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Abstract 

The overall aim of the thesis has been to introduce Personal Mobile Grids (PM-
Grids) as a novel paradigm in grid computing that scales grid infrastructures to 
mobile devices and extends grid entities to individual personal users. In this 
thesis, architectural designs as well as simulation models for PM-Grids are 
developed.  

The core of any grid system is its resource scheduler. However, virtually all 
current conventional grid schedulers do not address the non-clairvoyant 
scheduling problem, where job information is not available before the end of 
execution. Therefore, this thesis proposes a honeybee inspired resource 
scheduling heuristic for PM-Grids (HoPe) incorporating a radical approach to 
grid resource scheduling to tackle this problem. A detailed design and 
implementation of HoPe with a decentralised self-management and adaptive 
policy are initiated. 

Among the other main contributions are a comprehensive taxonomy of grid 
systems as well as a detailed analysis of the honeybee colony and its nectar 
acquisition process (NAP), from the resource scheduling perspective, which 
have not been presented in any previous work, to the best of our knowledge. 

PM-Grid designs and HoPe implementation were evaluated thoroughly through 
a strictly controlled empirical evaluation framework with a well-established 
heuristic in high throughput computing, the opportunistic scheduling heuristic 
(OSH), as a benchmark algorithm. Comparisons with optimal values and worst 
bounds are conducted to gain a clear insight into HoPe behaviour, in terms of 
stability, throughput, turnaround time and speedup, under different running 
conditions of number of jobs and grid scales. 

Experimental results demonstrate the superiority of HoPe performance where it 
has successfully maintained optimum stability and throughput in more than 95% 
of the experiments, with HoPe achieving three times better than the OSH under 
extremely heavy loads. Regarding the turnaround time and speedup, HoPe has 
effectively achieved less than 50% of the turnaround time incurred by the OSH, 
while doubling its speedup in more than 60% of the experiments.  

These results indicate the potential of both PM-Grids and HoPe in realising 
futuristic grid visions. Therefore considering the deployment of PM-Grids in 
real life scenarios and the utilisation of HoPe in other parallel processing and 
high throughput computing systems are recommended.  
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Chapter 1 
Introduction 

1.1 Introduction 

In grid computing [1] a set of computational resources are combined to form a 

large-scale distributed system in which all resources can be shared. This has the 

great advantage of providing a resource-rich infrastructure capable of solving 

data intensive and complex computational problems, such as protein folding and 

weather forecasting, in an acceptable time and at a reasonable cost.  

However, there are two main problems with current grid systems. First of all, 

they are of very restricted access; they are only available for people in enterprise 

and research domains. In other words, personal users (individuals outside these 

domains) are not permitted [2, 3]. Additionally, available grid middleware 

systems are of very heavy weight in terms of implementations [4]. This is to 

say, mobile devices cannot be utilised.  

Bridging the gap between personal users with mobile devices and grid 

environments is the end objective of Personal Mobile Grids or simply PM-

Grids. This thesis sets out to construct PM-Grids as a new paradigm in grid 

computing to empower individuals constrained with resource limited devices by 

providing a ubiquitous resource-rich infrastructure.  

Given that Personal Area Networks (PANs) [5, 6] and Personal Networks (PNs) 

[7, 8] interconnect personal devices, allowing resources such as data, 

peripherals and secondary storage for sharing, the next logical step is to 

superimpose grid functionality over these networks offering additional resources 

such as processors cycles and memories for sharing. Thus, the net result is a 

virtual supercomputer which can be accessed at anytime and anywhere: a PM-

Grid.  

However, a very demanding challenging problem becomes apparent when 

multiple resources are shared. Indeed, it is not a domain specific problem. 
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Rather, it is a universal optimisation problem that has been subject to extensive 

research for decades: the resource scheduling problem. When there are multiple 

machines and a set of jobs, how should machines be allocated to jobs in order to 

optimise a certain performance measure, such as the job turnaround time or the 

number of late jobs. This problem, in many of its forms, is known to be NP-

complete [9]. It becomes even more complicated and challenging in highly 

dynamic and unreliable networks [10-12], such as those underlying PM-Grids, 

due to nodes joining and leaving, switching on and off and working at 

varying paces.  

Therefore, a key to any successful grid system is an efficient scheduler that 

allocates available resources to incoming jobs. However, conventional grid 

schedulers are clairvoyant scheduling policies which assume that information 

about jobs is available to the scheduler before jobs enter the system, in static 

scheduling, or at least before starting the execution, in dynamic scheduling. 

Additionally, conventional grid schedulers are usually of centralised and static 

scheduling policies. A central authority generates a complete schedule prior to 

execution which other nodes uphold [13]. Such a scheduling scheme severely 

restricts the scalability of the system. It is prohibitively expensive to generate 

and simply impractical in many situations where high dynamism is an important 

issue.  

Therefore, a Honeybee inspired resource scheduling heuristic for Personal 

Mobile Grids (HoPe) is proposed in this thesis with a radical approach to grid 

scheduling. HoPe implements a non-clairvoyant, self-management and adaptive 

scheduling policy. In this scheme, no job information is presumed to be 

available prior to execution, and the scheduling policy is carried locally in each 

machine based on its perception of the current system state. This approach has 

its roots in techniques observed in honeybees during their Nectar Acquisition 

Process (NAP).  

This chapter provides a high level overview of the whole thesis. It briefly 

presents the motivation for the research in section 1.2, then identifies the 

research overall aim and objectives in section 1.3. Technical challenges are 

highlighted in section 1.4. The main scientific contributions are presented in 
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section 1.5, while the thesis scope is outlined in section 1.6. The chapter 

concludes by outlining the structure of this thesis in section 1.7. 

1.2 Motivation 

The motivation for this thesis is four-fold:  

First, the need for grid systems which support the vision of Next Generation 

Grids (NGG) [14-16] scaling grids to a larger number of entities and smaller 

devices as well as the vision of Ambient Intelligence (AmI), where humans are 

surrounded by computing and networking technologies unobtrusively embedded 

in their surroundings. Current grid architectures and technologies do not meet 

the requirements for turning these ambitious grid visions into reality [17, 18].  

Second, the mobile device market is evolving with a progressive reduction of 

costs and a continuous improvement in performance, rapidly increasing the 

number of users and applications of such devices. The Wireless World Research 

Forum (WWRF) predicts that there will be 1000 wireless devices per person on 

average in 2017 [19]. One speculates how a personal user will be able to 

manage such a vast number of devices and efficiently utilise scattered resources 

among them. It seems reasonable to enable personal users to efficiently share 

resources including processor cycles, storage capacity and other functionalities 

among their devices in the form of services available across a global network 

environment such as computational grids.  

Third, people are increasingly keen to frequently replace or upgrade their 

personal computers to gain more processing power and memory. Sometimes, 

they need to run complex computational jobs which their desktops or laptops 

cannot accommodate, or while they are on the move. People are becoming 

frustrated with the need to move data between their different electronic devices. 

For instance, a person might have several address books spread over his/her 

devices. Indeed, there is a need to allow users to harness all processing powers, 

memory storages and data files scattered across their computing and 

communication devices, in the form of services available across computational 

grids, so they can ubiquitously access data and run jobs. 
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Fourth, colonies of social insects such as bees and ants present an intelligent 

collective behaviour although they are composed of simple individuals of 

limited capability. These successful systems from nature have inspired 

researchers in solving many optimisation problems including the resource 

scheduling problem. Among all social insects, the technique underlying the 

NAP in honeybees is the greatest metaphor of efficient cooperation [20]. 

Exploiting this technique to solve the highly demanding resource scheduling 

problem in grid computing in particular is an unexplored area, to the best of our 

knowledge. 

1.3 Research Aim and Objectives 

The overall aim of the thesis is to introduce PM-Grids as a novel paradigm in 

grid computing for endowing individuals with resource-rich infrastructures that 

can serve as general purpose personal mobile and virtual supercomputers. The 

research aim is addressed through the following objectives: 

1. To review the area of grid computing to identify related paradigms to PM-

Grids. 

2. To introduce PM-Grids to empower personal mobile users with ubiquitous 

access to their data and computing resources. This objective involves two 

sub-objectives: 

2.1. To develop architectural designs for PM-Grids. 

2.2. To build simulation models for PM-Grids. 

3. To review the area of resource scheduling to identify required features 

for an efficient resource scheduler in PM-Grid environments.  

4. To develop a resource scheduling heuristic to efficiently schedule PM-

Grid resources. This objective involves two sub-objectives: 

4.1. To design the heuristic.  

4.2. To implement the heuristic. 

5. To empirically validate the PM-Grid models using the developed 

scheduling heuristic and to analyse the results. 
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1.4 Challenges 

There are many technical challenges in developing PM-Grids. These challenges 

are inherited from the original components of PM-Grids in three fields, as 

illustrated in Figure 1.1:  

• Grid computing: Grid computing is a rapidly developing area of 

research, with heavy implementations which support neither mobile nor 

personal users. 

• Personal Networks: PNs are a relatively new area of research with 

demanding issues such as unreliable connectivity, heterogeneity in terms 

of hardware and software, and high security risks. 

• Mobile computing: Mobile computing is a challenging research area 

which needs to tackle problems such as resource limitation of mobile 

devices, low bandwidth and high dynamism. 

These challenges shape the development of PM-Grids more demanding than 

with other grids.  

 

Figure 1.1: PM-Grids Challenges  
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1.5 Main Contributions 

There are seven main contributions of this thesis which are summarised in the 

following sections.  

1.5.1 Architectural Designs and Models for PM-Grids 

As indicated in section 1.2, there are gaps between current grids and the visions 

of future grids. Neither traditional grid architectures nor vast extensions to them 

can satisfy the requirements of the NGG; the way forward is to design an 

architecture based on the properties of NGG and implement it [17].  

Therefore, this thesis has originated designs for PM-Grids based on the PNs 

architecture and as a natural extension to them, given that the NGG features 

have been explicitly addressed in their design. An abstract layered view, a 

detailed inside view and simulated models at different scales in terms of number 

of devices per cluster, are presented and evaluated in this thesis. 

1.5.2 Detailed Design and Implementation of HoPe  

The extremely dynamic nature, diversity and limited capabilities of resources, as 

well as difficulties in predicting the nature and timing of incoming jobs (non-

clairvoyant scheduling), are all factors which considerably influence the 

complexity of the scheduling problem in PM-Grids. Through observation, the 

honeybee colony solves an extraordinarily difficult scheduling problem while 

allocating bees to nectar sources in nature, through a simple decentralised 

cooperative and adaptive self-scheduling policy.  

This observation has inspired this thesis to follow a similar approach in 

scheduling PM-Grid resources. A detailed design, implementation and 

evaluation of HoPe are initiated in this thesis. To the best of our knowledge, 

HoPe is the first algorithm to shed light on the non-clairvoyant scheduling 

problem in grid computing. It is the first honeybee-inspired algorithm 

attempting to solve the resource scheduling problem relying totally on local and 

easily calculated parameters which is considered among the most important 

features of the honeybee colony [20].  
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1.5.3 Detailed Analysis of the NAP  

Honeybees present an intelligent collective scheduling behaviour while 

allocating themselves to nectar sources under extraordinarily difficult conditions 

during the NAP [20]. This has motivated some previous work to analyse and 

model the honeybee colony and its NAP. However, these are concrete 

mathematical and probabilistic models quantifying features of the honeybee 

behaviour based on certain sets of predefined assumptions. The problem with 

this approach is that the honeybee colony, as in the case of all biological 

systems, has unique characteristics that are apparently different from the 

mathematical assumptions that lie beneath the analytical models.  

Therefore, this thesis has initiated a queuing theory with a simulation based 

approach to NAP modelling from the resource scheduling perspective. A 

generic model for the NAP is developed as a queuing network which is 

simulated in several representative scenarios. Additionally, detailed algorithmic 

analysis and modelling based on honeybee techniques are presented. Some of 

these techniques have not been considered in previous work, namely, the 

tremble dance that controls the nectar influx to the hive and the dependence 

only on locally calculated parameters.  

1.5.4 Comprehensive Taxonomy of Grid Systems 

Despite rapid developments in grid computing, there has been, surprisingly, no 

research into reviewing or classifying newly emerged grid systems. A survey 

and a classification scheme for emerging grids are initiated, in this thesis, to 

bridge this gap. This classification is extended in the form of a comprehensive 

taxonomy for both emerging and traditional grids which is significant for the 

following reasons. First, it facilitates studying grid systems under one 

framework. Second, it allows one to see the main design features of grid 

systems clearly and assists a detailed comparison between them. Third, it helps 

in understanding current research trends in grid computing and anticipating 

future trends. Fourth it provides a common set of terminologies for grid systems 

in an attempt to establish a solid framework for the rapidly evolving area of grid 

computing. 



Introduction  

 

23

1.5.5 Unified Framework for Resource Schedulers  

In contrast to the scarcity of resources involved in proposing taxonomies for 

grid systems, a plethora of literature has proposed taxonomies for resource 

schedulers in distributed systems, in general, and grid computing, in particular. 

This abundance of taxonomies has resulted in scattered nomenclatures as well 

as vague and inconsistent terminologies in the literature, necessitating the 

development of a unified view of the previous work.  

Therefore this thesis presents a common framework for resource scheduling 

with a unified presentation of previously published taxonomies, indicating the 

different terminologies in use. The intention has been to provide a means to help 

in designing and analysing resource schedulers and also in comparing them. 

Such a framework is deemed necessary to amalgamate the area of resources 

scheduling under a common, uniform set of nomenclatures and terminologies. 

1.5.6 Controlled Empirical Evaluation Framework  

A controlled empirical evaluation framework to prove the concept of PM-Grids 

and to evaluate the performance of HoPe is developed in this thesis. A flexible 

simulator is built for this purpose, allowing the control of experimental 

parameters (job interarrival time and number of devices per cluster), 

randomising extraneous variables (processor capacity and job size) as well as 

measuring and analysing various performance metrics (stability, throughput and 

turnaround time). An optimum value, worst bound and a benchmark algorithm 

(the Opportunistic Scheduling Heuristic – OSH) are employed to assess HoPe 

performance.  

1.5.7 Performance Models of HoPe and OSH Behaviours 

Mathematical performance models are generated, using multiple regressions and 

quadric equations, to predict the performance of HoPe and OSH in regard to 

stability, net throughput, turnaround time and speedup.  In addition, a three 

dimensional (3D) graphical model is created for each predicted mathematical 

model. The statistical significance of models predicted is evaluated by the 

analysis of variance (ANOVA) test which determines which factors 

significantly affect the performance metric in the study. These models assist in 
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gaining clearer insight into the behaviour of each heuristic under various 

running conditions of job interarrival times and grid scales. 

1.6 Thesis Scope 

This thesis contemplates novel paradigms from different areas resulting in 

research of a multidisciplinary nature that involves cross-fertilisation of ideas 

from grid computing, mobile computing and networking among others. 

Therefore, it was necessary to outline a clear scope to successfully accomplish 

the objectives in the given time frame.  

First, the scope in terms of grid computing, it should be noted that although 

building computational grids involves several issues, this thesis has only 

considered the resource scheduling issue as resource schedulers are the heart of 

any grid system.  

Second, in terms of underlying networks, this thesis has considered PNs as the 

basic infrastructure for PM-Grids as they have the potential for realising the 

NGG vision. Investigating other networks and infrastructures is considered 

beyond the thesis scope.  

Third, in terms of mobile computing, while the word “mobile” is stressed 

throughout this thesis, the main concern is the highly dynamic nature of the 

mobile devices environment and their limited resources in terms of processor 

capacity in particular, rather than the usual issues raised with mobility such as 

code migration, battery life time and limited bandwidth. The thesis scope is 

summarised in Figure 1.2. Examples in each research domain given in the figure 

are not exhaustive. 

It is important to note that although some grid practitioners restrict the term 

“grid” to computational environments which span multiple administration 

domains [1], this thesis has utilised the term grid to refer to the proposed 

environment, PM-Grid, which does not necessarily span multiple administration 

domains. This aligns with the approach followed by some leading grid 

authorities such as Sun Microsystems [22].  
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Figure 1.2: Thesis Scope  
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reviews and compares related paradigms to grid computing. The chapter 

concludes with a brief summary and discussion.  

Chapter 3 introduces the PM-Grid concept by defining PM-Grids and outlining 

their potential application areas. It provides a brief background about PANs and 

PNs then reviews the architectural design of PNs on which the PM-Grid 

architectural design is based. An abstract layered architecture and a detailed 

inside view for PM-Grids are illustrated. The chapter concludes with a 

comparison of the PM-Grid with related work in distributed systems.  

Chapter 4 lays the background for HoPe by presenting the resource scheduling 

problem and its evolution over more than fifty years. It proposes a framework 

for resource scheduling systems with a unified taxonomy of previous work in 

the area. The resource scheduling problem in grid environments in particular 

and its challenges is highlighted with a brief review of three well established 

grid resource schedulers: Condor [23], Legion [24] and Nimrod-G [25] based on 

the proposed framework. The chapter concludes with a brief discussion and 

open research issues.  

Chapter 5 details the HoPe analysis and design phases. It starts by articulating 

the resource scheduling problem in PM-Grids and identifying scheduler 

requirements to tackle such a challenging problem. It states the broad HoPe 

hypothesis and discusses it. A detailed analysis of the behaviour of honeybees 

during the NAP, with algorithmic style and from the queuing theory 

perspective, is presented. The design and implementation elements of HoPe are 

identified with the honeybee to PM-Grids and the NAP to HoPe analogies, 

explained.  

Chapter 6 describes in detail the evaluation process, defining the objectives and 

the experimental design. HoPe and the OSH are analysed and contrasted using 

the resource scheduling framework, proposed in Chapter 4. PM-Grid simulated 

models are presented then experimental results are illustrated, analysed and 

discussed. HoPe and the OSH performance models are generated and discussed.  

Finally, Chapter 7 summarises the thesis aims, major contributions and 

significant findings. It highlights areas and directions for further research.   
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Figure 1.3: Thesis Structure 

 

Chapter 1 
Introduction

Chapter 2 
A Survey and Taxonomy of Grid 

Systems 
(Objective: 1) 

Chapter 4 
A Framework for Resource 

Scheduling 
(Objective: 3) 

Chapter 3 
PM-Grid: A personal Mobile Grid 

(Objective: 2.1) 

Chapter 5 
HoPe: A Honeybee Inspired Scheduler

(Objective: 4.1) 

Chapter 6 
Evaluation and Results 

(Objectives: 2.2, 4.2 and 5) 

Chapter 7 
Conclusion and Future Research

Background 

Design 



Introduction  

 

28

1.8 References 

[1] I. Foster and C. Kesselman, Eds., The Grid2: Blueprint for a Future 
Computing Infrastructure. San Francisco: Morgan Kaufmann, 2003. 

[2] J. Han and D. Park, “A lightweight personal grid using a supernode 
network,” in Proc. 3rd  Int. Conf. P2P2003, pp. 168-175.  

[3] K. Amin, G. V. Laszewski and A. R. Mikler, “Grid computing for the 
masses: An overview,” in Proc. GCC2003, pp. 164-173. 

[4] D. Millard, A. Woukeu, F. Tao,  and H. C. Davis, “The potential of grid 
for mobile e-learning (Poster),” presented at the 4th World Conference on 
Mobile Learning, Cape Town, South Africa, 2005. 

[5] IEEE 802.15 Working Group for WPAN [online]. Available: 
http://ieee802.org/15/, [accessed Feb. 2, 2010]. 

[6] R. C. Braley, Ian C. Gifford, and Robert F. Heile,  “Wireless personal 
area networks: an overview of the IEEE P802.15 working group,” 
SIGMOBILE Mobile Computing Commun. Rev., vol. 4, pp. 26-33, 2000. 

[7] My Personal Adaptive Global NET (MAGNET) (IST 507102) [online]. 
Available: http://www.ist-magnet.org, [accessed Feb. 2, 2010]. 

[8] IST.MAGNET Beyond (IST-FP6-IP-027369) [online]. Available: 
http://www.magnet.aau.dk, [accessed Feb. 2, 2010]. 

[9] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Eds., 
Handbook on Scheduling: From Theories to Applications. New York: 
Springer, 2007. 

[10] M. Mitzenmacher, “How useful is old information?” IEEE Trans. 
Parallel Distribut. Syst., vol. 11, pp. 6–20, 2000. 

[11] S. Irani and Y. Rabani, “On the value of coordination in distributed 
decision making,” SIAM J. Comput., vol. 25, no. 3, pp. 498- 519, 1996. 

[12] S. Georgiades, M. Mavronicolas and P. Spirakis, “Optimal, distributed 
decision-making: The case of no communication,” in Proc. Int. Symp. 
Fundamentals Comput. Theory, 1999, pp. 293–303. 

[13] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “Self-organizing 
scheduling on the organic grid,” Int.  J. of High Performance Comput. 
Applicat., vol. 20, pp. 115–130, 2006. 

[14] Expert Group, “Next generation grids: European grid research 2005-
2010,” Expert Group Rep., Jun. 2003 [online]. Available: 
ftp://ftp.cordis.lu/pub/ist/docs/ ngg_eg_final.pdf, [accessed Feb. 2, 2010]. 

[15] Expert Group, “Next generation grids2: Requirements and options for 
European grids research 2005-2010 and beyond,” Expert Group Rep., Jul. 
2004 [online]. Available: 
http://www.semanticgrid.org/docs/ngg2_eg_final.pdf, [accessed Feb. 2, 
2010]. 

[16] Expert Group Final, “Future for European grids: Grids and service 
oriented knowledge utility,” Expert Group Final Rep., Jan. 2006 [online]. 

javascript:aRL('Tao%2C F. B.')�
http://ieee802.org/15/�
javascript:aRL('Braley%2CRichard C.')�
javascript:aRL('Gifford%2CIan C.')�
javascript:aRL('Heile%2CRobert F.')�


Introduction  

 

29

Available: ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/ngg3_eg_final.pdf, 
[accessed Feb. 2, 2010]. 

[17] K.G. Jeffery, “Next generation grids for environmental science,” 
Environmental Modelling & Softw., vol. 22, no. 3, pp. 281–287, 2007.  

[18] Sajjad, H. Jameel, U. Kalim, S. Han, Y. Lee and S. Lee, “AutoMAGI - an 
autonomic middleware for enabling mobile access to grid infrastructure,” 
in Proc. 2005 ICAS-ICNS, pp. 73-79.  

[19] Jefferies, N., Global Vision for a Wireless World, Wireless World 
Research Forum, 18th WWRF meeting, Helsinki, Finland, Jun. 2007. 

[20] T. D. Seeley, The Wisdom of the Hive: The Social Physiology of Honey 
Bee Colonies. MA: Harvard University Press, 1995. 

[21] IBM [online]. Available: http://www.ibm.com/us/, [accessed Feb. 2, 
2010]. 

[22] Sun Microsystems [online]. Available: http://www.sun.com/, [accessed 
Feb. 2, 2010]. 

[23] Condor Project [online]. Available: http://www.cs.wisc.edu/condor, 
[accessed Feb. 2, 2010].  

[24] Legion: A Worldwide Virtual Computer [online]. Available: 
http://legion.virginia.edu/, [accessed Feb. 2, 2010]. 

[25] DSTC Nimrod/G [online]. Available: 
http://www.csse.monash.edu/~sgaric/nimrod/, [accessed Feb. 2, 2010]. 



A Survey and Taxonomy of Grid Systems 30 

Chapter 2 
A Survey and Taxonomy of Grid Systems 

2.1 Introduction 

During the last few years, information technology has witnessed a rapid advance 

in every aspect, including speed and performance. This substantial advancement 

has affected not only the application areas in which grid technologies can be 

applied, but also the underlying architecture of how grids are developed, 

deployed and run. As a result new grid systems have emerged creating a 

significant evolution in grid systems.  

Such advances in information technologies have also evolved new distributed 

system paradigms, such as utility computing, everything as a service and cloud 

computing with similar visions to grid computing. This has raised the question 

of whether these advances really propose new solutions replacing grid systems, 

or are merely new commercial names for grid computing. 

This chapter includes two main contributions. The first is a survey and a 

classification scheme of existing state-of-the-art emerging grid systems. Such a 

survey and classification has not been reported in the literature before, and its 

importance is to highlight the salient design features of emerging grid systems 

and to assist in detailed comparisons between them. It helps in understanding 

current research in grid computing and in anticipating future trends. 

The second contribution of this chapter is a comprehensive taxonomy of both 

traditional and emerging grids. Some earlier works have included simple 

classifications of traditional grid systems, and the taxonomy presented here 

agrees with the nature of such classifications. However a large number of 

additional fundamental distinguishing features are included that have not been 

presented in any previous work, to the best of our knowledge. Such a 

comprehensive taxonomy is important to differentiate between grids and 

facilitate the study of them under one framework. The aim is to provide a 
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common terminology and classification mechanism for grid systems in an 

attempt to contain the area under one scheme.  

In section 2.2 grid computing is defined while its evolution over the last few 

years is described in section 2.3. Section 2.4 presents a classification of 

emerging grids which is extended to a comprehensive taxonomy to cover 

traditional grids in section 2.5. Section 2.6 presents an overview of emerging 

paradigms related to grid computing, and compares them. Section 2.7 

summarises and concludes the chapter. 

2.2 Grid Computing  

Basically, Grid computing [1] is a relatively new distributed system paradigm 

where computational resources are coupled together to form a large-scale 

distributed system where all resources are available for sharing. This has the 

great advantage of providing a resource-rich infrastructure capable of solving 

data intensive and complex computational problems such as protein folding and 

weather forecasting in an acceptable time and at a reasonable cost.  

Indeed, there are as many definitions to the grid as the growing number of 

organisations utilising it. A common theme underlying these definitions is the 

coordinated resource sharing and problem solving in a Virtual Organisation 

(VO). A VO is a dynamic set of participants defined around a set of resource 

sharing rules and conditions as shown in Figure 2.1.  

Some grid definitions add additional criteria requiring the grid resources to be 

distributed across multiple administrative domains [2, 3] or to be geographically 

distributed [4]. These additional criteria exclude from the grid definition, 

clusters where shared resources are usually in the same locality and 

administrative domain. However, some leading grid authorities, such as Sun 

Microsystems [5], do consider clusters as grid environments, using the term 

‘Cluster Grids’ to refer to them [6]. 
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Figure 2.1: Grid Environment 

2.3 Grid Generations 

Grid computing is a rapidly evolving area of research characterised by a number 

of distinct phases or generations, as shown in Figure 2.2. The grid started in the 

early nineties, as a model of meta-computing where resources in 

supercomputers were shared; subsequently the ability to share data was added. 

These are usually referred to as first generation grids. By the late nineties 

(1998), the framework was published for second generation grids, which are 

characterised by their focus on the use of grid middleware systems to glue 

different grid technologies [7]. In the early millennium (2001) fast data transfer 

and storage request brokers for persistent data storage with metadata description 

were added to grid platforms introducing what are usually known as the 2.5 grid 

generation. Late in 2002, third generation grids originated by combining the 

Web technology with the second generation grids [8].  

Recently, the Next Generation Grids (NGG) [9-11] vision has been defined by a 

group of independent experts from the European Commission to identify 

potential European grid research priorities for 2010 and beyond. The NGG 

VO  

Participant A 

Participant B 

Participant C 

 Grid 
Interconnecting 

structure 
 Resource  
sharing 

rules 
 and 

conditions 



A Survey and Taxonomy of Grid Systems  

 

33

vision stresses the necessity for grids to support and extend the Ambient 

Intelligence (AmI) vision, where humans are surrounded by computing 

technologies unobtrusively embedded in their surroundings.  

 

Figure 2.2: Grid Generations 
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• Manageability: The ability of a system to automatically manage, adapt, 

monitor, diagnose and fix itself. A manageable system has embedded 

intelligent control into its infrastructure to automate its management 

procedure.  

In this thesis, these four features are considered as the main drivers for emerging 

grids. For simplicity, the term “traditional grids” is utilised to refer to the grid 

systems that lack the above four features, while the term “emerging grids” refers 

to recent grid projects that explicitly address at least one of these features.  

2.5 Classification of Emerging Grids  

There is a fundamental gap between current grid implementations and the 

prospective NGG vision [8]. However, new grid systems are rapidly emerging 

with the potential to plug this gap. Surprisingly, no review or classification of 

emerging grids is available, to the best of our knowledge. Therefore this section 

sets out to bridge this gap by providing a skeletal classification and a brief 

survey of emerging grids; more details about each grid category being available 

in section 2.6. The aim is to give a broad view of the amount and type of work 

which has been done with respect to each feature specifically, and towards the 

NGG vision in general, which may drive further research in this area. The 

classification places emerging grids in groups according to a set of salient 

features. This allows a convenient means of quickly describing the central 

aspects of a particular approach, as well as a basis for comparisons between 

the groups. 

After reviewing grid projects and literatures, emerging grids are identified and 

placed into four main groups, based on the NGG features: Accessible Grids, 

User-Centric Grids, Interactive Grids and Manageable Grids, as shown in 

Table 2.1. Each group is divided further into sub-groups based on the most 

apparent feature that distinguishes it from traditional grids. The table also gives 

example projects of each emerging grid. However, since the main concern of 

this section is to survey and classify emerging grids rather than 

comprehensively reviewing all available projects, the example projects are not 

exhaustive, but comprehensive enough to cover all the features of the emerging 
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grid which they represent. The scope of each grid is narrowed to concentrate on 

one feature per category. This is the reason why names such as Ubiquitous or 

Pervasive Grids, are not used; since these names involve the supporting of 

combinations of features such as accessibility, interactivity and user-centricity.  

However, it should be noted that this classification is not disjoint. This means 

that a grid system can be classified under more than one of the classification 

features, for instance a grid G might be mobile, personal, autonomic and 

interactive at the same time. 

Table 2.1: Classification of Emerging Grids 
Classification 

features 
Categories Sub-

categories 
Main difference from 

traditional grids 
Example 
projects 

Ad-hoc Grids Have no predefined entry 
points 

OurGrid [12]and 
myGrid [13] 

Wireless Grids Support wireless 
connections between grid 
nodes and interfaces 

Innovaticus [14] and 
FWGrid [15] 

Accessibility Accessible Grids

Mobile Grids Support mobility of clients, 
services or both  

Akogrimo [16] 

Direct Interactive 
Grids 

Support direct real time 
interaction with end users  

CrossGrid [17]and 
edutain@grid [18] 

Interactivity Interactive Grids

Context-Aware 
Grids 

Interact with the 
surroundings to build the 
context and adapt their 
behaviours 

CONTEXT [19] 

Customisable 
Grids 

Implement highly 
personalisable grid portals 

MyGrid [13]and 
Akogrimo [16] 

User-centricity User-Centric 
Grids 

Personal Grids Owned or utilised by 
individuals 

Personal Grid [20] 
and PG [21] 

Autonomic 
Grids 

Utilise ideas from human 
body’s autonomic nervous 
system to support self-
management 

IBM OptimalGrid 
[22] and AutoMAGI 
[23] 
 

Knowledge 
Grids 

Utilise knowledge 
technologies to support 
self- management 

OntoGrid [24]and 
InteliGrid [25] 

Manageability Manageable 
Grids 

Organic Grids Utilise ideas from 
biological systems such 
as ant or bee colonies to 
support self- management 

Organic Grid [26] 

2.6 Taxonomy of Grid Systems  

In this section a comprehensive taxonomy of both traditional and emerging 

grids is proposed based on six nomenclatures. Earlier works [27, 28] have 

included classifications of traditional grid systems, based on the type of 

provided solution and the scope of the VO. The taxonomy presented here is 

consistent with the nature of such classifications and adds four additional 

fundamental disguising features to better differentiate between grid systems. 
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The aim is to provide a common terminology and classification mechanism for 

grid systems in an attempt to connect the area under one scheme. 

Figure 2.3 presents the proposed comprehensive taxonomy which categorises 

grid systems based on six nomenclatures: solution type, VO scope, accessibility, 

user-centricity, interactivity and manageability. The following sections 

overview each category.  

It important to note that a grid system is to be classified based on the six 

nomenclatures. For instance, a grid G1 can be classified as: enterprise, data, 

closed, batch, organisational and centralised, while a grid G2 is: personal, 

computational, wireless, context-aware, user-centric and organic. It is important 

to consider that some sub-categories can be classified under more than one 

nomenclature. For instance, Personal Grids can be classified according to the 

size of the VO and also based on user-centricity. To avoid duplication, each 

sub-category is classified only under one nomenclature in the taxonomy, but a 

note is made as necessary regarding where else the sub-category can be 

classified.  

2.6.1 Grids Classified by Solution Type 

Grid systems are constructed for different objectives and provide different types 

of solutions. Based on the type of the provided solution, grid systems are 

classified as Computational Grids, Data Grids, Service Grids and Access Grids 

as shown in Figure 2. 3. 

2.6.1.1 Computational Grids 

Computational Grids are constructed out of highly aggregated computational 

resources to jointly solve computationally intensive problems that require a 

great number of CPU cycles. The main solutions offered by these types of grids 

are the CPU cycles. Computational Grids are further classified based on the 

main type of hardware resources deployed as:  

• Desktop Grids, where desktop computers constitute a considerable 

volume of grid resources. 
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• Server Grids where resources are usually limited to those available 

within servers. 

• Equipment Grid, or Instrument Grid, includes a key piece of equipment 

such as a telescope. The surrounding grid, a group of electronic devices 

connected to the equipment, is used to control the equipment remotely 

and to analyse the data produced. For instance, in the World-Wide 

Telescope [1], data from hundreds of individual telescopes all over the 

world is analysed and categorised using grid technologies to find new 

phenomena. 

2.6.1.2 Data Grids 

Data Grids are grid systems in which the main solution offered is storage 

devices. They are used to provide an infrastructure for accessing, storing and 

synchronising data from huge distributed data repositories, such as digital 

libraries or data warehouses, and distributed data-intensive applications such as 

data mining. Although Data Grids share similarities with other distributed data-

intensive paradigms, such as content delivery networks, P2P networks and 

distributed databases, they are differentiated by heavy computational 

requirements, wider heterogeneity, autonomy and the concept of VOs. In [29] a 

detailed taxonomy of data grids is presented which classifies Data Grids based 

on grid organisation, transport technologies used, grid environments and 

resource allocation and scheduling schemes.  

2.6.1.3 Service Grids 

Service Grids, also known as Utility Grids, provide commercial computer 

services such as CPU cycles and disk storage, which can be purchased on 

demand. They focus on users’ satisfaction by combining and delivering services 

based on their needs and requirements. Grid users send their service 

requirements together with preference parameters such as Quality of Service 

(QoS) requirements and cost, to a Grid Service Provider (GSP) or broker who 

dynamically allocate them appropriate grid middleware services. 

2.6.1.4 Access Grids 

Access Grids consist of distributed input and output devices, such as speakers, 
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microphones, video cameras, printers and projectors connected to a grid. Hence 

these devices provide multiple access points to the grid where clients can issue 

requests and receive results in large-scale distributed meetings and training 

sessions. Access grids aim at group-to-group collaboration in high-end 

workspaces by providing virtual rooms maintaining project-related applications 

which are available to all project members [1].  

Recent trends foreshadow the incorporation of wireless and mobile devices into 

grid systems. In this case wireless and mobile devices can serve as entry points 

to the grid where grid users can gain access to grid resources. Theses grids are 

known as Wireless Access Grid or a Mobile Access Grid. More details about 

Wireless Access Grids and Mobile Access Grids are presented in section 

2.6.3.2.2 and Section 2.6.3.2.3 respectively. 

2.6.2 Grids Classified by Virtual Organisation Scope 

Figure 2.3 shows that, according to the size or scope of the underlying VO, 

grids are classified into Global Grids, National Grids, Enterprise Grids, Cluster 

Grids (Campus Grids and Departmental Grids) and Personal Grids. 

2.6.2.1 Global Grids 

Global Grids are established over the Internet to provide individuals or 

organisations with grid power anywhere in the world. This type of grid is 

usually referred to as Internet Computing as well. Global Grids consist of a 

collection of smaller grids and other geographically distributed resources with 

agreed upon global usage policies and protocols to enable resource sharing. 

Global Grids can be further classified into: 

•  Volunteer Grids which offer an efficient solution for distributed 

computing. They allow Internet users to contribute their unused 

computer resources, to collectively accomplish non-profit, complex 

scientific computer-based tasks. Consumption of resources is strictly 

limited to the controlling organisation or application.  

• Non-Volunteer Grids which contain dedicated machines only and clear 

pre-defined pricing and usage schemes.  
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2.6.2.2 National Grids 

National Grids are restricted to the computer resources available within one 

country’s borders. They are only available to organisations of national 

importance and are usually funded by governments. Many countries are 

establishing National Grid projects to provide a common Infrastructure for e-

science. Europe has established itself as the world leader in the field by 

investing heavily in grid computing programmes at both the national and the 

European levels [30]. 

2.6.2.3 Enterprise Grids  

An Enterprise Grid is concerned with using idle desktop resources within an 

enterprise [31]. It is managed by a single organisation, i.e. the enterprise, and 

available only to its users [32]. However, Enterprise Grids can also be deployed 

within large corporations that have a global presence [33].  

2.6.2.4 Intra-Grids  

The term Intra-Grid (Cluster Grid) is used to refer to two types of grids: 

Campus Grids and Departmental Grids. In Campus Grids resources are 

restricted to those available within a single organisation. They are only 

accessible by members of the host organisation. Departmental Grids are even 

more restricted than Campus Grids. They are only available for people within a 

department boundary.  

Campus and Departmental Grids sometimes are not considered as true grid 

environments as they do not span multiple administrative domains and are not 

geographically distributed. There are more relevant to cluster, than to grid 

computing. Nevertheless, as indicated earlier, some leading grid authorities such 

as Sun Microsystems [5] do consider Cluster Grids as true grid environments. 

2.6.2.5 Personal Grids 

Traditional grids are designed specifically for people involved in research and 

large industry domains. Hence, it is difficult for personal users, individuals 

outside these domains, to utilise or construct a grid system for their own needs 

[20]. Therefore, Personal Grids are emerging to bridge this gap. 
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Personal Grids are grid systems with the most limited scope of the VO. They are 

owned, constructed, and managed by owners and other people whom they trust. 

Research into Personal Grids is still at a very early stage. A framework for a 

Personal Grid that consists of a set of networked personal desktop computers is 

proposed in [20]. In [21, 34, 35] a Personal Grid (PG) is proposed to allow 

integrating desktop computers into a virtual server in the Internet. This work is 

still running; with no implementation details or evaluation available until now. 

As indicated earlier, Personal Grids can also be classified under User-Centric 

Grids.  

2.6.3 Grids Classified by Accessibility  

As shown in Figure 2.3, when accessibility is considered, grids can be classified 

into two main groups: Closed Grids and Accessible Grids. 

2.6.3.1 Closed Grids 

Closed Grids are traditional grid environments in which grid nodes are usually 

stationary with predefined wired infrastructure. Access to grids is allowed only 

through static predefined entry points. 

2.6.3.2 Accessible Grids 

The highly structured networks of supercomputers and high performance 

workstations that dominate traditional grids do not provide ubiquitous 

accessibility. Hence Wireless Grids, Mobile Grids and Ad hoc Grids have 

emerged. “Accessible Grids” is an umbrella term employed to refer to these 

types, as shown in Table 2.1. An Accessible Grid is a grid that might consist of 

a group of mobile or fixed devices with wired or wireless connectivity and 

predefined or ad hoc infrastructures.  

The main characteristic of an Accessible Grid is its highly dynamic nature 

which results from the frequently changing structure of underlying networks and 

VOs due to nodes switching on and off, nodes entering and leaving, nodes’ 

mobility etc. This is why traditional service discovery, management and security 

mechanisms may not be optimal for Accessible Grids.  

Accessible Grids can be accessed from more geographical locations and social 
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settings than traditional grids. This opens the door for new applications in 

emergency communication, disaster and battlefield management, e-learning and 

e-healthcare among others. 

One of the most critical issues in understanding Accessible Grids is having an 

accurate definition, or at least determination, of each type. However, researchers 

offer no consistent definition of any of the three terms. Wireless Grids 

emphasise the wireless connectivity, Ad hoc Grids stress the ad hoc nature of 

VOs, while Mobile Grids focus on the mobility related issues such as job 

migration and data replication. 

2.6.3.2.1 Ad hoc Grids 

Although the ad hoc and sporadic nature of grids was observed within the first 

documented Globus [36] Grid application, traditional grids fail to support 

certain aspects of ad hoc environments [37], such as constantly changing 

membership with a lack of structured communications infrastructure. As a 

result, Ad hoc Grids have emerged.  

An Ad hoc Grid is a spontaneous formation of cooperating heterogeneous 

computing nodes into a logical community without a pre-configured fixed 

infrastructure and with minimal administrative requirements [38], as shown in 

Figure 2.4. Thus, the traditional static grid infrastructure is extended to 

encompass dynamic additions with no requirements of formal, well-defined or 

agreed grid entry points. Instead, nodes can join as long as they can discover 

other members [37].  

Some researchers strictly define the Ad hoc Grid as a grid environment without 

a fixed infrastructure: all its components are mobile [39, 40], as shown in Figure 

2.5. This grid is referred to as the Mobile Ad hoc Grid. Details on Mobile Grids 

are presented in section 2.6.3.2.3. However, Ad hoc Grids focus more on the 

ad hoc nature of the grid rather than the mobility of its nodes. 

The main challenge of an Ad hoc Grid is its dynamic topology, due to the 

rebooting of workstations, and the movement or replacement of computational 
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nodes. More technical details concerning Ad hoc Grid challenges and 

implementations are available in [37-40].  

Varying architectures have been proposed for Ad hoc Grids, for instance, [39] 

introduces a virtual backbone architecture that is dynamically constructed using 

nodes with high resource capacity. Other sources [37, 38] suggest Peer-to-Peer 

(P2P) architectures where computing resources are available on demand equally 

to every peer. Existing Ad hoc Grid projects include OurGrid [12] and 

myGrid [13]. 

 

Figure 2.4: Ad hoc Grid 

 

Figure 2.5: Mobile Ad hoc Grid 

2.6.3.2.2 Wireless Grids 

The Wireless Grid extends grid resources to wireless devices of varying sizes 

and capabilities such as sensors, mobile phones, laptops, special instruments and 

edge devices. They might be statically located, mobile or nomadic, shifting 

across institutional boundaries and connected to the grid via devices in close 

proximity [41].  
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In Wireless Grids, wireless devices can act as real grid nodes where part of data 

processing and storage is taking place, as shown in Figure 2.6. A special type of 

Wireless Grid is illustrated in Figure 2.7, in which all wireless devices are 

considered as pure access devices without processing or storage capabilities 

[42]; required resources are obtained from a wired resource-rich backbone grid.  

 

Figure 2.6: Wireless Grid 

 

Figure 2.7: Wireless Access Grid 

Many technical concerns arise when integrating wireless devices into a grid. 

These include high security risks, low bandwidth, power consumption and high 

latency. Therefore, several communities are exploring these new issues to 

ensure that future grid peers can be wireless devices [43]. Innovaticus [14] and 

FWGrid [15] are among the existing Wireless Grid projects. 

2.6.3.2.3 Mobile Grids 

Mobile Grids allow grid services to be accessible through mobile devices such 

as Personal Digital Assistants (PDAs) and smart phones, which are usually 

considered to be at best marginally relevant to grid computing. This is due to the 
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fact that these devices are typically resource limited in terms of processing 

power, persistent storage, runtime heap, battery lifetime, screen size, 

connectivity and bandwidth. Thus, many researchers argue that mobile devices 

do not fit well into grid computing. In contrast, recent studies suggest a very 

different picture [44-53]. The millions of mobile devices sold annually should 

not be ignored and the raw processing power of some mobile devices is not 

insignificant given their mobility [44]. Furthermore, in emergency situations, 

such as natural disasters and battlefields, wireless mobile devices might be the 

only available communication and computation services. The most important 

argument is that, it is difficult to materialise the AmI vision without utilising 

such devices. 

As in the case of wireless devices, there are already two approaches to integrate 

mobile devices into grid systems. In the first approach, the mobile nodes 

participate actively in the grid by providing computational or data services [45], 

as shown in Figure 2.8. This approach is what is usually referenced as “Mobile 

Grids”. In the second approach, mobile devices serve as an interface to a 

stationary grid for sending requests and receiving results, as shown in 

Figure 2.9. Sometimes this approach is labelled “mobile access to grid 

infrastructure” [46] or simply Mobile Access Grids. 

 

Figure 2.8: Mobile Grid 

Recently, numerous efforts have been made towards establishing Mobile Grids. 

In [44-47] details concerning Mobile Grid requirements and challenges are 

presented. Various techniques have been proposed to implement the Mobile 

Grid vision from centralised [45] to P2P structure [48], from intelligent mobile 

agents [49] to mobile grid middleware [50] and many more. Some IST projects 
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such as ISAM [51] and MADAM [52] have investigated issues related to 

mobility. However, the Akogrimo project [16] targeted Mobile Grids explicitly.  

 

Figure 2.9: Mobile Access Grid 

2.6.4 Grids Classified by Interactivity  

Based on the mode of interaction, grids are classified into Batch Grids and 

Interactive Grids as shown in Figure 2.3. 

2.6.4.1 Batch Grids 

Batch Grids are traditional grid systems that do not support real time interactive 

sessions such as video gaming. Usually, they are implemented using Message 

Passing Interface (MPI) which consists of a set of libraries for parallel 

computing. Batch Grids employ queues in which the incoming parallel 

applications are stored before allocation by a batch scheduler to a set of 

processors for execution. Hence, the overall response time of an application is 

the sum of its queue waiting time and execution time.  

2.6.4.2 Interactive Grids 

Some potential application areas for NGG such as real-time embedded control 

systems and video gaming, require rapid response times and on-line interactivity 

which the classic request/response communication paradigm, in traditional grid 

systems, cannot accommodate [53]. Therefore Interactive Grids are emerging to 

extend the domain of grid application from traditional batch jobs to interactive 

sessions. Interactivity in grid environments can involve direct interaction 

between the grid and its end users; in this case the grid is labelled as a Direct 

Interactive Grid. However, this is only one form of possible interaction in grid 

 

 

Mobile Access Grid 

Interconnecting 
structure 



A Survey and Taxonomy of Grid Systems 47 

 

environments. Another possible interaction is between a grid and its 

surroundings, referred to as Context-Aware Grids. 

2.6.4.2.1 Direct Interactive Grids 

In Direct Interactive Grids, end users interact with the grid through frequently 

submitting explicit requests to control or modify their running jobs, such as in 

CAD and video-gaming applications. This user interaction with the grid system 

can be implemented at two different levels: the Web portal level and grid 

middleware level. In the former, a Web-based grid portal is used to submit 

interactive jobs to a secure shell process, rather than directly to the grid 

middleware. ScGrid portal [54] falls into this category. In the latter, grid 

middleware is extended to support interactivity. Examples of this category 

include: CrossGrid [17], and edutain@grid [18]. 

2.6.4.2.2 Context-Aware Grids 

In Context-Aware Grids, the interaction is between the grid and its environment. 

In such a grid, sensors are employed to interactively build the context through 

continuously gathering information from the surroundings. Controllers are 

utilised to analyse the information sent by sensors and instruct actuators to adapt 

grid behaviours accordingly. Many recent IST projects in networking, 

embedded and pervasive systems, such as SENSE [55] and MORE [56], have 

emphasised context awareness in their research agendas. However, CONTEXT 

[19] has a specific focus on grid environments. 

2.6.5 Grids Classified by User-Centricity 

As shown in Figure 2.3, in terms of user-centricity, grid systems are classified 

into User-Centric Grids and Organisational Grids. 

2.6.5.1 Organisational Grids 

Organisational Grids represent most traditional grid systems which are designed 

with professional expert users from research and enterprise domains in mind. 

They have highly sophisticated Web portals which hinders utilising them by 

inexperienced users. 
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2.6.5.2 User-Centric Grids 

User-Centric Grids provide user-friendly grid environments for people in 

different domains. In grid computing, user-centricity could begin with the 

display of the end user’s name on a Web portal, and might end with the 

personalisation of all information, resources and networks underpinning grids. 

Two categories of User-Centric Grids can be identified: Customisable Grids and 

Personal grids. Personal Grids have already been presented in section 2.6.2.5.  

Customisable Grids are designed with highly personalisable Web portals to 

provide user-friendly access points to grid resources for people in different 

domains. However, research to support Customisable Grids is in its infancy. In 

the myGrid project [13], scientists are allowed to establish multiple views which 

provide access to a user-defined subset of the registered services. These views 

can be specific to individual scientists or to further, more specialised, discovery 

services. In the Akogrimo project [16], profiles and special needs for all learners 

are kept and automatically loaded whenever they sign on, providing a 

customised user-friendly environment for each learner.  

2.6.6 Grids Classified by Manageability 

A grid is highly complex and dynamic in nature, making its management 

extremely challenging. A variety of technologies are available to support grid 

manageability at both hardware and software levels. At the software level, 

manageability can be achieved with a wide range of techniques from traditional 

log files, to recent technologies such as Java Management Extensions (JMX) 

[57] and knowledge technologies [58]. At the hardware level, this can be 

achieved with technologies from simple embedded sensors [59] to stand-alone 

intelligent robots. Additionally, manageability might be supported by changing 

the underlying grid architecture, for example, from centralised client/server to 

P2P [60] structures.  

Grid management is concerned mainly with service and resource management. 

Therefore grid resource management systems are considered as the heart of any 

grid environment. In [27] a comprehensive taxonomy which classifies resource 

management systems based on ten criteria is presented. In this chapter we are 
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concerned with classifying grid systems in general. We based our classification 

in regard to manageability on the management scheme of the scheduler which is 

the core of resource management systems.  

Figure 2.3 shows that, according to the scheduler management strategy, grids 

are classified into: Centralised Grids, P2P Grids, Manageable Grids and 

Hybrid Grids. 

2.6.6.1 Centralised Grids 

Typically, Grids are centralised systems with one entity making decisions for 

the whole system. Traditional approaches to grid management require 

centralised servers, extensive knowledge of the underlying systems and a large 

group of experienced staff. Although this scheme has the advantages of simple 

deployment and ease of control, it suffers severely from lack of scalability and 

fault tolerance. 

2.6.6.2 P2P Grids 

In contrast to Centralised Grids, P2P Grids remove any form of centralised 

authority. All grid nodes are under distinct or even unrelated control; they can 

decide to join or leave at any time. Therefore, P2P Grids are highly dynamic in 

nature requiring special algorithms and strategies. Within P2P Grids, each peer 

acts as an autonomous entity but depends on other peers for resources, 

information, and forwarding requests. The main goal of a P2P Grid is to ensure 

scalability and reliability. Many P2P Grids are concerned with content and file-

sharing focusing on creating efficient strategies to locate particular files, 

providing reliable transfers of such files and managing high load caused by 

demand for highly popular files [29]. 

2.6.6.3 Manageable Grids 

In this context, a Manageable Grid is defined as a sophisticated grid that 

automatically manages, adapts, monitors, diagnoses and fixes itself. Manageable 

Grids offer a simplified installation and greatly reduce configuration and 

administration which in turn reduce management costs and dramatically 

enhance scalability. Existing research in this area is classified into Autonomic 
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Grids, Knowledge Grids and Organic Grids, as shown in Figure 2.3 and 

Table 2.1.  

2.6.6.3.1 Autonomic Grids 

Autonomic computing [61], initiated by IBM in 2001, is named after the human 

body’s autonomic nervous system. An autonomic computing system controls 

the functioning of computer systems without users’ intervention; likewise the 

autonomic nervous system regulates body systems without any external help. 

The main goal of autonomic computing is to reduce the complexity of the 

management of large computing systems, such as the grid [62]. 

An Autonomic Grid is a grid that is able to configure, re-configure, protect and 

heal itself under varying and unpredictable conditions. It can optimise its work 

to maximise resource utilisation. Applications, challenges and various methods 

that have been proposed to work towards Autonomic Grids are presented in 

[23]. Examples of Autonomic Grid projects include The IBM OptimalGrid [22] 

and AutoMAGI [23]. 

2.6.6.3.2 Knowledge Grids 

A Knowledge Grid is an extension to the current grid in which data, resources 

and services are given well-defined meanings that are understandable at both 

machine and human levels using semantic metadata and ontology. The aim is to 

move the grid from an infrastructure for computation and data management to a 

pervasive, knowledge management infrastructure. Examples of Knowledge Grid 

projects include OntoGrid [24] InteliGrid [25] and K-Wf Grid [63]. Several 

communities are working to realise knowledge Grids including the Semantic 

Grid Group [64] from the OGF [65]. Reviews of the current status and future 

vision of knowledge Grids, including applications, challenges and critical 

issues, are detailed in [66, 67]. 

2.6.6.3.3 Organic Grids 

Traditionally, ‘organic’ means forming an integral element of a whole; having 

systematic coordination of parts; having the characteristics of an organism and 

developing in the manner of a living plant or animal [68]. In grid computing, the 
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Organic Grid comes to refer to a new design for Grid systems that relies on a 

decentralised P2P approach, distributed scheduling scheme and mobile agents. 

The basic idea is taken from the manner in which complex patterns can emerge 

from the interplay of many agents. A framework for a Desktop Grid based on an 

ant colony is presented and evaluated in [26].  

2.6.6.4 Hybrid Grids 

Hybrid Grids use different combinations of management schemes. For instance, 

a grid environment may implement a distributed P2P management scheme at the 

cluster level while the management structure at the higher grid level is 

centralised.  

2.7 Other Related Paradigms 

Originally, the term grid computing started as a metaphor for making computer 

power as easy to access as an electric grid [1]. This has the advantage of a low, 

or no initial, cost to acquire hardware; instead, computational resources are 

essentially rented on demand. Indeed, this idea of offering computing resources, 

such as computation power and storage spaces, as a metered service similar to 

public utilities such as electricity, water and telephone network, is not unique to 

grid computing. Rather, it is the driving vision of other distributed system 

paradigms, namely: utility (on-demand) computing, cloud computing and 

everything as a service (EaaS/XaaS/aaS). These terms are often confused with 

grid computing or used as synonyms for it.  

2.7.1 Utility Computing 

The main difference between grid computing and utility computing (On-

Demand) resides in the definition of the two terms [69]. Grid computing is a 

distributed system infrastructure (hardware and software) for enabling remote 

resource sharing and utilisation to provide massive computing capabilities as a 

set of services. Utility computing is a service provisioning model where 

computing resources are offered as utility services in terms of availability, ease 

of access, on demand usage, and billing schemes. In this sense, grid computing 

can serve as the enabling technologies and environments for utility computing. 
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In turn, the utility model increases the efficiency of grid resource utilisation by 

acquiring them only when a demand arises. Utility Grids (also known as Service 

Grids), as presented in section 2.6.3.1, is an example of this strong relationship 

between grid and utility computing.  

Several advantages are offered by the utility computing service provisioning 

model for both service consumers and providers. Service providers do not set up 

or configure hardware and software components for a single application or user; 

instead virtual resources are dynamically allocated and reallocated to a large 

user community based on their needs. This increases the resources utilisation 

and decreases the operational cost. From a user’s perspective, utility computing 

excuses them from heavily investing in building, operating and maintaining a 

computing infrastructure. Additionally, users do not need to concern themselves 

with resource management and utilisation [70].  

2.7.2 Everything as a Service 

Nowadays, Service–Oriented Architecture (SOA) has become the main 

architectural model of many IT initiatives including grid, cloud and everything 

as a service (EaaS/XaaS/aaS) computing. The SOA does not specify 

implementation technologies or platforms, although it is usually coupled with 

Web services, but rather it is an architectural approach for constructing software 

systems from a set of smaller building blocks called services. The goal is to 

have software systems which are implementation agnostic with loose coupling 

and interoperability among different software components [71].  

Application Service Providers (ASP) have adopted the basic idea of service 

orientation, by hosting loosely coupled software components, i.e. services, 

which can be accessed on-demand, and coined the term Software as a Service 

(SaaS) to refer to it. Primarily, SaaS is employed to obtain rights to use software 

on demand which alleviates the customer’s liability for licensing all devices 

with all applications. SaaS has been also applied successfully in other 

application areas such as e-mail, customer relationship management (CRM), 

and web content management. SaaS is the oldest model of the XaaS. Other 
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XaaS models include Communication, Infrastructure and Platform as a service 

among others. 

Communication as a Service (CaaS) is a generic term for several different but 

related services. Under the broad CaaS umbrella, comes Voice over IP (VoIP 

also sometimes referred to as Voice as a Service (VaaS)), remote automated call 

distribution (ACD) and hosted Private Branch Exchange (PBX), among others.  

Infrastructure as a Service (IaaS), initially known as Hardware as a service 

(HaaS), is a new idea in XaaS. It aims to replace critical data centre resources 

such as physical servers and storage spaces with scalable and highly-available 

resources in the Internet. These resources are allocated dynamically based on 

users’ demand [72]. The most known example of IaaS is Amazon’s EC2 

(Elastic Compute Cloud) [73] and GoGrid Cloud Hosting Services [74].  

Platform as a Service (PaaS), also known as cloudware, is the newest kind of 

services within the XaaS collection. Its main aim is to allow building and 

delivering entire web applications and services through the Internet without 

downloading or installing any developer’s platform. Known PaaS examples 

include Google’s AppEngine [75] and Salesforce’s force.com [76].  

The common thread amongst all these XaaS services is the outsourcing and on-

demand nature of their offerings. XaaS is a service deployment and provisioning 

model that can be viewed as a class of, or a more recent term for, utility 

computing. Grid computing technologies and platforms can be utilised to 

implement and provide XaaS services and platforms. XaaS services constitute 

the majority of cloud computing elements. In turn, cloud computing can 

manage/provide XaaS services. 

2.7.3 Cloud Computing 

The term cloud computing originates from the fluffy cartoonish cloud that 

usually appears at the middle of network diagrams. Recently, the cloud 

computing term has been adopted to refer to Internet style computing. Cloud 

computing is a general concept that incorporates the SOA, XaaS, outsourcing, 
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and other recent known technology models where the common theme is the 

reliance on the Internet for satisfying the computing demands of the users [77].  

There is still no clear or agreed definition of cloud computing, despite the fact 

that it has attracted vast attention. In [78] cloud computing is defined as “a 

paradigm in which information is permanently stored in servers on the Internet 

and cached temporarily on clients that include desktops, entertainment centres, 

table computers, notebooks, wall computers, handhelds, sensors, monitors, etc.”  

This ambiguity and indetermination of the cloud computing definition and 

edges, increases the confusion between cloud, grid, utility and XaaS Computing. 

However, while utility and XaaS computing are more about service 

provisioning models, cloud computing, in accord with the grid, is about 

platforms and technologies for offering computing resources. Both, grid 

computing and cloud computing, need to tackle the same problems such as 

managing a large pool of computing facilities and defining methods for service 

provisioning and discovery. Both utilise the same techniques such as resource 

virtualisation. Actually, grid computing is often associated with the delivery of 

cloud computing systems and cloud computing can provide physical and virtual 

servers on which the grid application can run. Indeed, many of today’s cloud 

computing deployments are powered by grids, composed mainly of XaaS 

components and are built like utilities.  

2.8 Conclusion  

In this chapter a classification of emergent grids is presented. Representative 

projects were reviewed and classified. Such a classification assists in detailed 

comparisons between emerging grids. It helps in understanding current research 

in grid computing and anticipating future trends. The review also assists in 

identifying the key implementation approaches and issues related to each 

emerging grid. 

However, most emerging grids are still in their infancy stage of development. 

This study indicates the necessity for more research in this domain, so as to 
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establish a solid background and enable the implementation of these promising 

environments.  

The proposed classification for emerging grids has been extended in the form of 

a comprehensive taxonomy to accommodate both traditional and emerging 

grids. Such taxonomy has the potential to allow a comparison of past, current 

and future work in grid computing based on one scheme. The intention has been 

to provide a common set of terminologies and classification scheme in the 

rapidly evolving area of grid computing. 

Some emerging grids share features with PM-Grids, namely: Personal Grids, 

Mobile grids and Organic Grids. However, Personal Grids target individual 

users but do not address the mobility issue. Mobile Grids address the mobility 

issue but do not consider individuals among their users. Organic Grids focus on 

self-management problems through ideas from social insects but consider 

neither personal users nor mobile devices.  

Utility computing, XaaS and cloud computing have recently emerged with the 

same vision as grid computing. While utility computing and XaaS are service 

provisioning models, both grid computing and cloud computing offer 

architectures and technologies for distributed computing. Thus it is still difficult 

to define clear boundaries between the two, especially when it comes to 

emerging grids. At the present stage, it seems as though cloud is a new 

commercial name for a grid. The commercial reality is that new names 

sometimes enable development as they initiate renewed discussion and 

attract funding. 
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Chapter 3 
PM-Grid: A Personal Mobile Grid 

3.1 Introduction 

Notwithstanding the escalating popularity of grid computing in both research 

and enterprise domains, personal users, i.e. individuals outside these domains, 

are still not supported. On the other hand, new applications and complicated 

problems are increasingly emerging in everyday life where no computational 

tools are available but mobile devices. Creating a means to bridge the gap 

between computational grids and personal users with resource limited mobile 

devices is the core of PM-Grids.  

The major contribution of this chapter is to introduce PM-Grids as a new 

paradigm in grid computing for individuals constrained by devices of limited 

resources. Section 3.2 lays the background of PM-Grids while section 3.3 

defines them. In section 3.4 and section 3.5 the motivating applications and 

main debating issues related to integrating personal mobile devices in grid 

environments are addressed respectively. Architectural designs of PM-Grids to 

exploit resources available within PNs are presented in section 3.6. Section 3.7 

compares PM-Grids with related works in the area.  

3.2 From Mainframes to PM-Grids 

Electronic digital computers emerged as massive building-sized machines, as 

shown in Figure 3.1. They were known as “mainframes”. They started at 

scientific research centres then were adopted by the business domain. At that 

point of time, the idea of a mobile personal computer, something small and light 

enough for individuals to pick and carry around, was not acceptable even by 

academic researchers or leading computer companies. They did not consider a 

personal mobile computer allowing computational capabilities for individuals 

while travelling to be an idea worth pursuing. Simply, they could not see any 

practical purpose for such a device [1].  
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Figure 3.1: ENIAC, the Second Electronic Digital Computer, 1943 [2] 

 
Nowadays, the personal mobile computer market has become one of the largest 

markets in the world. It is rapidly evolving with progressive reduction in cost, 

weight and size and continuous improvement in performance. This has enabled 

many people to move around with a basic set of electronic gadgets which 

usually includes a mobile phone, PDA and laptop. These devices, which belong 

to the same user and are usually within ten metres of her/him, can be connected 

together with available wired connectivity, such as USB and FireWire, or 

wireless technologies, such as IrDA, Bluetooth, UWB, ZigBee and other 

technologies included in the IEEE 802.15 family of standards [3]. This network 

with the user at its inner core, which is known as a Personal Area Network 

(PAN) [4], is illustrated in Figure 3.2.  

 

Figure 3.2: Personal Area Network (PAN) 

 

Besides this basic set of electronic devices within the PAN, one might have 

other devices in different locations, for instance in the home, office and car. 

 PPAANN  
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These devices, which belong to the same user, can be connected together 

regardless of their geographical locations to form a Personal Network (PN) [5, 

6]. Thus, one can gain access to his/her electronic devices, any time anywhere, 

and can share resources among them, as shown in Figure 3.3. 

 

 

Figure 3.3: Personal Network (PN) 

Nonetheless, PANs and PNs are most commonly used for applications involving 

data and peripheral sharing. This is due to the resources allowed for sharing in 

PNs, PANs and all today’s conventional networks being limited to data, 

peripherals and secondary storage. The most important resources, namely, 

processors cycles and runtime memories, are still not available for sharing 

across these networks.  

Hence, an important question arises here: Why not further enable these 

networks to seamlessly share other resources such as processing cycles, storage 

capacity and functionality in the form of services available across computational 

grids? As PNs can already share data, peripherals and secondary storage among 

their devices, the next logical step is to superimpose grid functionality over 

them to allow the sharing of processors cycles and memories. Thus the net result 

is a huge virtual computer which can be accessed at anytime from anywhere. 

That is to say, a Personal Mobile Grid, as shown in Figure 3.4.  

Grid computing systems have started exactly the same way as digital computers; 

emerging as massive computing facilities in scientific research centres before 

being adopted by large commercial enterprises. Nevertheless, many people even 

from the grid computing community may not be able to understand why an 
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individual might need to have their own grid with great computational 

capabilities while on the move. This should not hinder thinking about such a 

potential system, a PM-Grid. In section 3.4 some potential motivating 

applications for PM-Grids are presented. 

 

Figure 3.4: Personal Mobile Grid (PM-Grid) 

3.3 What is a PM-Grid? 

A PM-Grid is a grid environment which can be owned and utilised by an 

individual user. It is constructed over his/her devices and might be extended to 

other devices which s/he trusts. PM-Grids aim to enable the mobility of both, 

users requesting access to grid resources and resources that are part of a grid. 

Hence, the distinguishing characteristic of a PM-Grid is that it is primarily 

constructed, owned and utilised by an individual (or a group of individuals with 

a mutual trust relationship). This is in contrast to traditional grids which are 

constructed, owned and utilised by organisations and other large entities. In 

other words, where traditional grids are concerned with a large user population, 

the PM-Grid is only concerned with a single user. Also the type of application is 

different; where traditional grids are chiefly concerned with massive complex 

world-wide computations, PM-Grid applications are considerably smaller in 

size, scope and complexity. Additionally, where traditional grids need a well-
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established stationary infrastructure to operate, PM-Grids can be fully 

accommodated in mobile devices connected via a PN. 

3.4 Motivating Applications 

As indicated in Chapter 1, people are increasingly keen to frequently replace or 

upgrade their personal computers to gain more processing power and memory. 

Sometimes they need to run complex computational jobs which their PC or 

laptop cannot accommodate, or while they are travelling away from home. 

People are becoming frustrated with the need to move data between their 

different electronic devices, such as for instance, a person having several 

address books scattered among his/her devices. Indeed, there is a need to allow 

a user to harness all processing powers, memory storages and data files 

distributed across his/her computing and communication devices. A PM-Grid 

has the potential to satisfy this need. 

Other contexts might also be considered where a small business needs to run an 

intensive forecasting simulation to make critical financial decisions, or a large 

charity group co-ordinating a large multimedia database. Hence, PM-Grids can 

be utilised equally by individuals as well as small groups. In a nut shell, PM-

Grids are intended to serve as general purpose computing environments 

available for individuals or a VO of a very limited scope, any time anywhere, 

exactly as personal mobile computers, with the additional services and huge 

computing capability available due to the aggregated networked resources.  

As stated earlier, PM-Grids allow the mobility of both users requesting access to 

grid resources, and resources that are themselves part of a grid. This opens the 

doors to have the grid processing power in more widespread geographical 

locations and social settings, such as emergency communications in fire fighting 

and natural disasters, as well as many of the newly emerged mobile applications 

in e-learning, e-healthcare, e-wallet, and m-gaming, among others. In [7] a 

comprehensive illustration of application scenarios for Mobile Grids is 

presented, in which PM-Grids might be even more efficiently applied in terms 

of security and responsiveness since all PM-Grid resources are dedicated to a 
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single user. This section sheds more light on two potential applications of PM-

Grids: Personal Mobile Medical Record and (PM-MR) and Personal Mobile 

Learning (PM-learning).  

3.4.1 Personal Mobile Medical Record (PM-MR) 

In [8], a discussion of general challenges in implementing grid functionalities in 

a mobile environment, and the specific issues arise from a realistic e-healthcare 

emergency scenario, was presented. The PM-Grid infrastructure can play an 

important role in serving both patients and physicians in/outside hospitals. Here, 

the PM-MR is presented as a motivating example of how PM-Grids can be 

exploited in healthcare contexts.  

At present, patient medical records (MRs) may be scattered in different 

locations; without access to them all at the same time. A patient might have 

MRs in multiple hospitals and clinics around the world. Sharing of patients’ 

MRs among hospitals is important in many situations. For instance, medical 

history, current medications, allergies, etc. are always useful for doctors 

prescribing medications.  

Some work has already been done in developing forms of health smart cards [9, 

10] and Web-based MRs [11, 12]. The problem with a health smart card is that 

it adds to the number of cards the individual needs to carry around and might be 

lost or missed at any time. It needs special hardware to read and is considerably 

limited in terms of capacity. The problem with Web-based medical record is 

that they are not integrated, which means that a patient might have multiple 

electronic medical records; one in each hospital providing health services to the 

patient. Also, Web-based MRs suffer from the accessibility problem; they 

require the availability of a computer system with Internet connection in order 

to be viewed or manipulated. In [13] a software technology is proposed and is 

under development to allow mobile phone and PDA users to download their 

MRs and display animated 3D scans. However, the problem of the multiplicity 

of MRs is still exists. 

Indeed, having access to all a patient’s MRs as a single virtual MR anytime 

anywhere is consistent with efficient healthcare. So, a unified virtual copy of all 
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MRs that belongs to the same patient is stored in a well secured location in his 

PN and synchronised automatically with his/her physical MRs, as shown in 

Figure 3.5.  

 

Figure 3.5: Personal Mobile Medical Record (PM-MR)  

The patient can use his/her PDA or smart mobile phone to access their MR with 

a certain privilege, just as the doctors may access using a different level of 

privilege. The PM-MR can also remind the patient of times for medications, or 

medical appointments. It can be updated as new services are performed and new 

medications are prescribed, and much more.  

The PM-MR efficiency can be boosted through including a wearable computing 

device, a small body-worn computer with sensors, in the core PAN so the PM-

MR can be intelligent enough to instantly monitor and analyse a patient’s data 

and alert her/him of any potential health hazard. It can contact people on call in 

any emergency situation, guide them to the patient’s location, then help to 

analyse and visualise any necessary medical data and images. It can make 

appointments, or effect cancellations on behalf of the patient, having access to 

his/her e-diary.  

Knowledge technologies, such as metadata and ontology, are very important for 

patient’s data annotation and would play a focal role in PM-MRs. However, it is 
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extremely important to note that such an application involves enormous critical 

security and ethical issues which need to be resolved. 

3.4.2 Personal Mobile Learning (PM-Learning) 

There are a number of scenarios where PM-Grids have the potential to enhance 

the e-learning experience, such as:  

• Providing mobile access to existing learning objects, such as course 

content, exercises and exams among others.  

• Providing mobile access to computing–intensive simulations, for 

engineers for instance. 

• Allowing heavy multimedia content to be received by small devices 

• Enhancing collaboration by gathering interactive services such as SMS, 

MMS, emails, and chat, among others. 

Thus electronic learning and training would be available not only at well-

equipped institutions, but also at remote locations, on the move or in emergency 

situations. This is valuable for students as well as company employees, 

accessing on-line training or instruction at remote locations, or tourists eager to 

learn more about regions to be visited and explored. 

3.5 Grid Computing and Personal Mobile Devices 

In Chapter 2, Section 2.6.3.2.3, Mobile Grids were briefly reviewed pointing to 

some of the challenges integrating personal mobile devices in grid 

environments. This section elaborates and discusses issues related to integrating 

such devices in grid environments.  

Utilising mobile devices in grid environments has raised several debating issues 

between grid computing practitioners: 

• Can mobile devices be utilised in grids? 

• What roles can a mobile device play in this case? 

• How can mobile devices be integrated in current grids? 
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In the following sections these issues are investigated further. 

3.5.1 Can Mobile Devices be Utilised? 

Ideally, to deploy a grid, powerful computational resources are combined to 

form a large-scale distributed system in which all resources, including processor 

cycles and memories, are shared. As a consequence, many researchers consider 

mobile devices as at best only marginally relevant to grid computing. This is 

due to: 

• Typical limitations of these devices, in terms of: processing capability, 

persistent storage, runtime heap, battery lifetime, input methods and 

screen size, relative to stationary devices.  

• High security risks and critical privacy requirements as any data stored 

in a mobile device, such as telephone numbers, birthdays and leisure 

time activities, are considered as private; even more than desktop 

computers, mobile devices are treated as personal [14]. 

• Great heterogeneity and non-interoperability in terms of hardware, 

Operating Systems (OS) and application software. 

• Unreliable intermittent connectivity with low bandwidth. 

• Highly demanding applications as applications intended to be executed 

in mobile devices should be designed carefully such that their problem 

space is decomposable and distributable among several devices [15]. 

 
More detailed descriptions of the mobile device limitations, and how they pose 

extra challenges when trying to apply the grid computing paradigm in the 

domain of mobile devices, are available in [8, 16].  

However, [17, 18] necessitated the scaling of grids to both a large number of 

entities and to smaller devices. There are many indicators supporting this 

necessity. First, every measure of the capabilities of these devices including 

processing speed and memory capacity, is improving, and expected to continue, 

at exponential rate following Moore’s law of increasing transistor density [19]. 

Second, the number of mobile devices in the world is escalating and expected to 
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soon dominate the number of personal computers [20]. Indeed, the Wireless 

World Research Forum (WWRF) predicts that there will be 1000 wireless 

devices per person on average in 2017 [21]. Third, in many emergency 

situations, such as natural disasters and fire fighting, mobile devices might be 

the only accessible communication and computation tools. Fourth, the wireless 

connectivity and availability is improving as seen in current 3G networks. Fifth, 

it is difficult to materialise the NGG and AmI visions [18], where humans are 

surrounded by computing and networking technologies unobtrusively embedded 

in their surroundings, without utilising personal mobile devices. More details 

about cases against, and other supporting mobile devices in grid computing, are 

discussed in [22]. 

3.5.2 What Roles Can Mobile Devices Play? 

Generally, two approaches have emerged in utilising mobile devices in grid 

environments. In the first approach, mobile devices serve as interfaces to 

stationary grids to send requests and receive results. Hence, a mobile device is 

merely playing the role of a resource consumer. Sometimes this approach is 

labelled as “mobile access to grid infrastructure” [15] or simply a “Mobile 

Access Grid”. In the second approach, mobile devices actively participate in the 

grid by providing computational or data services. Hence, a mobile device can 

play the roles of both a resource provider and resource consumer. This approach 

is what is usually referred to as a “Mobile Grid” [23]. A special case of Mobile 

Grids (and of Ad hoc Grids also) is identified in section 2.4.3.2.1 where all grid 

nodes are mobile in which the grid is labelled as a “Mobile Ad hoc Grid”.  

3.5.3 Can Mobile Devices be Integrated in Grids? 

If mobile devices are to be utilised, will they be integrated in current grid 

infrastructures or they will have their own? 

Both approaches are available. In Mobile Grids and Mobile Access Grids, the 

most common approach is to integrate mobile devices with the grid 

infrastructure using a proxy between the stationary grid and mobile devices [24, 

25]. In [14] caches are suggested to cope with the disconnectivity problem of 

mobile devices where operations on files are logged then automatically applied 
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when a client reconnects. In Mobile Ad hoc Grids, grid nodes usually exchange 

services in a pure P2P scheme [26]. This can be done using intelligent agents 

[27, 28] or a mobile grid middleware system [29].  

3.6 PM-Grid Design 

The NGG vision has placed scalability, openness to wider user community, 

pervasiveness and ubiquity, transparency and user-centricity among its top 

desirable properties. Therefore, they are considered as the main non-functional 

requirements of PM-Grids. However, as stated in [30]:  

existing third generation GRID technology will not satisfy the 
requirement, and even great extensions to it will not satisfy the 
requirement. The way forward is to design an architecture 
based on the properties of NGG and implement it. 

Hence, PM-Grid design has not adopted any of the already available grid 

architectures. Instead, the design is based on PN architecture and as a natural 

extension to them, seeing that scalability, pervasiveness and ubiquity, 

transparency and user-centricity have been explicitly addressed in their design 

[31]. A PM-Grid can be viewed as a superset of PNs. It is a PN with additional 

resources for sharing: CPU cycles and run-time memories, which allow for 

additional public and private services. This section starts with reviewing the 

architectural design of PNs, then builds up on this to arrive at an architectural 

design for PM-Grids. 

3.6.1 PN Architecture 

The PN concept and challenges have inspired many European Information 

Society Technology (IST) projects, such as My Personal Adaptive Personal 

Global Net (MAGNT) [5], MAGNET beyond [6] and Power Aware 

Communications for Wireless OptiMised personal Area Networks 

(PACWOMAN) [32], as well as the Dutch projects Personal Networks at Home 

(PN@home) [33] and the Personal Network Pilot 2008 (PNP2008) [34]. These 

projects have had an impact on the maturity of PNs design. 
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3.6.1.1 Layered View 

Basically, as shown in Figure 3.6, a PN is composed of three abstraction levels: 

connectivity level, network level and service level. They are briefly outlined in 

following sections. 

3.6.1.1.1 Connectivity Level 

In the connectivity level, devices are grouped into various radio domains based 

on their radio interfaces. A radio domain is a group of devices with a common 

radio interface, a single Medium Access Control (MAC) mechanism and in 

direct communication range of each other.  

3.6.1.1.2 Network Level 

In the network level, devices within radio domains identified in the connectivity 

level are grouped into clusters based on a pre-established trust relationship. This 

trust relationship is very important to differentiate between personal nodes and 

devices and foreign nodes and devices. It is important to note that this trust 

relationship does not take into account devices owned by the user only but also 

other devices with long-term trust relationships such as family devices and 

devices from one’s employment. The main function of this level is to separate 

communications among nodes of the same user from communications of 

other nodes. 

3.6.1.1.3 Service Level 

The service level is the highest level in the PN architecture. It contains all 

services offered by nodes in the Network Level. There are two types of services; 

public and private services. Public services are offered by both foreign and 

personal nodes and can be consumed by both. On the other hand, private 

services are offered and consumed by personal nodes only. While private 

services require establishing a long-term trust relationship, pubic services 

require a short-term trust relationship only. The service level contains all 

protocols related to service discovery and name servers [35].  
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Figure 3.6: PN Layered View [35] 

3.6.1.2 Detailed Architecture 

Figure 3.7 shows the main elements of a PN. From an architectural point of 

view, a PN consists of the following elements: 

• A PAN with the owner at its core: a set of personal nodes and devices 

around a person sharing a common trust relationship and communicating 

with others without relying on any foreign nodes or devices. 

• Clusters: a cluster is a set of personal nodes and devices that share a 

common trust relationship and can communicate with each other without 

relying on any foreign nodes or devices.  

• PN nodes: In each cluster/PAN, PN nodes communicate with each other 

using the IP protocol. PN nodes have multiple air interfaces to connect 
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• Gateway nodes: A personal node in a cluster/PAN does not operate in a 

stand-alone network; it needs to communicate with other nodes in 

remote clusters. Therefore, a gateway node with special features and 

functionalities, such as local storage and multiple network interfaces, 

address translation, tunnels set up and maintenance, traffic filtering 

among others, is employed to link PN nodes to remote and foreign 

nodes. Gateway nodes are usually selected as powerful devices as their 

tasks are quite load intensive.  

• The PN agent: For gateway nodes to locate other gateway nodes in 

remote clusters and establish tunnels, the PN agent is used to provide 

additional services, such as naming and service discovery. The PN agent 

serves also as the entry point for PN to PN communication. It is 

important to add that the PN agent is not a device or node; rather it is a 

concept that might be implemented in different approaches. 

• Interconnecting structure: A collection of overlapping networks of 

various technologies. 

Obviously, a key element of a PN is the PN Provider (PNP) which offers the PN 

services. It provides the operational environment to manage users, services, 

content and network related issues [36].  

 

Figure 3.7: PN Detailed View 
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3.6.2 PM-Grid Architecture 

It is important to note that the PN abstract levels and main elements presented in 

section 3.5.1 are part of the PM-Grid architecture. However, to avoid repetition 

in this section, only additional levels and elements that are required for the PM-

Grid architecture are included.  

3.6.2.1 Abstract Layered View 

The PM-Grid architecture is based on the three levels PN architecture proposed 

by the MAGNET project [5]. An additional level is introduced between the 

network and service levels, namely the PM-Grid level. Hence, The PM-Grid 

architecture is composed of four abstract levels: the connectivity level, network 

level, PM-Grid level and the service level as shown in Figure 3.8. These levels 

act as a middleware system offering an abstraction over physical devices.  

3.6.2.1.1 PM-Grid Level 

The added PM-Grid level serves as a virtualisation layer to hide the complexity 

of harnessing the heterogeneous underlying computational resources from the 

end user. In this level, resources available from the network level are grouped 

into two main categories: personal resources residing inside the PM-Grid, and 

foreign resources residing outside the grid.  

Personal resources are grouped into larger virtual resources based on the type of 

functionality they provide such as CPU cycles, storage, address book and 

printing. The aim is to allow personal users to submit service requests, for 

example a request for CPU cycles and memory to execute a computational job, 

from any device available within their trusted PNs without being concerned 

about where/when/how these requests are executed.  

To achieve this goal, the grid level should provide an efficient resource 

scheduler. The scheduler is responsible for automatically decomposing, 

allocating and executing jobs, then finally composing final results, making them 

ready to the end user. The scheduler should be lightweight, self-managed and 

adaptive to cope with the dynamic nature of the PM-Grid environment. A 

detailed design of such a resource scheduler (HoPe) is presented in Chapter 5. 
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Figure 3.8: PM-Grid Layered View 

3.6.2.2 Detailed Architecture 
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devices, then mapping these tasks to proper resources and, after execution, 

composing final results sending them back to clients.  

Therefore, as shown in Figure 3.9, from an architectural point of view, a PM-

Grid includes, apart from the PN architectural elements, three functional 

elements: clients, workers and spaces.  

 

Figure 3.9: PM-Grid Detailed View 
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devices may not be able to accommodate such large jobs. To tackle this 

problem in PM-Grids, decomposers are introduced. A decomposer is a 

specialised program that tests if a job might be executed in parallel. If 

so, it divides it into independent tasks of lower granularities. 

• Executers: These are computing elements capable of executing the 

actual computation logic encapsulated in a job.  

• Composers: Since jobs are decomposed into smaller tasks, and each task 

is executed independently of other tasks within the same job, there is a 

need to aggregate results produced after running these tasks. Composers 

are elements running a specialised program that compose all partial 

results related to a certain job into a final result to be sent to the 

requesting client.  

3.6.2.2.3 Spaces 

Spaces represent the third category of PM-Grid elements which consist of a set 

of static storage-rich devices mainly at home or the office, such as desktops. 

Clients and workers communicate with each other using these spaces which 

serve basically as simple shared memories for buffering. The use of a buffering 

technique is important in mobile environments to reduce the impact of frequent 

disconnections. The idea of spaces is based on Tuple-spaces first realised in the 

Linda system language [37]. A Tuple-space is a form of independent associative 

memory. For example, consider a group of processors that produce pieces of 

data and a group of processors that consume the data. Producers post their data 

to the space, consumers retrieve data from the space that matches certain 

criteria. In PM-Grids, there are two types of spaces:  

• Work-spaces: Work-spaces are multiple pools of jobs sent from clients. 

Executers access these pools, hunting for tasks to execute. 

• The result-space: the result-space is a large pool holding results that are 

generated by executers.  

 
Basically, two approaches are available to organise spaces. A centralised 

approach with a single large space, this approach has a great impact in 
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simplifying scheduling. However, managing such a space is usually rather a 

challenging problem due to its massive size. Additionally, this centralised space 

could become a bottleneck and represent a single point of failure. The other 

approach is to have multiple spaces in decentralised distributed fashion. While 

this approach aims to solve the main disadvantages of the centralised approach, 

it inherits the known disadvantages of decentralised schemes represented by 

performance degradation and poor coordination which usually lead to a load 

imbalance problem.  

Therefore, in this thesis a new approach has been followed to avoid the 

shortcomings associated with previous approaches. The PM-Grid design is 

based on multiple independent work-spaces, where tasks to be executed are 

placed, as these spaces do not require coordination among them, as well as a 

single result-space where all results are buffered before being finally composed 

and sent to clients. The bottleneck problem in this case is easier to solve as the 

result-space is considerably smaller in size and lighter in traffic volume than a 

centralised space requiring much less management responsibility.  

3.6.2.2.4 Device Roles in PM-Grids 

The special organisation for distributing the system functionality among 

multiple agents (workers) with a single target pool (result-space) and multiple 

job sources (work-spaces) is inspired by the way honeybees are organised in a 

colony, as explained in Chapter 5.  

In Figure 3.10 the hierarchal relationship between the main elements of a PM-

Grid is illustrated. Although, each element had been defined earlier as a set of 

devices, an element actually represents a logical role which is a functionality 

that can be added to any device in a PM-Grid, based on its capabilities. Roles 

are “upward compatible” where workers can act as clients while spaces can act 

as workers and clients as well.  

During initialisation, each device is assigned an initial role based on its score in 

the Device Score (DS) formula: 

 DS = w1A1+w2A2+w3A3+…+wnAn (3.1) 
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where A1, A2, A3,…,An are the set of static normalised attributes relevant to the 

device performance, such as CPU speed, memory size, network bandwidth, 

immobility and remaining power in the battery . The weighting coefficients w1, 

w2, w3,…,wn are used to describe the relative importance of the different device 

attributes in each role, subject to:  

 ∑i=1
n
 w i =1, (3.2) 

 w1, w2,…,wn ≥ 0 

At the operation time, a device might be promoted (assigned a higher role in the 

PM-Grid roles hierarchy) based on the device score in the DS formula after 

substituting A1, A2, A3,…,An by the device dynamic attributes such as current 

CPU load, available memory and battery consumption. For instance a laptop 

with a low battery might be promoted to a client.  

 

Figure 3.10: Role Hierarchy in PM-Grids 
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one physical device. In relation to PN elements, spaces are more likely to be 

located in gateway nodes as these nodes are usually powerful stationary devices 

such as desktops. The most powerful stationary device, in which usually the PN 

agent is located, is specifically chosen to accommodate the result-space. 

Workers are located in PN nodes as these devices usually have reasonable 

processing capabilities and multiple air interfaces such as laptops. Clients are 

located in PN devices which usually have the least resources. The placement of 

PM-Grid elements in relation to PN element is summarised in Table 3.1. 

Table 3.1: Placement of PM-Grid Elements 

PM-Grid elements  PN elements 

Spaces Gateway nodes 

Workers PN nodes 

Clients PN devices 

3.7 Related Work 

Connecting distrusted devices owned by an individual, or a group of 

individuals, and allowing them to share network resources is not the core of 

PM-Grids; PNs [5], PN Federation (PN-F) [6, 40], Personal Grid (PG) [41-44] 

and Personal distributed Environment (PDE) [45, 46] have been already 

proposed for this purpose. Allowing mobile access to grid systems is also not 

the core of PM-Grids; the Akogrimo project [23] has already addressed this 

issue. The novelty of PM-Grids is in superimposing computational grid 

functionalities on top of networked resource limited devices, whether they are 

mobile or stationary, and making the grid functionality available at personal 

users’ hands. This section places PM-Grids amongst the above-mentioned 

projects and highlights the main similarities and differences.  

3.7.1 PN and PN Federation  

A PN offers a secure environment for a personal user to share network resources 

among his/her own devices. In MAGNET Beyond [6] and PNP2008 [34] the 

concept of PNs is extended into PN Federation (PN-F or Fednets), a secure 

cooperation between PNs of different users for a specific common purpose [40]. 

However, both PN and PN-F are concerned with sharing network resources such 
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as data and peripherals rather than computing resources such as CPU cycles and 

runtime memories. Additionally, PN-Fs are formed only on demand for 

temporal situations; once the task is completed the network dissolves. On the 

other hand, PM-Grids are mainly concerned with sharing computing resources, 

and are set on a long-term basis for long-term goals. 

3.7.2 Mobile Grids 

The Akogrimo (Access to knowledge through the grid in mobile world) project 

[23] is the first IST project that explicitly targets Mobile Grids. While both 

Akogrimo and PM-Grid are concerned with integrating mobile devices in grid 

environments, Akogrimo is designed specifically for people in an enterprise 

domain, rather than for individual users in PM-Grids. The architecture of 

Akogrimo is based on an Enterprise Network which is built out of a consortium 

of enterprises in contrast to a PN underlying a PM-Grid which belongs to a 

single user. Additionally, mobile devices serve only as entry points to the grid in 

Akogrimo while they can participate actively in PM-Grids.  

3.7.3 Personal Grids 

A framework for a Personal Grid constructed over personal desktop computers 

is proposed in [41]. The framework consists of a two level hierarchal scheduling 

scheme where a super-node distributes jobs among clusters. Then, a master 

node in each cluster distributes the load among workers in FIFO style. The PM-

Grid is different in that it extends the grid platform to mobile devices. 

Additionally, it has a distributed adaptive self-control scheduling scheme with 

no central entity, at the grid or cluster level, such as a super- or a central-node, 

making the scheduling decision.  

The VEGA Grid project [42-44] has also proposed a framework for a Personal 

Grid (PG) to allow the integration of desktop computers into a “Global Grid 

System”. In this platform mobile devices are also used only as entry points to 

the grid. The PG aims primarily to establish a P2P platform for file sharing 

rather than processor sharing.  
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3.7.4 Personal Distributed Environment 

In [45, 46] a Personal Distributed Environment (PDE) is proposed to allow a 

personal user to access his/her personal devices over heterogeneous networks to 

gain access to file sharing services such a global address book and the delivery 

of rich multimedia content. Again the main concern here is data communication 

rather than computations.  

3.8 Conclusion 

In this chapter PM-Grids were introduced as grid environments owned, 

constructed and utilised by personal users. They have the potential to scale the 

grid entities (service consumer and providers) to individuals and small size 

organisations. They also have the potential to widen the grid application areas to 

span more geographical and social settings than ever before.  

An abstract layered architecture and a detailed inside view for PM-Grids based 

on PNs architectures were presented in this chapter. Furthermore, a lightweight, 

self-managed and adaptive scheduler was addressed as the core component of a 

middleware system for PM-Grids to cope with the dynamic nature of the 

environment. 

Comparing PM-Grids to available grid projects shows that PM-Grids are the 

first to target both mobile devices and individual users at the same time and to 

offer file sharing as well as computational functionalities. 



PM-Grid: A Personal Mobile Grid 84 

 

3.9 References  

 [1] J. Reimer, (2005, Dec. 14). Total share: 30 years of personal computer 
market share figures. ars technical [online]. Available: 
http://arstechnica.com/articles/culture/total-share.ars, [accessed Feb. 2, 
2010]. 

[2] king computer [online]. Available: http://www. www.king-
computer.com, [accessed Feb. 2, 2010]. 

[3] IEEE 802.15 Working Group for WPAN [online]. Available: 
http://ieee802.org/15/, [accessed Feb. 2, 2010]. 

[4] R. C.Braley, Ian C. Gifford, and Robert F. Heile,  “Wireless personal 
area networks: an overview of the IEEE P802.15 working group,” 
SIGMOBILE Mobile Comput. Commun. Rev., vol. 4, pp. 26-33, 2000. 

[5] My Personal Adaptive Global NET (MAGNET) (IST 507102) [online]. 
Available: http://www.ist-magnet.org, [accessed Feb. 2, 2010]. 

[6] IST.MAGNET Beyond (IST-FP6-IP-027369) [online]. Available: 
http://www.magnet.aau.dk, [accessed Feb. 2, 2010]. 

[7] M. Waldburger and B. Stiller, “Toward the mobile grid: Service 
provisioning in a mobile dynamic virtual organization,” in Proc. 4th 
ACS/IEEE AICCSA-06, 2006, pp. 579–583. 

[8] Z. Li, L.Sun and E. C. Ifeachor, “Challenges of mobile ad-hoc grids and 
their applications in e-healthcare,” in Proc. 2nd CIMED2005, Lisbon, 
Portugal. 

[9] Global Health Smart Card [online]. Available: 
http://www.healthsmartcard.net/, [accessed Feb. 2, 2010]. 

[10] E-Health-Insider [online]. Available: http://www.e-health-
insider.com/news/item.cfm?ID=2470, [accessed Feb. 2, 2010]. 

[11] Medical Office Online [online]. Available:  
http://www.medicalofficeonline.com/, [accessed Feb. 2, 2010]. 

[12] B. Crounse, (2006, Jul. 12). The future with electronic medical records: 
Effective, flexible, affordable, Microsoft [online]. Available:  
http://www.microsoft.com/industry/healthcare/providers/businessvalue/h
ousecalls/clinicalworkflow.mspx, [accessed Feb. 2, 2010]. 

[13] San Diego Supercomputer Center [online]. Available: 
http://www.sdsc.edu/, [accessed Feb. 2, 2010]. 

[14] J. Roth and C. Unger, “Using handheld devices in synchronous 
collaborative scenarios,” In Personal Ubiquitous Comput., vol. 5, no. 4, 
pp. 243-252, 2001. 

[15] D. C. Marinescu, G. M. Marinescu, J.Yongchang, L. Boloni and H. J. 
Siegel, “Ad hoc grids: Communication and computing in a power 
constrained environment,” in Proc. IEEE Int. Performance, Comput. 
Commun. Conf., 2003, pp. 113-122. 

[16] Bhagyavati and S. Kurkovsky, “Emerging issues in wireless 

http://ieee802.org/15/�
javascript:aRL('Braley%2CRichard C.')�
javascript:aRL('Gifford%2CIan C.')�
javascript:aRL('Heile%2CRobert F.')�
http://www.healthsmartcard.net/�
http://www.e-health-insider.com/news/item.cfm?ID=2470�
http://www.e-health-insider.com/news/item.cfm?ID=2470�
http://www.sdsc.edu/�


PM-Grid: A Personal Mobile Grid 85 

 

computational grids for mobile devices,” in Proc. 8th World Multiconf. 
SCI-2004. Available: http://www.cs.ccsu.edu/~stan/research/Grid/ 
PubsSCI2004.pdf, [accessed Feb. 2, 2010]. 

[17] I. Foster and C. Kesselman, Eds., The Grid2: Blueprint for a Future 
Computing Infrastructure. San Francisco: Morgan Kaufmann, 2003. 

[18] Expert Group, “Next generation grids2: Requirements and options for 
European grids research 2005-2010 and beyond,” Expert Group Rep., 
Jul. 2004 [online]. Available: 
http://www.semanticgrid.org/docs/ngg2_eg_final.pdf, [accessed Feb. 2, 
2010]. 

[19] K. Michael, (2003, Feb. 10) Moore's law to roll on for another decade, 
cnet news [online]. Available:  http://news.cnet.com/2100-1001-
984051.html, [accessed Feb. 2, 2010]. 

[20] Ipsos Insight, “Mobile phones could soon rival the PC As world’s 
dominant Internet platform,” Market study rep., summary, Apr. 2006 
[online]. Available: 
http://www.ipsos-na.com/news/pressrelease.cfm?id=3049, [accessed 
Feb. 2, 2010]. 

[21] N. Jefferies, “Global vision for a wireless world,” 18th meeting of 
WWRF, 2007, Helsinki, Finland. 

[22] T. Phan, L. Huang and C. Dulan, “Challenge: Integrating mobile wireless 
devices into the computational grid,” in Proc. 8th  Annu. Int. Conf. 
Comput. Networking, 2002, pp. 271-278. 

[23] Akogrimo [online]. Available: http://www.mobilegrids.org/, [accessed 
Feb. 2, 2010]. 

[24] S. Kurkovsky, Bhagyavati, and A. Ray, “A collaborative problem-
solving framework for mobile devices,” in Proc. 42nd ACM-SE, 2004, pp. 
5-10. 

[25] A. Hampshire, “Extending the open grid services architecture to 
intermittently available wireless networks,” in Proc. UK eScience All 
Hands, 2004. 

[26] L. Lima, A. Gomes, A. Ziviani, M. Endler, L. Soares and B. Schulze, 
“Peer-to-peer resource discovery in mobile Grids,” in Proc. 3rd int. 
workshop MGC '05, 2005, pp. 1-6. 

[27] S. Kurkovsky and Bhagyavati, “Modeling a computational grid of 
mobile devices as a multi-agent system,” in Proc. IC-AI'03, 2003, pp. 36-
44.  

[28] Kurkovsky, Bhagyavati and A. Ray, “Modelling a grid-based problem-
solving environment for mobile devices,” J. Digital Inform. Manage., 
vol. 2, pp. 109-114, 2004. 

[29] A. Sajjad, H. Jameel, U. Kalim, S. Han, Y. Lee and S. Lee, “AutoMAGI 
- an autonomic middleware for enabling mobile access to grid 
infrastructure,” in Proc. 2005 ICAS-ICNS, pp. 73-79. 

[30] K.G. Jeffery, “Next generation grids for environmental science,” 



PM-Grid: A Personal Mobile Grid 86 

 

Environmental Modelling & Softw., vol. 22, no. 3, pp. 281–287, 2007. 

[31] B. Jiang, V. Kaldanis, A. Markopoulos, M. Monti, R. Prasad, D. 
Saugstrup, B. Jiang, V, Kaldanis, A. Markopoulos, M. Monti, R. Prasad, 
D. Saugstrup, N. Schultz and K.E. Skouby, “User requirements & 
demand for services and applications in PNs,” presented at IST mobile & 
wireless communication summit, Lyon, France, 2004. 

[32] PACWOMAN. (IST-2001-34157) [online]. Available: 
http://www.imec.be/pacwoman/, [accessed Feb. 2, 2010]. 

[33] The Dutch Freeband Communications Project QoS for PNs at home 
[online]. Available: http://www.qos4pn.irctr.tudelft.nl/index.htm, 
[accessed Feb. 2, 2010]. 

[34] The  Dutch Freeband Communications Project PNP2008 [online]. 
Available: http://www.freeband.nl, [accessed Feb. 2, 2010]. 

[35] M. Jacobsson, J. Hoebeke, S. de Groot, A. Lo, I. Moerman and I. 
Niemegeers,  “A Network Layer Architecture for Personal. Networks,” 
presented at MAGNET Workshop, Shanghai, China, Nov. 2004. 

[36] F. Hartog and M. Peeters, “A concrete example of a personal network 
architecture,” in Proc. 3rd  IEEE CCNC2006, pp. 514-518. 

[37] D. Gelertner, “Generative communication in Linda,” ACM Trans. 
Program. Lang. Syst., vol. 7, pp. 80-112, 1985. 

[38] A. Bandara, T. Payne, D. Roure, and G. Clemo, “An ontological 
framework for semantic description of devices,” In Proc. ISWC 2004, 
Hiroshima, Japan. 

[39] X. Sanchez-Loro, J. Casademont, J. L. Ferrer and J. Paradells, “A proxy-
based solution for device capabilities detection,” in Proc. IASTED , 2007 
pp. 28-34. 

[40] M. Ibrohimovna, and S. H. Groot, “Proxy-based Fednets for sharing 
personal services in distributed environments,” in Proc. 4th ICWMC, 
2008, pp.150-157. 

[41] J. Han and D. Park, “A lightweight personal grid using a supernode 
network,” in Proc. 3rd  Int. Conf. P2P2003, pp. 168-175. 

[42] W. Li, Z. Xu, B. Li, Y. Gong, “The Vega Personal Grid: A lightweight 
grid architecture,” in Proc. IASTED, 2002, pp. 6-11. 

[43] B. Li, W. Li and Z. Xu, “Personal Grid running at the edge of internet,” 
in Proc. 2nd GCC, 2003, pp. 762-769. 

[44] Z. Xu, L. Xiao and X. Liu, “Personal Grid,” in Proc. NPC, 2007, pp. 
536-540. 

[45] D. Pearce, J. Dunlop and R.C. Atkinson, “Leader election in a personal 
distributed environment,” in Proc. IEEE 16th  Int. PIMRC, 2005, vol. 2, 
pp. 1307-1311. 

[46] J. Dunlop, “The concept of a personal distributed environment,” Wireless 
Personal Commun. Int. J., vol. 42, no. 3, pp. 431-444, 2007. 

http://www.qos4pn.irctr.tudelft.nl/index.htm�
http://www.freeband.nl/�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:W=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:B=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gong:Y=.html�
http://www.citeulike.org/author/Dunlop�


A Framework for Resource Scheduling 87 

 

Chapter 4 
A Framework for Resource Scheduling 

4.1 Introduction 

In contrast to the scarcity of resources proposing surveys or taxonomies for 

emerging grids, as seen in Chapter 2, plethora of literature has proposed 

taxonomies for resource scheduling systems in distributed systems in general 

such as [1-7], and grid schedulers in particular such as [8-13]. These taxonomies 

collectively span nearly every single aspect related to resource scheduling. This 

abundance of resource scheduling taxonomies can be related to two main 

influences, namely, the maturity of research in the area of resource scheduling, 

and the critical role that resource schedulers play in many application areas 

including grid computing. On the other hand, two major problems have emerged 

as a consequence: first, there are scattered nomenclatures across the literature, 

and second, there are inconsistent and unclear definitions for many of the 

terminologies.  

Therefore, the goal of this chapter is to present a framework for resource 

scheduling and to provide a unified presentation of the main nomenclatures 

from several previously published taxonomies indicating, when necessary, the 

different terminologies in use. In other words, this is an attempt to amalgamate 

the area of resource scheduling systems together under a common, uniform set 

of terminologies. The intention has been to provide a suitable framework for 

comparing, analysing and studying work in the area. The material in this chapter 

provides a level of detail and a unifying perspective that can help in future 

research in the resource scheduling field. 

Section 4.2 defines the resource scheduling problem and sheds some light on its 

historical context. Section 4.3 lists some basic terminologies in the problem 

domain. In section 4.4, a framework is proposed for resource scheduling 

systems, and a unified taxonomy for the framework elements is proposed. In 

Section 4.5, the scheduling problem is viewed from the grid computing 
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perspective indicating its special features and applying the proposed framework 

to three well established grid resource schedulers. Section 4.6 briefly concludes 

the chapter. 

4.2 The Resource Scheduling Problem 

In general terms, scheduling is a mechanism to allocate resources to jobs with 

the objective to optimise one or more performance measures, as illustrated in 

Figure 4.1. The mechanism belongs to a broader class of combinatorial search 

problems which are concerned with finding combinations of a discrete set of 

items that satisfy some specified constraints. The number of possible 

combinations grows exponentially with the size of the problem leading to 

potentially lengthy solution times and severely limiting the feasible size of such 

problems. Therefore it is among the most difficult of common computational 

problems, which are considered as NP-hard [14] 

 

Figure 4.1: The Resource Scheduling Problem 

 
The scheduling problem was initially identified during the 1950s, in operations 

research, industrial engineering and management. After that, in the 1960s, it was 

introduced to computer science in operating systems development. The problem 

started with simple forms that could be optimally solved using efficient 

algorithms. As time went by, the problem became more sophisticated hindering 

the search for efficient algorithms for many of its forms. By the advent of 

complexity theory [15] complex forms of the scheduling problem had been 
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considered to be NP-hard, in the 1970s. Therefore, other directions to the 

problem were introduced during the 1980s: approximation and heuristic 

approaches as well as stochastic scheduling [16], as described in section 

4.4.4.3.2 and section 4.4.4.2.1 respectively. In the early millennium, the swarm 

intelligence approach, presented in section 5.4.2, has emerged to suggest 

solutions to NP-hard scheduling problems based on techniques from social 

insects. Now, after sixty years, there is a solid body of knowledge in this field. 

 
Figure 4.2: Scientific Advances in the Resource Scheduling Field 

4.3 Basic Terminologies  

There are some common terms used in the resource scheduling field. In this 

section they are briefly defined:  

• A resource is anything that is required to carry on an operation, and 

includes such items as machines, processors and runways.  

• A job is anything that consumes resources. It usually consists of a single 

set of multiple tasks. A job can be a manufacturing process, a computer 

program, a landing or take-off, etc.  

• A task is an atomic operation to be performed on a resource.  

• A performance metric, also known as the objective function, is the 

objective under consideration such as the minimisation of the makespan 

or maximisation of the throughput.  
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• A schedule is a mapping between tasks and resources.  

In this chapter the two terms: resources and jobs are mainly used to refer to 

resources and jobs associated with computers such as processors and application 

programs. However, this does not mean that the materials presented in this 

chapter are restricted to this specification alone.  

4.4 A Framework for Resource Scheduling  

A shared characteristic among previous scheduling taxonomies was the vast 

number of nomenclatures they proposed; for instance in [9] eleven main 

nomenclatures were presented. Although this might help in detailed 

classification it complicates the taxonomy, entangles its nomenclatures and 

makes the search for common features more difficult. Therefore a common 

framework that identifies focal entities of resource schedulers and a taxonomy 

based on these entities would tackle such problems. 

Basically, resource scheduling systems deal with four main entities: jobs, 

resources, performance metrics and a scheduler. In solving a scheduling 

problem, four questions are usually considered: 

• How do resource characteristics affect the scheduling decision? 

• How do job characteristics affect the scheduling decision? 

• What performance measures should a scheduler use to determine the 

quality of a schedule? 

• Which scheduler (policy, architecture and procedure) gives best (or 

good) results based on the previous three concerns?  

This chapter presents a framework for resource scheduling, regardless of the 

problem domain, based on the above four elements: job model, resource model, 

performance metrics and scheduler model, as shown in Figure 4.3. It also 

presents a unified taxonomy, as shown in Figure 4.4, to describe the main 

features of these elements in an attempt to provide a unifying perspective that 

can help in designing and analysing resource schedulers. However, since the 

taxonomy is not intended to be comprehensive, it only drills down in special 
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categories that are considered as important requirements for HoPe to present a 

clear background about its design features.  

It might be reasonable to point to the difference between the taxonomy 

developed in this chapter and the comprehensive taxonomy presented in 

Chapter 2. The taxonomy presented in Chapter 2 is intended to serve mainly as 

a classifying tool. On the other hand, the taxonomy presented in this chapter 

with the proposed framework, is intended to assess mainly initial design stages 

to identify scheduler requirements and features. It can also assist in analytical 

studies for comparative purposes. 

 

Figure 4.3: Resource Scheduling Framework 

4.4.1 Resource Model 

The characteristics of underlying resources are critical for making the 

scheduling decision. For a scheduler to make a decision it needs to know: 

• Whether resources are of the same type, or of different types. 

• The characteristics of each resource. 

Accordingly, two main resource models are identified in the literature: parallel 

and dedicated resources, as illustrated in Figure 4.5.  

4.4.1.1 Parallel versus Dedicated Resources 

Parallel resources are capable of performing the same functions. They are 

categorised further based on their speed as identical, uniform and unrelated 

resources, as explained in section 4.4.1.1.1. 
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Figure 4.4: Unified Taxonomy for Resource Scheduling 
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In contrast, dedicated resources are specialised in executing certain tasks only. 

Three distinguished scheduling models are identified based on the order in which 

these tasks follow inside the system: flow shop, open shop and job shop scheduling 

models, as explained in section 4.4.1.1.2. 

4.4.1.1.1 Identical, Uniform and Unrelated Parallel Resources  

Identical resources are parallel resources with equal processing speeds. Uniform 

resources are parallel resources but with different processing speeds. However, the 

speed of each uniform resource is constant for all types of jobs. In contrast, each 

unrelated resource has a variant speed associated with each type of job. 

4.4.1.1.2 Flow, Open and Job Shops Dedicated Resources 

These three scheduling models are based on the order in which jobs visit dedicated 

resources. In the flow shop scheduling model, each job is executed on all machines 

following a certain order. In the open shop model, each job is processed once on 

each machine with no constraint about the order of processing. In the job shop 

model a job can be processed on more than one machine and has its own order in 

visiting machines. 

 

Figure 4.5: Resource Model 

4.4.2 Job Model 

The job model has a significant impact on the scheduling decision. For a scheduler 

to make a decision it needs to know: 

• The characteristics of each job in terms of its internal structure. 

• The amount and type of interaction it requires with other jobs or with the 

running environment.  
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Based on this information, jobs are classified into two main categories: non-

independent jobs and independent jobs, as illustrated in Figure 4.6.  

 

Figure 4.6: Job Model 

4.4.2.1 Dependent Jobs versus Independent Jobs 

Dependent jobs, usually known as workflows, are coarse-grained applications 

constructed from a sequence of components (tasks). Tasks themselves are 

considered heterogeneous in nature; they might be sequential or parallel having 

different behaviour and resource requirements [17]. Workflows vary in their 

internal structure, and there are two categories: directed acyclic graph (DAG) 

workflows and non-DAG workflows, as described in section 4.4.2.1.1. 

An independent job represents an application which is composed of a set of tasks 

with no communication, dependencies or synchronisation among them. These tasks 

can be executed in any order since each task does not require any input from any 

other task. In other words, the output of any task would never be fed to another task 

as an input. However, multiple tasks can share the same input file(s) and they may 

also share the same output file(s). These applications are easy to parallelise by 

decomposing them into multiple tasks of lower granularity. From a theoretical 

perspective, an independent job model is a generalisation of the pre-emptive 

execution model that allows for simultaneous execution of different parts of the 

same job on different machines [18]. 

Applications conforming to this model arise in many fields of science and 

engineering such as image processing, Monte Carlo simulations, data mining and 

database searching [19]. There are two possible models for independent jobs based 

on the task granularity: Bag-of-Tasks (BoT) and Divisible Load (DL), as described 

in section 4.4.2.1.2.  
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4.4.2.1.1 DAG Workflows versus Non-DAG Workflows 

In DAG workflows the internal structure of a workflow is represented by a DAG. 

Nodes of the graph represent tasks while edges represent dependencies between 

tasks. The simplest workflow applications can be represented with a simple DAG in 

which tasks are performed in a specific linear order. At the second level of 

complexity are workflows that are modelled using non-linear DAG. Some scientific 

applications require an iteration structure; in this case, workflows are modelled with 

cyclic graphs and are called non-DAG workflows. In the most complicated level of 

workflows it is even difficult to find an appropriate graph model for the workflow. 

In this case, an application is modelled as a workflow of workflows [20]. 

 
(a) DAG Workflow    (b) Non-DAG Workflow 

Figure 4.7: Dependent Job Example Models 

4.4.2.1.2 Bag-of-Tasks versus Divisible Load 

Independent jobs can be composed of coarse-grained components which are known 

as Bag-of-Tasks (BoT), or fine-grained components which are known as Divisible 

Loads (DL). However, some work in this area [21, 22] use the term divisible load to 

refer to both types with the former considered as modularly divisible and the latter 

as arbitrarily divisible.  

BoT jobs are also known as parameter-sweep applications [23]. A BoT is a coarse-

grained application consisting of computations that can be divided into a finite 

A 

B C 

F D E 

H G 

A 

B C D 

H 

G F E 



A Framework for Resource Scheduling 

 

96

number of independent pieces (tasks). The number of tasks and the task size of each 

application are set in advance. In this case the scheduling problem is normally 

considered as a bin packing problem. This problem is considered to be NP-hard and 

is usually approached by means of heuristics [19].  

DL applications, also known as fine-grained applications, consist of computations 

or loads that can be arbitrarily divided into independent chunks (tasks) [24]. This 

corresponds to a perfectly parallel job: any task can itself be further decomposed 

into independent sub-tasks. A DL model is an approximation of job models that are 

built out of a large number of identical, low granularity components [25]. It has the 

potential to provide a practical platform for scheduling in heterogeneous 

environments [26]. 

  
(a) BoT Job     (b) DL Application 

Figure 4.8: Independent Job General Models 

4.4.3 Performance Metrics 

Performance metrics, also known as scheduling objectives, can be viewed from two 

different and competing perspectives: the user or consumer perspective (Job-centric 

metrics) and the provider perspective (resource-centric metrics), as described in 

section 4.4.3.1. 
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Figure 4.9: Performance Metrics 

4.4.3.1 Job-Centric versus Resource-Centric Metrics 

Job-centric metrics, also known as user-centric metrics, represent the user or 

consumer perspective. They seek to optimise the performance of each individual 

job, such as the turnaround time (also known as flow time, response time or 

completion time), which represents the time taken from when a job enters the 

system until it finishes execution. Job centric metrics are related to the system 

performance which encompasses how well system resources are being used for the 

benefit of each user of the system. 

Resource-centric metrics, also known as provider-centric metrics, seek to optimise 

the system efficiency such as throughput, resource utilisation and makespan (the 

total time required for completing all jobs in a set). The system efficiency is 

concerned with how efficiently resources are utilised for the benefit of all users of 

the system, as well as the added overhead associated with the resource scheduling 

process [3].  

As job-centric and resource-centric metrics are competitive, there are always 

tradeoffs to consider, therefore hybrid approaches such as economy-based metrics 

were proposed. Economy-based metrics consider both job (resource consumer) and 

resource (resource provider) perspectives at the same time but from the market 

economy point of view. For the market to be competitive, resource providers need 

to set reasonable prices to keep the supply of a service equal to its demand. 

However, applying these metrics requires that the whole system is built initially, 

with the economic model as a reference model [27].  

4.4.4 Scheduler Model 

A scheduler model describes the organisation, policy and procedure of a resource 

scheduler. 
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4.4.4.1 Organisation 

Scheduler organisation means the way that entities involved in the scheduling 

process interact with each other. This organisation has a critical influence on the 

efficiency of the scheduling process. There are three main features which are used 

in the literature to describe the organisation of resource schedulers:  

• Centralised versus decentralised. 

• Distributed versus non-distributed. 

• Cooperative versus non-cooperative. 

However, some of these features are used interchangeably, ignoring the actual 

difference between them, as described in the following sections. 

 

Figure 4.10: Scheduler Organisation 

4.4.4.1.1 Centralised versus Decentralised  

In centralised schedulers, a single entity has the authority to make the scheduling 

decision; it makes the decision for the whole system regarding who should run what 

and when. This organisation has the advantages of simplified management and 

deployment. Among the main disadvantages are the lack of fault tolerance, poor 

scalability and the difficulty in accommodating multiple policies.  

In decentralised schedulers, the scheduling authority is shared among the multiple 

entities of a resource management system. This organisation eases scaling to large 

systems and is more fault tolerant if proper coordination is shouldered by the 

different schedulers.  

There also exist hierarchical schedulers which are organised in multiple levels, so 

the higher level scheduler, also known as a meta-scheduler, controls larger sets of 

resources than lower level schedulers. Although this organisation addresses the 
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scalability and fault tolerance issues, the problem of the multiplicity of scheduling 

policies is still unsolved. It also suffers from the added difficulty of coordinating 

schedulers in different levels [9].  

4.4.4.1.2 Distributed versus Non-Distributed 

In non-distributed schedulers, the responsibility for executing the scheduling policy 

physically resides in a single entity, whereas in distributed schedulers this 

responsibility is shouldered by physically distributed entities. It is important to note 

that the two terms, decentralised and distributed, are used interchangeably in the 

literature, while they actually refer to different aspects of the scheduling process: 

responsibility and authority. When the responsibility for making and carrying out 

policy decisions is shared among entities in a system, the scheduler is distributed. 

On the other hand, when the authority of making the scheduling decisions is 

distributed to the system entities, the scheduler is decentralised [3].  

4.4.4.1.3 Cooperative versus Non-Cooperative 

Distributed schedulers can be classified further, based on the way an individual 

processor makes decisions, while executing the scheduling policy, into: co-

operative and non-cooperative schedulers. In non-cooperative schedulers, individual 

entities act alone as autonomous agents and arrive at the scheduling decision 

independently of the action of other entities in the system. In cooperative 

schedulers, each entity has the responsibility to carry out its own portion of the 

scheduling task, but all entities are working toward a system wide goal [3]. 

4.4.4.2 Scheduling Policy 

A scheduling policy consists of a set of general features describing the scheduling 

process. However, these features are scattered in the literature with no clear 

definition for many of them. Furthermore, some features are used interchangeably 

while they actually describe different scheduling attributes. Therefore, this section 

presents a more comprehensive list of policy features with a clear definition of 

each:  

• Stochastic versus deterministic. 

• Clairvoyant versus non-clairvoyant. 
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• Static versus dynamic. 

• Immediate versus batch. 

• Adaptive versus non-adaptive. 

• Local versus global. 

• Self-scheduling versus external scheduling. 

• Best effort versus QoS. 

 

Figure 4.11: Scheduling Policy 

4.4.4.2.1 Stochastic versus Deterministic 

Based on the way information about jobs and resources is generated, one can 

differentiate between deterministic and stochastic policies. 

Basically, stochastic means random. In other words, it is determined by chance. In 

stochastic scheduling, job information, such as the processing time, is unknown in 

advance, but it is known to be a random selection of a given probability 

distribution. The actual information only becomes known when the processing has 

been completed [16]. Stochastic scheduling is used where either the number of 

individuals is small or where there is reason to expect random events to have an 

important influence on the behaviour of the system [28]. Stochastic and non-

clairvoyant scheduling, described in section 4.4.4.2.2 were introduced to deal with 

the uncertainty problem in job processing times.  
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In contrast, deterministic means that no job information is probabilistically 

determined. Deterministic scheduling takes no account of random variation and 

therefore gives a fixed and precisely reproducible result, quite the opposite to 

stochastic scheduling where different outcomes can result from the same initial 

conditions [28]. However, it does not require that all job information is known in 

advance. Rather, it also considers problems where some job parameters are 

unknown in advance [29], such as non-clairvoyant and dynamic scheduling. 

4.4.4.2.2 Clairvoyant versus Non-Clairvoyant 

Among the significant factors that affect the scheduling decision are the volume and 

type of information available to the scheduler. Greater volumes of information 

about jobs, such as the number of jobs, their processing times and release dates can 

result in an optimum schedule. 

However, such information may not be available or may be too expensive to collect. 

Also, increasing the amount of information processed by a scheduler usually 

increases the time to produce a schedule [30]. Therefore, two contrasting scheduling 

policies can be addressed based on the availability, or necessity, of such 

information: clairvoyant and non-clairvoyant scheduling.  

In a clairvoyant scheduling policy, it is assumed that job characteristics, such as 

execution time and release dates, are available to the scheduler before the 

scheduling decision takes place; that is, either before jobs enter the system (static 

scheduling) or just before starting their execution (dynamic scheduling), as 

described in section 4.4.4.2.3. This clairvoyant scheduling is usually what the 

classical scheduling theory considers and, with which almost all research in 

scheduling theory has been concerned [31]. However, this assumption is the 

strictest one in the scheduling theory and it has a great impact in limiting its 

practical application. “Indeed, this assumption is not valid for the most real world 

processors” [32]. In contrast, a non-clairvoyant scheduling policy assumes and 

requires no prior knowledge about job or resource characteristics. This information 

might only be available after a job has been executed.  

It is important to note here the difference between the non-clairvoyant policies and 

dynamic scheduling policies, presented in section 4.4.4.2.3 which are usually 
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confused in the literature. When job information is available to the scheduler before 

it starts running, it is said that the scheduling policy is dynamic. When job 

information is only available after the job is executed, this is called non-clairvoyant 

scheduling [31]. The difference in time, at when job information becomes available 

to the scheduler, between static, dynamic, and non-clairvoyant scheduling is 

illustrated in Figure 4.12. 

 
Figure 4.12: Static, Dynamic and Non-Clairvoyant Scheduling  

4.4.4.2.3 Static versus Dynamic  

Based on the time when job and resource information is available, clairvoyant 

scheduling policies can be considered as either static or dynamic. 

In a static (also known as plan-ahead and offline) scheduling policy, information 

about jobs and resources are assumed to be available before jobs enter the system. 

However, this policy is not applicable when job or resource characteristics are not 

known in advance. In dynamic (also known as on-the-fly or online) scheduling 

policies, less information is known a priori. Job information is only available after 

entering the system and sometimes just before it starts execution [33]. Dynamic 

policies are classified further based on when the scheduling decision occurs into 

immediate mode and batch mode policies, as described in section 4.4.4.2.4.  

4.4.4.2.4 Immediate versus Batch  

Within the realm of dynamic scheduling policies, two approaches can be identified 

based on when the scheduling decision takes place: immediate and batch policies. 

An immediate mode policy maps a job to a machine upon task arrival, whereas a 

batch mode scheduling policy is event driven. So, when a specified condition is 

satisfied, such as a certain number of tasks, or a time period elapsed, scheduling 

occurs.  
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4.4.4.2.5 Adaptive versus Non-Adaptive 

In an adaptive scheduling policy the scheduling algorithm or parameters are 

dynamically modified according to the change in the system state. In a non-adaptive 

scheduling policy, the current system state has no influence on the scheduling 

policy. The two properties, dynamic and adaptive, are often used interchangeably in 

the literature while they actually represent slightly different features [3]. In a 

dynamic policy, part of the information about jobs and resources is revealed 

dynamically thus schedules are generated in the same manner. However, this does 

not necessarily imply that the scheduling algorithm or parameters are dynamic as 

well, which is the case in adaptive scheduling policies.  

4.4.4.2.6 Local versus Global  

In general, decisions about mapping tasks to resources can be made at two levels: 

local level and global level. In a local scheduling policy, decisions are made based 

only on the job (sometimes a group of jobs or a sub-workflow) at hand. In a global 

scheduling policy, decisions are made based on all non-scheduled jobs (sometimes 

jobs not yet started or the whole workflow). The main advantage of global policy 

schedulers, also known as meta-schedulers, is that they can provide a better overall 

result. On the other hand, making the scheduling decision takes a much longer time 

than local policies. Thus the overhead produced by a global policy can reduce the 

overall benefit and possibly exceed its benefits [11]. 

However, there is no agreement about what is local and global scheduling. In [34] 

local scheduling is defined as the policy that considers one administrative domain 

only, such as a cluster, whereas a global scheduling policy considers multiple 

administrative domains. In [3] local scheduling is defined as the policy concerned 

with mapping jobs within one machine whereas global scheduling considers 

mapping in multiple machines. In this chapter, we follow the same approach as [11] 

in defining global and local scheduling policies.  

4.4.4.2.7 Self-Scheduling versus Non-Self Scheduling 

A non-self-scheduling scheme is what classical scheduling usually assumes where a 

dedicated system or authority is responsible for making the scheduling decision, 

implementing the scheduling policy and executing the scheduling procedure. This 
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approach requires an external entity, to gather information about each node. This 

can have high security risks, involves a lot of message exchange and hinders each 

node from having its own policy  

On the other hand, in self-scheduling policies processors do both duties of assigning 

jobs to themselves and executing them. Whenever a processor becomes free it picks 

from a shared job pool, a ready task whose predecessors (if any) are all completed 

according to a scheduling order [35]. There has been increasing interest in the self-

scheduling scheme using different approaches such as intelligent agents, market 

model and swarm intelligence [36]. More about self-scheduling schemes is 

presented in [37-39].  

4.4.4.2.8 Best Effort versus QoS  

A schedule might offer the best performance for a job at its start but over time other 

jobs may introduce load into the system, or job requirements may change. To 

sustain good performance, high Quality of Service (QoS) and fault tolerance for 

long running jobs and real-time applications, schedulers usually include additional 

features, such as pre-emption, rescheduling, co-scheduling and resource reservation, 

to support such applications. These features are outlined as follows: 

• Pre-emption: a pre-emptive scheduling policy may block a job after it 

started execution and resume it later in the same or a different machine. 

• Rescheduling: a rescheduling policy allows changing the machine in which 

a job is running (migration). It also allows swapping between jobs when a 

certain event occurs such as new job arrival or machine down. 

• Co-scheduling: In a co-scheduling policy, related jobs of an application are 

scheduled to run on different machines at the same time. Co-scheduling 

techniques relay on the communication behaviour of the application to 

schedule the communicating jobs simultaneously. 

• Resource reservation: In a resource reservation policy, a job is allowed to 

reserve required resources even before having the job entering the system so 

it can ensure resource availability. 
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Obviously, these additional features introduce non-trivial overheads to the 

scheduler. Therefore, many schedulers are designed to execute the main scheduling 

functions only, to keep the scheduler simple and light in weight. This kind of 

scheduler is known as a best-effort scheduler, which means that the scheduler 

always tries to make the best decision for each job before it starts running, but with 

minimum performance overhead. It is an optimistic strategy that assumes an ideal 

running environment. Hence, a job would most likely never need special care, such 

as resource reservation or co-scheduling before starting, nor pre-emption, migration 

or rescheduling after starting.  

4.4.4.3 Scheduling Procedure 

Scheduling procedure refers to the scheduling algorithm that implements the 

scheduling policy. Two classes of scheduling algorithms can be addressed: 

optimum and sub-optimum algorithms, as shown in Figure 4.13. 

 

Figure 4.13: Scheduler Procedure Model 

4.4.4.3.1 Optimum versus Sub-Optimum Algorithms 

As explained in section 4.2, the scheduling problem belongs to a broad class of 

optimisation problems which has been subject to extensive research for decades. To 

solve optimisation problems, optimisation algorithms are constructed which try to 

find optimal solutions for which a certain objective function is at its optimum, i.e. 

less than or greater than a threshold value [29].  

However, polynomial time optimisation algorithms cannot be constructed for all 

optimisation problems. These problems are considered to be NP-hard. In such 

cases, one often uses sub-optimal algorithms which tend towards, but do not 

guarantee, the finding of an optimal solution for any instance of the optimisation 

problem. Sub-optimal solutions are further divided, based on the approach followed 
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to construct them, into approximation and heuristics algorithms, which are usually 

confused in the literature.  

4.4.4.3.2 Approximation versus Heuristic  

An approximation algorithm uses the same formal computational model used by an 

optimum algorithm, but instead of searching the entire solution space for an 

optimum solution, the algorithm is satisfied when a “good” solution is found. This 

technique is used to decrease the time taken to find an acceptable solution 

(schedule). In the case of heuristics, empirical data analysis is used to look for a 

“good” solution. A heuristic is a collection of rules or steps that guide one toward a 

solution that may or may not be optimal. Examples include greedy algorithms, Tabu 

search and simulated annealing [40].  

Among distinguishing features between approximation algorithms and heuristics 

are the performance guarantee and evaluation. An approximation algorithm usually 

has a theoretical performance guarantee; for instance the solution it calculates is ten 

percent worse than the best solution. On the other hand, a heuristic will usually 

have no performance guarantee but its solution is intuitively close to the best 

solution [41]. 

4.5 Grid Resource Scheduling 

As defined in Chapter 2, a grid is a collection of computational resources that are 

coupled together to solve a single large problem that cannot be solved on any single 

one of these resources. Hence, a specialised resource management system is usually 

employed to mitigate the complexity of managing such a large number of distrusted 

heterogeneous resources.  

Generally, three basic functions are carried out by a grid resource management 

system:  

• Recourse discovery. 

• Allocating jobs to resources. 

• Job and resource monitoring [42]. 

Although grid resource management and grid resource scheduling are used 
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interchangeably among many grid practitioners, the second function, which is about 

allocating jobs to resources, is what is particularly meant by resource scheduling, as 

defined in section 4.2. This section highlights the main characteristics of grid 

schedulers and applies the proposed framework to compare three well established 

grid schedulers. 

Due to the special characteristics of grid environments, as described in section 

4.5.1, the grid resource scheduling problem is considered more demanding than 

other scheduling problems. Nonetheless, current work in grid scheduling involves 

many manual administrative works. Therefore, new research on grid scheduling 

should mainly focus on solving three problems:  

1. Finding a good schedule. 

2. Automating the scheduling process. 

3. Building a flexible, scalable, and efficient scheduling mechanism [42].  

 
More about the current state of the grid resource scheduling problem, and its certain 

nature and performance measures, are discussed in [43-45]. 

4.5.1 Characteristics of Current Grid Schedulers 

The scheduling problem, in general, has been extensively studied in many areas and 

there is no clear evidence that grid scheduling is a new problem which is different 

from traditional scheduling [43]. However, grid scheduling is more challenging due 

to the special characteristics of grid environments and the current implementation of 

grid resource schedulers, which are summarised in following sections.  

4.5.1.1 Centralised and Hierarchical Schedulers 

Many current grid systems employ centralised schedulers to simplify the resource 

management process and insure full control over resources. There are also 

hierarchical schedulers at several different layers with a grid scheduler (meta-

scheduler) at the highest level, a local scheduler (cluster scheduler) at the lowest 

level, and other layers may exist in between. Both schemes are based on the 

assumption that a detailed system state is available to schedulers which is highly 

expensive, considerably restricts the scalability of the system and simply unrealistic 

in many grid environments due to their dynamic nature.  
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4.5.1.2 Static Clairvoyant Schedulers 

As indicated in section 1.1, virtually all current grid systems employ clairvoyant 

scheduling policies assuming prior availability of information about incoming jobs, 

such as execution times and release dates. Additionally, static schedules are usually 

generated in advance which is apparently unrealistic in dynamic environments and 

severely restricts the system flexibility.  

4.5.1.3 Lack of Dedicated Access to Resources 

Most grid resources are shared among several users or are available to grid usage 

only during idle cycles, dramatically affecting the predictability of resource 

availability [34]. It is important to note that in grid computing, the term dedicated 

resource is employed with a different meaning to that mentioned in section 4.4.1.1. 

Grid computing applications are sometimes run in background mode or as a screen 

saver only when the system is idle. In this case, it is said that the resource is not 

dedicated which means that it is not exclusively devoted for grid utilisation. A 

dedicated resource usually receives jobs from a single scheduler in contrast to non-

dedicated resources, which receive workloads from multiple schedulers.  

4.5.1.4 Heterogeneous Resources 

The heterogeneous nature of grid resources results in great variation and 

unpredictability in the capability of resources. Based on resource models presented 

in section 4.4.1, the most common resource model that grid schedulers need to deal 

with is parallel unrelated resources with different processing speeds for each kind of 

job. There is also the parallel uniform resource model where resources vary in their 

processing speeds but the speed of each resource is constant for all type of jobs 

which is usually the case in Cluster Grids.  

4.5.1.5 High Communication Latency 

Until today, most grid environments have exhibited high communication latency 

[34]. Therefore, it is always believed that coarse-grained applications and 

independent jobs are better candidates to run on grids than applications that need 

intensive communication and synchronisation such as workflows.  
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4.5.2 Examples of Grid Schedulers 

Historically the most common grid scheduler is the user [34]. Nowadays, many 

efforts are under way to change this situation. Condor [46], Legion [47] and 

Nimrod-G [48] among others, are dedicated schedulers utilised in grid resource 

management systems to assign jobs to machines. An extensive survey and 

taxonomy of grid scheduling systems is presented in [8-13]. Here we present a brief 

overview of one of the well-known schedulers in each performance metric. The 

intention is not to make a complete listing of grid schedulers, but to extract evident 

features of one well known example of each performance metric and apply the 

proposed framework, as shown in Table 4.1. 

Table 4.1: Scheduling Framework Applied to Condor, Legion and Nimrod-G 
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4.5.2.1 A Resource-Centric Scheduler: Condor 

Condor [46, 49] is a resource management system for High Throughput Computing 

(HTC) environments, where the main goal is maximising the throughput. It was 

developed by University of Wisconsin, Madison in 1988. It leverages large 

collections of heterogeneous distributed computing resources, ranging from super 

computers to desktops, to solve independent coarse-grained computer-

intensive jobs.  

Condor implements a centralised distributed non-cooperative scheduling policy 

where a central node allocates loads to available nodes, then each node schedules 

the running of its own jobs. The “matchmaking” mechanism is used to match jobs 

to resources based on classified advertisements. The underlying scheduling 

algorithm works in batch mode and is based on the OSH where a job is assigned to 

the first idle machine. The end objective is to balance the load between machines. 

Load balancing is a heuristic that is based on the assumption that being fair to 

machines results in better system performance.  

Condor has been successfully implemented in widely distributed computational 

grids, as demonstrated by SETI@home project [50]. Condor uses the pre-emption 

technique to stop grid jobs, giving the resource owner higher priority while using 

his own resources.  

Condor-G is a new version of Condor, developed by University of Wisconsin, 

Madison in 2001. Condor-G leverages the advantages of both Condor and Globus 

ToolKit [51], the de facto standard for open source grid computing. Condor-G is 

designed to run more fine-grained jobs than Condor, and is more tolerant to faults.  

4.5.2.2 A Job Centric Scheduler: Legion 

Legion [47, 52] was developed by the University of Virginia in 1998. It is an 

object-oriented resource management system for High Performance Computing 

(HPC) where the main goal is to minimise the execution time of an individual job. 

Although the performance metric is resource-centric, this might be altered using 

application level schedulers such as Nimrod/G [48] and AppLeS [53]. This is 

because Legion provides several default generic schedulers, but it also allows users 

to enter their own application level schedulers. This has the advantage of allowing 
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diverse job models to benefit from Legion as each application can have its own 

scheduler associated with it. The scheduling policy is decentralised with the 

scheduling decision made in periodic or batch modes. For better QoS, Legion 

allows resource reservation and rescheduling through job monitoring. 

4.5.2.3 An Economy-Based Scheduler: Nimrod/G 

Nimrod/G [48, 54] was developed by Monash University, Australia, in 2000 based 

on the Nimrod system. The Nimrod system has been utilised successfully in static 

scheduling but it is unsuitable for dynamic environments such as grids. Therefore, 

Nimrod/G has been developed to overcome this shortcoming. Nimrod/G is an 

economy-based resource broker. It focuses on applying economic theories to grid 

resource management and scheduling as part of the GRACE (Grid Architecture for 

Computational Economy) framework. Job models considered in Nimrod/G are 

parameter sweep applications where a job consists of one program with a large set 

of independent parameters to be studied. The program specifies the deadline and the 

price to pay for executing the program. Nimrod/G uses GRACE services to 

dynamically trade with resource providers and consumers. The scheduling policy is 

decentralised with the scheduling decision made periodically. For better QoS, 

Nimrod/G allows resource reservation. 

4.6 Conclusion  

Although the resource scheduling problem is a mature research area, a significant 

lack is a generic framework that can be applied to different application domains, 

and a unified taxonomy to cope with the different terminologies and inconsistency 

among technical terms. It is hoped that the work presented in this chapter succeeded 

in conveying a high level framework for previously published resource scheduling 

taxonomies, and clarifying areas of ambiguity and conflicts. The aim was to make a 

step forward to plug this gap.  

Some scheduler features are usually used interchangeably in the literature ignoring 

the differences between them, for instance, dynamic versus adaptive, dynamic 

versus non-clairvoyant, decentralised versus distributed, and distributed versus 

cooperative. The differences between these features are presented in Table 4.2. 
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However, as resource scheduling systems are closely related to specific system and 

application models, it is difficult to complete a comprehensive survey of the overall 

spectrum. Therefore, this chapter has emphasised grid resource scheduling systems 

in particular in applying the proposed analysis framework.  

Based on the different models of resource schedulers, addressed in this chapter, and 

the special characteristics of PM-Grids, highlighted in Chapter 3, the following 

features can be identified as the main features required for an efficient PM-Grid 

resource scheduler: 

• Self-scheduling and cooperative to conceal the resource management 

complexity from the personal user.   

• Decentralised, local and adaptive to cope with the highly dynamic 

environment.  

• Non-clairvoyant to handle the unpredictability of incoming jobs.  

Finally, it is important to note that there is a significant research potential for the 

non-clairvoyant scheduling which has not been previously applied in the context of 

grid resource scheduling and management systems.  

Table 4.2: Differences between Interchangeably used Scheduler Features 
 Features Difference 

Decentralised  Authority for making policy decisions is distributed to multiple 
entities. 

ve
rs

us
 

Distributed Responsibility for making and carrying out policy decisions is 
shared among multiple entities. 

Dynamic  Job information is available to the scheduler before it starts 
running. 

ve
rs
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Non-clairvoyant Job information is only available after the job finishes its execution. 
Dynamic  Parts of jobs information are revealed dynamically, thus schedules 

are generated in the same manner.  
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Adaptive Some decisions and parameters of the scheduling algorithm are 
dependent on the current system context. 

Approximation  Uses the same formal computational model of an optimum 
algorithm, but instead of searching the entire solution space for an 
optimal solution, the algorithm is satisfied when a “good” solution 
is found. It has theoretical performance guarantee. 

ve
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Heuristic Uses empirical data analysis to look for a “good” solution that may 
or may not be optimal. It has no theoretical performance 
guarantee. 
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Chapter 5 
HoPe: A Honeybee Inspired Scheduler 

5.1 Introduction 

The key to any successful grid system is an efficient scheduler that allocates 

available resources to incoming jobs. Indeed, measuring the potential and 

usefulness of a grid system is nothing but exploiting its ability to efficiently 

schedule its underlying resources [1]. The extremely dynamic nature, diversity and 

limited capabilities of resources, as well as difficulties in predicting the nature and 

timing of incoming jobs, are all factors considerably scaling the complexity of the 

scheduling problem in PM-Grids.  

Through observation, the honeybee colony faces an extraordinarily difficult 

scheduling problem in nature, while allocating forager bees to nectar sources during 

the Nectar Acquisition Process (NAP). The honeybee colony efficiently solves this 

problem through simple non-intelligent agents (honeybees), running a decentralised 

cooperative and adaptive self-scheduling policy. This observation motivated the 

research for this thesis to follow a heuristic approach for resource scheduling in 

PM-Grids that mimics the techniques followed by honeybees during the NAP.  

Among the main contributions of this chapter are the introduction of HoPe: a 

Honeybee inspired resource scheduling heuristic for Personal Mobile Grids as well 

as a detailed analysis of the NAP from a resource scheduling perspective.  

Section 5.2 defines the scheduling problem in PM-Grids. Section 5.3 identifies the 

main non-functional requirements of HoPe. In section 5.4 the HoPe broad 

hypothesis is stated and the questions it raises are addressed and answered. 

Section 5.5 explains and analyses in depth the NAP in honeybee colonies, and 

builds an abstract model for the process, pointing to the main features that inspired 

HoPe. Section 5.6 identifies HoPe implementation elements and explains the 

analogy of the PM-Grid to honeybees, as well as the analogy of HoPe to the NAP. 

Section 5.7 presents a brief review of other biologically inspired scheduling 

heuristics, comparing them to HoPe while section 5.8 concludes the chapter. 
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5.2 Scheduling Problem in PM-Grids 

A PM-Grid is a unified collection of resources connected via a PN. It has the 

potential to deliver grid level services to a personal end user. Whenever a need 

occurs, a PM-Grid user uses his/her client device to send a computational job for 

execution on his/her PM-Grid. The job is received at the nearest work-space. 

Hence, a variable unpredictable stream of incoming jobs arrives at each work-space 

from client devices. Executer devices need to be efficiently allocated to incoming 

job streams producing results that are sent to the result-space where an 

unpredictable stream of generated results arrives. All results that belong to one job 

are accumulated in a separate output file. When an output file containing all job 

results is ready, it is allocated to a composer device for final preparation before 

being dispatched to the sender or a requested address.  

As in the case of all grid systems, the core of a PM-Grid is a scheduler which 

strives to efficiently assign tasks to available grid resources. Grid resource 

scheduling is a complex problem in general, as detailed in section 4.5. Centralised 

plan-ahead schedulers are usually deployed for this purpose. In these schedulers, a 

single authority is in charge of all decisions regarding who should run what and 

when, as shown in Figure 5.1. Two assumptions are common in such schedulers: 

First, clear and sufficient information about incoming jobs is known in advance, 

which is simply not realistic. Second, a globally detailed and frequently updated 

view of the system resources state is available [2], which is prohibitively expensive, 

severely restricts the scalability of the system and exposes it to high security risks.  

As indicated in section 4.4.4.2.2, assuming the availability of clear information 

about the incoming jobs before making the scheduling decision, is what is referred 

to as clairvoyant scheduling, with which virtually all grid resources are concerned. 

Although this clairvoyant assumption considerably simplifies the scheduling 

problem, it is not valid for most real world problems [3]. In contrast, the non-

clairvoyant scheduling approach assumes that such information is unavailable in 

advance, making it more practical for many computer engineering problems, 

especially grid computing where it is usually difficult and costly to make reasonable 

predictions.  
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Figure 5.1: Conventional Grid Schedulers 

In a nut shell, the scheduling problem in a PM-Grid can be defined as efficient non-

clairvoyant scheduling in a highly dynamic environment of limited resources. The 

non-clairvoyant scheduling problem is considered as NP-hard as it contains two 

classical NP-hard problems as special cases:  

• The first case, when all tasks are sequential, the problem reduces to the 

multiprocessor scheduling problem which is NP-hard [4]. 

• The second case, when all tasks have the same execution time, the 

scheduling problem becomes the bin-packing problem which is NP-hard 

also [5]. 

Therefore, one practical way to solve this problem is to design a heuristic that tries 

to find  a “good” solution for this extraordinarily difficult scheduling problem [6]. 

5.3 HoPe Requirements  

The nature of the scheduling problem in PM-Grids, as described in the previous 

section, suggests that an efficient scheduler should meet the following non-

functional requirements:  

• The scheduling policy should be a self-controlled decentralised scheme to 

hide the management complexity of underlying resources from the personal 

user and to cope with the highly dynamic environment. 
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• The scheduler should follow an adaptive non-clairvoyant policy to cope 

with the unpredictability of incoming jobs and the high variability in 

available resources.  

• The processing complexity and the time needed to make the scheduling 

decision must be maintained at minimum levels to keep PM-Grid agents 

simple enough to fit in mobile devices. 

• Agents must communicate in a reliable scheme, again due to the highly 

dynamic nature of the system where devices can leave and join, or switch on 

and off, at any time.  

• The communication between agents should be minimised to reduce the 

power consumption of mobile devices and also to cope with the dynamic 

environment. 

• Agents should have cooperative non-competitive behaviour as underlying 

resources are usually owned by one person who sets common system goals 

which all devices need to jointly accomplish. 

5.4 Broad Hypothesis 

Based on the nature of the scheduling problem and requirements of resource 

schedulers in PM-Grids, applying traditional grid scheduling schemes, as illustrated 

in Figure 5.1, searching for an optimal algorithm is simply not feasible. Therefore, 

this thesis, proposes a novel approach to grid scheduling with a non-clairvoyant, 

fully distributed and adaptive self-scheduling scheme, as shown in Figure 5.2. This 

scheduling approach aims specifically to address the complexity of the scheduling 

problem in PM-Grids which is dramatically scaled by the high level of dynamism, 

diversity and limited capabilities of underlying resources, as well as the remarkable 

unpredictability of the nature and timing of incoming jobs. 

Observations of honeybees has revealed that the colony faces an extraordinarily 

difficult scheduling problem in nature, due to weather unpredictability and food 

variability, while allocating honeybees to nectar sources during the Nectar 

Acquisition Process (NAP). The honeybee colony efficiently solves this problem 

through simple non-intelligent agents, (honeybees) running a decentralised 
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cooperative and adaptive self-scheduling policy. The aim is to maximise the nectar 

intake while maintaining the hive at a stable state where nectar collecting and honey 

processing rates are balanced. This observation is the foundation of the broad 

hypothesis behind HoPe: 

Efficient non-clairvoyant scheduling in a highly dynamic environment of limited 

resources may be achieved with a heuristic approach based on simple agents. The 

agents allocate themselves to multiple work sources in a decentralised, cooperative 

and adaptive self-scheduling scheme striving to maximise work intake while 

maintaining the system in a stable state, in an attempt to imitate the behaviour of 

honeybees during the NAP.  

 

Figure 5.2: HoPe Scheduling Approach 

Three obvious questions regarding the HoPe broad hypothesis might arise: 

1. Why a heuristic approach? 

2. Why the honeybee colony based inspiration? 

3. Why stability as a scheduling objective? 

5.4.1 Why a Heuristic Approach? 

In many complex scheduling problems, it is more efficient to have a heuristic 

suggesting a “good” (near optimal) schedule rather than evaluating all possible 

schedules. For instance, consider developing a schedule for 30 different jobs (or a 

single job of 30 internal tasks) and five different machines. In this case, a scheduler 

needs to examine 530 possible mappings of jobs to machines before determining the 

optimum schedule. Assuming that the scheduler consumes only one nanosecond to 
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evaluate the quality of one possible schedule, then the scheduler will need 530 

nanoseconds (> 4 × 1010 sec. > 1000 years) to evaluate all possible schedules [7].  

What makes heuristics more efficient for many scheduling problems are not only 

that they are considerably easier and quicker to develop than optimisation 

algorithms, but most importantly heuristics are generally more robust to changes in 

data as well. This is because a heuristic deliberately but judiciously ignores certain 

computationally expensive data and depends mainly on alternative simpler 

parameters. Indeed, designing an efficient heuristic is mainly about knowing 

exactly what information to ignore and what information to retain.  

Ideally, expensive parameters to gather, maintain and manipulate are ignored. This 

ignorance frees the scheduler from burdens of reading and manipulating such 

information. Hence, the decision produced is independent of the ignored 

information and unaffected by their changes [8]. On the other hand, alternative 

simpler parameters, which are easier to gather, maintain and manipulate, are 

retained. These simple parameters are usually correlated to the system performance 

in an indirect instead of direct way. They have an impact on the efficiency of the 

provided schedule but may not be directly related, in a quantitative way, to the 

system performance [3].  

Hence, in this thesis it is expected that taking a heuristic approach will produce an 

efficient scheduler with “good” system performance. However, as the case with all 

heuristics, this thesis does not aim to prove that there is a first-order relationship 

between the heuristic proposed and the desired results. 

5.4.2 Why Honeybee Colony-based Inspiration? 

A heuristic based on an intelligent agent approach may considerably reduce the 

complexity of a scheduling problem. However, the processing complexity and 

communication cost of launching intelligent agents are usually overwhelming and 

significantly consume resources especially in devices of limited capabilities. 

Therefore, this thesis has followed the basic idea behind the swarm intelligence 

approach, where intelligent behaviour emerges from the interaction of simple non-

intelligent agents. 
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Swarm intelligence is based on the fact that social insects (insects that live in 

colonies) such as bees, ants and termites, present an intelligent collective behaviour 

albeit composed of simple individuals of limited capabilities [9]. This intelligent 

collective behaviour emerges naturally from the special characteristics of these 

simple agents which include: 

• Self-organisation: Unsupervised coordination of activities. 

• Adaptiveness: Response to highly dynamic environments. 

• Robustness: Accomplishing the group objective even if some members of 

the group malfunction.  

These properties lend themselves well to distributed optimisation problems in 

telecommunications, manufacturing and transportation, among others [10, 11]. The 

rationale behind the swarm intelligence approach is apparent. Social insect colonies 

are efficient successful paradigms from nature and following the same principles of 

such systems will produce successful counterpart engineering solutions.  

Basically, the process of designing a swarm intelligence, or more generally a “bio-

inspired” [12] solution, can be summarised by the flowchart presented in Figure 5.3 

which includes the following steps: 

1. Define the engineering problem at an abstract level. 

2. Find a biological system with the same abstract problem. 

3. Build an abstract model for the biological system. 

4. Build an abstract model for the engineering problem to mimic the 

abstract biological model. 

5. If possible, increase the similarities at a finer level of detail. 

6. Test and evaluate. 

7. If results are not acceptable, go to step 2. 

 
It is clear that finding the right biological system is the most critical step in this 

process. In this thesis, the honeybee colony has been chosen because the problem of 

allocating resource limited machines to job sources in a highly dynamic 

environment has an apparent correspondence with the problem of allocating forager 
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bees to nectar sources in the virtually unpredictable conditions of weather changes 

and food availability in nature, as explained in section 5.4. Indeed, as stated in [13]: 

Among all social systems, the social physiology underlying the 
food collection process of honeybee colonies might be the greatest 
metaphor of cooperative group functioning outside the realm of 
human society.  

However, utilising ideas from honeybees has not been explored in grid computing, 

to the best of our knowledge. Therefore HoPe has been introduced as a step forward 

to plug this gap, exploring the potential of honeybee based algorithms in mitigating 

the grid level resource management complexity.  

 

Figure 5.3: Bio-inspired Design Process  
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5.4.3 Why Stability as a Scheduling Objective? 

Basically, there are two performance metrics that are commonly used in evaluating 

grid resource scheduling systems: turnaround time (TT) and throughput.  

The TT, also known as response time and completion time, measures the elapsed 

time from when a client submits a job until the client receives the corresponding 

results. It is the most popular metric in computational grids. This measure indicates 

the system performance which relates to how well scheduled resources are being 

used to the benefit of each user of the system. 

On the other hand, the throughput represents the amount of work completed by the 

system over a period of time, or per time unit. The throughput is the main concern 

of all high throughput computing systems. This measure relates to how efficient the 

system is in regard to the added cost or overhead associated with the resource 

scheduler. It indicates how well system resources are being used to the benefit of all 

users of the system. However, maximising the throughput on its own saturates the 

network and deteriorates other performance aspects such as queuing delay, which in 

turn affects the TT. Therefore, a mechanism is needed to control the rate of job 

injection into the system [14]. 

Indeed it is always difficult to compromise between scheduling performance 

measures, as maximising the throughput may come at the expense of TT, while 

minimising TT might come at the expense of throughput. The simultaneous 

evaluation of both measures, throughput and TT, is very difficult as they represent 

conflicting goals [15]. Therefore, a methodology is required where these measures 

are separately observable [1] and/or new performance measures that help to 

optimise both are required for capturing the tradeoffs [16].  

Consequently, this thesis focuses on the stability performance measure where the 

objective is to maximise the job collection rate subject to minimising the difference 

between job collection and result generation rates. Stability controls the rate of job 

injection into the system. Hence, it is critical for bounding the queue size which 

presumably reflects positively in TT and throughput. However, proving a first-order 

relationship between the stability measure on one side, and TT and throughput on 

the other, is considered beyond the aim of this thesis. 
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Stability measure is of extra importance for this study in particular, due to the 

suspected bottleneck in the workstation with the hive queue, as explained in section 

5.5.2. In bottleneck cases, scheduling decisions should focus on the bottleneck 

resource, in an effort to maximise its production rate and work output from that 

point, and trying not to release work faster than the bottleneck can process, in order 

to maintain the stability of the resource [17].  

5.5 The Nectar Acquisition Process (NAP) 

 

Figure 5.4: Nectar Acquisition Process (NAP)  

Since ancient times, scientists have been fascinated with the social organisation of 

the honeybee colony. This has been translated into many studies of its biology, such 

as [13, 18-20] among others. As the main aim of this study is to show the possibility 

of exploiting the honeybee food collection technique in designing a solution for a 

particular computer engineering problem, only selected background, that is 

necessary to understand the basic idea behind this work, is provide based on [13]. 

A honeybee colony has a limited number of bees which it needs to allocate wisely 

to the surrounding flower patches from which they collect nectar and bring it to the 

hive for further processing in order to generate comb honey. This process, 

illustrated in Figure 5.4, is what has been referred to as the Nectar Acquisition 

Process (NAP).  

During NAP, a honeybee colony divides labour, based on temporary specialisation, 

among two groups: forager bees, who work in fields collecting nectar from food 

 Nectar sources Hive Unloading area 

Forager bee Receiver bee 
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sources turning it into raw honey, and receiver bees, who work in the hive 

processing raw honey to produce comb honey (honey-filled wax comb as stored 

directly by the bees). This organisation boosts the efficiency of the NAP, but 

requires dynamic coordination of the two labour groups to keep the rates of nectar 

collection and honey processing in balance.  

This coordination problem is significant because the colony experiences large and 

unpredictable variations in the nectar availability. The colony adjusts its nectar 

collection and honey processing rates with respect to external nectar supply mainly 

by dynamically adjusting the number of forager and receiver bees through “waggle” 

and “tremble” dances.  

When food sources are laden with nectar, the colony increases the number of 

forager bees, raising the nectar collection rate. This is done through the waggle 

dance which stimulates some receiver bees to change their roles to foragers and 

help in nectar foraging.  

When the processing rate is lowered, having a number of receiver bees changed 

their role to forager bees, the colony speeds up the honey processing rate through 

tremble dance. The tremble dance stimulates some forager bees to work as receiver 

bees, as shown in Figure 5.5. In the following sections we present a detailed 

analysis for the NAP from the resource scheduling perspective. 

 

Figure 5.5: Dynamic Reallocation of Labours during NAP 

5.5.1 Abstract Algorithms  

The main steps followed by a forger bee and a receiver bee are described in section 

5.5.1.1 and section 5.5.1.2 respectively. 

Forager bee Receiver bee 

Waggle    Dance 

Tremble     Dance 
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5.5.1.1 Forager Bee Abstract Algorithm  

Initially, a forager bee starts searching randomly for a nectar source. When a nectar 

source is found, the forager sucks an amount of nectar that fits its stomach where it 

is mixed with proteins and enzymes producing raw honey. Before returning to the 

hive, the forager assesses the profitability of the remaining nectar in the 

food source.  

On return, the forager waits in the unloading area, an area near the entrance of the 

hive, for a receiver bee to unload her honey. The forager assesses the waiting time 

(WT) in relation to its tremble dance threshold (TDT), which is an internal variable 

calculated dynamically by each forager based on its experience. “Long” WT means 

that the colony nectar collection rate is markedly high. Thus, a nectar forager 

experiences a long WT because most receiver bees are busy unloading already 

arrived foragers. In response, the forager bee performs a tremble dance, in which 

the bee walks slowly about the nest making trembling movements to boost the 

number of receiver bees. The duration of this dance is closely correlated with the 

WT experienced by the dancing bee.  

If the WT is “not that long” but the profitability of the nectar in the food source, 

from where the forager bee gathered nectar, is “high” when compared to the waggle 

dance threshold (WDT), which is an internal variable calculated dynamically by 

each forager based on its experience, the bee starts a waggle dance. During the 

waggle dance, the bee flies in a small figure-of-eight on the dancing floor, a small 

area inside the hive. The direction and duration of this dance is closely correlated 

with the direction and profitability of the nectar in the food source being advertised 

by the dancing bee. The aim of this dance is to boost the number of forager bees 

targeting this food source and also to recruit idle receiver bees to work in nectar 

collection in order to increase the colony’s nectar collection rate.  

After having its raw honey unloaded, a forager bee needs to decide where to look 

next for nectar. If there is still some nectar in her last visited source, it flies directly 

there, otherwise it needs to check the dancing floor for any waggle dance. If there 

is, the forager selects a dancer randomly to follow, then flies directly to the 

advertised nectar source. If this is not the case, the forager looks around for any 

tremble dancing bee, if found, the forager bee changes its role to a receiver bee 
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working in honey processing. If none of the above is the case, the forager bee starts 

searching randomly again for a nectar source.  

Hence basically, a forager bee searching procedure can be summarised by the high 

level algorithm presented in Figure 5.6, while the full high level algorithm that 

shows the basic steps followed by a forager bee can be summarised informally by 

the flowchart and pseudo code presented in Figure 5.7 and Figure 5.8 respectively. 

 

Figure 5.6: Basic Idea of Local Search in NAP  

 

 Figure 5.7: Forager Bee High Level Flowchart  
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Figure 5.8: Forager Bee High Level Pseudo Code  

5.5.1.2 Receiver Bee Abstract Algorithm  

Initially, a receiver bee is waiting near the unloading area for the arrival of any 

returning forager bee loaded with raw honey. Once one arrives, the receiver bee 

unloads its raw honey to store in a comb, a hexagonal cell made of bee wax. When 

a comb is full, the receiver bee fans its wings to thicken the honey and cap it with 

wax producing comb honey.  

During her waiting time, a receiver bee also keeps an eye on the dancing floor. If it 

detects any waggle dancer, it changes its role to a forager bee flying to the 

advertised nectar source. The abstract algorithm of the basic steps followed by a 

receiver bee can be summarised informally by the flowchart and pseudo code 

presented in Figure 5.9 and Figure 5.10 respectively. 

1. Each forager bee 
2. Loop for ever 
3. If you already know a non-empty nectar source  
4. Fly to that source  
5. If not available anymore or there is no more nectar in the source 
6. Go to step # 22 
7. Load nectar  
8. Assess quantity of remaining nectar (NQ) 
9. Generate raw honey 
10. Return back to hive 
11. loop 
12. If there is no ready receiver bee in the unloading area  
13.  Assess WT since you arrived back hive 
14.  If (WT ≥ TDT) 
15.  Do tremble dance 
16. until a receiver bee arrives 
17. Let the receiver bee unload your raw honey 
18. If (WT ≤ TDT) and (NQ ≥ WDT) 
19. Do waggle dance 
20. End if  
21. Else  
22. If you can see any tremble dancer around 
23. Change your role to receiver bee 
24. Exit 
25. End else if 
26. Else  
27. If there is any waggle dancer bee in the dancing floor  
28. Choose one waggle dancer to follow randomly  
29. Go to step # 4 
30. End else if 
31. Else 
32. If there is not any waggle dancer bee in the dancing floor   
33. Search randomly for a nectar source 
34. If you find any  
35. Go to step # 7 
36. End else if 
37. End Loop  



HoPe: A Honeybee Inspired Scheduler 

 

131

 

Figure 5.9: Receiver Bee High Level Flowchart 

 

Figure 5.10: Receiver Bee High Level Pseudo Code  

5.5.2 Abstract Queuing Model  

Principally, to build a system model, the system is simplified as much as possible 

by including only the main properties and functions while eliminating finer details 

that complicate matters. Generally system models are classified as: 

• Mathematical models (Analytical models): A mathematical model is an 

abstraction of the real system represented as a set of equations summarising 

the aggregate system performance but does not describe the detailed events 

that occur in the real system.  

Each receiver bee 
Loop for ever 
 If any loaded forager bee arrives hive  
  Unload her and store raw honey into a comb 
 Else if you can see any full comb 
  Fan and wax the comb generating comb honey 
 Else if there is any waggle dance  
  Change your role to forager bee 
  Exit 
 End else if 
End Loop  

Start

Unload forager and 
store raw honey 

yes

Finish 

Change role  

no

yes

Fan, wax and 
generate comb honey 

no

no

yes

Any loaded 
forager? 

Any waggle 
dance? 

Any full 
comb? 
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• Simulation models (empirical or experimental models): A simulation model 

is an experiment that mimics events that occur in the real system, allowing 

experimentation with different parameters and control logic.  

Some attempts to mathematically model the foraging behaviour of honeybees have 

already been published. In [21] a differential equation of dynamic labour allocation 

in honeybees has been proposed and evaluated for one set of experimental 

conditions. A generic nonlinear differential mathematical model for social foraging 

in both ants and bees has been suggested in [22]. In [23] a probabilistic model of 

individual-level sensing, decision making and nectar foraging in honeybees has 

been developed. Additional detailed models that attempt to quantify most features 

of honeybees are presented in [24].  

However, these are concrete mathematical and probabilistic models quantifying 

features of the honeybee foraging behaviour based on certain sets of predefined 

assumptions. The problem with this approach is that the honeybee colony, as in the 

case of all biological systems, has unique characteristics that are apparently 

different from the mathematical assumptions that lie beneath analytical models. For 

instance, the honeybee colony employs an adaptive control strategy based on the 

current system state while analytical models usually evaluate steady state conditions 

only. An analytical model measures the system behaviour using expected values for 

a predefined set of performance metrics ignoring any changes in the system 

behaviour over time [17]. 

Therefore, in modelling the NAP, this thesis has initiated a queuing theory based 

approach. A generic model for the NAP is developed as a queuing network then this 

model is simulated in several representative scenarios. Detailed descriptions of 

simulation scenarios are presented in Chapter 6.  

The queuing theory is used to model and analyse systems that involve waiting for 

services. A queuing system model usually includes one or more pools (queues) of 

arriving elements and one or more servers (processors) attached to the pools.  

Based on this, from the queuing theory point of view the NAP, or more generally a 

honeybee colony, includes the following components: 
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• Queues: There are two groups of queues in the NAP:  

- Nectar source queues: consist of S small parallel queues of nectar 

waiting for forager bee processors to serve them.  

- The hive queue: is a large queue of gathered nectar (raw honey), waiting 

for receiver bee processors to serve them producing comb honey.  

• Processors: There are N = Nc + Np processors in the NAP. They are 

organised in two main groups : 

- Forager bee processors: consist of Nc= ∑i=1
s 

Ni processors that are 

assigned to the nectar source queues. They represent forager bees 

collecting nectar from nectar sources.  

- Receiver bee processors: consist of Np processors that are assigned to the 

hive queue. They represent receiver bees engaged in unloading and 

processing raw honey.  

Components of a honeybee colony are organised, for the NAP, as a two stage open 

queuing network (in open networks, arriving items can join and leave the system, 

whereas in closed networks the total number of items within the system remains 

fixed), as illustrated in Figure 5.11. This queuing network is composed of multiple 

workstations for the nectar collection course (first stage) and one workstation for 

the honey processing course (second stage). Each workstation is composed of an 

input queue and one or more servers. Processed items from all collection course 

workstations are placed in a single output queue (hive) which in turns serves as an 

input for the single processing course workstation.  

Interestingly, the design choice of the network of workstations, Figure 5.11, 

underlying this natural system, the honeybee colony, is more efficient than other 

alternative design choices such as parallel or serial servers shown in Figure 5.12. 

Both models of networks of workstations and parallel servers are generally 

preferred over the serial servers model. However, in highly variable environments, 

a single group of multiple servers, corresponding to a network of workstations, is 

more efficient than parallel servers, each with its own queue [17]. An important 

feature of this model is that it is highly dynamic. The number of processors (Nc and 
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Np), arrival rates (λ1, λ2,…, λs, λp) and also the number of queues S, are variable 

over time.  

 

Figure 5.11: Honeybee Colony Queuing Model  

 

Figure 5.12: Alternative Queuing Models to a Network of Workstations 

Based on the above-mentioned features of the NAP model, it is clear that it is 

difficult to fit the NAP scheduling problem under the mathematical scope of the 

classical queuing theory. Therefore, computer-based simulations are used to 

approach the problem.  

However, the single processing course workstation can be a “bottleneck” in this 

system. Therefore, it is critical for the entire system to maintain a constant flow, 
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which is known as the steady state balance equation [17]: 

 Rate out = Rate in  (5.1) 

Hence, the scheduling objective of the whole system has been chosen carefully to 

enhance system stability, as explained in section 5.3.3.  

5.5.3 Formulation of the NAP Scheduling Problem  

As illustrated by the queuing model of the NAP in Figure 5.10, the NAP can be 

divided into two stages: nectar collection course and honey processing course. 

5.5.3.1 Nectar Collection Course 

A number of Nc forager processors are connected to multiple nectar queues. A 

forager processor Ni assigns itself an average volume of Lc nectar load, from a 

nectar queue, based on its capacity. Ni delivers its load to a single hive queue, for 

further processing. Ni spends an average time of Tc to complete a collection course. 

The collection course is defined as the process from when Ni starts the decision as 

to which nectar source to access in order to load nectar, until it delivers its load to 

the hive queue, starting the decision making process again. The objective of the 

colony system during this cycle is to maximise its nectar collection rate (λp) which 

is a function of three variables [13]:  

 λp = NcLc/Tc  (5.2)  

 Tc > 0,  

where: 

Nc is the number of forager bees engaged in nectar collection 

Lc is the average volume of nectar load per forager 

Tc is the average time of a collection cycle.  

However, strong evidence suggests that the principal means the system uses to 

adjust λp is altering Nc rather than Lc or Tc [13]. Hence (5.2) can be rewritten as: 

 λp = aNc  (5.3) 

 a > 0 
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Hence, the scheduling problem in the collection course of the NAP can be defined 

as: How to allocate a set of Nc parallel processors to S sources of divisible load jobs, 

so that the number of delivered jobs per time unit is maximised: 

 Maximise {F(Nc) = aNc }  (5.4) 

 a > 0 

5.5.3.2 Honey Processing Course 

A number of Np receiver processors are connected to a single hive queue. A receiver 

processor Nj takes an average volume of Lp honey load, processes it to generate 

comb honey as necessary. Nj spends an average time of Tp to complete a processing 

course. The processing course is defined as the process from when Nj receives a 

honey load until it processes it and is ready to receive another honey load. The 

objective of the colony system during this cycle is to maximise its honey processing 

rate (μp) which is a function of three variables [13]:  

 μp = NpLp/Tp  (5.5) 

 Tp > 0, 

where: 

Np number of receiver bees engaged in honey processing 

Lc average volume of honey load per receiver bee 

Tp average time of a processing cycle.  

Strong evidence suggests that the principal means the system uses to adjust μp is 

changing Np rather than Lp or Tp [13]. Hence (5.5) can be rewritten as:  

 μp = bNp  (5.6) 

 b > 0  

The scheduling problem in the processing course of the NAP can now be defined 

as: How to allocate a set of Np parallel processors to a set of P jobs, so that the 

number of delivered jobs per time unit is maximised: 

 Maximise {F(Np) = μp =bNp }  (5.7) 

 b > 0 

Based on the two above-mentioned courses, the end objective of the scheduling 
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problem in the NAP can be seen as maximising both nectar collection and honey 

processing rates: 

 Maximise {F(Np) , F(Nc) }  (5.8) 

Subject to minimising the difference between them: 

 Minimise {| F(Np) - F(Nc) |}  (5.9) 

As outlined in [13]: “the rates of nectar collecting and processing must be kept in 

balance for the overall operation to proceed. If the collecting rate exceeds the 

processing rate foragers will experience long unloading delays upon return to the 

hive. Reciprocally, if the processing rate exceeds the collecting rate, nectar 

receivers will be underemployed”. 

5.5.4 Main Features  

After analysing the social foraging behaviour of honeybees during the NAP, six 

main features can be identified as the main drivers of this thesis inspiration: 

1. Decentralised self-control scheduling policy. 

2. Adaptive non-clairvoyant scheduling policy. 

3. Easily calculated local control variables. 

4. Reliable communication technique. 

5. Economic communication scheme. 

6. Non-competitive cooperative behaviour. 

 
Noticeably, these features have a direct correspondence to the requirements of PM-

Grid resource schedulers as addressed in section 5.3. 

5.5.4.1 Decentralised Self-Control Policy 

During the entire NAP, a honeybee colony shows a complete absence of any form 

of central or hierarchical control. There are no certain authorities giving instructions 

to other bees regarding who should do what and when; rather each honeybee makes 

these decisions for herself independently of all other bees.  
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5.5.4.2 Non-Clairvoyant Adaptive Scheduling Policy 

The scheduling scheme followed in the NAP is based on non-clairvoyant 

scheduling policy; it does not require or depend on any information about incoming 

work. It is also highly adaptive. This can be clearly exemplified by the dynamic 

allocation of labour among worker bees. Many social insects exhibit a division of 

labour among their members which features them in controlling complex systems 

[25]. However, these labours are permanent such as in ant and termite workers [26]. 

Within a honeybee colony, forager and receiver bees, dynamically exchange their 

roles based on the supply (nectar collection) and demand (honey processing) as 

shown in Figure 5.5. This temporary specialisation makes the system more robust 

and flexible under different loads and scales. Adaptability in honeybees can also be 

exemplified by the way dancing thresholds are determined by each bee. Each 

dancer individually decides a dancing threshold for itself based on its perception of 

the current system state.  

5.5.4.3 Easily Calculated Local Control Variables 

As indicated in section 5.5.3, the objective of a honeybee colony is to maximise its 

nectar collection and honey processing rates, while maintaining them in balance. 

Forager bees perform waggle and tremble dances for this purpose. Surprisingly, a 

forager bee starts dancing without knowing the values of these two important global 

variables (nectar collection rate and honey processing rate). Instead, it monitors two 

local variables which are correlated with the global variables but are far easier to 

calculate: the waiting time experienced until a receiver bee arrives and the 

profitability of the last visited nectar source. Relying on local non-expensive 

parameters makes the scheduler lighter in weight in terms of implementation and 

more robust in dynamic environments. 

5.5.4.4 Reliable Communication Scheme 

In social insects, such as ants, communication among colony mates usually takes 

place in any location in or out of the shared environment. Shared information, 

especially outside the shared environment, can be easily altered by external 

elements. This usually has a negative impact on the reliability of shared 

information. In a honeybee colony, important information related to the NAP is 

exchanged only in a centralised shared memory inside the hive, where dances are 
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performed. Neither colony mates nor external elements can alter the shared 

information. This not only ensures high reliability of exchanged information but 

also makes it much easier to exchange.  

5.5.4.5 Economic Communication Scheme 

Social insects usually communicate important information with their colony mates 

through implicit messages that alter their shared environment by pheromones or 

odours. This communication scheme usually takes time before being effective in 

attracting attention. In contrast, honeybees communicate important information, 

such as the need for more workers in a certain labour and locations of profitable 

nectar sources, through explicit advertisements for such information. This has an 

immediate effect in attracting attention and results in a very efficient group 

recruitment scheme. Furthermore, there are only two pieces of information that are 

needed to be exchanged in the colony during the NAP: the location of rich sources, 

and the need for more workers in a certain labour group. Besides exchanging only a 

limited amount of information, this information is very small in size, and its 

frequency is remarkably low [13]. 

5.5.4.6 Non-Competitive Cooperative Behaviour 

The main driver of many social groups’ behaviour, including human beings, is to 

maximise their profit as defined in certain terms such as money or food. This is not 

the case in honeybees. A honeybee does not compete with other bees within its 

colony to get more profit in terms of food; it cooperates with them to reach common 

goals. This might clarify why honeybees are not choosy when exploiting food 

sources. A dance follower randomly chooses a dance to follow flying directly to the 

advertised source without waiting for the whole dance duration when the source 

profitability can be determined. Through this behaviour, foragers efficiently 

distribute themselves among all food sources. If instead, a forager bee tries to 

maximise its own benefit, it would have waited until it knows the profitability of a 

nectar source. This would have resulted in an all-or-none response which is a less 

than optimal allocating scheme [13].  

5.5.5 Elements of Honeybee Colony and NAP  

Modelling a process involves representing the environment where the process runs 
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and activities and elements that are related to that process. Having a closer look at 

the NAP, one can differentiate between two groups of important elements: the first 

group represents elements that are part of the honeybee colony itself, which can be 

considered as the process environment. This group is used to model the PM-Grid. 

The second group represents elements and activities that constitute the NAP. This 

group is used to implement HoPe. Here, the two groups of elements are presented 

with a brief description of each.  

It is important to note that this separation between elements of the honeybee colony 

as a system, and the NAP as a procedure to run by this system, is only to simplify 

tracing the origin of the PM-Grid and HoPe elements. In reality it is difficult to 

make such a distinction. 

5.5.5.1 Elements of Honeybee Colony 

Section 5.5.2 revealed the following important elements of a honeybee colony in 

the context of the NAP:  

Agents: 

• Forager bees: simple agents collecting nectar from food sources, 

transforming it into raw honey and bringing it to hive. 

• Receiver bees: simple agents receiving raw honey from foragers and 

processing it further to produce comb honey. 

Places: 

• Food sources: multiple variable places from which nectar can be collected. 

• Hive: a centralised well identified place where raw honey is delivered then 

packed for final processing as a comb honey.  

5.5.5.2 Elements of NAP  

Analysing the NAP identifies the following main elements: 

Communication elements: 

• Nectar: an input item that is collected and processed, producing honey.  
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• Raw honey (gathered nectar): an intermediate element produced after 

processing nectar. It is accumulated in uncapped combs (wax cells) for 

further processing.  

• Comb honey: an output item that is produced after processing accumulated 

honey in full wax cells. 

Communication means: 

• Dancing floor: an area within the hive where important information 

regarding rich food sources is advertised through dancing. 

• Unloading area: an area at the entrance of the hive where bees returning 

from food sources wait for food receiver bees to unload them. 

• Combs: a place where raw honey is accumulated until full then transferred 

outside the hive.  

Communication techniques: 

• Waggle dance: a symbolic advertisement performed by a forager bee 

regarding the location of a rich nectar source and its profitability. It is also 

used to recruit idle receiver bees to work in nectar foraging to increase the 

nectar collection rate. The waggle dance is defined by three parameters: 

waggle dance threshold (WDT), waggle dance duration, advertised work-

space. 

• Tremble dance: a symbolic advertisement performed by a forager bee when 

it experiences a long delay waiting to be unloaded. The objective is to 

recruit idle forager bees to work as receiver bees to increase honey 

processing rate. The tremble dance is defined by two parameters: tremble 

dance threshold (TDT) and tremble dance duration.  

• Forager waiting in the unloading area: an implicit request for unloading. 

• Receiver waiting in the unloading area: an implicit message of being ready 

to unload. 

Parameters: 

• Waiting time: the time from which point a forager bee enters the unloading 

area, inside the hive, until a receiver bee arrives to unload her. 
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• Profitability: a measurable criterion of the quality of a nectar source. Much 

evidence suggests that it is related to the amount of nectar remaining in the 

nectar source. 

• Nectar collection rate: the amount of gathered nectar (raw honey) arriving at 

the hive from all nectar sources per time unit. 

• Honey processing rate: amount of raw honey processed inside the hive per 

time unit to produce comb honey. 

• Waggle dance threshold (WDT): is an internal variable for each forager. It is 

a criterion related to the quantity of nectar remaining in the nectar source; 

when met a forager bee starts a waggle dance. It does not have a fixed value; 

instead it varies from bee to bee and from time to time under different 

conditions. 

• Advertised nectar source: a specific nectar source with high profitability 

from which a waggle dancing forager bee has just returned. 

• Waggle dance duration: the time from when a waggle dancing bee starts a 

waggle dance, until it finishes. It is a function of the profitability of the last 

visited nectar source. 

• Tremble dance threshold (TDT): is an internal variable to each forager bee. 

It is a criterion related to the waiting time experienced by a forager bee on 

return from a nectar source; when met a forager bee starts tremble dance. It 

does not have a fixed value; instead it varies from bee to bee and from time 

to time under different conditions. 

• Tremble dance duration: the time from when a tremble dancing forager bee 

starts a tremble dance, until it finishes. It is a function of the waiting time. 

5.6 From Inspiration to Algorithm 

The initial aim was to explore possibilities for defining the process of allocating 

machines to job sources, collecting tasks, processing them and generating results in 

a PM-Grid, in a way that is similar to the process of allocating forager bees to 

nectar sources, collecting nectar, processing it and generating comb honey in a 
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honeybee colony. From the first glance, it was clear that the two problems were 

similar, at least at an abstract level. Therefore the aim has been extended to increase 

the similarity between the two systems at a finer level of detail. This section, briefly 

illustrates the direct correspondence between elements of the honeybee colony and 

the PM-Grid. After that, HoPe implementation elements are introduced, attempting 

to mimic elements from the NAP.  

5.6.1 Mapping between PM-Grid and Honeybee Elements  

As indicated in Chapter 3, a PM-Grid includes three groups of architectural 

elements: clients, workers (decomposers, executers and composers) and spaces 

(work-spaces and a result-space). A honeybee colony, as explained in section 

5.5.5.1, includes two main groups of elements: agents (forager and receiver bees) 

and places (food sources and a hive). The direct correspondence between elements 

of the two systems is summarised in Table 5.1 and can be explained as follows: 

• Spaces: Work-spaces and the result-space are analogues of important places 

to a honeybee colony, namely, food sources and the hive respectively.  

• Workers: Executers and composers correspond to the two labour groups: 

forager and receiver bees respectively. Decomposers are needed to partition 

jobs into smaller tasks to fit executer capacities. In a honeybee colony, each 

forager sucks up a suitable amount of nectar based on her stomach size. 

Therefore, in the PM-Grid modelling, the decomposition functionality is 

integrated within the executers.  

• Clients: Clients are basically the sources of jobs available in work-spaces; 

they are essential for PM-Grids to populate work-spaces with jobs. 

However, nectar is available in food sources naturally.  

Table 5.1: Mapping between PM-Grid and Honeybee Colony Elements  

Honeybee colony PM-Grid 

Food sources Work-spaces 

Hive Result-space 

Forager bees Executers 

Receiver bees Composers 
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The design of a PM-Grid depicted in Figure 3.10 can be abstracted as a set of 

queues and servers as shown in Figure 5.13 which shows elements of PM-Grids 

corresponding to each queuing element at the top of it. 

 

Figure 5.13: Queuing Model of a PM-Grid  

5.6.2 HoPe Elements  

HoPe design includes the following groups of elements:  

Communication elements: 

• Job: a large computational program that can be divided into an arbitrary 

number of smaller tasks. 

• Task results: generated output after executing a task. 

• Job results: generated output after composing task results from all tasks that 

belong to the same job. 

Communication media: 

• Executer help list (EHL): is a public dynamic list, residing in the result-

space. It keeps track of the (Executer Help Message) EHM sent from 

executers to the result-space. It has entries for all active EHMs, which have 

not yet expired. For heavy loaded work-spaces, more EHMs will be 

received. As a result, they will have more entries in the EHL raising the 
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probability of picking one of them randomly. Hence more executers will be 

attracted to heavy loaded work-spaces. 

• Composer help flag (CHF): is a public structure, also residing in the result-

space. It has two fields: the first field is a one bit flag which is set to one on 

receiving a CHM and unset to zero when the message duration is reached. 

The second field indicates the duration after which the flag should be unset. 

If a new CHM is received while the flag field has already been set to one, 

the duration field is updated with the duration value of the more 

recent CHM. 

• Task results list: is a public structure, also residing in the result-space. Each 

entry to this list consists of two fields. The first contains the name of the file 

where received task results of a job are accumulated. The second field 

represents the status of this file. Complete status means that all task-results 

of this job are available and the file is ready for a composer. Pending status 

means the task-results have not been completed yet.  

Communication techniques: 

• Executer help message (EHM): a message sent by an executer to the result-

space which includes the ID of a heavily loaded work-space and its 

profitability. It is used to attract more executers to this specific work-space, 

as well as to recruit idle composers to work as executers. Each message has 

two main fields: one indicating the duration after which the message expires 

and the other for the ID of the advertised work-space. The duration field is 

calculated as a function of the RW in the advertised work-space. 

• Composer help message (CHM): a message sent by an executer to the result-

space when it experiences a long time waiting for a RM from the result-

space to indicate that the result-space can accept incoming task-results. The 

CHM has a main field for the duration after which the message expires. The 

message duration is calculated as a function of the WT experienced by the 

executer. 

• Unload request message (URM): a message sent by an executer to the result-

space after generating task results checking if the result-space is ready to 

accept incoming results.  
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• Ready message (RM): a message sent by the result-space to an executer in 

response to an URM to indicate that the result-space is ready to accept task-

results. For each task result picked by a composer, a RM is sent (or is ready 

to be sent) to respond to an URM.  

Parameters: 

• Remaining workload (RW): the volume of work, remaining in the last 

visited work-space. 

• Waiting time (WT): the time from when an executer sent an URM to the 

result-space until it receives a RM from the result-space indicating that it can 

accept incoming task results. 

• Job collection rate (JCR): is the number of jobs entering the result-space per 

time unit. It is calculated as:  

 JCR = TCR/ k  (5.10) 

 k > 0 

where: 

TCR is the task processing rate, the number of tasks entering the result-

space per time unit. 

k is the average number of tasks per job. 

• Result generating rate (RGR): is the number of jobs leaving the result-space, 

after having their job-results composed successfully, per time unit. 

• Executer help threshold (EHT): is an internal variable to each executer that 

is related to how the executer assesses the RW in relation to its current 

workload (CW). When EHT exceeds a certain limit, the executer sends an 

EHM to the result-space. It does not have a fixed value; instead it varies 

from executer to executer and from time to time under different conditions. 

In HoPe implementation, an EHM is sent when the following condition 

is true: 

 RW > c ×CW  (5.11) 

  c ≥ 1, CW > 0 

where: 

c is an experimentation parameter. 
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CW is the current workload by the executer.  

• Advertised work-space: The ID of a work-space of which the EHT is 

exceeded. 

• Executer help message duration (EHMD): the elapsed time during which an 

EHM will be displayed in the EHL. In HoPe implementation the EHMD is 

calculated as a function of RW and CW:  

 EHMD = RW/ CW   (5.12) 

 CW > 0 

• Composer help threshold (CHT): is an internal variable to each executer. It 

is a criterion related to the WT experienced by an executer waiting for a RM 

from the result-space. When CHT exceeds a certain limit, the executer sends 

a CHM to the result-space It does not have a fixed value; instead it varies 

from executer to executer and from time to time under different conditions. 

In HoPe implementation, a CHM is sent when the following condition 

becomes true: 

 WT > d × ECD (5.13) 

 d ≥ 1 

 ECD = Time URM sent - time job received  (5.14) 

where:  

ECD is the execution cycle duration. 

d is an experimentation parameter. 

• Composer help message duration (CHMD): the elapsed time during which 

the CHF remains at one after being set by a CHM. It is calculated as a 

function of the WT experienced by the executer sending the CHM:  

 CHMD = e× WT  (5.15)  

 e ≥ 1 

where:  

e is an experimentation parameter. 

5.6.3 Mapping between NAP and HoPe Elements  

There is a clear correspondence between the allocation problems of workers and 
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machines. The aim is to increase the similarity at a finer level of detail through 

extensively borrowing the principles behind the NAP in the HoPe heuristic to tackle 

the resource scheduling problem in PM-Grids. The detailed mapping between NAP 

elements and HoPe elements is presented in Table 5.2. 

Table 5.2: Mapping between NAP and HoPe Elements  

NAP HoPe 

Nectar Tasks 

Raw honey Task results 

Comb honey Job results 

Dancing floor  Executer Help List  

Unloading area  Composer Help Flag 

Combs Task results list 

Waggle dance Executer Help Message  

Tremble dance Composer Help Message  

Forager waiting in the unloading area Unload request message  

Receiver waiting in the unloading area Ready message  

Profitability Remaining workload  

Waiting Time Waiting Time  

Nectar collecting rate Job collecting rate 

Honey processing rate Result generating rate 

Waggle dance threshold Executer help threshold  

Tremble dance threshold Composer help threshold  

Advertised nectar source Advertised work-space 

Waggle dance duration Executer help message duration 

Tremble dance duration  Composer help message duration 

 

5.6.4 HoPe Algorithms 

HoPe operates in two stages: an initialisation stage and a dynamic scheduling stage. 

In the initialisation stage, initial device roles are assigned. As indicated in Chapter 

4, the result-space is co-located with the PN agent and is advertised by it at the PN 

formation stage which is described in details in the Technical Annex [27] and the 

conceptual PN architecture [28].  

Work-spaces are identified and registered with the result-space in the current-work-

spaces-list. Worker devices are also identified and registered with the result-space 
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in the active-workers-list. The result-space updates both lists frequently through 

periodic Hello messages. Worker devices access the result-space when they need to 

update their copies of the current-work-spaces-list. 

The dynamic scheduling stage of HoPe is presented as abstract algorithms for 

executers, as illustrated in Figure 5.14 and Figure 5.15, as well as composers as 

illustrated in Figure 5.16 and Figure 5.17. It is important to note that these 

algorithms are meant to serve as skeletons; implementation details such as data 

preparation, parameter passing, data structure, differ according to the requirements 

of various applications and running environments.  

 

 

Figure 5.14: Executer High Level Flowchart  
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Figure 5.15: Executer High Level Pseudo Code  

 

 

Figure 5.16: Composer High Level Flowchart  
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Figure 5.17: Composer High Level Pseudo Code  

A simple sequence diagram that shows the interactions between the main 

participants in HoPe during a job life cycle is illustrated in Figure 5.18. It is 

important to note that the aim of the sequence diagram is to show the main 

messages that are related to a single job life cycle, hence frequent messages and 

messages that are related to previous or incoming jobs are not shown in 

the diagram. 

 

Figure 5.18: HoPe Sequence Diagram during a Job Life Cycle  
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5.7 Related Work 

Resource scheduling is a very active area of research in general and in grid 

computing in particular. Chapter 4 extensively reviewed the area and pointed to 

some well-established grid schedulers such as Condor [29], Legion [30] and 

Nimrod-G [31]. This section focuses on insect inspired scheduling algorithms 

highlighting how they differ from HoPe.  

Social insects are increasingly attracting attention in solving optimisation problems 

resulting in many successful new computing paradigms [32]. In [10] an overview of 

biological facts about social insects, their inspired algorithms and application areas 

in computer engineering and science, are presented.  

Ant Colony Optimisation (ACO) [33], Particle Swarm Optimisation (PSO) [34] and 

more recently Artificial Bee Colony (ABC) [35] among others are well established 

meta-heuristics aiming to solve general optimisation problems. However, in many 

cases, it is difficult, or more efficient, to adapt the solution to a specific end 

problem. Indeed, there is a need for tailored algorithms to model certain problems 

as close to reality as possible. Hence, some work has already emerged to address 

this problem in resource scheduling.  

Among all social insects, ant and bee colonies in particular have inspired 

researchers in resource scheduling. Consequently, it is timely to compare the basic 

ideas behind each algorithm. In section 5.5, the abstract algorithms for food (nectar) 

acquisition process in honeybees were presented. Here, the same process (food 

collection) is briefly described when performed by an ant colony. 

For food collection, a group of worker ants start searching randomly for food 

sources. They leave a pheromone trial on the searching path while moving. When 

an ant discovers a source, it evaluates its profitability. During the return trip, the 

amount of pheromone an ant leaves on the path is proportional to the profitability of 

the discovered source. Other ants follow the path with a higher pheromone 

concentration [36].  

There are already several publications that have proposed ant-inspired resource 

scheduling heuristics for grid environments [37]. For instance, in [38] an ant-
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inspired scheduling heuristic has been proposed for computational grids with the 

goal to minimise the execution time of computational jobs. Once a job is submitted 

to the grid, a worker will try to schedule this job to the node with the highest 

pheromone which is the node that gives the least job execution time for a test 

program. Although this algorithm gives promising results when evaluated, it suffers 

from some problems which are common to ant-inspired heuristics when compared 

to bee-inspired heuristics. First, information about a good source for ants is not 

directly advertised. It takes time until the pheromone reaches a certain 

concentration, then when an ant passes nearby or is guided by another ant, it will 

get to know about this source. On the other hand, in a bee colony a good food 

source is immediately advertised to the entire colony. Second, to make a decision, 

an ant needs to compare several alternatives which is time consuming and requires 

information about other alternatives from outside. This is not the case in bees where 

the decision is completely local to the bee itself requiring no outside information. 

Third, worker ants do not exchange their roles resulting in a fixed number of servers 

for each role, whereas worker bees are assigned their roles based on temporary 

specialisation which results in a more flexible system with a virtual number 

of servers.  

In an investigation of whether pheromone-based algorithms (inspired by ants) are 

outperformed by non-pheromone based algorithms (inspired by bees), experimental 

results by [39] showed that non pheromone based algorithms are significantly faster 

when finding and collecting food and use fewer time steps to complete a task.  

 
It seems that honeybees in particular behave in a very interesting way in achieving 

remarkable results, viewing them from the problem solving perspective. However, 

considering bees in the resource scheduling context remains relatively unexplored. 

A very detailed exhaustive literature review and classification of the emerging 

studies in honeybee inspired algorithms and systems is presented in [35]. The 

review concluded that most of the work in this area started in the very last few years 

and the main researched areas are continuous optimisation and travelling 

salesman problems. 
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In [40] an evaluation of the robustness of bees’ foraging behaviour using a multi-

agent simulation platform is presented. The study showed that the foraging strategy 

of a honeybee colony is robust and adaptive and that its emerging features allow the 

colony to find optimal solutions.  

In [41] a honey-inspired algorithm is proposed to dynamically allocate Internet 

servers to client requests with the objective to maximise the revenue of an Internet 

hosting centre. The performance of the algorithm was compared with three 

algorithms: omniscient, greedy and static optimal. As expected, the omniscient 

algorithm outperforms all three algorithms, but it is significantly time and space 

intensive. The bee algorithm performs the best of the other two algorithms. 

However, the main drawback of this algorithm is that assessing the profitability of a 

server does not rely on local and easily calculated information in order to preserve 

the simplicity and efficiency of bee algorithms. Instead, a server needs to compare 

its total revenue rate with the overall revenue rate of the hosting centre before 

making any scheduling decision which is computationally expensive and time 

consuming.  

In [42] a bee colony optimisation algorithm for a job shop scheduling problem is 

proposed. As indicated in Chapter 4, job shop scheduling is concerned with certain 

kinds of problems where each job needs to visit certain machines in a predefined 

order. The objective was to minimise the makespan. The algorithm goes into 

successive iterations to find the schedule with the highest profitability (the 

minimum makespan). The algorithm was compared with an ant colony and Tabu 

search algorithms. Results showed that Tabu search outperformed both, but the bee 

algorithm performed better than the ant algorithm. However, this bee algorithm is 

of a clairvoyant static policy, assuming that characteristics of computational jobs 

and resources are known in advance, which usually cannot be assumed in practice. 

Additionally, the algorithm is computationally expensive. In each iteration, the 

profitability of a schedule is compared to the average profitability of all other 

schedules. Neither this algorithm nor [41] have considered the tremble dance in 

their implementations. 
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5.8 Conclusion 

In this chapter, a detailed analysis of the NAP is presented with algorithmic and 

queuing models. These models are utilised as the basis for developing HoPe with a 

direct correspondence at finer levels of detail to the NAP.  HoPe is designed with a 

self-scheduling policy to conceal the resource management complexity from the 

personal user.  It employs a decentralised cooperative and adaptive scheduling 

policy to cope with highly dynamic environments. The non-clairvoyant scheduling 

policy of HoPe aims to handle the unpredictability of incoming jobs and available 

resources. The entire scheduling process in HoPe depends only on local and easily 

calculated parameters making HoPe of high potential for mobile devices. The role 

altering technique of HoPe has the potential to virtualise the actual number of 

available resources and fluctuation in them.  

Reviewing the area of insect-inspired heuristics revealed that only few work has 

emerged in the bee-inspired resource scheduling in particular. However, it seems 

that bee-inspired heuristics have not been introduced to grid computing before. 

Therefore, HoPe has been proposed to explore the potential of bee-inspired 

algorithms in mitigating the grid level resource management complexity.  
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Chapter 6 
Evaluation and Results 

6.1 Introduction 

The aim of PM-Grids is to support a personal user with a general purpose resource-

rich computing environment that is beneficial in different aspects of his/her every 

day and working life. This support is via sharing the user’s own resources in a PAN 

extended with clusters of remote devices which belong to his/her PN, as detailed in 

Chapter 3.  

Resource sharing is inevitably problematic. Therefore an efficient resource 

scheduler is the core of a PM-Grid. In Chapter 5 the design of a resource scheduler 

for PM-Grids (HoPe) is presented. In this chapter, an experimental evaluation study 

of HoPe is presented in a simulated PM-Grid environment at different scales. 

Among the main contributions to this chapter are PM-Grid simulated models of 

different scales, a controlled experimental study to prove the concept of the 

proposed paradigm (PM-Grid) and to evaluate the performance of the proposed 

scheduling heuristic (HoPe), as well as performance models for the HoPe and 

the OSH. 

In section 6.2 evaluation objectives are indicated. The detailed experimental design 

is described in section 6.3. In section 6.4 the resource scheduling framework 

proposed in Chapter 4, is applied to describe the scheduling model of HoPe and 

OSH. The PM-Grid simulator is presented in section 6.5. Section 6.6 explains how 

performance models of both heuristics were predicted.  Section 6.7 describes the 

evaluation experiments in detail. In section 6.8 the results and performance models 

are illustrated and discussed. Section 6.9 concludes the chapter. 

6.2 Evaluation Objectives 

The thesis is that a PM-Grid can allow personal users to seamlessly combine their 

own personal devices, either mobile or stationary, to accomplish relatively large 



Evaluation and Results 

 

160

computational jobs. To test this thesis, an adaptive self-scheduling heuristic, HoPe, 

has been proposed with a non-clairvoyant scheduling policy. Such a resource 

scheduler is the core of PM-Grids.  

HoPe, which is inspired by the nectar collection technique in honeybee colonies, is 

based on the hypothesis that if a colony of honeybees is able to efficiently allocate 

its members among nectar sources and dynamically adapt itself to environmental 

changes through simple non-intelligent agents, then a technology system 

constructed on similar principles should be able to efficiently allocate its members 

to job sources and automatically adapt itself in a highly dynamic environment such 

as PM Grids. 

The end aim of the evaluation process was to evaluate the PM-Grid as a proof-of-

concept. Measuring the potential and usefulness of a grid system is nothing more 

than evaluating its ability to efficiently schedule its underlying resources. Therefore 

a well-controlled experiment has been conducted on a PM-Grid model employing 

the purposely developed heuristic, HoPe, to schedule its resources. The aim has 

been fulfilled through the following objectives:  

• Test HoPe performance by exploring how it is affected by variations in PM-

Grid environment specifications, namely: 

- The job interarrival time: The system should sustain various loads as 

personal users’ requirements vary significantly. 

- The number of nodes: the system should be sufficiently scalable to 

accommodate different infrastructure scales, as PM-Grids can be utilised 

by individuals as well as small size organisations, as described in 

Chapter 3. 

• Evaluate HoPe efficiency by comparing it to a well-established heuristic in 

the same area, OSH, as well as an optimum value or worst bound, when 

possible, for each performance metric. 

• Build performance models for both heuristics to obtain a clearer insight into 

HoPe behaviour. 
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6.3 Experimental Design 

There are two main limitations in the simulation methodology of current scheduling 

research. First, there are no simulation standards and, second, traditional computing 

platform standards are no longer valid for modern platforms [1]. To overcome this 

problem, strictly controlled experiments in a logical network model of PM-Grids 

have been designed which involved the following steps: 

1. Identifying the critical elements inherent in the design of grid scheduling 

systems and deciding on the set to be considered in this experiment: job 

interarrival time, number of nodes, job size and processor capacity. 

2. Varying the experimental variables, job interarrival time and number of 

nodes, to simulate a representative sample of grid environments.  

3. Controlling extraneous variables, job size and processor computational 

capacity, by randomisation to ensure a representative sample in all 

experiments.  

4. Identifying a benchmark algorithm. The opportunistic scheduling heuristic 

(OSH) has been selected for this purpose.  

5. Identifying suitable performance measures, stability, net throughput, mean 

TT and speedup, to compare HoPe and OSH.  

6. Building a flexible PM-Grid simulator that offers an easily controlled 

environment and robust experimental design. 

7. Comparing the performance of both HoPe and OSH to optimum values or 

worst bounds, then reporting and analysing the main findings.  

8. Improving the accuracy of the simulation-base study through:  

• Running 10 simulations and accepting the mean outcome. 

• Ignoring simulation results generated in the first 60 seconds. 

• Measuring the uncertainty in data using the measure of standard 

deviation (SD) and displaying the values as error bars in all charts. 

• Calculating the absolute error and relative error to examine the quality of 

obtained results. 
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As addressed in [2], an approximation or heuristic algorithm A is probabilistically 

evaluated by comparing its solution values A (In) with the optimum value OPT (In) 

based on one of the two evaluation criteria:  

• Absolute error: The absolute error is defined as the difference between the 

approximate and optimal solution values: 

 an = A (In) - OPT (In)  (6.1) 

• Relative error: the relative error is defined as the ratio of the absolute error 

and the optimal solution value: 

 rn = (A (In) - OPT (In))/ OPT (In)  (6.2) 

6.4 Resource Scheduling Framework in PM-Grids 

This section describes the resource scheduling framework in PM-Grids, based on 

the framework proposed in Chapter 4, which is summarised in Table 6.1. 

6.4.1 Resource model 

In resource scheduling frameworks, the resource model is used to describe the 

nature of individual resources that can be assigned jobs. In PM-Grids this applies to 

executer and composer devices. As described in Chapter 3, both groups of devices 

belong to the same category, worker devices. Hence, they have quite similar basic 

capabilities such as processor capacity. However, PM-Grid devices are not 

dedicated grid resources; only idle cycles can be utilised in PM-Grids. This results 

in dynamic processor capacities over time. Therefore, the resource of PM-Grids can 

be viewed as parallel unrelated processors.  

Heterogeneity in processor capacity is modelled assuming three types of processors 

(Pa, Pb, Pc) which differ only in capacities, as shown in Table 6.2. During running 

time, a uniform random number Rproc from 1 to 3 is generated to indicate the 

processor capacity which conforms with similar lines of research conducted by [3].  

A simulation model of the PM-Grid platform is developed using OpnetTM 12.0 [4]  

modeller. Three representative infrastructure scales of PM-Grids in potential 

application areas were considered:  
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• Small (4 workers/cluster). 

• Medium (8 workers/cluster).  

• Large (16 workers/cluster).  

Table 6.1: Resource Scheduling Framework in PM-Grids 
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The model is simulated as a logical network, that consists of N=5 clusters, as shown 

in Figure 6.1. All clients were placed in one cluster (cluster 0) which represents the 

PAN with the user at its inner core submitting jobs to his/her PM-Grid via devices 

in this cluster. For simplicity, the result-space is placed alone in a separate cluster 

(cluster 4). All other clusters consist of one work-space and w workers. However, as 

this is a logical network, device placement has no impact on the system 

performance. 
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Table 6.2: Experimental Processor Capacity  

Processor Processor capacity (Mflop/sec.) 

Pa 100 

Pb 50 

Pc 10 

 

Table 6.3 and Table 6.4 present the number of devices in each role as well as the 

number of workers in the three PM-Grid scales respectively. From the total number 

of workers, 75% are initially assigned an executer role, and the remaining 25% are 

assigned a composer role. This selection is aimed to conform with the natural 

distribution of roles in a honeybee colony where [5] stated that nearly 75% of 

honeybees are food foragers.  

 

Figure 6.1: PM-Grid Model (4 workers/cluster) 

This model can scale easily and allows the testing of HoPe performance in isolation 

of possible effects caused by physical hardware, network topology and 

implementation technologies. This isolation is important to gain a clear insight into 

HoPe performance. Experimenting with realistic networks is left for future work to 

see how physical hardware and network parameters of a PM-Grid may affect HoPe 

performance. 

cluster 0 cluster 1 

cluster 2 cluster 4 

cluster 3 

client   worker space 
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Table 6.3: Number of Devices in each PM-Grid Device Role 

Role No. of machines 

Client 4 

Work-space 3 

Result-space 1 

Worker 12, 24, 48 

 

Table 6.4: Number of Workers in each PM-Grid Scale 

Workers/cluster Total no. of 
workers 

Initial no. of 
executers 

Initial no. of 
composers 

4 4 × 3 = 12 8 4 

8 8 × 3 = 24 18 6 

16 16 × 3 = 48 36 12 

 
 

6.4.2 Job model 

The job model assumed by HoPe is DL applications where each job can be divided 

into an arbitrary number of independent tasks of low granularity, as described in 

Chapter 3. It is assumed that the input to each task is a single file which is sent with 

the task. Each task produces exactly one output file, as shown in Figure 6.2. This 

model can be found in many everyday application areas related to personal users 

such as image processing, database searching and cryptography.  

 

Figure 6.2: PM-Grid Job Model  

J 

T1 T2 Tk… 

Job 

Tasks 

 Sub-results 

Result R 

RkR2R1 … 
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Without loss of generality, this thesis has considered a cryptography application in 

particular as it has potential applications in personal environments where security 

and privacy are critical issues. The basic idea behind cryptosystems stems from the 

presumed difficulty of factoring large integers. The problem of factoring large 

integers has attracted considerable research interest. The Fundamental Theorem of 

Arithmetic (the Unique Prime Factorisation Theorem) stated that: every positive 

integer greater than one has a unique prime factorisation [6], for instance 

1674=31×3×3×3×2. However, the theorem provides no insight into the factoring 

process itself. 

During the past two decades several general purpose algorithms have been proposed 

to tackle this problem such as Pollard Rho Algorithm, Lenstra_s Elliptic Curve 

Algorithm and Trial Division Algorithm [7]. The Trial Division Algorithm is the 

least complex to understand and to implement [8] making it a viable integer 

factorisation option for devices with limited resources. Additionally, this algorithm 

is extremely amendable for parallelisation where each parallel processor can be 

assigned a number of iterations [6], making it appropriate for distributed 

environments. Therefore, it has been selected for experimenting with HoPe. The 

main steps in the simplest form of a trial division algorithm implemented in C++, is 

shown in Figure 6.3. 

 
 

Figure 6.3: Simple Trial Division Algorithm (C++)  

The Trial Division Algorithm tries to find all positive integer divisors less than or 

equal to n (number to be factored). Clearly, it is only worthwhile to test candidate 

factors less than n. Specifically, the trial factors need go no further than n . The 

algorithm execution time is a function of n. In the worst case, the algorithm can take 

 int n; 
 double temp,  
 cin>> n; // number to be factored 
 for (int i=2; i <= sqrt((double)(n)); i++)  
  { 
   temp=(double)n/(double)i; 
   if (temp == (int)temp)  
    cout<< i << “, “ ; 
   } 

http://en.wikipedia.org/wiki/Integer_factorization�
http://en.wikipedia.org/wiki/Integer_factorization�


Evaluation and Results 

 

167

up to n /2 which gets even worse for large n. Therefore several other refinements 

have been suggested to enhance the algorithm. For instance, if n is odd, then only 

odd divisors are considered. Actually, only prime numbers need to be considered. 

Hence, the algorithm can be provided with a list of primes to check against it. 

However, all these refinements complicate the algorithm and lengthen its logic. 

Therefore, for most significant factoring concerns, such as public key cryptography, 

other factoring algorithms are more efficient. 

The Trial Division Algorithm is considered as a kind of DL job model with a single 

iteration of the “for loop” as the smallest atomic operation. As indicated in 

Chapter 4, the selection of chunk size, i.e. the number of iterations constituting a 

task is an important issue to consider when dealing with DL models. While a small 

chunk size magnifies the scheduling overhead, a large chunk size imbalances the 

load [9]. In HoPe, the chunk size is considered as a local decision made 

dynamically by each worker device based on its current state. 

In HoPe implementation all worker devices are assumed to have a word-size of, at 

least, sixteen-bits. The last prime that fits into a sixteen-bit unsigned integer should 

be less than 216-1=65,535 which is 65,521. That suffices to factorise numbers up to 

65,5212 = 4,293,001,441. 

Workload selection is notably arduous [10]. While real workloads and logs from 

real grid systems are realistic, they are designed for very specific systems and user 

communities, dramatically limiting their applications. On the other hand, simulated 

workloads, although non-realistic, are more flexible and efficient at early stages of 

development, and they provide the basis for cost and time wise evaluation.  

Therefore, in PM-Grid evaluation, the workload model of the entire system is 

simulated as streams of jobs arriving at each work-space according to a Poisson 

process. Multiple values for both job size and interarrival time are considered to 

ensure a representative sample in all experiments, as necessitated by [11]. The job 

size is considered as an intrinsic variable and controlled by randomisation. 

Heterogeneity in job size is modelled assuming three sizes of jobs (Ja, Jb, Jc). 

During running time, a uniform random number Rjob from 1 to 3 is generated 

indicating the job size, as shown in Table 6.5.  
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Job interarrival time is considered as an experimental variable; nine different values 

for interarrival time were selected in the range between two extreme cases of the 

expected usage of PM-Grids: (4, 8, 12, 16, 20, 32, 40, 80, 120 and 180) seconds.  

Table 6.5: Experimental Job Sizes 

Job Job size (j) in Mflop 

Ja 2×102 < j ≤ 3×102 

Jb 1×102 < j ≤ 2×102 

Jc j ≤ 1×102 

 

6.4.3 Performance Metrics 

As detailed in section 5.4.3, it is invariably difficult to achieve a compromise 

between scheduling performance measures. Therefore, new performance measures, 

that help to optimise other performance measures, are required for capturing the 

tradeoffs and a methodology is needed where these measures are separately 

observable. Hence, in this thesis the following performance measures are observed 

separately and their results are reported and analysed: 

• Stability: where the system strives to maximise the job collection rate 

subject to minimising the difference between job collection and result 

generation rates. In this thesis stability is calculated as the absolute value of 

the difference between the job collection rate F(Nc) and the result generation 

rate F(Np) as follows: 

 Stability = (1-| F(Np) - F(Nc) | )×100  (6.3) 

• Mean turnaround time (TT): which represents the elapsed time from when a 

client submits a job until the client receives the corresponding results, and is 

calculated as: 

 TT = result received time – job submission time  (6.4) 

• Net throughput: Net throughput represents the amount of work completed 

by the system over a period of time. It is measured as the number of jobs 

completed from time zero to time t.  

• Speedup: The speedup refers to how much a parallel system is faster than a 

corresponding sequential system, and is calculated as: 
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 Sp =T1 /Tp (6.5) 

 Tp > 0 

where: 

p is the number of processors  

T1 is the execution time of the sequential algorithm  

Tp is the execution time of the parallel algorithm with p processors. 

Although speedup is usually calculated based on one job, in the case of 

HoPe and OSH, calculating the speedup in this way would be out of context, 

as these heuristics operate in a steam of jobs. Therefore, the mean time of 

speedup is considered.  

6.4.4 Scheduler Model 

Two scheduling heuristics have been implemented to experiment with the PM-Grid 

model: HoPe and the OSH. Both are implemented using C++ to be compatible with 

the simulator platform.  

Both scheduling heuristics were implanted with best effort policy, that is, no 

guarantee of quality of service (QoS). Therefore, once assigned, tasks do not 

migrate between resources and no attempts are made for rescheduling, co-

scheduling, resource reservation etc. However, this issue of enhancing HoPe with 

some QoS strategies is left for future research. This section investigates the design 

features of both heuristics, HoPe and OSH, based on the framework proposed in 

Chapter 4.  

6.4.4.1 HoPe 

As detailed in Chapter 5, Hope is a specifically tailored heuristic to meet the 

scheduling requirements of PM-Grids and identical environments where resources 

are dynamic and heterogeneous. HoPe has a decentralised cooperative organisation 

and a local, non-clairvoyant, self-management, best effort and adaptive scheduling 

policy. 

Basically, HoPe can be considered as a kind of guided search heuristic, hence we 

expect it to have a performance level in between a random algorithm and an 
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omniscient algorithm that guarantees an optimal solution if it does exist. In other 

words, while HoPe performance is expected to be better than a randomisation 

algorithm, its performance is not expected to compete with an omniscient 

algorithm. However, implementing an omniscient algorithm is radically time and 

space intensive [12]. Therefore, this thesis limits itself to contrasting HoPe with a 

randomisation algorithm, OSH, then it examines how far results of both algorithms 

vary from an optimal theoretical value or a worst bound.  

6.4.4.2 Opportunistic Scheduling Heuristic (OSH) 

The OSH is a general purpose resource scheduling heuristic that assigns each job in 

an arbitrary order to the next available machine without considering the execution 

time of the task on the machine. OSH takes a greedy assignment strategy in which 

no processor is idle if there are more jobs to run. The main reason for selecting 

OSH is the negligible amount of knowledge about the running environment and 

jobs which makes it suitable to the PM-Grid environments and therefore 

comparable with HoPe. Additionally, the OSH is the most used heuristic in high 

throughput computing resource management systems such as Condor [13]. It is 

argued that in many cases, simple scheduling approaches such as greedy algorithms 

are viable alternatives and are preferable in practice to more sophisticated 

algorithms as they are as effective, more robust, more scalable and simpler to 

implement [14].  

There are as many implementations of OSH as there are numbers of systems using 

it. While all have the basic idea explained above, they vary in implementation 

details. For instance, in [15] a centralised scheduler examines all machines to find 

the machine that becomes ready next. In [16] idle machines assign jobs to 

themselves by accessing a shared queue of jobs. In [14] a DAG-based 

implementation for the OSH is presented. 

The main drawback of the OSH is its poor load balancing performance. However, 

since, the considered job model is the DL, any OSH implementation for such a job 

model should consider the chunk size selection problem. Hence, in this thesis the 

OSH has been implemented with a variable chunk size self-scheduling scheme, 

where the chunk size each processor assigns to itself dynamically changes based on 
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the processor capacity. The adjustment of chunk size implies better load balancing 

performance [9].  

6.5 PM-Grid Simulator 

Initially, a real test-bed was constructed to evaluate PM-Grid design as detailed in 

[17]. However, it was found that experimenting with such a real test-bed in early 

evaluation stages is extremely difficult due to the need to test the proposed design 

in isolation from implementation technologies as well as the need to continuously 

alter and tune hardware and software parameters. Therefore, a simulation based 

approach has been followed which is widely used for evaluating and studying grid 

scheduling systems due to its configurability and repeatability [18].  

There are some simulation packages that have recently emerged to simulate grid 

environments, such as GridSim [19] and Simgrid [20]. However, these simulation 

packages are designed for traditional grid environments. PM-Grid platform has 

special characteristics and requirements that are totally different from traditional 

grids. Furthermore, deploying HoPe instead of the default resource management 

systems of these simulation packages requires altering their core modules which is 

extremely difficult and time consuming. Therefore, all experiments in this thesis are 

carried out on a purposely developed PM-Grid simulator. This approach of utilising 

a purposely built grid simulator to meet specific research goals comes in line 

with [21, 22].  

PM-Grid models were built using the network simulator OpnetTM 12.0 [4]. Opnet is 

a commercially available modelling and simulation tool to simulate computer 

networks using the finite-state modelling concept, as shown in Figure 6.4 . It comes 

with a number of built-in models for nodes, routers, servers among others. Using 

these models, one can easily simulate many kinds of networks and analyze their 

performance. However, using Opnet to simulate grid systems is not straight 

forward. All functions related to having the networked nodes functioning as a grid 

system and cooperate together in solving computational problems needed to be 

coded manually in C and C++ and incorporated with Opnet network models. 
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Figure 6.4: Finite-State Modelling Concept - Opnet 

The PM-Grid simulator is built out of four main modules that run on a logical PM-

Grid model, as illustrated in Figure 6.5. Each module can be easily altered to 

maximise the simulator flexibility and alleviates future research with it. The four 

modules are:  

1. Job generator module: This module randomly generates jobs based on the 

job model detailed in section 6.4.2. The output of this module is fed to the 

workload generator module.  

2. Workload generator module: This module generates the entire workload to 

be processed by the PM-Grid simulator. The workload is modelled as 

dynamic continuous streams of jobs submitted from client devices to work-

spaces based on the workload model described in section 6.4.2.  

3. Processor capacity modeller module: This is a simple module that randomly 

generates an integer number to indicate the processor capacity of a worker 

device based on the processor capacity model described in section 6.4.1.  

4. Resource scheduler module: This module contains the logic of the two 

heuristics, HoPe and OSH. Based on the running experiment, one of the two 

heuristics is selected to allocate jobs to workers.  
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The PM-Grid model is simulated at three different scales, as described in section 

6.4.1. Selected performance metrics are fed to the PM-Grid model to generate 

performance data that is used to evaluate the efficiency of both heuristics. 

 

Figure 6.5: PM-Grid Simulator 

6.6 Performance Models 

Mathematical and graphical performance models that predict HoPe and OSH 

behaviours, under different running conditions, are generated using multiple 

regressions. EREGRESS [23, 24], Microsoft Excel Add-In software was used to: 

• Predict mathematical performance models using multiple regressions and 

full quadric equations.  The models which  include linear, quadratic, and 

cross terms have the following general form: 

Performance-measure = b0 + b1×  interarrival_time+ b2 × grid_scale  

 + b3 × interarrival_time × interarrival_time  

 + b4× interarrival_time × grid_scale  

 + b5× grid_scale × grid_scale (6.6) 

• Generate a 3D graphical model for each predicted mathematical 

performance measure model.  

• Analyse the results using the ANOVA test. 

Performance  
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The statistical significance of the full quadratic models predicted was evaluated 

using Fisher’s statistical test (F) and F-significant (F-signif.). Large F values and 

low values of F-signif indicate a high model significance. An F-signif  value of 0.05 

indicates a significant model at the 95% significance level. The significance and the 

magnitude of the estimated coefficients of each variable and all their possible linear 

and quadratic interactions on the performance of both HoPe and OSH were 

determined. Coefficients with effects less than 95% of significance (P-value less 

than 0.05) play a critical role in the performance measure model equation.  

The results of the significance tests on the model and its coefficients are listed in 

tables, such as Table 6.9. The first row shows the predicted mathematical model. 

The second raw presents the values of F and F-signif. The first column indicates the 

coefficient that is computed and the second column shows its value. The third 

column is the P-value. The fourth and fifth columns show the –95% and +95% 

confidence values respectively for a particular response coefficient.  

6.7 Experiments 

To evaluate HoPe, two main issues were considered:  

• Scalability to a larger number of nodes. 

• Sustainability under different loads.  

Two context parameters were controlled to simulate representative samples of the 

PM-Grid environment:  

• Number of workers per cluster (grid scale): Three PM-Grid infrastructure 

scales were considered: small (4 workers/cluster), medium (8 

workers/cluster) and large (16 workers/cluster). 

• Job interarrival time: The interarrival time represents the time difference 

between successive arrivals of jobs. Values of interarrival time were 

selected in the range of two extreme cases of the expected usage of PM-

Grids: (4, 8, 12, 20, 32, 40, 80, 120 and 180) sec. 

Hence the total number of created scenarios is 2 × 9 × 3 = 54 scenarios (number of 

heuristics × number of values for interarrival times × number of values for workers 
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per cluster). Data related to four performance metrics, stability, mean TT net 

throughput and speedup, were measured for each scenario.  

Extraneous variables, job size and processor computational capacity, were 

randomised to ensure representative samples in all experiments. Heterogeneity in 

processor capacity was modelled assuming three types of machines (Pa, Pb, Pc) with 

different capacities. Heterogeneity in job size was modelled assuming three types of 

jobs (Ja, Jb, Jc) with different sizes. During running time, a uniform random number 

Rproc from one to three is generated describing the processor capacity and another 

random number Rjob following the same distribution is generated to describe job 

size heterogeneity. The processor capacity and job size were generated based on 

similar lines of research conducted by [23] 

Jobs were generated by four clients with a Poisson process and exponential 

interarrival times with means (4, 8, 12, 20, 32, 40, 80, 120 and 180) sec. 

Computational jobs were implemented as DL applications to factor large integers 

(up to 4,293,001,441). Each job is contained in one packet and produces one output 

file. For simplicity, the communication cost to send a packet from one machine to 

another is not considered at this stage. It is assumed that one machine can process 

only one operation at a given moment (resource constraints) and once task started, 

operation runs to completion (no pre-emption condition). 

The selection of values for empirical parameters of HoPe presented in section 5.6.2 

are presented in Table 6.6. 

Table 6.6: Values of HoPe Empirical Parameters 

Parameter Usage Value 

C Executer help threshold (EHT) 4 

D Composer help threshold (CHT) 1 

E Compose help message duration(CHMD) 1 

 

6.8 Results, Performance Models and Discussion 

Each scenario, simulating five hours (18000 sec.) of real time, ran ten times and 

means were calculated after discarding data from the initial 60 sec. Results are 
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displayed as bar charts for ease the comparison. The uncertainty in values using the 

standard deviations, are displayed as a vertical line superimposed on each bar.  

6.8.1 Stability 

Stability results, and discussion of these results as well as performance models, are 

presented in the following sections.  

Table 6.7: Total Arrival Rates 
Mean interarrival time (sec.) 

1 source  
Total arrival rate (job/sec.) 

4 sources (λ`) 
4 1.000 

8 0.500 

12 0.333 

20 0.200 

32 0.125 

40 0.100 

80 0.050 

120 0.033 

180 0.022 

 

6.8.1.1 Results 

Figures 6.6 and Figures 6.7 illustrate HoPe and OSH stability respectively, in terms 

of the difference in rate between job collection and result generation cycles 

calculated using the mean time. Each figure consists of three sub-figures which 

demonstrate the behaviour of  the corresponding heuristic, at the three grid scales, 

4, 8 and 16 workers /cluster, when compared to an optimal value. This value is 

calculated as: 

 λ` = ∑i=1
4
 λ I (6.7) 

where: 

λ`  is the total job arrival rate at the four sources that corresponds to each 

interarrival time, as illustrated in Table 6.7.  

Table 6.8 illustrates the absolute and relative errors in stability measure under HoPe 

and OSH. 
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6.8.1.2 Discussion 

Figure 6.6 shows that in general, HoPe is able to maintain both job collection and 

result generation cycles in balance at optimal rates, indicating a stable system in 

more than 95% of the experimental scenarios. However, under extremely heavy 

loads (interarrival time = 4 sec. and a grid scale = 4 workers/cluster) the system is 

less stable. This phenomenon relates to the impact of extremely heavy loads in 

increasing both the volume of remaining work in work-spaces and the waiting time 

experienced by each executer. Large values of remaining work and waiting time 

stimulate devices to repeatedly altering their roles which negatively reflects on 

stability. However, even in this situation, HoPe shows better stability performance 

than the OSH as illustrated in Figure 6.7.  

An important observation is that increasing the number of workers per cluster from 

4 to 8 tends to enhance the stability and also increases the rates of both job 

collection and result generation cycles. However, this improvement discontinues 

when the number of workers per cluster is increased from 8 to 16. In this situation, 

additional workers have no visible effect in enhancing HoPe stability performance. 

Table 6.8: Stability Absolute and Relative Errors  
Absolute error Relative error Grid 

scale 
Interarrival 

time HoPe OSH HoPe OSH 
4 -7.5 -5.4 -0.075 -0.054 
8 -0.1 -4.1 -0.001 -0.041 

12 -0.1 -2.5 -0.001 -0.025 
20 0 -1.2 0 -0.012 
32 0 0 0 0 
40 0 0 0 0 
80 -0.1 0 -0.001 0 

120 0 0 0 0 4 
w

or
ke

rs
/c

lu
st

er
 

180 0 0 0 0 
4 -0.1 -8.6 -0.001 -0.086 
8 -0.1 -2.5 -0.001 -0.025 

12 -0.1 -0.4 -0.001 -0.004 
20 0 -0.3 0 -0.003 
32 0 -0.2 0 -0.002 
40 0 -0.1 0 -0.001 
80 -0.2 0 -0.002 0 

120 -0.1 0 -0.001 0 8 
w

or
ke

rs
/c

lu
st

er
 

180 0 0 0 0 
4 -0.1 -5.5 -0.001 -0.055 
8 -0.1 0 -0.001 0 

12 -0.3 0 -0.003 0 
20 0 0 0 0 
32 0 0 0 0 
40 -0.1 0 -0.001 0 
80 0 0 0 0 

120 0 0 0 0 16
 w

or
ke

rs
/c

lu
st

er
 

180 0 0 0 0 
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(b) 8 workers per cluster 
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(c) 16 workers per cluster 

Figure 6.6: HoPe Stability 
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(b) 8 workers per cluster 
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(c) 16 workers per cluster 

Figure 6.7: OSH Stability 
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This is because optimum rates have been already achieved with 8 workers/cluster. 

For instance when interarrival time = 4 sec., the total job arrival rate from four 

clients is: 

λ`= ∑i=1
4
 λ i = 4×1/4 =1 job /sec. 

When interarrival time = 8 sec.  

λ`= ∑i=1
4
 λ i = 4×1/8= 0.5 job/sec 

Hence, to maintain optimum stability, the job collection and result generating rates 

should not exceed 1 and 0.5 for interarrival times 4 and 8 sec., respectively, 

regardless of the number of workers.  

Figure 6.7, which illustrates the stability performance of OSH, shows that rates of 

job collection and result generation are not in balance particularly for short 

interarrival times (4 ≤ interarrival times ≤ 20 where grid scale = 4 workers/cluster; 

4≤ interarrival times ≤ 8 where grid scale = 8 workers/cluster; and interarrival times 

= 4 where grid scale = 16 workers/cluster). However, for longer interarrival times, 

OSH shows balance, indicating a stable system in nearly only 75% of the 

experimental scenarios. In contrast to HoPe, the OSH rates of job collection and 

result generation continue to increase for short interarrival times, as the grid 

increases in scale since optimal values are still to be reached.  

6.8.1.3 Stability Models 

Stability performance models of HoPe and the OSH are shown in the 3D sub-

figures (a) and (b) respectively of Figure 6.8. The models show the general stability 

behaviour of both heuristics when interarrival time falls in the range from 4 to 180 

sec. and the grid scale is in the range from 4 to 16 workers/cluster. The stability is 

calculated using the absolute value of the difference between job collection and 

result generation rates as provided in equation 6.7: 

Stability = (1-|job processing rate – result generating rate| )×100   (6.7) 

The model in the sub-figure (a) shows that HoPe tends to maintain optimum 

stability (100%-98%) in a considerably wide area of the entire problem space. As 

expected, when there are enough workers, no matter how often jobs arrive, HoPe 

can maintain the difference between job collection and result generation at a 

minimum level. The situation changes gradually as the grid scale shrinks when 
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stability becomes more sensitive to the interarrival time. The insignificance P-value 

of all coefficients, in Table 6.9, emphasises that HoPe has successfully marginalised 

the effects of variations in the grid scale and the job interarrival time when stability 

is considered.  

The model in sub-figure (b) shows that the OSH tends to maintain optimum 

stability in a relatively small area of the entire problem space. It is also clear from 

the model, and also from the significance P-value of (b1 and b3) coefficients in Table 

6.10, that the OSH is more sensitive to variations in the interarrival time under all 

grid scales in the displayed range.  

Mathematical equations and statistical data of the HoPe stability model and the 

OSH stability model are presented in Table 6.9 and Table 6.10 respectively.   
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Figure 6.8: Stability Models 
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Table 6.9: Statistical Data of HoPe Stability Model  
HoPe_stability =  b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 
F =1.018  F-signif = 0.376 

Coefficients P-value -95% 95% 
b0 89.80 3.04E-24 86.16 93.43 
b1 0.03430 0.155 -0.00885 0.07744 
b2 1.085 0.268 0.262 1.909 
b3 -0.000022 0.339 -0.000236 0.000194 
b4 -0.001900 0.378 -0.00392 0.00016 
b5 -0.02900 0.385 -0.06805 0.01009 

 

Table 6.10: Statistical Data of OSH Stability Model  
OSH_stability = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 
interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 

F = 3.159 F-signif = 0.02789 
Coefficients P-value -95% 95% 

b0 90.80 7.94E-22 86.09 95.51 
b1 0.09511 0.00385 0.03921 0.151 
b2 0.03720 0.960 -1.025 1.100 
b3 -0.000239 0.01638 -0.000517 3.86058E-05 
b4 -0.000977 0.432 -0.00362 0.00167 
b5 0.00800 0.836 -0.04264 0.05864 

 

6.8.2 Throughput 

Net throughput results and discussion of these results, as well as performance 

models, are presented in the following sections.  

6.8.2.1 Results 

Figure 6.9 consists of three sub-figures showing both HoPe and OSH net 

throughput in terms of the mean number of completed jobs per five hours at the 

three grid scales, 4, 8 and 16 workers/cluster, compared to optimal values.  

Optimal values, shown in Table 6.11, are obtained assuming that all jobs submitted 

to the system are completed successfully before the end of the simulation, that is, 

within five hours.  

Statistical data of absolute and relative errors in net throughput measures under 

HoPe and OSH is illustrated in Table 6.12.  
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16 workers per cluster 

Figure 6.9: Net Throughput in HoPe and OSH  
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Table 6.11: Optimal Net Throughput 
Interarrival time 

1 source  
(sec.) 

Optimal throughput 
4 sources  
(job/5 h) 

4 18000 

8 9000 

12 6000 

20 3600 

32 2250 

40 1800 

80 900 

120 600 

180 400 

 
 

Table 6.12: Net Throughput Absolute and Relative Errors  
Absolute error Relative error Grid 

scale 
Interarrival 

time HoPe OSH HoPe OSH 
4 -3504 -13434 -0.19467 -0.74633 
8 0 -5188 0 -0.57644 

12 -4 -1968 -0.00067 -0.328 
20 -7 -613 -0.00194 -0.17028 
32 -4 -6 -0.00178 -0.00267 
40 -3 -4 -0.00167 -0.00222 
80 -3 -4 -0.00333 -0.00444 

120 -1 -4 -0.00167 -0.00667 4 
w

or
ke

rs
/c

lu
st

er
 

180 0 0 0 0 
4 -20 -9270 -0.00111 -0.515 
8 -9 -1361 -0.001 -0.15122 

12 -8 -12 -0.00133 -0.002 
20 -4 -7 -0.00111 -0.00194 
32 -5 -5 -0.00222 -0.00222 
40 -4 -5 -0.00222 -0.00278 
80 -4 -4 -0.00444 -0.00444 

120 -4 -4 -0.00667 -0.00667 8 
w

or
ke

rs
/c

lu
st

er
 

180 0 0 0 0 
4 -16 -2900 -0.00089 -0.16111 
8 -8 -11 -0.00089 -0.00122 

12 -5 -8 -0.00083 -0.00133 
20 -5 -4 -0.00139 -0.00111 
32 -2 -5 -0.00089 -0.00222 
40 -4 -4 -0.00222 -0.00222 
80 -4 -4 -0.00444 -0.00444 

120 -4 -4 -0.00667 -0.00667 16
 w

or
ke

rs
/c

lu
st

er
 

180 0 0 0 0 

 

6.8.2.2 Discussion 

The sub-figures of Figure 6.9 show that HoPe has successfully obtained throughput 

equal to the optimum value in more than 95% of experimental scenarios. However, 

under extremely heavy load (interarrival time = 4 and grid scale = 4 

workers/cluster), HoPe shows a throughput value which is less than the optimum. 
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Nevertheless, the throughput value of HoPe in this situation is nearly triple the 

value of the OSH. 

The same observation reported in HoPe stability regarding the discontinued 

improvement in performance, when the grid scale is increased from 8 

workers/cluster to 16 workers/cluster, is also apparent in net throughput. As the 

optimal net throughput has been already achieved with 8 workers/cluster, as shown 

in the sub-figure (b), additional workers have no visible effect in enhancing HoPe 

performance, as illustrated in the sub-figure (c). 

On the other hand, the OSH obtained optimal throughput values only in less than 

75% of experimental scenarios, under mild to light loads. OSH struggles to obtain 

optimal values for throughput under extremely heavy and heavy loads (interarrival 

time = 4, 8, 12 and 20 for grid scale = 4 workers/cluster, interarrival time = 4 and 8 

for grid scale = 8 workers/cluster and interarrival time = 4 for grid scale = 16 

workers/cluster). In contrast to HoPe, the OSH net throughput continues to increase 

as the grid increases in scale since optimal values are still to be reached.  

6.8.2.3 Throughput Models 

In Figure 6.10, the 3D models in sub-figures (a) and (b) summarise the behaviour of 

HoPe and the OSH respectively in terms of the net throughput for interarrival times 

in the range from 4 to 180 sec. and grid scales in the range from 4 to 16 

workers/cluster. As expected, the net throughput under both heuristics tends to 

increase as the load inside the system becomes heavier as the interarrival time gets 

smaller in value.  

Comparing the two sub-figures demonstrates the superiority of HoPe performance 

when net throughput is considered. An important observation is clear also where the 

net throughput of HoPe looks marginally affected by the grid scale. Consequently, 

the HoPe net throughput is mainly a function of the interarrival time, which clearly 

demonstrates the efficiency of the dynamic role-altering technique adopted by 

HoPe, where the system virtualises the actual number of workers to cope with the 

current context requirements. In contrast, the OSH net throughput is significantly 

affected by the grid scale, particularly for low values of the interarrival time. 

It is important not to misinterpret the models in Figure 6.10 and also the charts in 
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Figure 6.9; the low throughput values do not indicate poor system performance, but 

rather they show raw data that needs to be interpreted in context. For instance, the 

minimum throughput which has been achieved by both heuristics at grid scale 16 

workers/cluster and 180 sec. interarrival time is in fact the maximum throughput 

that can be achieved in this context. Therefore, it might be more realistic, in later 

stages of analysis, to depict relative values of the throughput which can be 

calculated as a percentage of the optimal value, if known, rather than depicting 

raw values.  

Mathematical equations and statistical data of the HoPe net throughput model and 

the OSH net throughput model are presented in Table 6.13 and Table 6.14 

respectively. 
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Figure 6.10: Net Throughput Models 
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Table 6.13: Statistical Data of HoPe Throughput Model  
HoPe_throughput = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 
F = 7.332 F-signif = 0.000409 

Coefficients P-value -95% 95% 
b0 16666.6 0.03262 7880.13 25453.2 
b1 216.63 0.822 -1766.0 2199.3 
b2 -214.58 0.000334 -318.88 -110.28 
b3 -8.016 0.862 -102.51 86.47 
b4 -0.437 0.855 -5.370 4.495 
b5 0.685 0.00120 0.167 1.204 

 
Table 6.14: Statistical Data of OSH Throughput Model  

OSH_throughput = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 
interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 

F = 10.44 F-signif = 3.87375E-05 
Coefficients P-value -95% 95% 

b0 4540.0 0.183 -639.418 9719.334 
b1 615.25 0.288 -553.455 783.954 
b2 -116.90 0.00101 -178.383 -55.416 
b3 2.33 0.569 -53.368 58.02841 
b4 -4.000 0.09841 -6.90689 -1.0913 
b5 0.565 0.00109 0.259235 0.870749 

 

6.8.3 Turnaround Time (TT) 

The experimental results of TT and the discussion of these results, as well as TT 

performance models are presented in the following sections.  

6.8.3.1 Results 

Figure 6.11 consists of three sub-figures that show the TT of both HoPe and OSH, 

calculated based on equation (6.4), at the three grid scales, 4, 8 and 16 

workers/cluster. An empirical worst bound was employed to compare with TT 

values achieved by HoPe and OSH.  

The empirical worst bound, which equals 27 sec., represents the maximum TT 

when a large job Ja is executed sequentially in a capacity-limited machine Pc.  

Although, the worst bound was calculated based on one job, in the case of HoPe 

and OSH, the TT was calculated using the time average per job which is the TT 

experienced by all jobs in the scenario divided by the number of jobs, which include 

the queuing delay in work-spaces and the result-space. Therefore, in practice, the 

mean TT can go beyond the worst bound.  
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(a) 4 workers per cluster 
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(b) 8 workers per cluster 
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(c) 16 workers per cluster 

Figure 6.11: Mean TT in HoPe and OSH  
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6.8.3.2 Discussion 

The three sub-figures of Figure 6.11 show the superiority of HoPe performance 

when TT is considered. HoPe has considerably a shorter TT than the OSH with 

HoPe achieving less than a half of the TT achieved by the OSH in more than 60% 

of all experimental scenarios. However, under very light loads (interarrival time = 

120 and 180 sec. for grid scale = 4 workers/cluster and interarrival time = 180 sec. 

for grid scale = 8 workers/cluster) both OSH and HoPe reached nearly the same TT 

due to the small number of jobs in the system.  

HoPe has TT values in the range from 3 to 13 which are all considerably better than 

the empirical worst bound. Hence, in its worst case, HoPe has a TT value which is 

less than the half of the maximum TT and in the best score it is nearly one tenth the 

maximum TT. On the other hand, the OSH has its TT values in the range from 4 to 

29 which is actually beyond the worst bound in the worst case and is nearly one 

seventh the worst bound for the best case.  

An important observation regarding the TT is that it seems to be less affected by 

variations in the interarrival time within the same grid scale in the case of HoPe 

than in the case of the OSH, which again shows the effectiveness of the dynamic 

role assignment technique in HoPe.  

6.8.3.3 TT Models 

Figure 6.12 consists of two 3D sub-figures summarising the behaviour of HoPe and 

the OSH respectively in terms of the TT for interarrival times in the range from 4 to 

180 sec. and grid scales in the range from 4 to 16 workers/cluster.  

The dominance of HoPe performance is clear by comparing the scales in the TT 

axis in the two sub-figures. Sub-figure (a) shows that the TT value under HoPe is 

gradually getting smaller as the grid becomes larger while the interarrival time has 

notably less effect in large grid scales. The case is different when it comes to the 

OSH, as illustrated in the sub-figure (b), where the interarrival time has an 

increased effect on the value of the TT.  

As expected, under both heuristics the TT approaches its minimal values as both the 

grid scale and the interarrival time approach their maximum values, while the TT 
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approaches its maximum as both approach their minimum. Mathematical equations 

and statistical data of the HoPe mean TT model and the OSH mean TT model are 

presented in Table 6.15 and Table 6.16 respectively. 
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Figure 6.12: TT Models 

Table 6.15: Statistical Data of HoPe TT Model  
HoPe_ TT = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 
F = 22.15 F-signif = 1.01124E-07 

Coefficients P-value -95% 95% 
b0 17.8 3.86E-10 15.26 20.34 
b1 -1.5 0.000172 -2.074 -0.926 
b2 -0.04678 0.00408 -0.07696 -0.01660 
b3 0.03958 0.00666 0.01224 0.06692 
b4 0.0011 0.03270 -0.000328 0.00253 
b5 0.00011 0.109 -3.94256E-05 0.000261 
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Table 6.16: Statistical Data of OSH TT Model  
OSH_ TT = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 
F = 32.67 F-signif = 3.19009E-09 

Coefficients P-value -95% 95% 
b0 37.80 3.34E-10 31.77 43.83 
b1 -3.000 0.000280 -4.361 -1.639 
b2 -0.185 2.57E-05 -0.256 -0.113 
b3 0.07492 0.02565 0.01005 0.140 
b4 0.00820 5.48E-05 0.00482 0.01159 
b5 0.000230 0.08247 -0.00012 0.000588 

 

6.8.4 Speedup  

Speedup results and discussion of these results, as well as performance models, are 

presented in the following sections.  

6.8.4.1 Results 

Figure 6.13 consists of three sub-figures showing the speedup of both HoPe and 

OSH at the three grid scales. The speedup is calculated based on equation (6.5) with 

the empirical value of 27 sec. as the execution time of the sequential algorithm. A 

worst bound of one is assumed, representing the case when both running times of 

executing a job sequentially, in one machine, and in parallel machines, are equal. 

6.8.4.2 Discussion 

Figure 6.13 shows that HoPe has maintained a noticeably higher speedup which 

reaches the double speedup of the OSH in nearly 60% of all scenarios. However, 

the difference between the two heuristics in performance decreases gradually as the 

interarrival time gets larger in small and medium grid scales. 

HoPe has its speedup values in the range from 2 to 10 which is double the speed of 

the sequential execution (worst bound) in its worst case and ten times faster than the 

sequential execution at best. The speedup of the OSH lies in the range from 0.9 to 7 

which is a slowdown in its worst case and, in its best case, it is only seven times 

faster than the sequential execution. 

As expected, the speedup of both HoPe and the OSH is highly affected by the grid 

scale in terms of the total number of worker devices in the system. The interarrival 

time has a lower effect when HoPe is considered.    
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(a) 4 workers per cluster 
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(b) 8 workers per cluster 

0

2

4

6

8

10

12

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Sp
ee

du
p

HoPe
OSH

 
(c)16 workers per cluster 

Figure 6.13: Average Speedup in HoPe and OSH 
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6.8.4.3 Speedup Models 

The speedup of HoPe and OSH is illustrated in the three dimensional sub-figures (a) 

and (b) of Figure 6.14.  

The dominance of the HoPe speedup over the speedup of OSH is clear from the 

figure which illustrates that HoPe has a considerably higher speedup in a wide area 

of the speedup surface. The marginalised effect of the interarrival time under HoPe 

is clear in the sub-figure (a) where the speedup surface has a gentle slope in the 

interarrival time direction in contrast to the steep slope in the sub-figure (b) in the 

case of the OSH. Mathematical equations and statistical data of the HoPe speedup 

model and the OSH speedup model are presented in Table 6.17 and Table 6.18 

respectively. 
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Figure 6.14: Speedup Models 
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Table 6.17: Statistical Data of HoPe Speedup Model  
HoPe_ speedup = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 
F = 168.83 F-signif = 3.32935E-16 

Coefficients P-value -95% 95% 
b0 0.115 0.158 -0.902 1.132 
b1 0.02203 0.00106 0.00996 0.03410 
b2 0.698 2.24E-05 0.469 0.928 
b3 -5.7E-05 0.06190 -0.000117 3.1E-06 
b4 -0.000281 0.318 -0.000852 0.000290 
b5 -0.00703 0.196 -0.01796 0.00391 

 
Table 6.18: Statistical Data of OSH Speedup Model  

OSH_ speedup = b0 + b1×  interarrival_time+ b2 × grid_scale + b3 interarrival_time × 
interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale 

F = 98.84 F-signif = 7.31342E-14 
Coefficients P-value -95% 95% 

b0 0.003 0.693 -1.124 1.130 
b1 0.02827 0.000253 0.01489 0.04164 
b2 0.143 0.256 -0.111 0.397 
b3 4E-05 0.225 -2.7E-05 0.000107 
b4 -0.00174 1.13E-05 -0.00237 -0.00111 
b5 0.01225 0.04776 0.000133 0.02437 

 

6.9 Conclusion 

This chapter has presented the details of a controlled empirical study carried out to 

experiment with the PM-Grid models and evaluate HoPe performance in terms of 

stability, net throughput, mean TT and speedup. It has also presented the predicted 

performance models of both heuristics, HoPe and OSH under different running 

conditions of grid scale and job interarrival times.  

Experimental results indicate the dominance of HoPe performance and the 

efficiency of its role altering technique. These results also demonstrate the ability of 

HoPe to considerably reduce the effect of variations in grid scale and job 

interarrival times, illustrating better scalability and sustainability, when compared to 

the OSH.  

HoPe has successfully maintained optimal stability and throughput in more than 

95% of the experiments with HoPe achieving three times better than the OSH under 

extremely heavy loads. In terms of TT and speedup, HoPe has also shown dominant 
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performance which is twice better than the OSH performance in more than 60% of 

all experiments. 

These promising results suggest deploying PM-Grids in real life scenarios and 

evaluating HoPe in other HTC systems to get better insight into their performance.  
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Chapter 7 
Conclusion and Future Research 

7.1 Summary  

This thesis has argued that resources of personal devices, whether mobile or 

stationary, can be productively leveraged to service their users. By doing so, 

personal users will be able to ubiquitously run relatively complex computational 

jobs, which cannot be accommodated in their individual personal devices or while 

they are on the move. This has the potential of realising the ambitious grid visions 

of scaling grid systems to a larger number of entities and smaller devices. To this 

end the thesis proposes PM-Grids that superimpose grid functionality over 

networked personal devices.  

The work in this thesis started by surveying the area of grid computing and 

distributed systems for paradigms relevant to PM-Grids. The survey revealed two 

main findings. First, there are few research projects which have addressed the 

mobility issue in grid computing but only at the organisational level. Second, fewer 

research projects have targeted grid systems at the personal level, but the focus has 

only been on facilitating file sharing applications.  Therefore, architectural designs 

of PM-Grids were developed to address both personalisation and mobility issues in 

grid computing. 

The most important aspect of realising a grid system is a scheduler that efficiently 

utilises its resources.  However, the extremely dynamic nature, diversity and limited 

capabilities of resources, as well as difficulties in predicting the nature and timing 

of incoming jobs, are all factors that increase the complexity of the scheduling 

problem in PM-Grids.  

Therefore, a survey on resource scheduling frameworks was conducted to address 

design features required for a resource scheduler that can cope with the 

extraordinarily difficult scheduling conditions in PM-Grids. The survey revealed 

that decentralised, cooperative, local, adoptive, non-clairvoyant and self-scheduling 

schemes are among the top requirements to deal with the complexity of this 
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problem. Consequently, a resource scheduler, HoPe, was proposed and 

implemented based on these requirements. HoPe was augmented with techniques 

analogous to those utilised by the honeybee colony, while allocating worker bees to 

nectar sources under the extraordinarily difficult conditions of weather 

unpredictability and food variability. 

Next, PM-Grid designs and HoPe implementation were evaluated thoroughly 

through a strictly controlled empirical study with a well-established heuristic in 

HTC, the OSH, as a benchmark algorithm. Comparisons with optimal values and 

worst bounds were conducted to gain a clear insight into HoPe behaviour under 

different running conditions of the number of jobs and grid scales. 

Experimental results showed that HoPe has successfully maintained optimal 

stability and throughput in more than 95% of the experiments, with HoPe achieving 

three times better than the OSH under extremely heavy loads. In terms of the 

turnaround time and speedup, HoPe has effectively achieved less than 50% of the 

turnaround time incurred by the OSH while doubling its speedup in more than 60% 

of the experiments.  

7.2 Conclusion 

The overall aim of the thesis has been to introduce PM-Grids as a novel paradigm in 

grid computing for endowing individuals with resource-rich infrastructures that can 

serve as virtual general-purpose and mobile supercomputers. PM-Grids have the 

potential to bridge the gap between personal users and mobile devices on the one 

side, and current grid systems on the other.  

The thesis has also aimed to address the non-clairvoyant scheduling problem in grid 

computing, where job information is not available to the system before the end of 

the execution. HoPe which is a novel honeybee inspired resource scheduling 

heuristic with a decentralised self-management and adaptive scheduling policy has 

been proposed to achieve this aim. 

The thesis aims have been fulfilled resulting in the following seven main 

contributions: 
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First, architectural designs and models for PM-Grids have been developed based on 

the PNs architecture and as a natural extension to them; an abstract layered view, a 

detailed inside view and simulated models have been presented and evaluated at 

different scales in terms of the numbers of jobs and devices per cluster. 

 

Second, a detailed design, implementation and evaluation of HoPe have been 

initiated. To the best of our knowledge, HoPe is the first algorithm to shed light on 

the non-clairvoyant scheduling problem in grid computing. It is the first honeybee-

inspired algorithm attempting to solve the resource scheduling problem relying 

totally on local and computationally simple parameters. 

Third, a queuing theory with a simulation based approach to the NAP modelling 

from the resource scheduling perspective has been initiated. A generic model for the 

NAP has been created as a queuing network, which is simulated in several 

representative scenarios. Furthermore, detailed algorithmic analysis and modelling 

of the NAP have been presented with honeybee techniques that had not been 

considered in previous work. 

Fourth, a comprehensive taxonomy of grid systems has been proposed. Such a 

comprehensive taxonomy, which has not been presented in previous work, is 

significant for studying grid systems under one framework and assisting detailed 

comparisons between them. It also aids in understanding current research trends in 

grid computing and anticipating future trends attempting to establish a solid 

background in the rapidly evolving area of grid computing. 

Fifth, a framework for resource schedulers has been proposed with a unified 

presentation of previously published taxonomies. Such a framework is deemed 

necessary to amalgamate the area of resources scheduling under a common, 

uniform set of nomenclatures and terminologies. 

Sixth, a controlled empirical evaluation framework to prove the concept of PM-

Grids and to evaluate the performance of HoPe has been developed. A flexible 

simulator has been built for this purpose allowing the control of experimental 

parameters, randomising extraneous variables as well as measuring and analysing 

various performance metrics. 
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Seventh, performance models of HoPe and OSH have been predicted in forms of 

mathematical equations and 3D graphical representations.  These models are 

important to gain a clearer insight into the behaviour of each heuristic in regard to 

stability, net throughput, turnaround time and speedup under various running 

conditions of job interarrival times and grid scales. 

It can be concluded, based on the experimental results and predicted performance 

models, that using HoPe for resource scheduling in PM-Grids considerably reduced 

the effect of variations in grid scale and job interarrival times, illustrating better 

scalability and sustainability, when compared to the OSH. 

These results recommend considering the deployment of PM-Grids in real life 

scenarios and the utilisation of HoPe in other parallel processing and high 

throughput computing systems. Much work remains to be done but the potential 

benefits are considerable. It is hoped that this thesis contributes in some measure to 

realising the futuristic grid visions. 

7.3 Future Research 

After experimenting with PM-Grid models and evaluating HoPe performance, it can 

be confidently said that the results are encouraging. However, these 

accomplishments need to be followed with thorough development efforts to 

transform the PM-Grid models into reality and apply HoPe in other contexts beyond 

PM-Grids. The work in this thesis opens up research on various interesting issues 

and directions. 

7.3.1  Short Term Future Research 

In the short term future research, the following issues need to be explored.  

7.3.1.1  PM-Grids 

It is important to note that this thesis has not emphasised implementation details as 

the aim at this stage was to demonstrate a “proof-of-concept” of PM-Grids.  

In the long term, there might be a need for interaction between PM-Grids and other 

grid systems. Designing PM-Grids with this possibility in mind facilitates future 
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interaction. Therefore, careful selection of implementation technology for a 

middleware system for PM-Grids is important at an early stage of future work.  

For instance, the latest release of Jini technology [7] from Sun Microsystems [8] 

allows applications to be easily packaged as services that are available across a 

shared Java space. Both Jini and Java spaces have the potential of realising PM-

Grids and assisting the interaction with other Grid middleware systems. 

7.3.1.2  HoPe 

One of the strengths of HoPe lies in the adaptive role altering technique that it has 

successfully implemented, where worker devices automatically exchange their roles 

during the running time based on the current system context. However, currently, 

initial device roles are manually assigned to devices at the initialisation phase. 

Automatic role assignment, based on device features, would need to be considered 

to further augment the self-management property of HoPe.  

Additionally, it is anticipated that users would specify time limits or priorities for 

their jobs to which the scheduler should adhere. Constraint- and priority-based 

scheduling are important features to be added to enhance the design of HoPe. 

7.3.1.3  Stability Performance Measure 

This thesis has maintained the implicit assumption that stability can help to 

optimise both the TT and throughput and can capture the tradeoffs between them 

more efficiently than a multi-objective function that gives each performance 

measure a certain weight.  

The evaluation results have demonstrated that HoPe, which uses stability as the 

only scheduling objective, has successfully achieved superior performance in the 

two performance measures, TT and throughput, when compared to a benchmark 

algorithm, which does not consider stability in making scheduling decisions.  

However, further research is required to confirm whether first-order relationships 

exist between the stability objective, as defined in this thesis, and both TT and 

throughput, as well as to determine the type and factors influencing these 

relationships. Whether stability is more efficient, in optimising the TT and 
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throughput and capturing the tradeoffs, than a multi-objective function is also to be 

examined.  

7.3.1.4  Real Test-bed and Workload 

In the evaluation process, the PM-Grid has been deliberately simulated as a logical 

network to test its design isolated from implementation technologies and platforms, 

which also conforms with other literature [1, 2]. Additionally, the workload has 

been synthesised, in conformance with [3-5], to insure flexibility and efficiency in 

the early stages of development and to provide the basis for cost and time wise 

evaluation.  

However, experimenting with a real test-bed and workloads from a set of different 

applications is important in early stages of future work to continuously improve the 

PM-Grid and HoPe designs through feedback arising from real running scenarios.  

7.3.1.5  Benchmark Algorithms 

Due to the high complexity of the non-clairvoyant scheduling problem, only very 

few standard heuristics are available [6].  The lack of available information about 

the system context and resources in PM-Grid environments adds more to the 

complexity of the non-clairvoyant scheduling problem. Therefore, it was extremely 

difficult to find and implement a suitable benchmark algorithm for HoPe. 

Consequently, only the OSH has been utilised to benchmark HoPe. Although the 

OSH is one of the most often employed and well established heuristics in HTC, 

contrasting HoPe with other algorithms, such as other bio-inspired heuristics and 

the round ribbon (RR) algorithm, would help to achieve a more robust evaluation of 

its performance. 

7.3.2  Long Term Future Research 

In the long term future research, the following issues are to be explored.  

7.3.2.1  PM-Grids 

There are several issues that are considered for long term future studies: for 

instance, trust, privacy and security of users and services in PM-Grids; ethical 

issues that inevitably arise when sharing personal data or devices; pricing models 
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when a PM-Grid spans multiple PNs or utilises others’ resources; resource 

specification and annotation; service composition and discovery; data management 

and information services, other job models and task partitioning; fault tolerance 

and other QoS issues.  

7.3.2.2  HoPe 

Although the resource scheduling heuristic, HoPe, has been proposed in the context 

of PM-Grids and specifically for the scheduling problem, by no means it has 

constraints that limit its application platforms or areas. It could be used in other 

systems and for other optimisation problems. It may also be generalised to develop 

a new meta-heuristic for general optimisation problems. Exploring these 

possibilities is to be considered in future work. 

The recent advent of new multi-core processors poses new challenges in developing 

scheduling algorithms for Operating Systems (OS). Such scheduling algorithms 

should be designed with adaptability and non-clairvoyant scheduling in mind to 

cope with the high dynamism in running environments. These features are apparent 

in HoPe. Therefore, future research intends to explore the possibility of employing 

HoPe for resource scheduling in multi-core OS as well as other parallel 

processing systems. 

7.3.2.3  Open Issues 

There are some open and philosophical issues that are raised by this thesis: 

Although grid technologies have never had an explicit goal of changing our society, 

it is very likely that PM-Grids and other Personal Grids, with the AmI vision as 

their main driver, will have long-term consequences in our daily lives, as well as 

ethical concerns that are to a great extent more far-reaching than the Internet.   

Finally, it is important to consider that a successful innovation is the result of a 

specific socio-economic and technological constellation. In other words, the right 

product, in the right market, at the right time, where specific requirements in terms 

of user needs, pricing and standards among others, have to be met in order for 

innovation to succeed and reach its desired objectives [9]. 
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