

Brunel University

School of Engineering and Design
Electronic and Computer Engineering

Personal Mobile Grids
with a Honeybee Inspired Resource Scheduler

by
Heba Abdullataif Kurdi

A thesis submitted for the degree of Doctor of Philosophy

March 2010

2

Abstract

The overall aim of the thesis has been to introduce Personal Mobile Grids (PM-
Grids) as a novel paradigm in grid computing that scales grid infrastructures to
mobile devices and extends grid entities to individual personal users. In this
thesis, architectural designs as well as simulation models for PM-Grids are
developed.

The core of any grid system is its resource scheduler. However, virtually all
current conventional grid schedulers do not address the non-clairvoyant
scheduling problem, where job information is not available before the end of
execution. Therefore, this thesis proposes a honeybee inspired resource
scheduling heuristic for PM-Grids (HoPe) incorporating a radical approach to
grid resource scheduling to tackle this problem. A detailed design and
implementation of HoPe with a decentralised self-management and adaptive
policy are initiated.

Among the other main contributions are a comprehensive taxonomy of grid
systems as well as a detailed analysis of the honeybee colony and its nectar
acquisition process (NAP), from the resource scheduling perspective, which
have not been presented in any previous work, to the best of our knowledge.

PM-Grid designs and HoPe implementation were evaluated thoroughly through
a strictly controlled empirical evaluation framework with a well-established
heuristic in high throughput computing, the opportunistic scheduling heuristic
(OSH), as a benchmark algorithm. Comparisons with optimal values and worst
bounds are conducted to gain a clear insight into HoPe behaviour, in terms of
stability, throughput, turnaround time and speedup, under different running
conditions of number of jobs and grid scales.

Experimental results demonstrate the superiority of HoPe performance where it
has successfully maintained optimum stability and throughput in more than 95%
of the experiments, with HoPe achieving three times better than the OSH under
extremely heavy loads. Regarding the turnaround time and speedup, HoPe has
effectively achieved less than 50% of the turnaround time incurred by the OSH,
while doubling its speedup in more than 60% of the experiments.

These results indicate the potential of both PM-Grids and HoPe in realising
futuristic grid visions. Therefore considering the deployment of PM-Grids in
real life scenarios and the utilisation of HoPe in other parallel processing and
high throughput computing systems are recommended.

3

Table of Contents

Abstract ...2

Table of Contents..3

List of Figures ...8

List of Tables...10

Acknowledgements ...11

Author’s Declaration..12

List of Abbreviations..13

Chapter 1 Introduction ..16

1.1 Introduction ..16
1.2 Motivation ..18
1.3 Research Aim and Objectives ..19
1.4 Challenges ..20
1.5 Main Contributions...21

1.5.1 Architectural Designs and Models for PM-Grids.......................21
1.5.2 Detailed Design and Implementation of HoPe...........................21
1.5.3 Detailed Analysis of the NAP ..22
1.5.4 Comprehensive Taxonomy of Grid Systems..............................22
1.5.5 Unified Framework for Resource Schedulers23
1.5.6 Controlled Empirical Evaluation Framework23
1.5.7 Performance Models of HoPe and OSH Behaviours23

1.6 Thesis Scope...24
1.7 Thesis Outline...25
1.8 References ..28

Chapter 2 A Survey and Taxonomy of Grid Systems30

2.1 Introduction ..30
2.2 Grid Computing..31
2.3 Grid Generations ..32
2.4 Features of Next Generation Grids...33
2.5 Classification of Emerging Grids ...34
2.6 Taxonomy of Grid Systems..35

2.6.1 Grids Classified by Solution Type ...36
2.6.1.1 Computational Grids ..36
2.6.1.2 Data Grids...38
2.6.1.3 Service Grids ..38
2.6.1.4 Access Grids...38

2.6.2 Grids Classified by Virtual Organisation Scope39
2.6.2.1 Global Grids ...39
2.6.2.2 National Grids ..40

4

2.6.2.3 Enterprise Grids..40
2.6.2.4 Intra-Grids ..40
2.6.2.5 Personal Grids ..40

2.6.3 Grids Classified by Accessibility ...41
2.6.3.1 Closed Grids ...41
2.6.3.2 Accessible Grids...41

2.6.3.2.1 Ad hoc Grids...42
2.6.3.2.2 Wireless Grids ..43
2.6.3.2.3 Mobile Grids...44

2.6.4 Grids Classified by Interactivity...46
2.6.4.1 Batch Grids...46
2.6.4.2 Interactive Grids ...46

2.6.4.2.1 Direct Interactive Grids ..47
2.6.4.2.2 Context-Aware Grids..47

2.6.5 Grids Classified by User-Centricity ...47
2.6.5.1 Organisational Grids...47
2.6.5.2 User-Centric Grids..48

2.6.6 Grids Classified by Manageability ...48
2.6.6.1 Centralised Grids ..49
2.6.6.2 P2P Grids..49
2.6.6.3 Manageable Grids...49

2.6.6.3.1 Autonomic Grids ..50
2.6.6.3.2 Knowledge Grids..50
2.6.6.3.3 Organic Grids ...50

2.6.6.4 Hybrid Grids...51
2.7 Other Related Paradigms..51

2.7.1 Utility Computing...51
2.7.2 Everything as a Service ..52
2.7.3 Cloud Computing ...53

2.8 Conclusion..54
2.9 References ..56

Chapter 3 PM-Grid: A Personal Mobile Grid...61

3.1 Introduction ..61
3.2 From Mainframes to PM-Grids ..61
3.3 What is a PM-Grid?..64
3.4 Motivating Applications...65

3.4.1 Personal Mobile Medical Record (PM-MR)66
3.4.2 Personal Mobile Learning (PM-Learning)68

3.5 Grid Computing and Personal Mobile Devices..................................68
3.5.1 Can Mobile Devices be Utilised? ...69
3.5.2 What Roles Can Mobile Devices Play?......................................70
3.5.3 Can Mobile Devices be Integrated in Grids?70

3.6 PM-Grid Design ...71
3.6.1 PN Architecture ..71

3.6.1.1 Layered View ...72
3.6.1.1.1 Connectivity Level ...72
3.6.1.1.2 Network Level ..72
3.6.1.1.3 Service Level ..72

3.6.1.2 Detailed Architecture..73

5

3.6.2 PM-Grid Architecture...75
3.6.2.1 Abstract Layered View...75

3.6.2.1.1 PM-Grid Level..75
3.6.2.2 Detailed Architecture..76

3.6.2.2.1 Clients...77
3.6.2.2.2 Workers ..77
3.6.2.2.3 Spaces ...78
3.6.2.2.4 Device Roles in PM-Grids..79

3.7 Related Work..81
3.7.1 PN and PN Federation ..81
3.7.2 Mobile Grids...82
3.7.3 Personal Grids ..82
3.7.4 Personal Distributed Environment ...83

3.8 Conclusion..83
3.9 References ..84

Chapter 4 A Framework for Resource Scheduling87

4.1 Introduction ..87
4.2 The Resource Scheduling Problem ..88
4.3 Basic Terminologies...89
4.4 A Framework for Resource Scheduling ...90

4.4.1 Resource Model..91
4.4.1.1 Parallel versus Dedicated Resources91

4.4.1.1.1 Identical, Uniform and Unrelated Parallel Resources93
4.4.1.1.2 Flow, Open and Job Shops Dedicated Resources93

4.4.2 Job Model ...93
4.4.2.1 Dependent Jobs versus Independent Jobs...............................94

4.4.2.1.1 DAG Workflows versus Non-DAG Workflows95
4.4.2.1.2 Bag-of-Tasks versus Divisible Load95

4.4.3 Performance Metrics ..96
4.4.3.1 Job-Centric versus Resource-Centric Metrics97

4.4.4 Scheduler Model...97
4.4.4.1 Organisation ...98

4.4.4.1.1 Centralised versus Decentralised......................................98
4.4.4.1.2 Distributed versus Non-Distributed..................................99
4.4.4.1.3 Cooperative versus Non-Cooperative...............................99

4.4.4.2 Scheduling Policy...99
4.4.4.2.1 Stochastic versus Deterministic......................................100
4.4.4.2.2 Clairvoyant versus Non-Clairvoyant101
4.4.4.2.3 Static versus Dynamic ..102
4.4.4.2.4 Immediate versus Batch ...102
4.4.4.2.5 Adaptive versus Non-Adaptive103
4.4.4.2.6 Local versus Global ..103
4.4.4.2.7 Self-Scheduling versus Non-Self Scheduling103
4.4.4.2.8 Best Effort versus QoS ...104

4.4.4.3 Scheduling Procedure...105
4.4.4.3.1 Optimum versus Sub-Optimum Algorithms105
4.4.4.3.2 Approximation versus Heuristic.....................................106

4.5 Grid Resource Scheduling..106
4.5.1 Characteristics of Current Grid Schedulers..............................107

6

4.5.1.1 Centralised and Hierarchical Schedulers..............................107
4.5.1.2 Static Clairvoyant Schedulers...108
4.5.1.3 Lack of Dedicated Access to Resources...............................108
4.5.1.4 Heterogeneous Resources...108
4.5.1.5 High Communication Latency ...108

4.5.2 Examples of Grid Schedulers ...109
4.5.2.1 A Resource-Centric Scheduler: Condor110
4.5.2.2 A Job Centric Scheduler: Legion ...110
4.5.2.3 An Economy-Based Scheduler: Nimrod/G111

4.6 Conclusion..111
4.7 References ..113

Chapter 5 HoPe: A Honeybee Inspired Scheduler......................................117

5.1 Introduction ..117
5.2 Scheduling Problem in PM-Grids ..118
5.3 HoPe Requirements ..119
5.4 Broad Hypothesis ...120

5.4.1 Why a Heuristic Approach? ...121
5.4.2 Why Honeybee Colony-based Inspiration?..............................122
5.4.3 Why Stability as a Scheduling Objective?125

5.5 The Nectar Acquisition Process (NAP)..126
5.5.1 Abstract Algorithms ...127

5.5.1.1 Forager Bee Abstract Algorithm ..128
5.5.1.2 Receiver Bee Abstract Algorithm ..130

5.5.2 Abstract Queuing Model ..131
5.5.3 Formulation of the NAP Scheduling Problem..........................135

5.5.3.1 Nectar Collection Course ...135
5.5.3.2 Honey Processing Course...136

5.5.4 Main Features ...137
5.5.4.1 Decentralised Self-Control Policy..137
5.5.4.2 Non-Clairvoyant Adaptive Scheduling Policy138
5.5.4.3 Easily Calculated Local Control Variables138
5.5.4.4 Reliable Communication Scheme ..138
5.5.4.5 Economic Communication Scheme139
5.5.4.6 Non-Competitive Cooperative Behaviour............................139

5.5.5 Elements of Honeybee Colony and NAP139
5.5.5.1 Elements of Honeybee Colony...140
5.5.5.2 Elements of NAP..140

5.6 From Inspiration to Algorithm ...142
5.6.1 Mapping between PM-Grid and Honeybee Elements143
5.6.2 HoPe Elements ...144
5.6.3 Mapping between NAP and HoPe Elements............................147
5.6.4 HoPe Algorithms ..148

5.7 Related Work..152
5.8 Conclusion..155
5.9 References ..156

Chapter 6 Evaluation and Results ..159

6.1 Introduction ..159
6.2 Evaluation Objectives...159

7

6.3 Experimental Design ..161
6.4 Resource Scheduling Framework in PM-Grids................................162

6.4.1 Resource model ..162
6.4.2 Job model..165
6.4.3 Performance Metrics ..168
6.4.4 Scheduler Model...169

6.4.4.1 HoPe ...169
6.4.4.2 Opportunistic Scheduling Heuristic (OSH)..........................170

6.5 PM-Grid Simulator...171
6.6 Performance Models...173
6.7 Experiments ..174
6.8 Results, Performance Models and Discussion..................................175

6.8.1 Stability...176
6.8.1.1 Results ..176
6.8.1.2 Discussion...177
6.8.1.3 Stability Models..180

6.8.2 Throughput ...182
6.8.2.1 Results ..182
6.8.2.2 Discussion...184
6.8.2.3 Throughput Models ..185

6.8.3 Turnaround Time (TT) ...187
6.8.3.1 Results ..187
6.8.3.2 Discussion...189
6.8.3.3 TT Models ..189

6.8.4 Speedup ..191
6.8.4.1 Results ..191
6.8.4.2 Discussion...191
6.8.4.3 Speedup Models ...193

6.9 Conclusion..194
6.10 References ..196

Chapter 7 Conclusion and Future Research..198

7.1 Summary...198
7.2 Conclusion..199
7.3 Future Research ..201

7.3.1 Short Term Future Research...201
7.3.1.1 PM-Grids ..201
7.3.1.2 HoPe ...202
7.3.1.3 Stability Performance Measure ..202
7.3.1.4 Real Test-bed and Workload ..203
7.3.1.5 Benchmark Algorithms ..203

7.3.2 Long Term Future Research...203
7.3.2.1 PM-Grids ..203
7.3.2.2 HoPe ...204
7.3.2.3 Open Issues...204

7.4 References ..205

Publications based on this Thesis..206

8

List of Figures

Figure 1.1: PM-Grids Challenges..20
Figure 1.2: Thesis Scope ...25
Figure 1.3: Thesis Structure ..27
Figure 2.1: Grid Environment ...32
Figure 2.2: Grid Generations...33
Figure 2.3: Comprehensive Taxonomy of Grid Systems37
Figure 2.4: Ad hoc Grid ..43
Figure 2.5: Mobile Ad hoc Grid..43
Figure 2.6: Wireless Grid ..44
Figure 2.7: Wireless Access Grid..44
Figure 2.8: Mobile Grid...45
Figure 2.9: Mobile Access Grid ..46
Figure 3.1: ENIAC, the Second Electronic Digital Computer, 1943 [2]62
Figure 3.2: Personal Area Network (PAN) ...62
Figure 3.3: Personal Network (PN)...63
Figure 3.4: Personal Mobile Grid (PM-Grid)..64
Figure 3.5: Personal Mobile Medical Record (PM-MR)67
Figure 3.6: PN Layered View [35] ..73
Figure 3.7: PN Detailed View ...74
Figure 3.8: PM-Grid Layered View ..76
Figure 3.9: PM-Grid Detailed View..77
Figure 3.10: Role Hierarchy in PM-Grids...80
Figure 4.1: The Resource Scheduling Problem...88
Figure 4.2: Scientific Advances in the Resource Scheduling Field89
Figure 4.3: Resource Scheduling Framework ...91
Figure 4.4: Unified Taxonomy for Resource Scheduling92
Figure 4.5: Resource Model ..93
Figure 4.6: Job Model ...94
Figure 4.7: Dependent Job Example Models ..95
Figure 4.8: Independent Job General Models ...96
Figure 4.9: Performance Metrics...97
Figure 4.10: Scheduler Organisation...98
Figure 4.11: Scheduling Policy ...100
Figure 4.12: Static, Dynamic and Non-Clairvoyant Scheduling.....................102
Figure 4.13: Scheduler Procedure Model..105
Figure 5.1: Conventional Grid Schedulers ..119
Figure 5.2: HoPe Scheduling Approach..121

9

Figure 5.3: Bio-inspired Design Process...124
Figure 5.4: Nectar Acquisition Process (NAP) ...126
Figure 5.5: Dynamic Reallocation of Labours during NAP............................127
Figure 5.6: Basic Idea of Local Search in NAP ..129
Figure 5.7: Forager Bee High Level Flowchart ..129
Figure 5.8: Forager Bee High Level Pseudo Code..130
Figure 5.9: Receiver Bee High Level Flowchart...131
Figure 5.10: Receiver Bee High Level Pseudo Code......................................131
Figure 5.11: Honeybee Colony Queuing Model ...134
Figure 5.12: Alternative Queuing Models to a Network of Workstations134
Figure 5.13: Queuing Model of a PM-Grid...144
Figure 5.14: Executer High Level Flowchart ..149
Figure 5.15: Executer High Level Pseudo Code ...150
Figure 5.16: Composer High Level Flowchart..150
Figure 5.17: Composer High Level Pseudo Code...151
Figure 5.18: HoPe Sequence Diagram during a Job Life Cycle151
Figure 6.1: PM-Grid Model (4 workers/cluster) ...164
Figure 6.2: PM-Grid Job Model ..165
Figure 6.3: Simple Trial Division Algorithm (C++)...166
Figure 6.4: Finite-State Modelling Concept - Opnet.......................................172
Figure 6.5: PM-Grid Simulator ...173
Figure 6.6: HoPe Stability ...178
Figure 6.7: OSH Stability..179
Figure 6.8: Stability Models..181
Figure 6.9: Net Throughput in HoPe and OSH...183
Figure 6.10: Net Throughput Models..186
Figure 6.11: Mean TT in HoPe and OSH..188
Figure 6.12: TT Models...190
Figure 6.13: Average Speedup in HoPe and OSH ..192
Figure 6.14: Speedup Models..193

10

List of Tables

Table 2.1: Classification of Emerging Grids ...35
Table 3.1: Placement of PM-Grid Elements..81
Table 4.1: Scheduling Framework Applied to Condor, Legion and Nimrod-G .109
Table 4.2: Differences between Interchangably used Scheduler Features112
Table 5.1: Mapping between PM-Grid and Honeybee Colony Elements143
Table 5.2: Mapping between NAP and HoPe Elements..................................148
Table 6.1: Resource Scheduling Framework in PM-Grids..............................163
Table 6.2: Experimental Processor Capacity...164
Table 6.3: Number of Devices in each PM-Grid Device Role........................165
Table 6.4: Number of Workers in each PM-Gird Scale165
Table 6.5: Experimental Job Sizes...168
Table 6.6: Values of HoPe Empirical Parameters ...175
Table 6.7: Total Arrival Rates ...176
Table 6.8: Stability Absolute and Relative Errors...177
Table 6.9: Statistical Data of HoPe Stability Model182
Table 6.10: Statistical Data of OSH Stability Model182
Table 6.11: Optimal Net Throughput ..184
Table 6.12: Net Throughput Absolute and Relative Errors.............................184
Table 6.13: Statistical Data of HoPe Throughput Model187
Table 6.14: Statistical Data of OSH Throughput Model187
Table 6.15: Statistical Data of HoPe TT Model ..190
Table 6.16: Statistical Data of OSH TT Model ...191
Table 6.17: Statistical Data of HoPe Speedup Model194
Table 6.18: Statistical Data of OSH Speedup Model194

11

Acknowledgements

I owe my deepest gratitude to my supervisor, Hamed Al-Raweshidy. Professor
Al-Raweshidy, has not only taught me how to pursue independent research, but
his diligence and commitment to research will also greatly influence me for
many years to come. I am grateful for having the opportunity to learn from him
and work with him.

I would like to express my sincerest appreciation to my second supervisor,
Maozhen Li in recognition of his continuous support, encouragement and
patience. Dr. Li. has been a constant source of detailed help regarding all areas
of my research.

I am grateful to Dr. Maysem Abbod; his revision and thoughtful comments have
been really beneficial in shaping all scheduling-related chapters in my thesis.
Thanks to Dr. Ali Mousavi also for helping in queuing theory issues.

I am thankful to all my wonderful lab mates especially Nagham Saeed; many of
my research findings arose during discussion with her. Thanks Nagham for the
good times. I have really enjoyed working with you. I would also like to thank
Carlene Campbell for continuously encouraging and believing in me. Thanks to
my colleagues Areeb Al-Owisheq and Areej Al-Wabel for their thoughtful
comments.

I acknowledge the Al-Imam Mohammad Ibn Saud Islamic University and the
Ministry of Higher education in Saudi Arabia for providing me with a
scholarship to pursue this PhD.

The entirety of this work would have never been successful without the help of
Almighty ALLAH at first, then the endless support of a very special person,
Yousef Abdulghani, my husband. He has made, and is still making, a lot of
sacrifices to enable me to develop my academic career. His love has made me
capable of weathering all the ups and downs throughout the ordeal of my
doctoral study.

I am extremely grateful to my parents, Mum Fareeda Kamel and Dad
Abdullataif Kurdi (may Almighty ALLAH bless his soul), in every initiative I
take in my life. I hope I have fulfilled a part of their dream.

I would like to thank my children, Majid, Mohannad, Majd, Moath and
Mohammad, for their understanding, patience and unconditional love.

Heba Kurdi

January 30, 2010, London, UK

12

Author’s Declaration

I certify that the work in this thesis has not previously been submitted for a
degree nor has it been submitted as part of requirements for a degree except as
fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have
received in my research work and the preparation of the thesis itself has been
acknowledged. In addition, I certify that all information sources and literature
used are indicated in the thesis.

Signature of Student

13

List of Abbreviations

3D Three Dimensional
ABC Artificial Bee Colony
ACD Automated Call Distribution
ACO Ant Colony Optimisation
Akogrimo Access to Knowledge through the Grid in Mobile World
AmI Ambient Intelligence
ANOVA Analysis of Variance
ASP Application Service Provider
BoT Bag-of-Tasks
CaaS Communication as a Service
CHF Composer Help Flag
CHM Composer Help Message
CHMD Composer Help Message Duration
CHT Composer Help Threshold
CPU Central Processing Unit
CRM Customer Relationship Management
CW Current Workload
DAG Directed Acyclic Graph
DL Divisible Workload
DS Device Score
EaaS Everything as a Service
EHL Executer Help List
EHM Executer Help Message
EHMD Executer Help Message Duration
EHT Executer Help Threshold
FIFO First In First Out
GRACE Grid Architecture for Computational Economy
GSP Grid Service Provider
HaaS Hardware as a Service
HoPe Honeybee inspired resource scheduling heuristic for Personal

Mobile Grids
HPC High Performance Computing
HTC High Throughput Computing
IaaS Infrastructure as a Service
ID Identification number
IEEE Institute of Electrical and Electronics Engineers
IrDA Infrared Data Association

14

IST Information Society Technology
JCR Job Collection Rate
JMX Java Management Extensions
MAC Medium Access Control
MAGNT My Personal Adaptive Personal Global Net
MPI Message Passing Interface
MR Medical Record
NAP Nectar Acquisition Process
NGG Next Generation Grids
OSH Opportunistic Scheduling Heuristic
P2P Peer-to-Peer
PaaS Platform as a Service
PacWoman Power Aware Communications for Wireless Optimised Personal

Area Networks
PAN Personal Area Network
PBX Private Branch Exchange
PDA Personal Digital Assistant
PDE Personal Distributed Environment
PG Personal Grid
PM-Grid Personal Mobile Grid
PML Personal Mobile Learning
PM-MR Personal Mobile Medical Record
PN Personal Network
PN@home Personal Networks at Home
PNF Personal Network Federation
PN-F Personal Network Federation
PNP Personal Network Provider
PNP2008 Personal Network Pilot 2008
PSO Particle Swarm Optimisation
QoS Quality of Service
RGR Result Generation Rate
RM Ready Message
RW Remaining Workload
SaaS Software as a Service
SOA Service Oriented Architecture
TCR Task Collection Rate
TDT Tremble Dance Threshold
TT Turnaround Time
USB Universal Serial Bus
UWB Ultra-Wideband
VaaS Voice as a Service
VO Virtual Organisation

15

WDT Waggle Dance Threshold
WT Waiting Time
WWRF Wireless World Research Forum
XaaS Everything as a Service
ZigBee Zonal Intercommunication Global-standard, where Battery life

was long, which was Economical to deploy, and which exhibited
Efficient use of resources

Introduction 16

Chapter 1
Introduction

1.1 Introduction

In grid computing [1] a set of computational resources are combined to form a

large-scale distributed system in which all resources can be shared. This has the

great advantage of providing a resource-rich infrastructure capable of solving

data intensive and complex computational problems, such as protein folding and

weather forecasting, in an acceptable time and at a reasonable cost.

However, there are two main problems with current grid systems. First of all,

they are of very restricted access; they are only available for people in enterprise

and research domains. In other words, personal users (individuals outside these

domains) are not permitted [2, 3]. Additionally, available grid middleware

systems are of very heavy weight in terms of implementations [4]. This is to

say, mobile devices cannot be utilised.

Bridging the gap between personal users with mobile devices and grid

environments is the end objective of Personal Mobile Grids or simply PM-

Grids. This thesis sets out to construct PM-Grids as a new paradigm in grid

computing to empower individuals constrained with resource limited devices by

providing a ubiquitous resource-rich infrastructure.

Given that Personal Area Networks (PANs) [5, 6] and Personal Networks (PNs)

[7, 8] interconnect personal devices, allowing resources such as data,

peripherals and secondary storage for sharing, the next logical step is to

superimpose grid functionality over these networks offering additional resources

such as processors cycles and memories for sharing. Thus, the net result is a

virtual supercomputer which can be accessed at anytime and anywhere: a PM-

Grid.

However, a very demanding challenging problem becomes apparent when

multiple resources are shared. Indeed, it is not a domain specific problem.

Introduction

17

Rather, it is a universal optimisation problem that has been subject to extensive

research for decades: the resource scheduling problem. When there are multiple

machines and a set of jobs, how should machines be allocated to jobs in order to

optimise a certain performance measure, such as the job turnaround time or the

number of late jobs. This problem, in many of its forms, is known to be NP-

complete [9]. It becomes even more complicated and challenging in highly

dynamic and unreliable networks [10-12], such as those underlying PM-Grids,

due to nodes joining and leaving, switching on and off and working at

varying paces.

Therefore, a key to any successful grid system is an efficient scheduler that

allocates available resources to incoming jobs. However, conventional grid

schedulers are clairvoyant scheduling policies which assume that information

about jobs is available to the scheduler before jobs enter the system, in static

scheduling, or at least before starting the execution, in dynamic scheduling.

Additionally, conventional grid schedulers are usually of centralised and static

scheduling policies. A central authority generates a complete schedule prior to

execution which other nodes uphold [13]. Such a scheduling scheme severely

restricts the scalability of the system. It is prohibitively expensive to generate

and simply impractical in many situations where high dynamism is an important

issue.

Therefore, a Honeybee inspired resource scheduling heuristic for Personal

Mobile Grids (HoPe) is proposed in this thesis with a radical approach to grid

scheduling. HoPe implements a non-clairvoyant, self-management and adaptive

scheduling policy. In this scheme, no job information is presumed to be

available prior to execution, and the scheduling policy is carried locally in each

machine based on its perception of the current system state. This approach has

its roots in techniques observed in honeybees during their Nectar Acquisition

Process (NAP).

This chapter provides a high level overview of the whole thesis. It briefly

presents the motivation for the research in section 1.2, then identifies the

research overall aim and objectives in section 1.3. Technical challenges are

highlighted in section 1.4. The main scientific contributions are presented in

Introduction

18

section 1.5, while the thesis scope is outlined in section 1.6. The chapter

concludes by outlining the structure of this thesis in section 1.7.

1.2 Motivation

The motivation for this thesis is four-fold:

First, the need for grid systems which support the vision of Next Generation

Grids (NGG) [14-16] scaling grids to a larger number of entities and smaller

devices as well as the vision of Ambient Intelligence (AmI), where humans are

surrounded by computing and networking technologies unobtrusively embedded

in their surroundings. Current grid architectures and technologies do not meet

the requirements for turning these ambitious grid visions into reality [17, 18].

Second, the mobile device market is evolving with a progressive reduction of

costs and a continuous improvement in performance, rapidly increasing the

number of users and applications of such devices. The Wireless World Research

Forum (WWRF) predicts that there will be 1000 wireless devices per person on

average in 2017 [19]. One speculates how a personal user will be able to

manage such a vast number of devices and efficiently utilise scattered resources

among them. It seems reasonable to enable personal users to efficiently share

resources including processor cycles, storage capacity and other functionalities

among their devices in the form of services available across a global network

environment such as computational grids.

Third, people are increasingly keen to frequently replace or upgrade their

personal computers to gain more processing power and memory. Sometimes,

they need to run complex computational jobs which their desktops or laptops

cannot accommodate, or while they are on the move. People are becoming

frustrated with the need to move data between their different electronic devices.

For instance, a person might have several address books spread over his/her

devices. Indeed, there is a need to allow users to harness all processing powers,

memory storages and data files scattered across their computing and

communication devices, in the form of services available across computational

grids, so they can ubiquitously access data and run jobs.

Introduction

19

Fourth, colonies of social insects such as bees and ants present an intelligent

collective behaviour although they are composed of simple individuals of

limited capability. These successful systems from nature have inspired

researchers in solving many optimisation problems including the resource

scheduling problem. Among all social insects, the technique underlying the

NAP in honeybees is the greatest metaphor of efficient cooperation [20].

Exploiting this technique to solve the highly demanding resource scheduling

problem in grid computing in particular is an unexplored area, to the best of our

knowledge.

1.3 Research Aim and Objectives

The overall aim of the thesis is to introduce PM-Grids as a novel paradigm in

grid computing for endowing individuals with resource-rich infrastructures that

can serve as general purpose personal mobile and virtual supercomputers. The

research aim is addressed through the following objectives:

1. To review the area of grid computing to identify related paradigms to PM-

Grids.

2. To introduce PM-Grids to empower personal mobile users with ubiquitous

access to their data and computing resources. This objective involves two

sub-objectives:

2.1. To develop architectural designs for PM-Grids.

2.2. To build simulation models for PM-Grids.

3. To review the area of resource scheduling to identify required features

for an efficient resource scheduler in PM-Grid environments.

4. To develop a resource scheduling heuristic to efficiently schedule PM-

Grid resources. This objective involves two sub-objectives:

4.1. To design the heuristic.

4.2. To implement the heuristic.

5. To empirically validate the PM-Grid models using the developed

scheduling heuristic and to analyse the results.

Introduction

20

1.4 Challenges

There are many technical challenges in developing PM-Grids. These challenges

are inherited from the original components of PM-Grids in three fields, as

illustrated in Figure 1.1:

• Grid computing: Grid computing is a rapidly developing area of

research, with heavy implementations which support neither mobile nor

personal users.

• Personal Networks: PNs are a relatively new area of research with

demanding issues such as unreliable connectivity, heterogeneity in terms

of hardware and software, and high security risks.

• Mobile computing: Mobile computing is a challenging research area

which needs to tackle problems such as resource limitation of mobile

devices, low bandwidth and high dynamism.

These challenges shape the development of PM-Grids more demanding than

with other grids.

Figure 1.1: PM-Grids Challenges

Grid
Computing

Personal Networks Mobile Computing

• Heavy implementation

• Rapidly developing area

• No support of personal users

• … .

• High security risk

• Unreliable connectivity

• Heterogeneous software & hardware

• … .

• Low bandwidth

• High dynamism

• Limited resources

• … .

Introduction

21

1.5 Main Contributions

There are seven main contributions of this thesis which are summarised in the

following sections.

1.5.1 Architectural Designs and Models for PM-Grids

As indicated in section 1.2, there are gaps between current grids and the visions

of future grids. Neither traditional grid architectures nor vast extensions to them

can satisfy the requirements of the NGG; the way forward is to design an

architecture based on the properties of NGG and implement it [17].

Therefore, this thesis has originated designs for PM-Grids based on the PNs

architecture and as a natural extension to them, given that the NGG features

have been explicitly addressed in their design. An abstract layered view, a

detailed inside view and simulated models at different scales in terms of number

of devices per cluster, are presented and evaluated in this thesis.

1.5.2 Detailed Design and Implementation of HoPe

The extremely dynamic nature, diversity and limited capabilities of resources, as

well as difficulties in predicting the nature and timing of incoming jobs (non-

clairvoyant scheduling), are all factors which considerably influence the

complexity of the scheduling problem in PM-Grids. Through observation, the

honeybee colony solves an extraordinarily difficult scheduling problem while

allocating bees to nectar sources in nature, through a simple decentralised

cooperative and adaptive self-scheduling policy.

This observation has inspired this thesis to follow a similar approach in

scheduling PM-Grid resources. A detailed design, implementation and

evaluation of HoPe are initiated in this thesis. To the best of our knowledge,

HoPe is the first algorithm to shed light on the non-clairvoyant scheduling

problem in grid computing. It is the first honeybee-inspired algorithm

attempting to solve the resource scheduling problem relying totally on local and

easily calculated parameters which is considered among the most important

features of the honeybee colony [20].

Introduction

22

1.5.3 Detailed Analysis of the NAP

Honeybees present an intelligent collective scheduling behaviour while

allocating themselves to nectar sources under extraordinarily difficult conditions

during the NAP [20]. This has motivated some previous work to analyse and

model the honeybee colony and its NAP. However, these are concrete

mathematical and probabilistic models quantifying features of the honeybee

behaviour based on certain sets of predefined assumptions. The problem with

this approach is that the honeybee colony, as in the case of all biological

systems, has unique characteristics that are apparently different from the

mathematical assumptions that lie beneath the analytical models.

Therefore, this thesis has initiated a queuing theory with a simulation based

approach to NAP modelling from the resource scheduling perspective. A

generic model for the NAP is developed as a queuing network which is

simulated in several representative scenarios. Additionally, detailed algorithmic

analysis and modelling based on honeybee techniques are presented. Some of

these techniques have not been considered in previous work, namely, the

tremble dance that controls the nectar influx to the hive and the dependence

only on locally calculated parameters.

1.5.4 Comprehensive Taxonomy of Grid Systems

Despite rapid developments in grid computing, there has been, surprisingly, no

research into reviewing or classifying newly emerged grid systems. A survey

and a classification scheme for emerging grids are initiated, in this thesis, to

bridge this gap. This classification is extended in the form of a comprehensive

taxonomy for both emerging and traditional grids which is significant for the

following reasons. First, it facilitates studying grid systems under one

framework. Second, it allows one to see the main design features of grid

systems clearly and assists a detailed comparison between them. Third, it helps

in understanding current research trends in grid computing and anticipating

future trends. Fourth it provides a common set of terminologies for grid systems

in an attempt to establish a solid framework for the rapidly evolving area of grid

computing.

Introduction

23

1.5.5 Unified Framework for Resource Schedulers

In contrast to the scarcity of resources involved in proposing taxonomies for

grid systems, a plethora of literature has proposed taxonomies for resource

schedulers in distributed systems, in general, and grid computing, in particular.

This abundance of taxonomies has resulted in scattered nomenclatures as well

as vague and inconsistent terminologies in the literature, necessitating the

development of a unified view of the previous work.

Therefore this thesis presents a common framework for resource scheduling

with a unified presentation of previously published taxonomies, indicating the

different terminologies in use. The intention has been to provide a means to help

in designing and analysing resource schedulers and also in comparing them.

Such a framework is deemed necessary to amalgamate the area of resources

scheduling under a common, uniform set of nomenclatures and terminologies.

1.5.6 Controlled Empirical Evaluation Framework

A controlled empirical evaluation framework to prove the concept of PM-Grids

and to evaluate the performance of HoPe is developed in this thesis. A flexible

simulator is built for this purpose, allowing the control of experimental

parameters (job interarrival time and number of devices per cluster),

randomising extraneous variables (processor capacity and job size) as well as

measuring and analysing various performance metrics (stability, throughput and

turnaround time). An optimum value, worst bound and a benchmark algorithm

(the Opportunistic Scheduling Heuristic – OSH) are employed to assess HoPe

performance.

1.5.7 Performance Models of HoPe and OSH Behaviours

Mathematical performance models are generated, using multiple regressions and

quadric equations, to predict the performance of HoPe and OSH in regard to

stability, net throughput, turnaround time and speedup. In addition, a three

dimensional (3D) graphical model is created for each predicted mathematical

model. The statistical significance of models predicted is evaluated by the

analysis of variance (ANOVA) test which determines which factors

significantly affect the performance metric in the study. These models assist in

Introduction

24

gaining clearer insight into the behaviour of each heuristic under various

running conditions of job interarrival times and grid scales.

1.6 Thesis Scope

This thesis contemplates novel paradigms from different areas resulting in

research of a multidisciplinary nature that involves cross-fertilisation of ideas

from grid computing, mobile computing and networking among others.

Therefore, it was necessary to outline a clear scope to successfully accomplish

the objectives in the given time frame.

First, the scope in terms of grid computing, it should be noted that although

building computational grids involves several issues, this thesis has only

considered the resource scheduling issue as resource schedulers are the heart of

any grid system.

Second, in terms of underlying networks, this thesis has considered PNs as the

basic infrastructure for PM-Grids as they have the potential for realising the

NGG vision. Investigating other networks and infrastructures is considered

beyond the thesis scope.

Third, in terms of mobile computing, while the word “mobile” is stressed

throughout this thesis, the main concern is the highly dynamic nature of the

mobile devices environment and their limited resources in terms of processor

capacity in particular, rather than the usual issues raised with mobility such as

code migration, battery life time and limited bandwidth. The thesis scope is

summarised in Figure 1.2. Examples in each research domain given in the figure

are not exhaustive.

It is important to note that although some grid practitioners restrict the term

“grid” to computational environments which span multiple administration

domains [1], this thesis has utilised the term grid to refer to the proposed

environment, PM-Grid, which does not necessarily span multiple administration

domains. This aligns with the approach followed by some leading grid

authorities such as Sun Microsystems [22].

Introduction

25

Figure 1.2: Thesis Scope

1.7 Thesis Outline

The work presented in this thesis is organised into seven chapters. Each chapter

starts with a brief introduction highlighting the main contributions and

providing an overview of that chapter. At the end of each chapter, brief

concluding remarks and a list of references are presented. Figure 1.3 illustrates

the structure of the thesis and relationship to the thesis objectives presented in

section 1.3.

The next six chapters contain more detailed information about the theoretical

background and technical development of PM-Grids:

Chapter 2 presents a detailed background about grid computing and its

evolution over the last few years. It defines traditional and emerging grids and

provides a skeletal classification for the latter which is extended into a

comprehensive taxonomy for both traditional and emerging grids. The chapter

Mobile Computing

• bandwidth

• mobility

• battery life

• code migration

• connectivity

• processor capacity

Thesis scope

Networks

• Mesh Networks

• Wireless Networks

• Mobile Ad-hoc Networks

• Virtual Private Networks

• Wide Area Networks

• Personal Networks

Grid Systems

• QoS

• virtualization

• resource annotation

• data management

• service discovery

• Resource Scheduling

Introduction

26

reviews and compares related paradigms to grid computing. The chapter

concludes with a brief summary and discussion.

Chapter 3 introduces the PM-Grid concept by defining PM-Grids and outlining

their potential application areas. It provides a brief background about PANs and

PNs then reviews the architectural design of PNs on which the PM-Grid

architectural design is based. An abstract layered architecture and a detailed

inside view for PM-Grids are illustrated. The chapter concludes with a

comparison of the PM-Grid with related work in distributed systems.

Chapter 4 lays the background for HoPe by presenting the resource scheduling

problem and its evolution over more than fifty years. It proposes a framework

for resource scheduling systems with a unified taxonomy of previous work in

the area. The resource scheduling problem in grid environments in particular

and its challenges is highlighted with a brief review of three well established

grid resource schedulers: Condor [23], Legion [24] and Nimrod-G [25] based on

the proposed framework. The chapter concludes with a brief discussion and

open research issues.

Chapter 5 details the HoPe analysis and design phases. It starts by articulating

the resource scheduling problem in PM-Grids and identifying scheduler

requirements to tackle such a challenging problem. It states the broad HoPe

hypothesis and discusses it. A detailed analysis of the behaviour of honeybees

during the NAP, with algorithmic style and from the queuing theory

perspective, is presented. The design and implementation elements of HoPe are

identified with the honeybee to PM-Grids and the NAP to HoPe analogies,

explained.

Chapter 6 describes in detail the evaluation process, defining the objectives and

the experimental design. HoPe and the OSH are analysed and contrasted using

the resource scheduling framework, proposed in Chapter 4. PM-Grid simulated

models are presented then experimental results are illustrated, analysed and

discussed. HoPe and the OSH performance models are generated and discussed.

Finally, Chapter 7 summarises the thesis aims, major contributions and

significant findings. It highlights areas and directions for further research.

Introduction

27

Figure 1.3: Thesis Structure

Chapter 1
Introduction

Chapter 2
A Survey and Taxonomy of Grid

Systems
(Objective: 1)

Chapter 4
A Framework for Resource

Scheduling
(Objective: 3)

Chapter 3
PM-Grid: A personal Mobile Grid

(Objective: 2.1)

Chapter 5
HoPe: A Honeybee Inspired Scheduler

(Objective: 4.1)

Chapter 6
Evaluation and Results

(Objectives: 2.2, 4.2 and 5)

Chapter 7
Conclusion and Future Research

Background

Design

Introduction

28

1.8 References

[1] I. Foster and C. Kesselman, Eds., The Grid2: Blueprint for a Future
Computing Infrastructure. San Francisco: Morgan Kaufmann, 2003.

[2] J. Han and D. Park, “A lightweight personal grid using a supernode
network,” in Proc. 3rd Int. Conf. P2P2003, pp. 168-175.

[3] K. Amin, G. V. Laszewski and A. R. Mikler, “Grid computing for the
masses: An overview,” in Proc. GCC2003, pp. 164-173.

[4] D. Millard, A. Woukeu, F. Tao, and H. C. Davis, “The potential of grid
for mobile e-learning (Poster),” presented at the 4th World Conference on
Mobile Learning, Cape Town, South Africa, 2005.

[5] IEEE 802.15 Working Group for WPAN [online]. Available:
http://ieee802.org/15/, [accessed Feb. 2, 2010].

[6] R. C. Braley, Ian C. Gifford, and Robert F. Heile, “Wireless personal
area networks: an overview of the IEEE P802.15 working group,”
SIGMOBILE Mobile Computing Commun. Rev., vol. 4, pp. 26-33, 2000.

[7] My Personal Adaptive Global NET (MAGNET) (IST 507102) [online].
Available: http://www.ist-magnet.org, [accessed Feb. 2, 2010].

[8] IST.MAGNET Beyond (IST-FP6-IP-027369) [online]. Available:
http://www.magnet.aau.dk, [accessed Feb. 2, 2010].

[9] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Eds.,
Handbook on Scheduling: From Theories to Applications. New York:
Springer, 2007.

[10] M. Mitzenmacher, “How useful is old information?” IEEE Trans.
Parallel Distribut. Syst., vol. 11, pp. 6–20, 2000.

[11] S. Irani and Y. Rabani, “On the value of coordination in distributed
decision making,” SIAM J. Comput., vol. 25, no. 3, pp. 498- 519, 1996.

[12] S. Georgiades, M. Mavronicolas and P. Spirakis, “Optimal, distributed
decision-making: The case of no communication,” in Proc. Int. Symp.
Fundamentals Comput. Theory, 1999, pp. 293–303.

[13] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “Self-organizing
scheduling on the organic grid,” Int. J. of High Performance Comput.
Applicat., vol. 20, pp. 115–130, 2006.

[14] Expert Group, “Next generation grids: European grid research 2005-
2010,” Expert Group Rep., Jun. 2003 [online]. Available:
ftp://ftp.cordis.lu/pub/ist/docs/ ngg_eg_final.pdf, [accessed Feb. 2, 2010].

[15] Expert Group, “Next generation grids2: Requirements and options for
European grids research 2005-2010 and beyond,” Expert Group Rep., Jul.
2004 [online]. Available:
http://www.semanticgrid.org/docs/ngg2_eg_final.pdf, [accessed Feb. 2,
2010].

[16] Expert Group Final, “Future for European grids: Grids and service
oriented knowledge utility,” Expert Group Final Rep., Jan. 2006 [online].

javascript:aRL('Tao%2C F. B.')�
http://ieee802.org/15/�
javascript:aRL('Braley%2CRichard C.')�
javascript:aRL('Gifford%2CIan C.')�
javascript:aRL('Heile%2CRobert F.')�

Introduction

29

Available: ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/ngg3_eg_final.pdf,
[accessed Feb. 2, 2010].

[17] K.G. Jeffery, “Next generation grids for environmental science,”
Environmental Modelling & Softw., vol. 22, no. 3, pp. 281–287, 2007.

[18] Sajjad, H. Jameel, U. Kalim, S. Han, Y. Lee and S. Lee, “AutoMAGI - an
autonomic middleware for enabling mobile access to grid infrastructure,”
in Proc. 2005 ICAS-ICNS, pp. 73-79.

[19] Jefferies, N., Global Vision for a Wireless World, Wireless World
Research Forum, 18th WWRF meeting, Helsinki, Finland, Jun. 2007.

[20] T. D. Seeley, The Wisdom of the Hive: The Social Physiology of Honey
Bee Colonies. MA: Harvard University Press, 1995.

[21] IBM [online]. Available: http://www.ibm.com/us/, [accessed Feb. 2,
2010].

[22] Sun Microsystems [online]. Available: http://www.sun.com/, [accessed
Feb. 2, 2010].

[23] Condor Project [online]. Available: http://www.cs.wisc.edu/condor,
[accessed Feb. 2, 2010].

[24] Legion: A Worldwide Virtual Computer [online]. Available:
http://legion.virginia.edu/, [accessed Feb. 2, 2010].

[25] DSTC Nimrod/G [online]. Available:
http://www.csse.monash.edu/~sgaric/nimrod/, [accessed Feb. 2, 2010].

A Survey and Taxonomy of Grid Systems 30

Chapter 2
A Survey and Taxonomy of Grid Systems

2.1 Introduction

During the last few years, information technology has witnessed a rapid advance

in every aspect, including speed and performance. This substantial advancement

has affected not only the application areas in which grid technologies can be

applied, but also the underlying architecture of how grids are developed,

deployed and run. As a result new grid systems have emerged creating a

significant evolution in grid systems.

Such advances in information technologies have also evolved new distributed

system paradigms, such as utility computing, everything as a service and cloud

computing with similar visions to grid computing. This has raised the question

of whether these advances really propose new solutions replacing grid systems,

or are merely new commercial names for grid computing.

This chapter includes two main contributions. The first is a survey and a

classification scheme of existing state-of-the-art emerging grid systems. Such a

survey and classification has not been reported in the literature before, and its

importance is to highlight the salient design features of emerging grid systems

and to assist in detailed comparisons between them. It helps in understanding

current research in grid computing and in anticipating future trends.

The second contribution of this chapter is a comprehensive taxonomy of both

traditional and emerging grids. Some earlier works have included simple

classifications of traditional grid systems, and the taxonomy presented here

agrees with the nature of such classifications. However a large number of

additional fundamental distinguishing features are included that have not been

presented in any previous work, to the best of our knowledge. Such a

comprehensive taxonomy is important to differentiate between grids and

facilitate the study of them under one framework. The aim is to provide a

A Survey and Taxonomy of Grid Systems

31

common terminology and classification mechanism for grid systems in an

attempt to contain the area under one scheme.

In section 2.2 grid computing is defined while its evolution over the last few

years is described in section 2.3. Section 2.4 presents a classification of

emerging grids which is extended to a comprehensive taxonomy to cover

traditional grids in section 2.5. Section 2.6 presents an overview of emerging

paradigms related to grid computing, and compares them. Section 2.7

summarises and concludes the chapter.

2.2 Grid Computing

Basically, Grid computing [1] is a relatively new distributed system paradigm

where computational resources are coupled together to form a large-scale

distributed system where all resources are available for sharing. This has the

great advantage of providing a resource-rich infrastructure capable of solving

data intensive and complex computational problems such as protein folding and

weather forecasting in an acceptable time and at a reasonable cost.

Indeed, there are as many definitions to the grid as the growing number of

organisations utilising it. A common theme underlying these definitions is the

coordinated resource sharing and problem solving in a Virtual Organisation

(VO). A VO is a dynamic set of participants defined around a set of resource

sharing rules and conditions as shown in Figure 2.1.

Some grid definitions add additional criteria requiring the grid resources to be

distributed across multiple administrative domains [2, 3] or to be geographically

distributed [4]. These additional criteria exclude from the grid definition,

clusters where shared resources are usually in the same locality and

administrative domain. However, some leading grid authorities, such as Sun

Microsystems [5], do consider clusters as grid environments, using the term

‘Cluster Grids’ to refer to them [6].

A Survey and Taxonomy of Grid Systems

32

Figure 2.1: Grid Environment

2.3 Grid Generations

Grid computing is a rapidly evolving area of research characterised by a number

of distinct phases or generations, as shown in Figure 2.2. The grid started in the

early nineties, as a model of meta-computing where resources in

supercomputers were shared; subsequently the ability to share data was added.

These are usually referred to as first generation grids. By the late nineties

(1998), the framework was published for second generation grids, which are

characterised by their focus on the use of grid middleware systems to glue

different grid technologies [7]. In the early millennium (2001) fast data transfer

and storage request brokers for persistent data storage with metadata description

were added to grid platforms introducing what are usually known as the 2.5 grid

generation. Late in 2002, third generation grids originated by combining the

Web technology with the second generation grids [8].

Recently, the Next Generation Grids (NGG) [9-11] vision has been defined by a

group of independent experts from the European Commission to identify

potential European grid research priorities for 2010 and beyond. The NGG

VO

Participant A

Participant B

Participant C

 Grid
Interconnecting

structure
 Resource
sharing

rules
 and

conditions

A Survey and Taxonomy of Grid Systems

33

vision stresses the necessity for grids to support and extend the Ambient

Intelligence (AmI) vision, where humans are surrounded by computing

technologies unobtrusively embedded in their surroundings.

Figure 2.2: Grid Generations

2.4 Features of Next Generation Grids

The prospective NGG vision places scalability, openness to wider user

community, pervasiveness and ubiquity, transparency and person-centricity, as

its top priorities [9-11]. These are composite features that comprise four main

primitive system design features:

• Accessibility: In this context, accessibility means making grid resources

available regardless of the physical capabilities and geographical

locations of access devices.

• Interactivity: In this context, interactivity refers to the ability of a grid to

timely respond to real-time systems requiring rapid response times and

synchronous communication.

• User-centricity: A design philosophy in which the needs and

expectations of the end user of an interface are the centre of focus.

1990 1995 2000 2005 2010

Fast data transfer and
storage broker added

Supercomputers
shared

Grid middleware
 started

Technological
Advances

years

1st generation grids

2nd generation grids

2.5 generation grids

3rd generation grids
Web and grid

technologies combined

NGG vision
Ubiquitous

technologies improved

A Survey and Taxonomy of Grid Systems

34

• Manageability: The ability of a system to automatically manage, adapt,

monitor, diagnose and fix itself. A manageable system has embedded

intelligent control into its infrastructure to automate its management

procedure.

In this thesis, these four features are considered as the main drivers for emerging

grids. For simplicity, the term “traditional grids” is utilised to refer to the grid

systems that lack the above four features, while the term “emerging grids” refers

to recent grid projects that explicitly address at least one of these features.

2.5 Classification of Emerging Grids

There is a fundamental gap between current grid implementations and the

prospective NGG vision [8]. However, new grid systems are rapidly emerging

with the potential to plug this gap. Surprisingly, no review or classification of

emerging grids is available, to the best of our knowledge. Therefore this section

sets out to bridge this gap by providing a skeletal classification and a brief

survey of emerging grids; more details about each grid category being available

in section 2.6. The aim is to give a broad view of the amount and type of work

which has been done with respect to each feature specifically, and towards the

NGG vision in general, which may drive further research in this area. The

classification places emerging grids in groups according to a set of salient

features. This allows a convenient means of quickly describing the central

aspects of a particular approach, as well as a basis for comparisons between

the groups.

After reviewing grid projects and literatures, emerging grids are identified and

placed into four main groups, based on the NGG features: Accessible Grids,

User-Centric Grids, Interactive Grids and Manageable Grids, as shown in

Table 2.1. Each group is divided further into sub-groups based on the most

apparent feature that distinguishes it from traditional grids. The table also gives

example projects of each emerging grid. However, since the main concern of

this section is to survey and classify emerging grids rather than

comprehensively reviewing all available projects, the example projects are not

exhaustive, but comprehensive enough to cover all the features of the emerging

A Survey and Taxonomy of Grid Systems

35

grid which they represent. The scope of each grid is narrowed to concentrate on

one feature per category. This is the reason why names such as Ubiquitous or

Pervasive Grids, are not used; since these names involve the supporting of

combinations of features such as accessibility, interactivity and user-centricity.

However, it should be noted that this classification is not disjoint. This means

that a grid system can be classified under more than one of the classification

features, for instance a grid G might be mobile, personal, autonomic and

interactive at the same time.

Table 2.1: Classification of Emerging Grids
Classification

features
Categories Sub-

categories
Main difference from

traditional grids
Example
projects

Ad-hoc Grids Have no predefined entry
points

OurGrid [12]and
myGrid [13]

Wireless Grids Support wireless
connections between grid
nodes and interfaces

Innovaticus [14] and
FWGrid [15]

Accessibility Accessible Grids

Mobile Grids Support mobility of clients,
services or both

Akogrimo [16]

Direct Interactive
Grids

Support direct real time
interaction with end users

CrossGrid [17]and
edutain@grid [18]

Interactivity Interactive Grids

Context-Aware
Grids

Interact with the
surroundings to build the
context and adapt their
behaviours

CONTEXT [19]

Customisable
Grids

Implement highly
personalisable grid portals

MyGrid [13]and
Akogrimo [16]

User-centricity User-Centric
Grids

Personal Grids Owned or utilised by
individuals

Personal Grid [20]
and PG [21]

Autonomic
Grids

Utilise ideas from human
body’s autonomic nervous
system to support self-
management

IBM OptimalGrid
[22] and AutoMAGI
[23]

Knowledge
Grids

Utilise knowledge
technologies to support
self- management

OntoGrid [24]and
InteliGrid [25]

Manageability Manageable
Grids

Organic Grids Utilise ideas from
biological systems such
as ant or bee colonies to
support self- management

Organic Grid [26]

2.6 Taxonomy of Grid Systems

In this section a comprehensive taxonomy of both traditional and emerging

grids is proposed based on six nomenclatures. Earlier works [27, 28] have

included classifications of traditional grid systems, based on the type of

provided solution and the scope of the VO. The taxonomy presented here is

consistent with the nature of such classifications and adds four additional

fundamental disguising features to better differentiate between grid systems.

A Survey and Taxonomy of Grid Systems

36

The aim is to provide a common terminology and classification mechanism for

grid systems in an attempt to connect the area under one scheme.

Figure 2.3 presents the proposed comprehensive taxonomy which categorises

grid systems based on six nomenclatures: solution type, VO scope, accessibility,

user-centricity, interactivity and manageability. The following sections

overview each category.

It important to note that a grid system is to be classified based on the six

nomenclatures. For instance, a grid G1 can be classified as: enterprise, data,

closed, batch, organisational and centralised, while a grid G2 is: personal,

computational, wireless, context-aware, user-centric and organic. It is important

to consider that some sub-categories can be classified under more than one

nomenclature. For instance, Personal Grids can be classified according to the

size of the VO and also based on user-centricity. To avoid duplication, each

sub-category is classified only under one nomenclature in the taxonomy, but a

note is made as necessary regarding where else the sub-category can be

classified.

2.6.1 Grids Classified by Solution Type

Grid systems are constructed for different objectives and provide different types

of solutions. Based on the type of the provided solution, grid systems are

classified as Computational Grids, Data Grids, Service Grids and Access Grids

as shown in Figure 2. 3.

2.6.1.1 Computational Grids

Computational Grids are constructed out of highly aggregated computational

resources to jointly solve computationally intensive problems that require a

great number of CPU cycles. The main solutions offered by these types of grids

are the CPU cycles. Computational Grids are further classified based on the

main type of hardware resources deployed as:

• Desktop Grids, where desktop computers constitute a considerable

volume of grid resources.

Figure 2.3: Comprehensive Taxonomy of Grid Systems

Grid Systems

accessibility manageabilityuser-centricity

interactive manageable user-centric

closed

P2P

centralised

hybrid

interactivity

autonomic

wireless

ad-hoc

mobile organic

konwledge

accessible

batch

direct interact.

context-aware

Sub-category of emerging grids

Sub-category of traditional grids

Category of emerging grids

Category of traditional grids

Nomenclature

organisational

global

personal

volunteer

non-volunteer

campus

enterprise

VO scope

departmental

national

solution

computational

service

data

server

desktop

equipment

access

A Survey and Taxonomy of Grid Systems 38

• Server Grids where resources are usually limited to those available

within servers.

• Equipment Grid, or Instrument Grid, includes a key piece of equipment

such as a telescope. The surrounding grid, a group of electronic devices

connected to the equipment, is used to control the equipment remotely

and to analyse the data produced. For instance, in the World-Wide

Telescope [1], data from hundreds of individual telescopes all over the

world is analysed and categorised using grid technologies to find new

phenomena.

2.6.1.2 Data Grids

Data Grids are grid systems in which the main solution offered is storage

devices. They are used to provide an infrastructure for accessing, storing and

synchronising data from huge distributed data repositories, such as digital

libraries or data warehouses, and distributed data-intensive applications such as

data mining. Although Data Grids share similarities with other distributed data-

intensive paradigms, such as content delivery networks, P2P networks and

distributed databases, they are differentiated by heavy computational

requirements, wider heterogeneity, autonomy and the concept of VOs. In [29] a

detailed taxonomy of data grids is presented which classifies Data Grids based

on grid organisation, transport technologies used, grid environments and

resource allocation and scheduling schemes.

2.6.1.3 Service Grids

Service Grids, also known as Utility Grids, provide commercial computer

services such as CPU cycles and disk storage, which can be purchased on

demand. They focus on users’ satisfaction by combining and delivering services

based on their needs and requirements. Grid users send their service

requirements together with preference parameters such as Quality of Service

(QoS) requirements and cost, to a Grid Service Provider (GSP) or broker who

dynamically allocate them appropriate grid middleware services.

2.6.1.4 Access Grids

Access Grids consist of distributed input and output devices, such as speakers,

A Survey and Taxonomy of Grid Systems 39

microphones, video cameras, printers and projectors connected to a grid. Hence

these devices provide multiple access points to the grid where clients can issue

requests and receive results in large-scale distributed meetings and training

sessions. Access grids aim at group-to-group collaboration in high-end

workspaces by providing virtual rooms maintaining project-related applications

which are available to all project members [1].

Recent trends foreshadow the incorporation of wireless and mobile devices into

grid systems. In this case wireless and mobile devices can serve as entry points

to the grid where grid users can gain access to grid resources. Theses grids are

known as Wireless Access Grid or a Mobile Access Grid. More details about

Wireless Access Grids and Mobile Access Grids are presented in section

2.6.3.2.2 and Section 2.6.3.2.3 respectively.

2.6.2 Grids Classified by Virtual Organisation Scope

Figure 2.3 shows that, according to the size or scope of the underlying VO,

grids are classified into Global Grids, National Grids, Enterprise Grids, Cluster

Grids (Campus Grids and Departmental Grids) and Personal Grids.

2.6.2.1 Global Grids

Global Grids are established over the Internet to provide individuals or

organisations with grid power anywhere in the world. This type of grid is

usually referred to as Internet Computing as well. Global Grids consist of a

collection of smaller grids and other geographically distributed resources with

agreed upon global usage policies and protocols to enable resource sharing.

Global Grids can be further classified into:

• Volunteer Grids which offer an efficient solution for distributed

computing. They allow Internet users to contribute their unused

computer resources, to collectively accomplish non-profit, complex

scientific computer-based tasks. Consumption of resources is strictly

limited to the controlling organisation or application.

• Non-Volunteer Grids which contain dedicated machines only and clear

pre-defined pricing and usage schemes.

A Survey and Taxonomy of Grid Systems 40

2.6.2.2 National Grids

National Grids are restricted to the computer resources available within one

country’s borders. They are only available to organisations of national

importance and are usually funded by governments. Many countries are

establishing National Grid projects to provide a common Infrastructure for e-

science. Europe has established itself as the world leader in the field by

investing heavily in grid computing programmes at both the national and the

European levels [30].

2.6.2.3 Enterprise Grids

An Enterprise Grid is concerned with using idle desktop resources within an

enterprise [31]. It is managed by a single organisation, i.e. the enterprise, and

available only to its users [32]. However, Enterprise Grids can also be deployed

within large corporations that have a global presence [33].

2.6.2.4 Intra-Grids

The term Intra-Grid (Cluster Grid) is used to refer to two types of grids:

Campus Grids and Departmental Grids. In Campus Grids resources are

restricted to those available within a single organisation. They are only

accessible by members of the host organisation. Departmental Grids are even

more restricted than Campus Grids. They are only available for people within a

department boundary.

Campus and Departmental Grids sometimes are not considered as true grid

environments as they do not span multiple administrative domains and are not

geographically distributed. There are more relevant to cluster, than to grid

computing. Nevertheless, as indicated earlier, some leading grid authorities such

as Sun Microsystems [5] do consider Cluster Grids as true grid environments.

2.6.2.5 Personal Grids

Traditional grids are designed specifically for people involved in research and

large industry domains. Hence, it is difficult for personal users, individuals

outside these domains, to utilise or construct a grid system for their own needs

[20]. Therefore, Personal Grids are emerging to bridge this gap.

A Survey and Taxonomy of Grid Systems 41

Personal Grids are grid systems with the most limited scope of the VO. They are

owned, constructed, and managed by owners and other people whom they trust.

Research into Personal Grids is still at a very early stage. A framework for a

Personal Grid that consists of a set of networked personal desktop computers is

proposed in [20]. In [21, 34, 35] a Personal Grid (PG) is proposed to allow

integrating desktop computers into a virtual server in the Internet. This work is

still running; with no implementation details or evaluation available until now.

As indicated earlier, Personal Grids can also be classified under User-Centric

Grids.

2.6.3 Grids Classified by Accessibility

As shown in Figure 2.3, when accessibility is considered, grids can be classified

into two main groups: Closed Grids and Accessible Grids.

2.6.3.1 Closed Grids

Closed Grids are traditional grid environments in which grid nodes are usually

stationary with predefined wired infrastructure. Access to grids is allowed only

through static predefined entry points.

2.6.3.2 Accessible Grids

The highly structured networks of supercomputers and high performance

workstations that dominate traditional grids do not provide ubiquitous

accessibility. Hence Wireless Grids, Mobile Grids and Ad hoc Grids have

emerged. “Accessible Grids” is an umbrella term employed to refer to these

types, as shown in Table 2.1. An Accessible Grid is a grid that might consist of

a group of mobile or fixed devices with wired or wireless connectivity and

predefined or ad hoc infrastructures.

The main characteristic of an Accessible Grid is its highly dynamic nature

which results from the frequently changing structure of underlying networks and

VOs due to nodes switching on and off, nodes entering and leaving, nodes’

mobility etc. This is why traditional service discovery, management and security

mechanisms may not be optimal for Accessible Grids.

Accessible Grids can be accessed from more geographical locations and social

A Survey and Taxonomy of Grid Systems 42

settings than traditional grids. This opens the door for new applications in

emergency communication, disaster and battlefield management, e-learning and

e-healthcare among others.

One of the most critical issues in understanding Accessible Grids is having an

accurate definition, or at least determination, of each type. However, researchers

offer no consistent definition of any of the three terms. Wireless Grids

emphasise the wireless connectivity, Ad hoc Grids stress the ad hoc nature of

VOs, while Mobile Grids focus on the mobility related issues such as job

migration and data replication.

2.6.3.2.1 Ad hoc Grids

Although the ad hoc and sporadic nature of grids was observed within the first

documented Globus [36] Grid application, traditional grids fail to support

certain aspects of ad hoc environments [37], such as constantly changing

membership with a lack of structured communications infrastructure. As a

result, Ad hoc Grids have emerged.

An Ad hoc Grid is a spontaneous formation of cooperating heterogeneous

computing nodes into a logical community without a pre-configured fixed

infrastructure and with minimal administrative requirements [38], as shown in

Figure 2.4. Thus, the traditional static grid infrastructure is extended to

encompass dynamic additions with no requirements of formal, well-defined or

agreed grid entry points. Instead, nodes can join as long as they can discover

other members [37].

Some researchers strictly define the Ad hoc Grid as a grid environment without

a fixed infrastructure: all its components are mobile [39, 40], as shown in Figure

2.5. This grid is referred to as the Mobile Ad hoc Grid. Details on Mobile Grids

are presented in section 2.6.3.2.3. However, Ad hoc Grids focus more on the

ad hoc nature of the grid rather than the mobility of its nodes.

The main challenge of an Ad hoc Grid is its dynamic topology, due to the

rebooting of workstations, and the movement or replacement of computational

A Survey and Taxonomy of Grid Systems 43

nodes. More technical details concerning Ad hoc Grid challenges and

implementations are available in [37-40].

Varying architectures have been proposed for Ad hoc Grids, for instance, [39]

introduces a virtual backbone architecture that is dynamically constructed using

nodes with high resource capacity. Other sources [37, 38] suggest Peer-to-Peer

(P2P) architectures where computing resources are available on demand equally

to every peer. Existing Ad hoc Grid projects include OurGrid [12] and

myGrid [13].

Figure 2.4: Ad hoc Grid

Figure 2.5: Mobile Ad hoc Grid

2.6.3.2.2 Wireless Grids

The Wireless Grid extends grid resources to wireless devices of varying sizes

and capabilities such as sensors, mobile phones, laptops, special instruments and

edge devices. They might be statically located, mobile or nomadic, shifting

across institutional boundaries and connected to the grid via devices in close

proximity [41].

Interconnecting
structure

Interconnecting
structure

A Survey and Taxonomy of Grid Systems 44

In Wireless Grids, wireless devices can act as real grid nodes where part of data

processing and storage is taking place, as shown in Figure 2.6. A special type of

Wireless Grid is illustrated in Figure 2.7, in which all wireless devices are

considered as pure access devices without processing or storage capabilities

[42]; required resources are obtained from a wired resource-rich backbone grid.

Figure 2.6: Wireless Grid

Figure 2.7: Wireless Access Grid

Many technical concerns arise when integrating wireless devices into a grid.

These include high security risks, low bandwidth, power consumption and high

latency. Therefore, several communities are exploring these new issues to

ensure that future grid peers can be wireless devices [43]. Innovaticus [14] and

FWGrid [15] are among the existing Wireless Grid projects.

2.6.3.2.3 Mobile Grids

Mobile Grids allow grid services to be accessible through mobile devices such

as Personal Digital Assistants (PDAs) and smart phones, which are usually

considered to be at best marginally relevant to grid computing. This is due to the

Interconnecting
structure

Wireless Access Grid

Interconnecting
structure

A Survey and Taxonomy of Grid Systems 45

fact that these devices are typically resource limited in terms of processing

power, persistent storage, runtime heap, battery lifetime, screen size,

connectivity and bandwidth. Thus, many researchers argue that mobile devices

do not fit well into grid computing. In contrast, recent studies suggest a very

different picture [44-53]. The millions of mobile devices sold annually should

not be ignored and the raw processing power of some mobile devices is not

insignificant given their mobility [44]. Furthermore, in emergency situations,

such as natural disasters and battlefields, wireless mobile devices might be the

only available communication and computation services. The most important

argument is that, it is difficult to materialise the AmI vision without utilising

such devices.

As in the case of wireless devices, there are already two approaches to integrate

mobile devices into grid systems. In the first approach, the mobile nodes

participate actively in the grid by providing computational or data services [45],

as shown in Figure 2.8. This approach is what is usually referenced as “Mobile

Grids”. In the second approach, mobile devices serve as an interface to a

stationary grid for sending requests and receiving results, as shown in

Figure 2.9. Sometimes this approach is labelled “mobile access to grid

infrastructure” [46] or simply Mobile Access Grids.

Figure 2.8: Mobile Grid

Recently, numerous efforts have been made towards establishing Mobile Grids.

In [44-47] details concerning Mobile Grid requirements and challenges are

presented. Various techniques have been proposed to implement the Mobile

Grid vision from centralised [45] to P2P structure [48], from intelligent mobile

agents [49] to mobile grid middleware [50] and many more. Some IST projects

Mobile Grid

Interconnecting
structure

A Survey and Taxonomy of Grid Systems 46

such as ISAM [51] and MADAM [52] have investigated issues related to

mobility. However, the Akogrimo project [16] targeted Mobile Grids explicitly.

Figure 2.9: Mobile Access Grid

2.6.4 Grids Classified by Interactivity

Based on the mode of interaction, grids are classified into Batch Grids and

Interactive Grids as shown in Figure 2.3.

2.6.4.1 Batch Grids

Batch Grids are traditional grid systems that do not support real time interactive

sessions such as video gaming. Usually, they are implemented using Message

Passing Interface (MPI) which consists of a set of libraries for parallel

computing. Batch Grids employ queues in which the incoming parallel

applications are stored before allocation by a batch scheduler to a set of

processors for execution. Hence, the overall response time of an application is

the sum of its queue waiting time and execution time.

2.6.4.2 Interactive Grids

Some potential application areas for NGG such as real-time embedded control

systems and video gaming, require rapid response times and on-line interactivity

which the classic request/response communication paradigm, in traditional grid

systems, cannot accommodate [53]. Therefore Interactive Grids are emerging to

extend the domain of grid application from traditional batch jobs to interactive

sessions. Interactivity in grid environments can involve direct interaction

between the grid and its end users; in this case the grid is labelled as a Direct

Interactive Grid. However, this is only one form of possible interaction in grid

Mobile Access Grid

Interconnecting
structure

A Survey and Taxonomy of Grid Systems 47

environments. Another possible interaction is between a grid and its

surroundings, referred to as Context-Aware Grids.

2.6.4.2.1 Direct Interactive Grids

In Direct Interactive Grids, end users interact with the grid through frequently

submitting explicit requests to control or modify their running jobs, such as in

CAD and video-gaming applications. This user interaction with the grid system

can be implemented at two different levels: the Web portal level and grid

middleware level. In the former, a Web-based grid portal is used to submit

interactive jobs to a secure shell process, rather than directly to the grid

middleware. ScGrid portal [54] falls into this category. In the latter, grid

middleware is extended to support interactivity. Examples of this category

include: CrossGrid [17], and edutain@grid [18].

2.6.4.2.2 Context-Aware Grids

In Context-Aware Grids, the interaction is between the grid and its environment.

In such a grid, sensors are employed to interactively build the context through

continuously gathering information from the surroundings. Controllers are

utilised to analyse the information sent by sensors and instruct actuators to adapt

grid behaviours accordingly. Many recent IST projects in networking,

embedded and pervasive systems, such as SENSE [55] and MORE [56], have

emphasised context awareness in their research agendas. However, CONTEXT

[19] has a specific focus on grid environments.

2.6.5 Grids Classified by User-Centricity

As shown in Figure 2.3, in terms of user-centricity, grid systems are classified

into User-Centric Grids and Organisational Grids.

2.6.5.1 Organisational Grids

Organisational Grids represent most traditional grid systems which are designed

with professional expert users from research and enterprise domains in mind.

They have highly sophisticated Web portals which hinders utilising them by

inexperienced users.

A Survey and Taxonomy of Grid Systems 48

2.6.5.2 User-Centric Grids

User-Centric Grids provide user-friendly grid environments for people in

different domains. In grid computing, user-centricity could begin with the

display of the end user’s name on a Web portal, and might end with the

personalisation of all information, resources and networks underpinning grids.

Two categories of User-Centric Grids can be identified: Customisable Grids and

Personal grids. Personal Grids have already been presented in section 2.6.2.5.

Customisable Grids are designed with highly personalisable Web portals to

provide user-friendly access points to grid resources for people in different

domains. However, research to support Customisable Grids is in its infancy. In

the myGrid project [13], scientists are allowed to establish multiple views which

provide access to a user-defined subset of the registered services. These views

can be specific to individual scientists or to further, more specialised, discovery

services. In the Akogrimo project [16], profiles and special needs for all learners

are kept and automatically loaded whenever they sign on, providing a

customised user-friendly environment for each learner.

2.6.6 Grids Classified by Manageability

A grid is highly complex and dynamic in nature, making its management

extremely challenging. A variety of technologies are available to support grid

manageability at both hardware and software levels. At the software level,

manageability can be achieved with a wide range of techniques from traditional

log files, to recent technologies such as Java Management Extensions (JMX)

[57] and knowledge technologies [58]. At the hardware level, this can be

achieved with technologies from simple embedded sensors [59] to stand-alone

intelligent robots. Additionally, manageability might be supported by changing

the underlying grid architecture, for example, from centralised client/server to

P2P [60] structures.

Grid management is concerned mainly with service and resource management.

Therefore grid resource management systems are considered as the heart of any

grid environment. In [27] a comprehensive taxonomy which classifies resource

management systems based on ten criteria is presented. In this chapter we are

A Survey and Taxonomy of Grid Systems 49

concerned with classifying grid systems in general. We based our classification

in regard to manageability on the management scheme of the scheduler which is

the core of resource management systems.

Figure 2.3 shows that, according to the scheduler management strategy, grids

are classified into: Centralised Grids, P2P Grids, Manageable Grids and

Hybrid Grids.

2.6.6.1 Centralised Grids

Typically, Grids are centralised systems with one entity making decisions for

the whole system. Traditional approaches to grid management require

centralised servers, extensive knowledge of the underlying systems and a large

group of experienced staff. Although this scheme has the advantages of simple

deployment and ease of control, it suffers severely from lack of scalability and

fault tolerance.

2.6.6.2 P2P Grids

In contrast to Centralised Grids, P2P Grids remove any form of centralised

authority. All grid nodes are under distinct or even unrelated control; they can

decide to join or leave at any time. Therefore, P2P Grids are highly dynamic in

nature requiring special algorithms and strategies. Within P2P Grids, each peer

acts as an autonomous entity but depends on other peers for resources,

information, and forwarding requests. The main goal of a P2P Grid is to ensure

scalability and reliability. Many P2P Grids are concerned with content and file-

sharing focusing on creating efficient strategies to locate particular files,

providing reliable transfers of such files and managing high load caused by

demand for highly popular files [29].

2.6.6.3 Manageable Grids

In this context, a Manageable Grid is defined as a sophisticated grid that

automatically manages, adapts, monitors, diagnoses and fixes itself. Manageable

Grids offer a simplified installation and greatly reduce configuration and

administration which in turn reduce management costs and dramatically

enhance scalability. Existing research in this area is classified into Autonomic

A Survey and Taxonomy of Grid Systems 50

Grids, Knowledge Grids and Organic Grids, as shown in Figure 2.3 and

Table 2.1.

2.6.6.3.1 Autonomic Grids

Autonomic computing [61], initiated by IBM in 2001, is named after the human

body’s autonomic nervous system. An autonomic computing system controls

the functioning of computer systems without users’ intervention; likewise the

autonomic nervous system regulates body systems without any external help.

The main goal of autonomic computing is to reduce the complexity of the

management of large computing systems, such as the grid [62].

An Autonomic Grid is a grid that is able to configure, re-configure, protect and

heal itself under varying and unpredictable conditions. It can optimise its work

to maximise resource utilisation. Applications, challenges and various methods

that have been proposed to work towards Autonomic Grids are presented in

[23]. Examples of Autonomic Grid projects include The IBM OptimalGrid [22]

and AutoMAGI [23].

2.6.6.3.2 Knowledge Grids

A Knowledge Grid is an extension to the current grid in which data, resources

and services are given well-defined meanings that are understandable at both

machine and human levels using semantic metadata and ontology. The aim is to

move the grid from an infrastructure for computation and data management to a

pervasive, knowledge management infrastructure. Examples of Knowledge Grid

projects include OntoGrid [24] InteliGrid [25] and K-Wf Grid [63]. Several

communities are working to realise knowledge Grids including the Semantic

Grid Group [64] from the OGF [65]. Reviews of the current status and future

vision of knowledge Grids, including applications, challenges and critical

issues, are detailed in [66, 67].

2.6.6.3.3 Organic Grids

Traditionally, ‘organic’ means forming an integral element of a whole; having

systematic coordination of parts; having the characteristics of an organism and

developing in the manner of a living plant or animal [68]. In grid computing, the

A Survey and Taxonomy of Grid Systems 51

Organic Grid comes to refer to a new design for Grid systems that relies on a

decentralised P2P approach, distributed scheduling scheme and mobile agents.

The basic idea is taken from the manner in which complex patterns can emerge

from the interplay of many agents. A framework for a Desktop Grid based on an

ant colony is presented and evaluated in [26].

2.6.6.4 Hybrid Grids

Hybrid Grids use different combinations of management schemes. For instance,

a grid environment may implement a distributed P2P management scheme at the

cluster level while the management structure at the higher grid level is

centralised.

2.7 Other Related Paradigms

Originally, the term grid computing started as a metaphor for making computer

power as easy to access as an electric grid [1]. This has the advantage of a low,

or no initial, cost to acquire hardware; instead, computational resources are

essentially rented on demand. Indeed, this idea of offering computing resources,

such as computation power and storage spaces, as a metered service similar to

public utilities such as electricity, water and telephone network, is not unique to

grid computing. Rather, it is the driving vision of other distributed system

paradigms, namely: utility (on-demand) computing, cloud computing and

everything as a service (EaaS/XaaS/aaS). These terms are often confused with

grid computing or used as synonyms for it.

2.7.1 Utility Computing

The main difference between grid computing and utility computing (On-

Demand) resides in the definition of the two terms [69]. Grid computing is a

distributed system infrastructure (hardware and software) for enabling remote

resource sharing and utilisation to provide massive computing capabilities as a

set of services. Utility computing is a service provisioning model where

computing resources are offered as utility services in terms of availability, ease

of access, on demand usage, and billing schemes. In this sense, grid computing

can serve as the enabling technologies and environments for utility computing.

A Survey and Taxonomy of Grid Systems 52

In turn, the utility model increases the efficiency of grid resource utilisation by

acquiring them only when a demand arises. Utility Grids (also known as Service

Grids), as presented in section 2.6.3.1, is an example of this strong relationship

between grid and utility computing.

Several advantages are offered by the utility computing service provisioning

model for both service consumers and providers. Service providers do not set up

or configure hardware and software components for a single application or user;

instead virtual resources are dynamically allocated and reallocated to a large

user community based on their needs. This increases the resources utilisation

and decreases the operational cost. From a user’s perspective, utility computing

excuses them from heavily investing in building, operating and maintaining a

computing infrastructure. Additionally, users do not need to concern themselves

with resource management and utilisation [70].

2.7.2 Everything as a Service

Nowadays, Service–Oriented Architecture (SOA) has become the main

architectural model of many IT initiatives including grid, cloud and everything

as a service (EaaS/XaaS/aaS) computing. The SOA does not specify

implementation technologies or platforms, although it is usually coupled with

Web services, but rather it is an architectural approach for constructing software

systems from a set of smaller building blocks called services. The goal is to

have software systems which are implementation agnostic with loose coupling

and interoperability among different software components [71].

Application Service Providers (ASP) have adopted the basic idea of service

orientation, by hosting loosely coupled software components, i.e. services,

which can be accessed on-demand, and coined the term Software as a Service

(SaaS) to refer to it. Primarily, SaaS is employed to obtain rights to use software

on demand which alleviates the customer’s liability for licensing all devices

with all applications. SaaS has been also applied successfully in other

application areas such as e-mail, customer relationship management (CRM),

and web content management. SaaS is the oldest model of the XaaS. Other

A Survey and Taxonomy of Grid Systems 53

XaaS models include Communication, Infrastructure and Platform as a service

among others.

Communication as a Service (CaaS) is a generic term for several different but

related services. Under the broad CaaS umbrella, comes Voice over IP (VoIP

also sometimes referred to as Voice as a Service (VaaS)), remote automated call

distribution (ACD) and hosted Private Branch Exchange (PBX), among others.

Infrastructure as a Service (IaaS), initially known as Hardware as a service

(HaaS), is a new idea in XaaS. It aims to replace critical data centre resources

such as physical servers and storage spaces with scalable and highly-available

resources in the Internet. These resources are allocated dynamically based on

users’ demand [72]. The most known example of IaaS is Amazon’s EC2

(Elastic Compute Cloud) [73] and GoGrid Cloud Hosting Services [74].

Platform as a Service (PaaS), also known as cloudware, is the newest kind of

services within the XaaS collection. Its main aim is to allow building and

delivering entire web applications and services through the Internet without

downloading or installing any developer’s platform. Known PaaS examples

include Google’s AppEngine [75] and Salesforce’s force.com [76].

The common thread amongst all these XaaS services is the outsourcing and on-

demand nature of their offerings. XaaS is a service deployment and provisioning

model that can be viewed as a class of, or a more recent term for, utility

computing. Grid computing technologies and platforms can be utilised to

implement and provide XaaS services and platforms. XaaS services constitute

the majority of cloud computing elements. In turn, cloud computing can

manage/provide XaaS services.

2.7.3 Cloud Computing

The term cloud computing originates from the fluffy cartoonish cloud that

usually appears at the middle of network diagrams. Recently, the cloud

computing term has been adopted to refer to Internet style computing. Cloud

computing is a general concept that incorporates the SOA, XaaS, outsourcing,

A Survey and Taxonomy of Grid Systems 54

and other recent known technology models where the common theme is the

reliance on the Internet for satisfying the computing demands of the users [77].

There is still no clear or agreed definition of cloud computing, despite the fact

that it has attracted vast attention. In [78] cloud computing is defined as “a

paradigm in which information is permanently stored in servers on the Internet

and cached temporarily on clients that include desktops, entertainment centres,

table computers, notebooks, wall computers, handhelds, sensors, monitors, etc.”

This ambiguity and indetermination of the cloud computing definition and

edges, increases the confusion between cloud, grid, utility and XaaS Computing.

However, while utility and XaaS computing are more about service

provisioning models, cloud computing, in accord with the grid, is about

platforms and technologies for offering computing resources. Both, grid

computing and cloud computing, need to tackle the same problems such as

managing a large pool of computing facilities and defining methods for service

provisioning and discovery. Both utilise the same techniques such as resource

virtualisation. Actually, grid computing is often associated with the delivery of

cloud computing systems and cloud computing can provide physical and virtual

servers on which the grid application can run. Indeed, many of today’s cloud

computing deployments are powered by grids, composed mainly of XaaS

components and are built like utilities.

2.8 Conclusion

In this chapter a classification of emergent grids is presented. Representative

projects were reviewed and classified. Such a classification assists in detailed

comparisons between emerging grids. It helps in understanding current research

in grid computing and anticipating future trends. The review also assists in

identifying the key implementation approaches and issues related to each

emerging grid.

However, most emerging grids are still in their infancy stage of development.

This study indicates the necessity for more research in this domain, so as to

A Survey and Taxonomy of Grid Systems 55

establish a solid background and enable the implementation of these promising

environments.

The proposed classification for emerging grids has been extended in the form of

a comprehensive taxonomy to accommodate both traditional and emerging

grids. Such taxonomy has the potential to allow a comparison of past, current

and future work in grid computing based on one scheme. The intention has been

to provide a common set of terminologies and classification scheme in the

rapidly evolving area of grid computing.

Some emerging grids share features with PM-Grids, namely: Personal Grids,

Mobile grids and Organic Grids. However, Personal Grids target individual

users but do not address the mobility issue. Mobile Grids address the mobility

issue but do not consider individuals among their users. Organic Grids focus on

self-management problems through ideas from social insects but consider

neither personal users nor mobile devices.

Utility computing, XaaS and cloud computing have recently emerged with the

same vision as grid computing. While utility computing and XaaS are service

provisioning models, both grid computing and cloud computing offer

architectures and technologies for distributed computing. Thus it is still difficult

to define clear boundaries between the two, especially when it comes to

emerging grids. At the present stage, it seems as though cloud is a new

commercial name for a grid. The commercial reality is that new names

sometimes enable development as they initiate renewed discussion and

attract funding.

A Survey and Taxonomy of Grid Systems 56

2.9 References

[1] I. Foster and C. Kesselman, Eds., The Grid2: Blueprint for a Future
Computing Infrastructure. San Francisco: Morgan Kaufmann, 2003.

[2] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organisation,” Int. J. Supercomput. Applicat.,
vol. 15, no. 3, pp. 200-222, 2001.

[3] J. Joseph and C. Fellenstein, Grid Computing, IBM Press, 2004.

[4] B. Rajkumar, “Grid computing: Making the global cyberinfrastructure
for eScience a reality,” CSI Commun., vol. 29, 2005.

[5] Sun Microsystems [online]. Available: http://www.sun.com/, [accessed
Feb. 2, 2010].

[6] Sun Microsystems, (2002, May). Sun cluster grid architecture [online].
Available:
http://www.sun.com/software/grid/SunClusterGridArchitecture.pdf,
[accessed Feb. 2, 2010].

[7] I. Foster and C. Kesselman, Eds. The Grid: Blueprint for a Future
Computing Infrastructure. San Francisco: Morgan Kaufmann, 1999.

[8] K.G. Jeffery, “Next generation grids for environmental science,”
Environmental Modelling & Softw., vol. 22, no. 3, pp. 281–287, 2007.

[9] Expert Group, “Next generation grids: European grid research 2005-
2010,” Expert Group Rep., Jun. 2003 [online]. Available:
ftp://ftp.cordis.lu/pub/ist/docs/ ngg_eg_final.pdf, [accessed Feb. 2, 2010].

[10] Expert Group, “Next generation grids2: Requirements and options for
European grids research 2005-2010 and beyond,” Expert Group Rep.,
Jul. 2004 [online]. Available:
 http://www.semanticgrid.org/docs/ngg2_eg_final.pdf, [accessed Feb. 2,
2010].

[11] Expert Group Final, “Future for European grids: Grids and service
oriented knowledge utility,” Expert Group Final Rep., Jan. 2006 [online].
Available:
ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/ngg3_eg_final.pdf, [accessed
Feb. 2, 2010].

[12] OurGrid [online]. Available: http://www.ourgrid.org, [accessed Feb. 2,
2010].

[13] myGrid [online]. Available: http://www.mygrid.org.uk/, [accessed Feb.
2, 2010].

[14] Innovaticus [online]. Available: http://wglab.net/research, [accessed Feb.
2, 2010].

[15] FWGrid [online]. Available: http://fwgrid.ucsd.edu/, [accessed Feb. 2,
2010].

[16] Akogrimo [online]. Available: http://www.mobilegrids.org/, [accessed

http://www.gridbus.org/~raj/papers/CSICommunicationsJuly2005.pdf�
http://www.gridbus.org/~raj/papers/CSICommunicationsJuly2005.pdf�

A Survey and Taxonomy of Grid Systems 57

Feb. 2, 2010].

[17] CrossGrid [online]. Available: http://www.crossgrid.org/, [accessed Feb.
2, 2010].

[18] edutain@grid project [online]. Available: http://www.edutaingrid.eu/,
[accessed Feb. 2, 2010].

[19] CONTEXT [online]. Available: http://context.upc.es/ [accessed Feb. 2,
2010].

[20] J. Han and D. Park, “A lightweight personal grid using a supernode
network”, in Proc. 3rd Int. Conf. P2P 2003, pp. 168-175.

[21] Z. Xu, L. Xiao and X. Liu, “Personal Grid,” in Proc. NPC, 2007, pp.
536-540.

[22] T. J. Lehman and J. H. Kaufman, “OptimalGrid: Middleware for
automatic deployment of distributed FEM problems on an internet-based
computing grid,” in Proc. IEEE Int. Conf. Cluster Comput., 2003, pp.
164-171.

[23] A. Sajjad, H. Jameel, U. Kalim, S. Han, Y. Lee and S. Lee, “AutoMAGI
- an autonomic middleware for enabling mobile access to grid
infrastructure,” in Proc. ICAS-ICNS 2005, pp. 73-79.

[24] OntoGrid [online]. Available:
http://www.ontogrid.net/ontogrid/index.jsp, [accessed Feb. 2, 2010].

[25] InteliGrid [online]. Available: http://www.inteligrid.com/, [accessed Feb.
2, 2010].

[26] A. J. Chakravarti, G. Baumgartner and M. Lauria, “The organic grid:
Self-organizing computation on a peer-to-peer network,” IEEE Trans.
Syst. Man Cybern. A, Syst. Humans, vol. 35, pp. 373-384, 2005.

[27] K. Krauter, R. Buyya and M. Maheswaran, “A Taxonomy and survey of
grid resource management systems for distributed computing,” Softw.
Prac. Exper., vol. 32, no. 2 , pp. 135-164, 2002.

[28] A. J. Wells. Grid Application Systems Design. FL: CRC Press, 2007.

[29] S. Venugopal, R. Buyya and K. Ramamohanarao, “A taxonomy of Data
Grids for distributed data sharing, management, and processing,” ACM
Comput. Survey, vol. 38, pp. 3, 2006.

[30] 36 national Grids initiatives in Europe support the EGI concept,
EnterTheGrid-PrimeurMagazine, (2007, Sep.) [online]. Available:
http://enterthegrid.com/primeur/07/articles/monthly/AE-PR-10-07-
48.html, [accessed Feb. 2, 2010].

[31] G. Fox and D. Walker, “E-science gap analysis,” UK e-Science Tech.
Rep. Series, Jun. 2003.

[32] Enterprise Grid Alliance, “Enterprise grid alliance reference model
v1.0,” Apr., 2005 [online]. Available:
http://www.ogf.org/UnderstandingGrids/documents/EGA_reference_mo
del.pdf, [accessed Feb. 2, 2010].

A Survey and Taxonomy of Grid Systems 58

[33] I. Baird, (2003, Jun.). Grids in Practice: A platform perspective,
MIDDLEWARESpectra, [online]. Available:
http://www.middlewarespectra.com/grid, [accessed Feb. 2, 2010].

[34] W. Li, Z. Xu, B. Li, Y. Gong, “The Vega Personal Grid: A lightweight
grid architecture,” in Proc. IASTED, 2002, pp. 6-11.

[35] B. Li, W. Li and Z. Xu, “Personal Grid running at the edge of internet,”
in Proc. 2nd GCC, 2003, pp. 762-769.

[36] Globus Alliance [online], (2007, Oct.). Available:
http://www.globus.org/, [accessed Feb. 2, 2010].

[37] K. Amin, G. Laszewski, A. R. Mikler, “Toward an architecture for ad
hoc grids,” in Proc. IEEE 12th Int. Conf. ADCOM 2004, Ahmedabad
Gujarat, India, 2004. Available: http://www.mcs.anl.
gov/_gregor/papers/vonLaszewski-adhoc-adcom2004.pdf, [accessed Feb.
2, 2010].

[38] T. Friese, M. Smith and B. Freisleben, “Hot service deployment in an ad
hoc grid environment,” in Proc. ICSOC, 2004, pp. 75-83.

[39] D. C. Marinescu, G. M. Marinescu, J. Yongchang, L. Boloni and H. J.
Siegel, “Ad hoc grids: Communication and computing in a power
constrained environment,” in Proc. IEEE Int. Performance, Comput.
Commun. Conf., 2003, pp. 113-122.

[40] S. Shivle, H. J. Siegel, A. A. MacIejewski, P. Sugavanam, T. Banka, R.
Castain, K. Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W.
Saylor, D. Sendek, J. Sousa, J. Sridharan and J. Velazco, “Static
allocation of resources to communicating subtasks in a heterogeneous ad
hoc grid environment,” J. Parallel Distrib. Comput., vol. 66, pp. 600-
611, 2006.

[41] L. W. McKnight, J. Howison and S. Bradner, “Wireless grids:
Distributed resource sharing by mobile, nomadic, and fixed devices,”
IEEE Internet Comput., vol. 8, pp. 24-31, 2004.

[42] S. H. Srinivasan, “Pervasive wireless grid architecture,” in Proc. 2nd
Annual Conf. Wireless on-Demand Network Syst. Services, 2005, pp. 83-
88.

[43] J. Hwang and P. Aravamudham, “Middleware services for P2P
computing in wireless grid networks,” IEEE Internet Comput., vol. 8,
pp. 40-46, 2004.

[44] T. Phan, L. Huang and C. Dulan, “Challenge: Integrating mobile wireless
devices into the computational grid,” in Proc. 8th Annu. Int. Conf.
Comput. Networking, 2002, pp. 271-278.

[45] K. Ohta, T. Yoshikawa, T. Nakagawa and H. Inamura, “Design and
implementation of mobile grid middleware for handsets,” in Proc. 11th
Int. Conf. Parallel Distrib. Syst., 2005, pp. 679-683.

[46] A. Sajjad, H. Jameel, U. Kalim, Y. Lee and S. Lee, “A component-based
architecture for an autonomic middleware enabling mobile access to grid
infrastructure,” in Proc. EUC 2005, pp. 1225-1234.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:W=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:B=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gong:Y=.html�

A Survey and Taxonomy of Grid Systems 59

[47] Bhagyavati and S. Kurkovsky, “Emerging issues in wireless
computational grids for mobile devices,” in Proc. 8th World Multiconf.
SCI-2004. Available: http://www.cs.ccsu.edu/~stan/research/Grid/
PubsSCI2004.pdf, [accessed Feb. 2, 2010].

[48] L. Lima, A. Gomes, A. Ziviani, M. Endler, L. Soares and B. Schulze,
“Peer-to-peer resource discovery in mobile Grids,” in Proc. 3rd int.
workshop MGC '05, 2005, pp. 1-6.

[49] S. Kurkovsky, Bhagyavati and A. Ray, “Modelling a grid-based
problem-solving environment for mobile devices,” J. Digital Inform.
Manage., vol. 2, pp. 109-114, 2004.

[50] D. C. Chu and M. Humphrey, “Mobile OGSI.NET: Grid computing on
mobile devices”, in Proc. 5th IEEE/ACM Int. Workshop Grid Computi.,
2004, pp. 182-191.

[51] ISAM [online]. Available: http://www.inf.ufrgs.br/~isam/English/,
[accessed Feb. 2, 2010].

[52] MADAM [online]. Available: http://www.ist-madam.org/, [accessed
Feb. 2, 2010].

[53] V. Talwar, S. Basu and R. Kumar, “Architecture and environment for
enabling interactive grids,” J. Grid Comput., vol. 1, pp. 231-250, 2003.

[54] H. Xiao, H. Wu, X. Chi, S. Deng and H. Zhang, “An implementation of
interactive jobs submission for grid computing portals”, in Proc.
AusGrid2005, pp. 67-68.

[55] SENSE [online]. Available: http://www.sense-ist.org/, [accessed Feb. 2,
2010].

[56] MORE [online]. Available: http://www.ist-more.org/, [accessed Feb. 2,
2010].

[57] GigaSpaces Project [online]. Available:
http://www.psdesign.co.il/gigaspaces/, [accessed Feb. 2, 2010].

[58] J. Nichols, H. Demirkan and M. Goul, “Autonomic workflow execution
in the grid,” IEEE Trans. Syst. Man and Cybern. C, Appl. Rev., vol. 36,
pp. 353-364, 2006.

[59] IBM, “OGSI-Based System Management: Manageability Services for
Linux,” white paper, IBM, Aug. 2003 [online]. Available:
http://whitepapers.silicon.com0,39024759,60109062p,00.htm, [accessed
Feb. 2, 2010].

[60] A. J. Chakravarti, G. Baumgartner and M. Lauria, “Self-organizing
scheduling on the organic grid,” Int. J. High Performance Comput. App.,
vol. 20, pp. 115-130, 2006.

[61] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Comput., vol. 36, pp. 41-50, 2003.

[62] M. Li and M. Baker, The Grid: Core Technologies. Wiley, 2005.

[63] K-Wf Grid [online]. Available: http://www.kwfgrid.eu/, [accessed Feb.
2, 2010].

A Survey and Taxonomy of Grid Systems 60

[64] Semantic Grid Community Portal [online]. Available:
http://www.ogf.org/gf/group_info/view.php?group=sem-rg, [accessed
Feb. 2, 2010].

[65] Open Grid Forum [online]. Available: http://www.ogf.org/, [accessed
Feb. 2, 2010].

[66] D. Roure, N.R. Jennings and N.R. Shadbolt, “The Semantic Grid: Past,
Present, and Future,” in Proc. IEEE, vol. 93, no. 3, pp. 669-681, 2004.

[67] M. Geldof, “The semantic grid: will semantic Web and grid go hand in
hand,” The Grid technologies unit of the European Commission, Jun.
2004 [online]. Available:
http://www.semanticgrid.org/documents/Semantic%20Grid%20report%2
0public.pdf, [accessed Feb. 2, 2010].

[68] E. Tofslie, “Organic Grid Design,” BFA thesis, College of Letters, Arts,
and Social Sciences, Univ. of Idaho, 2002. Available:
http://www.tofslie.com/organicgrid.pdf, [accessed Feb. 2, 2010].

[69] Clabby Analytics, “The grid report,” May 2004 [online]. Available:
http://www.ibm.com/grid/pdf/Clabby_Grid_Report_2004_Edition.pdf,
[accessed Feb. 2, 2010].

[70] C. S. Yeo, M. Dias de Assuncao, J. Yu, A. Sulistio, S. Venugopal,
M. Placek, and R. Buyya, “Utility computing and global grids,” in The
Handbook of Computer Networks, H. Bidgoli, Ed., New York: John
Wiley & Sons, 2007.

[71] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Prentice Hall PTR, 2005.

[72] LINUX Magazine [online]. Available: http://www.linux-
mag.com/id/7197, [accessed Feb. 2, 2010].

[73] Amazon Elastic Compute Cloud (Amazon EC2) [online]. Available:
http://aws.amazon.com/ec2/, [accessed Feb. 2, 2010].

[74] GoGrid Cloud Hosting Services [online]. Available:
http://www.gogrid.com/, [accessed Feb. 2, 2010].

[75] Google App Engine [online]. Available:
http://code.google.com/appengine/, [accessed Feb. 2, 2010].

[76] Salesforce’s force.com [online]. Available:
http://www.salesforce.com/uk, [accessed Feb. 2, 2010].

[77] V. Šipková and M. Dobrucký: “Towards an Advanced Distributed
Computing,” in Proc. GCCP'2008, pp. 128-131.

[78] C. Hewitt, “ORGs for scalable, robust, privacy-friendly client cloud
computing”, IEEE Internet Comput. online, vol. 12, no. 5, pp. 96-99,
Sep/Oct, 2008.

PM-Grid: A Personal Mobile Grid 61

Chapter 3
PM-Grid: A Personal Mobile Grid

3.1 Introduction

Notwithstanding the escalating popularity of grid computing in both research

and enterprise domains, personal users, i.e. individuals outside these domains,

are still not supported. On the other hand, new applications and complicated

problems are increasingly emerging in everyday life where no computational

tools are available but mobile devices. Creating a means to bridge the gap

between computational grids and personal users with resource limited mobile

devices is the core of PM-Grids.

The major contribution of this chapter is to introduce PM-Grids as a new

paradigm in grid computing for individuals constrained by devices of limited

resources. Section 3.2 lays the background of PM-Grids while section 3.3

defines them. In section 3.4 and section 3.5 the motivating applications and

main debating issues related to integrating personal mobile devices in grid

environments are addressed respectively. Architectural designs of PM-Grids to

exploit resources available within PNs are presented in section 3.6. Section 3.7

compares PM-Grids with related works in the area.

3.2 From Mainframes to PM-Grids

Electronic digital computers emerged as massive building-sized machines, as

shown in Figure 3.1. They were known as “mainframes”. They started at

scientific research centres then were adopted by the business domain. At that

point of time, the idea of a mobile personal computer, something small and light

enough for individuals to pick and carry around, was not acceptable even by

academic researchers or leading computer companies. They did not consider a

personal mobile computer allowing computational capabilities for individuals

while travelling to be an idea worth pursuing. Simply, they could not see any

practical purpose for such a device [1].

PM-Grid: A Personal Mobile Grid 62

Figure 3.1: ENIAC, the Second Electronic Digital Computer, 1943 [2]

Nowadays, the personal mobile computer market has become one of the largest

markets in the world. It is rapidly evolving with progressive reduction in cost,

weight and size and continuous improvement in performance. This has enabled

many people to move around with a basic set of electronic gadgets which

usually includes a mobile phone, PDA and laptop. These devices, which belong

to the same user and are usually within ten metres of her/him, can be connected

together with available wired connectivity, such as USB and FireWire, or

wireless technologies, such as IrDA, Bluetooth, UWB, ZigBee and other

technologies included in the IEEE 802.15 family of standards [3]. This network

with the user at its inner core, which is known as a Personal Area Network

(PAN) [4], is illustrated in Figure 3.2.

Figure 3.2: Personal Area Network (PAN)

Besides this basic set of electronic devices within the PAN, one might have

other devices in different locations, for instance in the home, office and car.

 PPAANN

PM-Grid: A Personal Mobile Grid 63

These devices, which belong to the same user, can be connected together

regardless of their geographical locations to form a Personal Network (PN) [5,

6]. Thus, one can gain access to his/her electronic devices, any time anywhere,

and can share resources among them, as shown in Figure 3.3.

Figure 3.3: Personal Network (PN)

Nonetheless, PANs and PNs are most commonly used for applications involving

data and peripheral sharing. This is due to the resources allowed for sharing in

PNs, PANs and all today’s conventional networks being limited to data,

peripherals and secondary storage. The most important resources, namely,

processors cycles and runtime memories, are still not available for sharing

across these networks.

Hence, an important question arises here: Why not further enable these

networks to seamlessly share other resources such as processing cycles, storage

capacity and functionality in the form of services available across computational

grids? As PNs can already share data, peripherals and secondary storage among

their devices, the next logical step is to superimpose grid functionality over

them to allow the sharing of processors cycles and memories. Thus the net result

is a huge virtual computer which can be accessed at anytime from anywhere.

That is to say, a Personal Mobile Grid, as shown in Figure 3.4.

Grid computing systems have started exactly the same way as digital computers;

emerging as massive computing facilities in scientific research centres before

being adopted by large commercial enterprises. Nevertheless, many people even

from the grid computing community may not be able to understand why an

PPNN

Interconnecting
 Structure

Car
Cluster

Office
Cluster

Home
Cluster

 PAN

PM-Grid: A Personal Mobile Grid 64

individual might need to have their own grid with great computational

capabilities while on the move. This should not hinder thinking about such a

potential system, a PM-Grid. In section 3.4 some potential motivating

applications for PM-Grids are presented.

Figure 3.4: Personal Mobile Grid (PM-Grid)

3.3 What is a PM-Grid?

A PM-Grid is a grid environment which can be owned and utilised by an

individual user. It is constructed over his/her devices and might be extended to

other devices which s/he trusts. PM-Grids aim to enable the mobility of both,

users requesting access to grid resources and resources that are part of a grid.

Hence, the distinguishing characteristic of a PM-Grid is that it is primarily

constructed, owned and utilised by an individual (or a group of individuals with

a mutual trust relationship). This is in contrast to traditional grids which are

constructed, owned and utilised by organisations and other large entities. In

other words, where traditional grids are concerned with a large user population,

the PM-Grid is only concerned with a single user. Also the type of application is

different; where traditional grids are chiefly concerned with massive complex

world-wide computations, PM-Grid applications are considerably smaller in

size, scope and complexity. Additionally, where traditional grids need a well-

A file sharing network, for sharing data, peripherals
and secondary storage

A grid computing environment for sharing processor
cycles and memories.

PM-Grid

PPNN

Interconnecting
 Structure

Car
Cluster

Office
Cluster

Home
Cluster

 PAN

PM-Grid: A Personal Mobile Grid 65

established stationary infrastructure to operate, PM-Grids can be fully

accommodated in mobile devices connected via a PN.

3.4 Motivating Applications

As indicated in Chapter 1, people are increasingly keen to frequently replace or

upgrade their personal computers to gain more processing power and memory.

Sometimes they need to run complex computational jobs which their PC or

laptop cannot accommodate, or while they are travelling away from home.

People are becoming frustrated with the need to move data between their

different electronic devices, such as for instance, a person having several

address books scattered among his/her devices. Indeed, there is a need to allow

a user to harness all processing powers, memory storages and data files

distributed across his/her computing and communication devices. A PM-Grid

has the potential to satisfy this need.

Other contexts might also be considered where a small business needs to run an

intensive forecasting simulation to make critical financial decisions, or a large

charity group co-ordinating a large multimedia database. Hence, PM-Grids can

be utilised equally by individuals as well as small groups. In a nut shell, PM-

Grids are intended to serve as general purpose computing environments

available for individuals or a VO of a very limited scope, any time anywhere,

exactly as personal mobile computers, with the additional services and huge

computing capability available due to the aggregated networked resources.

As stated earlier, PM-Grids allow the mobility of both users requesting access to

grid resources, and resources that are themselves part of a grid. This opens the

doors to have the grid processing power in more widespread geographical

locations and social settings, such as emergency communications in fire fighting

and natural disasters, as well as many of the newly emerged mobile applications

in e-learning, e-healthcare, e-wallet, and m-gaming, among others. In [7] a

comprehensive illustration of application scenarios for Mobile Grids is

presented, in which PM-Grids might be even more efficiently applied in terms

of security and responsiveness since all PM-Grid resources are dedicated to a

PM-Grid: A Personal Mobile Grid 66

single user. This section sheds more light on two potential applications of PM-

Grids: Personal Mobile Medical Record and (PM-MR) and Personal Mobile

Learning (PM-learning).

3.4.1 Personal Mobile Medical Record (PM-MR)

In [8], a discussion of general challenges in implementing grid functionalities in

a mobile environment, and the specific issues arise from a realistic e-healthcare

emergency scenario, was presented. The PM-Grid infrastructure can play an

important role in serving both patients and physicians in/outside hospitals. Here,

the PM-MR is presented as a motivating example of how PM-Grids can be

exploited in healthcare contexts.

At present, patient medical records (MRs) may be scattered in different

locations; without access to them all at the same time. A patient might have

MRs in multiple hospitals and clinics around the world. Sharing of patients’

MRs among hospitals is important in many situations. For instance, medical

history, current medications, allergies, etc. are always useful for doctors

prescribing medications.

Some work has already been done in developing forms of health smart cards [9,

10] and Web-based MRs [11, 12]. The problem with a health smart card is that

it adds to the number of cards the individual needs to carry around and might be

lost or missed at any time. It needs special hardware to read and is considerably

limited in terms of capacity. The problem with Web-based medical record is

that they are not integrated, which means that a patient might have multiple

electronic medical records; one in each hospital providing health services to the

patient. Also, Web-based MRs suffer from the accessibility problem; they

require the availability of a computer system with Internet connection in order

to be viewed or manipulated. In [13] a software technology is proposed and is

under development to allow mobile phone and PDA users to download their

MRs and display animated 3D scans. However, the problem of the multiplicity

of MRs is still exists.

Indeed, having access to all a patient’s MRs as a single virtual MR anytime

anywhere is consistent with efficient healthcare. So, a unified virtual copy of all

PM-Grid: A Personal Mobile Grid 67

MRs that belongs to the same patient is stored in a well secured location in his

PN and synchronised automatically with his/her physical MRs, as shown in

Figure 3.5.

Figure 3.5: Personal Mobile Medical Record (PM-MR)

The patient can use his/her PDA or smart mobile phone to access their MR with

a certain privilege, just as the doctors may access using a different level of

privilege. The PM-MR can also remind the patient of times for medications, or

medical appointments. It can be updated as new services are performed and new

medications are prescribed, and much more.

The PM-MR efficiency can be boosted through including a wearable computing

device, a small body-worn computer with sensors, in the core PAN so the PM-

MR can be intelligent enough to instantly monitor and analyse a patient’s data

and alert her/him of any potential health hazard. It can contact people on call in

any emergency situation, guide them to the patient’s location, then help to

analyse and visualise any necessary medical data and images. It can make

appointments, or effect cancellations on behalf of the patient, having access to

his/her e-diary.

Knowledge technologies, such as metadata and ontology, are very important for

patient’s data annotation and would play a focal role in PM-MRs. However, it is

 PN of X

Patient X
MR in

Hospital 1 Patient X
MR in

Hospital 2

Patient X
MR in

Hospital n

Patient X
Virtual MR
(PM-MR)

PM-Grid: A Personal Mobile Grid 68

extremely important to note that such an application involves enormous critical

security and ethical issues which need to be resolved.

3.4.2 Personal Mobile Learning (PM-Learning)

There are a number of scenarios where PM-Grids have the potential to enhance

the e-learning experience, such as:

• Providing mobile access to existing learning objects, such as course

content, exercises and exams among others.

• Providing mobile access to computing–intensive simulations, for

engineers for instance.

• Allowing heavy multimedia content to be received by small devices

• Enhancing collaboration by gathering interactive services such as SMS,

MMS, emails, and chat, among others.

Thus electronic learning and training would be available not only at well-

equipped institutions, but also at remote locations, on the move or in emergency

situations. This is valuable for students as well as company employees,

accessing on-line training or instruction at remote locations, or tourists eager to

learn more about regions to be visited and explored.

3.5 Grid Computing and Personal Mobile Devices

In Chapter 2, Section 2.6.3.2.3, Mobile Grids were briefly reviewed pointing to

some of the challenges integrating personal mobile devices in grid

environments. This section elaborates and discusses issues related to integrating

such devices in grid environments.

Utilising mobile devices in grid environments has raised several debating issues

between grid computing practitioners:

• Can mobile devices be utilised in grids?

• What roles can a mobile device play in this case?

• How can mobile devices be integrated in current grids?

PM-Grid: A Personal Mobile Grid 69

In the following sections these issues are investigated further.

3.5.1 Can Mobile Devices be Utilised?

Ideally, to deploy a grid, powerful computational resources are combined to

form a large-scale distributed system in which all resources, including processor

cycles and memories, are shared. As a consequence, many researchers consider

mobile devices as at best only marginally relevant to grid computing. This is

due to:

• Typical limitations of these devices, in terms of: processing capability,

persistent storage, runtime heap, battery lifetime, input methods and

screen size, relative to stationary devices.

• High security risks and critical privacy requirements as any data stored

in a mobile device, such as telephone numbers, birthdays and leisure

time activities, are considered as private; even more than desktop

computers, mobile devices are treated as personal [14].

• Great heterogeneity and non-interoperability in terms of hardware,

Operating Systems (OS) and application software.

• Unreliable intermittent connectivity with low bandwidth.

• Highly demanding applications as applications intended to be executed

in mobile devices should be designed carefully such that their problem

space is decomposable and distributable among several devices [15].

More detailed descriptions of the mobile device limitations, and how they pose

extra challenges when trying to apply the grid computing paradigm in the

domain of mobile devices, are available in [8, 16].

However, [17, 18] necessitated the scaling of grids to both a large number of

entities and to smaller devices. There are many indicators supporting this

necessity. First, every measure of the capabilities of these devices including

processing speed and memory capacity, is improving, and expected to continue,

at exponential rate following Moore’s law of increasing transistor density [19].

Second, the number of mobile devices in the world is escalating and expected to

PM-Grid: A Personal Mobile Grid 70

soon dominate the number of personal computers [20]. Indeed, the Wireless

World Research Forum (WWRF) predicts that there will be 1000 wireless

devices per person on average in 2017 [21]. Third, in many emergency

situations, such as natural disasters and fire fighting, mobile devices might be

the only accessible communication and computation tools. Fourth, the wireless

connectivity and availability is improving as seen in current 3G networks. Fifth,

it is difficult to materialise the NGG and AmI visions [18], where humans are

surrounded by computing and networking technologies unobtrusively embedded

in their surroundings, without utilising personal mobile devices. More details

about cases against, and other supporting mobile devices in grid computing, are

discussed in [22].

3.5.2 What Roles Can Mobile Devices Play?

Generally, two approaches have emerged in utilising mobile devices in grid

environments. In the first approach, mobile devices serve as interfaces to

stationary grids to send requests and receive results. Hence, a mobile device is

merely playing the role of a resource consumer. Sometimes this approach is

labelled as “mobile access to grid infrastructure” [15] or simply a “Mobile

Access Grid”. In the second approach, mobile devices actively participate in the

grid by providing computational or data services. Hence, a mobile device can

play the roles of both a resource provider and resource consumer. This approach

is what is usually referred to as a “Mobile Grid” [23]. A special case of Mobile

Grids (and of Ad hoc Grids also) is identified in section 2.4.3.2.1 where all grid

nodes are mobile in which the grid is labelled as a “Mobile Ad hoc Grid”.

3.5.3 Can Mobile Devices be Integrated in Grids?

If mobile devices are to be utilised, will they be integrated in current grid

infrastructures or they will have their own?

Both approaches are available. In Mobile Grids and Mobile Access Grids, the

most common approach is to integrate mobile devices with the grid

infrastructure using a proxy between the stationary grid and mobile devices [24,

25]. In [14] caches are suggested to cope with the disconnectivity problem of

mobile devices where operations on files are logged then automatically applied

PM-Grid: A Personal Mobile Grid 71

when a client reconnects. In Mobile Ad hoc Grids, grid nodes usually exchange

services in a pure P2P scheme [26]. This can be done using intelligent agents

[27, 28] or a mobile grid middleware system [29].

3.6 PM-Grid Design

The NGG vision has placed scalability, openness to wider user community,

pervasiveness and ubiquity, transparency and user-centricity among its top

desirable properties. Therefore, they are considered as the main non-functional

requirements of PM-Grids. However, as stated in [30]:

existing third generation GRID technology will not satisfy the
requirement, and even great extensions to it will not satisfy the
requirement. The way forward is to design an architecture
based on the properties of NGG and implement it.

Hence, PM-Grid design has not adopted any of the already available grid

architectures. Instead, the design is based on PN architecture and as a natural

extension to them, seeing that scalability, pervasiveness and ubiquity,

transparency and user-centricity have been explicitly addressed in their design

[31]. A PM-Grid can be viewed as a superset of PNs. It is a PN with additional

resources for sharing: CPU cycles and run-time memories, which allow for

additional public and private services. This section starts with reviewing the

architectural design of PNs, then builds up on this to arrive at an architectural

design for PM-Grids.

3.6.1 PN Architecture

The PN concept and challenges have inspired many European Information

Society Technology (IST) projects, such as My Personal Adaptive Personal

Global Net (MAGNT) [5], MAGNET beyond [6] and Power Aware

Communications for Wireless OptiMised personal Area Networks

(PACWOMAN) [32], as well as the Dutch projects Personal Networks at Home

(PN@home) [33] and the Personal Network Pilot 2008 (PNP2008) [34]. These

projects have had an impact on the maturity of PNs design.

PM-Grid: A Personal Mobile Grid 72

3.6.1.1 Layered View

Basically, as shown in Figure 3.6, a PN is composed of three abstraction levels:

connectivity level, network level and service level. They are briefly outlined in

following sections.

3.6.1.1.1 Connectivity Level

In the connectivity level, devices are grouped into various radio domains based

on their radio interfaces. A radio domain is a group of devices with a common

radio interface, a single Medium Access Control (MAC) mechanism and in

direct communication range of each other.

3.6.1.1.2 Network Level

In the network level, devices within radio domains identified in the connectivity

level are grouped into clusters based on a pre-established trust relationship. This

trust relationship is very important to differentiate between personal nodes and

devices and foreign nodes and devices. It is important to note that this trust

relationship does not take into account devices owned by the user only but also

other devices with long-term trust relationships such as family devices and

devices from one’s employment. The main function of this level is to separate

communications among nodes of the same user from communications of

other nodes.

3.6.1.1.3 Service Level

The service level is the highest level in the PN architecture. It contains all

services offered by nodes in the Network Level. There are two types of services;

public and private services. Public services are offered by both foreign and

personal nodes and can be consumed by both. On the other hand, private

services are offered and consumed by personal nodes only. While private

services require establishing a long-term trust relationship, pubic services

require a short-term trust relationship only. The service level contains all

protocols related to service discovery and name servers [35].

PM-Grid: A Personal Mobile Grid 73

Figure 3.6: PN Layered View [35]

3.6.1.2 Detailed Architecture

Figure 3.7 shows the main elements of a PN. From an architectural point of

view, a PN consists of the following elements:

• A PAN with the owner at its core: a set of personal nodes and devices

around a person sharing a common trust relationship and communicating

with others without relying on any foreign nodes or devices.

• Clusters: a cluster is a set of personal nodes and devices that share a

common trust relationship and can communicate with each other without

relying on any foreign nodes or devices.

• PN nodes: In each cluster/PAN, PN nodes communicate with each other

using the IP protocol. PN nodes have multiple air interfaces to connect

to other PN nodes and devices.

• PN devices: PN devices are devices that do not have IP capabilities.

They are connected to other PN nodes and devices via a PN node.

Air interface1

Air interface 2

Air interface 3

 Dual air interface

Personal node

Personal device

Foreign node

Foreign device

Public service

Private service

PM-Grid: A Personal Mobile Grid 74

• Gateway nodes: A personal node in a cluster/PAN does not operate in a

stand-alone network; it needs to communicate with other nodes in

remote clusters. Therefore, a gateway node with special features and

functionalities, such as local storage and multiple network interfaces,

address translation, tunnels set up and maintenance, traffic filtering

among others, is employed to link PN nodes to remote and foreign

nodes. Gateway nodes are usually selected as powerful devices as their

tasks are quite load intensive.

• The PN agent: For gateway nodes to locate other gateway nodes in

remote clusters and establish tunnels, the PN agent is used to provide

additional services, such as naming and service discovery. The PN agent

serves also as the entry point for PN to PN communication. It is

important to add that the PN agent is not a device or node; rather it is a

concept that might be implemented in different approaches.

• Interconnecting structure: A collection of overlapping networks of

various technologies.

Obviously, a key element of a PN is the PN Provider (PNP) which offers the PN

services. It provides the operational environment to manage users, services,

content and network related issues [36].

Figure 3.7: PN Detailed View

PN Node Gateway Node PN Device

PPNN AAggeenntt

Interconnecting
 Structure

PPAANN

Home Cluster

Car Cluster

Office Cluster

PM-Grid: A Personal Mobile Grid 75

3.6.2 PM-Grid Architecture

It is important to note that the PN abstract levels and main elements presented in

section 3.5.1 are part of the PM-Grid architecture. However, to avoid repetition

in this section, only additional levels and elements that are required for the PM-

Grid architecture are included.

3.6.2.1 Abstract Layered View

The PM-Grid architecture is based on the three levels PN architecture proposed

by the MAGNET project [5]. An additional level is introduced between the

network and service levels, namely the PM-Grid level. Hence, The PM-Grid

architecture is composed of four abstract levels: the connectivity level, network

level, PM-Grid level and the service level as shown in Figure 3.8. These levels

act as a middleware system offering an abstraction over physical devices.

3.6.2.1.1 PM-Grid Level

The added PM-Grid level serves as a virtualisation layer to hide the complexity

of harnessing the heterogeneous underlying computational resources from the

end user. In this level, resources available from the network level are grouped

into two main categories: personal resources residing inside the PM-Grid, and

foreign resources residing outside the grid.

Personal resources are grouped into larger virtual resources based on the type of

functionality they provide such as CPU cycles, storage, address book and

printing. The aim is to allow personal users to submit service requests, for

example a request for CPU cycles and memory to execute a computational job,

from any device available within their trusted PNs without being concerned

about where/when/how these requests are executed.

To achieve this goal, the grid level should provide an efficient resource

scheduler. The scheduler is responsible for automatically decomposing,

allocating and executing jobs, then finally composing final results, making them

ready to the end user. The scheduler should be lightweight, self-managed and

adaptive to cope with the dynamic nature of the PM-Grid environment. A

detailed design of such a resource scheduler (HoPe) is presented in Chapter 5.

PM-Grid: A Personal Mobile Grid 76

Figure 3.8: PM-Grid Layered View

3.6.2.2 Detailed Architecture

A PM-Grid consists of groups of devices which are usually owned and utilised

by the same person. All these devices are connected via a well secured network

PN. Issues related to connectivity are tackled in the PN connectivity level.

Issues related to security and clustering are all handled at the PN network level,

while issues related to presentation and quality of services are dealt with at the

PN service level.

Thus, basically, the key missing functional component after superimposing grid

functionality on top of a PN is a resource management system for the newly

added grid resources represented by CPU cycles and runtime memories, as these

resources require special handling to jointly execute computational jobs in PM-

Grids. The main functions of this resource management system is to decompose

parallel jobs, if possible, into smaller tasks that can be accommodated by mobile

Personal resource 1

Air interface1
Air interface 2
Air interface 3

 Dual air interface

Personal node
Personal device
Foreign node
Foreign device

Foreign resource

Public service

Private service

Personal resource 2
Personal resource 3
Personal resource n

PM-Grid: A Personal Mobile Grid 77

devices, then mapping these tasks to proper resources and, after execution,

composing final results sending them back to clients.

Therefore, as shown in Figure 3.9, from an architectural point of view, a PM-

Grid includes, apart from the PN architectural elements, three functional

elements: clients, workers and spaces.

Figure 3.9: PM-Grid Detailed View

3.6.2.2.1 Clients

Clients represent the first category of PM-Grid elements, consisting of a set of

mobile devices, such as mobile phones, usually within the PAN, that are highly

dynamic and considerably limited in terms of processing power and network

bandwidth. This set can send requests for executing simple jobs or complex

computational jobs that are stored elsewhere, to more capable devices in PM-

Grids.

3.6.2.2.2 Workers

Workers represent the second category of PM-Grid elements which consists of a

set of devices, such as laptops, that can be mobile but are less dynamic and have

better computing resources than clients. These devices can jointly complete

computational jobs. They are divided further into:

• Decomposers: The exchange of large processing jobs in an environment

of limited resources and network bandwidth increases the power

consumption and slows the communication. Furthermore, PM-Grid

decom
posers

Result-space
PM-Grid

C
om

posers

Workers

D
ecom

posers

E
xecuters

 Clients

 Work-spaces Job

Result

PM-Grid: A Personal Mobile Grid 78

devices may not be able to accommodate such large jobs. To tackle this

problem in PM-Grids, decomposers are introduced. A decomposer is a

specialised program that tests if a job might be executed in parallel. If

so, it divides it into independent tasks of lower granularities.

• Executers: These are computing elements capable of executing the

actual computation logic encapsulated in a job.

• Composers: Since jobs are decomposed into smaller tasks, and each task

is executed independently of other tasks within the same job, there is a

need to aggregate results produced after running these tasks. Composers

are elements running a specialised program that compose all partial

results related to a certain job into a final result to be sent to the

requesting client.

3.6.2.2.3 Spaces

Spaces represent the third category of PM-Grid elements which consist of a set

of static storage-rich devices mainly at home or the office, such as desktops.

Clients and workers communicate with each other using these spaces which

serve basically as simple shared memories for buffering. The use of a buffering

technique is important in mobile environments to reduce the impact of frequent

disconnections. The idea of spaces is based on Tuple-spaces first realised in the

Linda system language [37]. A Tuple-space is a form of independent associative

memory. For example, consider a group of processors that produce pieces of

data and a group of processors that consume the data. Producers post their data

to the space, consumers retrieve data from the space that matches certain

criteria. In PM-Grids, there are two types of spaces:

• Work-spaces: Work-spaces are multiple pools of jobs sent from clients.

Executers access these pools, hunting for tasks to execute.

• The result-space: the result-space is a large pool holding results that are

generated by executers.

Basically, two approaches are available to organise spaces. A centralised

approach with a single large space, this approach has a great impact in

PM-Grid: A Personal Mobile Grid 79

simplifying scheduling. However, managing such a space is usually rather a

challenging problem due to its massive size. Additionally, this centralised space

could become a bottleneck and represent a single point of failure. The other

approach is to have multiple spaces in decentralised distributed fashion. While

this approach aims to solve the main disadvantages of the centralised approach,

it inherits the known disadvantages of decentralised schemes represented by

performance degradation and poor coordination which usually lead to a load

imbalance problem.

Therefore, in this thesis a new approach has been followed to avoid the

shortcomings associated with previous approaches. The PM-Grid design is

based on multiple independent work-spaces, where tasks to be executed are

placed, as these spaces do not require coordination among them, as well as a

single result-space where all results are buffered before being finally composed

and sent to clients. The bottleneck problem in this case is easier to solve as the

result-space is considerably smaller in size and lighter in traffic volume than a

centralised space requiring much less management responsibility.

3.6.2.2.4 Device Roles in PM-Grids

The special organisation for distributing the system functionality among

multiple agents (workers) with a single target pool (result-space) and multiple

job sources (work-spaces) is inspired by the way honeybees are organised in a

colony, as explained in Chapter 5.

In Figure 3.10 the hierarchal relationship between the main elements of a PM-

Grid is illustrated. Although, each element had been defined earlier as a set of

devices, an element actually represents a logical role which is a functionality

that can be added to any device in a PM-Grid, based on its capabilities. Roles

are “upward compatible” where workers can act as clients while spaces can act

as workers and clients as well.

During initialisation, each device is assigned an initial role based on its score in

the Device Score (DS) formula:

 DS = w1A1+w2A2+w3A3+…+wnAn (3.1)

PM-Grid: A Personal Mobile Grid 80

where A1, A2, A3,…,An are the set of static normalised attributes relevant to the

device performance, such as CPU speed, memory size, network bandwidth,

immobility and remaining power in the battery . The weighting coefficients w1,

w2, w3,…,wn are used to describe the relative importance of the different device

attributes in each role, subject to:

 ∑i=1
n
 w i =1, (3.2)

 w1, w2,…,wn ≥ 0

At the operation time, a device might be promoted (assigned a higher role in the

PM-Grid roles hierarchy) based on the device score in the DS formula after

substituting A1, A2, A3,…,An by the device dynamic attributes such as current

CPU load, available memory and battery consumption. For instance a laptop

with a low battery might be promoted to a client.

Figure 3.10: Role Hierarchy in PM-Grids

There are several other techniques to classify devices based on their capabilities,

other than the weighting formula described above, for instance, semantic and

ontology [38] as well as proxy-based solutions [39]. However, this issue of

categorising devices based on their capabilities is not among the main concerns

of this research. Therefore, for simplicity during the modelling of PM-Grids,

roles are assigned manually to devices on their initialisation except executers

and composers which exchange their roles automatically during running time

based on their current and system contexts, as described in Chapter 5.

Device roles in PM-Grids are logically separated but physically may not be,

which means that there might be more than one of these elements located within

Spaces

Clients

Workers
more

PM-Grid: A Personal Mobile Grid 81

one physical device. In relation to PN elements, spaces are more likely to be

located in gateway nodes as these nodes are usually powerful stationary devices

such as desktops. The most powerful stationary device, in which usually the PN

agent is located, is specifically chosen to accommodate the result-space.

Workers are located in PN nodes as these devices usually have reasonable

processing capabilities and multiple air interfaces such as laptops. Clients are

located in PN devices which usually have the least resources. The placement of

PM-Grid elements in relation to PN element is summarised in Table 3.1.

Table 3.1: Placement of PM-Grid Elements

PM-Grid elements PN elements

Spaces Gateway nodes

Workers PN nodes

Clients PN devices

3.7 Related Work

Connecting distrusted devices owned by an individual, or a group of

individuals, and allowing them to share network resources is not the core of

PM-Grids; PNs [5], PN Federation (PN-F) [6, 40], Personal Grid (PG) [41-44]

and Personal distributed Environment (PDE) [45, 46] have been already

proposed for this purpose. Allowing mobile access to grid systems is also not

the core of PM-Grids; the Akogrimo project [23] has already addressed this

issue. The novelty of PM-Grids is in superimposing computational grid

functionalities on top of networked resource limited devices, whether they are

mobile or stationary, and making the grid functionality available at personal

users’ hands. This section places PM-Grids amongst the above-mentioned

projects and highlights the main similarities and differences.

3.7.1 PN and PN Federation

A PN offers a secure environment for a personal user to share network resources

among his/her own devices. In MAGNET Beyond [6] and PNP2008 [34] the

concept of PNs is extended into PN Federation (PN-F or Fednets), a secure

cooperation between PNs of different users for a specific common purpose [40].

However, both PN and PN-F are concerned with sharing network resources such

PM-Grid: A Personal Mobile Grid 82

as data and peripherals rather than computing resources such as CPU cycles and

runtime memories. Additionally, PN-Fs are formed only on demand for

temporal situations; once the task is completed the network dissolves. On the

other hand, PM-Grids are mainly concerned with sharing computing resources,

and are set on a long-term basis for long-term goals.

3.7.2 Mobile Grids

The Akogrimo (Access to knowledge through the grid in mobile world) project

[23] is the first IST project that explicitly targets Mobile Grids. While both

Akogrimo and PM-Grid are concerned with integrating mobile devices in grid

environments, Akogrimo is designed specifically for people in an enterprise

domain, rather than for individual users in PM-Grids. The architecture of

Akogrimo is based on an Enterprise Network which is built out of a consortium

of enterprises in contrast to a PN underlying a PM-Grid which belongs to a

single user. Additionally, mobile devices serve only as entry points to the grid in

Akogrimo while they can participate actively in PM-Grids.

3.7.3 Personal Grids

A framework for a Personal Grid constructed over personal desktop computers

is proposed in [41]. The framework consists of a two level hierarchal scheduling

scheme where a super-node distributes jobs among clusters. Then, a master

node in each cluster distributes the load among workers in FIFO style. The PM-

Grid is different in that it extends the grid platform to mobile devices.

Additionally, it has a distributed adaptive self-control scheduling scheme with

no central entity, at the grid or cluster level, such as a super- or a central-node,

making the scheduling decision.

The VEGA Grid project [42-44] has also proposed a framework for a Personal

Grid (PG) to allow the integration of desktop computers into a “Global Grid

System”. In this platform mobile devices are also used only as entry points to

the grid. The PG aims primarily to establish a P2P platform for file sharing

rather than processor sharing.

PM-Grid: A Personal Mobile Grid 83

3.7.4 Personal Distributed Environment

In [45, 46] a Personal Distributed Environment (PDE) is proposed to allow a

personal user to access his/her personal devices over heterogeneous networks to

gain access to file sharing services such a global address book and the delivery

of rich multimedia content. Again the main concern here is data communication

rather than computations.

3.8 Conclusion

In this chapter PM-Grids were introduced as grid environments owned,

constructed and utilised by personal users. They have the potential to scale the

grid entities (service consumer and providers) to individuals and small size

organisations. They also have the potential to widen the grid application areas to

span more geographical and social settings than ever before.

An abstract layered architecture and a detailed inside view for PM-Grids based

on PNs architectures were presented in this chapter. Furthermore, a lightweight,

self-managed and adaptive scheduler was addressed as the core component of a

middleware system for PM-Grids to cope with the dynamic nature of the

environment.

Comparing PM-Grids to available grid projects shows that PM-Grids are the

first to target both mobile devices and individual users at the same time and to

offer file sharing as well as computational functionalities.

PM-Grid: A Personal Mobile Grid 84

3.9 References

 [1] J. Reimer, (2005, Dec. 14). Total share: 30 years of personal computer
market share figures. ars technical [online]. Available:
http://arstechnica.com/articles/culture/total-share.ars, [accessed Feb. 2,
2010].

[2] king computer [online]. Available: http://www. www.king-
computer.com, [accessed Feb. 2, 2010].

[3] IEEE 802.15 Working Group for WPAN [online]. Available:
http://ieee802.org/15/, [accessed Feb. 2, 2010].

[4] R. C.Braley, Ian C. Gifford, and Robert F. Heile, “Wireless personal
area networks: an overview of the IEEE P802.15 working group,”
SIGMOBILE Mobile Comput. Commun. Rev., vol. 4, pp. 26-33, 2000.

[5] My Personal Adaptive Global NET (MAGNET) (IST 507102) [online].
Available: http://www.ist-magnet.org, [accessed Feb. 2, 2010].

[6] IST.MAGNET Beyond (IST-FP6-IP-027369) [online]. Available:
http://www.magnet.aau.dk, [accessed Feb. 2, 2010].

[7] M. Waldburger and B. Stiller, “Toward the mobile grid: Service
provisioning in a mobile dynamic virtual organization,” in Proc. 4th
ACS/IEEE AICCSA-06, 2006, pp. 579–583.

[8] Z. Li, L.Sun and E. C. Ifeachor, “Challenges of mobile ad-hoc grids and
their applications in e-healthcare,” in Proc. 2nd CIMED2005, Lisbon,
Portugal.

[9] Global Health Smart Card [online]. Available:
http://www.healthsmartcard.net/, [accessed Feb. 2, 2010].

[10] E-Health-Insider [online]. Available: http://www.e-health-
insider.com/news/item.cfm?ID=2470, [accessed Feb. 2, 2010].

[11] Medical Office Online [online]. Available:
http://www.medicalofficeonline.com/, [accessed Feb. 2, 2010].

[12] B. Crounse, (2006, Jul. 12). The future with electronic medical records:
Effective, flexible, affordable, Microsoft [online]. Available:
http://www.microsoft.com/industry/healthcare/providers/businessvalue/h
ousecalls/clinicalworkflow.mspx, [accessed Feb. 2, 2010].

[13] San Diego Supercomputer Center [online]. Available:
http://www.sdsc.edu/, [accessed Feb. 2, 2010].

[14] J. Roth and C. Unger, “Using handheld devices in synchronous
collaborative scenarios,” In Personal Ubiquitous Comput., vol. 5, no. 4,
pp. 243-252, 2001.

[15] D. C. Marinescu, G. M. Marinescu, J.Yongchang, L. Boloni and H. J.
Siegel, “Ad hoc grids: Communication and computing in a power
constrained environment,” in Proc. IEEE Int. Performance, Comput.
Commun. Conf., 2003, pp. 113-122.

[16] Bhagyavati and S. Kurkovsky, “Emerging issues in wireless

http://ieee802.org/15/�
javascript:aRL('Braley%2CRichard C.')�
javascript:aRL('Gifford%2CIan C.')�
javascript:aRL('Heile%2CRobert F.')�
http://www.healthsmartcard.net/�
http://www.e-health-insider.com/news/item.cfm?ID=2470�
http://www.e-health-insider.com/news/item.cfm?ID=2470�
http://www.sdsc.edu/�

PM-Grid: A Personal Mobile Grid 85

computational grids for mobile devices,” in Proc. 8th World Multiconf.
SCI-2004. Available: http://www.cs.ccsu.edu/~stan/research/Grid/
PubsSCI2004.pdf, [accessed Feb. 2, 2010].

[17] I. Foster and C. Kesselman, Eds., The Grid2: Blueprint for a Future
Computing Infrastructure. San Francisco: Morgan Kaufmann, 2003.

[18] Expert Group, “Next generation grids2: Requirements and options for
European grids research 2005-2010 and beyond,” Expert Group Rep.,
Jul. 2004 [online]. Available:
http://www.semanticgrid.org/docs/ngg2_eg_final.pdf, [accessed Feb. 2,
2010].

[19] K. Michael, (2003, Feb. 10) Moore's law to roll on for another decade,
cnet news [online]. Available: http://news.cnet.com/2100-1001-
984051.html, [accessed Feb. 2, 2010].

[20] Ipsos Insight, “Mobile phones could soon rival the PC As world’s
dominant Internet platform,” Market study rep., summary, Apr. 2006
[online]. Available:
http://www.ipsos-na.com/news/pressrelease.cfm?id=3049, [accessed
Feb. 2, 2010].

[21] N. Jefferies, “Global vision for a wireless world,” 18th meeting of
WWRF, 2007, Helsinki, Finland.

[22] T. Phan, L. Huang and C. Dulan, “Challenge: Integrating mobile wireless
devices into the computational grid,” in Proc. 8th Annu. Int. Conf.
Comput. Networking, 2002, pp. 271-278.

[23] Akogrimo [online]. Available: http://www.mobilegrids.org/, [accessed
Feb. 2, 2010].

[24] S. Kurkovsky, Bhagyavati, and A. Ray, “A collaborative problem-
solving framework for mobile devices,” in Proc. 42nd ACM-SE, 2004, pp.
5-10.

[25] A. Hampshire, “Extending the open grid services architecture to
intermittently available wireless networks,” in Proc. UK eScience All
Hands, 2004.

[26] L. Lima, A. Gomes, A. Ziviani, M. Endler, L. Soares and B. Schulze,
“Peer-to-peer resource discovery in mobile Grids,” in Proc. 3rd int.
workshop MGC '05, 2005, pp. 1-6.

[27] S. Kurkovsky and Bhagyavati, “Modeling a computational grid of
mobile devices as a multi-agent system,” in Proc. IC-AI'03, 2003, pp. 36-
44.

[28] Kurkovsky, Bhagyavati and A. Ray, “Modelling a grid-based problem-
solving environment for mobile devices,” J. Digital Inform. Manage.,
vol. 2, pp. 109-114, 2004.

[29] A. Sajjad, H. Jameel, U. Kalim, S. Han, Y. Lee and S. Lee, “AutoMAGI
- an autonomic middleware for enabling mobile access to grid
infrastructure,” in Proc. 2005 ICAS-ICNS, pp. 73-79.

[30] K.G. Jeffery, “Next generation grids for environmental science,”

PM-Grid: A Personal Mobile Grid 86

Environmental Modelling & Softw., vol. 22, no. 3, pp. 281–287, 2007.

[31] B. Jiang, V. Kaldanis, A. Markopoulos, M. Monti, R. Prasad, D.
Saugstrup, B. Jiang, V, Kaldanis, A. Markopoulos, M. Monti, R. Prasad,
D. Saugstrup, N. Schultz and K.E. Skouby, “User requirements &
demand for services and applications in PNs,” presented at IST mobile &
wireless communication summit, Lyon, France, 2004.

[32] PACWOMAN. (IST-2001-34157) [online]. Available:
http://www.imec.be/pacwoman/, [accessed Feb. 2, 2010].

[33] The Dutch Freeband Communications Project QoS for PNs at home
[online]. Available: http://www.qos4pn.irctr.tudelft.nl/index.htm,
[accessed Feb. 2, 2010].

[34] The Dutch Freeband Communications Project PNP2008 [online].
Available: http://www.freeband.nl, [accessed Feb. 2, 2010].

[35] M. Jacobsson, J. Hoebeke, S. de Groot, A. Lo, I. Moerman and I.
Niemegeers, “A Network Layer Architecture for Personal. Networks,”
presented at MAGNET Workshop, Shanghai, China, Nov. 2004.

[36] F. Hartog and M. Peeters, “A concrete example of a personal network
architecture,” in Proc. 3rd IEEE CCNC2006, pp. 514-518.

[37] D. Gelertner, “Generative communication in Linda,” ACM Trans.
Program. Lang. Syst., vol. 7, pp. 80-112, 1985.

[38] A. Bandara, T. Payne, D. Roure, and G. Clemo, “An ontological
framework for semantic description of devices,” In Proc. ISWC 2004,
Hiroshima, Japan.

[39] X. Sanchez-Loro, J. Casademont, J. L. Ferrer and J. Paradells, “A proxy-
based solution for device capabilities detection,” in Proc. IASTED , 2007
pp. 28-34.

[40] M. Ibrohimovna, and S. H. Groot, “Proxy-based Fednets for sharing
personal services in distributed environments,” in Proc. 4th ICWMC,
2008, pp.150-157.

[41] J. Han and D. Park, “A lightweight personal grid using a supernode
network,” in Proc. 3rd Int. Conf. P2P2003, pp. 168-175.

[42] W. Li, Z. Xu, B. Li, Y. Gong, “The Vega Personal Grid: A lightweight
grid architecture,” in Proc. IASTED, 2002, pp. 6-11.

[43] B. Li, W. Li and Z. Xu, “Personal Grid running at the edge of internet,”
in Proc. 2nd GCC, 2003, pp. 762-769.

[44] Z. Xu, L. Xiao and X. Liu, “Personal Grid,” in Proc. NPC, 2007, pp.
536-540.

[45] D. Pearce, J. Dunlop and R.C. Atkinson, “Leader election in a personal
distributed environment,” in Proc. IEEE 16th Int. PIMRC, 2005, vol. 2,
pp. 1307-1311.

[46] J. Dunlop, “The concept of a personal distributed environment,” Wireless
Personal Commun. Int. J., vol. 42, no. 3, pp. 431-444, 2007.

http://www.qos4pn.irctr.tudelft.nl/index.htm�
http://www.freeband.nl/�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:W=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:B=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gong:Y=.html�
http://www.citeulike.org/author/Dunlop�

A Framework for Resource Scheduling 87

Chapter 4
A Framework for Resource Scheduling

4.1 Introduction

In contrast to the scarcity of resources proposing surveys or taxonomies for

emerging grids, as seen in Chapter 2, plethora of literature has proposed

taxonomies for resource scheduling systems in distributed systems in general

such as [1-7], and grid schedulers in particular such as [8-13]. These taxonomies

collectively span nearly every single aspect related to resource scheduling. This

abundance of resource scheduling taxonomies can be related to two main

influences, namely, the maturity of research in the area of resource scheduling,

and the critical role that resource schedulers play in many application areas

including grid computing. On the other hand, two major problems have emerged

as a consequence: first, there are scattered nomenclatures across the literature,

and second, there are inconsistent and unclear definitions for many of the

terminologies.

Therefore, the goal of this chapter is to present a framework for resource

scheduling and to provide a unified presentation of the main nomenclatures

from several previously published taxonomies indicating, when necessary, the

different terminologies in use. In other words, this is an attempt to amalgamate

the area of resource scheduling systems together under a common, uniform set

of terminologies. The intention has been to provide a suitable framework for

comparing, analysing and studying work in the area. The material in this chapter

provides a level of detail and a unifying perspective that can help in future

research in the resource scheduling field.

Section 4.2 defines the resource scheduling problem and sheds some light on its

historical context. Section 4.3 lists some basic terminologies in the problem

domain. In section 4.4, a framework is proposed for resource scheduling

systems, and a unified taxonomy for the framework elements is proposed. In

Section 4.5, the scheduling problem is viewed from the grid computing

A Framework for Resource Scheduling 88

perspective indicating its special features and applying the proposed framework

to three well established grid resource schedulers. Section 4.6 briefly concludes

the chapter.

4.2 The Resource Scheduling Problem

In general terms, scheduling is a mechanism to allocate resources to jobs with

the objective to optimise one or more performance measures, as illustrated in

Figure 4.1. The mechanism belongs to a broader class of combinatorial search

problems which are concerned with finding combinations of a discrete set of

items that satisfy some specified constraints. The number of possible

combinations grows exponentially with the size of the problem leading to

potentially lengthy solution times and severely limiting the feasible size of such

problems. Therefore it is among the most difficult of common computational

problems, which are considered as NP-hard [14]

Figure 4.1: The Resource Scheduling Problem

The scheduling problem was initially identified during the 1950s, in operations

research, industrial engineering and management. After that, in the 1960s, it was

introduced to computer science in operating systems development. The problem

started with simple forms that could be optimally solved using efficient

algorithms. As time went by, the problem became more sophisticated hindering

the search for efficient algorithms for many of its forms. By the advent of

complexity theory [15] complex forms of the scheduling problem had been

Job2

Job1

Jobn

Resource1

Resource2

Resourcen

A Framework for Resource Scheduling 89

considered to be NP-hard, in the 1970s. Therefore, other directions to the

problem were introduced during the 1980s: approximation and heuristic

approaches as well as stochastic scheduling [16], as described in section

4.4.4.3.2 and section 4.4.4.2.1 respectively. In the early millennium, the swarm

intelligence approach, presented in section 5.4.2, has emerged to suggest

solutions to NP-hard scheduling problems based on techniques from social

insects. Now, after sixty years, there is a solid body of knowledge in this field.

Figure 4.2: Scientific Advances in the Resource Scheduling Field

4.3 Basic Terminologies

There are some common terms used in the resource scheduling field. In this

section they are briefly defined:

• A resource is anything that is required to carry on an operation, and

includes such items as machines, processors and runways.

• A job is anything that consumes resources. It usually consists of a single

set of multiple tasks. A job can be a manufacturing process, a computer

program, a landing or take-off, etc.

• A task is an atomic operation to be performed on a resource.

• A performance metric, also known as the objective function, is the

objective under consideration such as the minimisation of the makespan

or maximisation of the throughput.

Complex scheduling problems
identified as NP-hard

Approximation algorithms &
stochastic scheduling introduced

1950s 1960s 1970s 1980s 1990s 2000s

Problem identified in
operation research

Problem introduced to
computer science

Scientific
Advances

years

Swarm Intelligence approach
introduced

A Framework for Resource Scheduling 90

• A schedule is a mapping between tasks and resources.

In this chapter the two terms: resources and jobs are mainly used to refer to

resources and jobs associated with computers such as processors and application

programs. However, this does not mean that the materials presented in this

chapter are restricted to this specification alone.

4.4 A Framework for Resource Scheduling

A shared characteristic among previous scheduling taxonomies was the vast

number of nomenclatures they proposed; for instance in [9] eleven main

nomenclatures were presented. Although this might help in detailed

classification it complicates the taxonomy, entangles its nomenclatures and

makes the search for common features more difficult. Therefore a common

framework that identifies focal entities of resource schedulers and a taxonomy

based on these entities would tackle such problems.

Basically, resource scheduling systems deal with four main entities: jobs,

resources, performance metrics and a scheduler. In solving a scheduling

problem, four questions are usually considered:

• How do resource characteristics affect the scheduling decision?

• How do job characteristics affect the scheduling decision?

• What performance measures should a scheduler use to determine the

quality of a schedule?

• Which scheduler (policy, architecture and procedure) gives best (or

good) results based on the previous three concerns?

This chapter presents a framework for resource scheduling, regardless of the

problem domain, based on the above four elements: job model, resource model,

performance metrics and scheduler model, as shown in Figure 4.3. It also

presents a unified taxonomy, as shown in Figure 4.4, to describe the main

features of these elements in an attempt to provide a unifying perspective that

can help in designing and analysing resource schedulers. However, since the

taxonomy is not intended to be comprehensive, it only drills down in special

A Framework for Resource Scheduling 91

categories that are considered as important requirements for HoPe to present a

clear background about its design features.

It might be reasonable to point to the difference between the taxonomy

developed in this chapter and the comprehensive taxonomy presented in

Chapter 2. The taxonomy presented in Chapter 2 is intended to serve mainly as

a classifying tool. On the other hand, the taxonomy presented in this chapter

with the proposed framework, is intended to assess mainly initial design stages

to identify scheduler requirements and features. It can also assist in analytical

studies for comparative purposes.

Figure 4.3: Resource Scheduling Framework

4.4.1 Resource Model

The characteristics of underlying resources are critical for making the

scheduling decision. For a scheduler to make a decision it needs to know:

• Whether resources are of the same type, or of different types.

• The characteristics of each resource.

Accordingly, two main resource models are identified in the literature: parallel

and dedicated resources, as illustrated in Figure 4.5.

4.4.1.1 Parallel versus Dedicated Resources

Parallel resources are capable of performing the same functions. They are

categorised further based on their speed as identical, uniform and unrelated

resources, as explained in section 4.4.1.1.1.

Jo
b

M
od

el

R
es

ou
rc

e
M

od
el

P
er

fo
rm

an
ce

 M
et

ric
s

O
rg

an
is

at
io

n

Po
lic

y

P
ro

ce
du

re

Scheduler
Problem Domain

Resource Scheduling

Figure 4.4: Unified Taxonomy for Resource Scheduling

Resource Scheduling

resource model

parallel

uniform

identical

unrelated

dedicated

open shop

flow shop

job shop

independent

job model

dependent

perform. metrics

econ.-based

res.-centric

job-centric

organization

centralised

decentralised

distributed

non-distributed

cooperative

non-cooperat.

QoS

stochastic

deterministic

policy

local

global

self

non-self

adaptive

non-adaptive

best effort

static

dynamic

batch

immediate

non-clairv.

clairvoyant

procedure

optimum

approximation

heuristic

sub-optimum

 scheduler model

bag-of-tasks

divisible load

DAG

non-DAG

A Framework for Resource Scheduling

93

In contrast, dedicated resources are specialised in executing certain tasks only.

Three distinguished scheduling models are identified based on the order in which

these tasks follow inside the system: flow shop, open shop and job shop scheduling

models, as explained in section 4.4.1.1.2.

4.4.1.1.1 Identical, Uniform and Unrelated Parallel Resources

Identical resources are parallel resources with equal processing speeds. Uniform

resources are parallel resources but with different processing speeds. However, the

speed of each uniform resource is constant for all types of jobs. In contrast, each

unrelated resource has a variant speed associated with each type of job.

4.4.1.1.2 Flow, Open and Job Shops Dedicated Resources

These three scheduling models are based on the order in which jobs visit dedicated

resources. In the flow shop scheduling model, each job is executed on all machines

following a certain order. In the open shop model, each job is processed once on

each machine with no constraint about the order of processing. In the job shop

model a job can be processed on more than one machine and has its own order in

visiting machines.

Figure 4.5: Resource Model

4.4.2 Job Model

The job model has a significant impact on the scheduling decision. For a scheduler

to make a decision it needs to know:

• The characteristics of each job in terms of its internal structure.

• The amount and type of interaction it requires with other jobs or with the

running environment.

Resource

Identical Uniform Unrelated Flow shop Open shop Job shop

Parallel Dedicated

A Framework for Resource Scheduling

94

Based on this information, jobs are classified into two main categories: non-

independent jobs and independent jobs, as illustrated in Figure 4.6.

Figure 4.6: Job Model

4.4.2.1 Dependent Jobs versus Independent Jobs

Dependent jobs, usually known as workflows, are coarse-grained applications

constructed from a sequence of components (tasks). Tasks themselves are

considered heterogeneous in nature; they might be sequential or parallel having

different behaviour and resource requirements [17]. Workflows vary in their

internal structure, and there are two categories: directed acyclic graph (DAG)

workflows and non-DAG workflows, as described in section 4.4.2.1.1.

An independent job represents an application which is composed of a set of tasks

with no communication, dependencies or synchronisation among them. These tasks

can be executed in any order since each task does not require any input from any

other task. In other words, the output of any task would never be fed to another task

as an input. However, multiple tasks can share the same input file(s) and they may

also share the same output file(s). These applications are easy to parallelise by

decomposing them into multiple tasks of lower granularity. From a theoretical

perspective, an independent job model is a generalisation of the pre-emptive

execution model that allows for simultaneous execution of different parts of the

same job on different machines [18].

Applications conforming to this model arise in many fields of science and

engineering such as image processing, Monte Carlo simulations, data mining and

database searching [19]. There are two possible models for independent jobs based

on the task granularity: Bag-of-Tasks (BoT) and Divisible Load (DL), as described

in section 4.4.2.1.2.

Job

Bag-of-Tasks DAG workflow Non-DAG workflow

Independent

Divisible Load

Dependent

A Framework for Resource Scheduling

95

4.4.2.1.1 DAG Workflows versus Non-DAG Workflows

In DAG workflows the internal structure of a workflow is represented by a DAG.

Nodes of the graph represent tasks while edges represent dependencies between

tasks. The simplest workflow applications can be represented with a simple DAG in

which tasks are performed in a specific linear order. At the second level of

complexity are workflows that are modelled using non-linear DAG. Some scientific

applications require an iteration structure; in this case, workflows are modelled with

cyclic graphs and are called non-DAG workflows. In the most complicated level of

workflows it is even difficult to find an appropriate graph model for the workflow.

In this case, an application is modelled as a workflow of workflows [20].

(a) DAG Workflow (b) Non-DAG Workflow

Figure 4.7: Dependent Job Example Models

4.4.2.1.2 Bag-of-Tasks versus Divisible Load

Independent jobs can be composed of coarse-grained components which are known

as Bag-of-Tasks (BoT), or fine-grained components which are known as Divisible

Loads (DL). However, some work in this area [21, 22] use the term divisible load to

refer to both types with the former considered as modularly divisible and the latter

as arbitrarily divisible.

BoT jobs are also known as parameter-sweep applications [23]. A BoT is a coarse-

grained application consisting of computations that can be divided into a finite

A

B C

F D E

H G

A

B C D

H

G F E

A Framework for Resource Scheduling

96

number of independent pieces (tasks). The number of tasks and the task size of each

application are set in advance. In this case the scheduling problem is normally

considered as a bin packing problem. This problem is considered to be NP-hard and

is usually approached by means of heuristics [19].

DL applications, also known as fine-grained applications, consist of computations

or loads that can be arbitrarily divided into independent chunks (tasks) [24]. This

corresponds to a perfectly parallel job: any task can itself be further decomposed

into independent sub-tasks. A DL model is an approximation of job models that are

built out of a large number of identical, low granularity components [25]. It has the

potential to provide a practical platform for scheduling in heterogeneous

environments [26].

(a) BoT Job (b) DL Application

Figure 4.8: Independent Job General Models

4.4.3 Performance Metrics

Performance metrics, also known as scheduling objectives, can be viewed from two

different and competing perspectives: the user or consumer perspective (Job-centric

metrics) and the provider perspective (resource-centric metrics), as described in

section 4.4.3.1.

J

T1 T2 Tn…

…

Job

Tasks

 Sub-results

Result

R1 R2 Rn

R

Ja

T1 T2 Tk

S1 S2 Sn

…

…

Job

Tasks

.

 . . .

… Sub-results

Result

Rk Rk+1 Rm

R

R1 Rj …

 Sub-tasks

A Framework for Resource Scheduling

97

Figure 4.9: Performance Metrics

4.4.3.1 Job-Centric versus Resource-Centric Metrics

Job-centric metrics, also known as user-centric metrics, represent the user or

consumer perspective. They seek to optimise the performance of each individual

job, such as the turnaround time (also known as flow time, response time or

completion time), which represents the time taken from when a job enters the

system until it finishes execution. Job centric metrics are related to the system

performance which encompasses how well system resources are being used for the

benefit of each user of the system.

Resource-centric metrics, also known as provider-centric metrics, seek to optimise

the system efficiency such as throughput, resource utilisation and makespan (the

total time required for completing all jobs in a set). The system efficiency is

concerned with how efficiently resources are utilised for the benefit of all users of

the system, as well as the added overhead associated with the resource scheduling

process [3].

As job-centric and resource-centric metrics are competitive, there are always

tradeoffs to consider, therefore hybrid approaches such as economy-based metrics

were proposed. Economy-based metrics consider both job (resource consumer) and

resource (resource provider) perspectives at the same time but from the market

economy point of view. For the market to be competitive, resource providers need

to set reasonable prices to keep the supply of a service equal to its demand.

However, applying these metrics requires that the whole system is built initially,

with the economic model as a reference model [27].

4.4.4 Scheduler Model

A scheduler model describes the organisation, policy and procedure of a resource

scheduler.

Performance Metrics

Job-centric Resource-centric Economy-based

A Framework for Resource Scheduling

98

4.4.4.1 Organisation

Scheduler organisation means the way that entities involved in the scheduling

process interact with each other. This organisation has a critical influence on the

efficiency of the scheduling process. There are three main features which are used

in the literature to describe the organisation of resource schedulers:

• Centralised versus decentralised.

• Distributed versus non-distributed.

• Cooperative versus non-cooperative.

However, some of these features are used interchangeably, ignoring the actual

difference between them, as described in the following sections.

Figure 4.10: Scheduler Organisation

4.4.4.1.1 Centralised versus Decentralised

In centralised schedulers, a single entity has the authority to make the scheduling

decision; it makes the decision for the whole system regarding who should run what

and when. This organisation has the advantages of simplified management and

deployment. Among the main disadvantages are the lack of fault tolerance, poor

scalability and the difficulty in accommodating multiple policies.

In decentralised schedulers, the scheduling authority is shared among the multiple

entities of a resource management system. This organisation eases scaling to large

systems and is more fault tolerant if proper coordination is shouldered by the

different schedulers.

There also exist hierarchical schedulers which are organised in multiple levels, so

the higher level scheduler, also known as a meta-scheduler, controls larger sets of

resources than lower level schedulers. Although this organisation addresses the

Scheduler Organisation

Distributed Non-distributed

Cooperative Non-cooperative

Centralised Decentralised

A Framework for Resource Scheduling

99

scalability and fault tolerance issues, the problem of the multiplicity of scheduling

policies is still unsolved. It also suffers from the added difficulty of coordinating

schedulers in different levels [9].

4.4.4.1.2 Distributed versus Non-Distributed

In non-distributed schedulers, the responsibility for executing the scheduling policy

physically resides in a single entity, whereas in distributed schedulers this

responsibility is shouldered by physically distributed entities. It is important to note

that the two terms, decentralised and distributed, are used interchangeably in the

literature, while they actually refer to different aspects of the scheduling process:

responsibility and authority. When the responsibility for making and carrying out

policy decisions is shared among entities in a system, the scheduler is distributed.

On the other hand, when the authority of making the scheduling decisions is

distributed to the system entities, the scheduler is decentralised [3].

4.4.4.1.3 Cooperative versus Non-Cooperative

Distributed schedulers can be classified further, based on the way an individual

processor makes decisions, while executing the scheduling policy, into: co-

operative and non-cooperative schedulers. In non-cooperative schedulers, individual

entities act alone as autonomous agents and arrive at the scheduling decision

independently of the action of other entities in the system. In cooperative

schedulers, each entity has the responsibility to carry out its own portion of the

scheduling task, but all entities are working toward a system wide goal [3].

4.4.4.2 Scheduling Policy

A scheduling policy consists of a set of general features describing the scheduling

process. However, these features are scattered in the literature with no clear

definition for many of them. Furthermore, some features are used interchangeably

while they actually describe different scheduling attributes. Therefore, this section

presents a more comprehensive list of policy features with a clear definition of

each:

• Stochastic versus deterministic.

• Clairvoyant versus non-clairvoyant.

A Framework for Resource Scheduling

100

• Static versus dynamic.

• Immediate versus batch.

• Adaptive versus non-adaptive.

• Local versus global.

• Self-scheduling versus external scheduling.

• Best effort versus QoS.

Figure 4.11: Scheduling Policy

4.4.4.2.1 Stochastic versus Deterministic

Based on the way information about jobs and resources is generated, one can

differentiate between deterministic and stochastic policies.

Basically, stochastic means random. In other words, it is determined by chance. In

stochastic scheduling, job information, such as the processing time, is unknown in

advance, but it is known to be a random selection of a given probability

distribution. The actual information only becomes known when the processing has

been completed [16]. Stochastic scheduling is used where either the number of

individuals is small or where there is reason to expect random events to have an

important influence on the behaviour of the system [28]. Stochastic and non-

clairvoyant scheduling, described in section 4.4.4.2.2 were introduced to deal with

the uncertainty problem in job processing times.

Scheduling Policy

Best effort QoS

Local Global

Adaptive Non-adaptive

Self External

Determinist Stochastic

Clairvoyant Non-clairvoyant

Dynamic Static

Batch Immediate

A Framework for Resource Scheduling

101

In contrast, deterministic means that no job information is probabilistically

determined. Deterministic scheduling takes no account of random variation and

therefore gives a fixed and precisely reproducible result, quite the opposite to

stochastic scheduling where different outcomes can result from the same initial

conditions [28]. However, it does not require that all job information is known in

advance. Rather, it also considers problems where some job parameters are

unknown in advance [29], such as non-clairvoyant and dynamic scheduling.

4.4.4.2.2 Clairvoyant versus Non-Clairvoyant

Among the significant factors that affect the scheduling decision are the volume and

type of information available to the scheduler. Greater volumes of information

about jobs, such as the number of jobs, their processing times and release dates can

result in an optimum schedule.

However, such information may not be available or may be too expensive to collect.

Also, increasing the amount of information processed by a scheduler usually

increases the time to produce a schedule [30]. Therefore, two contrasting scheduling

policies can be addressed based on the availability, or necessity, of such

information: clairvoyant and non-clairvoyant scheduling.

In a clairvoyant scheduling policy, it is assumed that job characteristics, such as

execution time and release dates, are available to the scheduler before the

scheduling decision takes place; that is, either before jobs enter the system (static

scheduling) or just before starting their execution (dynamic scheduling), as

described in section 4.4.4.2.3. This clairvoyant scheduling is usually what the

classical scheduling theory considers and, with which almost all research in

scheduling theory has been concerned [31]. However, this assumption is the

strictest one in the scheduling theory and it has a great impact in limiting its

practical application. “Indeed, this assumption is not valid for the most real world

processors” [32]. In contrast, a non-clairvoyant scheduling policy assumes and

requires no prior knowledge about job or resource characteristics. This information

might only be available after a job has been executed.

It is important to note here the difference between the non-clairvoyant policies and

dynamic scheduling policies, presented in section 4.4.4.2.3 which are usually

A Framework for Resource Scheduling

102

confused in the literature. When job information is available to the scheduler before

it starts running, it is said that the scheduling policy is dynamic. When job

information is only available after the job is executed, this is called non-clairvoyant

scheduling [31]. The difference in time, at when job information becomes available

to the scheduler, between static, dynamic, and non-clairvoyant scheduling is

illustrated in Figure 4.12.

Figure 4.12: Static, Dynamic and Non-Clairvoyant Scheduling

4.4.4.2.3 Static versus Dynamic

Based on the time when job and resource information is available, clairvoyant

scheduling policies can be considered as either static or dynamic.

In a static (also known as plan-ahead and offline) scheduling policy, information

about jobs and resources are assumed to be available before jobs enter the system.

However, this policy is not applicable when job or resource characteristics are not

known in advance. In dynamic (also known as on-the-fly or online) scheduling

policies, less information is known a priori. Job information is only available after

entering the system and sometimes just before it starts execution [33]. Dynamic

policies are classified further based on when the scheduling decision occurs into

immediate mode and batch mode policies, as described in section 4.4.4.2.4.

4.4.4.2.4 Immediate versus Batch

Within the realm of dynamic scheduling policies, two approaches can be identified

based on when the scheduling decision takes place: immediate and batch policies.

An immediate mode policy maps a job to a machine upon task arrival, whereas a

batch mode scheduling policy is event driven. So, when a specified condition is

satisfied, such as a certain number of tasks, or a time period elapsed, scheduling

occurs.

Enter system Start running Finish running Leave

Le
ss

 jo
b

in
fo

rm
at

io
n

Static
Dynamic

Non-Clairvoyant

Job time line in a scheduling system

A Framework for Resource Scheduling

103

4.4.4.2.5 Adaptive versus Non-Adaptive

In an adaptive scheduling policy the scheduling algorithm or parameters are

dynamically modified according to the change in the system state. In a non-adaptive

scheduling policy, the current system state has no influence on the scheduling

policy. The two properties, dynamic and adaptive, are often used interchangeably in

the literature while they actually represent slightly different features [3]. In a

dynamic policy, part of the information about jobs and resources is revealed

dynamically thus schedules are generated in the same manner. However, this does

not necessarily imply that the scheduling algorithm or parameters are dynamic as

well, which is the case in adaptive scheduling policies.

4.4.4.2.6 Local versus Global

In general, decisions about mapping tasks to resources can be made at two levels:

local level and global level. In a local scheduling policy, decisions are made based

only on the job (sometimes a group of jobs or a sub-workflow) at hand. In a global

scheduling policy, decisions are made based on all non-scheduled jobs (sometimes

jobs not yet started or the whole workflow). The main advantage of global policy

schedulers, also known as meta-schedulers, is that they can provide a better overall

result. On the other hand, making the scheduling decision takes a much longer time

than local policies. Thus the overhead produced by a global policy can reduce the

overall benefit and possibly exceed its benefits [11].

However, there is no agreement about what is local and global scheduling. In [34]

local scheduling is defined as the policy that considers one administrative domain

only, such as a cluster, whereas a global scheduling policy considers multiple

administrative domains. In [3] local scheduling is defined as the policy concerned

with mapping jobs within one machine whereas global scheduling considers

mapping in multiple machines. In this chapter, we follow the same approach as [11]

in defining global and local scheduling policies.

4.4.4.2.7 Self-Scheduling versus Non-Self Scheduling

A non-self-scheduling scheme is what classical scheduling usually assumes where a

dedicated system or authority is responsible for making the scheduling decision,

implementing the scheduling policy and executing the scheduling procedure. This

A Framework for Resource Scheduling

104

approach requires an external entity, to gather information about each node. This

can have high security risks, involves a lot of message exchange and hinders each

node from having its own policy

On the other hand, in self-scheduling policies processors do both duties of assigning

jobs to themselves and executing them. Whenever a processor becomes free it picks

from a shared job pool, a ready task whose predecessors (if any) are all completed

according to a scheduling order [35]. There has been increasing interest in the self-

scheduling scheme using different approaches such as intelligent agents, market

model and swarm intelligence [36]. More about self-scheduling schemes is

presented in [37-39].

4.4.4.2.8 Best Effort versus QoS

A schedule might offer the best performance for a job at its start but over time other

jobs may introduce load into the system, or job requirements may change. To

sustain good performance, high Quality of Service (QoS) and fault tolerance for

long running jobs and real-time applications, schedulers usually include additional

features, such as pre-emption, rescheduling, co-scheduling and resource reservation,

to support such applications. These features are outlined as follows:

• Pre-emption: a pre-emptive scheduling policy may block a job after it

started execution and resume it later in the same or a different machine.

• Rescheduling: a rescheduling policy allows changing the machine in which

a job is running (migration). It also allows swapping between jobs when a

certain event occurs such as new job arrival or machine down.

• Co-scheduling: In a co-scheduling policy, related jobs of an application are

scheduled to run on different machines at the same time. Co-scheduling

techniques relay on the communication behaviour of the application to

schedule the communicating jobs simultaneously.

• Resource reservation: In a resource reservation policy, a job is allowed to

reserve required resources even before having the job entering the system so

it can ensure resource availability.

A Framework for Resource Scheduling

105

Obviously, these additional features introduce non-trivial overheads to the

scheduler. Therefore, many schedulers are designed to execute the main scheduling

functions only, to keep the scheduler simple and light in weight. This kind of

scheduler is known as a best-effort scheduler, which means that the scheduler

always tries to make the best decision for each job before it starts running, but with

minimum performance overhead. It is an optimistic strategy that assumes an ideal

running environment. Hence, a job would most likely never need special care, such

as resource reservation or co-scheduling before starting, nor pre-emption, migration

or rescheduling after starting.

4.4.4.3 Scheduling Procedure

Scheduling procedure refers to the scheduling algorithm that implements the

scheduling policy. Two classes of scheduling algorithms can be addressed:

optimum and sub-optimum algorithms, as shown in Figure 4.13.

Figure 4.13: Scheduler Procedure Model

4.4.4.3.1 Optimum versus Sub-Optimum Algorithms

As explained in section 4.2, the scheduling problem belongs to a broad class of

optimisation problems which has been subject to extensive research for decades. To

solve optimisation problems, optimisation algorithms are constructed which try to

find optimal solutions for which a certain objective function is at its optimum, i.e.

less than or greater than a threshold value [29].

However, polynomial time optimisation algorithms cannot be constructed for all

optimisation problems. These problems are considered to be NP-hard. In such

cases, one often uses sub-optimal algorithms which tend towards, but do not

guarantee, the finding of an optimal solution for any instance of the optimisation

problem. Sub-optimal solutions are further divided, based on the approach followed

Procedure

Heuristic

Optimum

Approximation

Sub-optimum

A Framework for Resource Scheduling

106

to construct them, into approximation and heuristics algorithms, which are usually

confused in the literature.

4.4.4.3.2 Approximation versus Heuristic

An approximation algorithm uses the same formal computational model used by an

optimum algorithm, but instead of searching the entire solution space for an

optimum solution, the algorithm is satisfied when a “good” solution is found. This

technique is used to decrease the time taken to find an acceptable solution

(schedule). In the case of heuristics, empirical data analysis is used to look for a

“good” solution. A heuristic is a collection of rules or steps that guide one toward a

solution that may or may not be optimal. Examples include greedy algorithms, Tabu

search and simulated annealing [40].

Among distinguishing features between approximation algorithms and heuristics

are the performance guarantee and evaluation. An approximation algorithm usually

has a theoretical performance guarantee; for instance the solution it calculates is ten

percent worse than the best solution. On the other hand, a heuristic will usually

have no performance guarantee but its solution is intuitively close to the best

solution [41].

4.5 Grid Resource Scheduling

As defined in Chapter 2, a grid is a collection of computational resources that are

coupled together to solve a single large problem that cannot be solved on any single

one of these resources. Hence, a specialised resource management system is usually

employed to mitigate the complexity of managing such a large number of distrusted

heterogeneous resources.

Generally, three basic functions are carried out by a grid resource management

system:

• Recourse discovery.

• Allocating jobs to resources.

• Job and resource monitoring [42].

Although grid resource management and grid resource scheduling are used

A Framework for Resource Scheduling

107

interchangeably among many grid practitioners, the second function, which is about

allocating jobs to resources, is what is particularly meant by resource scheduling, as

defined in section 4.2. This section highlights the main characteristics of grid

schedulers and applies the proposed framework to compare three well established

grid schedulers.

Due to the special characteristics of grid environments, as described in section

4.5.1, the grid resource scheduling problem is considered more demanding than

other scheduling problems. Nonetheless, current work in grid scheduling involves

many manual administrative works. Therefore, new research on grid scheduling

should mainly focus on solving three problems:

1. Finding a good schedule.

2. Automating the scheduling process.

3. Building a flexible, scalable, and efficient scheduling mechanism [42].

More about the current state of the grid resource scheduling problem, and its certain

nature and performance measures, are discussed in [43-45].

4.5.1 Characteristics of Current Grid Schedulers

The scheduling problem, in general, has been extensively studied in many areas and

there is no clear evidence that grid scheduling is a new problem which is different

from traditional scheduling [43]. However, grid scheduling is more challenging due

to the special characteristics of grid environments and the current implementation of

grid resource schedulers, which are summarised in following sections.

4.5.1.1 Centralised and Hierarchical Schedulers

Many current grid systems employ centralised schedulers to simplify the resource

management process and insure full control over resources. There are also

hierarchical schedulers at several different layers with a grid scheduler (meta-

scheduler) at the highest level, a local scheduler (cluster scheduler) at the lowest

level, and other layers may exist in between. Both schemes are based on the

assumption that a detailed system state is available to schedulers which is highly

expensive, considerably restricts the scalability of the system and simply unrealistic

in many grid environments due to their dynamic nature.

A Framework for Resource Scheduling

108

4.5.1.2 Static Clairvoyant Schedulers

As indicated in section 1.1, virtually all current grid systems employ clairvoyant

scheduling policies assuming prior availability of information about incoming jobs,

such as execution times and release dates. Additionally, static schedules are usually

generated in advance which is apparently unrealistic in dynamic environments and

severely restricts the system flexibility.

4.5.1.3 Lack of Dedicated Access to Resources

Most grid resources are shared among several users or are available to grid usage

only during idle cycles, dramatically affecting the predictability of resource

availability [34]. It is important to note that in grid computing, the term dedicated

resource is employed with a different meaning to that mentioned in section 4.4.1.1.

Grid computing applications are sometimes run in background mode or as a screen

saver only when the system is idle. In this case, it is said that the resource is not

dedicated which means that it is not exclusively devoted for grid utilisation. A

dedicated resource usually receives jobs from a single scheduler in contrast to non-

dedicated resources, which receive workloads from multiple schedulers.

4.5.1.4 Heterogeneous Resources

The heterogeneous nature of grid resources results in great variation and

unpredictability in the capability of resources. Based on resource models presented

in section 4.4.1, the most common resource model that grid schedulers need to deal

with is parallel unrelated resources with different processing speeds for each kind of

job. There is also the parallel uniform resource model where resources vary in their

processing speeds but the speed of each resource is constant for all type of jobs

which is usually the case in Cluster Grids.

4.5.1.5 High Communication Latency

Until today, most grid environments have exhibited high communication latency

[34]. Therefore, it is always believed that coarse-grained applications and

independent jobs are better candidates to run on grids than applications that need

intensive communication and synchronisation such as workflows.

A Framework for Resource Scheduling

109

4.5.2 Examples of Grid Schedulers

Historically the most common grid scheduler is the user [34]. Nowadays, many

efforts are under way to change this situation. Condor [46], Legion [47] and

Nimrod-G [48] among others, are dedicated schedulers utilised in grid resource

management systems to assign jobs to machines. An extensive survey and

taxonomy of grid scheduling systems is presented in [8-13]. Here we present a brief

overview of one of the well-known schedulers in each performance metric. The

intention is not to make a complete listing of grid schedulers, but to extract evident

features of one well known example of each performance metric and apply the

proposed framework, as shown in Table 4.1.

Table 4.1: Scheduling Framework Applied to Condor, Legion and Nimrod-G

 Scheduler

Features

C
on

do
r

Le
gi

on

N
im

ro
d/

G

Notes

Identical
Uniform

Parallel

Unrelated
Flow shop
Open shop R

es
ou

rc
e

m
od

el

Dedicated

Job shop
BoT Independent
DL
DAG Can support

other models Jo
b

m
od

el

Dependent

Non-DAG
Job centric
Resource centric Can support

other models Pe
r.

m
et

.

Economy-based
Centralised
Decentralised

Cooperative Distributed
Non-cooperative O

rg
an

is
.

Non-distributed
Optimum

Approximation P
ro

.

Sub-optimum
Heuristic

Stochastic
Non-clairvoyant

Static
Batch

Sc
he

du
le

r m
od

el

P
ol

ic
y Deterministic

Clairvoyant
Dynamic

Immediate

A Framework for Resource Scheduling

110

4.5.2.1 A Resource-Centric Scheduler: Condor

Condor [46, 49] is a resource management system for High Throughput Computing

(HTC) environments, where the main goal is maximising the throughput. It was

developed by University of Wisconsin, Madison in 1988. It leverages large

collections of heterogeneous distributed computing resources, ranging from super

computers to desktops, to solve independent coarse-grained computer-

intensive jobs.

Condor implements a centralised distributed non-cooperative scheduling policy

where a central node allocates loads to available nodes, then each node schedules

the running of its own jobs. The “matchmaking” mechanism is used to match jobs

to resources based on classified advertisements. The underlying scheduling

algorithm works in batch mode and is based on the OSH where a job is assigned to

the first idle machine. The end objective is to balance the load between machines.

Load balancing is a heuristic that is based on the assumption that being fair to

machines results in better system performance.

Condor has been successfully implemented in widely distributed computational

grids, as demonstrated by SETI@home project [50]. Condor uses the pre-emption

technique to stop grid jobs, giving the resource owner higher priority while using

his own resources.

Condor-G is a new version of Condor, developed by University of Wisconsin,

Madison in 2001. Condor-G leverages the advantages of both Condor and Globus

ToolKit [51], the de facto standard for open source grid computing. Condor-G is

designed to run more fine-grained jobs than Condor, and is more tolerant to faults.

4.5.2.2 A Job Centric Scheduler: Legion

Legion [47, 52] was developed by the University of Virginia in 1998. It is an

object-oriented resource management system for High Performance Computing

(HPC) where the main goal is to minimise the execution time of an individual job.

Although the performance metric is resource-centric, this might be altered using

application level schedulers such as Nimrod/G [48] and AppLeS [53]. This is

because Legion provides several default generic schedulers, but it also allows users

to enter their own application level schedulers. This has the advantage of allowing

A Framework for Resource Scheduling

111

diverse job models to benefit from Legion as each application can have its own

scheduler associated with it. The scheduling policy is decentralised with the

scheduling decision made in periodic or batch modes. For better QoS, Legion

allows resource reservation and rescheduling through job monitoring.

4.5.2.3 An Economy-Based Scheduler: Nimrod/G

Nimrod/G [48, 54] was developed by Monash University, Australia, in 2000 based

on the Nimrod system. The Nimrod system has been utilised successfully in static

scheduling but it is unsuitable for dynamic environments such as grids. Therefore,

Nimrod/G has been developed to overcome this shortcoming. Nimrod/G is an

economy-based resource broker. It focuses on applying economic theories to grid

resource management and scheduling as part of the GRACE (Grid Architecture for

Computational Economy) framework. Job models considered in Nimrod/G are

parameter sweep applications where a job consists of one program with a large set

of independent parameters to be studied. The program specifies the deadline and the

price to pay for executing the program. Nimrod/G uses GRACE services to

dynamically trade with resource providers and consumers. The scheduling policy is

decentralised with the scheduling decision made periodically. For better QoS,

Nimrod/G allows resource reservation.

4.6 Conclusion

Although the resource scheduling problem is a mature research area, a significant

lack is a generic framework that can be applied to different application domains,

and a unified taxonomy to cope with the different terminologies and inconsistency

among technical terms. It is hoped that the work presented in this chapter succeeded

in conveying a high level framework for previously published resource scheduling

taxonomies, and clarifying areas of ambiguity and conflicts. The aim was to make a

step forward to plug this gap.

Some scheduler features are usually used interchangeably in the literature ignoring

the differences between them, for instance, dynamic versus adaptive, dynamic

versus non-clairvoyant, decentralised versus distributed, and distributed versus

cooperative. The differences between these features are presented in Table 4.2.

A Framework for Resource Scheduling

112

However, as resource scheduling systems are closely related to specific system and

application models, it is difficult to complete a comprehensive survey of the overall

spectrum. Therefore, this chapter has emphasised grid resource scheduling systems

in particular in applying the proposed analysis framework.

Based on the different models of resource schedulers, addressed in this chapter, and

the special characteristics of PM-Grids, highlighted in Chapter 3, the following

features can be identified as the main features required for an efficient PM-Grid

resource scheduler:

• Self-scheduling and cooperative to conceal the resource management

complexity from the personal user.

• Decentralised, local and adaptive to cope with the highly dynamic

environment.

• Non-clairvoyant to handle the unpredictability of incoming jobs.

Finally, it is important to note that there is a significant research potential for the

non-clairvoyant scheduling which has not been previously applied in the context of

grid resource scheduling and management systems.

Table 4.2: Differences between Interchangeably used Scheduler Features
 Features Difference

Decentralised Authority for making policy decisions is distributed to multiple
entities.

ve
rs

us

Distributed Responsibility for making and carrying out policy decisions is
shared among multiple entities.

Dynamic Job information is available to the scheduler before it starts
running.

ve
rs

us

Non-clairvoyant Job information is only available after the job finishes its execution.
Dynamic Parts of jobs information are revealed dynamically, thus schedules

are generated in the same manner.

ve
rs

us

Adaptive Some decisions and parameters of the scheduling algorithm are
dependent on the current system context.

Approximation Uses the same formal computational model of an optimum
algorithm, but instead of searching the entire solution space for an
optimal solution, the algorithm is satisfied when a “good” solution
is found. It has theoretical performance guarantee.

ve
rs

us

Heuristic Uses empirical data analysis to look for a “good” solution that may
or may not be optimal. It has no theoretical performance
guarantee.

A Framework for Resource Scheduling

113

4.7 References

[1] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys and B. Yao, “Taxonomy for
describing matching and scheduling heuristics for mixed-machine
heterogeneous computing systems,” in Proc. IEEE Symp. Reliable
Distrib. Syst., pp. 330-335, 1998.

[2] J. Cao, A. T. S. Chan, Y. Sun, S. K. Das and M. Guo, “A taxonomy of
application scheduling tools for high performance cluster computing,”
Cluster Comput., vol. 9, pp. 355-371, 2006.

[3] T. L. Casavant, “A taxonomy of scheduling in general-purpose
distributed computing systems,” IEEE Trans. Softw. Eng., vol. 14, pp.
141, 1988.

[4] H. G. Rotithor, “Taxonomy of dynamic task scheduling schemes in
distributed computing systems,” IEE Comput. Digital Tech., vol. 141, pp.
1-10. 1994.

[5] M. Dessouky, N. Morary and B. Kijowski, “Taxonomy of scheduling
systems as a basis for the study of strategic behavior,” Human Factors,
vol. 37, pp. 443-472, 1995.

[6] J. J. Kanet and V. Sridharan, “Scheduling with inserted idle time:
problem taxonomy and literature review,” Operational Research, vol. 48,
pp. 99-110, 2000.

[7] D. Quadt and H. Kuhn, “A taxonomy of flexible flow line scheduling
procedures,” European J. Operational Research, vol. 178, pp. 686-698,
2007.

[8] F. Dong, “A taxonomy of task scheduling algorithms in the Grid,”
Parallel Process. Lett.s, vol. 17, pp. 439-454, 2007.

[9] K. Krauter, R. Buyya and M. Maheswaran, “A taxonomy and survey of
grid resource management systems for distributed computing,” Softw.
Practice Experience, vol. 32, pp. 135-164, February. 2002.

[10] S. Venugopal, R. Buyya and K. Ramamohanarao, “A taxonomy of Data
Grids for distributed data sharing, management, and processing,” ACM
Comput. Survey, vol. 38, pp. 3, 2006.

[11] J. Yu and R. Buyya, “A taxonomy of workflow management systems for
grid computing,” J. Grid Comput., vol. 3, pp. 171- 200, 2005.

[12] M. Wieczorek, A. Hoheisel, and R. Prodan, “Taxonomies of the multi-
criteria grid workflow scheduling problem,” in Grid Middleware and
Services, US: Springer US, 2008, pp. 237-264.

[13] C. Jiang, C. Wang, X. Liu and Y. Zhao, “A survey of job scheduling in
grids,” Lecture Notes Comput. Sci., vol. 4505. Berlin: Springer, pp. 419-
427, 2007.

[14] M. R. Garey and D. S. Johnson. A Guide to the Theory of NP-
Completeness. W. H. Freeman: San Francisco, 1979.

A Framework for Resource Scheduling

114

[15] S. Homer and A. L. Selman, Computability and Complexity Theory, New
York: Springer, 2001, pp.194.

[16] J. Leung, L. Kelly and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL: CRC
Press, Inc, 2004,

[17] D. P. Spooner, J. Cao, S. A. Jarvis, L. He and G. R. Nudd, “Performance-
Aware Workflow Management for Grid Computing,” Comput. J., vol.
48, pp. 347-357, 2005.

[18] A. Legrand, A. Su and F. Vivien, “Off-line scheduling of divisible
requests on an heterogeneous collection of databanks,” in Proc. 14th
Heterogeneous Comput. Workshop, 2005, pp. 123a.

[19] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve,
F. A. B. Silva, C. O. Barros, C. Silveira and C. Silveira, “Running bag-
of-tasks applications on computational grids: The MyGrid approach,” in
Proc. Int. Conf. Parallel Process., 2003, pp. 407-416.

[20] G. C. Fox and D. Gannon, “Special Issue: Workflow in Grid Systems,”
Concurrency and Computation: Practice and Experience, vol. 18, pp.
1009-1019, 2006.

[21] W. Depoorter, R. Van den Bossche, K. Vanmechelen and J. Broeckhove,
“Evaluating the divisible load assumption in the context of economic grid
scheduling with deadline-based QoS guarantees,” in Proc. 9th IEEE/ACM
CCGRID, 2009, pp. 452-459.

[22] H. J. Kim and V. Mani, “Divisible load scheduling in single-level tree
networks: Optimal sequencing and arrangement in the nonblocking mode
of communication,” Comput. Math. with Appl., vol. 46, pp. 1611-1623,
2003.

[23] F. Dasilva and H. Senger, “Improving scalability of Bag-of-Tasks
applications running on master–slave platforms,” Parallel Comput., vol.
35, pp. 57-71, Feb. 2009.

[24] V. Bharadwaj, Scheduling Divisible loads in Parallel and Distributed
Systems, Los Alamitos, California: IEEE Computer Society Press, 1996.

[25] O. Beaumont, “Scheduling divisible loads on star and tree networks:
results and open problems, “ IEEE Trans. Parallel Distrib. Syst., vol. 16,
pp. 207, 2005.

[26] A. Kejariwal, A. Nicolau and C. D. Polychronopoulos, “History-aware
Self-Scheduling,” in Proc. ICPP 2006, pp. 185-192.

[27] R. Buyya, D. Abramson, J. Giddy and H. Stockinger, “Economic models
for resource management and scheduling in Grid computing,”
Concurrency and Computation: Practice and Experience, vol. 14, pp.
1507-1542, 2002.

[28] D. J. Wilkinson, Stochastic Modelling for Systems Biology. Boca Raton:
Taylor & Francis, 2006.

[29] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Eds.
Handbook on Scheduling: Models and Methods for Advanced Planning

A Framework for Resource Scheduling

115

(International Handbooks on Information Systems). Secaucus, NJ:
Springer-Verlag, 2007.

[30] M. Walker, “A Framework for Effective Scheduling of Data-Parallel
Applications in Grid Systems,” M.S. thesis, School of Engineering and
Applied Science, University of Virginia, 2001.

[31] R. Motwani, S. Phillips and E. Torng, “Non-Clairvoyant Scheduling,”
Theoretical Comput. Sci., vol. 130, pp. 17-47, 1994.

[32] Y. N. Sotskov, V. S. Tanaev and F. Werner, “Stability radius of an
optimal schedule: A survey and recent developments,” in Industrial
Applications of Combinatorial Optimisation. G. Yu, Ed. Boston, MA:
Kluwer Academic Press, 1998, pp. 72-108.

[33] I. K. Savvas and M. Kechadi, “Dynamic task scheduling in computing
cluster environments,” in Proce. Int. Symp. Parallel Distrib.Comput.,
2004, pp. 372-379.

[34] J. Nabrzyski, J. M. Schopf and J. Wceglarz, Grid Resource Management.
State of the Art and Future Trends (International Series in Operations
Research & Management Science). Boston, MA: Kluwer Academic
Publishers, 2004.

[35] P. Tang, P. Yew and C. Zhu, “Impact of self-scheduling order on
performance on multiprocessor systems,” in ICS, 1988, pp. 593-603.

[36] C. Hsu and C. Carothers, “A self-scheduling model using agent-base,
peer-to-peer negotiation, and open common schema,” in Proc. 17th Int.
Conf. Production Research, 2003.

[37] C. D. Polychronopoulos and D. J. Kuck, “Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers,” IEEE Trans.
Comput., vol. 36, no. 12, pp. 1425-1439, 1987.

[38] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A practical
scheduling scheme for parallel compilers,” IEEE Trans. Parallel Distrib.
Syst., vol. 4, pp. 87-98, 1993.

[39] C. Yang, K. Cheng, and K. Li, “On development of an efficient parallel
loop self-scheduling for grid computing environments,” Parallel
Comput., vol. 33, pp. 467-487, 2007.

[40] S. I. Gass, C. M. Harris, Encyclopaedia of Operations Research and
Management Science, Secaucus, NJ: Springer-Verlag, Inc, 2007.

[41] Y. Xu, D. Xu and Jie Liang, Computational Methods for Protein
Structure Prediction and Modeling. New York: Springer, 2007.

[42]

J. Joseph and C. Fellenstein, Grid Computing, N.J.: Prentice Hall
Professional Technical Reference, 2004, pp. 378.

[43] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren, D. Ouelhadj,
D. Snelling, “Open issues in grid scheduling,” UK e-science Tech. Rep.,
2004.

[44] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure (the Morgan Kaufmann Series in Computer Architecture

A Framework for Resource Scheduling

116

and Design). Morgan Kaufmann, 2003,

[45] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in Proc. HPDC-11
2002, pp. 352-358.

[46] Condor Project [online]. Available: http://www.cs.wisc.edu/condor,
[accessed Feb. 2, 2010].

[47] Legion: A Worldwide Virtual Computer [online]. Available:
http://legion.virginia.edu/, [accessed Feb. 2, 2010].

[48] DSTC Nimrod/G [online]. Available:
http://www.csse.monash.edu/~sgaric/nimrod/, [accessed Feb. 2, 2010].

[49] M. Litzkow, M. Livny and M. Mutka, “Condor - A hunter of idle
workstations,” in Proc. 8th Int. Conf. Distrib. Comput. Syst., Jun. 1988.

[50] SETI@home [online]. Available: http://setiathome.ssi.berkeley.edu/,
[accessed Feb. 2, 2010].

[51] Globus Alliance [online]. Available: http:// www.globus.org, [accessed
Feb. 2, 2010].

[52] A. S. Grimshaw and A. Natrajan, “Legion: Lessons learned building a
grid operating system,” in Proc. IEEE, vol. 93, 2005, pp. 589-603.

[53] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S.
Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N.
Spring, A. Su and D. Zagorodnov, “Adaptive computing on the grid
using AppLeS,” IEEE Trans. Parallel Distrib. Syst., vol. 14, pp. 369-382,
Apr. 2003.

[54] R. Buyya, D. Abramson and J. Giddy, “Nimrod/G: An architecture for a
resource management and scheduling system in a global computational
grid,”, in Proc. 4th Int. Conf./Exhibition High Performance Comput. Asia-
Pacific Region, 2000, pp. 283-289.

HoPe: A Honeybee Inspired Scheduler

117

Chapter 5
HoPe: A Honeybee Inspired Scheduler

5.1 Introduction

The key to any successful grid system is an efficient scheduler that allocates

available resources to incoming jobs. Indeed, measuring the potential and

usefulness of a grid system is nothing but exploiting its ability to efficiently

schedule its underlying resources [1]. The extremely dynamic nature, diversity and

limited capabilities of resources, as well as difficulties in predicting the nature and

timing of incoming jobs, are all factors considerably scaling the complexity of the

scheduling problem in PM-Grids.

Through observation, the honeybee colony faces an extraordinarily difficult

scheduling problem in nature, while allocating forager bees to nectar sources during

the Nectar Acquisition Process (NAP). The honeybee colony efficiently solves this

problem through simple non-intelligent agents (honeybees), running a decentralised

cooperative and adaptive self-scheduling policy. This observation motivated the

research for this thesis to follow a heuristic approach for resource scheduling in

PM-Grids that mimics the techniques followed by honeybees during the NAP.

Among the main contributions of this chapter are the introduction of HoPe: a

Honeybee inspired resource scheduling heuristic for Personal Mobile Grids as well

as a detailed analysis of the NAP from a resource scheduling perspective.

Section 5.2 defines the scheduling problem in PM-Grids. Section 5.3 identifies the

main non-functional requirements of HoPe. In section 5.4 the HoPe broad

hypothesis is stated and the questions it raises are addressed and answered.

Section 5.5 explains and analyses in depth the NAP in honeybee colonies, and

builds an abstract model for the process, pointing to the main features that inspired

HoPe. Section 5.6 identifies HoPe implementation elements and explains the

analogy of the PM-Grid to honeybees, as well as the analogy of HoPe to the NAP.

Section 5.7 presents a brief review of other biologically inspired scheduling

heuristics, comparing them to HoPe while section 5.8 concludes the chapter.

HoPe: A Honeybee Inspired Scheduler

118

5.2 Scheduling Problem in PM-Grids

A PM-Grid is a unified collection of resources connected via a PN. It has the

potential to deliver grid level services to a personal end user. Whenever a need

occurs, a PM-Grid user uses his/her client device to send a computational job for

execution on his/her PM-Grid. The job is received at the nearest work-space.

Hence, a variable unpredictable stream of incoming jobs arrives at each work-space

from client devices. Executer devices need to be efficiently allocated to incoming

job streams producing results that are sent to the result-space where an

unpredictable stream of generated results arrives. All results that belong to one job

are accumulated in a separate output file. When an output file containing all job

results is ready, it is allocated to a composer device for final preparation before

being dispatched to the sender or a requested address.

As in the case of all grid systems, the core of a PM-Grid is a scheduler which

strives to efficiently assign tasks to available grid resources. Grid resource

scheduling is a complex problem in general, as detailed in section 4.5. Centralised

plan-ahead schedulers are usually deployed for this purpose. In these schedulers, a

single authority is in charge of all decisions regarding who should run what and

when, as shown in Figure 5.1. Two assumptions are common in such schedulers:

First, clear and sufficient information about incoming jobs is known in advance,

which is simply not realistic. Second, a globally detailed and frequently updated

view of the system resources state is available [2], which is prohibitively expensive,

severely restricts the scalability of the system and exposes it to high security risks.

As indicated in section 4.4.4.2.2, assuming the availability of clear information

about the incoming jobs before making the scheduling decision, is what is referred

to as clairvoyant scheduling, with which virtually all grid resources are concerned.

Although this clairvoyant assumption considerably simplifies the scheduling

problem, it is not valid for most real world problems [3]. In contrast, the non-

clairvoyant scheduling approach assumes that such information is unavailable in

advance, making it more practical for many computer engineering problems,

especially grid computing where it is usually difficult and costly to make reasonable

predictions.

HoPe: A Honeybee Inspired Scheduler

119

Figure 5.1: Conventional Grid Schedulers

In a nut shell, the scheduling problem in a PM-Grid can be defined as efficient non-

clairvoyant scheduling in a highly dynamic environment of limited resources. The

non-clairvoyant scheduling problem is considered as NP-hard as it contains two

classical NP-hard problems as special cases:

• The first case, when all tasks are sequential, the problem reduces to the

multiprocessor scheduling problem which is NP-hard [4].

• The second case, when all tasks have the same execution time, the

scheduling problem becomes the bin-packing problem which is NP-hard

also [5].

Therefore, one practical way to solve this problem is to design a heuristic that tries

to find a “good” solution for this extraordinarily difficult scheduling problem [6].

5.3 HoPe Requirements

The nature of the scheduling problem in PM-Grids, as described in the previous

section, suggests that an efficient scheduler should meet the following non-

functional requirements:

• The scheduling policy should be a self-controlled decentralised scheme to

hide the management complexity of underlying resources from the personal

user and to cope with the highly dynamic environment.

I want to
run X

run X

HoPe: A Honeybee Inspired Scheduler

120

• The scheduler should follow an adaptive non-clairvoyant policy to cope

with the unpredictability of incoming jobs and the high variability in

available resources.

• The processing complexity and the time needed to make the scheduling

decision must be maintained at minimum levels to keep PM-Grid agents

simple enough to fit in mobile devices.

• Agents must communicate in a reliable scheme, again due to the highly

dynamic nature of the system where devices can leave and join, or switch on

and off, at any time.

• The communication between agents should be minimised to reduce the

power consumption of mobile devices and also to cope with the dynamic

environment.

• Agents should have cooperative non-competitive behaviour as underlying

resources are usually owned by one person who sets common system goals

which all devices need to jointly accomplish.

5.4 Broad Hypothesis

Based on the nature of the scheduling problem and requirements of resource

schedulers in PM-Grids, applying traditional grid scheduling schemes, as illustrated

in Figure 5.1, searching for an optimal algorithm is simply not feasible. Therefore,

this thesis, proposes a novel approach to grid scheduling with a non-clairvoyant,

fully distributed and adaptive self-scheduling scheme, as shown in Figure 5.2. This

scheduling approach aims specifically to address the complexity of the scheduling

problem in PM-Grids which is dramatically scaled by the high level of dynamism,

diversity and limited capabilities of underlying resources, as well as the remarkable

unpredictability of the nature and timing of incoming jobs.

Observations of honeybees has revealed that the colony faces an extraordinarily

difficult scheduling problem in nature, due to weather unpredictability and food

variability, while allocating honeybees to nectar sources during the Nectar

Acquisition Process (NAP). The honeybee colony efficiently solves this problem

through simple non-intelligent agents, (honeybees) running a decentralised

HoPe: A Honeybee Inspired Scheduler

121

cooperative and adaptive self-scheduling policy. The aim is to maximise the nectar

intake while maintaining the hive at a stable state where nectar collecting and honey

processing rates are balanced. This observation is the foundation of the broad

hypothesis behind HoPe:

Efficient non-clairvoyant scheduling in a highly dynamic environment of limited

resources may be achieved with a heuristic approach based on simple agents. The

agents allocate themselves to multiple work sources in a decentralised, cooperative

and adaptive self-scheduling scheme striving to maximise work intake while

maintaining the system in a stable state, in an attempt to imitate the behaviour of

honeybees during the NAP.

Figure 5.2: HoPe Scheduling Approach

Three obvious questions regarding the HoPe broad hypothesis might arise:

1. Why a heuristic approach?

2. Why the honeybee colony based inspiration?

3. Why stability as a scheduling objective?

5.4.1 Why a Heuristic Approach?

In many complex scheduling problems, it is more efficient to have a heuristic

suggesting a “good” (near optimal) schedule rather than evaluating all possible

schedules. For instance, consider developing a schedule for 30 different jobs (or a

single job of 30 internal tasks) and five different machines. In this case, a scheduler

needs to examine 530 possible mappings of jobs to machines before determining the

optimum schedule. Assuming that the scheduler consumes only one nanosecond to

Jobs

I want to
run X

I can run two
chunks of X

Jobs Jobs

I can run one
chunk of X

I can compose
final results

Results

HoPe: A Honeybee Inspired Scheduler

122

evaluate the quality of one possible schedule, then the scheduler will need 530

nanoseconds (> 4 × 1010 sec. > 1000 years) to evaluate all possible schedules [7].

What makes heuristics more efficient for many scheduling problems are not only

that they are considerably easier and quicker to develop than optimisation

algorithms, but most importantly heuristics are generally more robust to changes in

data as well. This is because a heuristic deliberately but judiciously ignores certain

computationally expensive data and depends mainly on alternative simpler

parameters. Indeed, designing an efficient heuristic is mainly about knowing

exactly what information to ignore and what information to retain.

Ideally, expensive parameters to gather, maintain and manipulate are ignored. This

ignorance frees the scheduler from burdens of reading and manipulating such

information. Hence, the decision produced is independent of the ignored

information and unaffected by their changes [8]. On the other hand, alternative

simpler parameters, which are easier to gather, maintain and manipulate, are

retained. These simple parameters are usually correlated to the system performance

in an indirect instead of direct way. They have an impact on the efficiency of the

provided schedule but may not be directly related, in a quantitative way, to the

system performance [3].

Hence, in this thesis it is expected that taking a heuristic approach will produce an

efficient scheduler with “good” system performance. However, as the case with all

heuristics, this thesis does not aim to prove that there is a first-order relationship

between the heuristic proposed and the desired results.

5.4.2 Why Honeybee Colony-based Inspiration?

A heuristic based on an intelligent agent approach may considerably reduce the

complexity of a scheduling problem. However, the processing complexity and

communication cost of launching intelligent agents are usually overwhelming and

significantly consume resources especially in devices of limited capabilities.

Therefore, this thesis has followed the basic idea behind the swarm intelligence

approach, where intelligent behaviour emerges from the interaction of simple non-

intelligent agents.

HoPe: A Honeybee Inspired Scheduler

123

Swarm intelligence is based on the fact that social insects (insects that live in

colonies) such as bees, ants and termites, present an intelligent collective behaviour

albeit composed of simple individuals of limited capabilities [9]. This intelligent

collective behaviour emerges naturally from the special characteristics of these

simple agents which include:

• Self-organisation: Unsupervised coordination of activities.

• Adaptiveness: Response to highly dynamic environments.

• Robustness: Accomplishing the group objective even if some members of

the group malfunction.

These properties lend themselves well to distributed optimisation problems in

telecommunications, manufacturing and transportation, among others [10, 11]. The

rationale behind the swarm intelligence approach is apparent. Social insect colonies

are efficient successful paradigms from nature and following the same principles of

such systems will produce successful counterpart engineering solutions.

Basically, the process of designing a swarm intelligence, or more generally a “bio-

inspired” [12] solution, can be summarised by the flowchart presented in Figure 5.3

which includes the following steps:

1. Define the engineering problem at an abstract level.

2. Find a biological system with the same abstract problem.

3. Build an abstract model for the biological system.

4. Build an abstract model for the engineering problem to mimic the

abstract biological model.

5. If possible, increase the similarities at a finer level of detail.

6. Test and evaluate.

7. If results are not acceptable, go to step 2.

It is clear that finding the right biological system is the most critical step in this

process. In this thesis, the honeybee colony has been chosen because the problem of

allocating resource limited machines to job sources in a highly dynamic

environment has an apparent correspondence with the problem of allocating forager

HoPe: A Honeybee Inspired Scheduler

124

bees to nectar sources in the virtually unpredictable conditions of weather changes

and food availability in nature, as explained in section 5.4. Indeed, as stated in [13]:

Among all social systems, the social physiology underlying the
food collection process of honeybee colonies might be the greatest
metaphor of cooperative group functioning outside the realm of
human society.

However, utilising ideas from honeybees has not been explored in grid computing,

to the best of our knowledge. Therefore HoPe has been introduced as a step forward

to plug this gap, exploring the potential of honeybee based algorithms in mitigating

the grid level resource management complexity.

Figure 5.3: Bio-inspired Design Process

Start

Define engineering problem at
abstract level

yes

Finish

Possible
improvement?

no

Find biological system with same
abstract problem

Build abstract model for
biological system

Build abstract model for
engineering problem mimicking

abstract biological model

Increase similarities at finer
level of details

Test and evaluate

Results OK?

yes

no

HoPe: A Honeybee Inspired Scheduler

125

5.4.3 Why Stability as a Scheduling Objective?

Basically, there are two performance metrics that are commonly used in evaluating

grid resource scheduling systems: turnaround time (TT) and throughput.

The TT, also known as response time and completion time, measures the elapsed

time from when a client submits a job until the client receives the corresponding

results. It is the most popular metric in computational grids. This measure indicates

the system performance which relates to how well scheduled resources are being

used to the benefit of each user of the system.

On the other hand, the throughput represents the amount of work completed by the

system over a period of time, or per time unit. The throughput is the main concern

of all high throughput computing systems. This measure relates to how efficient the

system is in regard to the added cost or overhead associated with the resource

scheduler. It indicates how well system resources are being used to the benefit of all

users of the system. However, maximising the throughput on its own saturates the

network and deteriorates other performance aspects such as queuing delay, which in

turn affects the TT. Therefore, a mechanism is needed to control the rate of job

injection into the system [14].

Indeed it is always difficult to compromise between scheduling performance

measures, as maximising the throughput may come at the expense of TT, while

minimising TT might come at the expense of throughput. The simultaneous

evaluation of both measures, throughput and TT, is very difficult as they represent

conflicting goals [15]. Therefore, a methodology is required where these measures

are separately observable [1] and/or new performance measures that help to

optimise both are required for capturing the tradeoffs [16].

Consequently, this thesis focuses on the stability performance measure where the

objective is to maximise the job collection rate subject to minimising the difference

between job collection and result generation rates. Stability controls the rate of job

injection into the system. Hence, it is critical for bounding the queue size which

presumably reflects positively in TT and throughput. However, proving a first-order

relationship between the stability measure on one side, and TT and throughput on

the other, is considered beyond the aim of this thesis.

HoPe: A Honeybee Inspired Scheduler

126

Stability measure is of extra importance for this study in particular, due to the

suspected bottleneck in the workstation with the hive queue, as explained in section

5.5.2. In bottleneck cases, scheduling decisions should focus on the bottleneck

resource, in an effort to maximise its production rate and work output from that

point, and trying not to release work faster than the bottleneck can process, in order

to maintain the stability of the resource [17].

5.5 The Nectar Acquisition Process (NAP)

Figure 5.4: Nectar Acquisition Process (NAP)

Since ancient times, scientists have been fascinated with the social organisation of

the honeybee colony. This has been translated into many studies of its biology, such

as [13, 18-20] among others. As the main aim of this study is to show the possibility

of exploiting the honeybee food collection technique in designing a solution for a

particular computer engineering problem, only selected background, that is

necessary to understand the basic idea behind this work, is provide based on [13].

A honeybee colony has a limited number of bees which it needs to allocate wisely

to the surrounding flower patches from which they collect nectar and bring it to the

hive for further processing in order to generate comb honey. This process,

illustrated in Figure 5.4, is what has been referred to as the Nectar Acquisition

Process (NAP).

During NAP, a honeybee colony divides labour, based on temporary specialisation,

among two groups: forager bees, who work in fields collecting nectar from food

 Nectar sources Hive Unloading area

Forager bee Receiver bee

HoPe: A Honeybee Inspired Scheduler

127

sources turning it into raw honey, and receiver bees, who work in the hive

processing raw honey to produce comb honey (honey-filled wax comb as stored

directly by the bees). This organisation boosts the efficiency of the NAP, but

requires dynamic coordination of the two labour groups to keep the rates of nectar

collection and honey processing in balance.

This coordination problem is significant because the colony experiences large and

unpredictable variations in the nectar availability. The colony adjusts its nectar

collection and honey processing rates with respect to external nectar supply mainly

by dynamically adjusting the number of forager and receiver bees through “waggle”

and “tremble” dances.

When food sources are laden with nectar, the colony increases the number of

forager bees, raising the nectar collection rate. This is done through the waggle

dance which stimulates some receiver bees to change their roles to foragers and

help in nectar foraging.

When the processing rate is lowered, having a number of receiver bees changed

their role to forager bees, the colony speeds up the honey processing rate through

tremble dance. The tremble dance stimulates some forager bees to work as receiver

bees, as shown in Figure 5.5. In the following sections we present a detailed

analysis for the NAP from the resource scheduling perspective.

Figure 5.5: Dynamic Reallocation of Labours during NAP

5.5.1 Abstract Algorithms

The main steps followed by a forger bee and a receiver bee are described in section

5.5.1.1 and section 5.5.1.2 respectively.

Forager bee Receiver bee

Waggle Dance

Tremble Dance

HoPe: A Honeybee Inspired Scheduler

128

5.5.1.1 Forager Bee Abstract Algorithm

Initially, a forager bee starts searching randomly for a nectar source. When a nectar

source is found, the forager sucks an amount of nectar that fits its stomach where it

is mixed with proteins and enzymes producing raw honey. Before returning to the

hive, the forager assesses the profitability of the remaining nectar in the

food source.

On return, the forager waits in the unloading area, an area near the entrance of the

hive, for a receiver bee to unload her honey. The forager assesses the waiting time

(WT) in relation to its tremble dance threshold (TDT), which is an internal variable

calculated dynamically by each forager based on its experience. “Long” WT means

that the colony nectar collection rate is markedly high. Thus, a nectar forager

experiences a long WT because most receiver bees are busy unloading already

arrived foragers. In response, the forager bee performs a tremble dance, in which

the bee walks slowly about the nest making trembling movements to boost the

number of receiver bees. The duration of this dance is closely correlated with the

WT experienced by the dancing bee.

If the WT is “not that long” but the profitability of the nectar in the food source,

from where the forager bee gathered nectar, is “high” when compared to the waggle

dance threshold (WDT), which is an internal variable calculated dynamically by

each forager based on its experience, the bee starts a waggle dance. During the

waggle dance, the bee flies in a small figure-of-eight on the dancing floor, a small

area inside the hive. The direction and duration of this dance is closely correlated

with the direction and profitability of the nectar in the food source being advertised

by the dancing bee. The aim of this dance is to boost the number of forager bees

targeting this food source and also to recruit idle receiver bees to work in nectar

collection in order to increase the colony’s nectar collection rate.

After having its raw honey unloaded, a forager bee needs to decide where to look

next for nectar. If there is still some nectar in her last visited source, it flies directly

there, otherwise it needs to check the dancing floor for any waggle dance. If there

is, the forager selects a dancer randomly to follow, then flies directly to the

advertised nectar source. If this is not the case, the forager looks around for any

tremble dancing bee, if found, the forager bee changes its role to a receiver bee

HoPe: A Honeybee Inspired Scheduler

129

working in honey processing. If none of the above is the case, the forager bee starts

searching randomly again for a nectar source.

Hence basically, a forager bee searching procedure can be summarised by the high

level algorithm presented in Figure 5.6, while the full high level algorithm that

shows the basic steps followed by a forager bee can be summarised informally by

the flowchart and pseudo code presented in Figure 5.7 and Figure 5.8 respectively.

Figure 5.6: Basic Idea of Local Search in NAP

 Figure 5.7: Forager Bee High Level Flowchart

If you already know a good source
Fly directly to that source.

Else if you do not know but a friend knows a good source
Fly to that source.

Else if neither you nor any of your friends know a good source
Search randomly.

Start

Load nectar and assess
remaining nectar quantity

Return to hive, unload
and assess WT

no

yes

yes

no

yes

yes

Finish

no

Any
tremble

Change
role

Any
waggle

yes

no

no

Get
unloaded

Go to the nectar
source

Know non-empty
nectar source?

yes

no

yesno
Nectar quantity ≈ 0?

Do waggle
dance

Nectar quantity
high?

Search randomly
for nectar source

Nectar source
found?

Do tremble
dance

WT high?

HoPe: A Honeybee Inspired Scheduler

130

Figure 5.8: Forager Bee High Level Pseudo Code

5.5.1.2 Receiver Bee Abstract Algorithm

Initially, a receiver bee is waiting near the unloading area for the arrival of any

returning forager bee loaded with raw honey. Once one arrives, the receiver bee

unloads its raw honey to store in a comb, a hexagonal cell made of bee wax. When

a comb is full, the receiver bee fans its wings to thicken the honey and cap it with

wax producing comb honey.

During her waiting time, a receiver bee also keeps an eye on the dancing floor. If it

detects any waggle dancer, it changes its role to a forager bee flying to the

advertised nectar source. The abstract algorithm of the basic steps followed by a

receiver bee can be summarised informally by the flowchart and pseudo code

presented in Figure 5.9 and Figure 5.10 respectively.

1. Each forager bee
2. Loop for ever
3. If you already know a non-empty nectar source
4. Fly to that source
5. If not available anymore or there is no more nectar in the source
6. Go to step # 22
7. Load nectar
8. Assess quantity of remaining nectar (NQ)
9. Generate raw honey
10. Return back to hive
11. loop
12. If there is no ready receiver bee in the unloading area
13. Assess WT since you arrived back hive
14. If (WT ≥ TDT)
15. Do tremble dance
16. until a receiver bee arrives
17. Let the receiver bee unload your raw honey
18. If (WT ≤ TDT) and (NQ ≥ WDT)
19. Do waggle dance
20. End if
21. Else
22. If you can see any tremble dancer around
23. Change your role to receiver bee
24. Exit
25. End else if
26. Else
27. If there is any waggle dancer bee in the dancing floor
28. Choose one waggle dancer to follow randomly
29. Go to step # 4
30. End else if
31. Else
32. If there is not any waggle dancer bee in the dancing floor
33. Search randomly for a nectar source
34. If you find any
35. Go to step # 7
36. End else if
37. End Loop

HoPe: A Honeybee Inspired Scheduler

131

Figure 5.9: Receiver Bee High Level Flowchart

Figure 5.10: Receiver Bee High Level Pseudo Code

5.5.2 Abstract Queuing Model

Principally, to build a system model, the system is simplified as much as possible

by including only the main properties and functions while eliminating finer details

that complicate matters. Generally system models are classified as:

• Mathematical models (Analytical models): A mathematical model is an

abstraction of the real system represented as a set of equations summarising

the aggregate system performance but does not describe the detailed events

that occur in the real system.

Each receiver bee
Loop for ever
 If any loaded forager bee arrives hive
 Unload her and store raw honey into a comb
 Else if you can see any full comb
 Fan and wax the comb generating comb honey
 Else if there is any waggle dance
 Change your role to forager bee
 Exit
 End else if
End Loop

Start

Unload forager and
store raw honey

yes

Finish

Change role

no

yes

Fan, wax and
generate comb honey

no

no

yes

Any loaded
forager?

Any waggle
dance?

Any full
comb?

HoPe: A Honeybee Inspired Scheduler

132

• Simulation models (empirical or experimental models): A simulation model

is an experiment that mimics events that occur in the real system, allowing

experimentation with different parameters and control logic.

Some attempts to mathematically model the foraging behaviour of honeybees have

already been published. In [21] a differential equation of dynamic labour allocation

in honeybees has been proposed and evaluated for one set of experimental

conditions. A generic nonlinear differential mathematical model for social foraging

in both ants and bees has been suggested in [22]. In [23] a probabilistic model of

individual-level sensing, decision making and nectar foraging in honeybees has

been developed. Additional detailed models that attempt to quantify most features

of honeybees are presented in [24].

However, these are concrete mathematical and probabilistic models quantifying

features of the honeybee foraging behaviour based on certain sets of predefined

assumptions. The problem with this approach is that the honeybee colony, as in the

case of all biological systems, has unique characteristics that are apparently

different from the mathematical assumptions that lie beneath analytical models. For

instance, the honeybee colony employs an adaptive control strategy based on the

current system state while analytical models usually evaluate steady state conditions

only. An analytical model measures the system behaviour using expected values for

a predefined set of performance metrics ignoring any changes in the system

behaviour over time [17].

Therefore, in modelling the NAP, this thesis has initiated a queuing theory based

approach. A generic model for the NAP is developed as a queuing network then this

model is simulated in several representative scenarios. Detailed descriptions of

simulation scenarios are presented in Chapter 6.

The queuing theory is used to model and analyse systems that involve waiting for

services. A queuing system model usually includes one or more pools (queues) of

arriving elements and one or more servers (processors) attached to the pools.

Based on this, from the queuing theory point of view the NAP, or more generally a

honeybee colony, includes the following components:

HoPe: A Honeybee Inspired Scheduler

133

• Queues: There are two groups of queues in the NAP:

- Nectar source queues: consist of S small parallel queues of nectar

waiting for forager bee processors to serve them.

- The hive queue: is a large queue of gathered nectar (raw honey), waiting

for receiver bee processors to serve them producing comb honey.

• Processors: There are N = Nc + Np processors in the NAP. They are

organised in two main groups :

- Forager bee processors: consist of Nc= ∑i=1
s

Ni processors that are

assigned to the nectar source queues. They represent forager bees

collecting nectar from nectar sources.

- Receiver bee processors: consist of Np processors that are assigned to the

hive queue. They represent receiver bees engaged in unloading and

processing raw honey.

Components of a honeybee colony are organised, for the NAP, as a two stage open

queuing network (in open networks, arriving items can join and leave the system,

whereas in closed networks the total number of items within the system remains

fixed), as illustrated in Figure 5.11. This queuing network is composed of multiple

workstations for the nectar collection course (first stage) and one workstation for

the honey processing course (second stage). Each workstation is composed of an

input queue and one or more servers. Processed items from all collection course

workstations are placed in a single output queue (hive) which in turns serves as an

input for the single processing course workstation.

Interestingly, the design choice of the network of workstations, Figure 5.11,

underlying this natural system, the honeybee colony, is more efficient than other

alternative design choices such as parallel or serial servers shown in Figure 5.12.

Both models of networks of workstations and parallel servers are generally

preferred over the serial servers model. However, in highly variable environments,

a single group of multiple servers, corresponding to a network of workstations, is

more efficient than parallel servers, each with its own queue [17]. An important

feature of this model is that it is highly dynamic. The number of processors (Nc and

HoPe: A Honeybee Inspired Scheduler

134

Np), arrival rates (λ1, λ2,…, λs, λp) and also the number of queues S, are variable

over time.

Figure 5.11: Honeybee Colony Queuing Model

Figure 5.12: Alternative Queuing Models to a Network of Workstations

Based on the above-mentioned features of the NAP model, it is clear that it is

difficult to fit the NAP scheduling problem under the mathematical scope of the

classical queuing theory. Therefore, computer-based simulations are used to

approach the problem.

However, the single processing course workstation can be a “bottleneck” in this

system. Therefore, it is critical for the entire system to maintain a constant flow,

...

1

2

m

. . .1 2 m

(a) Parallel severs

(b) Serial severs

Nectar source Hive Forager bee Receiver bee

Servers Queue

Servers Queues

Collecting course Processing course

1…N1

1…N2

1…Ns

. . .

1… Np

λ1

λ2

λs

μ1

μ2

μs

λp
μp

HoPe: A Honeybee Inspired Scheduler

135

which is known as the steady state balance equation [17]:

 Rate out = Rate in (5.1)

Hence, the scheduling objective of the whole system has been chosen carefully to

enhance system stability, as explained in section 5.3.3.

5.5.3 Formulation of the NAP Scheduling Problem

As illustrated by the queuing model of the NAP in Figure 5.10, the NAP can be

divided into two stages: nectar collection course and honey processing course.

5.5.3.1 Nectar Collection Course

A number of Nc forager processors are connected to multiple nectar queues. A

forager processor Ni assigns itself an average volume of Lc nectar load, from a

nectar queue, based on its capacity. Ni delivers its load to a single hive queue, for

further processing. Ni spends an average time of Tc to complete a collection course.

The collection course is defined as the process from when Ni starts the decision as

to which nectar source to access in order to load nectar, until it delivers its load to

the hive queue, starting the decision making process again. The objective of the

colony system during this cycle is to maximise its nectar collection rate (λp) which

is a function of three variables [13]:

 λp = NcLc/Tc (5.2)

 Tc > 0,

where:

Nc is the number of forager bees engaged in nectar collection

Lc is the average volume of nectar load per forager

Tc is the average time of a collection cycle.

However, strong evidence suggests that the principal means the system uses to

adjust λp is altering Nc rather than Lc or Tc [13]. Hence (5.2) can be rewritten as:

 λp = aNc (5.3)

 a > 0

HoPe: A Honeybee Inspired Scheduler

136

Hence, the scheduling problem in the collection course of the NAP can be defined

as: How to allocate a set of Nc parallel processors to S sources of divisible load jobs,

so that the number of delivered jobs per time unit is maximised:

 Maximise {F(Nc) = aNc } (5.4)

 a > 0

5.5.3.2 Honey Processing Course

A number of Np receiver processors are connected to a single hive queue. A receiver

processor Nj takes an average volume of Lp honey load, processes it to generate

comb honey as necessary. Nj spends an average time of Tp to complete a processing

course. The processing course is defined as the process from when Nj receives a

honey load until it processes it and is ready to receive another honey load. The

objective of the colony system during this cycle is to maximise its honey processing

rate (μp) which is a function of three variables [13]:

 μp = NpLp/Tp (5.5)

 Tp > 0,

where:

Np number of receiver bees engaged in honey processing

Lc average volume of honey load per receiver bee

Tp average time of a processing cycle.

Strong evidence suggests that the principal means the system uses to adjust μp is

changing Np rather than Lp or Tp [13]. Hence (5.5) can be rewritten as:

 μp = bNp (5.6)

 b > 0

The scheduling problem in the processing course of the NAP can now be defined

as: How to allocate a set of Np parallel processors to a set of P jobs, so that the

number of delivered jobs per time unit is maximised:

 Maximise {F(Np) = μp =bNp } (5.7)

 b > 0

Based on the two above-mentioned courses, the end objective of the scheduling

HoPe: A Honeybee Inspired Scheduler

137

problem in the NAP can be seen as maximising both nectar collection and honey

processing rates:

 Maximise {F(Np) , F(Nc) } (5.8)

Subject to minimising the difference between them:

 Minimise {| F(Np) - F(Nc) |} (5.9)

As outlined in [13]: “the rates of nectar collecting and processing must be kept in

balance for the overall operation to proceed. If the collecting rate exceeds the

processing rate foragers will experience long unloading delays upon return to the

hive. Reciprocally, if the processing rate exceeds the collecting rate, nectar

receivers will be underemployed”.

5.5.4 Main Features

After analysing the social foraging behaviour of honeybees during the NAP, six

main features can be identified as the main drivers of this thesis inspiration:

1. Decentralised self-control scheduling policy.

2. Adaptive non-clairvoyant scheduling policy.

3. Easily calculated local control variables.

4. Reliable communication technique.

5. Economic communication scheme.

6. Non-competitive cooperative behaviour.

Noticeably, these features have a direct correspondence to the requirements of PM-

Grid resource schedulers as addressed in section 5.3.

5.5.4.1 Decentralised Self-Control Policy

During the entire NAP, a honeybee colony shows a complete absence of any form

of central or hierarchical control. There are no certain authorities giving instructions

to other bees regarding who should do what and when; rather each honeybee makes

these decisions for herself independently of all other bees.

HoPe: A Honeybee Inspired Scheduler

138

5.5.4.2 Non-Clairvoyant Adaptive Scheduling Policy

The scheduling scheme followed in the NAP is based on non-clairvoyant

scheduling policy; it does not require or depend on any information about incoming

work. It is also highly adaptive. This can be clearly exemplified by the dynamic

allocation of labour among worker bees. Many social insects exhibit a division of

labour among their members which features them in controlling complex systems

[25]. However, these labours are permanent such as in ant and termite workers [26].

Within a honeybee colony, forager and receiver bees, dynamically exchange their

roles based on the supply (nectar collection) and demand (honey processing) as

shown in Figure 5.5. This temporary specialisation makes the system more robust

and flexible under different loads and scales. Adaptability in honeybees can also be

exemplified by the way dancing thresholds are determined by each bee. Each

dancer individually decides a dancing threshold for itself based on its perception of

the current system state.

5.5.4.3 Easily Calculated Local Control Variables

As indicated in section 5.5.3, the objective of a honeybee colony is to maximise its

nectar collection and honey processing rates, while maintaining them in balance.

Forager bees perform waggle and tremble dances for this purpose. Surprisingly, a

forager bee starts dancing without knowing the values of these two important global

variables (nectar collection rate and honey processing rate). Instead, it monitors two

local variables which are correlated with the global variables but are far easier to

calculate: the waiting time experienced until a receiver bee arrives and the

profitability of the last visited nectar source. Relying on local non-expensive

parameters makes the scheduler lighter in weight in terms of implementation and

more robust in dynamic environments.

5.5.4.4 Reliable Communication Scheme

In social insects, such as ants, communication among colony mates usually takes

place in any location in or out of the shared environment. Shared information,

especially outside the shared environment, can be easily altered by external

elements. This usually has a negative impact on the reliability of shared

information. In a honeybee colony, important information related to the NAP is

exchanged only in a centralised shared memory inside the hive, where dances are

HoPe: A Honeybee Inspired Scheduler

139

performed. Neither colony mates nor external elements can alter the shared

information. This not only ensures high reliability of exchanged information but

also makes it much easier to exchange.

5.5.4.5 Economic Communication Scheme

Social insects usually communicate important information with their colony mates

through implicit messages that alter their shared environment by pheromones or

odours. This communication scheme usually takes time before being effective in

attracting attention. In contrast, honeybees communicate important information,

such as the need for more workers in a certain labour and locations of profitable

nectar sources, through explicit advertisements for such information. This has an

immediate effect in attracting attention and results in a very efficient group

recruitment scheme. Furthermore, there are only two pieces of information that are

needed to be exchanged in the colony during the NAP: the location of rich sources,

and the need for more workers in a certain labour group. Besides exchanging only a

limited amount of information, this information is very small in size, and its

frequency is remarkably low [13].

5.5.4.6 Non-Competitive Cooperative Behaviour

The main driver of many social groups’ behaviour, including human beings, is to

maximise their profit as defined in certain terms such as money or food. This is not

the case in honeybees. A honeybee does not compete with other bees within its

colony to get more profit in terms of food; it cooperates with them to reach common

goals. This might clarify why honeybees are not choosy when exploiting food

sources. A dance follower randomly chooses a dance to follow flying directly to the

advertised source without waiting for the whole dance duration when the source

profitability can be determined. Through this behaviour, foragers efficiently

distribute themselves among all food sources. If instead, a forager bee tries to

maximise its own benefit, it would have waited until it knows the profitability of a

nectar source. This would have resulted in an all-or-none response which is a less

than optimal allocating scheme [13].

5.5.5 Elements of Honeybee Colony and NAP

Modelling a process involves representing the environment where the process runs

HoPe: A Honeybee Inspired Scheduler

140

and activities and elements that are related to that process. Having a closer look at

the NAP, one can differentiate between two groups of important elements: the first

group represents elements that are part of the honeybee colony itself, which can be

considered as the process environment. This group is used to model the PM-Grid.

The second group represents elements and activities that constitute the NAP. This

group is used to implement HoPe. Here, the two groups of elements are presented

with a brief description of each.

It is important to note that this separation between elements of the honeybee colony

as a system, and the NAP as a procedure to run by this system, is only to simplify

tracing the origin of the PM-Grid and HoPe elements. In reality it is difficult to

make such a distinction.

5.5.5.1 Elements of Honeybee Colony

Section 5.5.2 revealed the following important elements of a honeybee colony in

the context of the NAP:

Agents:

• Forager bees: simple agents collecting nectar from food sources,

transforming it into raw honey and bringing it to hive.

• Receiver bees: simple agents receiving raw honey from foragers and

processing it further to produce comb honey.

Places:

• Food sources: multiple variable places from which nectar can be collected.

• Hive: a centralised well identified place where raw honey is delivered then

packed for final processing as a comb honey.

5.5.5.2 Elements of NAP

Analysing the NAP identifies the following main elements:

Communication elements:

• Nectar: an input item that is collected and processed, producing honey.

HoPe: A Honeybee Inspired Scheduler

141

• Raw honey (gathered nectar): an intermediate element produced after

processing nectar. It is accumulated in uncapped combs (wax cells) for

further processing.

• Comb honey: an output item that is produced after processing accumulated

honey in full wax cells.

Communication means:

• Dancing floor: an area within the hive where important information

regarding rich food sources is advertised through dancing.

• Unloading area: an area at the entrance of the hive where bees returning

from food sources wait for food receiver bees to unload them.

• Combs: a place where raw honey is accumulated until full then transferred

outside the hive.

Communication techniques:

• Waggle dance: a symbolic advertisement performed by a forager bee

regarding the location of a rich nectar source and its profitability. It is also

used to recruit idle receiver bees to work in nectar foraging to increase the

nectar collection rate. The waggle dance is defined by three parameters:

waggle dance threshold (WDT), waggle dance duration, advertised work-

space.

• Tremble dance: a symbolic advertisement performed by a forager bee when

it experiences a long delay waiting to be unloaded. The objective is to

recruit idle forager bees to work as receiver bees to increase honey

processing rate. The tremble dance is defined by two parameters: tremble

dance threshold (TDT) and tremble dance duration.

• Forager waiting in the unloading area: an implicit request for unloading.

• Receiver waiting in the unloading area: an implicit message of being ready

to unload.

Parameters:

• Waiting time: the time from which point a forager bee enters the unloading

area, inside the hive, until a receiver bee arrives to unload her.

HoPe: A Honeybee Inspired Scheduler

142

• Profitability: a measurable criterion of the quality of a nectar source. Much

evidence suggests that it is related to the amount of nectar remaining in the

nectar source.

• Nectar collection rate: the amount of gathered nectar (raw honey) arriving at

the hive from all nectar sources per time unit.

• Honey processing rate: amount of raw honey processed inside the hive per

time unit to produce comb honey.

• Waggle dance threshold (WDT): is an internal variable for each forager. It is

a criterion related to the quantity of nectar remaining in the nectar source;

when met a forager bee starts a waggle dance. It does not have a fixed value;

instead it varies from bee to bee and from time to time under different

conditions.

• Advertised nectar source: a specific nectar source with high profitability

from which a waggle dancing forager bee has just returned.

• Waggle dance duration: the time from when a waggle dancing bee starts a

waggle dance, until it finishes. It is a function of the profitability of the last

visited nectar source.

• Tremble dance threshold (TDT): is an internal variable to each forager bee.

It is a criterion related to the waiting time experienced by a forager bee on

return from a nectar source; when met a forager bee starts tremble dance. It

does not have a fixed value; instead it varies from bee to bee and from time

to time under different conditions.

• Tremble dance duration: the time from when a tremble dancing forager bee

starts a tremble dance, until it finishes. It is a function of the waiting time.

5.6 From Inspiration to Algorithm

The initial aim was to explore possibilities for defining the process of allocating

machines to job sources, collecting tasks, processing them and generating results in

a PM-Grid, in a way that is similar to the process of allocating forager bees to

nectar sources, collecting nectar, processing it and generating comb honey in a

HoPe: A Honeybee Inspired Scheduler

143

honeybee colony. From the first glance, it was clear that the two problems were

similar, at least at an abstract level. Therefore the aim has been extended to increase

the similarity between the two systems at a finer level of detail. This section, briefly

illustrates the direct correspondence between elements of the honeybee colony and

the PM-Grid. After that, HoPe implementation elements are introduced, attempting

to mimic elements from the NAP.

5.6.1 Mapping between PM-Grid and Honeybee Elements

As indicated in Chapter 3, a PM-Grid includes three groups of architectural

elements: clients, workers (decomposers, executers and composers) and spaces

(work-spaces and a result-space). A honeybee colony, as explained in section

5.5.5.1, includes two main groups of elements: agents (forager and receiver bees)

and places (food sources and a hive). The direct correspondence between elements

of the two systems is summarised in Table 5.1 and can be explained as follows:

• Spaces: Work-spaces and the result-space are analogues of important places

to a honeybee colony, namely, food sources and the hive respectively.

• Workers: Executers and composers correspond to the two labour groups:

forager and receiver bees respectively. Decomposers are needed to partition

jobs into smaller tasks to fit executer capacities. In a honeybee colony, each

forager sucks up a suitable amount of nectar based on her stomach size.

Therefore, in the PM-Grid modelling, the decomposition functionality is

integrated within the executers.

• Clients: Clients are basically the sources of jobs available in work-spaces;

they are essential for PM-Grids to populate work-spaces with jobs.

However, nectar is available in food sources naturally.

Table 5.1: Mapping between PM-Grid and Honeybee Colony Elements

Honeybee colony PM-Grid

Food sources Work-spaces

Hive Result-space

Forager bees Executers

Receiver bees Composers

HoPe: A Honeybee Inspired Scheduler

144

The design of a PM-Grid depicted in Figure 3.10 can be abstracted as a set of

queues and servers as shown in Figure 5.13 which shows elements of PM-Grids

corresponding to each queuing element at the top of it.

Figure 5.13: Queuing Model of a PM-Grid

5.6.2 HoPe Elements

HoPe design includes the following groups of elements:

Communication elements:

• Job: a large computational program that can be divided into an arbitrary

number of smaller tasks.

• Task results: generated output after executing a task.

• Job results: generated output after composing task results from all tasks that

belong to the same job.

Communication media:

• Executer help list (EHL): is a public dynamic list, residing in the result-

space. It keeps track of the (Executer Help Message) EHM sent from

executers to the result-space. It has entries for all active EHMs, which have

not yet expired. For heavy loaded work-spaces, more EHMs will be

received. As a result, they will have more entries in the EHL raising the

Servers Queue

Servers Queues

Job collection course Result generation course

1…N1

1…N2

1…Ns

. . .

1… Np

λ1

λ2

λs

μ1

μ2

μs

λp μp

Work-space Result-space Executer Composer

HoPe: A Honeybee Inspired Scheduler

145

probability of picking one of them randomly. Hence more executers will be

attracted to heavy loaded work-spaces.

• Composer help flag (CHF): is a public structure, also residing in the result-

space. It has two fields: the first field is a one bit flag which is set to one on

receiving a CHM and unset to zero when the message duration is reached.

The second field indicates the duration after which the flag should be unset.

If a new CHM is received while the flag field has already been set to one,

the duration field is updated with the duration value of the more

recent CHM.

• Task results list: is a public structure, also residing in the result-space. Each

entry to this list consists of two fields. The first contains the name of the file

where received task results of a job are accumulated. The second field

represents the status of this file. Complete status means that all task-results

of this job are available and the file is ready for a composer. Pending status

means the task-results have not been completed yet.

Communication techniques:

• Executer help message (EHM): a message sent by an executer to the result-

space which includes the ID of a heavily loaded work-space and its

profitability. It is used to attract more executers to this specific work-space,

as well as to recruit idle composers to work as executers. Each message has

two main fields: one indicating the duration after which the message expires

and the other for the ID of the advertised work-space. The duration field is

calculated as a function of the RW in the advertised work-space.

• Composer help message (CHM): a message sent by an executer to the result-

space when it experiences a long time waiting for a RM from the result-

space to indicate that the result-space can accept incoming task-results. The

CHM has a main field for the duration after which the message expires. The

message duration is calculated as a function of the WT experienced by the

executer.

• Unload request message (URM): a message sent by an executer to the result-

space after generating task results checking if the result-space is ready to

accept incoming results.

HoPe: A Honeybee Inspired Scheduler

146

• Ready message (RM): a message sent by the result-space to an executer in

response to an URM to indicate that the result-space is ready to accept task-

results. For each task result picked by a composer, a RM is sent (or is ready

to be sent) to respond to an URM.

Parameters:

• Remaining workload (RW): the volume of work, remaining in the last

visited work-space.

• Waiting time (WT): the time from when an executer sent an URM to the

result-space until it receives a RM from the result-space indicating that it can

accept incoming task results.

• Job collection rate (JCR): is the number of jobs entering the result-space per

time unit. It is calculated as:

 JCR = TCR/ k (5.10)

 k > 0

where:

TCR is the task processing rate, the number of tasks entering the result-

space per time unit.

k is the average number of tasks per job.

• Result generating rate (RGR): is the number of jobs leaving the result-space,

after having their job-results composed successfully, per time unit.

• Executer help threshold (EHT): is an internal variable to each executer that

is related to how the executer assesses the RW in relation to its current

workload (CW). When EHT exceeds a certain limit, the executer sends an

EHM to the result-space. It does not have a fixed value; instead it varies

from executer to executer and from time to time under different conditions.

In HoPe implementation, an EHM is sent when the following condition

is true:

 RW > c ×CW (5.11)

 c ≥ 1, CW > 0

where:

c is an experimentation parameter.

HoPe: A Honeybee Inspired Scheduler

147

CW is the current workload by the executer.

• Advertised work-space: The ID of a work-space of which the EHT is

exceeded.

• Executer help message duration (EHMD): the elapsed time during which an

EHM will be displayed in the EHL. In HoPe implementation the EHMD is

calculated as a function of RW and CW:

 EHMD = RW/ CW (5.12)

 CW > 0

• Composer help threshold (CHT): is an internal variable to each executer. It

is a criterion related to the WT experienced by an executer waiting for a RM

from the result-space. When CHT exceeds a certain limit, the executer sends

a CHM to the result-space It does not have a fixed value; instead it varies

from executer to executer and from time to time under different conditions.

In HoPe implementation, a CHM is sent when the following condition

becomes true:

 WT > d × ECD (5.13)

 d ≥ 1

 ECD = Time URM sent - time job received (5.14)

where:

ECD is the execution cycle duration.

d is an experimentation parameter.

• Composer help message duration (CHMD): the elapsed time during which

the CHF remains at one after being set by a CHM. It is calculated as a

function of the WT experienced by the executer sending the CHM:

 CHMD = e× WT (5.15)

 e ≥ 1

where:

e is an experimentation parameter.

5.6.3 Mapping between NAP and HoPe Elements

There is a clear correspondence between the allocation problems of workers and

HoPe: A Honeybee Inspired Scheduler

148

machines. The aim is to increase the similarity at a finer level of detail through

extensively borrowing the principles behind the NAP in the HoPe heuristic to tackle

the resource scheduling problem in PM-Grids. The detailed mapping between NAP

elements and HoPe elements is presented in Table 5.2.

Table 5.2: Mapping between NAP and HoPe Elements

NAP HoPe

Nectar Tasks

Raw honey Task results

Comb honey Job results

Dancing floor Executer Help List

Unloading area Composer Help Flag

Combs Task results list

Waggle dance Executer Help Message

Tremble dance Composer Help Message

Forager waiting in the unloading area Unload request message

Receiver waiting in the unloading area Ready message

Profitability Remaining workload

Waiting Time Waiting Time

Nectar collecting rate Job collecting rate

Honey processing rate Result generating rate

Waggle dance threshold Executer help threshold

Tremble dance threshold Composer help threshold

Advertised nectar source Advertised work-space

Waggle dance duration Executer help message duration

Tremble dance duration Composer help message duration

5.6.4 HoPe Algorithms

HoPe operates in two stages: an initialisation stage and a dynamic scheduling stage.

In the initialisation stage, initial device roles are assigned. As indicated in Chapter

4, the result-space is co-located with the PN agent and is advertised by it at the PN

formation stage which is described in details in the Technical Annex [27] and the

conceptual PN architecture [28].

Work-spaces are identified and registered with the result-space in the current-work-

spaces-list. Worker devices are also identified and registered with the result-space

HoPe: A Honeybee Inspired Scheduler

149

in the active-workers-list. The result-space updates both lists frequently through

periodic Hello messages. Worker devices access the result-space when they need to

update their copies of the current-work-spaces-list.

The dynamic scheduling stage of HoPe is presented as abstract algorithms for

executers, as illustrated in Figure 5.14 and Figure 5.15, as well as composers as

illustrated in Figure 5.16 and Figure 5.17. It is important to note that these

algorithms are meant to serve as skeletons; implementation details such as data

preparation, parameter passing, data structure, differ according to the requirements

of various applications and running environments.

Figure 5.14: Executer High Level Flowchart

Start

Pick a task and assess
quantity of remaining tasks

Execute the task, send URM
and assess WT

WT high?

no

yes

yes

no

yes

yes

Finish

Tasks
available?

no

CHF?

Change role

yes

no

no

Send task
results

Search for a
work-space

Contact the work-space

Know non-empty
work-space?

yes

no

yesno
RW = 0?

Send EHM
RW ≥ EHT?

EHL not
Empty?

RM received?

no

yes

Send CHM

HoPe: A Honeybee Inspired Scheduler

150

Figure 5.15: Executer High Level Pseudo Code

Figure 5.16: Composer High Level Flowchart

Start

yes

Finish

Change role

no

yes

no

 Any complete
task results?

Any CHM?

Get one randomly,
compose it and

send job results to client

HoPe: A Honeybee Inspired Scheduler

151

Figure 5.17: Composer High Level Pseudo Code

A simple sequence diagram that shows the interactions between the main

participants in HoPe during a job life cycle is illustrated in Figure 5.18. It is

important to note that the aim of the sequence diagram is to show the main

messages that are related to a single job life cycle, hence frequent messages and

messages that are related to previous or incoming jobs are not shown in

the diagram.

Figure 5.18: HoPe Sequence Diagram during a Job Life Cycle

Each composer
Loop for ever
 If there is any complete task results in the task results list
 Pick one randomly
 Compose it generating job results
 Send job results where client requested
 End if
 Else if EHL is not empty
 Change your role to executer
 Exit
 End else if
End Loop

CHM

client work-space executer result-space composer

task

URM

job- results

(WT<CHT)&&
(RW≥EHT)

EHM

WT>CHT

loop

alt.

until RM received

RM

task-results

alt.

job

HoPe: A Honeybee Inspired Scheduler

152

5.7 Related Work

Resource scheduling is a very active area of research in general and in grid

computing in particular. Chapter 4 extensively reviewed the area and pointed to

some well-established grid schedulers such as Condor [29], Legion [30] and

Nimrod-G [31]. This section focuses on insect inspired scheduling algorithms

highlighting how they differ from HoPe.

Social insects are increasingly attracting attention in solving optimisation problems

resulting in many successful new computing paradigms [32]. In [10] an overview of

biological facts about social insects, their inspired algorithms and application areas

in computer engineering and science, are presented.

Ant Colony Optimisation (ACO) [33], Particle Swarm Optimisation (PSO) [34] and

more recently Artificial Bee Colony (ABC) [35] among others are well established

meta-heuristics aiming to solve general optimisation problems. However, in many

cases, it is difficult, or more efficient, to adapt the solution to a specific end

problem. Indeed, there is a need for tailored algorithms to model certain problems

as close to reality as possible. Hence, some work has already emerged to address

this problem in resource scheduling.

Among all social insects, ant and bee colonies in particular have inspired

researchers in resource scheduling. Consequently, it is timely to compare the basic

ideas behind each algorithm. In section 5.5, the abstract algorithms for food (nectar)

acquisition process in honeybees were presented. Here, the same process (food

collection) is briefly described when performed by an ant colony.

For food collection, a group of worker ants start searching randomly for food

sources. They leave a pheromone trial on the searching path while moving. When

an ant discovers a source, it evaluates its profitability. During the return trip, the

amount of pheromone an ant leaves on the path is proportional to the profitability of

the discovered source. Other ants follow the path with a higher pheromone

concentration [36].

There are already several publications that have proposed ant-inspired resource

scheduling heuristics for grid environments [37]. For instance, in [38] an ant-

HoPe: A Honeybee Inspired Scheduler

153

inspired scheduling heuristic has been proposed for computational grids with the

goal to minimise the execution time of computational jobs. Once a job is submitted

to the grid, a worker will try to schedule this job to the node with the highest

pheromone which is the node that gives the least job execution time for a test

program. Although this algorithm gives promising results when evaluated, it suffers

from some problems which are common to ant-inspired heuristics when compared

to bee-inspired heuristics. First, information about a good source for ants is not

directly advertised. It takes time until the pheromone reaches a certain

concentration, then when an ant passes nearby or is guided by another ant, it will

get to know about this source. On the other hand, in a bee colony a good food

source is immediately advertised to the entire colony. Second, to make a decision,

an ant needs to compare several alternatives which is time consuming and requires

information about other alternatives from outside. This is not the case in bees where

the decision is completely local to the bee itself requiring no outside information.

Third, worker ants do not exchange their roles resulting in a fixed number of servers

for each role, whereas worker bees are assigned their roles based on temporary

specialisation which results in a more flexible system with a virtual number

of servers.

In an investigation of whether pheromone-based algorithms (inspired by ants) are

outperformed by non-pheromone based algorithms (inspired by bees), experimental

results by [39] showed that non pheromone based algorithms are significantly faster

when finding and collecting food and use fewer time steps to complete a task.

It seems that honeybees in particular behave in a very interesting way in achieving

remarkable results, viewing them from the problem solving perspective. However,

considering bees in the resource scheduling context remains relatively unexplored.

A very detailed exhaustive literature review and classification of the emerging

studies in honeybee inspired algorithms and systems is presented in [35]. The

review concluded that most of the work in this area started in the very last few years

and the main researched areas are continuous optimisation and travelling

salesman problems.

HoPe: A Honeybee Inspired Scheduler

154

In [40] an evaluation of the robustness of bees’ foraging behaviour using a multi-

agent simulation platform is presented. The study showed that the foraging strategy

of a honeybee colony is robust and adaptive and that its emerging features allow the

colony to find optimal solutions.

In [41] a honey-inspired algorithm is proposed to dynamically allocate Internet

servers to client requests with the objective to maximise the revenue of an Internet

hosting centre. The performance of the algorithm was compared with three

algorithms: omniscient, greedy and static optimal. As expected, the omniscient

algorithm outperforms all three algorithms, but it is significantly time and space

intensive. The bee algorithm performs the best of the other two algorithms.

However, the main drawback of this algorithm is that assessing the profitability of a

server does not rely on local and easily calculated information in order to preserve

the simplicity and efficiency of bee algorithms. Instead, a server needs to compare

its total revenue rate with the overall revenue rate of the hosting centre before

making any scheduling decision which is computationally expensive and time

consuming.

In [42] a bee colony optimisation algorithm for a job shop scheduling problem is

proposed. As indicated in Chapter 4, job shop scheduling is concerned with certain

kinds of problems where each job needs to visit certain machines in a predefined

order. The objective was to minimise the makespan. The algorithm goes into

successive iterations to find the schedule with the highest profitability (the

minimum makespan). The algorithm was compared with an ant colony and Tabu

search algorithms. Results showed that Tabu search outperformed both, but the bee

algorithm performed better than the ant algorithm. However, this bee algorithm is

of a clairvoyant static policy, assuming that characteristics of computational jobs

and resources are known in advance, which usually cannot be assumed in practice.

Additionally, the algorithm is computationally expensive. In each iteration, the

profitability of a schedule is compared to the average profitability of all other

schedules. Neither this algorithm nor [41] have considered the tremble dance in

their implementations.

HoPe: A Honeybee Inspired Scheduler

155

5.8 Conclusion

In this chapter, a detailed analysis of the NAP is presented with algorithmic and

queuing models. These models are utilised as the basis for developing HoPe with a

direct correspondence at finer levels of detail to the NAP. HoPe is designed with a

self-scheduling policy to conceal the resource management complexity from the

personal user. It employs a decentralised cooperative and adaptive scheduling

policy to cope with highly dynamic environments. The non-clairvoyant scheduling

policy of HoPe aims to handle the unpredictability of incoming jobs and available

resources. The entire scheduling process in HoPe depends only on local and easily

calculated parameters making HoPe of high potential for mobile devices. The role

altering technique of HoPe has the potential to virtualise the actual number of

available resources and fluctuation in them.

Reviewing the area of insect-inspired heuristics revealed that only few work has

emerged in the bee-inspired resource scheduling in particular. However, it seems

that bee-inspired heuristics have not been introduced to grid computing before.

Therefore, HoPe has been proposed to explore the potential of bee-inspired

algorithms in mitigating the grid level resource management complexity.

HoPe: A Honeybee Inspired Scheduler

156

5.9 References

[1] T. L. Casavant, “A taxonomy of scheduling in general-purpose
distributed computing systems,” IEEE Trans. Softw. Eng., vol. 14, pp.
141, 1988.

[2] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “Self-organizing
scheduling on the organic grid,” Int. J. High Performance Comput.
Applicat., vol. 20, pp. 115–130, 2006.

[3] J. Leung, L. Kelly and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL: CRC
Press, 2004.

[4] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J.
Appl. Math., vol. 17, no. 2, pp. 416-429, 1969.

[5] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and R.L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM J. Comput., vol.3, pp. 299–325, 1974.

[6] K. Li, “An average-case analysis of online non-clairvoyant scheduling of
independent parallel tasks,” J. Parallel Distrib. Comput., vol. 66, no. 5,
pp. 617-625, May 2006.

[7] T.D. Braun and H. J. Siegel, “Heterogeneous Distributed Computing,” in
Encyclopaedia of Electrical and Electronics Engineering, J. G. Webste,
Ed. New York, NY: John Wiley & Sons, 1999.

[8] J. J. Bartholdi and P. K. Loren, “Heuristics based spacefilling curves for
combinatorial problems in euclidean space,” Manage. Science, vol. 34,
no. 3, pp. 291-305, 1988.

[9] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York, NY: Oxford University Press,
1999 [Online]. Available: http://portal.acm.org/citation.cfm?id=328320.

[10] A. Abraham, C. Grosan, V. Ramos, Eds. Stigmergic Optimization.
Springer, 2006.

[11] E. Bonabeau and C. Meyer, “Swarm intelligence: A whole new way to
think about business,” Harvard Bus. Rev., vol. 19 no.5, pp.107–114, May
2001.

[12] K. M. Passino, Biomimicry for Optimization, Control, and Automation.
Springer, 2004.

[13] T. D. Seeley, The Wisdom of the Hive: The Social Physiology of Honey
Bee Colonies. MA: Harvard University Press, 1995.

[14] A. Bader and E. Ekici, “Throughput and delay optimization in
interference-limited multihop networks,” in Proc. 7th ACM int. Symp.
MobiHoc, 2006, pp. 274-285.

[15] C. Miao, J. Weng, A. Goh, Z. Shen and B. An, “Fuzzy cognitive maps for
dynamic grid service negotiation,” Multiagent Grid Syst., vol. 2, pp. 101-
114, 2006.

http://www.amazon.ca/exec/obidos/search-handle-url/701-5957986-7716364?%5Fencoding=UTF8&search-type=ss&index=books-ca&field-author=Ajith%20Abraham�
http://www.amazon.ca/exec/obidos/search-handle-url/701-5957986-7716364?%5Fencoding=UTF8&search-type=ss&index=books-ca&field-author=Crina%20Grosan�

HoPe: A Honeybee Inspired Scheduler

157

[16] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for
fading wireless channels,” IEEE/ACM IEEE Trans. Autom. Control, vol.
13, no. 2, pp. 411–424, Apr. 2005.

[17] R. G. Askin and C. R. Standridge, Modeling and Analysis of
Manufacturing Systems. Wiley, 1993.

[18] V. Frisch, The Dance Language and Orientation of Bees, Cambridge
University Press, 1967.

[19] F. Ruttner, Biogeography and Taxonomy of Honeybees. Springer, 1987.

[20] R. F. A. Moritz and E. E. Southwick, Bees as Superorganisms: An
Evolutionary Reality. Springer, 1992.

[21] T. D. Seeley, S. Camazine and J. Sneyd, “Collective decision-making in
honey bees: How colonies choose among nectar sources,” Behavioral
Ecology Sociobiol., vol. 28, pp. 277-290, 1991.

[22] D. Sumpter and S. Pratt, “A modelling framework for understanding
social insect foraging,” Behavioral Ecology Sociobiol., vol. 53, pp. 131-
144, 2003.

[23] P. Navrat, “Bee hive metaphor for web search,” in Proc. CompSysTech,
Jun. 2006, Veliko Turnovo, Bulgaria.

[24] M. D. Cox and M. R. Myerscough, “A flexible model of foraging by a
honey bee colony: the effects of individual behaviour on foraging
success,” J. Theoretical Biol., vol. 223, no. 2, pp. 179-197, Jul. 2003.

[25] M. Campos, E. Bonabeau, G. Theraulaz, J. L. Deneubourg, “Dynamic
Scheduling and Division of Labour in Social Insects,” Adaptive
Behaviour, vol. 8, no. 2, pp. 83-92, 2001.

[26] G. F. Oster and E. O. Wilson, Caste and Ecology in the Social Insects.
Princeton: Princeton University Press, 1978.

[27] MAGNET Consortium, IST-MAGNET Project, Annex I, “Description of
work”, Nov. 2003.

[28] MAGNET Consortium, Deliverable 2.1.1, “Conceptual secure PN
architecture”, 2004.

[29] Condor Project [online]. Available: http://www.cs.wisc.edu/condor,
[accessed Feb. 2, 2010].

[30] Legion: A Worldwide Virtual Computer [online]. Available:
http://legion.virginia.edu/, [accessed Feb. 2, 2010].

[31] DSTC Nimrod/G [online]. Available:
http://www.csse.monash.edu/~sgaric/nimrod/, [accessed Feb. 2, 2010].

[32] Z. Ma (Sam) and A. W. Krings, “Insect sensory system inspired
computing and communications,” Ad Hoc Networks, vol. 7, no. 4, pp.
742-755, 2009.

[33] M. Dorigo, Ant Colony Optimization, Cambridge, UK: MIT Press, 2004.

[34] R. C. Eberhart and Y. Shi, “Particle swarm optimization :developments,
applications and resources,”. in Proc. IEEE Congr. Evol. Comput. 2001,

HoPe: A Honeybee Inspired Scheduler

158

pp.81-86.

[35] A. Baykasoglu, L. Özbakır, P. Tapkan, “Artificial Bee Colony Algorithm
and Its Application to Generalized Assignment Problem,” in Swarm
Intelligence, Focus on Ant and Particle Swarm Optimization. Chan, Felix
T.S. and Tiwari, Manoj Kumar, Eds. Vienna, Austria: I-Tech Education
and Publishing, Dec. 2007.

[36] A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian, “Ant system for
job-shop scheduling,” Belgian J. Operation Research, Stat. Comput.
Science, vol. 34, pp. 39-53, 1994,

[37] R.S. Chang, J.S. Chang and P. S. Lin, “An ant algorithm for balanced job
scheduling in grids,” Future Generation Comput. Syst., vol. 25, no.1, pp.
20-27, 2009.

[38] Y. Li, “A bio-inspired adaptive job scheduling mechanism on a
computational grid,” Int. J. Comput. Sci. Network Security, vol. 6, no. 3,
Mar. 2006.

[39] N.P. Lemmens, “To bee or not to bee: A comparative study in swarm
intelligence,” M.S. Thesis, Maastricht University, Maastricht ICT
Competence Centre, Institute for Knowledge and Agent Technology,
Maastricht, Netherlands, 2006.

[40] R. Thenius, T. Schmickl and K. Crailsheim, “The ‘dance or work’
problem: why do not all honeybees dance with maximum intensity”, in
Proc. 4th CEEMAS 2005, Budapest, Hungary, pp. 246-255.

[41] S. Nakrani and C. Tovey, “On honey bees and dynamic server allocation
in internet hosting centers,” Adaptive Behavior - Animals, Animats,
Softw. Agents, Robots, Adaptive Syst., vol. 12, no. 3-4, pp. 223-240, 2004.

[42] C. S. Chong, A. I. Sivakumar, Malcolm, and K. L. Gay, “A bee colony
optimization algorithm to job shop scheduling,” in Proc. 38th WSC, Dec.
2006, pp. 1954-1961.

Evaluation and Results

159

Chapter 6
Evaluation and Results

6.1 Introduction

The aim of PM-Grids is to support a personal user with a general purpose resource-

rich computing environment that is beneficial in different aspects of his/her every

day and working life. This support is via sharing the user’s own resources in a PAN

extended with clusters of remote devices which belong to his/her PN, as detailed in

Chapter 3.

Resource sharing is inevitably problematic. Therefore an efficient resource

scheduler is the core of a PM-Grid. In Chapter 5 the design of a resource scheduler

for PM-Grids (HoPe) is presented. In this chapter, an experimental evaluation study

of HoPe is presented in a simulated PM-Grid environment at different scales.

Among the main contributions to this chapter are PM-Grid simulated models of

different scales, a controlled experimental study to prove the concept of the

proposed paradigm (PM-Grid) and to evaluate the performance of the proposed

scheduling heuristic (HoPe), as well as performance models for the HoPe and

the OSH.

In section 6.2 evaluation objectives are indicated. The detailed experimental design

is described in section 6.3. In section 6.4 the resource scheduling framework

proposed in Chapter 4, is applied to describe the scheduling model of HoPe and

OSH. The PM-Grid simulator is presented in section 6.5. Section 6.6 explains how

performance models of both heuristics were predicted. Section 6.7 describes the

evaluation experiments in detail. In section 6.8 the results and performance models

are illustrated and discussed. Section 6.9 concludes the chapter.

6.2 Evaluation Objectives

The thesis is that a PM-Grid can allow personal users to seamlessly combine their

own personal devices, either mobile or stationary, to accomplish relatively large

Evaluation and Results

160

computational jobs. To test this thesis, an adaptive self-scheduling heuristic, HoPe,

has been proposed with a non-clairvoyant scheduling policy. Such a resource

scheduler is the core of PM-Grids.

HoPe, which is inspired by the nectar collection technique in honeybee colonies, is

based on the hypothesis that if a colony of honeybees is able to efficiently allocate

its members among nectar sources and dynamically adapt itself to environmental

changes through simple non-intelligent agents, then a technology system

constructed on similar principles should be able to efficiently allocate its members

to job sources and automatically adapt itself in a highly dynamic environment such

as PM Grids.

The end aim of the evaluation process was to evaluate the PM-Grid as a proof-of-

concept. Measuring the potential and usefulness of a grid system is nothing more

than evaluating its ability to efficiently schedule its underlying resources. Therefore

a well-controlled experiment has been conducted on a PM-Grid model employing

the purposely developed heuristic, HoPe, to schedule its resources. The aim has

been fulfilled through the following objectives:

• Test HoPe performance by exploring how it is affected by variations in PM-

Grid environment specifications, namely:

- The job interarrival time: The system should sustain various loads as

personal users’ requirements vary significantly.

- The number of nodes: the system should be sufficiently scalable to

accommodate different infrastructure scales, as PM-Grids can be utilised

by individuals as well as small size organisations, as described in

Chapter 3.

• Evaluate HoPe efficiency by comparing it to a well-established heuristic in

the same area, OSH, as well as an optimum value or worst bound, when

possible, for each performance metric.

• Build performance models for both heuristics to obtain a clearer insight into

HoPe behaviour.

Evaluation and Results

161

6.3 Experimental Design

There are two main limitations in the simulation methodology of current scheduling

research. First, there are no simulation standards and, second, traditional computing

platform standards are no longer valid for modern platforms [1]. To overcome this

problem, strictly controlled experiments in a logical network model of PM-Grids

have been designed which involved the following steps:

1. Identifying the critical elements inherent in the design of grid scheduling

systems and deciding on the set to be considered in this experiment: job

interarrival time, number of nodes, job size and processor capacity.

2. Varying the experimental variables, job interarrival time and number of

nodes, to simulate a representative sample of grid environments.

3. Controlling extraneous variables, job size and processor computational

capacity, by randomisation to ensure a representative sample in all

experiments.

4. Identifying a benchmark algorithm. The opportunistic scheduling heuristic

(OSH) has been selected for this purpose.

5. Identifying suitable performance measures, stability, net throughput, mean

TT and speedup, to compare HoPe and OSH.

6. Building a flexible PM-Grid simulator that offers an easily controlled

environment and robust experimental design.

7. Comparing the performance of both HoPe and OSH to optimum values or

worst bounds, then reporting and analysing the main findings.

8. Improving the accuracy of the simulation-base study through:

• Running 10 simulations and accepting the mean outcome.

• Ignoring simulation results generated in the first 60 seconds.

• Measuring the uncertainty in data using the measure of standard

deviation (SD) and displaying the values as error bars in all charts.

• Calculating the absolute error and relative error to examine the quality of

obtained results.

Evaluation and Results

162

As addressed in [2], an approximation or heuristic algorithm A is probabilistically

evaluated by comparing its solution values A (In) with the optimum value OPT (In)

based on one of the two evaluation criteria:

• Absolute error: The absolute error is defined as the difference between the

approximate and optimal solution values:

 an = A (In) - OPT (In) (6.1)

• Relative error: the relative error is defined as the ratio of the absolute error

and the optimal solution value:

 rn = (A (In) - OPT (In))/ OPT (In) (6.2)

6.4 Resource Scheduling Framework in PM-Grids

This section describes the resource scheduling framework in PM-Grids, based on

the framework proposed in Chapter 4, which is summarised in Table 6.1.

6.4.1 Resource model

In resource scheduling frameworks, the resource model is used to describe the

nature of individual resources that can be assigned jobs. In PM-Grids this applies to

executer and composer devices. As described in Chapter 3, both groups of devices

belong to the same category, worker devices. Hence, they have quite similar basic

capabilities such as processor capacity. However, PM-Grid devices are not

dedicated grid resources; only idle cycles can be utilised in PM-Grids. This results

in dynamic processor capacities over time. Therefore, the resource of PM-Grids can

be viewed as parallel unrelated processors.

Heterogeneity in processor capacity is modelled assuming three types of processors

(Pa, Pb, Pc) which differ only in capacities, as shown in Table 6.2. During running

time, a uniform random number Rproc from 1 to 3 is generated to indicate the

processor capacity which conforms with similar lines of research conducted by [3].

A simulation model of the PM-Grid platform is developed using OpnetTM 12.0 [4]

modeller. Three representative infrastructure scales of PM-Grids in potential

application areas were considered:

Evaluation and Results

163

• Small (4 workers/cluster).

• Medium (8 workers/cluster).

• Large (16 workers/cluster).

Table 6.1: Resource Scheduling Framework in PM-Grids
 Scheduler

Features

H
oP

e

O
SH

Identical
Uniform

Parallel

Unrelated
Flow shop
Open shop R

es
ou

rc
e

m
od

el

Dedicated

Job shop
BoT Independent
DL
DAG Jo

b
m

od
el

Dependent
Non-DAG

Job centric
Resource-centric Pe

r.
m

et
.

Economy-based
Centralised
Decentralised

Cooperative Distributed
Non-cooperative

O
rg

an
is

.

Non-distributed
Optimum

Approximation

P
ro

.

Sub-optimum
Heuristic

Stochastic
Non-clairvoyant

Static
Batch

Sc
he

du
le

r m
od

el

Po
lic

y

Deterministic
Clairvoyant

Dynamic
Immediate

The model is simulated as a logical network, that consists of N=5 clusters, as shown

in Figure 6.1. All clients were placed in one cluster (cluster 0) which represents the

PAN with the user at its inner core submitting jobs to his/her PM-Grid via devices

in this cluster. For simplicity, the result-space is placed alone in a separate cluster

(cluster 4). All other clusters consist of one work-space and w workers. However, as

this is a logical network, device placement has no impact on the system

performance.

Evaluation and Results

164

Table 6.2: Experimental Processor Capacity

Processor Processor capacity (Mflop/sec.)

Pa 100

Pb 50

Pc 10

Table 6.3 and Table 6.4 present the number of devices in each role as well as the

number of workers in the three PM-Grid scales respectively. From the total number

of workers, 75% are initially assigned an executer role, and the remaining 25% are

assigned a composer role. This selection is aimed to conform with the natural

distribution of roles in a honeybee colony where [5] stated that nearly 75% of

honeybees are food foragers.

Figure 6.1: PM-Grid Model (4 workers/cluster)

This model can scale easily and allows the testing of HoPe performance in isolation

of possible effects caused by physical hardware, network topology and

implementation technologies. This isolation is important to gain a clear insight into

HoPe performance. Experimenting with realistic networks is left for future work to

see how physical hardware and network parameters of a PM-Grid may affect HoPe

performance.

cluster 0 cluster 1

cluster 2 cluster 4

cluster 3

client worker space

Evaluation and Results

165

Table 6.3: Number of Devices in each PM-Grid Device Role

Role No. of machines

Client 4

Work-space 3

Result-space 1

Worker 12, 24, 48

Table 6.4: Number of Workers in each PM-Grid Scale

Workers/cluster Total no. of
workers

Initial no. of
executers

Initial no. of
composers

4 4 × 3 = 12 8 4

8 8 × 3 = 24 18 6

16 16 × 3 = 48 36 12

6.4.2 Job model

The job model assumed by HoPe is DL applications where each job can be divided

into an arbitrary number of independent tasks of low granularity, as described in

Chapter 3. It is assumed that the input to each task is a single file which is sent with

the task. Each task produces exactly one output file, as shown in Figure 6.2. This

model can be found in many everyday application areas related to personal users

such as image processing, database searching and cryptography.

Figure 6.2: PM-Grid Job Model

J

T1 T2 Tk…

Job

Tasks

 Sub-results

Result R

RkR2R1 …

http://en.wikipedia.org/wiki/Public_key_cryptography�

Evaluation and Results

166

Without loss of generality, this thesis has considered a cryptography application in

particular as it has potential applications in personal environments where security

and privacy are critical issues. The basic idea behind cryptosystems stems from the

presumed difficulty of factoring large integers. The problem of factoring large

integers has attracted considerable research interest. The Fundamental Theorem of

Arithmetic (the Unique Prime Factorisation Theorem) stated that: every positive

integer greater than one has a unique prime factorisation [6], for instance

1674=31×3×3×3×2. However, the theorem provides no insight into the factoring

process itself.

During the past two decades several general purpose algorithms have been proposed

to tackle this problem such as Pollard Rho Algorithm, Lenstra_s Elliptic Curve

Algorithm and Trial Division Algorithm [7]. The Trial Division Algorithm is the

least complex to understand and to implement [8] making it a viable integer

factorisation option for devices with limited resources. Additionally, this algorithm

is extremely amendable for parallelisation where each parallel processor can be

assigned a number of iterations [6], making it appropriate for distributed

environments. Therefore, it has been selected for experimenting with HoPe. The

main steps in the simplest form of a trial division algorithm implemented in C++, is

shown in Figure 6.3.

Figure 6.3: Simple Trial Division Algorithm (C++)

The Trial Division Algorithm tries to find all positive integer divisors less than or

equal to n (number to be factored). Clearly, it is only worthwhile to test candidate

factors less than n. Specifically, the trial factors need go no further than n . The

algorithm execution time is a function of n. In the worst case, the algorithm can take

 int n;
 double temp,
 cin>> n; // number to be factored
 for (int i=2; i <= sqrt((double)(n)); i++)
 {
 temp=(double)n/(double)i;
 if (temp == (int)temp)
 cout<< i << “, “ ;
 }

http://en.wikipedia.org/wiki/Integer_factorization�
http://en.wikipedia.org/wiki/Integer_factorization�

Evaluation and Results

167

up to n /2 which gets even worse for large n. Therefore several other refinements

have been suggested to enhance the algorithm. For instance, if n is odd, then only

odd divisors are considered. Actually, only prime numbers need to be considered.

Hence, the algorithm can be provided with a list of primes to check against it.

However, all these refinements complicate the algorithm and lengthen its logic.

Therefore, for most significant factoring concerns, such as public key cryptography,

other factoring algorithms are more efficient.

The Trial Division Algorithm is considered as a kind of DL job model with a single

iteration of the “for loop” as the smallest atomic operation. As indicated in

Chapter 4, the selection of chunk size, i.e. the number of iterations constituting a

task is an important issue to consider when dealing with DL models. While a small

chunk size magnifies the scheduling overhead, a large chunk size imbalances the

load [9]. In HoPe, the chunk size is considered as a local decision made

dynamically by each worker device based on its current state.

In HoPe implementation all worker devices are assumed to have a word-size of, at

least, sixteen-bits. The last prime that fits into a sixteen-bit unsigned integer should

be less than 216-1=65,535 which is 65,521. That suffices to factorise numbers up to

65,5212 = 4,293,001,441.

Workload selection is notably arduous [10]. While real workloads and logs from

real grid systems are realistic, they are designed for very specific systems and user

communities, dramatically limiting their applications. On the other hand, simulated

workloads, although non-realistic, are more flexible and efficient at early stages of

development, and they provide the basis for cost and time wise evaluation.

Therefore, in PM-Grid evaluation, the workload model of the entire system is

simulated as streams of jobs arriving at each work-space according to a Poisson

process. Multiple values for both job size and interarrival time are considered to

ensure a representative sample in all experiments, as necessitated by [11]. The job

size is considered as an intrinsic variable and controlled by randomisation.

Heterogeneity in job size is modelled assuming three sizes of jobs (Ja, Jb, Jc).

During running time, a uniform random number Rjob from 1 to 3 is generated

indicating the job size, as shown in Table 6.5.

Evaluation and Results

168

Job interarrival time is considered as an experimental variable; nine different values

for interarrival time were selected in the range between two extreme cases of the

expected usage of PM-Grids: (4, 8, 12, 16, 20, 32, 40, 80, 120 and 180) seconds.

Table 6.5: Experimental Job Sizes

Job Job size (j) in Mflop

Ja 2×102 < j ≤ 3×102

Jb 1×102 < j ≤ 2×102

Jc j ≤ 1×102

6.4.3 Performance Metrics

As detailed in section 5.4.3, it is invariably difficult to achieve a compromise

between scheduling performance measures. Therefore, new performance measures,

that help to optimise other performance measures, are required for capturing the

tradeoffs and a methodology is needed where these measures are separately

observable. Hence, in this thesis the following performance measures are observed

separately and their results are reported and analysed:

• Stability: where the system strives to maximise the job collection rate

subject to minimising the difference between job collection and result

generation rates. In this thesis stability is calculated as the absolute value of

the difference between the job collection rate F(Nc) and the result generation

rate F(Np) as follows:

 Stability = (1-| F(Np) - F(Nc) |)×100 (6.3)

• Mean turnaround time (TT): which represents the elapsed time from when a

client submits a job until the client receives the corresponding results, and is

calculated as:

 TT = result received time – job submission time (6.4)

• Net throughput: Net throughput represents the amount of work completed

by the system over a period of time. It is measured as the number of jobs

completed from time zero to time t.

• Speedup: The speedup refers to how much a parallel system is faster than a

corresponding sequential system, and is calculated as:

Evaluation and Results

169

 Sp =T1 /Tp (6.5)

 Tp > 0

where:

p is the number of processors

T1 is the execution time of the sequential algorithm

Tp is the execution time of the parallel algorithm with p processors.

Although speedup is usually calculated based on one job, in the case of

HoPe and OSH, calculating the speedup in this way would be out of context,

as these heuristics operate in a steam of jobs. Therefore, the mean time of

speedup is considered.

6.4.4 Scheduler Model

Two scheduling heuristics have been implemented to experiment with the PM-Grid

model: HoPe and the OSH. Both are implemented using C++ to be compatible with

the simulator platform.

Both scheduling heuristics were implanted with best effort policy, that is, no

guarantee of quality of service (QoS). Therefore, once assigned, tasks do not

migrate between resources and no attempts are made for rescheduling, co-

scheduling, resource reservation etc. However, this issue of enhancing HoPe with

some QoS strategies is left for future research. This section investigates the design

features of both heuristics, HoPe and OSH, based on the framework proposed in

Chapter 4.

6.4.4.1 HoPe

As detailed in Chapter 5, Hope is a specifically tailored heuristic to meet the

scheduling requirements of PM-Grids and identical environments where resources

are dynamic and heterogeneous. HoPe has a decentralised cooperative organisation

and a local, non-clairvoyant, self-management, best effort and adaptive scheduling

policy.

Basically, HoPe can be considered as a kind of guided search heuristic, hence we

expect it to have a performance level in between a random algorithm and an

Evaluation and Results

170

omniscient algorithm that guarantees an optimal solution if it does exist. In other

words, while HoPe performance is expected to be better than a randomisation

algorithm, its performance is not expected to compete with an omniscient

algorithm. However, implementing an omniscient algorithm is radically time and

space intensive [12]. Therefore, this thesis limits itself to contrasting HoPe with a

randomisation algorithm, OSH, then it examines how far results of both algorithms

vary from an optimal theoretical value or a worst bound.

6.4.4.2 Opportunistic Scheduling Heuristic (OSH)

The OSH is a general purpose resource scheduling heuristic that assigns each job in

an arbitrary order to the next available machine without considering the execution

time of the task on the machine. OSH takes a greedy assignment strategy in which

no processor is idle if there are more jobs to run. The main reason for selecting

OSH is the negligible amount of knowledge about the running environment and

jobs which makes it suitable to the PM-Grid environments and therefore

comparable with HoPe. Additionally, the OSH is the most used heuristic in high

throughput computing resource management systems such as Condor [13]. It is

argued that in many cases, simple scheduling approaches such as greedy algorithms

are viable alternatives and are preferable in practice to more sophisticated

algorithms as they are as effective, more robust, more scalable and simpler to

implement [14].

There are as many implementations of OSH as there are numbers of systems using

it. While all have the basic idea explained above, they vary in implementation

details. For instance, in [15] a centralised scheduler examines all machines to find

the machine that becomes ready next. In [16] idle machines assign jobs to

themselves by accessing a shared queue of jobs. In [14] a DAG-based

implementation for the OSH is presented.

The main drawback of the OSH is its poor load balancing performance. However,

since, the considered job model is the DL, any OSH implementation for such a job

model should consider the chunk size selection problem. Hence, in this thesis the

OSH has been implemented with a variable chunk size self-scheduling scheme,

where the chunk size each processor assigns to itself dynamically changes based on

Evaluation and Results

171

the processor capacity. The adjustment of chunk size implies better load balancing

performance [9].

6.5 PM-Grid Simulator

Initially, a real test-bed was constructed to evaluate PM-Grid design as detailed in

[17]. However, it was found that experimenting with such a real test-bed in early

evaluation stages is extremely difficult due to the need to test the proposed design

in isolation from implementation technologies as well as the need to continuously

alter and tune hardware and software parameters. Therefore, a simulation based

approach has been followed which is widely used for evaluating and studying grid

scheduling systems due to its configurability and repeatability [18].

There are some simulation packages that have recently emerged to simulate grid

environments, such as GridSim [19] and Simgrid [20]. However, these simulation

packages are designed for traditional grid environments. PM-Grid platform has

special characteristics and requirements that are totally different from traditional

grids. Furthermore, deploying HoPe instead of the default resource management

systems of these simulation packages requires altering their core modules which is

extremely difficult and time consuming. Therefore, all experiments in this thesis are

carried out on a purposely developed PM-Grid simulator. This approach of utilising

a purposely built grid simulator to meet specific research goals comes in line

with [21, 22].

PM-Grid models were built using the network simulator OpnetTM 12.0 [4]. Opnet is

a commercially available modelling and simulation tool to simulate computer

networks using the finite-state modelling concept, as shown in Figure 6.4 . It comes

with a number of built-in models for nodes, routers, servers among others. Using

these models, one can easily simulate many kinds of networks and analyze their

performance. However, using Opnet to simulate grid systems is not straight

forward. All functions related to having the networked nodes functioning as a grid

system and cooperate together in solving computational problems needed to be

coded manually in C and C++ and incorporated with Opnet network models.

Evaluation and Results

172

Figure 6.4: Finite-State Modelling Concept - Opnet

The PM-Grid simulator is built out of four main modules that run on a logical PM-

Grid model, as illustrated in Figure 6.5. Each module can be easily altered to

maximise the simulator flexibility and alleviates future research with it. The four

modules are:

1. Job generator module: This module randomly generates jobs based on the

job model detailed in section 6.4.2. The output of this module is fed to the

workload generator module.

2. Workload generator module: This module generates the entire workload to

be processed by the PM-Grid simulator. The workload is modelled as

dynamic continuous streams of jobs submitted from client devices to work-

spaces based on the workload model described in section 6.4.2.

3. Processor capacity modeller module: This is a simple module that randomly

generates an integer number to indicate the processor capacity of a worker

device based on the processor capacity model described in section 6.4.1.

4. Resource scheduler module: This module contains the logic of the two

heuristics, HoPe and OSH. Based on the running experiment, one of the two

heuristics is selected to allocate jobs to workers.

Evaluation and Results

173

The PM-Grid model is simulated at three different scales, as described in section

6.4.1. Selected performance metrics are fed to the PM-Grid model to generate

performance data that is used to evaluate the efficiency of both heuristics.

Figure 6.5: PM-Grid Simulator

6.6 Performance Models

Mathematical and graphical performance models that predict HoPe and OSH

behaviours, under different running conditions, are generated using multiple

regressions. EREGRESS [23, 24], Microsoft Excel Add-In software was used to:

• Predict mathematical performance models using multiple regressions and

full quadric equations. The models which include linear, quadratic, and

cross terms have the following general form:

Performance-measure = b0 + b1× interarrival_time+ b2 × grid_scale

 + b3 × interarrival_time × interarrival_time

 + b4× interarrival_time × grid_scale

 + b5× grid_scale × grid_scale (6.6)

• Generate a 3D graphical model for each predicted mathematical

performance measure model.

• Analyse the results using the ANOVA test.

Performance
metrics

Performance
data

PM-Grid
model

Workload generator

Job generator

Processor capacity
modeller

Resource scheduler
(HoPe/OSH)

Evaluation and Results

174

The statistical significance of the full quadratic models predicted was evaluated

using Fisher’s statistical test (F) and F-significant (F-signif.). Large F values and

low values of F-signif indicate a high model significance. An F-signif value of 0.05

indicates a significant model at the 95% significance level. The significance and the

magnitude of the estimated coefficients of each variable and all their possible linear

and quadratic interactions on the performance of both HoPe and OSH were

determined. Coefficients with effects less than 95% of significance (P-value less

than 0.05) play a critical role in the performance measure model equation.

The results of the significance tests on the model and its coefficients are listed in

tables, such as Table 6.9. The first row shows the predicted mathematical model.

The second raw presents the values of F and F-signif. The first column indicates the

coefficient that is computed and the second column shows its value. The third

column is the P-value. The fourth and fifth columns show the –95% and +95%

confidence values respectively for a particular response coefficient.

6.7 Experiments

To evaluate HoPe, two main issues were considered:

• Scalability to a larger number of nodes.

• Sustainability under different loads.

Two context parameters were controlled to simulate representative samples of the

PM-Grid environment:

• Number of workers per cluster (grid scale): Three PM-Grid infrastructure

scales were considered: small (4 workers/cluster), medium (8

workers/cluster) and large (16 workers/cluster).

• Job interarrival time: The interarrival time represents the time difference

between successive arrivals of jobs. Values of interarrival time were

selected in the range of two extreme cases of the expected usage of PM-

Grids: (4, 8, 12, 20, 32, 40, 80, 120 and 180) sec.

Hence the total number of created scenarios is 2 × 9 × 3 = 54 scenarios (number of

heuristics × number of values for interarrival times × number of values for workers

Evaluation and Results

175

per cluster). Data related to four performance metrics, stability, mean TT net

throughput and speedup, were measured for each scenario.

Extraneous variables, job size and processor computational capacity, were

randomised to ensure representative samples in all experiments. Heterogeneity in

processor capacity was modelled assuming three types of machines (Pa, Pb, Pc) with

different capacities. Heterogeneity in job size was modelled assuming three types of

jobs (Ja, Jb, Jc) with different sizes. During running time, a uniform random number

Rproc from one to three is generated describing the processor capacity and another

random number Rjob following the same distribution is generated to describe job

size heterogeneity. The processor capacity and job size were generated based on

similar lines of research conducted by [23]

Jobs were generated by four clients with a Poisson process and exponential

interarrival times with means (4, 8, 12, 20, 32, 40, 80, 120 and 180) sec.

Computational jobs were implemented as DL applications to factor large integers

(up to 4,293,001,441). Each job is contained in one packet and produces one output

file. For simplicity, the communication cost to send a packet from one machine to

another is not considered at this stage. It is assumed that one machine can process

only one operation at a given moment (resource constraints) and once task started,

operation runs to completion (no pre-emption condition).

The selection of values for empirical parameters of HoPe presented in section 5.6.2

are presented in Table 6.6.

Table 6.6: Values of HoPe Empirical Parameters

Parameter Usage Value

C Executer help threshold (EHT) 4

D Composer help threshold (CHT) 1

E Compose help message duration(CHMD) 1

6.8 Results, Performance Models and Discussion

Each scenario, simulating five hours (18000 sec.) of real time, ran ten times and

means were calculated after discarding data from the initial 60 sec. Results are

Evaluation and Results

176

displayed as bar charts for ease the comparison. The uncertainty in values using the

standard deviations, are displayed as a vertical line superimposed on each bar.

6.8.1 Stability

Stability results, and discussion of these results as well as performance models, are

presented in the following sections.

Table 6.7: Total Arrival Rates
Mean interarrival time (sec.)

1 source
Total arrival rate (job/sec.)

4 sources (λ`)
4 1.000

8 0.500

12 0.333

20 0.200

32 0.125

40 0.100

80 0.050

120 0.033

180 0.022

6.8.1.1 Results

Figures 6.6 and Figures 6.7 illustrate HoPe and OSH stability respectively, in terms

of the difference in rate between job collection and result generation cycles

calculated using the mean time. Each figure consists of three sub-figures which

demonstrate the behaviour of the corresponding heuristic, at the three grid scales,

4, 8 and 16 workers /cluster, when compared to an optimal value. This value is

calculated as:

 λ` = ∑i=1
4
 λ I (6.7)

where:

λ` is the total job arrival rate at the four sources that corresponds to each

interarrival time, as illustrated in Table 6.7.

Table 6.8 illustrates the absolute and relative errors in stability measure under HoPe

and OSH.

Evaluation and Results

177

6.8.1.2 Discussion

Figure 6.6 shows that in general, HoPe is able to maintain both job collection and

result generation cycles in balance at optimal rates, indicating a stable system in

more than 95% of the experimental scenarios. However, under extremely heavy

loads (interarrival time = 4 sec. and a grid scale = 4 workers/cluster) the system is

less stable. This phenomenon relates to the impact of extremely heavy loads in

increasing both the volume of remaining work in work-spaces and the waiting time

experienced by each executer. Large values of remaining work and waiting time

stimulate devices to repeatedly altering their roles which negatively reflects on

stability. However, even in this situation, HoPe shows better stability performance

than the OSH as illustrated in Figure 6.7.

An important observation is that increasing the number of workers per cluster from

4 to 8 tends to enhance the stability and also increases the rates of both job

collection and result generation cycles. However, this improvement discontinues

when the number of workers per cluster is increased from 8 to 16. In this situation,

additional workers have no visible effect in enhancing HoPe stability performance.

Table 6.8: Stability Absolute and Relative Errors
Absolute error Relative error Grid

scale
Interarrival

time HoPe OSH HoPe OSH
4 -7.5 -5.4 -0.075 -0.054
8 -0.1 -4.1 -0.001 -0.041

12 -0.1 -2.5 -0.001 -0.025
20 0 -1.2 0 -0.012
32 0 0 0 0
40 0 0 0 0
80 -0.1 0 -0.001 0

120 0 0 0 0 4
w

or
ke

rs
/c

lu
st

er

180 0 0 0 0
4 -0.1 -8.6 -0.001 -0.086
8 -0.1 -2.5 -0.001 -0.025

12 -0.1 -0.4 -0.001 -0.004
20 0 -0.3 0 -0.003
32 0 -0.2 0 -0.002
40 0 -0.1 0 -0.001
80 -0.2 0 -0.002 0

120 -0.1 0 -0.001 0 8
w

or
ke

rs
/c

lu
st

er

180 0 0 0 0
4 -0.1 -5.5 -0.001 -0.055
8 -0.1 0 -0.001 0

12 -0.3 0 -0.003 0
20 0 0 0 0
32 0 0 0 0
40 -0.1 0 -0.001 0
80 0 0 0 0

120 0 0 0 0 16
 w

or
ke

rs
/c

lu
st

er

180 0 0 0 0

Evaluation and Results

178

0.0

0.2

0.4
0.6

0.8

1.0

1.2

4 8 12 16 20 40 80 120 180

interarrival time (sec.)

jo
b

ra
te

 (j
ob

/s
ec

.)
collecting
generating
optimal

(a) 4 workers per cluster

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

jo
b

ra
te

 (j
ob

/s
ec

.) collecting
generating
optimal

(b) 8 workers per cluster

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

jo
b

ra
te

 (j
ob

/s
ec

.) collecting
generating
optimal

(c) 16 workers per cluster

Figure 6.6: HoPe Stability

Evaluation and Results

179

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

jo
b

ra
te

 (j
ob

/s
ec

.)
collecting
generating
optimal

(a) 4 workers per cluster

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

jo
b

ra
te

 (j
ob

/s
ec

.)

collecting
generating
optimal

(b) 8 workers per cluster

0.0
0.2
0.4
0.6
0.8
1.0
1.2

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

jo
b

ra
te

 (j
ob

/s
ec

.)

collecting
generating
optimal

(c) 16 workers per cluster

Figure 6.7: OSH Stability

Evaluation and Results

180

This is because optimum rates have been already achieved with 8 workers/cluster.

For instance when interarrival time = 4 sec., the total job arrival rate from four

clients is:

λ`= ∑i=1
4
 λ i = 4×1/4 =1 job /sec.

When interarrival time = 8 sec.

λ`= ∑i=1
4
 λ i = 4×1/8= 0.5 job/sec

Hence, to maintain optimum stability, the job collection and result generating rates

should not exceed 1 and 0.5 for interarrival times 4 and 8 sec., respectively,

regardless of the number of workers.

Figure 6.7, which illustrates the stability performance of OSH, shows that rates of

job collection and result generation are not in balance particularly for short

interarrival times (4 ≤ interarrival times ≤ 20 where grid scale = 4 workers/cluster;

4≤ interarrival times ≤ 8 where grid scale = 8 workers/cluster; and interarrival times

= 4 where grid scale = 16 workers/cluster). However, for longer interarrival times,

OSH shows balance, indicating a stable system in nearly only 75% of the

experimental scenarios. In contrast to HoPe, the OSH rates of job collection and

result generation continue to increase for short interarrival times, as the grid

increases in scale since optimal values are still to be reached.

6.8.1.3 Stability Models

Stability performance models of HoPe and the OSH are shown in the 3D sub-

figures (a) and (b) respectively of Figure 6.8. The models show the general stability

behaviour of both heuristics when interarrival time falls in the range from 4 to 180

sec. and the grid scale is in the range from 4 to 16 workers/cluster. The stability is

calculated using the absolute value of the difference between job collection and

result generation rates as provided in equation 6.7:

Stability = (1-|job processing rate – result generating rate|)×100 (6.7)

The model in the sub-figure (a) shows that HoPe tends to maintain optimum

stability (100%-98%) in a considerably wide area of the entire problem space. As

expected, when there are enough workers, no matter how often jobs arrive, HoPe

can maintain the difference between job collection and result generation at a

minimum level. The situation changes gradually as the grid scale shrinks when

Evaluation and Results

181

stability becomes more sensitive to the interarrival time. The insignificance P-value

of all coefficients, in Table 6.9, emphasises that HoPe has successfully marginalised

the effects of variations in the grid scale and the job interarrival time when stability

is considered.

The model in sub-figure (b) shows that the OSH tends to maintain optimum

stability in a relatively small area of the entire problem space. It is also clear from

the model, and also from the significance P-value of (b1 and b3) coefficients in Table

6.10, that the OSH is more sensitive to variations in the interarrival time under all

grid scales in the displayed range.

Mathematical equations and statistical data of the HoPe stability model and the

OSH stability model are presented in Table 6.9 and Table 6.10 respectively.
4 40 80 12

0 16
0

4
7

912
15

90

92

94

96

98

100

st
ab

ili
ty

 (%
)

interarrival time
(sec.)

grid scale
(worker/cluster)

98.0-100.0
96.0-98.0
94.0-96.0
92.0-94.0

(a) HoPe

4 40 80 12
0 16

0

4
7

91215

90

92

94

96

98

100

st
ab

ili
ty

 (%
)

interarrival time
(sec.)

grid scale
(worker/cluster)

98.0-100.0
96.0-98.0
94.0-96.0
92.0-94.0
90.0-92.0

(b) OSH

Figure 6.8: Stability Models

Evaluation and Results

182

Table 6.9: Statistical Data of HoPe Stability Model
HoPe_stability = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale
F =1.018 F-signif = 0.376

Coefficients P-value -95% 95%
b0 89.80 3.04E-24 86.16 93.43
b1 0.03430 0.155 -0.00885 0.07744
b2 1.085 0.268 0.262 1.909
b3 -0.000022 0.339 -0.000236 0.000194
b4 -0.001900 0.378 -0.00392 0.00016
b5 -0.02900 0.385 -0.06805 0.01009

Table 6.10: Statistical Data of OSH Stability Model
OSH_stability = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×
interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale

F = 3.159 F-signif = 0.02789
Coefficients P-value -95% 95%

b0 90.80 7.94E-22 86.09 95.51
b1 0.09511 0.00385 0.03921 0.151
b2 0.03720 0.960 -1.025 1.100
b3 -0.000239 0.01638 -0.000517 3.86058E-05
b4 -0.000977 0.432 -0.00362 0.00167
b5 0.00800 0.836 -0.04264 0.05864

6.8.2 Throughput

Net throughput results and discussion of these results, as well as performance

models, are presented in the following sections.

6.8.2.1 Results

Figure 6.9 consists of three sub-figures showing both HoPe and OSH net

throughput in terms of the mean number of completed jobs per five hours at the

three grid scales, 4, 8 and 16 workers/cluster, compared to optimal values.

Optimal values, shown in Table 6.11, are obtained assuming that all jobs submitted

to the system are completed successfully before the end of the simulation, that is,

within five hours.

Statistical data of absolute and relative errors in net throughput measures under

HoPe and OSH is illustrated in Table 6.12.

Evaluation and Results

183

0

4

8

12

16

20

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Th
ro

ug
hp

ut
 (t

ho
us

an
ds

 jo
b/

5h
)

HoPe
Optimal
OSH

(a) 4 workers per cluster

0

4

8

12

16

20

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Th
ro

ug
hp

ut
 (t

ho
us

an
ds

 jo
b/

5h
)

HoPe
Optimal
OSH

(b) 8 workers per cluster

0

4

8

12

16

20

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Th
ro

ug
hp

ut
 (t

ho
us

an
ds

 jo
b/

5h
)

HoPe
Optimal
OSH

16 workers per cluster

Figure 6.9: Net Throughput in HoPe and OSH

Evaluation and Results

184

Table 6.11: Optimal Net Throughput
Interarrival time

1 source
(sec.)

Optimal throughput
4 sources
(job/5 h)

4 18000

8 9000

12 6000

20 3600

32 2250

40 1800

80 900

120 600

180 400

Table 6.12: Net Throughput Absolute and Relative Errors
Absolute error Relative error Grid

scale
Interarrival

time HoPe OSH HoPe OSH
4 -3504 -13434 -0.19467 -0.74633
8 0 -5188 0 -0.57644

12 -4 -1968 -0.00067 -0.328
20 -7 -613 -0.00194 -0.17028
32 -4 -6 -0.00178 -0.00267
40 -3 -4 -0.00167 -0.00222
80 -3 -4 -0.00333 -0.00444

120 -1 -4 -0.00167 -0.00667 4
w

or
ke

rs
/c

lu
st

er

180 0 0 0 0
4 -20 -9270 -0.00111 -0.515
8 -9 -1361 -0.001 -0.15122

12 -8 -12 -0.00133 -0.002
20 -4 -7 -0.00111 -0.00194
32 -5 -5 -0.00222 -0.00222
40 -4 -5 -0.00222 -0.00278
80 -4 -4 -0.00444 -0.00444

120 -4 -4 -0.00667 -0.00667 8
w

or
ke

rs
/c

lu
st

er

180 0 0 0 0
4 -16 -2900 -0.00089 -0.16111
8 -8 -11 -0.00089 -0.00122

12 -5 -8 -0.00083 -0.00133
20 -5 -4 -0.00139 -0.00111
32 -2 -5 -0.00089 -0.00222
40 -4 -4 -0.00222 -0.00222
80 -4 -4 -0.00444 -0.00444

120 -4 -4 -0.00667 -0.00667 16
 w

or
ke

rs
/c

lu
st

er

180 0 0 0 0

6.8.2.2 Discussion

The sub-figures of Figure 6.9 show that HoPe has successfully obtained throughput

equal to the optimum value in more than 95% of experimental scenarios. However,

under extremely heavy load (interarrival time = 4 and grid scale = 4

workers/cluster), HoPe shows a throughput value which is less than the optimum.

Evaluation and Results

185

Nevertheless, the throughput value of HoPe in this situation is nearly triple the

value of the OSH.

The same observation reported in HoPe stability regarding the discontinued

improvement in performance, when the grid scale is increased from 8

workers/cluster to 16 workers/cluster, is also apparent in net throughput. As the

optimal net throughput has been already achieved with 8 workers/cluster, as shown

in the sub-figure (b), additional workers have no visible effect in enhancing HoPe

performance, as illustrated in the sub-figure (c).

On the other hand, the OSH obtained optimal throughput values only in less than

75% of experimental scenarios, under mild to light loads. OSH struggles to obtain

optimal values for throughput under extremely heavy and heavy loads (interarrival

time = 4, 8, 12 and 20 for grid scale = 4 workers/cluster, interarrival time = 4 and 8

for grid scale = 8 workers/cluster and interarrival time = 4 for grid scale = 16

workers/cluster). In contrast to HoPe, the OSH net throughput continues to increase

as the grid increases in scale since optimal values are still to be reached.

6.8.2.3 Throughput Models

In Figure 6.10, the 3D models in sub-figures (a) and (b) summarise the behaviour of

HoPe and the OSH respectively in terms of the net throughput for interarrival times

in the range from 4 to 180 sec. and grid scales in the range from 4 to 16

workers/cluster. As expected, the net throughput under both heuristics tends to

increase as the load inside the system becomes heavier as the interarrival time gets

smaller in value.

Comparing the two sub-figures demonstrates the superiority of HoPe performance

when net throughput is considered. An important observation is clear also where the

net throughput of HoPe looks marginally affected by the grid scale. Consequently,

the HoPe net throughput is mainly a function of the interarrival time, which clearly

demonstrates the efficiency of the dynamic role-altering technique adopted by

HoPe, where the system virtualises the actual number of workers to cope with the

current context requirements. In contrast, the OSH net throughput is significantly

affected by the grid scale, particularly for low values of the interarrival time.

It is important not to misinterpret the models in Figure 6.10 and also the charts in

Evaluation and Results

186

Figure 6.9; the low throughput values do not indicate poor system performance, but

rather they show raw data that needs to be interpreted in context. For instance, the

minimum throughput which has been achieved by both heuristics at grid scale 16

workers/cluster and 180 sec. interarrival time is in fact the maximum throughput

that can be achieved in this context. Therefore, it might be more realistic, in later

stages of analysis, to depict relative values of the throughput which can be

calculated as a percentage of the optimal value, if known, rather than depicting

raw values.

Mathematical equations and statistical data of the HoPe net throughput model and

the OSH net throughput model are presented in Table 6.13 and Table 6.14

respectively.

4
40 80

12
0

16
0

47912
15

0
2
4
6
8
10
12
14
16
18

th
ro

ug
hp

ut
(th

ou
sa

nd
 jo

b/
5h

.)

interarrival time
(sec.) grid scale

(worker/cluster)

16.0-18.0
14.0-16.0
12.0-14.0
10.0-12.0
8.0-10.0
6.0-8.0
4.0-6.0
2.0-4.0
0.0-2.0

(a) HoPe

4
40 80

12
0

16
0

47912
15

0
2
4
6
8
10
12
14
16
18

th
ro

ug
hp

ut
(th

ou
sa

nd
 jo

b/
5h

.)

interarrival time
(sec.) grid scale

(worker/cluster)

14.0-16.0
12.0-14.0
10.0-12.0
8.0-10.0
6.0-8.0
4.0-6.0
2.0-4.0
0.0-2.0

(b) OSH

Figure 6.10: Net Throughput Models

Evaluation and Results

187

Table 6.13: Statistical Data of HoPe Throughput Model
HoPe_throughput = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale
F = 7.332 F-signif = 0.000409

Coefficients P-value -95% 95%
b0 16666.6 0.03262 7880.13 25453.2
b1 216.63 0.822 -1766.0 2199.3
b2 -214.58 0.000334 -318.88 -110.28
b3 -8.016 0.862 -102.51 86.47
b4 -0.437 0.855 -5.370 4.495
b5 0.685 0.00120 0.167 1.204

Table 6.14: Statistical Data of OSH Throughput Model

OSH_throughput = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×
interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale

F = 10.44 F-signif = 3.87375E-05
Coefficients P-value -95% 95%

b0 4540.0 0.183 -639.418 9719.334
b1 615.25 0.288 -553.455 783.954
b2 -116.90 0.00101 -178.383 -55.416
b3 2.33 0.569 -53.368 58.02841
b4 -4.000 0.09841 -6.90689 -1.0913
b5 0.565 0.00109 0.259235 0.870749

6.8.3 Turnaround Time (TT)

The experimental results of TT and the discussion of these results, as well as TT

performance models are presented in the following sections.

6.8.3.1 Results

Figure 6.11 consists of three sub-figures that show the TT of both HoPe and OSH,

calculated based on equation (6.4), at the three grid scales, 4, 8 and 16

workers/cluster. An empirical worst bound was employed to compare with TT

values achieved by HoPe and OSH.

The empirical worst bound, which equals 27 sec., represents the maximum TT

when a large job Ja is executed sequentially in a capacity-limited machine Pc.

Although, the worst bound was calculated based on one job, in the case of HoPe

and OSH, the TT was calculated using the time average per job which is the TT

experienced by all jobs in the scenario divided by the number of jobs, which include

the queuing delay in work-spaces and the result-space. Therefore, in practice, the

mean TT can go beyond the worst bound.

Evaluation and Results

188

0

5

10

15

20

25

30

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

TT
 (s

ec
.)

HoPe

OSH

(a) 4 workers per cluster

0

2

4

6

8

10

12

14

16

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

TT
 (s

ec
.)

HoPe
OSH

(b) 8 workers per cluster

0

1

2

3

4

5

6

7

8

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

TT
 (s

ec
.)

HoPe
OSH

(c) 16 workers per cluster

Figure 6.11: Mean TT in HoPe and OSH

Evaluation and Results

189

6.8.3.2 Discussion

The three sub-figures of Figure 6.11 show the superiority of HoPe performance

when TT is considered. HoPe has considerably a shorter TT than the OSH with

HoPe achieving less than a half of the TT achieved by the OSH in more than 60%

of all experimental scenarios. However, under very light loads (interarrival time =

120 and 180 sec. for grid scale = 4 workers/cluster and interarrival time = 180 sec.

for grid scale = 8 workers/cluster) both OSH and HoPe reached nearly the same TT

due to the small number of jobs in the system.

HoPe has TT values in the range from 3 to 13 which are all considerably better than

the empirical worst bound. Hence, in its worst case, HoPe has a TT value which is

less than the half of the maximum TT and in the best score it is nearly one tenth the

maximum TT. On the other hand, the OSH has its TT values in the range from 4 to

29 which is actually beyond the worst bound in the worst case and is nearly one

seventh the worst bound for the best case.

An important observation regarding the TT is that it seems to be less affected by

variations in the interarrival time within the same grid scale in the case of HoPe

than in the case of the OSH, which again shows the effectiveness of the dynamic

role assignment technique in HoPe.

6.8.3.3 TT Models

Figure 6.12 consists of two 3D sub-figures summarising the behaviour of HoPe and

the OSH respectively in terms of the TT for interarrival times in the range from 4 to

180 sec. and grid scales in the range from 4 to 16 workers/cluster.

The dominance of HoPe performance is clear by comparing the scales in the TT

axis in the two sub-figures. Sub-figure (a) shows that the TT value under HoPe is

gradually getting smaller as the grid becomes larger while the interarrival time has

notably less effect in large grid scales. The case is different when it comes to the

OSH, as illustrated in the sub-figure (b), where the interarrival time has an

increased effect on the value of the TT.

As expected, under both heuristics the TT approaches its minimal values as both the

grid scale and the interarrival time approach their maximum values, while the TT

Evaluation and Results

190

approaches its maximum as both approach their minimum. Mathematical equations

and statistical data of the HoPe mean TT model and the OSH mean TT model are

presented in Table 6.15 and Table 6.16 respectively.

44080120160

4 7
9

12
15

0
4
8
12
16
20
24
28

TT
 (s

ec
.)

interarrival time
(sec.)

grid scale
(worker/cluster)

12.0-16.0
8.0-12.0
4.0-8.0
0.0-4.0

(a) HoPe

4

4080

12
0

16
0

4 7
9

12
15

0
4
8
12
16
20
24
28

TT
 (s

ec
.)

interarrival time
(sec.)

grid scale
(worker/cluster)

24.0-28.0
20.0-24.0
16.0-20.0
12.0-16.0
8.0-12.0
4.0-8.0

(b) OSH

Figure 6.12: TT Models

Table 6.15: Statistical Data of HoPe TT Model
HoPe_ TT = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale
F = 22.15 F-signif = 1.01124E-07

Coefficients P-value -95% 95%
b0 17.8 3.86E-10 15.26 20.34
b1 -1.5 0.000172 -2.074 -0.926
b2 -0.04678 0.00408 -0.07696 -0.01660
b3 0.03958 0.00666 0.01224 0.06692
b4 0.0011 0.03270 -0.000328 0.00253
b5 0.00011 0.109 -3.94256E-05 0.000261

Evaluation and Results

191

Table 6.16: Statistical Data of OSH TT Model
OSH_ TT = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale
F = 32.67 F-signif = 3.19009E-09

Coefficients P-value -95% 95%
b0 37.80 3.34E-10 31.77 43.83
b1 -3.000 0.000280 -4.361 -1.639
b2 -0.185 2.57E-05 -0.256 -0.113
b3 0.07492 0.02565 0.01005 0.140
b4 0.00820 5.48E-05 0.00482 0.01159
b5 0.000230 0.08247 -0.00012 0.000588

6.8.4 Speedup

Speedup results and discussion of these results, as well as performance models, are

presented in the following sections.

6.8.4.1 Results

Figure 6.13 consists of three sub-figures showing the speedup of both HoPe and

OSH at the three grid scales. The speedup is calculated based on equation (6.5) with

the empirical value of 27 sec. as the execution time of the sequential algorithm. A

worst bound of one is assumed, representing the case when both running times of

executing a job sequentially, in one machine, and in parallel machines, are equal.

6.8.4.2 Discussion

Figure 6.13 shows that HoPe has maintained a noticeably higher speedup which

reaches the double speedup of the OSH in nearly 60% of all scenarios. However,

the difference between the two heuristics in performance decreases gradually as the

interarrival time gets larger in small and medium grid scales.

HoPe has its speedup values in the range from 2 to 10 which is double the speed of

the sequential execution (worst bound) in its worst case and ten times faster than the

sequential execution at best. The speedup of the OSH lies in the range from 0.9 to 7

which is a slowdown in its worst case and, in its best case, it is only seven times

faster than the sequential execution.

As expected, the speedup of both HoPe and the OSH is highly affected by the grid

scale in terms of the total number of worker devices in the system. The interarrival

time has a lower effect when HoPe is considered.

Evaluation and Results

192

0

1

2

3

4

5

6

7

8

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Sp
ee

du
p

HoPe
OSH

(a) 4 workers per cluster

0

1

2

3

4

5

6

7

8

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Sp
ee

du
p

HoPe
OSH

(b) 8 workers per cluster

0

2

4

6

8

10

12

4 8 12 20 32 40 80 120 180

interarrival time (sec.)

Sp
ee

du
p

HoPe
OSH

(c)16 workers per cluster

Figure 6.13: Average Speedup in HoPe and OSH

Evaluation and Results

193

6.8.4.3 Speedup Models

The speedup of HoPe and OSH is illustrated in the three dimensional sub-figures (a)

and (b) of Figure 6.14.

The dominance of the HoPe speedup over the speedup of OSH is clear from the

figure which illustrates that HoPe has a considerably higher speedup in a wide area

of the speedup surface. The marginalised effect of the interarrival time under HoPe

is clear in the sub-figure (a) where the speedup surface has a gentle slope in the

interarrival time direction in contrast to the steep slope in the sub-figure (b) in the

case of the OSH. Mathematical equations and statistical data of the HoPe speedup

model and the OSH speedup model are presented in Table 6.17 and Table 6.18

respectively.

4
40 80 120160

4
7

9
1215

0
1
2
3
4
5
6
7
8
9
10
11

sp
ee

du
p

interarrival time
(sec.)

grid scale
(worker/cluster)

10.0-11.0
9.0-10.0
8.0-9.0
7.0-8.0
6.0-7.0
5.0-6.0
4.0-5.0
3.0-4.0
2.0-3.0

(a) HoPe

4 40 80 120160

4
7

9
12

15
0
1
2
3
4
5
6
7
8
9
10
11

sp
ee

du
p

interarrival time
(sec.)

grid scale
(worker/cluster)

6.0-7.0
5.0-6.0
4.0-5.0
3.0-4.0
2.0-3.0
1.0-2.0
0.0-1.0

(b) OSH

Figure 6.14: Speedup Models

Evaluation and Results

194

Table 6.17: Statistical Data of HoPe Speedup Model
HoPe_ speedup = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×

interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale
F = 168.83 F-signif = 3.32935E-16

Coefficients P-value -95% 95%
b0 0.115 0.158 -0.902 1.132
b1 0.02203 0.00106 0.00996 0.03410
b2 0.698 2.24E-05 0.469 0.928
b3 -5.7E-05 0.06190 -0.000117 3.1E-06
b4 -0.000281 0.318 -0.000852 0.000290
b5 -0.00703 0.196 -0.01796 0.00391

Table 6.18: Statistical Data of OSH Speedup Model

OSH_ speedup = b0 + b1× interarrival_time+ b2 × grid_scale + b3 interarrival_time ×
interarrival_time + b4× interarrival_time × grid_scale + b5× grid_scale × grid_scale

F = 98.84 F-signif = 7.31342E-14
Coefficients P-value -95% 95%

b0 0.003 0.693 -1.124 1.130
b1 0.02827 0.000253 0.01489 0.04164
b2 0.143 0.256 -0.111 0.397
b3 4E-05 0.225 -2.7E-05 0.000107
b4 -0.00174 1.13E-05 -0.00237 -0.00111
b5 0.01225 0.04776 0.000133 0.02437

6.9 Conclusion

This chapter has presented the details of a controlled empirical study carried out to

experiment with the PM-Grid models and evaluate HoPe performance in terms of

stability, net throughput, mean TT and speedup. It has also presented the predicted

performance models of both heuristics, HoPe and OSH under different running

conditions of grid scale and job interarrival times.

Experimental results indicate the dominance of HoPe performance and the

efficiency of its role altering technique. These results also demonstrate the ability of

HoPe to considerably reduce the effect of variations in grid scale and job

interarrival times, illustrating better scalability and sustainability, when compared to

the OSH.

HoPe has successfully maintained optimal stability and throughput in more than

95% of the experiments with HoPe achieving three times better than the OSH under

extremely heavy loads. In terms of TT and speedup, HoPe has also shown dominant

Evaluation and Results

195

performance which is twice better than the OSH performance in more than 60% of

all experiments.

These promising results suggest deploying PM-Grids in real life scenarios and

evaluating HoPe in other HTC systems to get better insight into their performance.

Evaluation and Results

196

6.10 References

[1] A. Legrand, M. Quinson, H. Casanova and K. Fujiwara, “The SIMGRID
project simulation and deployment of distributed applications,” in Proc.
15th IEEE Int. Symp. High Performance Distrib. Comput., 2006, pp. 385-
386.

[2] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Eds.,
Handbook on Scheduling: From Theories to Applications. New York:
Springer, 2007.

[3] CoreGRID, “Comparative evaluation of the robustness of DAG
scheduling heuristics,” FP6-004265, Tech. Rep. TR-0120, Dec. 5, 2007

[4] OPNET Technologies [online]. Available: http://www.opnet.com/,
[accessed Feb. 2, 2010].

[5] T. D. Seeley, The Wisdom of the Hive: The Social Physiology of Honey
Bee Colonies. MA: Harvard University Press, 1995.

[6] A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge,
UK: Cambridge University Press, 1984.

[7] R.P. Brent, “Parallel algorithms for integer factorization”, London
Mathematical Society Lecture Note Series, vol. 154, Number Theory and
Cryptography, J.H. Loxton, Ed., pp. 26-37, Cambridge, UK: Cambridge
University Press, 1990.

[8] C. Barnes, “Integer factorization algorithms,” Tech. Rep., Department of
Physics, Oregon State University, Dec. 2004.

[9] W. Shih, C. Yang and S. Tseng, “A performance-based parallel loop
scheduling on grid environments,” J. Supercomput., vol. 41, pp. 247-
267, 2007.

[10] A. B. Downey and D. G. Feitelson, “The elusive goal of workload
characterization,” Performance Evaluation Rev., vol. 26, pp. 14-29,
1999.

[11] E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel job scheduling
evaluation,” in Proc. 11th Workshop Job Scheduling Strategies for
Parallel Process., 2005, New-York, pp. 257-282.

[12] S. Nakrani and C. Tovey, “On honey bees and dynamic server allocation
in internet hosting centers,” Adaptive Behavior - Animals, Animats,
Softw. Agents, Robots, Adaptive Syst., vol. 12, no. 3-4, pp. 223-240,
2004.

[13] Condor Project [online]. Available: http://www.cs.wisc.edu/condor,
[accessed Feb. 2, 2010].

[14] R. Huang, H. Casanova and A. A. Chien, “Using virtual grids to simplify
application scheduling,” in Proc. 20th IPDPS 2006, pp. 25-29.

[15] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems,” in Proc. Heterogeneous Comput.

Evaluation and Results

197

Workshop, 1999, pp. 30-44.

[16] P. Tang, P. C. Yew, and C. Zhu, “Impact of self-scheduling on
performance of multiprocessor systems,” in Proc. 3rd Int. Conf.
Supercomput., 1988, pp. 593–603.

[17] H. Kurdi, H. S. Al-Raweshidy, I. Khan and M. Li, “PM-Grid: a Personal
Mobile Grid for ubiquitous computing environments,” Presented at
SiC07, May 2007, Newcastle, UK.

[18] C. Jiang, C. Wang, X. Liu and Y. Zhao, “A survey of job scheduling in
grids,” in Proc. APWeb 2007/ WAIM 2007, Huang Shan, China, pp. 419-
427.

[19] GridSim [online]. Available: http://www.buyya.com/gridsim/, [accessed
Feb. 2, 2010].

[20] Simgrid [online]. Available: http://simgrid.gforge.inria.fr/, [accessed
Feb. 2, 2010].

[21] L. He, S. Jarvis, D. Spooner, D. Bacigalupo, G. Tan and G. Nudd,
“Mapping DAG-based applications to multiclusters with background
workload,” in Proc. CCGrid, 2005, vol. 2, pp.855-862.

[22] S. Song, K. Hwang, Y.-K. Kwok, “Trusted grid computing with security
binding and trust integration,” J. Grid Comput., vol. 3, pp. 53-73, 2005.

[23] D.D. Stephan, J. Werner, R.P. Yeater, Essential regression and
experimental design for chemists and engineers, MS Excel Add-in
Software Package, 1998–2001.

[24] J. Bulacov, J. Jirkovsky, M. Muller and R.B. Heimann, Surf. Coat.
Technol., vol. 201, 2006.

Conclusion and Future Research

198

Chapter 7
Conclusion and Future Research

7.1 Summary

This thesis has argued that resources of personal devices, whether mobile or

stationary, can be productively leveraged to service their users. By doing so,

personal users will be able to ubiquitously run relatively complex computational

jobs, which cannot be accommodated in their individual personal devices or while

they are on the move. This has the potential of realising the ambitious grid visions

of scaling grid systems to a larger number of entities and smaller devices. To this

end the thesis proposes PM-Grids that superimpose grid functionality over

networked personal devices.

The work in this thesis started by surveying the area of grid computing and

distributed systems for paradigms relevant to PM-Grids. The survey revealed two

main findings. First, there are few research projects which have addressed the

mobility issue in grid computing but only at the organisational level. Second, fewer

research projects have targeted grid systems at the personal level, but the focus has

only been on facilitating file sharing applications. Therefore, architectural designs

of PM-Grids were developed to address both personalisation and mobility issues in

grid computing.

The most important aspect of realising a grid system is a scheduler that efficiently

utilises its resources. However, the extremely dynamic nature, diversity and limited

capabilities of resources, as well as difficulties in predicting the nature and timing

of incoming jobs, are all factors that increase the complexity of the scheduling

problem in PM-Grids.

Therefore, a survey on resource scheduling frameworks was conducted to address

design features required for a resource scheduler that can cope with the

extraordinarily difficult scheduling conditions in PM-Grids. The survey revealed

that decentralised, cooperative, local, adoptive, non-clairvoyant and self-scheduling

schemes are among the top requirements to deal with the complexity of this

Conclusion and Future Research

199

problem. Consequently, a resource scheduler, HoPe, was proposed and

implemented based on these requirements. HoPe was augmented with techniques

analogous to those utilised by the honeybee colony, while allocating worker bees to

nectar sources under the extraordinarily difficult conditions of weather

unpredictability and food variability.

Next, PM-Grid designs and HoPe implementation were evaluated thoroughly

through a strictly controlled empirical study with a well-established heuristic in

HTC, the OSH, as a benchmark algorithm. Comparisons with optimal values and

worst bounds were conducted to gain a clear insight into HoPe behaviour under

different running conditions of the number of jobs and grid scales.

Experimental results showed that HoPe has successfully maintained optimal

stability and throughput in more than 95% of the experiments, with HoPe achieving

three times better than the OSH under extremely heavy loads. In terms of the

turnaround time and speedup, HoPe has effectively achieved less than 50% of the

turnaround time incurred by the OSH while doubling its speedup in more than 60%

of the experiments.

7.2 Conclusion

The overall aim of the thesis has been to introduce PM-Grids as a novel paradigm in

grid computing for endowing individuals with resource-rich infrastructures that can

serve as virtual general-purpose and mobile supercomputers. PM-Grids have the

potential to bridge the gap between personal users and mobile devices on the one

side, and current grid systems on the other.

The thesis has also aimed to address the non-clairvoyant scheduling problem in grid

computing, where job information is not available to the system before the end of

the execution. HoPe which is a novel honeybee inspired resource scheduling

heuristic with a decentralised self-management and adaptive scheduling policy has

been proposed to achieve this aim.

The thesis aims have been fulfilled resulting in the following seven main

contributions:

Conclusion and Future Research

200

First, architectural designs and models for PM-Grids have been developed based on

the PNs architecture and as a natural extension to them; an abstract layered view, a

detailed inside view and simulated models have been presented and evaluated at

different scales in terms of the numbers of jobs and devices per cluster.

Second, a detailed design, implementation and evaluation of HoPe have been

initiated. To the best of our knowledge, HoPe is the first algorithm to shed light on

the non-clairvoyant scheduling problem in grid computing. It is the first honeybee-

inspired algorithm attempting to solve the resource scheduling problem relying

totally on local and computationally simple parameters.

Third, a queuing theory with a simulation based approach to the NAP modelling

from the resource scheduling perspective has been initiated. A generic model for the

NAP has been created as a queuing network, which is simulated in several

representative scenarios. Furthermore, detailed algorithmic analysis and modelling

of the NAP have been presented with honeybee techniques that had not been

considered in previous work.

Fourth, a comprehensive taxonomy of grid systems has been proposed. Such a

comprehensive taxonomy, which has not been presented in previous work, is

significant for studying grid systems under one framework and assisting detailed

comparisons between them. It also aids in understanding current research trends in

grid computing and anticipating future trends attempting to establish a solid

background in the rapidly evolving area of grid computing.

Fifth, a framework for resource schedulers has been proposed with a unified

presentation of previously published taxonomies. Such a framework is deemed

necessary to amalgamate the area of resources scheduling under a common,

uniform set of nomenclatures and terminologies.

Sixth, a controlled empirical evaluation framework to prove the concept of PM-

Grids and to evaluate the performance of HoPe has been developed. A flexible

simulator has been built for this purpose allowing the control of experimental

parameters, randomising extraneous variables as well as measuring and analysing

various performance metrics.

Conclusion and Future Research

201

Seventh, performance models of HoPe and OSH have been predicted in forms of

mathematical equations and 3D graphical representations. These models are

important to gain a clearer insight into the behaviour of each heuristic in regard to

stability, net throughput, turnaround time and speedup under various running

conditions of job interarrival times and grid scales.

It can be concluded, based on the experimental results and predicted performance

models, that using HoPe for resource scheduling in PM-Grids considerably reduced

the effect of variations in grid scale and job interarrival times, illustrating better

scalability and sustainability, when compared to the OSH.

These results recommend considering the deployment of PM-Grids in real life

scenarios and the utilisation of HoPe in other parallel processing and high

throughput computing systems. Much work remains to be done but the potential

benefits are considerable. It is hoped that this thesis contributes in some measure to

realising the futuristic grid visions.

7.3 Future Research

After experimenting with PM-Grid models and evaluating HoPe performance, it can

be confidently said that the results are encouraging. However, these

accomplishments need to be followed with thorough development efforts to

transform the PM-Grid models into reality and apply HoPe in other contexts beyond

PM-Grids. The work in this thesis opens up research on various interesting issues

and directions.

7.3.1 Short Term Future Research

In the short term future research, the following issues need to be explored.

7.3.1.1 PM-Grids

It is important to note that this thesis has not emphasised implementation details as

the aim at this stage was to demonstrate a “proof-of-concept” of PM-Grids.

In the long term, there might be a need for interaction between PM-Grids and other

grid systems. Designing PM-Grids with this possibility in mind facilitates future

Conclusion and Future Research

202

interaction. Therefore, careful selection of implementation technology for a

middleware system for PM-Grids is important at an early stage of future work.

For instance, the latest release of Jini technology [7] from Sun Microsystems [8]

allows applications to be easily packaged as services that are available across a

shared Java space. Both Jini and Java spaces have the potential of realising PM-

Grids and assisting the interaction with other Grid middleware systems.

7.3.1.2 HoPe

One of the strengths of HoPe lies in the adaptive role altering technique that it has

successfully implemented, where worker devices automatically exchange their roles

during the running time based on the current system context. However, currently,

initial device roles are manually assigned to devices at the initialisation phase.

Automatic role assignment, based on device features, would need to be considered

to further augment the self-management property of HoPe.

Additionally, it is anticipated that users would specify time limits or priorities for

their jobs to which the scheduler should adhere. Constraint- and priority-based

scheduling are important features to be added to enhance the design of HoPe.

7.3.1.3 Stability Performance Measure

This thesis has maintained the implicit assumption that stability can help to

optimise both the TT and throughput and can capture the tradeoffs between them

more efficiently than a multi-objective function that gives each performance

measure a certain weight.

The evaluation results have demonstrated that HoPe, which uses stability as the

only scheduling objective, has successfully achieved superior performance in the

two performance measures, TT and throughput, when compared to a benchmark

algorithm, which does not consider stability in making scheduling decisions.

However, further research is required to confirm whether first-order relationships

exist between the stability objective, as defined in this thesis, and both TT and

throughput, as well as to determine the type and factors influencing these

relationships. Whether stability is more efficient, in optimising the TT and

Conclusion and Future Research

203

throughput and capturing the tradeoffs, than a multi-objective function is also to be

examined.

7.3.1.4 Real Test-bed and Workload

In the evaluation process, the PM-Grid has been deliberately simulated as a logical

network to test its design isolated from implementation technologies and platforms,

which also conforms with other literature [1, 2]. Additionally, the workload has

been synthesised, in conformance with [3-5], to insure flexibility and efficiency in

the early stages of development and to provide the basis for cost and time wise

evaluation.

However, experimenting with a real test-bed and workloads from a set of different

applications is important in early stages of future work to continuously improve the

PM-Grid and HoPe designs through feedback arising from real running scenarios.

7.3.1.5 Benchmark Algorithms

Due to the high complexity of the non-clairvoyant scheduling problem, only very

few standard heuristics are available [6]. The lack of available information about

the system context and resources in PM-Grid environments adds more to the

complexity of the non-clairvoyant scheduling problem. Therefore, it was extremely

difficult to find and implement a suitable benchmark algorithm for HoPe.

Consequently, only the OSH has been utilised to benchmark HoPe. Although the

OSH is one of the most often employed and well established heuristics in HTC,

contrasting HoPe with other algorithms, such as other bio-inspired heuristics and

the round ribbon (RR) algorithm, would help to achieve a more robust evaluation of

its performance.

7.3.2 Long Term Future Research

In the long term future research, the following issues are to be explored.

7.3.2.1 PM-Grids

There are several issues that are considered for long term future studies: for

instance, trust, privacy and security of users and services in PM-Grids; ethical

issues that inevitably arise when sharing personal data or devices; pricing models

Conclusion and Future Research

204

when a PM-Grid spans multiple PNs or utilises others’ resources; resource

specification and annotation; service composition and discovery; data management

and information services, other job models and task partitioning; fault tolerance

and other QoS issues.

7.3.2.2 HoPe

Although the resource scheduling heuristic, HoPe, has been proposed in the context

of PM-Grids and specifically for the scheduling problem, by no means it has

constraints that limit its application platforms or areas. It could be used in other

systems and for other optimisation problems. It may also be generalised to develop

a new meta-heuristic for general optimisation problems. Exploring these

possibilities is to be considered in future work.

The recent advent of new multi-core processors poses new challenges in developing

scheduling algorithms for Operating Systems (OS). Such scheduling algorithms

should be designed with adaptability and non-clairvoyant scheduling in mind to

cope with the high dynamism in running environments. These features are apparent

in HoPe. Therefore, future research intends to explore the possibility of employing

HoPe for resource scheduling in multi-core OS as well as other parallel

processing systems.

7.3.2.3 Open Issues

There are some open and philosophical issues that are raised by this thesis:

Although grid technologies have never had an explicit goal of changing our society,

it is very likely that PM-Grids and other Personal Grids, with the AmI vision as

their main driver, will have long-term consequences in our daily lives, as well as

ethical concerns that are to a great extent more far-reaching than the Internet.

Finally, it is important to consider that a successful innovation is the result of a

specific socio-economic and technological constellation. In other words, the right

product, in the right market, at the right time, where specific requirements in terms

of user needs, pricing and standards among others, have to be met in order for

innovation to succeed and reach its desired objectives [9].

Conclusion and Future Research

205

7.4 References

[1] Y. Li, “A bio-inspired adaptive job scheduling mechanism on a
computational grid,” IIJCSNS Int. J. Comput. Sci. Network Security, vol.
6, no. 3, pp. 1-7, Mar. 2006.

[2] X. Qin and T. Xie, “An availability-aware task scheduling strategy for
heterogeneous systems,” IEEE Trans. Comput, vol. 57, no. 2, pp. 188-
199, Feb. 2008.

[3] R. Buyya, M. Murshed, D. Abramson and S. Venugopal, “Scheduling
parameter sweep applications on global grids: A deadline and budget
constrained cost time optimization algorithm,” Softw. Practice
Experience, vol. 35, pp. 491-512, 2005.

[4] C. Dumitrescu, I. Raicu, I. Foster and Di-gruber, “A distributed approach
to grid resource brokering,” in Proc. HPDC-11, 2002, pp. 352-358.

[5] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in Proc. 11th IEEE
HPDC, 2002, pp. 352- 358.

[6] J. Leung, L. Kelly and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL: CRC
Press, 2004.

[7] Jini(TM) Technology [online]. Available:
http://www.jini.org/wiki/Jini(TM)_Technology:_An_SOA_Delivering_J
ava_Dynamic_Networking, [accessed Feb. 24, 2010].

[8] Sun Microsystems [online]. Available: http://www.sun.com/, [accessed
Feb. 2, 2010].

[9] I. Miles, K. Flanagan and D. Cox, “Ubiquitous computing: Toward
understanding European strengths and weaknesses,” ESTO Report,
PREST, Manchester Business School, Manchester, Apr. 2002.

206

Publications based on this Thesis

 Book chapters:
[1] H. Kurdi, M. Li, and H. Al-Raweshidy, “Taxonomy of grid systems,”

book chapter, in the Handbook of Research on P2P and Grid Systems for
Service-Oriented Computing: Models, Methodologies and Applications,
N. Antonopoulos, G. Exarchakos, M. Li and A. Liotta, Eds., USA:
Information Science Publishing, 2010.

Journals:

[2] H. Kurdi, M. Li and H. S. Al-Raweshidy, A Taxonomy of emerging grids,
IEEE Distributed Systems [online], vol.9, no.3, pp.1-13, Mar. 2008.
ISSN: 1541-4922

 Conferences:

[3] H. Kurdi, M. Li and H. S. Al-Raweshidy, “A bio-inspired heuristic for
non-clairvoyant scheduling,” in Proc. of SiC09, 5-6 Jun. 2009, Surrey,
UK.

[5] H. Kurdi, M. Li and H. S. Al-Raweshidy, “A generic framework for
resource scheduling in Personal Mobile Grids based on honeybee
colony,” in Proc. of IEEE NGMAST'08, pp. 297 – 302. 16-19 Sep. 2008,
Cardiff, UK.

[6] H. Kurdi, M. Li and H. S. Al-Raweshidy, “A bio-inspired scheduling
heuristic for Personal Mobile Grids,” in Proc. of ICAC, Sep. 2008,
Uxbridge, UK.

[7] H. Kurdi, M. Li and H. S. Al-Raweshidy, “HoPe: a honeybee inspired
resource scheduling heuristic for Personal Mobile Grids,” in Proc. of
SiiC08, 9-10 Jun. 2008, Leeds, UK

[8] H. Kurdi, H. S. Al-Raweshidy, I. Khan and M. Li, “PM-Grid: a Personal
Mobile Grid for ubiquitous computing environments,” Presented at
SiC07, May 2007, Newcastle, UK.

	Abstract
	Table of Contents
	List of Figures
	 List of Tables
	 Acknowledgements
	Author’s Declaration
	 List of Abbreviations
	Chapter 1Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Research Aim and Objectives
	1.4 Challenges
	1.5 Main Contributions
	1.5.1 Architectural Designs and Models for PM-Grids
	1.5.2 Detailed Design and Implementation of HoPe
	1.5.3 Detailed Analysis of the NAP
	1.5.4 Comprehensive Taxonomy of Grid Systems
	1.5.5 Unified Framework for Resource Schedulers
	1.5.6 Controlled Empirical Evaluation Framework
	1.5.7 Performance Models of HoPe and OSH Behaviours

	1.6 Thesis Scope
	1.7 Thesis Outline
	1.8 References

	Chapter 2A Survey and Taxonomy of Grid Systems
	2.1 Introduction
	2.2 Grid Computing
	2.3 Grid Generations
	2.4 Features of Next Generation Grids
	2.5 Classification of Emerging Grids
	2.6 Taxonomy of Grid Systems
	2.6.1 Grids Classified by Solution Type
	2.6.1.1 Computational Grids
	2.6.1.2 Data Grids
	2.6.1.3 Service Grids
	2.6.1.4 Access Grids

	2.6.2 Grids Classified by Virtual Organisation Scope
	2.6.2.1 Global Grids
	2.6.2.2 National Grids
	2.6.2.3 Enterprise Grids
	2.6.2.4 Intra-Grids
	2.6.2.5 Personal Grids

	2.6.3 Grids Classified by Accessibility
	2.6.3.1 Closed Grids
	2.6.3.2 Accessible Grids
	2.6.3.2.1 Ad hoc Grids
	2.6.3.2.2 Wireless Grids
	2.6.3.2.3 Mobile Grids

	2.6.4 Grids Classified by Interactivity
	2.6.4.1 Batch Grids
	2.6.4.2 Interactive Grids
	2.6.4.2.1 Direct Interactive Grids
	2.6.4.2.2 Context-Aware Grids

	2.6.5 Grids Classified by User-Centricity
	2.6.5.1 Organisational Grids
	2.6.5.2 User-Centric Grids

	2.6.6 Grids Classified by Manageability
	2.6.6.1 Centralised Grids
	2.6.6.2 P2P Grids
	2.6.6.3 Manageable Grids
	2.6.6.3.1 Autonomic Grids
	2.6.6.3.2 Knowledge Grids
	2.6.6.3.3 Organic Grids

	2.6.6.4 Hybrid Grids

	2.7 Other Related Paradigms
	2.7.1 Utility Computing
	2.7.2 Everything as a Service
	2.7.3 Cloud Computing

	2.8 Conclusion
	2.9 References

	Chapter 3PM-Grid: A Personal Mobile Grid
	3.1 Introduction
	3.2 From Mainframes to PM-Grids
	3.3 What is a PM-Grid?
	3.4 Motivating Applications
	3.4.1 Personal Mobile Medical Record (PM-MR)
	3.4.2 Personal Mobile Learning (PM-Learning)

	3.5 Grid Computing and Personal Mobile Devices
	3.5.1 Can Mobile Devices be Utilised?
	3.5.2 What Roles Can Mobile Devices Play?
	3.5.3 Can Mobile Devices be Integrated in Grids?

	3.6 PM-Grid Design
	3.6.1 PN Architecture
	3.6.1.1 Layered View
	3.6.1.1.1 Connectivity Level
	3.6.1.1.2 Network Level
	3.6.1.1.3 Service Level

	3.6.1.2 Detailed Architecture

	3.6.2 PM-Grid Architecture
	3.6.2.1 Abstract Layered View
	3.6.2.1.1 PM-Grid Level

	3.6.2.2 Detailed Architecture
	3.6.2.2.1 Clients
	3.6.2.2.2 Workers
	3.6.2.2.3 Spaces
	3.6.2.2.4 Device Roles in PM-Grids

	3.7 Related Work
	3.7.1 PN and PN Federation
	3.7.2 Mobile Grids
	3.7.3 Personal Grids
	3.7.4 Personal Distributed Environment

	3.8 Conclusion
	3.9 References

	Chapter 4A Framework for Resource Scheduling
	4.1 Introduction
	4.2 The Resource Scheduling Problem
	4.3 Basic Terminologies
	4.4 A Framework for Resource Scheduling
	4.4.1 Resource Model
	4.4.1.1 Parallel versus Dedicated Resources
	4.4.1.1.1 Identical, Uniform and Unrelated Parallel Resources
	4.4.1.1.2 Flow, Open and Job Shops Dedicated Resources

	4.4.2 Job Model
	4.4.2.1 Dependent Jobs versus Independent Jobs
	4.4.2.1.1 DAG Workflows versus Non-DAG Workflows
	4.4.2.1.2 Bag-of-Tasks versus Divisible Load

	4.4.3 Performance Metrics
	4.4.3.1 Job-Centric versus Resource-Centric Metrics

	4.4.4 Scheduler Model
	4.4.4.1 Organisation
	4.4.4.1.1 Centralised versus Decentralised
	4.4.4.1.2 Distributed versus Non-Distributed
	4.4.4.1.3 Cooperative versus Non-Cooperative

	4.4.4.2 Scheduling Policy
	4.4.4.2.1 Stochastic versus Deterministic
	4.4.4.2.2 Clairvoyant versus Non-Clairvoyant
	4.4.4.2.3 Static versus Dynamic
	4.4.4.2.4 Immediate versus Batch
	4.4.4.2.5 Adaptive versus Non-Adaptive
	4.4.4.2.6 Local versus Global
	4.4.4.2.7 Self-Scheduling versus Non-Self Scheduling
	4.4.4.2.8 Best Effort versus QoS

	4.4.4.3 Scheduling Procedure
	4.4.4.3.1 Optimum versus Sub-Optimum Algorithms
	4.4.4.3.2 Approximation versus Heuristic

	4.5 Grid Resource Scheduling
	4.5.1 Characteristics of Current Grid Schedulers
	4.5.1.1 Centralised and Hierarchical Schedulers
	4.5.1.2 Static Clairvoyant Schedulers
	4.5.1.3 Lack of Dedicated Access to Resources
	4.5.1.4 Heterogeneous Resources
	4.5.1.5 High Communication Latency

	4.5.2 Examples of Grid Schedulers
	4.5.2.1 A Resource-Centric Scheduler: Condor
	4.5.2.2 A Job Centric Scheduler: Legion
	4.5.2.3 An Economy-Based Scheduler: Nimrod/G

	4.6 Conclusion
	4.7 References

	Chapter 5HoPe: A Honeybee Inspired Scheduler
	5.1 Introduction
	5.2 Scheduling Problem in PM-Grids
	5.3 HoPe Requirements
	5.4 Broad Hypothesis
	5.4.1 Why a Heuristic Approach?
	5.4.2 Why Honeybee Colony-based Inspiration?
	5.4.3 Why Stability as a Scheduling Objective?

	5.5 The Nectar Acquisition Process (NAP)
	5.5.1 Abstract Algorithms
	5.5.1.1 Forager Bee Abstract Algorithm
	5.5.1.2 Receiver Bee Abstract Algorithm

	5.5.2 Abstract Queuing Model
	5.5.3 Formulation of the NAP Scheduling Problem
	5.5.3.1 Nectar Collection Course
	5.5.3.2 Honey Processing Course

	5.5.4 Main Features
	5.5.4.1 Decentralised Self-Control Policy
	5.5.4.2 Non-Clairvoyant Adaptive Scheduling Policy
	5.5.4.3 Easily Calculated Local Control Variables
	5.5.4.4 Reliable Communication Scheme
	5.5.4.5 Economic Communication Scheme
	5.5.4.6 Non-Competitive Cooperative Behaviour

	5.5.5 Elements of Honeybee Colony and NAP
	5.5.5.1 Elements of Honeybee Colony

	Agents:
	Places:
	5.5.5.2 Elements of NAP

	Communication elements:
	Communication means:
	Communication techniques:
	Parameters:
	5.6 From Inspiration to Algorithm
	5.6.1 Mapping between PM-Grid and Honeybee Elements
	5.6.2 HoPe Elements

	HoPe design includes the following groups of elements:
	Communication elements:
	Communication media:
	Communication techniques:
	Parameters:
	5.6.3 Mapping between NAP and HoPe Elements
	5.6.4 HoPe Algorithms
	5.7 Related Work
	5.8 Conclusion
	5.9 References

	Chapter 6Evaluation and Results
	6.1 Introduction
	6.2 Evaluation Objectives
	6.3 Experimental Design
	6.4 Resource Scheduling Framework in PM-Grids
	6.4.1 Resource model
	6.4.2 Job model
	6.4.3 Performance Metrics
	6.4.4 Scheduler Model
	6.4.4.1 HoPe
	6.4.4.2 Opportunistic Scheduling Heuristic (OSH)

	6.5 PM-Grid Simulator
	6.6 Performance Models
	6.7 Experiments
	6.8 Results, Performance Models and Discussion
	6.8.1 Stability
	6.8.1.1 Results
	6.8.1.2 Discussion
	6.8.1.3 Stability Models

	6.8.2 Throughput
	6.8.2.1 Results
	6.8.2.2 Discussion
	6.8.2.3 Throughput Models

	6.8.3 Turnaround Time (TT)
	6.8.3.1 Results
	6.8.3.2 Discussion
	6.8.3.3 TT Models

	6.8.4 Speedup
	6.8.4.1 Results
	6.8.4.2 Discussion
	6.8.4.3 Speedup Models

	6.9 Conclusion
	6.10 References

	Chapter 7Conclusion and Future Research
	7.1 Summary
	7.2 Conclusion
	7.3 Future Research
	7.3.1 Short Term Future Research
	7.3.1.1 PM-Grids
	7.3.1.2 HoPe
	7.3.1.3 Stability Performance Measure
	7.3.1.4 Real Test-bed and Workload
	7.3.1.5 Benchmark Algorithms

	7.3.2 Long Term Future Research
	7.3.2.1 PM-Grids
	7.3.2.2 HoPe
	7.3.2.3 Open Issues

	7.4 References

	 Publications based on this Thesis

