital format. 

SDK - A software development kit is typically a set of development tools that 

allows for the creation of software applications. 

Direct X - Microsoft DirectX is a collection of application programming 

interfaces for handling tasks related to multimedia, especially game programming 

and video, on Microsoft platforms.  
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1 Introduction 

 

Products constitute one of the classic four P‘s of the marketing mix (Product, 

Price, Place, Promotion) and the most fundamental characteristics of a product is 

its exterior form factor and design.  Product design is often mentioned as being the 

most important determinant of a new products performance and it‘s sales success.  

In society today, the aesthetic appearance of products is the most significant 

regardless of their function.  When presented with a choice between two products 

identical in price and function, consumers will select the item which they consider 

to be more attractive and aesthetically pleasing.  The form of a product contributes 

to its success in several ways, most commonly to gain consumer notice, when 

markets are cluttered with products intended for the same purpose.  When 

designing products, designers make choices regarding their characteristics, some 

of these include; shape, scale, proportion, materials, colour, reflections and 

texture.  Given the purpose of a product, its target market and its desired 

performance specification the design team set about creating a design form which 

will be successful.  Production costs and manufacturing processes also determine 

the outcome of a products form, managers put pressure on designers to develop 

products which can be manufactured cheaply and adhere to quality control 

parameters.  Design objectives and constraints are becoming ever more excessive, 

as companies go in search for something special which will set their product apart 

from the competition. This results in the design process becoming increasingly 

complex, and more time spent on conceptual design to ensure the correct product 

is designed and released to market. 

 

A product‘s form, once developed, may evoke diverse physiological responses and 

feelings from consumers.  These reactions are the result of subtle design 

refinements implemented by the designer.  These can often be intentionally 

planned or often a natural effect which occurs rarely at the concept stage.  These 

rare subtleties seldom occur when the designers mind is free at the drawing board 

in the middle of producing multiple 2D sketch-based conceptual drawings.  
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Unfortunately transferring these subtle refinements to the finished product as to be 

experienced by the user, is often a complete task of its own.  Most 3D modelling 

packages although extremely powerful, are geared toward expert users with years 

of experience, with tools that are hard to learn and slow and meticulous to use.  

The main reason for this is that current methods were originally developed for 

Computer Aided Design (CAD) professionals where accurate mathematical 

control was an essential requirement.  The fundamental problem when 

representing 2D sketches of curves and surfaces as a 3D entity, is that the majority 

of natural real world object have non-planer curves.  The problem of finding the 

3D space curve from a 2D sketch is mathematically undeterminable, as it has 

many possible solutions.  Resent attempts to create simpler interfaces for 3D 

modelling have been developed, based on the human ability to quickly outline a 

global overview of an object. These approaches are frequently referred to as 3D 

Sketching.  Their principle is to generalise the shape of the 3D model and apply 

details by means of different editing operations such as extrude and cut.  Sketching 

is essentially an activity driven by a significant amount of curves.  The main 

limitation of this method, stems from the ability of the 3D sketching system only 

being able to perform few operations based on it‘s analysis of the user defined 

strokes.   

 

Improvements in this area could encourage stylists and designers to directly create 

the digital model, and continue to work on it making alterations to produce new 

products.  In essence the goal would be to capture the prominence of sketch based 

curves.  

 

All the above have been the focus of research in 3D modelling for years, but there 

is yet to be a system that tackles the problem successfully.  The quest to seek the 

―ideal‖ form for a product remains to be a key goal for designers.  Concept 

selection is a convergent process, thus the products form still remains a vital 

factor.    There are many different methods and techniques that fall into the broad 

definition of 3D modelling CAD Sketching and HCI.  The main selection of these 

methods will be analysed and discussed in the next section.    
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1.1 Research Motivation 

 
The motivation of this project is one of significant concern to the product design 

industry, where designers use hand drawn sketches to realise the conceptual design 

of a product.  Ultimately, the main problem with this method is, it forbids the 

designer to make changes which can later be easily translated to the final product.  

The design of a product must go through several stages of electronic composition 

and alterations before it reaches production, during which vital subtle design 

inspirations realised by the designer are either lost during the transition, or take a 

vast amount of time and money to implement, becoming unfeasible.  The only 

way round this problem is for the designer to begin the whole conceptual design 

process again.  This again uses more time and money delaying the products lead 

time from the design stage to consumer market.  Hence the aim would be to enable 

the designer, animator or artist to have control over the electronic 3D model at the 

conceptual design stage.       

 

1.2 Aims and Objectives 

Aims 

 Explore the feasibility of rapidly creating 3D product design models in real 

time, using hand motion and gestures. 

 

Objectives 

 Create a system to provide a natural 3D interactive design interface for two 

hand interaction and gesture in real-time. 

 Use a motion capture system for motion recognition and allow for multi-

users to work simultaneously for collaborative work.  

 Investigate new methods that could lead to a new design process that can 

support virtual product design by hand signs and 3D sketches with actual 

3D world references. 

 Define a set of hand signs and gestures for the design application that can 

be further developed into a new design modelling language for a wide 

range industry applications 
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1.3 Preliminary concepts 

1.3.1 Challenge of real-time hand gesture modelling for product design 

 

Product Design is a creative process, which often requires a blend of the following 

professions to be a success; art, design and engineering.  The imagination, 

inspiration and passion of artists and designers are crucial in creating innovative 

conceptual designs. In an ideal world whilst at the creative design stage with 

inspiration, the designer may want to quickly and effortlessly express design ideas 

in 3D without any impediments.  This behaviour reflects common means of 

communication found amongst humans, used in society on a daily basis.  

Unfortunately 2D Sketches that represent 3D ideas and the operation of 3D CAD 

software are time consuming, and very tedious, which ultimately neglect 

inspiration and the perfect design model from being realised. 

 

The main challenge of generating 3D models for product design using hand 

gesture and motion lies with HCI (human computer interaction).  The human hand 

has a very complex structure, with 27 degrees of freedom: 4 in each finger, 5 in 

the thumb, and 6 DOF for the rotation and translation of the wrist, tracking and 

recording this complex motion has been a challenge for several years [1].  There 

are several methods used to capture human motion, all having their advantages 

and disadvantages making them suitable for different applications. 

 

One method of obtaining accurate motion data is by using glove-based devices.  

This method is generally used to capture hand gestured motion along with joint 

angles.  The main issues surrounding this technology are that glove based devices 

are often cumbersome and wired to the subjects hands, offering restrictions in 

movement.  The second widely used method is vision-based gesture recognition, 

which uses stereo visual equipment to recognise static and temporal gestures.  A 

common problem found with this method is that complex finely tuned recognition 

algorithms are needed which are computationally intensive as well as taking a long 

time to program.  The final method known as full body motion capture will be 

discussed in the following section.        
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1.3.2 Motion Capture 
 

Motion capture often abbreviated as ‗mocap‘ is defined as ―The creation of a 3D 

representation of a live performance."  The first use of motion capture dates back 

to the 19th century with the motion studies of Eadweard Muybridge where basic 

photography was applied for medical and military purposes.  The demand for 

realistic three-dimensional animation in computer graphics is increasing making 

motion capture a prominent feature in this field.  Mocap is also widely used in 

military, entertainment (film, game), sports, and medical applications.  Back in the 

1980‘s when the first motion capture systems were being introduced, many 

considered them to be a fairly controversial tool, as the effort involved to ‗clean 

up‘ the motion capture data equalled that of the time taken to use key framing, the 

alternative method for generating realistic motion.  Software and hardware 

advancements since then have allowed motion capture to become a feasible tool 

for the capture of motion. 

 

Current motion capture systems can be separated into two main groups, optical 

systems and non-optical systems.  Furthermore, optical systems can be subdivided 

into systems which utilise passive markers, active markers, and no markers 

(marker-less).   

 

The most common of the above, passive optical systems require the subject to 

wear a body suit with markers attached, coated with a retro-reflective material.  

Light is then reflected back to the cameras lens, the centroid of the marker is 

estimated by the 2D image captured.  When two or more cameras see this marker a 

3D fix can be obtained.  Multiple cameras are used to update a computer of the 

markers exact position at up to 500 frames per second.  System setups can have 

anywhere from 6 - 300 cameras at any one time.  The more cameras present, the 

less likely marker swapping will occur as more cameras will be able to see a single 

marker at any given time. Having additional cameras also helps with the ability to 

capture a group of people or more than one subject in a larger capture volume. 
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Active optical systems triangulate the position of a marker by illuminating one 

LED very quickly.  Instead of reflecting light back that is generated externally, the 

markers themselves are powered to emit their own light.  The advantages of active 

optical systems are that identifying each marker as an individual makes it is useful 

for real-time applications. 

 

More recently research by Stanford, MIT, and Max Planck Institute, has seen the 

development or markerless systems which permit the user to not wear special 

equipment for tracking.  These applications require the use of computer algorithms 

to break down the human body, fragment it into sections, and identify them for 

tracking. 

 

Non-optical based systems can be subdivided into systems that rely upon inertia, 

mechanics and magnetism. 

 

Inertial motion capture technology uses small inertial sensors and gyroscopes that   

transmit digital information such as joint angle measurement wirelessly, to a 

computer where the motion is viewed and recorded.  As with optical based 

systems, the more gyroscopes, the higher the accuracy.  The advantages of inertial 

motion capture systems are that they do not require the use of any cameras or 

external markers.  This in turn puts little restriction on the size of the capture 

volume.  Inertial based systems are popular amongst the film and game industries 

as manufacturers offer systems at base prices ranging from $25,000 to $80,000 

USD. 

 

Mechanical motion capture systems commonly referred to as exoskeleton systems 

track body joint angles directly.  They use plastic or metal rods to create rigid 

structures which mimic the human skeleton.  Movement from the performer 

conform potentiometers that articulate at the main joints of the body.  Once again 

these systems offer occlusion free capture and an unlimited capture volume.  In 

contrast to this some believe wearing bulky exoskeleton suits for mechanical 

motion capture restrict the user from natural motion.  In the medical industry 
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where accurate natural motion is required to study and diagnose a patient‘s gait, 

this is not practical. 

 

Magnetic systems use the magnetic flux of orthogonal coils on a transmitter and 

receiver to measure the position and rotation of the given motion.  Each sensor can 

output up to 6 degrees of freedom, providing good results using less makers 

required with optical based systems.  Unfortunately, the use of magnetism in these 

systems incurs interferences with near by electronic devices such as lighting 

monitors, computers and phones.  

 

For our research purposes a motion capture system by Motion Analysis 

Corporation namely Eagle Digital Real-Time System will be used for the capture 

of motion.     
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2 Literature Review 

 

In the following section, the area of research will be separated into four main 

sections.  Motion Synthesis, Motion Description, Hand Gesture Recognition, HCI 

(Human Computer Interaction).  Past and present research will be discussed and 

reviewed. 

 

2.1 Motion Synthesis 

 

Studies of human motion or a human-like character have been present in various 

areas over several years.  Obtaining, analysing and generating human motion has 

been the main focus of researchers in the areas of biomechanics, robotics and 

computer graphics.  The focal point of this review will be computer graphics and 

virtual environments.   

 

The demand for realistic three-dimensional animation within a virtual environment 

is increasing.  Today‘s constant technological advances are allowing virtual 

worlds to strongly correspond to a real life scene.  Due to this, various indoor and 

outdoor scenes such as, houses, offices, aeroplanes, train stations, stadiums, and 

work environments can be replicated and used for training purposes, pre-

construction simulation and safety testing.   

 

Newly qualified professionals can perform multiple complex training operations in 

their given field, risk free.  Without the need for expensive setup costs, virtual 

environments can be implemented to simulate a training exercise, once they have 

finished or made a mistake they are able to reset the system and prepare for a 

second try.  This method of virtual training environment exercises are proving to 

be irreplaceable especially when there is great potential for mistake and more 

importantly, have an enormous cost.   
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More importantly, the availability of on-demand training environments makes it 

possible to perform unlimited amounts of exercises, in turn increasing the number 

of trainees and their expertise.   

 

Over the past few years the increase in rendering and processing speeds, are 

allowing for more complex shapes and a higher number of these shapes to be 

incorporated into a virtual environment making them more detailed and 

additionally more realistic.  Higher screen resolutions, improved lighting and 

shading all add to the realism of the scene making the environment more 

believable to the viewer. 

 

Unfortunately, a realistic true to life scene does not always present the viewer with 

acceptance and believability.  Picture a scene of a busy London street, or a 

shopping centre, without the presence of virtual characters the viewer will begin to 

dismiss the scene as being unconvincing.    

 

Therefore, virtual characters and their motion present an unavoidable part of 

almost any virtual environment.       These virtual characters can be humans, 

animals, and many other beings which all bring to life an environment and make 

the virtual world resemble the real world.   

 

As mentioned earlier, faster rendering and processing times also help with the 

appearance of virtual characters as they do with other objects such as furniture, 

doors etc.  It is therefore safe to assume that features of virtual humans such as 

hair, clothing and skin will all appear realistic.  Unfortunately with virtual humans 

just having these characteristics is not sufficient.  Virtual humans cannot satisfy 

the user‘s expectations by standing still in one position and looking realistic like 

pieces of furniture.  They must breath, walk, act, and most importantly interact 

with their surroundings.  

 

The most important part of a virtual human is the way they act.  Their individual 

movement and reactions to the surrounding stimuli within the environment is what 
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makes them realistic and believable to the viewer.  Consider an animated cartoon 

character such as ―Top cat‖, it is clear to note that nothing appears realistic about a 

cat talking to a human police officer.  Nevertheless, humans recognise familiar 

reactions and movements which are exhibited by real life humans.  Thus, when 

―Top cat‖ reacts in the same manner as a human, he is generally accepted 

regardless of his appearance as a cartoon character.     

 

The demand for realistic three-dimensional animation in computer graphics is 

increasing.  In response to this demand, many methods to create animation 

effectively have been proposed and realised.  It is important when creating 

animation of human motion that it appears to be natural and generate human 

motion as automatically as possible so that the workload of animators is 

minimised.  The motion of a human figure is usually modelled to have very high 

DOF (Degrees of Freedom).  Due to this, if an animator were to generate such 

motion the workload would be quite heavy, and a high level of artistic skill would 

be required to attain realistic natural motion. 

 

The motion of Virtual characters can be split into two main sections: how they 

move and how they act.  The first refers to the spatial transition of the character 

for example moving from point A to B whilst avoiding obstacles such as furniture 

and or other virtual humans.    The second refers to the execution of individual 

motions, for example reaching to open a door, striking a ball with a hand or foot, 

and taking a seat at a table.  These two parts belong to path planning and motion 

synthesis respectively. 

 

The area of motion synthesis can be broken down and divided into three 

categories: manual synthesis, physically-based synthesis, and data-driven 

synthesis.  
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2.1.1 Manual Synthesis   

 

Manual synthesis is one of the earliest methods of motion synthesis, it is also the 

simplest, consisting of the character‘s degrees of freedom to be specified manually 

at given points in time, known as keyframes.  This method is often referred to as 

keyframing.  The quality of the motion is governed by the skill of the animator as 

they have full control over the animation.  After several poses of the animation 

have been set by the animator keyframes in between can be computed through 

simple interpolation.  However, interpolation rarely produces accurate results 

when the distance between two keyframes is extreme, therefore the animator must 

manually construct a considerable portion of the character poses which make up 

the motion.  This is a very tedious and time consuming, especially when most film 

and animation is broadcast at a minimum of 24 frames per second.  Also, to create 

these poses such that they appear realistic when played in real time involves a 

great deal of skill from the animator.  There are several parameters which the 

animator must consider in order to produce a realistic scene, some of these 

include: location/orientation, joint angles, shape, material properties and lighting.          

 

As the animator has full control over the scene and controls every detail of the 

character‘s movement, this method of manual synthesis is commonly found in the 

production of cartoons where realistic motion need not be developed as long as it 

is expressive to the viewer. 

 

The alternative method to keyframing categorized under manual synthesis, is the 

design of algorithms that are capable of replicating sets of motion.  The advantage 

of this method over keyframing is that it allows the animator to create entire 

motion at once, rather than one pose at a time, and these motions can be controlled 

interactively for online character animation such as computer games. 

 

Perlin [2] and Perlin and Goldberg [3] confirmed that a variety of motions can be 

generated with simple and efficient algorithms which avoid computation intensive 

dynamics and constraint solvers commonly found in physically-based synthesis.  
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Nevertheless, these algorithms can be tricky to design, and more importantly 

whenever a new kind of motion is required for animation, a completely new 

algorithm must be developed.  

 

2.1.2 Physically-Based Synthesis 

 

Physically-based synthesis is the generation or realistic motion by consideration of 

dynamic conditions.  As human motion in real life is governed by the laws of 

physics, physical simulation is a natural approach for animating motion.  This 

strategy reduces the freedom of the human character by eliminating motions that 

cannot occur based on considerations of dynamic consistency.  Hodgins et al. [4] 

proposed a human model containing information about mass and inertia, and 

generated dynamically consistent motion by applying proportional-derivative 

servos to compute joint torques based on the desired and actual value of each joint.  

Several dynamically correct athletic behaviours were accomplished: running, 

bicycling, and vaulting.  Despite the fact users are limited to three types of motion, 

parameters such as speed and direction can freely be adjusted.      Comparable 

methods were developed by Wooten and Hodgins [5] [6]  to generate motions like 

tumbling and flipping.  In addition, a second model was developed which was 

capable of adapting existing simulated behaviours to new characters, with 

different limb lengths, masses, or moments of inertia, for example men/women to 

children [7].   Basic actions such as balance, protective stepping when balance is 

disturbed, protective arm reactions when falling, multiple ways of rising upright 

after a fall, and several more vigorously dynamic motor skills were realised by 

Faloutsos et al [8].  Controller design remains a difficult method for creating 

motion, as finding joint torque values that yield specific motions is difficult, 

especially when a chosen controller is capable of producing a limited range of 

motion.  

 

Laszlo et al. [9] applied limit cycle control to adjust the joint controller which 

creates robust walking gaits for a fully-dynamic 19 degree- of-freedom human 

model.  The limit cycle control technique offers an automated way of adding 
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closed-loop control to a basic desired open-loop motion. The open-loop 

component of the control can be tailored in a variety of ways to produce stylistic 

variations and useful parameterizations of the motion without any loss of physical 

realism. 

  

Faloutsos et al, [10] uses a support vector machine (SVM) capable of pre-learning 

conditions of different controllers for the composition of different actions thus 

providing a meta-controller that switches attributes to transition between several 

motions. 

 

Komura et al. [11] [12] created a model that considers not only mass and inertia 

but also musculoskeletal structure.  Naturally, the model was designed on the 

musculoskeletal configuration of humans.  Due to this, such an approach can 

create a human model capable of realistic motion similar to that of a real life 

human.  Unfortunately, the good results produced by this system are often 

hindered as the model is very costly to make and requires heavy computational 

power because of its many degrees of freedom.  In order to overcome this 

problem, simplified human models have been proposed.   

 

An alternative to constructing joint controllers is to use constrained optimisation 

which creates full dynamically correct motion from a small amount of predefined 

keyframe poses.  

 

Popovic et al. [13] generated a model with three significant simplifications: the 

elbows and spine are abstracted away, the upper body is reduced to the centre of 

mass, and movement is abstracted from symmetric motion.  Once this simplified 

model is obtained, spacetime optimisation and dynamic calculation is performed.  

The advantages of the simplified model can be noticed, as only the fundamental 

properties of the motion are considered making the model easier to handle because 

only crucial degrees of freedom are conceived.    

Safanova et al. [14] show it is possible to reduce the degrees of freedom found in 

captured motion from 60 to less than 10 using Principle component analysis with 
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examples of forward, vertical, and turning jumps; with running and walking; and 

with several acrobatic flips.  Although this approach can improve convergence and 

make individual poses appear more natural, the sequence of keyframes used to 

create motion after optimisation does not match the fidelity of captured motion.           

 

A rapid and user friendly approach to creating complex realistic ballistic motion 

was proposed by Liu and Popovic [15].  A rough motion is defined by a small 

amount of keyframes which is computed via spline interpolation, once complete, 

an optimisation process is performed to generate the minimal deviation from the 

initial motion which enforces a small set of linear and angular momentum 

constraints.  These trajectories are derived from Newton‘s laws, when the 

character is airborne and from biomechanically-inspired model of momentum 

transfer when the character is on the ground.   

 

Some new methods consider dynamic conditions between the model and its 

surrounding environment.  As the majority of human motion is performed in 

contact with the ground, ground reaction forces are the most significant external 

forces.  Tak et al. [16] modifies the trajectory of the ZMP to convert dynamically 

inconsistent motion to consistent motion. 

 

Fang and Pollard [17] consider a new optimisation method which avoids 

traditional approaches of constraining parameters involving joint torques.  They 

consider constraints and objective functions that lead to linear time first 

derivatives which results in fast computation times.  Their system is particularly 

useful for synthesizing highly dynamic motions. 

 

Several approaches which also consider external reactions with the environment, 

all make it possible to easily handle aggressive external perturbations.  Ko et al. 

[18] created motion of a character capable of carrying a heavy load from captured 

motion of humans walking normally using inverse dynamics.  
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Carrying a heavy load on the back of a character and receiving a sudden 

perturbation to the body, were considered by Oshita et al. [19]  The balance 

maintenance system controls the angular acceleration of the character‘s joints so 

as to track the user-input motion.  Environmental physical input is then applied to 

the character, the dynamic motion control computes the angular joint accelerations 

in order to produce dynamically changing motion in response to the physical 

input.  Zordan et al. [20] considered a human model that combines dynamic 

simulation and human motion capture data.  By controlling the simulation with 

motion capture data, the character retains subtle, expressive details from the data 

while adding responsiveness and interactivity from the dynamic simulation.  The 

motion is modified with time-scaling, blending, and inverse kinematics to achieve 

specified tasks, such as being boxed by someone.  Balance of the character is 

maintained through control torques computed according to feedback of the centre 

of mass. 

 

2.1.3 Data-Driven Synthesis 

 

Human motions can be captured using motion capture, a system that digitally 

records movement of a subject.  A highly realistic and automatically dynamically 

correct motion is captured which can be used as raw material for various data-

driven synthesis algorithms.  Despite the fact that the original motion is 

automatically dynamically consistent, once the motion has been synthesised the 

motion becomes dynamically inconsistent.  Nevertheless, for the application of 

computer graphics this is not always important as the motion must only appear 

natural.  

 

One of the most common methods to edit motion is by using spacetime 

constraints.  This method was first introduced by Witken et al. [21] and consists of 

generating motion by constraining a point of the body in a specified position at a 

given time.  The original model was designed for a general articulated object, not 

just a human model.  The original method also calculated external forces and joint 

torques so that the model is constrained at the specific position at the correct time.  
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Shortly after, Liu et al. [22] developed a way of efficiently solving spacetime 

constraints with the use of hierarchical calculation that was used by Rose et al. 

[23] to generate motion of a human figure.  The motion transition generation used 

by Rose et al. is a combination of spacetime constraints and inverse kinematic 

constraints that generates seamless and dynamically plausible transitions between 

motion segments. The use of fast recursive dynamics formulation made it possible 

to use spacetime constraints on systems with many degrees of freedom, such as 

human figures.  A new method of spacetime constraints was proposed by Gleicher 

[24].  The method excluded all dynamic calculation and the motion generated used 

captured motion for reference and constraints about the position and the time.  The 

advantage found was that the spacetime constraints could be solved more easily 

due to the exclusion of dynamic calculation.  The motion created was not 

necessarily dynamically correct, however, as mentioned earlier this is not vital in 

computer graphics.  Gelichers‘s method was improved by Lee et al. [25] to a more 

efficient one using hierarchical calculation.  A hierarchical curve fitting technique 

with a new inverse kinematics solver was used configure an articulated figure to 

meet the constraints in each frame.  The result is an analytical method that greatly 

reduces the load of a numerical optimization to find the solutions for full degrees 

of freedom of a human-like articulated figure.  A real-time system called a ―pin –

and-drag interface‖ was introduced by Yamane et al. [26-27].  This method is 

mainly based on efficient inverse kinematics calculations. Its basic function was to 

enable animators to generate a natural motion by dragging a link to an arbitrary 

position with any number of links pinned in the global frame, as well as other 

constraints such as desired joint angles and joint motion ranges.  

 

Spacetime constraints rely on the indirect modification through constraints about 

body parts.  There are other methods however which allow the direct modification 

of motion by controlling the parameters of motion.  Human motion was 

decomposed in the frequency domain and the trajectory was modified for every 

frequency component by Bruderlin et al. [28] in their motion signal processing 

method.  Several potentially useful operations were noticed: multiresolution 

filtering, waveshaping and adding smooth displacement maps.   Witkin et al. [29] 
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introduced a variant of displacement mapping called motion warping, in which 

motion was warped not only in space but also in time. 

 

Unuma et al. [30] proposed a method for modelling human figure motion with 

emotions.  They combined cyclic motions by linearly combining the Fourier 

coefficients of each degree of freedom.  This meant that transitions from a walk to 

a run could smoothly and realistically be performed.  Additionally, more subtle 

human behaviours could be expressed, for example the ―briskness‖ of a walk 

could be controlled.  However transition from running to walking by this method 

is unnatural. 

 

Amaya et al. [31] generated emotional motion from neutral motion, by using 

signal processing techniques to calculate certain emotional transformations.  This 

is then applied to existing motion to produce the same motion but with an 

emotional quality such as being sad or angry.  The difference was represented as a 

warp of two components: speed and spatial amplitude.  These warps are then 

applied to different neutral motions, in order to gen generate similar emotional 

content. 

 

Chi et al. [32] used movement observation science, specifically Laban Movement 

Analysis (LMA) to extract valuable parameters for the form and execution of 

qualitative aspects of movements.  They believed, the consideration of whole body 

engagement would lead to naturalness for procedurally generated gestures.   

 

Three tools were presented by Neff and Fiume [33] to adjust a motion‘s 

succession, amplitude and extent, allowing the animator to quickly adjust the 

various expressive aspects of a motion. 

 

Algorithms were introduced that not only adjusted kinematic properties, but also 

preserved physical correctness.  Tak et al. [18, 34] use Spacetime sweeping to 

incorporate the kinematic and dynamic constraints in a scalable framework.  They 

ensured that the body‘s zero moment point remained inside the support polygon, 
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which ensures physical validity.  Popovic and Witkin [13] created a solution to 

editing captured motion that take dynamics into consideration.  A novel approach 

for mapping motion between characters with drastically different kinematic 

structures was conceived.  This was realised by targeting the original motion onto 

a simplified model that maintained essential dynamic features.                                      

 

Using blending methods is another way of generating human motion, but common 

problems found with this method it that unless the input motions are similar and 

are chosen carefully unrealistic motion is generated.  An improved blending 

method was introduced by Kovar et al. [35] that can allow a variety of input 

motions compared to previous methods.  A registration curve was introduced to 

automatically construct a data structure that encapsulates relationships involving 

the timing, local coordinate frame, and constraint states of an arbitrary number of 

input motions.  This in turn, expands the amount of different motions that can be 

blended without the need for manual intervention.  The matching and feasibility of 

input motion is first found by a dynamic time warping technique and then high 

quality blended motion is generated based on a matching process.  The 

disadvantages to this method can be noticed when logically corresponding parts of 

motions have dissimilar poses. For example, A character reaching for a glass 

which in pose one is above the head and in pose two is placed on the floor.  In 

cases like these the timewarp curve created is not as accurate as manual labelling.  

In order to rectify this problem, a dense set of sample motion is needed to create a 

smooth transition.  This method also fails to enforce any physical constraints like 

balance. 

 

Learning models and statistical models are also used to generate motion.  A style 

machine based on the Hidden Markov Model was proposed by Brand el al. [36].  

The algorithm can automatically segment the data, identify primitive motion 

cycles, learn transitions between primitives, and identify the stylistic DOFs that 

make primitives look quite different in different motion-capture sequences.  

Motion is generated in a broad range of styles by adjusting stylistic parameters.  

Grochow et al. [37] presented an inverse kinematic system based on a learned 
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model of human poses.  Their system could produce likely poses, in real-time 

based on a set of given constraints.  The parameters of the Scaled Gaussian 

Process Latent Variable Model are all learned automatically, no manual tuning is 

required for the learning component of the system. 

 

Other researchers have developed methods that generate motion by combining 

small segments.  Motion graphs by Kovar et al. [38] consider using motion capture 

data to automatically construct a directed graph called a motion graph.  Consisting 

of both original motion and automatically generated transitions, motion can be 

generated by building walks on the graph.  The framework was also applied to 

path synthesis.  There are however a few drawbacks to the framework: the 

computational bottleneck in graph construction is locating candidate transitions 

and the transition thresholds must be specified by hand. 

 

In summery this section of motion synthesis was completed in order to get a 

greater understanding of common motion synthesis practice currently available.  

With this in mind, full body motion is not much different to that of hand motion, 

both are compromised of a moving skeleton in a different joint configuration.  

Therefore many of the above processes used in full body motion synthesis could 

be adapted for our application of hand motion synthesis if needed.  
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2.2 Motion Description 

 

Motion is essentially a series of poses or frames in sequence.  Therefore, a 

description of these poses in a format capable of being read by a computer is 

needed.  Virtual humans are a simplified version of real-life humans and can be 

defined as a set of bones or joints.  Motion poses are therefore rotations and 

translation of these bones and joints.  Several companies and organisations have 

created their own motion data formats.  The most popular and widely used are: 

 

 BVA (Bio Visions Animation data) 

 BVH (Bio Visions Hierarchical data) 

 ASF (Acclaim Skeleton Format) 

 HTR (Hierarchical Translation Rotation) 

 CSM (Character Studio‘s Motion data) 

 

The BVA data format was one of the first to be introduced.  It is by far the 

simplest of all the data formats and has no hierarchical skeleton structure.  Each 

bone segment is represented individually there is no connection information.  Due 

to this at each frame a global position of each bone is recorded.  This format is 

fairly easy to use, but complications can arise. 

 

Biovision released the BVH format shortly after to overcome the problems 

presented by the BVA format.  The file structure is similar to the BVA format, 

however contains hierarchical information.  With the hierarchical system in place, 

only local rotations of bone segments are needed to drive the motion.  This 

hierarchical information complicates the motion, however makes it significantly 

easier to modify and combine different motions.               

 

Acclaim introduced their ASF format, achieving the same criteria as the BVH 

format, but with a more complex file structure.  The ASF data format consists of 

two separate files, one which portrays the skeleton information and another that 

contains the motion data.  The advantage to using two separate files to describe the 
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complete motion is that during any one motion capture session there is likely to be 

only one subject (skeleton structure) but multiple motion files.   

 

All of the above file formats, apart from Biovision‘s BVA format all describe the 

motion in a hierarchical way.  All of them represent the character as a set of bones 

and joints.  The advantages of using the hierarchical approach is that it makes it 

easier when describing the poses related with each frame.  Most importantly, there 

is no need to specify translations for individual segments.  The hierarchical 

description describes connections between joints and only one translation is made 

at the root of the skeleton.  Due to this, less amount of information is required to 

be stored in the file, as only the position of one segment relative to its parent needs 

to be recorded.    
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2.3 HCI (Human - computer interaction) 

 

Human-computer interaction (HCI) is defined as the interaction between people 

and computers.  With HCI being a very broad topic, it involves the convergence of 

various subject titles, from mainstream design to computer science and more 

specifically behavioural sciences.  Many more areas of study exist that concentrate 

on the interaction of humans and computers at the interface stage.  HCI is 

generally segmented into two associated sections, software and hardware.  A 

simple example of a HCI hardware found in every household that has a computer 

is the pc peripheral, a computer mouse.  This device is designed to take direct user 

inputs by detecting two-dimensional motion relative to its supporting surface, and 

translating this into electronic computer commands which can be understood by 

the computer.  HCI is not only associated with small scale commercial computers 

for office and home use, but also large-scale computerised industrial and 

educational systems such as aircrafts and power stations.  One of the most 

important aspects of HCI is ensuring computer user satisfaction.  Due to its 

multidisciplinary background HCI is also sometime referred to as (MMI) man–

machine interaction or (CHI) computer–human interaction.  HCI‘s key goal is to 

create methods and improve the needs between computers and their users. 

 

The ongoing long term goal of HCI is to reduce the barrier between what a user 

wants to accomplish when using a computer and the computers understanding of 

the user‘s intended task.  HCI has been a hot topic of research for decades, where 

new interfaces and interaction techniques and equipment are being developed 

constantly.  Researchers tend to concentrate on the development of new models 

and theories of interaction, and the experimentation of new hardware devices.   

 

As mentioned above HCI is a very large area of study which spans across many 

different disciplines, as far a field as ergonomics and anthropometrics.  Due to this 

in the following section we will concentrate on past and present research which is 

directly associated with our proposed research.  More specifically we are 
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interested in different hardware input devices and techniques surrounding hand 

gesture and motion. 

 

A human being‘s most important physical connection to everything in life from 

communication to interaction is the human hands.  We use our hands naturally 

unwarily for almost all tasks carried out in day to day life.  With computers 

becoming one of the most useful and widely used systems in our lives, we are 

often left restricted when confronted with standard mediator devices such as 

keyboards, mice, and trackballs etc.  Even though such devices have proven to be 

successful at producing accurate and precise communication with computers, they 

fail to offer a natural connection between the two.  First time users must adjust to 

these devices and learn how to use them which add a secondary unnecessary link 

between the user and their accomplishable task.  If we assess users who have not 

grown up around computers whether it be at home or work, they find the hardest 

part of learning IT skills is not understanding software application or operating 

system layout (which is generally self intuitive) but actually controlling the pointer 

of a mouse and entering data via the keyboard.  Due to this, very little of our 

natural hand motion is transferred to the task itself.   

 

In an attempt to overcome these issues researches and industry have strived to 

design, build and study several different concepts that allow computers to 

communicate directly with the users hands, leaving them free of common 

limitations found from conventional devices.  The development of electronic glove 

based devices has been an important part of this growth.  The widespread 

availability of glove based devices on the market has led to a vast amount of 

research projects which use these devices as communicatory tools for computer 

applications and computer-controlled devices.  One of the most popular fields 

these devices are used in, is within virtual reality and 3D modelling, but have also 

shown up in fields such as medicine, sports and video games.  The following 

information will review key aspects with regards to hand tracking technologies 

and applications. 
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Hand tracking devices surfaced as early as the 1970‘s with the work from 

researchers at the Massachusetts Institute of Technology.  They began 

experimenting with a piece of hardware known as Polhemus, this device emits a 

pulsed magnetic field from a stationary field.  Accompanying sensors are applied 

to the subject‘s hands which intercept this magnetic field and determine the hands 

position and orientation in 3D space.  This initial study was designed to show the 

affects of a simple general-purpose input device based on the direct interpretation 

of hand motion.   Even though this study seems simple and trivial by today‘s 

standards, the ability to allow a user to indicate graphical elements of interest 

using their hand as a direct input was an innovative concept which set a foundation 

for future research of this type.      

 

Hand motion capture techniques are generally segmented into two different 

categories, these being position tracking and finger tracking.  Hand position is 

specified by the location of the hand in 3D space along with the orientation of the 

palm.  These processes are almost identical to the systems used for full body 

motion capture, but adapted slightly for hand motion.  These were described 

earlier in this section therefore will not be covered detail here. Whilst finger 

tracking is determined by assessing the position and orientation or each finger at 

every joint.  This is usually accomplished using glove based devices equipped 

with electromechanical sensors.  Another very common method of capturing 

finger orientation and position (hand gesture recognition) is via vision-based hand 

gesture estimation with the use of one camera and algorithmic image processing.  

This will be discussed in further detail in the following section. 

 

Optical tracking consists of, placing small markers on the hands, either flashing 

LEDs or small infrared reflective markers.  Three or more cameras surround the 

capture area and pick out the markers in their field of view.  The system then 

correlates the marker positions and uses different lens perspectives to calculate the 

coordinate of each marker in 3D space. 
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Magnetic tracking systems use multiple sources and sensors to report position and 

orientation information.  Equipment from leading manufacturers such as 

Ascension Technologies and Polhemus can track points from three to 20 feet in 

distance and at 100 Hz.  The advantages of magnetic systems is that they do not 

rely on line of site to determine marker placement, however have the disadvantage 

of being open to the problem of metallic options nearby that will affect the 

magnetic field and give incorrect interpretations of marker information.  

 

The third and final type of hand tracking system available is noticeably the least 

used.  Acoustic tracking equipment emits high frequency sound to triangulate a 

sources position in the capture volume.  These systems are precise within a few 

millimetres if the microphones are placed correctly.  If multiple systems are used 

together they must be operated at different frequencies to avoid interference.  

Magnetic tracking systems also rely on line of site between the microphones and 

sources for accurate results. 

 

In the following section, a brief overview of wearable HCI technologies that are 

used for finger and gesture tracking will be discussed.     

 

A glove based gesture interface system by Piekarski et al. [39] referred to as 

―Tinmith-Hand‖ was introduced to offer two main types of interaction.  These 

being, a menu based system by which each menu item is assigned to a different 

finger, and the second a manipulation of 3D objects in virtual space.  The main 

application for the Tinmith hand is to offer outdoor augmented modelling of 3D 

architecture.  

 

Several different hand devices have been developed which can give accurate 

results but are often criticised for being very expensive and bulky equipment 

making the usability of them unfeasible.  The main concern raised by users is of 

long trailing cables and essential physical properties to the equipment which apply 

obstacles to the user when trying to complete a task which should be natural and 

intuitive to learn.           
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Due to this a wireless finger tracking concept was proposed by Foxlin et al. [40].  

It makes use of an ultrasonic emitter worn on the index finger and a head mounted 

receiver which can track the position of the emitter in 3D space to an excellent 

0.5mm accuracy and from a distance of 400mm. 

 

An attempt to avoid placing markers or sensors on the hand all together was made 

by Rekimoto [41] with the wrist mounted device, namely ―Gesture Wrist‖.  A 

wristband with capacitive sensors mounted to it is used to define finger shape.  

The differentiation between hand gestures is accomplished by the sensors 

monitoring the cross sectional shape of the wrist along with assessing bulges made 

by sinews under the skin.  Unfortunately the Gesture Wrist can only recognise 

very few gestures such as a fist and pointing gesture.  The main advantage of this 

system is its unobtrusive and versatile nature, as it can be easily mounted to any 

commercial wristwatch.  A wireless body worn networking device is utilised to 

avoid the use of cables to the gesture device.  

 

Work by Gandy et al. and  Ukita et al.[42-43] respectively, both use infrared 

imaging technology to reduce the task of distinguishing hand and handheld objects 

apart from the background.  Infrared lighting is mounted near the camera which is 

fitted with an infrared-pass filter, object closer to the head are easily separated 

from objects further away by light intensity decrease.   

 

    

 

 

  

 

 

 

 

 

 



 34 

2.4 Computer Vision-based Gesture Recognition 

 

The human hand which is a 20 DOF device is noted to be the most effective 

natural interaction tool for use with HCI.  Currently the only technology which 

satisfies the advanced requirement of hand input for HCI is glove based devices.  

As discussed in the previous section the majority of these devices have their own 

drawbacks, some of which include not allowing the user to interact naturally with 

the computer controlled environment due to bulky restrictive equipment and long 

heavy cabling, not to mention being very costly.  Some of these systems also 

require long setup and calibration times.  Vision based alternatives have the 

prospect to supply the user with a more natural non-contact alternative.  Therefore, 

there have been large amounts of research efforts to encourage the use of hands as 

direct input devices for HCI.  This will be useful to professionals in fields such as 

CAD, 3D modelling and film. 

 

The most challenging aspects of this research are extracting the 3D pose of the 

hand and fingers as accurately as glove-based devices can.  In order for this to be 

successful correct estimation of kinematic parameters of the skeleton of the hand 

must be realised.  Once these gestures of user commands have been extracted 

continuous articulated 3D motion signals must be extracted to drive a dynamic 

virtual interface which in some cases mirrors the complexity of the human hand 

itself. 

 

Recent attempts have been made to recover the full kinematic arrangement of the 

human hand, much like glove based devices do.  This method offers many 

problems as the hand has a large number of degrees of freedom, resulting in a 

large variety of shapes and poses with self-occlusions.  If this method is 

accomplished it can offer great advantages, most importantly full DOF pose 

estimation is essential for advanced virtual environment application, where 

advanced control and intricate detail is required.  Hand gesture estimation is very 

similar to full body human pose estimation.  Therefore, many of the algorithms 



 35 

found in hand tracking share similarities to those found in full body pose 

estimation. 

 

In this section an overview of computer vision-based gesture recognition is given.  

The section is divided into three main sections: Image pre-processing, tracking, 

and gesture recognition.  In certain systems discussed, these three defined groups 

are often merged but are still present.  The abstraction of tracking and gestures can 

exist via two different methods.  These are defined by systems that rely on the 

knowledge of the appearance of the hand as an image, and the other as a virtual 

model of the hand.   

 

The majority of research on gesture recognition requires the detection of dynamic 

gestures relative to individual computer commands or to understand sign 

language.  Research by Starner et al. [44] recognises American sign language with 

the use of a head mounted camera pointing in the direction of the hands.  This has 

an advantage over systems that use static cameras that face the user as it does not 

have to accommodate for movement in body postures.  The main idea behind this 

research was to use skin colour segmentation in order to extract key hand gesture 

information such as location, orientation, motion and shape.  With the use of 

Hidden Markov Models they were able to recognise full sentences spelt out using 

American Sign Language even though the vocabulary database was limited to 40 

words.  

 

2.4.1 Image Pre-processing 

        

Image pre-processing is a task by which individual video frames are prepared for 

further analysis.  Noisy data is suppressed from the image, along with the 

extraction of important clues that could lead to identifying the hand as an 

individual object against the background.  Pre-processing can also be referred to as 

feature extraction. 
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Different areas of pixels that correspond to different parts of the hand are extracted 

by a process known as colour segmentation or background subtraction.  These 

areas are then studied to define the location and orientation of the hand.  One of 

the obstacles found with feature extraction is that skin colour varies vastly from 

human to human and can appear different under certain lighting.  Complex 

segmentation algorithms proposed by Zhu et al. and Dominguez et al. [45-46]  

attempt to solve these issues however sill suffer from being computationally 

demanding as well as being affected by sudden lighting and illumination changes.  

Another common problem found with feature extraction is with background 

objects which can interfere with capture and assume the position of a hand if the 

shape and colour characteristics are similar.  Most researched test new proposals 

on a static coloured background such as green or blue, or against a known layout 

background.  This is fine for research tests, but in the real world this is 

unsatisfactory.  Some researchers such as Oka et al. [47] have tried using infrared 

mounted cameras in the hope to enhance the cameras vision of the skin on the 

hand.  

 

Moving objects in a captured video file can be noticed and defined by computing 

the inter frame deviations and optical flow.  A system presented by Wong et al. 

[48] proposes a tracking based motion segmentation algorithm.  It is capable of 

tracking moving objects against a moving background with the use of a hand held 

camera.  This system suffers from the ability to determine which of several 

moving objects is a hand, as well as not being able to perceive a static hand pose. 

 

Some researches use contour detection to extract key information of objects within 

an image.  A stochastic algorithm namely Condensation algorithm proposed by 

Isard and Blake [49] is an alternative method to using trackers based on Kalman 

filters.  This algorithm uses factored sampling to recognise contour information 

that represents the hands shape, this method is useful as it does not rely solely on 

skin colour and lighting.  This type of contour detection will result in a large 

number of edges being detected from the image background and hand itself.  Some 

type of post processing is therefore needed to make this system more robust.     
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O‘Hagan et al. and Crowley et al. [50-51] introduce a method of tracking hands 

and fingertips in imagery by making comparisons between the initial frame against 

a template image of a hand or fingertip in real-time.   The template image is 

translated over an area of interest on the image and correlated with each pixel.  

The pixel which results in the highest correlation is defined as the location of the 

target object.  Problems which can occur with this method known as template 

matching, is that the system cannot deal with scaling or rotation of the tracked 

object.  A quick fix for this problem can be to update the template regularly, but 

this runs the risk of the system tracking an interfering object.  The location and 

number of search templates are dependent on the assurance in the tracking of 

features.         

 

2.4.2 Tracking 

 

Tracking is another major feature which contributes to the complete process of 

gesture recognition in HCI.  A tracking feature is implemented to identify and 

keep track of hands from frame to frame.  This is usually accomplished using two 

different methods, dependant on what type of feature extraction is employed.  One 

method is to continuously track one major feature from frame to frame or by 

deducing the location of the tracked hand from the entire feature set. 

 

A popular tacking system known as the Kalman filter is used by modelling the 

dynamic properties of the tracked hand.  This system is probability based 

distribution demonstrating both the knowledge and ambiguity about the position of 

the hand.  Research by Isard et al. [49] demonstrates certain floors with the 

Kalman filter one of which is, due to being probability distributed the state of the 

tracked object is simulated as Gaussian.  Therefore, in scenarios with detailed 

backgrounds the Kalman filter struggles to perform accurately.  This however is 

not the case with predefined backgrounds, as seen in work by [52] where 

acceptable results can be achieved.  
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The algorithm mentioned earlier proposed by Isard et al. [49] known as 

condensation was introduced to avoid the problems found with limiting 

assumption of normal distribution found with the Kalman filter.  The 

Condensation algorithm work by modelling the probability distribution using a set 

of particles and then perform all the necessary calculations on this set of particles.  

This type of algorithm is also referred to as random sampling. 

 

Other work by Gupta et al. [53-54] use random sampling methods which gives 

very good results even with cluttered backgrounds.  A random sampling method 

known as Monte Carlo is used in conjunction with adaptive colour models by 

Perez et al. [55] to provide effective tracking of objects with a sudden dramatic 

change in shape.  Mammen et al. [56] use a combination of the Condensation 

algorithm, colour segmentation and region growing for the successful tracking of 

two hands whilst avoiding common problems such as mutual occlusions.  

 

MacCormick et al. [57] continued and developed on a method known as 

Partitioned Sampling that avoids the high costs found with particle filters that 

track more than one object.  A hand drawing application is presented to show that 

the solution is to located the base of the object first and then establish the 

configuration of connected link in a hierarchical manner.  The system first locates 

the palm and then determines the angles between the palm, thumb and index finger 

respectively.  These angles are then used to distinguish between a few selected 

gestures which correspond to different drawing commands.  They use a similar 

skin colour matching process found in [58].  In order to avoid the effects found 

with a cluttered background they use detailed motion models and background 

subtraction methods to achieve acceptable results. 

 

2.4.3 Recognition   

 

For hand recognition general well established algorithms from the area of pattern 

recognition are mostly used.  Rigoll et al. [59] introduce a system that can 

recognise complex dynamic gestures using Hidden Markov Models (HMM).  The 
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models are trained on a database of 24 isolated hand gestures which were 

performed by 14 different people.  They achieved a recognition percentage rate of 

92.9%.  All gestures were recognised in real-time with high accuracy due to data 

reduction capabilities of the system.  The only downfall of this system is it us 

unable to recognise gestures continuously which is vital for real-world 

applications.  HMM‘s are one of the two main popular types of recognition 

methods.  More research using Hidden Markov Models can be see with Lee et al. 

[60] and Starner et al. [44]. 

 

Correlation is the other most popular method of recognition with hand gestures.  

This can be seen in research by Crowley et al. [51] where cross-correlation is used 

as a means of tracking pointing devices for a digital desk.  Further research which 

also uses correlation methods can be found with Birk et al. [61] and Fillbrant et al. 

[62] 

 

Neural Networks are the third recognition method however suffers from problems 

when modelling non-gestural patterns.  This is realised in research by Lee et al. 

[60].  

 

More recently research by Bray et al. [63] proposes a hand tracker based on 

‗Stochastic Meta-Descent‘ (SMD) for high dimensional spaces. This algorithm is 

based on a gradient descent approach that uses adaptive and parameter-specific 

step sizes.  The system is improved and made more robust by integrating a 

deformable hand model with actual anthropometrical measurements based on 

linear blend skinning.  In order to improve robustness of this system further it is 

suggested that multiple cameras could be used also adding pseudo joints to the 

model would improve the tracking.   

 

Lin et al. propose a new representation for the nonlinear manifold of articulated 

motion, with a stochastic simplex algorithm that facilitates a very efficient search.  

They combine known methods of the Monte Carlo technique with a Nelder-mead 

simplex search when the gradient is not readily accessible.  Their experiments 
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show that their algorithm is robust in tracking hand motions in cluttered 

backgrounds.  

 

Research by Stenger et al. [64] proposes to solve the problems of recognising 

multiple patterns.  Classifiers are arranged in a tree in order to recognise multiple 

object classes.  Each different pattern class corresponds to the hand in a different 

pose, or set of poses.  With the advantages of being easy to generate and being 

labelled with a known 3D pose, this allows them to be used in a model-based 

tracking framework.  

 

Recent work by Zhou et al. [65] introduces the concept of eigen-dynamics and 

proposes an eigen dynamics analysis (EDA) method to which learns the dynamics 

of natural hand motion from labelled sets of motion captured data.  Their 

experiments on both synthesized and real-world data demonstrate the robustness 

and effectiveness of their techniques. 

 

In summery more recent work by Wang et al. [66] proves that a single camera can 

be used to capture articulated hand motion with the user wearing a simple Lycra 

glove imprinted with a specialised custom coloured pattern.  This research 

provides evidence that this type of system can be used in a home or work 

environment for everyday use with relative restrictions.  For our research purposes 

the use of a Motion capture system is suitable for our intended application.      
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3 Framework of Hand Gesture and Motion Based 

Design Method 

 

This research proposes a novel method to generate 3D product design models in 

real-time using hand motion and gesture.  In order for this to be successful we 

must outline the design needs of the proposed system, and determine how we will 

achieve our final goal.  With this in mind we decided to look closely at the end 

users needs in this case the designer.  In this section these goals are discussed and 

the proposed research is drafted.  

 

3.1 Design Needs 

The most important aspect of this research is to consider the needs of the end user, 

in this case the designer.  The person using our proposed system must be able to 

efficiently and effortlessly complete their intended task.  We propose a system that 

can be adapted to different expertise, study, and applications.  Our system will be 

designed to be used either for generic 3D modelling applications such as 3D 

sketch based modelling or specific 3D modelling applications such as 

Architectural Modelling, Conceptual Design Modelling, and various Engineering 

Based Modelling etc.   

 

Rapid conceptual design models are becoming widely more used in the daily lives 

of designers and engineers, as discussed earlier, it would be ideal of them to 

interact with computers in real-time enabling them to produce accurate electronic 

conceptual design models.  This leads us to our second important goal, which is to 

allow for user interactive communication for direct response.  To make this 

process as simple and natural as possible for the designer a motion capture system 

is used to offer hands free interactive recording of 3D hand gestures and motion.  

The following sections discuss how the above objectives can be achieved in more 

detail.         
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3.2 System Design 

The design of our systems structure and framework is important as it allows us to 

understand where the user fits in amongst our complete proposed system.  The 

user must have a clear understanding of where they belong in the chain, in order to 

use the system to it‘s full potential.  Please see the flow chart below (Fig. 3.1) 

which gives a detailed overview of our proposed system framework and structure.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: 

Flow chart of  

Proposed System  

Framework 
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3.3 Advantages and Disadvantages 

 

Current methods of HCI, Hand Gesture Recognition and rapid 3D modelling all 

have their advantages and disadvantages as discussed in the literature review 

(section 2).  Our initial goal was to try and improve on some of these 

disadvantages, and create a system that uses a hands free approach to rapid 

conceptualise 3D models in a 3D space.  Before we decided on using an optical 

motion capture system as our input device for recognising 3D hand motion and 

gesture, we considered several readily available equipments such as the Nintendo 

Wii controller and web camera/image processing.  Even though these devices have 

many advantages which include being simple and cheap to obtain as well as mass 

produced in a commercial environment, there were several aspects of their use or 

function which would either be discarded for our proposed system or take too 

much time and expertise to implement and extract the needed data. 

 

For example the Nintendo Wii remote of which it‘s primary job is motion sensing, 

allowing the user to interact with and manipulate items on screen through gesture 

recognition and pointing through the use of an accelerometer and optical sensor 

technology.  Whilst the above technology is useful for the gaming console it is 

paired with, for our application we would not need the accelerometer, and its 

gesture recognition capabilities are limited to simple single handed gestures.  

Furthermore the Wii remote can by no means differentiate between different static 

hand gesture signs.  These are the main reasons why we decided against this use of 

input device. 

 

Other Devices such as a simple camera/webcam setup were also discarded as they 

require complex knowledge and implementation of image processing algorithms, 

which not only take time to execute but also are unnecessary if a motion capture 

system is used which can easily provide us with the 3D location of X,Y,X 

coordinates in 3D space.  This core data is the information behind all motion and 

gesture based systems.                   
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3.4 Identification of Key Feasibility Studies 

 

We must be realistic in our approach when considering our final goals and 

objectives in order to successfully realise our proposed system which will be 

capable of generating 3D product design models in real-time using hand motion 

and gesture.  As this research proposal is part of an MPhil degree, it must be 

completed within one academic year.  The type of proposed work will involve 

software development and hardware testing which is complex and with limited 

programming knowledge, will be very time consuming.  It would  be unrealistic to 

assume that we can finish our complete design system as shown in the flow chart 

in Fig. 3.1.  

 

We therefore set about identifying and defining two key aspects of our overall 

system that if achieved, would provide sufficient evidence that with further time 

and work dedicated to programming and development a complete real-time 

interactive system can be realised. 

 

Below is a breakdown of these two feasibility studies which must be completed in 

order for our proposed system to be feasible.  Within each section further details 

of what needs to be achieved is given. 

 

 Feasibility study 1 – Hand Motion and Gesture 

 Recognise Hand motion and Gesture to model 3D Geometry. 

 Ascertain whether motion capture system is suitable for real-time 

interaction. 

 

 Feasibility Study 2 – Real-time Interactive Communication 

 Render 3D geometry using OpenGL in real-time. 

 Program interactive 3D application capable of communicating in 

real-time with the EVaRT system. 
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3.5 Hand Gesture and Motion 

 

We decided in order to make our system as versatile and adaptable as possible to 

work directly with different areas or Design and Engineering, it must be capable of 

accepting different types of hand gestures and motion.  These include static hand 

gestures and dynamic hand gestures as well as modelling via 3D motion sketches.  

We propose to cover these types of hand motion and gestures across the feasibility 

studies.  This will be discussed further in Feasibility study 1 – Hand Motion and 

Gesture (Section 4).  

 

3.5.1 Generic Applications 

 

For generic modelling applications, 3D motion sketches are used to realise 3D 

geometry.  This type of application is useful for quick free hand design concepts 

which do not belong to a specific type of industry.  This approach has similar 

characteristics to that found in research by Masry et al [67].  Noticeable 

differences are that they use a tablet pc for 2D line entry which is transformed to 

custom 3D primitives.  The acknowledged advantage of our proposed system is 

that no 2D -3D translation is needed, as we will have real world 3D point data.            

 

 

3.5.2 Specific Applications 

 

For Application specific modelling, a set of hand gestures must be defined and 

used to describe different product parts, components etc.  This type of modelling is 

useful for specific types of engineering application as seen in our preliminary 

study – Feasibility study 1 (Section 4) : Architectural modelling.  This type of 

system offers the user a more direct and quick approach to modelling of items 

which have been predefined, however have limitations of only being suited to one 

type of modelling exercise. 
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3.6 Real-time Communication 

 

For our second feasibility study, (Feasibility Study 2 – Interactive Real-time 

Communication Application – Section 5) a direct communication path must be 

made between the motion capture system and the user, for real-time interactive 

feedback to be accomplished.  In order for this to be achievable three main areas 

must be considered and researched, these being data capture, data exchange, 

design interface.  These will be discussed briefly in the remainder of this section, 

3.6.1 – 3.6.3 and in more detail in the relevant section 5.  

 

3.6.1 Data Capture  

 

All data capture will be done via the hardware provided by Motion Analysis 

corporation.  All data will be processed and recorded in a track file (trc.) format 

which is encoded in ASCII format.  For further examination and inspection for 

real-time reading of the 3D X,Y,X coordinate information, the track file can be 

opened in Microsoft excel in tabulated format.   

 

3.6.2 Data Exchange 

 

Data exchange will be primarily controlled in two ways, these being hardware 

based and software based.  With regards to the hardware level all captured motion 

will be transferred from the mainframe computer which controls the motion 

capture hardware to a secondary slave computer which will run our interactive 

control application, via Ethernet connection.  The system will also be designed to 

output all captured motion to a saved file for reference purposes after the capture 

session and design modelling is complete.  

On a software based level, the data produced by EVaRT must be transferred 

internally to our dedicated software application.  In order for this to occur a data 

pipeline must be implemented between the two.  This is essential before any type 

of OpenGL Graphics or gesture recognition can begin.  This will be done using the 

Motion Analysis software development kit (SDK).      
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3.6.3 Design Interface 

 

The design of our interface software application is essential for the user to clearly 

see what they are modelling.  For successful results this part must put the designer 

in full control of the system to do this as much of the interface design must be 

customisable to the users needs.  This will be explained further in Feasibility study 

2, section 5.1       

 

3.7 Overview of Proposed Research 

 

For our research intentions, the ready availability of an optical marker based 

motion capture system by Motion Analysis will be utilised for the capture of hand 

motion in electronic format.  A set of hand signs and gestures will be defined, and 

classified into groups.  These groups will be ordered by type of component and 

surface generation.  The defined hand gestures will hold key information that 

describe different design parameters of the product being conceptualised.  One 

hand will be used to determine what part of the product will be drawn and the 

other hand used to give further information about the product‘s shape, placement, 

dimensions, etc. 

 

Initial testing will begin with a joint collaborative research project with Dr Xiao 

Yi, School of Civil Engineering and Architecture, Beijing Jiaotong University, 

100044, China.  This research will focus on the creation of architectural 

conceptual design in an offline state.  The main purpose of this research is to 

establish whether the optical motion capture system used is suitable for our 

application, before software development begins for real time processing of hand 

gestures.  Furthermore to ensure that hand gesture and motion can be realised.  

 

Once complete, a new set of hand signs and gestures will be ascertained for use 

with conceptual product design.  A different approach will be applied for product 

design models when compared with that used on the architectural design research. 
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A 3rd party software application will be designed and programmed capable of 

communicating in real-time with the Evart 5.04 system with the use of the Motion 

Analysis SDK.  The program will be able to display OpenGL graphics and act as a 

3D interactive interface for controlling our system.                 
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4 Feasibility Study 1 – Hand Motion and Gesture   

 

The main goal of the initial testing research project is to design a hand motion and 

gesture-based rapid 3D architectural modelling system, allowing designers and 

engineers to freely sketch out 3D conceptual design models in a 3D workspace.  

Initial testing shall be carried out in an offline state, where motion will be captured 

and cleaned up after which design gesture processing will be computed using a 

numerical computing environment such as MATLAB. 3D curve and surface 

generation will be carried out afterwards and transferred to a 3rd party 3D 

modelling software application such as Alias Studio.  In turn this will enable us to 

ascertain whether or not the optical motion capture system used is suitable for 

future planned research of real-time hand gesture modelling for product design 

and if hand motion and gesture recognition can be realised.    

The left hand will display hand signs and the right will perform motion sketches 

with the use of a pointing device, in this preliminary study a pencil is used.  All 

information derived from the hand signs and motion sketches, will be processed 

offline to generate 3D models.  The flow diagram illustrated in Fig. 4.1 represents 

the complete process for the initial study of 3D architectural design modelling.  

 

Define Hand Signs

Locate Motion 

Markers on Hand and 

Pointing Device

Design Scene Setup

Motion Clean up 

and Data 

Processing

3D Curve and 

Surface Generation

Transfer of Data to 

3D Modelling 

Application

 

Fig. 4.1 3D Architectural Design Modelling Flow Diagram [68] – (Fig.1) 
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4.1 Hand Gesture and Sign Language for Architecture 

 

Sign language is the visual transmission of sign patterns used amongst the hearing 

impaired as a means of communication.  This alternative to acoustically conveyed 

sound patterns dates back to the second century BC.  Different sign languages are 

developed amongst communities of deaf people, thus cultural and geographical 

differences will lead to the generation of distinct sign languages.  Due to this in 

neighboring regions sign languages may be fairly similar, however the same word 

or phrase can still be expressed by different hand shapes dependent on the 

differences in sign languages.  Sign languages are considered to be just as complex 

as any oral language, and have every linguistic constituent necessary to be 

classified as true languages.  Examples of this can be seen when choosing just two 

letters from British and American Sign Languages and comparing the two.  Fig 4.2 

represents the differences between the letter B and M in the British Sign Language 

(BSL) and American Sign Language (ASL).  

 

 

 

                     B                  

(BSL)         (ASL) 

 

 

          M 

 

Fig. 4.2 Differentiation between alphabet letters B and M in the British Sign 

Language and American Sign Language. (Images from www.coloring-pages-book-

for-kids-boys.com – Date visited 29/09/09) 

http://www.coloring-pages-book-for-kids-boys.com/
http://www.coloring-pages-book-for-kids-boys.com/
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It is important when designing our set of hand signs and gestures for the 

architectural system that a universal sign language is developed that can be easily 

understood and recognised by both architects and designers no matter what their 

nationality, culture and education.  Concurrently it must also be unique and clear 

without any confusion, allowing for a fast and easy learning process for initial 

users.  Sign languages can be divided into groups according to hand configuration, 

movement and place of articulation.  More often, hand motions and spatial 

sequences are linked together to express complex concepts.  Effectively, a 

designer‘s ideas can be expressed with a static gesture accompanied by movement 

and position.  

 

In order to successfully design a set of feasible hand signs for architecture, an 

engineering structure such as a house must be considered and segmented into basic 

building units.  These units commonly found in architectural structures are 

displayed in Fig. 4.3.  A set of hand signs have been designed to match the 

architectural structure presented in Fig. 4.3.  Our design of hand gestures is 

composed of the left hand and the right holding a Marker-Pen, symbolising 

different design information.  The left had will describe what type of structure is to 

be designed/drawn by means of a given hand sign, whilst the Marker-Pen will 

provide the system with other vital information such as the unit‘s size, shape and 

relative location.  When the above two communicatory features are combined 3D 

architectural models can be rapidly produced.     

Building 

Structure

Vertical 

Structure

Transverse 

Structure
Door & 

Window
Staircase

Wall

External 

Wall

Roof Beam WindowSlab DoorColumni

-ation
Foundation

Internal

Wall

Square 

Pillar
Column

Planar 

Roof

Slope 

Roof

Curve 

Roof

 

Fig. 4.3 Segmentation of Architectural Building Structure [68] – (Fig.3) 
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An architectural building has been segmented and divided into groups of 

components according to its structure.  The four main components to the building 

structure are identified as vertical and traverse components, such as walls and 

beams. Doors/Widows and staircases are the third and fourth main components 

which make up the core of the engineering structure.  A hierarchical system has 

been employed to break these components down further into subcategories, for 

example, walls can be defined as external or internal walls.  

 

Based on the above classification we then set about defining a set of hand gestures 

that best described each individual building component.  Four types of the left 

hand gestures have been designed corresponding to the four main types of 

components.  The left hand gestures were designed as to be easily interpreted and 

recognised by architects and designers. Vertical structures are conveyed by vertical 

hand gestures. An example of this is shown with the gestures that represent a wall 

and columniation.  When a palm and a fist are combined with the thumb up or 

down, four basic units can be gestured. Therefore, a vertical palm with the thumb 

up or down means an external or inside wall (Fig 4.4A and 4.4B), whilst a fist with 

the thumb up or down shows a square pillar or column respectively (Fig 4.4C and 

4.4D).  

 

Likewise, a set of horizontal hand gestures have been designed for the transverse 

components and the door and window components. For example, flat structures 

such as foundations, slabs (or floors) and beams are represented by a horizontal 

palm (Fig 4.4E), whilst a horizontal palm with fingers separated represents a roof 

(Figure 4.4F). A fist means a window (Figure 4.4G) and with the thumb up 

indicates a door (Figure 4.4H). 

In addition to the above left and right hand gestures, we also introduced various 

editing gestures like ‗delete‘ and ‗finishing‘ which were designed differently from  

the normal modeling gestures.                  
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(A) External Wall   (B) Internal Wall      (C) Square Pillar          (D) Column 

 

 

(E) Flat Structure          (F) Roof           (G) Window          (H) Door 

  

Figure 4.4 A-H: Examples of the left hand gestures [68] – (Fig. 4) 
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4.2 Marker Placement 

 

All hand gestures in this initial testing will be captured with an optical based 

motion capture system.  Facial markers are used for this test as they have a very 

small diameter of 4mm.  This will hopefully increase performance and reduce 

system noise.   The right hand will not be marked.  We have chosen a Marker-Pen 

as opposed to the hand to act as the input for design motion.  

 

Our next task is to determine the amount of markers and their placement on the 

human hand and Marker-Pen.  It is vital to the success of the capture process that 

this is completed correctly.  Variations in the number of markers and their position 

will have a large affect on the systems performance.  The optical motion capture 

system used during the capture process is very sensitive to background noise.  This 

noise can cause occlusions between markers and a process known as marker 

switching takes place.  This essentially will cause major problems with algorithm 

processing if the trajectory of one marker interchanges with that of another.  Prior 

to this a large amount of post processing would need to be completed in order for 

gestures to be recognised.       

  

We therefore set about designing a marker placement grid that incorporates the use 

of the supplied motion analysis skeleton template. The skeleton template is used to 

produce strong links between identified markers in the hope of producing a robust 

template, with the promise of avoiding the issues noted above with marker-

swapping and marker occlusions.  

 

Initially we began by placing just one marker at the tip of the pencil however after 

a preliminary test session we found it far too sensitive and the marker was quickly 

confused with adjacent markers on the left hand.  A second attempt with two 

markers had a similar negative result.  We finally settled on 3 markers in a triangle 

configuration.  Although initial tests showed this is the most reliable pen marker 
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set out of the three we tried, only the original marker of the tip will be 

acknowledged for motion processing.  The other two are solely required to 

increase the robustness of the template and eliminate large quantities of post 

processing.     

Marker-pen configuration set two and three are presented in Fig. 4.5A and Fig. 

4.5B respectively. 

 

 

 

 

 

 

 

  (A)      (B) 

Figure 4.5 A &B: Marker-pen marker configurations [68]- (Fig.5) 

 

With regards to the design of the left hand marker set, several combinations were 

tried and tested.  Over time it became apparent that fewer markers yielded better 

results.  Unfortunately there is a limit as to how many markers can be applied, as 

the system must be able to distinguish easily between several different hand 

gestures.  Our goal was to strike a balance between having enough markers on the 

left hand to experience consistent hand gesture recognition whilst at the same time 

limit the amount of markers to avoid noise and occlusions.  Just one extra marker 

on the left hand may increase the chance of occlusion or confusion, as well as 

complications in the data for generating 3D curves or surfaces. Ultimately a 

minimum of 8 markers were used on the left hand to represent all gestures. 

Initially markers were placed on the finger tips and knuckles as shown in Fig. 

4.6A. However, with trial and error, certain gestures such as a closed fist and hand 

closed laid flat, became problematic.  Markers at the finger tips began to switch as 
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they were too close to one another or became entirely hidden from the cameras 

field of view.  Finally, the markers were moved from the finger tips to Proximal 

Interphalangeal joints and 1st joint of the index and little finger. Two more markers 

were added to the Distal Interphalangeal joint and 1st joint of the thumb.  This final 

marker placement configuration is shown in Fig. 4.6B. This maker placement 

proved to be the most reliable and robust tested in order to generate all gestures.  

 

     

                   

 

 

   

(A)                 (B) 

 

Figure 4.6 A &B: Left hand marker configurations [68] – (Fig.5) 

 

The gesture coordination of both the left hand and Marker-Pen have been designed 

to work in conjunction with one another. The designer/architect must first display 

a left hand gesture to begin a given modeling command, and then move the 

Marker-Pen with their right to describe appropriate geometric information 
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4.3 Motion Capture System 

 

The hardware used to capture the hand motion of humans was the Motion 

Analysis Eagle Digital System. This is an optical motion capture system, 

consisting of seven Digital Cameras, the Eagle Hub, to which all cameras are 

connected and uplinks to a computer terminal.  All the hardware components are 

controlled by EVaRT 5.04 Real Time software.  It is within this software where all 

data is recorded, processed and displayed, and where post processing takes place. 

The system is capable of capturing the most complex of motions with extreme 

accuracy, to the nearest 2mm and up to 200 frames per second. For our purposes a 

capture rate of 120 frames per second was adequate along with facial markers 

4mm in diameter. As the Eagle system has real-time capabilities it is possible for 

the user to see capture results at the same time as the subject is performing the 

specific hand gestures and motion sketches. 

The different stages of a complete motion capture session can be typically 

summarised as follows: 

 

 Studio set-up for multi-camera capture 

 Calibration of motion capture system 

 Capture of motion 

 Clean-up and post-processing of point cloud data. 

 

A brief description of the general tasks required for a capture session will be 

described in the following sections.  

 

4.3.1 Planning a session 

 

Before a capture session can begin a suitable space must be found.  A room with 

no external light is ideal but very hard to find, a suitable alternative was a room 

with specific black curtains that blocked out 100% of natural light.  An open space 

with flat flooring and a matt finish surface with no furniture near by, in the 

cameras field of view is essential. In the case of capturing samples of full body 
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human motion, the space must be at least large enough for a subject to walk freely 

around.  Fortunately for us, our subjects will be stationary and in the seated 

position, therefore a capture volume of approximately only 3m by 2m squared is 

required.  This in turn, will allow for the closer placement of the seven cameras to 

the subjects hands, in the hope of capturing clean data.   

 

4.3.2 Setup and Calibration 

 

After familiarisation with the system it became apparent that larger volumes were 

more prone to occlusions and noise and hence gave less accurate results. After 

capturing data at several different locations, the most optimum capturing sessions, 

in which the data used for the results, was captured in a large indoor laboratory 

with specifically designed black motorised curtains which blocked out all natural 

light. A design scene within EVaRT was setup to accept a maximum capture 

volume of approximately 2m  3m  1.5m.  A small lab desk of dimension 90cm 

 60cm  75cm was placed in the centre of this capture volume along with a lab 

chair for the subject to sit on.  

 

An L-frame calibration device was then placed at the centre of the desired capture 

volume. This frame has four markers, which are used by the EVaRT software to 

define the XYZ axes of the capture volume. Each camera sees the markers and 

registers their origins via 3D triangulation. If successfully calibrated the markers 

appear in the 3D display, and the cameras orientate themselves to their correct 

position in the 2D display panel. 

A T-frame wand device, exactly 500mm wide, is then used to establish the camera 

linearization parameters.  The wand device is held by an assistant in the capture 

volume and waved energetically across the XYZ planes.  Red markers fill the 2D 

displays for each camera, based on how many repeated markers there are, basic 

calibration is then complete if it is a low number for each camera.  A low 

deviation is required of less than 1 in order for calibration to be successfully 

accepted before real-time capturing can begin. If the deviation is above one, this 

often means there is a problem with an objects reflective surface in or around the 
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capture volume which is interfering with calibration results.  During initial testing 

we found the legs of the desk were of black reflect paint and caused distinct 

interference.  To overcome this we used black cloth similar to that used for the 

curtains in order to mask the legs.  A second problem could arise where one 

camera is in the field of view of another adjacent camera.  In this case the noisy 

area is either digitally masked or the camera must be moved to another position, in 

which the previous L-frame calibration procedure must be repeated. 

 

A mixture of two different camera configuration setups suggested by motion 

analysis for 6 and 8 cameras was considered for our first attempt at motion 

capture.  These configurations can be seen in Fig. 4.7A and B respectively. 

 

 

 

 

 

 

 

 

  (A)       (B) 

Fig 4.7 A&B: 7 and 8 camera configuration setup (Images from Motion Analysis 

Manual) 

 

With both of the above setups, after adjusting the angles of each camera slightly to 

accommodate for the missing or extra camera, we found them to be unsuitable for 

our given task.  The main reason being the markers on the subject‘s hands are 

mostly located on the top, and gestures performed with the subjects hands in an 

elevated position facing them, concealed the markers from the majority of the 

cameras.  As the motion capture system works on a 3D triangulation process to 

acquire a markers location in 3D space, with so many cameras not  being able to 

see the markers at any given time large gaps in data were missing midway though 

a hand gesture. 
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In the aid of finding a solution to these camera placement issues, we adjusted the 

camera tripods higher and placed more around the back of the subject as opposed 

to equally spread out circularly around the capture volume as before.  This fixed 

all marker tracking issues, and we continued capturing with the camera 

configuration shown in Fig. 4.8.   

 

 

 

 

 

 

 

       

 

Fig. 4.8 Final 7 camera configuration setup [68] – (Fig.6)  

 

4.3.3 Hand motion capture and recognition 

 

During our main motion capture sessions the positions of the markers on the left 

hand and on the Marker-Pen were captured and recorded via the software EVaRT 

5.04, the motion capture rate was set to 120 frames per second (fps).  Fig. 4.9 

displays the maker template and marker identity of the left hand and marker-pen. 

 

      

Fig. 4.9: Motion capture templates and identities [68] – (Fig.7) 
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Based on our proposed marker placement configurations presented above, two 

skeleton templates were designed and saved to the project file of our motion 

capture session.  Templates for both the left hand and Marker-Pen were created by 

joining links between each marker, in a form which was regarded as the most rigid 

in order to create a robust skeleton template.  The first frame of every capture 

session was considered the base pose and the user should return to this position at 

the beginning and end of every captured scene.  This technique is used to help the 

template associate the raw markers with their corresponding identities and 

linkages.  With this in mind, approximately three to four simple generic hand 

gestures like lifting the hand up and down were performed, in order to strengthen 

the template and its awareness of the marker configuration and location in the 

defined capture volume.  With this complete, and the template successfully 

extended, the template was strong enough to begin a full session of motion 

capture.  A screenshot of the system fully functional is shown in Fig. 4.10.  The 

group of coloured markers in left hand corner represent the left hand and the three 

makers on the right are that of the marker-pen.              

 

Fig. 4.10: Marker templates in a real-time motion capture scene. [68] – (Fig.8) 
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When each design task was completed, all 3D maker data in the form of x, y, and z 

coordinates were saved to a track file with extension trc./trb..  The Raw data was 

also saved for future research of real-time processing.  Raw data enables EVaRT to 

rerun the scene in real-time as though motion capture was taking place at that 

time.  Both trc. and trb track files are encoded in ASCII format which can be read 

by Microsoft Excel in a tabulated format.  Processing this data obtained, would 

reveal hand sign commands and their associated design information. As the 

templates used were trained before starting each design task, the data collected 

need minimal if any post-processing editing and cleaning up.   

 

Hand signs performed by the user on the left hand can be differentiated from one 

another via the markers position in 3D space.  A planar plane can be recognised 

relative to the position of three markers.  Marker orientation information (normal) 

such as Normal 1, 2, and 3 shown in Fig. 4.11A and 4.11B, are used together with 

the location information of markers T1 and T2 shown in Fig 4.9.  

Each normal and its associated direction and angle is used to calculate and 

recognise different hand signs.   

 N1 (normal 1) is the normal of plane 1 – P3/P4/P1.  

 N2 (normal 2) is the normal of plane 2 – P5/P4/P3 

 N3 (normal 3) is the normal of plane 3 – P3/P4/P2  

 

The hand gestures shown in Fig. 4.11C, Normal 1 and Normal 3 are fairly similar, 

while with the pose presented Fig. 4.11D, they are quite different. 

Based on the values of N1, N2, and N3, the angles between them are calculated. 

Angle θ is the included angle of Normal 1 and Normal 2 shown in Fig. 4.11E, and 

β is the included angle of Normal 2 and Normal 3 shown in Fig. 4.11E. For our 

system to rapidly identify vertical structures, φ is defined as the angle between N2 

and a horizontal plane with a fixed normal (0, 0, 1). The angle between two 

vectors is calculated from their dot product. [68] 
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(C)        (D) 

 

 

 

 

 

   (E) 

Fig. 4.11 A-E:  Gesture recognition [68] – (Fig.9)  

 

A rule-based recognition method is used to recognise hand signs.  Below is a list 

of a few example rules.  

(1) If angle φ > 45°, plane 2 is roughly a vertical plane, and therefore a vertical 
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N
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(0, 0, 1) 

β 
θ 
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structure is displayed. 

(2) If angle φ > 45° and angle θ < 30°, N1 and N2 are nearly parallel, the sign is a 

wall. Under a wall structure, the distance δ between P4 and T1 is used to further 

classify wall structures. If the distance δ is bigger than a threshold, it means that 

the thumb is close to the palm, the sign means an external wall. Otherwise, it 

means an inside wall. 

(3) If angle φ > 45° and angle θ > 30°, but angle β < 30°, then the gestures show in 

Fig. 4.11A and 4.11B equate to a square pillar or a column. Furthermore, if the δ is 

bigger than a given threshold, it represents a square pillar, if not it corresponds to a 

column. 

(4) If angle φ < 45°, plane 2 is roughly a horizontal plane, this shows a transverse 

structure. 

(5) If angle φ < 45° and angle θ < 30° and angle δ is small, then the sign is a flat 

structure.  

(6) If angle φ < 45° and angle θ < 30°, and the distance between P1 and P2 is 

bigger than a threshold, the gesture shown is a roof. 

Although different thresholds were used in our rules, they were easily obtained. 

These thresholds were determined by measuring given data-sets against certain 

gestures. [68]                                                  
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4.4 Motion Sketches and Initial Data Processing [68] – P682 

 

The 3D position of marker D1 is used to specify motion sketches performed by the 

user.  Once the system receives a new modeling command with the left hand, the 

right can move the marker pen to a start point and begin to draw a sectional curve.  

Based on type of sketch command drawn by the user, the 3D sketch data can be 

located and extracted from the recorded motion capture data.  Once this initial 

sketch data has been identified and obtained a curve smoothing process is applied 

to the 3D curve data.  This is completed by selecting points every 30 frames, in 

order to avoid subtle distortions caused by natural hand vibrations.   The curve 

data is then segmented by finding key points along the curve where it changes path 

direction dramatically.  Once this segmentation process is completed, the data is 

reduced significantly in size.  The curve is represented as a 3D poly line in time 

sequence: 

  {si}, i=1, 2,…N. Si is a 3D key point. 

For 3D building models to be constructed from 2D sketches, it is crucial to 

evaluate the 3D sketches along their relevant axes. A general three-dimensional 

form can be defined by a 2D shape lofting along a path. The motion description of 

the Marker-Pen can be classified into two different categories: drawing a 2D shape 

on a flat surface and moving along a lofting line direction.  An example of this can 

be seen when defining an external wall, the pen is used to draw the shape of the 

wall in the X-Y plane, afterwards moving the pen over the plane along the Z axis. 

The height at which the Marker Pen is displaced from the surface defines the 

height of the wall.  This can be seen in Fig. 4.12A.  

From previous processed data {Si}, i=1,2,…N, the sketch will be cleaned up based 

on certain geometric constraints. For a sub-segment, j=m, m+1, …, k, we can 

determine the points on this segment move towards a similar direction, from this 

we are able to use the direction to tidy-up the line segment. The direction is 

determined using the following three processes: 

 Compute mk XXx  , mk YYy  , mk ZZz   and 

|).||,||,max(|max zyx    
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 Determine the direction (dx, dy, dz) = 

max)/max,/max,/(  zyx  if any component is near zero, it 

must be assigned to zero. 

 

 If a directional component among dx, dy and dz is equal to zero, the 

segment will be projected to a corresponding plane through the first 

point Sm and if the segment is a straight line all points between the 

beginning and end point must be removed.  Fig. 4.12B shows a vertical 

line segment, after the above two steps, dx and dy are equal to zero.  

This segment has therefore been projected twice.  Firstly, for dx = 0, the 

corresponding projection plane is the YZ plane passing through the 

point Sm, i.e., the plane equation is X=X(Sm). After the projection, all 

points have the same X components.  Secondly, for dy = 0, the 

projection plane is likewise determined as Y=Y(Sm). Based on this 

projection, all points have the same Y components. After the two 

projections, the segment becomes a straight line segment.  Furthermore, 

the points between the two ends will be removed, this is shown in the 

right side of Fig. 4.12B. [68] 

 

Fig 4.11A represents an external wall being drawn.  The motion sketch begins with 

the maker at the tip of the Marker-pen moving in the X-Y plane and then a vertical 

line is made for extrusion.  The blue line shows the original Marker-Pen trajectory 

whilst the dark line is the result of the clean-up process. 

  

As mentioned previously, as well as motion sketches that geometrically define the 

basic building units of our construction, the Marker-Pen is also used to 

communicate simple editing gestures, such as the delete (identified with the letter 

x drawn in 3D space) and or a finish symbol that represents the end of a motion 

sketch (in this case drawn as the letter O).  Fig 4.12C and Fig 4.12D show these 

two editing gestures respectively. [68] 
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             (A)             (B) 

       

       (C)           (D)                           

         

Figure 4.12 A-B: Motion sketch tidy-up and editing gestures [68] – (Fig.10) 
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4.5 3D Curve and Surface Generation and Preliminary Results 

All of our motion sketch processing and hand sign recognition was completed in a 

prototype system produced using the numerical computing environment 

MATLAB.  Once individual hand gesture recognition has been completed and its 

accompanying design sketch has been processed, 3D geometric modelling data is 

generated.  This data is then channelled to a 3D CAD modelling software, in this 

case we chose Alias Studio for its useful OBJ interface mechanism allowing easy 

rendering and editing functions.       

 

Our initial testing sessions concentrated on the rapid 3D modelling of a train 

station using our defined set of architectural hand gestures.  This saw our 

volunteer design student draw the outside walls of the building using a large piece 

of sketch paper on the desk as drawing aid.  With this complete, the remaining 

building structure units were added.  Progressively the model train station was 

complete with the following components: ground, external wall, 1 door, 2 

windows, 4 columns, a secondary level, and a freeform curved roof.       

 

Each design student had 3 attempts to get used to the equipment and different 

drawing sequences before their test commenced.  Each designer spent less than 

approximately 10 minutes to complete the given task of modeling a train station.  

Each individuals captured data was stored in Trc. And Trb files which were 

accessed via Microsoft Excel in tabulated from.  This can be seen in Fig. 4.13.        

Below each marker heading is a list of the marker‘s position in XYZ coordinates 

for every frame, in this case 120 frames per second.  With this data, a clean-up 

process was applied and a 3D surface model was produced.  Fig 4.14 represents 

the 3D wireframe model created in Alias Studio and a rendered equivalent is 

shown in Fig 4.15.    
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                Fig. 4.13: Trc. File of captured motion[68] – (Fig.11)  

 

      

 

 

 

 

 

 

Fig. 4.14: Wireframe model of train station in Visual Studio[68] – (Fig12.a) 

 

 

 

 

 

 

 

 

Fig. 4.15: Rendered model of train station in Visual Studio[68] – (Fig 12.b)  
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5 Feasibility Study 2 – Interactive Real-time 

Communication Application   

 

In the attempt to keep things simple and effective with the transition from 

architectural hand signs to product design hand signs, we felt it suitable to 

maintain a similar approach.  We used the same amount of markers on the left 

hand with the same configuration as before, in order to capture our new proposed 

hand gestures.  To make the experimental interaction between the user and 

computer even more natural than with our preliminary research, we decided to 

replace the three markers on the marker pen in the right hand, with one marker on 

the index finger, see Fig. 5.1A – B.  This will hopefully have the effect of leaving 

the user free of any input device, which can cause unnatural, restrictive behavior.   

           

 

 

 

 

 

 

 

 A              B   

 

Fig. 5.1 A – B: Marker placement for product design capture. 

 

As with our previous study, only one marker on the right hand is needed to capture 

the motion description.  In certain cases when new designers would begin the 

motion capture session, the system would not successfully create a robust template 

to give successful occlusion free results.  In these cases, two more markers were 

added to the right hand similarly to the marker-pen, with the intent to make the 
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system recognise and keep track of the main marker at the tip of the index finger.  

This configuration can be seen in Fig. 5.2.    

 

 

 

 

 

 

 

 

Fig. 5.2: Right hand marker set used if marker switching is present. 

 

In the hope of creating a versatile real-time system that will let the user model and 

construct a product of their choice, we set about designing a set of hand gestures 

which can define a large range of products.  In order to do this, instead of selecting 

a product and segmenting it into categorised components (as with architectural 

modelling) we took inspiration from common modelling commands found in CAD 

packages.  This in turn should improve the flexibility of our system allowing the 

user to have full control over what they choose to model, offering no restrictions.  

Several hand sign gestures were designed and logged for use in the gesture 

database, which describe several 3D CAD modelling commands, such as primitive 

shapes, surfaces, extrude etc.  See Appendix A, for a complete list of left hand 

gestures for product design and their corresponding functions.  For ease of use and 

orderliness each hand sign is categorised into sections according to their function.  

Please see the flow diagram in Fig 5.3 representing the basic breakdown of this 

grouping by displaying a few per category.       
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Product Model

Primitives Draw Colour Surface

Cube Circle Splines BlueArc RedSphere Line

Fig. 5.3: Flow diagram showing basic Hand gesture categorisation for product 

design models.        
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5.1 Design of Software Application 

 

Before work could begin on the development of a software program that would act 

as an interface and control system between the Motion Analysis 

Hardware/Software and the user, a wide range of programming languages and 

Application Programming Interfaces (API‘s) were researched and considered.  In 

order to create a program that could be incorporated well with the software Motion 

Analysis provide with their system (EVaRT), we studied the Software 

Development Kit (SDK) provided by the company in order to ascertain which was 

the best programming language to use.  With the SDK written in C++, and it being 

one of the most advanced, multipurpose and most popular programming languages 

in the world, we decided that all core programming would be completed in this 

language. 

 

Furthermore, our proposed software would run only on a windows platform, we 

therefore decided to use the Microsoft Foundation Classes (MFC).  The Microsoft 

Foundation Class Library is based around parts of the windows API.  The classes 

in the MFC Library are written as object orientated in the C++ programming 

language. The MFC Library helps the programmer a vast amount of time by 

providing predefined code that has already been written. It also provides an overall 

framework for developing the application program. 

 

There are MFC Library classes for all graphical user interface elements within a 

common windows application (windows, menus, frames, tool bars, status bars, 

etc).  MFC helps with building interfaces, for handling events such as messages 

from other applications, for handling keyboard and mouse input, and for creating 

ActiveX controls. 

 

As our software will act as a visual aid between the user and the motion capture 

system, it must be capable of displaying 3D graphics.  In order for this to occur we 

must utilise a graphics API to display 2D and 3D computer graphics.  After some 

research we realised there were only two mainstream graphics API‘s which would 
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be suitable for our purpose, these being OpenGL or DirectX.  After much 

consideration we decided that OpenGL was the best API, as it ties well with the 

use of the Microsoft Foundation Classes.  The basic operation of OpenGL is to 

accept primitives such as points, lines and polygons, and convert them into pixels.  

OpenGL is widely used in the gaming industry as well as CAD, virtual reality, 

scientific visualization, information visualization, and flight simulation. 

 

To get a greater understanding of the program we intend to create and where it fits 

into the complete system and all software and hardware used please see Fig. 6.1 

which represents a flow diagram for the software integration. 

 

User

OpenGL Software 

Application

Motion 

Description

MFC

Motion 

Calculation

Eagle Hub

Gesture 

Recognition

EVaRT

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6 Camera 7

 

Fig. 6.1: Software integration  

 

Before programming began we designed the layout of the interface window and 

how the main graphics would be displayed to the user.  We developed an interface 

similar to that of most popular 3D CAD packages, as it allows the user to view the 

3D scene from different perspectives via different viewports.  We chose to split 

the main window into four viewports, each representing a different axis.  Viewport 
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A represents the X axis; viewport B represents the Y axis, viewport C represents 

the Z axis, and viewport D represents the scene from a 3D perspective.         

Fig. 6.2 shows the four viewports described above.  For testing and display 

purposes, a 3D cube with different colour faces is shown in the centre of the 3D 

scene. 

 

   

           

Fig. 6.2: Print screen of viewport layout and axis specification. 

 

The main window of our software can be minimised and moved to anywhere on 

the screen.  This feature was implemented in order to use our software on a dual 

screen setup, making configuration between the EVaRT system and our software 

easier.  Each viewport can also be resized and defined according to the user‘s 

preference.  This is controlled by the vertical drop down menu toolbar to the right 

of the screenshot displayed in Fig. 6.2.  We designed all aspects of our software so 

the user and or assistant has full control over it‘s appearance in the hope of getting 

better results from the designer whilst at the modelling stage.   

 

Before the software is able to receive information from the Motion Analysis 

equipment the user must make connection to the EVaRT system by accessing the 
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―EVaRT Connect‖ dialogue box.  To do this they must access the ―Tools‖ toolbar 

located on the top bar.  Once selected the user is faced with a secondary window 

which asks for some information specific to making a connection.  An EVaRT IP 

address and Host IP address is required.  As our software can be run from a 

separate computer to that of where EVaRT is running, all information is past 

through the Ethernet connection.  The host IP which is required is of the computer 

that is running our software and the EVaRT IP is of the computer where the 

EVaRT system is running.   Further information about frame capture is required, 

the number of frames to receive from the system and the number of frames to 

record, both of which can be defined by the user dependant on their proposed 

capture session.  Please see Fig. 6.3A and Fig. 6.3B. for the breakdown of this 

menu system and dialog box respectively. 

 

         

  (A) 

  

(

B) 

 

Fig. 6.3A – B: Screenshot of menu system and Evart Connect Dialog box 

respectively. 

 

As with the main window of our program, the EVaRT Connect box was 

programmed to be modeless.  A modeless window allows the user to continue 

working with the main application while the modeless window stays open or 

minimised.  This is well suited to our application, as the user must make 

connection using this box, but also needs to continue working with the window 

behind, whilst modelling.  Please see Appendix B for programming code of 

software development.  
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A more detailed flow diagram showing the internal working of our application, 

and how each file contributes to a process function is show below in Fig. 6.4.  

Fig. 6.4: Flow Diagram of internal functionality of Software Application 
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6 Testing and Results  

 

Due to the limited time constraints placed on this research proposal, I was unable 

to complete the programming of our software application in the given time.  With 

limited previous knowledge of programming, I experienced large amounts of 

program compile errors, and other programming related issues which would take 

longer to solve than initially expected.  Just to learn the basics of C++ in order to 

understand the Microsoft Foundation Classes and the OpenGL API, took several 

months.   

 

As time progressed I decided to spend most of my time concentrating on getting 

the software application to connect with the EVaRT system, in order to 

successfully prove that real-time communication was possible.  With this in mind, 

I displayed an OpenGL scene in the top left hand viewport of the application 

which was able to display a user defined amount of markers that were present in 

the motion capture data.  The markers trajectory is also shown in continuous form.  

Due to the limited amount of time I was unable to program an interface toolbar or 

toolbox that would allow the user to control and define the settings for which 

markers to display.  This must all be completed within the Integrated Development 

Environment (IDE) and then compiled and run afterwards.  It is here where the 

user must also define the client and host IP addresses and also the number of 

frames to display. 

 

I tested this successfully with a demo, both with the motion capture system 

capturing motion in real time and also EVaRT playing back previously recorded 

data emulated in real time.  Please see Fig. 7.1 – 7.3 shown on pages 80 and 81, 

for screen shots of this procedure in action, 2 markers on the left hand have been 

selected to show in our OpenGL viewport.    
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Fig. 7.1: Screenshot of OpenGL Viewport displaying marker 1 and 5 on the left 

hand.   

 

Fig. 7.2: Screenshot of EVaRT system and our application running together.   
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Fig. 7.3: Screenshot of EVaRT system and our application running together with 

two markers selected on the left hand.   
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7 Conclusion and Suggestions for Further Work 

7.1 Summary 

 A comprehensive literature survey was conducted with regards to the analysis and 

synthesis of Human Motion, Motion Description, Human Computer Interaction 

and Hand Gesture Recognition.  This lead to the focus of generating 3D product 

design models in real-time using hand motion and gesture.  A motion capture 

system was used to capture hand gestures and motion descriptions in an initial 

study to generate rapid architectural structures in an offline state.  The data was 

post-processed in the form of a hierarchical skeleton structure, after which data 

extraction was implemented in order to recognise hand gestures.  Once complete 

this information was transferred to a common 3D software application where a 

wireframe model and meshed equivalent of a train station was realised.  A total of 

8 design volunteers were used in this study.  This investigation focussed on 

determining whether the motion capture system used would be suitable for our 

planned real-time application and whether hand motion and gesture recognition 

could be successfully realised. With successful results from our initial study, this 

lead to development of an interactive system that would allow the user to model 

3D product design models in real- time. 

 

A new set of hand signs were developed for the real-time application of product 

design models. An OpenGL capable software application was programmed using 

C++ and the Microsoft Foundation Classes.  Due to limited time, I was unable to 

complete the program, however I was able to successfully display 3D graphics 

from the motion capture system running in real-time.  This proves that with further 

time dedicated to programming, real-time modelling of 3D product design 

concepts can be realised. 

 

Further work could be carried out by, completing the software application and 

investigating further methods to which the system could be used with.  A larger 

database of hand signs can be collated in order to make the system more versatile 

and easily transferable between different disciplines and areas of research.     
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7.2 Final Thought and Discussion  

 

The following section will discuss and reflect on the research covered in this 

thesis, creating a subjective overview on the achievements made and continuation 

of possible future research.   

 

With limited time available the main aim of this research was completed by 

implementing two key feasibility studies which covered two main features of the 

proposed system framework.  In hindsight it would have been more beneficial to 

the overall achievement of this project, to have spent more time on feasibility 

study two and less on feasibility study one.  This could have possibly lead to the 

realisation of using a complete set of hand gestures and motion to create some type 

of 3D geometry in real-time.  A simple 3D primitive shape would have been 

sufficient to show possible modelling commands for completing full conceptual 

product design models.  This would have ideally been better than what was 

achieved in feasibility study two, which was OpenGL graphics of a motion 

trajectory. 

 

Motion systems are becoming more popular across different industries and on 

different platforms, with the latest release of a motion system known as Kinect by 

Microsoft.  This computer peripheral is designed for the gaming industry and is 

intended to be used by users for free interaction with a computer device in order to 

control onscreen gaming commands.  It is clear to see that most development in 

this area is being focused on hands free interaction in a home or work 

environment.  With this in mind if further work was to continue on this research, 

as recommended earlier, it would be crucial to complete the real-time 

communication program in order to realise a complete 3D product design model.  

After this has been achieved it would be beneficial to focus on replacing the 

motion capture system used in this research with a more permanent hands free 

alternative that would be much more suited for use in homes or offices.  This will 

allow for a hassle free practical approach for groups of professionals to share 

design ideas by creating 3D design models in real-time using 3D space.             
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Appendix A:  

Hand gesture signs for product design motion capture 
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Appendix B:  

Programming code for software development  
 

C3DModelView.h 
#pragma once 

#include "OpenGLView.h" 

#include "DataAcquiringThread.h" 

 

class C3DModelView : public COpenGLView 

{ 

protected: 

 C3DModelView(void); // protected constructor used by dynamic creation 

 virtual ~C3DModelView(void); 

 

 DECLARE_DYNCREATE(C3DModelView) 

 

// Attributes 

public: 

 float m_zoom, 

    m_xpos, 

    m_ypos, 

    m_xrot, 

    m_yrot; 

 int   m_lastMouseX, 

    m_lastMouseY; 

 

 fMarkerCoordinate markerCoordinates1[50]; 

 fMarkerCoordinate markerCoordinates2[50]; 

 bool bStart; 

 

// Overrides 

protected: 

 

 // Main OpenGL functions. 

 virtual void DoOpenGLDraw(); 

 virtual void DoOpenGLResize(int nWidth, int nHeight); 

 

 // Generated message map functions 

protected: 

 afx_msg void OnMouseMove(UINT nFlags, CPoint point); 

 afx_msg LRESULT OnUpdataCoordinates(WPARAM wparam, LPARAM lparam); 

 

 DECLARE_MESSAGE_MAP() 

}; 

 

ConnectDlg.h 
#pragma once 

#include "afxwin.h" 

#include "Viewer.h" 

 

// CConnectDlg dialog 

 

class CConnectDlg : public CDialog 

{ 

 DECLARE_DYNAMIC(CConnectDlg) 

 

public: 

 CConnectDlg(CWnd* pParent = NULL);   // standard constructor 

 virtual ~CConnectDlg(); 

 

// Dialog Data 

 enum { IDD = IDD_CONNECT }; 

 

protected: 

 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support 

 

 DECLARE_MESSAGE_MAP() 

public: 

  

  

 CString m_NOFTR; 

 CString m_NOFR; 
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 DWORD m_Eipaddress; 

 DWORD m_Cipaddress; 

 afx_msg void OnBnClickedOk(); 

 CStatic m_Status; 

}; 

 

ConnectThread.h 
#pragma once 

 

#include "DataAcquiringThread.h" 

#include "FrameQueue.h" 

 

// CConnectThread 

 

class CConnectThread : public CWinThread 

{ 

 DECLARE_DYNCREATE(CConnectThread) 

 

protected: 

 CConnectThread();           // protected constructor used by dynamic creation 

 virtual ~CConnectThread(); 

 

public: 

 void SetConnectParams(sConnectParams* params); 

 void SetFrameQueue(CFrameQueue* pFrameQueue); 

 void SetDataAcquiringThread(CDataAcquiringThread* pDataAcquiringThread); 

 

 virtual BOOL InitInstance(); 

 virtual int ExitInstance(); 

 virtual int Run(); 

 

protected: 

 sConnectParams* m_pConnectParams; 

 CFrameQueue* m_pFrameQueue; 

 CDataAcquiringThread* m_pDataAcquiringThread; 

 DECLARE_MESSAGE_MAP() 

}; 

 

DataAcquiringThread.h 
#pragma once 

 

#include "FrameQueue.h" 

#include "MainFrm.h" 

 

 

typedef struct sConnectParams 

{ 

 CString sServerIP; 

 CString sClientIP; 

 int iMaxFrames; 

} sConnectParams; 

 

typedef struct fMarkerCoordinate 

{ 

 float xPos; 

 float yPos; 

 float zPos; 

} fMarkerCoordinate; 

 

// CDataAcquiringThread 

 

class CDataAcquiringThread : public CWinThread 

{ 

 DECLARE_DYNCREATE(CDataAcquiringThread) 

 

protected: 

 CDataAcquiringThread();           // protected constructor used by dynamic 

creation 

 virtual ~CDataAcquiringThread(); 

 

public: 

 virtual BOOL InitInstance(); 

 virtual int ExitInstance(); 

 virtual int Run(); 
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 void SetConnectParamsReady(); 

 void SetFrameHasArrivedEvent(); 

 void SetDisconnectedEvent(); 

 void SetMainFrame(CMainFrame* pFrame); 

 

 //============================================= 

 // for testing 

 //============================================= 

 void SetServerIP(CString sServerIP); 

 void SetClientIP(CString sClientIP); 

 void SetMaxFrames(int iMaxFrames); 

 //============================================= 

 

protected: 

 sConnectParams m_sConnParams; 

 bool m_bConnnectParamsReady; 

 CFrameQueue m_cFrameQueue; 

 CMainFrame* m_pFrame; 

 

 HANDLE m_hFrameHasArrivedEvent; 

 HANDLE m_hDisconnectedEvent; 

 DECLARE_MESSAGE_MAP() 

}; 

 

 

FrameQueue.h 
#pragma once 

 

#include "afxmt.h" 

#include "EVaRT2.h" 

 

class CDataAcquiringThread; 

 

// CFrameQueue command target 

 

class CFrameQueue : public CObject 

{ 

public: 

 CFrameQueue(); 

 virtual ~CFrameQueue(); 

 

 sFrameOfData* GetFrame(); 

 void AddFrame(sFrameOfData* ptrFrame); 

 void SetDataAcquiringThread(CDataAcquiringThread* pDataAcquiringThread); 

 

private: 

 CPtrList m_FrameList; 

 CCriticalSection m_csForFrameQueue; 

 CDataAcquiringThread* m_pDataAcquiringThread; 

}; 

 

 

MainFrm.h 
// MainFrm.h : interface of the CMainFrame class 

// 

///////////////////////////////////////////////////////////////////////////// 

 

#if !defined(AFX_MAINFRM_H__B9860475_351C_4E83_92B5_E4437E60684C__INCLUDED_) 

#define AFX_MAINFRM_H__B9860475_351C_4E83_92B5_E4437E60684C__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#define INFOBAR_SIZE 150 // constant for creating 

       // splitter windows 

 

#include "Perspective.h" 

#include "Front.h" 

#include "Top.h" 

#include "Side.h" 

#include "InfoPannel.h" 

#include "ConnectDlg.h" 

 

class CMainFrame : public CFrameWnd 
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{ 

  

protected: // create from serialization only 

 CMainFrame(); 

 DECLARE_DYNCREATE(CMainFrame) 

 

// Attributes 

public: 

 BOOL   m_initSplitters;  // Have the splitters 

          // been 

initialized? 

 CSplitterWnd m_mainSplitter,  // Splitter windows 

     m_viewportSplitter; 

 

 HWND m_hwndTopLeft; 

 HWND m_hwndTopRight; 

 HWND m_hwndBottomLeft; 

 HWND m_hwndBottomRight; 

 

// Operations 

public: 

 CConnectDlg *Connect; 

 

// Overrides 

 // ClassWizard generated virtual function overrides 

 //{{AFX_VIRTUAL(CMainFrame) 

 public: 

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 

 protected: 

 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* pContext); 

 //}}AFX_VIRTUAL 

 

// Implementation 

public: 

 virtual ~CMainFrame(); 

#ifdef _DEBUG 

 virtual void AssertValid() const; 

 virtual void Dump(CDumpContext& dc) const; 

#endif 

 

protected:  // control bar embedded members 

 CStatusBar  m_wndStatusBar; 

 CToolBar    m_wndToolBar; 

 

// Generated message map functions 

protected: 

 //{{AFX_MSG(CMainFrame) 

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 

 afx_msg void OnSize(UINT nType, int cx, int cy); 

 //}}AFX_MSG 

 DECLARE_MESSAGE_MAP() 

public: 

 afx_msg void OnToolsEvartconnect(); 

 afx_msg void OnToolsConnect(); 

}; 

 

///////////////////////////////////////////////////////////////////////////// 

 

//{{AFX_INSERT_LOCATION}} 

// Microsoft Visual C++ will insert additional declarations immediately before the 

previous line. 

 

#endif // !defined(AFX_MAINFRM_H__B9860475_351C_4E83_92B5_E4437E60684C__INCLUDED_) 

 

OpenGLView.h 
#pragma once 

 

// The base class for all OpenGL-based views. 

// Handles all the basic OpenGL init stuff for MFC. 

 

class COpenGLView : public CView 

{ 

protected: 

 COpenGLView(void);  // protected constructor used by dynamic creation 

 ~COpenGLView(void); 
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 DECLARE_DYNCREATE(COpenGLView) 

 

protected: 

 

// Overrides 

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 

 virtual void OnDraw(CDC* pDC); 

 

// Debug functions. 

#ifdef _DEBUG 

 virtual void AssertValid() const; 

 virtual void Dump(CDumpContext& dc) const; 

#endif 

  

// Attributes 

 HGLRC m_hRC; //Rendering Context 

 CDC* m_pDC;  //Device Context 

 

// Operations 

 // OpenGL init stuff. 

 BOOL SetupPixelFormat(); 

 BOOL InitOpenGL(); 

 

 // Main OpenGL functions. 

 virtual void DoOpenGLDraw() {}; 

 virtual void DoOpenGLResize(int nWidth, int nHeight) {}; 

 

 // Each viewport uses its own context, so we need to make sure the correct 

 // context is set whenever we make an OpenGL command. 

 void SetContext() { wglMakeCurrent( m_pDC->GetSafeHdc(), m_hRC ); } 

 void SwapGLBuffers() { SwapBuffers( m_pDC->GetSafeHdc() ); } 

 

protected: 

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 

 afx_msg void OnDestroy(); 

 afx_msg void OnSize(UINT nType, int cx, int cy); 

 afx_msg BOOL OnEraseBkgnd(CDC* pDC); 

 

 DECLARE_MESSAGE_MAP() 

 

}; 

 

OpenGLWnd.h 
#if !defined(AFX_OPENGLWND_H__83310F64_5D53_44AE_9D08_E29D6A961D6F__INCLUDED_) 

#define AFX_OPENGLWND_H__83310F64_5D53_44AE_9D08_E29D6A961D6F__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

// OpenGLWnd.h : header file 

// 

 

#include "RenderFunctions.h" 

#include "ViewerDoc.h" 

 

///////////////////////////////////////////////////////////////////////////// 

// COpenGLWnd view 

 

// The base class for all our viewport views. 

// Handles all the basic OpenGL init stuff for 

// MFC. A similar method could be used for 

// another API like Direct 3D. 

 

class COpenGLWnd : public CView 

{ 

protected: 

 COpenGLWnd();           // protected constructor used by dynamic creation 

 DECLARE_DYNCREATE(COpenGLWnd) 

 

// Attributes 

public: 

 void (*m_RenderScene) ( CViewerDoc* doc ); // void function pointer to the 

rendering 
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 // function. Used to change to easily 

           

 // change what a viewport displays. 

protected: 

 HGLRC m_hRC; //Rendering Context 

 CDC* m_pDC;  //Device Context 

 

// Operations 

public: 

 // OpenGL init stuff 

 BOOL SetupPixelFormat(); 

 BOOL InitOpenGL(); 

 

 // A couple of functions to allow outside 

 // forces to manipulate the class. 

 void SetRenderFunc( void (*func) ( CViewerDoc* ) ) { m_RenderScene = func; } 

 void RenderScene(); 

 // Each viewport uses its own context 

 // so we need to make sure the correct 

 // context is set whenever we make an 

 // OpenGL command. 

 void SetContext() { wglMakeCurrent( m_pDC->GetSafeHdc(), m_hRC ); } 

 void SwapGLBuffers() {  SwapBuffers( m_pDC->GetSafeHdc() ); } 

 

// Overrides 

 // ClassWizard generated virtual function overrides 

 //{{AFX_VIRTUAL(COpenGLWnd) 

 protected: 

 virtual void OnDraw(CDC* pDC);      // overridden to draw this view 

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 

 //}}AFX_VIRTUAL 

 

// Implementation 

protected: 

 virtual ~COpenGLWnd(); 

 

#ifdef _DEBUG 

 virtual void AssertValid() const; 

 virtual void Dump(CDumpContext& dc) const; 

#endif 

 

 // Generated message map functions 

protected: 

 //{{AFX_MSG(COpenGLWnd) 

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 

 afx_msg void OnDestroy(); 

 afx_msg BOOL OnEraseBkgnd(CDC* pDC); 

 //}}AFX_MSG 

 DECLARE_MESSAGE_MAP() 

}; 

 

///////////////////////////////////////////////////////////////////////////// 

 

//{{AFX_INSERT_LOCATION}} 

// Microsoft Visual C++ will insert additional declarations immediately before the 

previous line. 

 

#endif // !defined(AFX_OPENGLWND_H__83310F64_5D53_44AE_9D08_E29D6A961D6F__INCLUDED_) 

 

Orthographic.h 
#if !defined(AFX_ORTHOGRAPHIC_H__89B35520_EA7E_4AF2_9E2F_3E6CE6E3347B__INCLUDED_) 

#define AFX_ORTHOGRAPHIC_H__89B35520_EA7E_4AF2_9E2F_3E6CE6E3347B__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

// Orthographic.h : header file 

// 

 

#include "OpenGLWnd.h" 

 

///////////////////////////////////////////////////////////////////////////// 

// COrthographic view 
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class COrthographic : public COpenGLWnd 

{ 

protected: 

 COrthographic();           // protected constructor used by dynamic creation 

 DECLARE_DYNCREATE(COrthographic) 

 

// Attributes 

public: 

 int   m_lastMouseX, 

    m_lastMouseY; 

 float m_zoom, 

    m_xpos, 

    m_ypos; 

 

// Operations 

public: 

 

// Overrides 

 // ClassWizard generated virtual function overrides 

 //{{AFX_VIRTUAL(COrthographic) 

 //}}AFX_VIRTUAL 

 

// Implementation 

protected: 

 virtual ~COrthographic(); 

#ifdef _DEBUG 

 virtual void AssertValid() const; 

 virtual void Dump(CDumpContext& dc) const; 

#endif 

 

 // Generated message map functions 

protected: 

 //{{AFX_MSG(COrthographic) 

 afx_msg void OnSize(UINT nType, int cx, int cy); 

 afx_msg void OnMouseMove(UINT nFlags, CPoint point); 

 //}}AFX_MSG 

 DECLARE_MESSAGE_MAP() 

}; 

 

///////////////////////////////////////////////////////////////////////////// 

 

//{{AFX_INSERT_LOCATION}} 

// Microsoft Visual C++ will insert additional declarations immediately before the 

previous line. 

 

#endif // 

!defined(AFX_ORTHOGRAPHIC_H__89B35520_EA7E_4AF2_9E2F_3E6CE6E3347B__INCLUDED_) 

 

C3DModelView.cpp 
#include "StdAfx.h" 

#include "Viewer.h" 

#include "C3DModelView.h" 

 

 

IMPLEMENT_DYNCREATE(C3DModelView, COpenGLView) 

 

C3DModelView::C3DModelView(void) 

{ 

 m_zoom = 0.0f; 

 m_xpos = 0.0f; 

 m_ypos = 60.0f; 

 m_xrot = 0.0f; 

 m_yrot = 0.0f; 

 

 bStart = false;  

} 

 

C3DModelView::~C3DModelView(void) 

{ 

} 

 

BEGIN_MESSAGE_MAP(C3DModelView, COpenGLView) 

 ON_WM_MOUSEMOVE() 

 ON_MESSAGE(WM_MARKERCOORDINATE, &C3DModelView::OnUpdataCoordinates) 

END_MESSAGE_MAP() 
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LRESULT C3DModelView::OnUpdataCoordinates(WPARAM wparam, LPARAM lparam) 

{ 

 fMarkerCoordinate* fMarkers = reinterpret_cast<fMarkerCoordinate*> (lparam); 

 

 float fNewX1, fNewY1, fNewZ1, fNewX2, fNewY2, fNewZ2; 

  

 fNewX1 = fMarkers[0].xPos / 10.0f; 

 fNewY1 = fMarkers[0].yPos / 10.0f; 

 fNewZ1 = fMarkers[0].zPos / 10.0f; 

 fNewX2 = fMarkers[1].xPos / 10.0f; 

 fNewY2 = fMarkers[1].yPos / 10.0f; 

 fNewZ2 = fMarkers[1].zPos / 10.0f; 

 delete [] fMarkers; 

 

 if(!bStart) 

 { 

  for(int i = 0; i < 50; i++) 

  { 

   markerCoordinates1[i].xPos = fNewX1; 

   markerCoordinates1[i].yPos = fNewY1; 

   markerCoordinates1[i].zPos = fNewZ1; 

 

   markerCoordinates2[i].xPos = fNewX2; 

   markerCoordinates2[i].yPos = fNewY2; 

   markerCoordinates2[i].zPos = fNewZ2; 

  } 

  bStart = true; 

 } 

 else 

 { 

  for(int i = 0; i < 49; i++) 

  { 

   markerCoordinates1[i] = markerCoordinates1[i+1]; 

   markerCoordinates2[i] = markerCoordinates2[i+1]; 

  } 

   

  markerCoordinates1[49].xPos = fNewX1; 

  markerCoordinates1[49].yPos = fNewY1; 

  markerCoordinates1[49].zPos = fNewZ1; 

 

  markerCoordinates2[49].xPos = fNewX2; 

  markerCoordinates2[49].yPos = fNewY2; 

  markerCoordinates2[49].zPos = fNewZ2; 

 } 

  

 OnDraw(NULL); 

 return 0; 

} 

 

void C3DModelView::DoOpenGLDraw() 

{ 

 // Clear the buffers. 

 glClearColor(1.0f, 1.0f, 1.0f, 0.75f); 

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

  

 // Look at the middle of the scene. 

 glLoadIdentity(); 

 gluLookAt(-200, -60, 10, 0, 0, 0, 0, 1, 0); 

 

 // Position the camera 

 glTranslatef( m_xpos, -m_ypos, -m_zoom ); 

 

 // Rotate the camera 

 glRotatef(-90.0f, 1.0f, 0.0f, 0.0f ); 

 glRotatef(-20.0f, 0.0f, 1.0f, 0.0f ); 

 glRotatef( m_xrot, 0.0f, 0.0f, 1.0f ); 

 glRotatef( m_yrot, 0.0f, 1.0f, 0.0f ); 

 

 // Set up some nice attributes for drawing the grid. 

 glPushAttrib(GL_LINE_BIT | GL_ENABLE_BIT | GL_COLOR_BUFFER_BIT); 

 glEnable(GL_LINE_SMOOTH); 

 glEnable(GL_BLEND); 

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 

 glDisable(GL_LIGHTING); 

 glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); 
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 glLineWidth(1.0f); 

 

 // Create the grid. 

 glBegin(GL_LINES); 

 for (int i = -100; i <= 100; i = i+10) 

    { 

  glColor4f(0.2f, 0.2f, 0.2f, 0.8f); 

        glVertex3f((float)i, -100, 0); 

        glVertex3f((float)i, 100, 0); 

        glVertex3f(-100, (float)i, 0); 

        glVertex3f(100, (float)i, 0); 

 } 

 glEnd(); 

 // End of Creating the grid 

 

 glLineWidth(3.0f); 

 if(bStart) 

 { 

  // Draw the lines. 

  glBegin(GL_LINES); 

   glColor4f(1.0f, 0.0f, 0.0f, 0.8f); 

   for(int i = 0; i < 50; i++) 

    glVertex3f(markerCoordinates1[i].xPos, 

markerCoordinates1[i].yPos, markerCoordinates1[i].zPos); 

  glEnd(); 

 

  glBegin(GL_LINES); 

   glColor4f(0.0f, 1.0f, 0.0f, 0.8f); 

   for(int i = 0; i < 50; i++) 

    glVertex3f(markerCoordinates2[i].xPos, 

markerCoordinates2[i].yPos, markerCoordinates2[i].zPos); 

  glEnd(); 

 } 

 

 glPopAttrib(); 

 glFlush(); 

} 

 

// Change the perspective viewing volume to 

// reflect the new dimensions of the window. 

void C3DModelView::DoOpenGLResize(int nWidth, int nHeight) 

{ 

 // Create the viewport. 

 glViewport(0, 0, nWidth, nHeight); 

 

 // Load the identity projection matrix. 

 glMatrixMode(GL_PROJECTION); 

 glLoadIdentity(); 

 

 // Create a perspective viewport transformation. 

 gluPerspective(45.0f, (float)nWidth / (float)nHeight, 0.1f, 1000.0f); 

 

 // Go back to the modelview matrix. 

 glMatrixMode(GL_MODELVIEW); 

 

 glLoadIdentity(); 

 //gluLookAt(-12, 12, 12, 0, 0, 0, 0, 1, 0); 

 gluLookAt(-200, -60, 10, 0, 0, 0, 0, 1, 0); 

} 

 

// Move the camera if control is being pressed and  

// the apropriate mouse button is being held down. 

void C3DModelView::OnMouseMove(UINT nFlags, CPoint point) 

{ 

 if( nFlags & MK_CONTROL ) 

 { 

  if( nFlags & MK_LBUTTON ) 

  { 

   // Left mouse button is being 

   // pressed. Rotate the camera. 

   if ( m_lastMouseX != -1 ) 

   { 

    m_xrot += point.x - m_lastMouseX; 

    m_yrot += point.y - m_lastMouseY; 

    // Redraw the viewport. 

    OnDraw( NULL ); 

   } 
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   m_lastMouseX = point.x; 

   m_lastMouseY = point.y; 

  } 

  else if ( nFlags & MK_MBUTTON ) 

  { 

   // Middle mouse button is being 

   // pressed. Zoom the camera. 

   if ( m_lastMouseY != -1 ) 

   { 

    m_zoom += point.y - m_lastMouseY; 

    // Redraw the viewport. 

    OnDraw( NULL ); 

   } 

   m_lastMouseY = point.y; 

  } 

  else if ( nFlags & MK_RBUTTON ) 

  { 

   // Right mouse button is being 

   // pressed. Pan the camera. 

   if ( m_lastMouseX != -1 ) 

   { 

    m_xpos += (point.x - m_lastMouseX) * 0.15f; 

    m_ypos += (point.y - m_lastMouseY) * 0.15f; 

    // Redraw the viewport. 

    OnDraw( NULL ); 

   } 

   m_lastMouseX = point.x; 

   m_lastMouseY = point.y; 

  } 

  else 

  { 

   m_lastMouseX = -1; 

   m_lastMouseY = -1; 

  } 

 } 

 else 

 { 

  m_lastMouseX = -1; 

  m_lastMouseY = -1; 

 } 

 

 COpenGLView::OnMouseMove(nFlags, point); 

} 

 

ConnectDlg.cpp 
// ConnectDlg.cpp : implementation file 

// 

 

#include "stdafx.h" 

#include "Viewer.h" 

#include "ConnectDlg.h" 

#include <windows.h> 

#include "DataAcquiringThread.h" 

 

 

 

// CConnectDlg dialog 

 

IMPLEMENT_DYNAMIC(CConnectDlg, CDialog) 

 

CConnectDlg::CConnectDlg(CWnd* pParent /*=NULL*/) 

 : CDialog(CConnectDlg::IDD, pParent) 

 , m_NOFTR(_T("")) 

 , m_NOFR(_T("")) 

 , m_Eipaddress(0) 

 , m_Cipaddress(0) 

{ 

 

} 

 

CConnectDlg::~CConnectDlg() 

{ 

} 

 

void CConnectDlg::DoDataExchange(CDataExchange* pDX) 
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{ 

 CDialog::DoDataExchange(pDX); 

 DDX_Text(pDX, IDC_EDT_NOFTR, m_NOFTR); 

 DDX_Text(pDX, IDC_EDT_NOFR, m_NOFR); 

 DDX_IPAddress(pDX, IDC_EDT_EIPADDRESS, m_Eipaddress); 

 DDX_IPAddress(pDX, IDC_EDT_CIPADDRESS, m_Cipaddress); 

 DDX_Control(pDX, IDC_NOT_STATUS, m_Status); 

} 

 

 

BEGIN_MESSAGE_MAP(CConnectDlg, CDialog) 

  

  

 ON_BN_CLICKED(IDOK, &CConnectDlg::OnBnClickedOk) 

END_MESSAGE_MAP() 

 

 

// CConnectDlg message handlers 

void CConnectDlg::OnBnClickedOk() 

{ 

 //CString m_Eipaddress; 

 //GetDlgItem( IDC_EDT_EIPADDRESS )->GetWindowText( m_Eipaddress); 

 ////code not needed 

 ////char *string = new char[m_Eipaddress.GetLength() +1]; 

 ////string = m_Eipaddress.GetBuffer(m_Eipaddress.GetLength() +1); 

 ////m_Eipaddress.ReleaseBuffer(); 

 

 

 //CString m_Cipaddress; 

 //GetDlgItem( IDC_EDT_CIPADDRESS )->GetWindowText( m_Cipaddress); 

 ////code not needed 

 ////char *string1 = new char[m_Cipaddress.GetLength() +1]; 

 ////string1 = m_Cipaddress.GetBuffer(m_Cipaddress.GetLength() +1); 

 ////m_Cipaddress.ReleaseBuffer(); 

 

 

 

 //CString m_NOFTR; 

 //GetDlgItem( IDC_EDT_NOFTR )->GetWindowText( m_NOFTR); 

 ////code not needed 

 ////char *string2 = new char[m_NOFTR.GetLength() +1]; 

 ////string2 = m_NOFTR.GetBuffer(m_NOFTR.GetLength() +1); 

 ////m_NOFTR.ReleaseBuffer(); 

 // 

 //{ 

 //MySdk2Client sdkClient; 

 

 //  

 //// Try to connect to the given EVaRT SDK2 server 

 //if (sdkClient.Connect(m_Eipaddress, m_Cipaddress,atoi(m_NOFTR))) 

 //{ 

 // m_Status.SetWindowText("Connected"); 

 //  

 // // Just wait until we've received the required number of frames 

 // while (sdkClient.IsFinished() == false) 

 // { 

 //  Sleep(1000); 

 // } 

 // sdkClient.Disconnect(); 

 // m_Status.SetWindowText("Finished Recording Frames"); 

 //} 

 //else 

 //{ 

 //  

 // m_Status.SetWindowText("Could not connect to EVaRT System"); 

 //} 

 

 //  

 //} 

  

  

} 

 

 

/* Example code I made to get code from IP control(Cstring) convert it to a (char) 

 and send it to the and edit box 

 ------------------------------------------------------------------------------ 
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CString m_Eipaddress; 

 GetDlgItem( IDC_EDT_EIPADDRESS )->GetWindowText( m_Eipaddress); 

  

 

 char *string = new char[m_Eipaddress.GetLength() +1]; 

 string = m_Eipaddress.GetBuffer(m_Eipaddress.GetLength() +1); 

 m_Eipaddress.ReleaseBuffer(); 

 

 m_NOFTR = m_Eipaddress; 

 GetDlgItem( IDC_EDT_NOFTR )->SetWindowText( m_NOFTR ); 

 

 

 

 

/* Example code I made to test get/set IP address 

 --------------------------------------------------- 

 

 

 

 CString m_Eipaddress; 

GetDlgItem( IDC_EDT_EIPADDRESS )->GetWindowText( m_Eipaddress); 

 

CString m_Cipaddress = m_Eipaddress; 

GetDlgItem( IDC_EDT_CIPADDRESS )->SetWindowText( m_Cipaddress ); 

  

  

 /* Example code I made to test value variables 

 ---------------------------------------------------- 

  

 UpdateData(); 

 double NOFTR, NOFR; 

 NOFTR = atof(m_NOFTR); 

 

 NOFR = NOFTR * 2 ; 

  

 m_NOFR.Format("%.3f", NOFR); 

  

 UpdateData(FALSE); 

 

 /* Example code I made to test control variables 

 -------------------------------------------------------- 

  

 float EvartIP, ClientIP, Nofr; 

 char   StrEvartIP[50], StrClientIP[50], StrNofr[50]; 

 

 m_EvartIP.GetWindowText(StrEvartIP, 50); 

 m_ClientIP.GetWindowText(StrClientIP, 50); 

 

 EvartIP = atof(StrEvartIP); 

 ClientIP = atof(StrClientIP); 

 

 Nofr = EvartIP * ClientIP; 

  

 

 sprintf(StrNofr, "%.3f", Nofr); 

  

 

 m_Nofr.SetWindowText(StrNofr); 

  

 ------------------------------------------------------ 

  

 

 double Noftr, Nofr; 

 char   StrNoftr[22], StrNofr[22]; 

 

 m_Noftr.GetWindowText(StrNoftr, 22); 

 Noftr = atof(StrNoftr); 

 Nofr = Noftr * 4; 

  

 

 sprintf_s(StrNofr, "%.3f", Nofr); 

  

 

 m_Nofr.SetWindowText(StrNofr); */ 
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ConnectThread.cpp 
// ConnectThread.cpp : implementation file 

// 

 

#include "stdafx.h" 

#include "ConnectThread.h" 

#include "MySdk2Client.h" 

 

 

// CConnectThread 

 

IMPLEMENT_DYNCREATE(CConnectThread, CWinThread) 

 

CConnectThread::CConnectThread() 

{ 

 m_pConnectParams = NULL; 

 m_pFrameQueue = NULL; 

 m_pDataAcquiringThread = NULL; 

} 

 

CConnectThread::~CConnectThread() 

{ 

} 

 

BOOL CConnectThread::InitInstance() 

{ 

 // TODO:  perform and per-thread initialization here 

 return TRUE; 

} 

 

int CConnectThread::ExitInstance() 

{ 

 // TODO:  perform any per-thread cleanup here 

 return CWinThread::ExitInstance(); 

} 

 

BEGIN_MESSAGE_MAP(CConnectThread, CWinThread) 

END_MESSAGE_MAP() 

 

 

// CConnectThread message handlers 

 

 

int CConnectThread::Run() 

{ 

 while(!m_pConnectParams || !m_pDataAcquiringThread || !m_pFrameQueue) 

  Sleep(500); 

 

 MySdk2Client sdk2Client; 

 sdk2Client.SetFrameQueue(m_pFrameQueue); 

 if(sdk2Client.Connect(m_pConnectParams->sServerIP, m_pConnectParams->sClientIP, 

m_pConnectParams->iMaxFrames)) 

 { 

  while(!sdk2Client.IsFinished()) 

   Sleep(1000); 

  sdk2Client.Disconnect(); 

  MessageBox(NULL, "Finished receiving frames.", "Connect Thread", 

MB_OK|MB_ICONINFORMATION); 

 } 

 else 

 { 

  MessageBox(NULL, "Failed to connect to the EVaRT system.", "Connect 

Thread", MB_OK|MB_ICONEXCLAMATION); 

  return 0; 

 } 

 

 m_pDataAcquiringThread->SetDisconnectedEvent(); 

 return 1; 

} 

 

void CConnectThread::SetConnectParams(sConnectParams* params) 

{ 

 m_pConnectParams = params; 

} 

 

void CConnectThread::SetFrameQueue(CFrameQueue* pFrameQueue) 
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{ 

 m_pFrameQueue = pFrameQueue; 

} 

 

void CConnectThread::SetDataAcquiringThread(CDataAcquiringThread* 

pDataAcquiringThread) 

{ 

 m_pDataAcquiringThread = pDataAcquiringThread; 

} 

 

DataAcquiringThread.cpp 
// DataAcquiringThread.cpp : implementation file 

// 

 

#include "stdafx.h" 

#include "DataAcquiringThread.h" 

#include "ConnectThread.h" 

 

 

// CDataAcquiringThread 

 

IMPLEMENT_DYNCREATE(CDataAcquiringThread, CWinThread) 

 

CDataAcquiringThread::CDataAcquiringThread() 

{ 

 m_hFrameHasArrivedEvent = NULL; 

 m_hDisconnectedEvent = NULL; 

 m_bConnnectParamsReady = false; 

 m_pFrame = NULL; 

} 

 

CDataAcquiringThread::~CDataAcquiringThread() 

{ 

 if(m_hFrameHasArrivedEvent) 

  ::CloseHandle(m_hFrameHasArrivedEvent); 

 if(m_hDisconnectedEvent) 

  ::CloseHandle(m_hDisconnectedEvent); 

} 

 

BOOL CDataAcquiringThread::InitInstance() 

{ 

 // TODO:  perform and per-thread initialization here 

 m_hFrameHasArrivedEvent = ::CreateEvent(NULL, FALSE, FALSE, NULL); 

 ::ResetEvent(m_hFrameHasArrivedEvent); 

 

 m_hDisconnectedEvent = ::CreateEvent(NULL, FALSE, FALSE, NULL); 

 ::ResetEvent(m_hDisconnectedEvent); 

 

 m_cFrameQueue.SetDataAcquiringThread(this); 

 

 return TRUE; 

} 

 

int CDataAcquiringThread::ExitInstance() 

{ 

 // TODO:  perform any per-thread cleanup here 

 return CWinThread::ExitInstance(); 

} 

 

BEGIN_MESSAGE_MAP(CDataAcquiringThread, CWinThread) 

END_MESSAGE_MAP() 

 

 

// CDataAcquiringThread message handlers 

 

int CDataAcquiringThread::Run() 

{  

 while(!m_bConnnectParamsReady) 

  Sleep(500); 

 CConnectThread* pConnectThread = 

(CConnectThread*)::AfxBeginThread(RUNTIME_CLASS(CConnectThread)); 

 pConnectThread->SetConnectParams(&m_sConnParams); 

 pConnectThread->SetFrameQueue(&m_cFrameQueue); 

 pConnectThread->SetDataAcquiringThread(this); 
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 bool bExit; 

 sFrameOfData* pFrameOfData; 

 bExit = false; 

 pFrameOfData = NULL; 

 

 //for testing 

 FILE* pMemoFile = fopen("FrameNumber.txt", "w"); 

 

 while(!bExit) 

 { 

  if(::WaitForSingleObject(m_hFrameHasArrivedEvent, 10) == WAIT_OBJECT_0) 

  { 

   // Add codes here ==>> 

   pFrameOfData = m_cFrameQueue.GetFrame(); 

   fprintf(pMemoFile, "%d\n", pFrameOfData->iFrame); 

 

   fMarkerCoordinate* fMarkers = new fMarkerCoordinate[2]; 

   fMarkers[0].xPos = pFrameOfData->BodyData[0].Markers[0][0]; 

   fMarkers[0].yPos = pFrameOfData->BodyData[0].Markers[0][1]; 

   fMarkers[0].zPos = pFrameOfData->BodyData[0].Markers[0][2]; 

 

   fMarkers[1].xPos = pFrameOfData->BodyData[0].Markers[5][0]; 

   fMarkers[1].yPos = pFrameOfData->BodyData[0].Markers[5][1]; 

   fMarkers[1].zPos = pFrameOfData->BodyData[0].Markers[5][2]; 

 

   if(m_pFrame->m_hwndTopLeft) 

    PostMessage(m_pFrame->m_hwndTopLeft, 

WM_MARKERCOORDINATE, NULL, reinterpret_cast<LPARAM> (fMarkers)); 

 

   /*if(m_pFrame->m_hwndTopRight) 

    PostMessage(m_pFrame->m_hwndTopRight, 

WM_MARKERCOORDINATE, NULL, reinterpret_cast<LPARAM> (fMarkers));*/ 

  } 

  else 

   if(::WaitForSingleObject(m_hDisconnectedEvent, 1) == 

WAIT_OBJECT_0) 

   { 

    bExit = true;     

   } 

 } 

 

 //for testing 

 fclose(pMemoFile); 

 //MessageBox(NULL, "The file has been closed", "Data Acquiring Thread", 

MB_OK|MB_ICONINFORMATION); 

 

 return 1; 

} 

 

void CDataAcquiringThread::SetConnectParamsReady() 

{ 

 m_bConnnectParamsReady = true; 

} 

 

void CDataAcquiringThread::SetFrameHasArrivedEvent() 

{ 

 if(!::SetEvent(m_hFrameHasArrivedEvent)) 

  MessageBox(NULL, "Failed to set the ArrivedEvent", "DataAcquiring 

Thread", MB_OK|MB_ICONEXCLAMATION); 

} 

 

void CDataAcquiringThread::SetDisconnectedEvent() 

{ 

 ::SetEvent(m_hDisconnectedEvent); 

} 

 

void CDataAcquiringThread::SetMainFrame(CMainFrame* pFrame) 

{ 

 m_pFrame = pFrame; 

} 

 

//=================================================================== 

void CDataAcquiringThread::SetServerIP(CString sServerIP) 

{ 

 m_sConnParams.sServerIP = sServerIP; 

} 
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void CDataAcquiringThread::SetClientIP(CString sClientIP) 

{ 

 m_sConnParams.sClientIP = sClientIP; 

} 

 

void CDataAcquiringThread::SetMaxFrames(int iMaxFrames) 

{ 

 m_sConnParams.iMaxFrames = iMaxFrames; 

} 

//=================================================================== 

 

FrameQueue.cpp 
// FrameQueue.cpp : implementation file 

// 

 

#include "stdafx.h" 

#include "FrameQueue.h" 

#include "DataAcquiringThread.h" 

 

 

// CFrameQueue 

 

CFrameQueue::CFrameQueue() 

{ 

 m_pDataAcquiringThread = NULL; 

} 

 

CFrameQueue::~CFrameQueue() 

{ 

} 

 

 

// CFrameQueue member functions 

sFrameOfData* CFrameQueue::GetFrame() 

{ 

 sFrameOfData* ptrFrame; 

 m_csForFrameQueue.Lock(); 

 if(!m_FrameList.IsEmpty()) 

  ptrFrame = (sFrameOfData*)m_FrameList.RemoveHead(); 

 else 

  ptrFrame = NULL; 

 m_csForFrameQueue.Unlock(); 

 return ptrFrame; 

} 

 

void CFrameQueue::AddFrame(sFrameOfData* ptrFrame) 

{ 

 m_csForFrameQueue.Lock(); 

 m_FrameList.AddTail((void*)ptrFrame); 

 m_csForFrameQueue.Unlock(); 

 m_pDataAcquiringThread->SetFrameHasArrivedEvent(); 

} 

 

void CFrameQueue::SetDataAcquiringThread(CDataAcquiringThread* pDataAcquiringThread) 

{ 

 m_pDataAcquiringThread = pDataAcquiringThread; 

} 

 

OpenGLView.cpp 
#include "StdAfx.h" 

#include "OpenGLView.h" 

 

IMPLEMENT_DYNCREATE(COpenGLView, CView) 

 

COpenGLView::COpenGLView(void) 

{ 

} 

 

COpenGLView::~COpenGLView(void) 

{ 

} 

 

BEGIN_MESSAGE_MAP(COpenGLView, CView) 

 ON_WM_CREATE() 

 ON_WM_DESTROY() 
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 ON_WM_ERASEBKGND() 

 ON_WM_SIZE() 

END_MESSAGE_MAP() 

 

BOOL COpenGLView::SetupPixelFormat() 

{ 

 static PIXELFORMATDESCRIPTOR pfd =  

 { 

  sizeof(PIXELFORMATDESCRIPTOR),    // size of this pfd 

  1,                                // version number 

  PFD_DRAW_TO_WINDOW |              // support window 

  PFD_SUPPORT_OPENGL |              // support OpenGL 

  PFD_DOUBLEBUFFER,                 // double buffered 

  PFD_TYPE_RGBA,                    // RGBA type 

  24,                               // 24-bit color depth 

  0, 0, 0, 0, 0, 0,                 // color bits ignored 

  0,                                // no alpha buffer 

  0,                                // shift bit ignored 

  0,                                // no accumulation buffer 

  0, 0, 0, 0,                       // accumulation bits ignored 

  16,                               // 16-bit z-buffer 

  0,                                // no stencil buffer 

  0,                                // no auxiliary buffer 

  PFD_MAIN_PLANE,                   // main layer 

  0,                                // reserved 

  0, 0, 0                           // layer masks ignored 

 }; 

 

 int nPixelFormat = ::ChoosePixelFormat( m_pDC->GetSafeHdc(), &pfd ); 

 

 if ( nPixelFormat == 0 ) 

  return FALSE; 

 

 return ::SetPixelFormat( m_pDC->GetSafeHdc(), nPixelFormat, &pfd ); 

} 

 

BOOL COpenGLView::InitOpenGL() 

{ 

 // Get a DC for the Client Area 

 m_pDC = new CClientDC(this); 

 

 // Failure to Get DC 

 if( m_pDC == NULL ) 

  return FALSE; 

 

 if( !SetupPixelFormat() ) 

  return FALSE; 

 

 // Create Rendering Context 

 m_hRC = ::wglCreateContext( m_pDC->GetSafeHdc() ); 

 

 // Failure to Create Rendering Context 

 if( m_hRC == NULL ) 

  return FALSE; 

 

 // Make the RC Current 

 if( !::wglMakeCurrent( m_pDC->GetSafeHdc(), m_hRC ) ) 

  return FALSE; 

 

 // Usual OpenGL stuff 

 glClearDepth(1.0f); 

 glEnable(GL_DEPTH_TEST); 

 glEnable(GL_TEXTURE_2D); 

 

 return TRUE; 

} 

 

// Initialize OpenGL when window is created. 

int COpenGLView::OnCreate(LPCREATESTRUCT lpCreateStruct) 

{ 

 if (CView::OnCreate(lpCreateStruct) == -1) 

  return -1; 

 

 if ( !InitOpenGL() ) 

 { 

  MessageBox( "Error setting up OpenGL!", "Init Error!", 

   MB_OK | MB_ICONERROR ); 
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  return -1; 

 } 

 

 return 0; 

} 

 

// Set a few flags to make sure OpenGL only renders in its viewport. 

BOOL COpenGLView::PreCreateWindow(CREATESTRUCT& cs) 

{ 

 cs.lpszClass = ::AfxRegisterWndClass(CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS | 

CS_OWNDC, 

  ::LoadCursor(NULL, IDC_HAND), NULL, NULL); 

 cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN; 

 

 return CView::PreCreateWindow(cs); 

} 

 

void COpenGLView::OnDraw(CDC* pDC) 

{ 

 SetContext(); 

 DoOpenGLDraw(); 

 SwapGLBuffers(); 

} 

 

void COpenGLView::OnSize(UINT nType, int cx, int cy) 

{ 

 CView::OnSize(nType, cx, cy); 

 

 if ( 0 >= cx || 0 >= cy || nType == SIZE_MINIMIZED ) 

  return; 

 

 SetContext(); 

 DoOpenGLResize(cx, cy); 

} 

 

// Shutdown this view when window is destroyed. 

void COpenGLView::OnDestroy() 

{ 

 CView::OnDestroy(); 

 

 wglMakeCurrent(NULL, NULL); 

 wglDeleteContext(m_hRC); 

 if(m_pDC) 

 { 

  delete m_pDC; 

  m_pDC = NULL; 

 } 

} 

 

// Override the errase background function to 

// do nothing to prevent flashing. 

BOOL COpenGLView::OnEraseBkgnd(CDC* pDC) 

{ 

 return TRUE; 

} 

 

 

#ifdef _DEBUG 

void COpenGLView::AssertValid() const 

{ 

 CView::AssertValid(); 

} 

 

void COpenGLView::Dump(CDumpContext& dc) const 

{ 

 CView::Dump(dc); 

} 

#endif //_DEBUG 

 

OpenGLWnd.cpp 
#include "StdAfx.h" 

#include "OpenGLView.h" 

 

IMPLEMENT_DYNCREATE(COpenGLView, CView) 

 

COpenGLView::COpenGLView(void) 



 107 

{ 

} 

 

COpenGLView::~COpenGLView(void) 

{ 

} 

 

BEGIN_MESSAGE_MAP(COpenGLView, CView) 

 ON_WM_CREATE() 

 ON_WM_DESTROY() 

 ON_WM_ERASEBKGND() 

 ON_WM_SIZE() 

END_MESSAGE_MAP() 

 

BOOL COpenGLView::SetupPixelFormat() 

{ 

 static PIXELFORMATDESCRIPTOR pfd =  

 { 

  sizeof(PIXELFORMATDESCRIPTOR),    // size of this pfd 

  1,                                // version number 

  PFD_DRAW_TO_WINDOW |              // support window 

  PFD_SUPPORT_OPENGL |              // support OpenGL 

  PFD_DOUBLEBUFFER,                 // double buffered 

  PFD_TYPE_RGBA,                    // RGBA type 

  24,                               // 24-bit color depth 

  0, 0, 0, 0, 0, 0,                 // color bits ignored 

  0,                                // no alpha buffer 

  0,                                // shift bit ignored 

  0,                                // no accumulation buffer 

  0, 0, 0, 0,                       // accumulation bits ignored 

  16,                               // 16-bit z-buffer 

  0,                                // no stencil buffer 

  0,                                // no auxiliary buffer 

  PFD_MAIN_PLANE,                   // main layer 

  0,                                // reserved 

  0, 0, 0                           // layer masks ignored 

 }; 

 

 int nPixelFormat = ::ChoosePixelFormat( m_pDC->GetSafeHdc(), &pfd ); 

 

 if ( nPixelFormat == 0 ) 

  return FALSE; 

 

 return ::SetPixelFormat( m_pDC->GetSafeHdc(), nPixelFormat, &pfd ); 

} 

 

BOOL COpenGLView::InitOpenGL() 

{ 

 // Get a DC for the Client Area 

 m_pDC = new CClientDC(this); 

 

 // Failure to Get DC 

 if( m_pDC == NULL ) 

  return FALSE; 

 

 if( !SetupPixelFormat() ) 

  return FALSE; 

 

 // Create Rendering Context 

 m_hRC = ::wglCreateContext( m_pDC->GetSafeHdc() ); 

 

 // Failure to Create Rendering Context 

 if( m_hRC == NULL ) 

  return FALSE; 

 

 // Make the RC Current 

 if( !::wglMakeCurrent( m_pDC->GetSafeHdc(), m_hRC ) ) 

  return FALSE; 

 

 // Usual OpenGL stuff 

 glClearDepth(1.0f); 

 glEnable(GL_DEPTH_TEST); 

 glEnable(GL_TEXTURE_2D); 

 

 return TRUE; 

} 
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// Initialize OpenGL when window is created. 

int COpenGLView::OnCreate(LPCREATESTRUCT lpCreateStruct) 

{ 

 if (CView::OnCreate(lpCreateStruct) == -1) 

  return -1; 

 

 if ( !InitOpenGL() ) 

 { 

  MessageBox( "Error setting up OpenGL!", "Init Error!", 

   MB_OK | MB_ICONERROR ); 

  return -1; 

 } 

 

 return 0; 

} 

 

// Set a few flags to make sure OpenGL only renders in its viewport. 

BOOL COpenGLView::PreCreateWindow(CREATESTRUCT& cs) 

{ 

 cs.lpszClass = ::AfxRegisterWndClass(CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS | 

CS_OWNDC, 

  ::LoadCursor(NULL, IDC_HAND), NULL, NULL); 

 cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN; 

 

 return CView::PreCreateWindow(cs); 

} 

 

void COpenGLView::OnDraw(CDC* pDC) 

{ 

 SetContext(); 

 DoOpenGLDraw(); 

 SwapGLBuffers(); 

} 

 

void COpenGLView::OnSize(UINT nType, int cx, int cy) 

{ 

 CView::OnSize(nType, cx, cy); 

 

 if ( 0 >= cx || 0 >= cy || nType == SIZE_MINIMIZED ) 

  return; 

 

 SetContext(); 

 DoOpenGLResize(cx, cy); 

} 

 

// Shutdown this view when window is destroyed. 

void COpenGLView::OnDestroy() 

{ 

 CView::OnDestroy(); 

 

 wglMakeCurrent(NULL, NULL); 

 wglDeleteContext(m_hRC); 

 if(m_pDC) 

 { 

  delete m_pDC; 

  m_pDC = NULL; 

 } 

} 

 

// Override the errase background function to 

// do nothing to prevent flashing. 

BOOL COpenGLView::OnEraseBkgnd(CDC* pDC) 

{ 

 return TRUE; 

} 

 

 

#ifdef _DEBUG 

void COpenGLView::AssertValid() const 

{ 

 CView::AssertValid(); 

} 

 

void COpenGLView::Dump(CDumpContext& dc) const 

{ 

 CView::Dump(dc); 

} 
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#endif //_DEBUG 

 

Orthographic.cpp 
// Orthographic.cpp : implementation file 

// 

 

#include "stdafx.h" 

#include "Viewer.h" 

#include "Orthographic.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

///////////////////////////////////////////////////////////////////////////// 

// COrthographic 

 

IMPLEMENT_DYNCREATE(COrthographic, COpenGLWnd) 

 

COrthographic::COrthographic() 

{ 

 m_zoom = 5.0f; 

 m_xpos = 0.0f; 

 m_ypos = 0.0f; 

} 

 

COrthographic::~COrthographic() 

{ 

} 

 

 

BEGIN_MESSAGE_MAP(COrthographic, COpenGLWnd) 

 //{{AFX_MSG_MAP(COrthographic) 

 ON_WM_SIZE() 

 ON_WM_MOUSEMOVE() 

 //}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

 

///////////////////////////////////////////////////////////////////////////// 

// COrthographic diagnostics 

 

#ifdef _DEBUG 

void COrthographic::AssertValid() const 

{ 

 CView::AssertValid(); 

} 

 

void COrthographic::Dump(CDumpContext& dc) const 

{ 

 CView::Dump(dc); 

} 

#endif //_DEBUG 

 

///////////////////////////////////////////////////////////////////////////// 

// COrthographic message handlers 

 

void COrthographic::OnSize(UINT nType, int cx, int cy)  

{ 

 COpenGLWnd::OnSize(nType, cx, cy); 

  

 if ( 0 >= cx || 0 >= cy || nType == SIZE_MINIMIZED ) 

  return; 

 

 // Change the orthographic viewing volume to 

 // reflect the new dimensions of the window 

 // and the zoom and position of the viewport. 

 SetContext(); 

 glViewport( 0, 0, cx, cy ); 

 glMatrixMode( GL_PROJECTION ); 

 glLoadIdentity(); 

 glOrtho( (float)(cx)/(float)(cy)*-m_zoom-m_xpos, 

(float)(cx)/(float)(cy)*m_zoom-m_xpos, 

  -m_zoom+m_ypos, m_zoom+m_ypos, -200.0f, 200.0f ); 

 glMatrixMode( GL_MODELVIEW ); 
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} 

 

void COrthographic::OnMouseMove(UINT nFlags, CPoint point)  

{ 

 // Move the camera if control is being 

 // pressed and the apropriate mouse 

 

 // button is being held down. 

 

 CRect cr; 

 

 GetClientRect( &cr ); 

 if ( nFlags & MK_CONTROL ) 

 { 

  if ( nFlags & MK_MBUTTON ) 

  { 

   // Middle mouse button is being 

   // pressed. Zoom the camera. 

   if ( m_lastMouseY != -1 ) 

   { 

    m_zoom += (point.y - m_lastMouseY) * 0.25f; 

    // Apply the position changes to 

    // the viewport. 

    OnSize( SIZE_MAXIMIZED, cr.Width(), cr.Height() ); 

    OnDraw( NULL ); 

   } 

   m_lastMouseY = point.y; 

  } 

  else if ( nFlags & MK_RBUTTON ) 

  { 

   // Right mouse button is being 

   // pressed. Pan the camera. 

   if ( m_lastMouseX != -1 ) 

   { 

    m_xpos += (point.x - m_lastMouseX) * 0.25f; 

    m_ypos += (point.y - m_lastMouseY) * 0.25f; 

    // Apply the position changes to 

    // the viewport. 

    OnSize( SIZE_MAXIMIZED, cr.Width(), cr.Height() ); 

    OnDraw( NULL ); 

   } 

   m_lastMouseX = point.x; 

   m_lastMouseY = point.y; 

  } 

  else 

  { 

   // No mouse button was pressed. 

   // Mark the mouse flags to indicate 

   // the camera did not move last 

   // message. 

   m_lastMouseX = -1; 

   m_lastMouseY = -1; 

  } 

 } 

 else 

 { 

  // Control was not pressed. 

  // Mark the mouse flags to indicate 

  // the camera did not move last 

  // message. 

  m_lastMouseX = -1; 

  m_lastMouseY = -1; 

 } 

 

 COpenGLWnd::OnMouseMove(nFlags, point); 

} 

 

 
 


