
Checking Experiments for Stream X-Machines

Robert M. Hierons

Department of Information Systems and Computing, Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK

Abstract

Stream X-machines are a state based formalism that has associated with it a
particular development process in which a system is built from trusted com-
ponents. Testing thus essentially checks that these components have been
combined in a correct manner and that the orders in which they can occur
are consistent with the specification. Importantly, there are test genera-
tion methods that return a checking experiment: a test that is guaranteed
to determine correctness as long as the implementation under test (IUT) is
functionally equivalent to an unknown element of a given fault domain Ψ.
Previous work has show how three methods for generating checking experi-
ments from a finite state machine (FSM) can be adapted to testing from a
stream X-machine. However, there are many other methods for generating
checking experiments from an FSM and these have a variety of benefits that
correspond to different testing scenarios. This paper shows how any method
for generating a checking experiment from an FSM can be adapted to gen-
erate a checking experiment for testing an implementation against a stream
X-machine. This is the case whether we are testing to check that the IUT
is functionally equivalent to a specification or we are testing to check that
every trace (input/output sequence) of the IUT is also a trace of a nonde-
terministic specification. Interestingly, this holds even if the fault domain
Ψ used is not that traditionally associated with testing from a stream X-
machine. The results also apply for both deterministic and nondeterministic
implementations.

Keywords: Stream X-machines, test generation, checking experiment

Email address: rob.hierons@brunel.ac.uk (Robert M. Hierons)

Preprint submitted to Elsevier May 7, 2010

1. Introduction

Many classes of system, such as reactive systems and communications
protocols, are state based. This has led to interest in languages for describing
state based models and methods for testing from such models. While there
has been much interest in testing from finite state machines (FSMs) (see,
for example, [1, 2, 3, 4]), FSMs do not model internal data and so are not
always appropriate. Where it is important to describe the data, modelling
languages/approaches such as stream X-machines [5, 6, 7], SDL [8], and
statecharts [9], are often used.

A fault domain is a set Φ of models with the property that the tester
believes that the implementation under test (IUT) behaves like an unknown
element of Φ. Fault domains can be used to capture known (or believed)
properties of the IUT and allow us to reason about test effectiveness relative
to the fault domain. For example, we might wish to prove that a test suite
T determines correctness relative to a fault domain Ψ: all faulty elements
of Ψ fail T and all other element of Ψ pass T . Such a test suite has been
called a checking experiment in the context of FSMs (see, for example, [10,
2, 11]) and in this paper the term checking experiment is used for both
FSMs and stream X-machines. Note that sometimes the term fault domain
is also used to denote a set of alternative implementations that have been
produced by changing the IUT and it is possible for this set to not contain
any implementations that conform to the specification. However, we use the
term as described above and in contrast to the notion of a fault model, which
is a set of models that do not conform to the specification [12].

Stream X-machines are a state based formalism that has associated with
it a particular development methodology. In this methodology, the system is
built from trusted components that correspond to relations or functions used
in the specification. These components are assumed to be correct, potentially
as a result of them having been tested in a previous phase based on stream
X-machines for the components. Testing can then be seen as checking that
these components interact in an appropriate manner [13]. The testing process
can therefore been seen as integration testing. The primary interest in stream
X-machines has been software development but they have also been used to
model biological agents [14, 15, 16] and NASA has discussed using them in
the development of swarm satellite systems [17].

There has been interest in the automatic generation of test suites from a
stream X-machine (see, for example, [18, 19, 20, 21, 22, 23, 24, 6, 13, 7, 25,

2

26]). It has been found that if certain restrictions, called specify for test con-
ditions, are placed on the stream X-machine specifications then some check-
ing experiment generation techniques for FSMs can be adapted to stream
X-machines with corresponding fault domains. The resulting tests are guar-
anteed to determine correctness as long as the IUT is functionally equivalent
to an element of the fault domain. This has been done for the W-method
[1, 27], the Wp method [25, 28], and state counting [23, 29]. However, there
are many other methods for automatically generating checking experiments
from FSMs (see, for example, [1, 10, 2, 30, 3, 4]) and potentially alternative
fault domains and it is natural to ask whether any of these can be used in
testing from a stream X-machine. This is the problem solved in this paper:
we prove that all checking experiment generation algorithms for FSMs can
be used when testing an IUT against a stream X-machine.

The results in this paper make two major contributions to the field of
automating testing from a stream X-machine. First, we show how to adapt
any checking experiment generation algorithm, for FSMs, when testing from
a stream X-machine that satisfies the traditional specify for test conditions.
The resultant test is guaranteed to determine whether the IUT is correct as
long as it is functionally equivalent to an element of the fault domain used.
Second, we show that this is valid even if the fault domain is not the one
used in previous work on testing from a stream X-machine, which places an
upper bound on the number of states of the IUT. The results thus allow
testers to utilise a wider range of checking experiment generation algorithms
in addition to those previously used and also to consider alternative fault
domains. The results are proved for two notions of correctness: for testing to
determine whether the IUT and specification are equivalent and for testing
to determine whether the traces (input/output sequences) of the IUT are
also traces of the specification. The results apply with both deterministic
and nondeterministic implementations.

This paper is structured as follows. Section 2 describes the notation used
in the paper and provides relevant definitions and results regarding finite
automata, finite state machines, and stream X-machines. Section 3 then
shows how problems regarding testing an IUT against a stream X-machine
can be transformed into problems of testing from finite automata. We then
show how problems of testing from finite automata can be transformed into
problems of testing against finite state machines, Sections 4 and 5 considering
testing for equivalence and inclusion respectively. Section 6 then makes a
number of practical observations while Section 7 draws conclusions.

3

2. Preliminaries

2.1. Basic notation

Throughout this paper we let ε denote the empty sequence and the name
of a variable has a bar above it (for example z̄) if the variable represents a
sequence. Given a set X, P(X) will denote the powerset of X and X∗ will
denote the set of finite sequences of elements of X. Given a relation f of
type X ↔ Y , dom f denotes the set of elements of X for which f is defined:
dom f = {x ∈ X|∃y ∈ Y.(x, y) ∈ f}.

This paper proves that there is a correspondence between tests for stream
X-machines and tests for FSMs and does so by considering tests for finite
automata. In testing against a stream X-machine or finite state machine
we apply an input sequence and observe an input/output sequence, called a
trace. A test suite is a set of input sequences to be used in testing. We use
the following notation for test suites: we use TA and its variants (priming
etc.) to denote test suites used with finite automata, TF and its variants to
denote test suites used with FSMs and TX and its variants to denote test
suites used with stream X-machines.

2.2. Finite Automata

A finite automaton (FA) N is defined by a tuple (S, s0, Z, δ,Γ) in which
S is a finite set of states, s0 ∈ S is the initial state, Z is the finite alphabet, δ
is the state transfer relation of type S×Z ↔ S, and Γ ⊆ S is the set of final
states. If s′ ∈ δ(s, z) then (s, s′, z) is a transition of N with starting state
s and ending state s′. A sequence (s0, s1, z1) . . . (sk−1, sk, zk) of consecutive
transitions, whose first transition has starting state s0, is a path that has
ending state sk and label z1, . . . , zk.

If N receives z ∈ Z when in state s ∈ S it moves to a state in the
set δ(s, z). The state transfer relation δ can be extended to sequences in
Z∗ in the usual way: δ(s, ε) = {s} and for z ∈ Z, z̄ ∈ Z∗ we have that
δ(s, z̄z) = {s′ ∈ S|∃s′′ ∈ δ(s, z̄).s′ ∈ δ(s′′, z)}. The FAN defines the language
L(N) = {z̄ ∈ Z∗|δ(s0, z̄) ∩ Γ 6= ∅} of sequences that can take it to a final
state. Clearly L(N) is the set of labels of paths of N that have ending state
in Γ.

FA N = (S, s0, Z, δ,Γ) is deterministic if for all s ∈ S and z ∈ Z there
is at most one possible next state and so |δ(s, z)| ≤ 1. Two FA are equiv-
alent if they define the same language. Given FA N , there is an equivalent
deterministic FA [31]. A deterministic FA (DFA) is minimal if there is no

4

equivalent DFA with fewer states. Since any FA can be rewritten to an
equivalent minimal DFA [3] we only consider minimal DFA in this paper.

In this paper we will use FA as an intermediate step between finite state
machines and stream X-machines, which we define later. Since we are inter-
ested in distinguishing models we describe here what it means for a sequence
from Z∗ to distinguish two FA and also what it means for a set of sequences
from P(Z∗) to distinguish between an FA and a set of FA. The context will
be one FA N that represents the specification and another FA N ′ that rep-
resents the implementation and depending on the testing context we will
require either that L(N ′) = L(N) or L(N ′) ⊆ L(N).

Definition 1. Let N and N ′ be FA and Ψ a set of FA. A sequence z̄ ∈ Z∗
distinguishes N from N ′ under equivalence if either z̄ ∈ L(N)\L(N ′) or z̄ ∈
L(N ′) \ L(N). A set TA ∈ P(Z∗) distinguishes N from Ψ under equivalence
if for all N ′ ∈ Ψ such that L(N ′) 6= L(N) there exists z̄ ∈ TA such that z̄
distinguishes N from N ′ under equivalence.

Definition 2. Let N and N ′ be FA and Ψ a set of FA. A sequence z̄ ∈ Z∗
distinguishes N from N ′ under inclusion if z̄ ∈ L(N ′) \ L(N). A set TA ∈
P(Z∗) distinguishes N from Ψ under inclusion if for all N ′ ∈ Ψ such that
L(N ′) 6⊆ L(N) there exists z̄ ∈ TA such that z̄ distinguishes N from N ′ under
inclusion.

In practice, the set Ψ of FA will be a fault domain: a set of models
such that the tester believes that the implementation is equivalent to an
unknown element of Ψ. Normally the set Ψ is allowed to contain models
that correspond to correct implementations and this is why we allow a set
T ∈ P(Z∗) to distinguish N from Ψ even if some elements of Ψ are correct
implementations. We will discuss fault domains further when describing
finite state machines and stream X-machines.

2.3. Finite State Machines

While finite automata are highly appropriate for defining languages, they
do not distinguish between input and output. Thus, when defining a reactive
system, which responds to input by providing output, it is more usual to use
a finite state machine. A (completely specified) finite state machine (FSM)
R is defined by a tuple (S, s0, X, Y, δ) in which S is a finite set of states,
s0 ∈ S is the initial state, X is the finite input alphabet, Y is the finite

5

output alphabet, and δ is the state transfer relation of type S ×X ↔ S × Y
such that for all s ∈ S and x ∈ X, δ(s, x) 6= ∅. In this paper we only consider
completely specified FSMs.

If R receives input x when in state s it produces an output y and moves
to a state s′ such that (s′, y) ∈ δ(s, x) and this defines a transition (s, s′, x/y).
A path of R is a sequence (s0, s1, x1/y1), . . . , (sk−1, sk, xk/yk) of consecu-
tive transitions that starts at the initial state of R. Such a path has label
x1/y1, . . . , xk/yk and ending state sk.

As with FA, the relation δ can be extended to input sequences: δ(s, ε) =
{(s, ε)} and for all s ∈ S, x ∈ X and x̄ ∈ X∗ we have that δ(s, x̄x) =
{(s′, ȳy)|∃s′′ ∈ S.(s′′, ȳ) ∈ δ(s, x̄) ∧ (s′, y) ∈ δ(s′′, x)}. FSM R also defines a
language: the set of input/output sequences that can occur from the initial
state. More formally, given FSM R = (S, s0, X, Y, δ) we have that L(R) =
{x̄/ȳ|∃s ∈ S.(s, ȳ) ∈ δ(s, x̄)}. Given an input sequence x̄ we let R(x̄) =
{x̄′/ȳ′ ∈ L(R)|x̄ = x̄′}.

In testing from an FSM we compare the observed behaviour of the IUT
with that of the specification. There are two standard notions of an im-
plementation FSM R′ being correct relative to a specification FSM R: ei-
ther we require the implementation to be equivalent to the specification
(L(R′) = L(R)) or that every behaviour of the implementation is also a
behaviour of the specification (L(R′) ⊆ L(R)) and this latter notion of cor-
rectness is typically called conformance. These two different notions of cor-
rectness again lead to two notions of distinguishing FSMs.

Definition 3. Given FSMs R and R′ with the same input alphabet, a se-
quence x̄ ∈ X∗ distinguishes R from R′ under equivalence if R(x̄) 6= R′(x̄).
A set TF ∈ P(X∗) distinguishes R from a set Ψ of FSMs under equivalence
if for all R′ ∈ Ψ either L(R) = L(R′) or there exists x̄ ∈ TF such that x̄
distinguishes R from R′ under equivalence. The set TF is then said to be a
checking experiment for R with Ψ under equivalence.

Definition 4. Given specification FSM R and FSM R′ with the same in-
put alphabet, a sequence x̄ ∈ X∗ distinguishes R from R′ under inclusion if
R′(x̄) 6⊆ R(x̄). A set TF ∈ P(X∗) distinguishes R from a set Ψ of FSMs
under inclusion if for all R′ ∈ Ψ either L(R′) ⊆ L(R) or there exists x̄ ∈ TF
such that x̄ distinguishes R from R′ under inclusion. The set TF is then said
to be a checking experiment for R with Ψ under inclusion.

6

The set Ψ used is usually a fault domain that describes the types of
faults that the tester believes can happen: the tester believes that the IUT
is equivalent to an element of Ψ. Most work on testing from FSMs either
uses the fault domain where the number of states of the FSM that represents
the IUT is no greater than the number of states of the specification FSM
(see, for example, [10, 2, 32, 11]) or places an upper bound on the number
of states of the FSM that represents the IUT (see, for example, [1, 30, 28]).
However, in principle any fault domain can be used.

2.4. Stream X-Machines

There has been much interest in testing from FSMs since they can be
used to model many state based systems. However, they do not model data
and guards on transitions (state transfers) and so there has also been inter-
est in more expressive types of models such as stream X-machines. In this
section we give standard definitions of stream X-machines and associated no-
tation (see, for example, [23]). A stream X-machine has a set of states, there
are transitions between states that are labelled with relations, and there is
an internal memory. Formally, a stream X-machine is defined by a tuple
(In,Out, S,Mem,Φ, F, s0,m0,Γ) [7] in which:

• In is the input alphabet.

• Out is the output alphabet.

• S is the finite set of states.

• Mem is the memory. Mem need not be finite.

• Φ is the finite set of processing relations, of type Mem× In↔ Out×
Mem.

• F is the next state relation of type S × Φ↔ S.

• s0 ∈ S is the initial state.

• m0 ∈Mem is the initial memory.

• Γ is the set of final states.

7

Insert

Change TopUp

Vend

Vending Managing

Collect

SwitchU

SwitchM

Figure 1: The Vending Stream X-Machine MV

Consider, for example, the stream X-machine MV for a simply vending
machine shown in Figure 1; this was originally described in [22]. As stated
in [22], this stream X-machine operates in the following way. MV has BUT-
TONS that are input devices and Lights provide output. The V button
requests the vending of a chocolate: if sufficient payment has been received
then this occurs, the Choc light is activated and the current balance is up-
dated. Otherwise the NoVend light is activated. The chocolate costs 20.
The other operation that the customer sees is the function that allows the
customer to insert money: this is triggered by the input of a coin. The input
is represented by the coin value and a label that represents the coin being in-
put at slot UserIn. There are two coin values: 10 and 20. The machine has
an LCD display which displays the amount of credit the machine possesses
when the user inserts coins. There is a C button, which requests change
(the current balance) to be returned. This simply returns the change to the
customer through a particular slot. This relation is nondeterministic since
there may be several alternative choices regarding the coins returned: it is
sufficient that these coins are in the machine and that their values sum to
the correct value. The memory is a tuple that specifies how many of each
type of coin is currently in the machine and the current balance. A memory
value of (x, y, z) represents there being x coins of value 10, y coins of value
20, and a current balance of z.

8

There is a special set of operations for the manager. The M button,
which is key operated, triggers the operation SwitchM that moves the system
into manager mode. In this mode the E button can be used to empty the
machine of change and the U button is used to leave management mode and
return to user mode. Light ManageOn shows that the machine is switching
to management mode and ManageOff shows that the machine is switching
back to user mode.

The TopUp function allows the manager to add coins to the machine, at
a separate slot to the one used by customers. The input is therefore a coin
value and a label indicating the slot ManagerIn is used and the output is
a message to the screen that shows the coins currently in the machine.

The complete Stream X-machine is given in [22] and so here we indicate
how this can be defined. First, the memory is the set of triples of integers. As
noted above, memory value (x, y, z) represents there being x coins of value
10, y coins of value 20, and a current balance of z. Second, there are two
states Vending and Managing, the initial state is Vending, and the next state
relation is defined by the arcs shown in Figure 1. The processing relations
operate as described above. For example, the Insert relation takes as input a
coin value (10 or 20) and a label that represents the coin being inserted at slot
UserIn. If the memory before this operation was (x, y, z) then there are two
cases: if the coin value was 10 then the memory becomes (x + 1, y, z + 10)
and the output is z + 10 while if the coin value was 20 then the memory
becomes (x, y + 1, z + 20) and the output is z + 20.

Since stream X-machines are typically used to model reactive systems it
is normal to assume that all states are final states (Γ = S) and we make this
assumption throughout this paper. We can abstract away the relations on
the transitions of a stream X-machine to define a FA called the associated
automaton.

Definition 5. Given stream X-machine M = (In,Out, S,Mem,Φ, F, s0,m0,Γ),
the associated automaton A(M) is the FA (S, s0,Φ, F,Γ).

In analysing a stream X-machine M we will need to reason about paths
of M and the relations defined by these and we introduce notation in order
to assist with this. Since we only consider deterministic, minimal FA in
this paper, for any stream X-machine M considered we make the normal
assumption that the FA A(M) is minimal and deterministic and thus that F

9

is a function1. Note that M can still be nondeterministic since a relation in Φ
need not be a function and there can be a state s and relations f and f ′ with
overlapping input domains such that (s, f) ∈ dom F and (s, f ′) ∈ dom F .
We now give definitions based on those in [23].

A sequence σ̄ of elements from Φ defines a relation ‖σ̄‖ of type Mem ×
In∗ ↔ Out∗ ×Mem corresponding to the possible results of executing the
relations from σ̄ in the given order.

Definition 6. Given σ̄ ∈ Φ∗, ‖σ̄‖ of type Mem × In∗ ↔ Out∗ ×Mem, is
defined by the following in which f ∈ Φ and σ̄′ ∈ Φ∗.

‖ε‖ = {((m, ε), (ε,m))|m ∈Mem}

‖σ̄f‖ = {((m, x̄x), (ȳy,m′))|∃m′′ ∈Mem.((m, x̄), (ȳ, m′′)) ∈ ‖σ̄‖
∧((m′′, x), (y,m′)) ∈ f}

A stream X-machine starts with memory m0 and so a sequence σ̄ of
processing relations defines a relation 〈σ̄〉 formed by restricting ‖σ̄‖ to the
case where the initial memory is m0.

Definition 7. Given sequence σ̄ of processing relations, 〈σ̄〉 is the relation
of type In∗ ↔ Out∗ defined in the following way:

〈σ̄〉 = {(x̄, ȳ)|∃m ∈Mem.((m0, x̄), (ȳ, m)) ∈ ‖σ̄‖}

Consider, for example, MV and the sequence (Insert Vend) that involves
inserting a coin and then pressing vend. There are two possible inputs for the
first operation: either input of 10 at UserIn or input of 20 at UserIn. As a
result ‖ Insert Vend ‖ is the set {((0, 0, 0), (10,UserIn) V , 10 NoVend, (1, 0, 10)),
((0, 0, 0), (20,UserIn) V , 20 Choc, (0, 0, 0))}. Further, 〈 Insert Vend 〉 is the
set {((10,UserIn) V , 10 NoVend), ((20,UserIn) V , 20 Choc)}.

Since M defines a set of paths, those that lead to final states, and each
path defines a relation of type In∗ ↔ Out∗, M defines a relation bMc, of
type In∗ ↔ Out∗.

1This is not a significant restriction since any FA can be converted to an equivalent
minimal deterministic FA.

10

Definition 8. Given Stream X-machine M , bMc is the relation defined by
the following:

bMc =
⋃

σ̄∈L(A(M))

〈σ̄〉

Given a stream X-machine M and input sequence x̄, bMc(x̄) thus denotes
the set of output sequences that M can produce in response to x̄. The
stream X-machine M has an input domain: that of bMc. Given a stream
X-machine M , the input domain of M , dom M , is defined by: dom M =
{x ∈ In∗|∃y.y ∈ Out∗ ∧ (x, y) ∈ bMc}. Stream X-machine M is completely
specified if dom M = In∗.

In this paper we only consider completely specified stream X-machines,
however, if a stream X-machine M is not completely specified then it is
possible to complete M by adding an error state (see, for example, [23]).

2.5. Conformance relations

It is necessary to say what we mean by an implementation conforming to a
specification stream X-machine and again we use two notions of conformance.
One is that the IUT and specification are equivalent and the other is that
every behaviour (input/output sequence) of the implementation is also a
behaviour of the specification. We call the latter conformance under inclusion
in order to distinguish it from conformance under equivalence.

Definition 9. Given completely specified stream X-machines M and M ′ with
the same input and output alphabets, M ′ conforms to M under equivalence
if and only if bM ′c = bMc. Further, an input sequence x̄ distinguishes M
from M ′ under equivalence if bM ′c(x̄) 6= bMc(x̄).

Definition 10. Given completely specified stream X-machines M and M ′

with the same input and output alphabets, M ′ conforms to M under inclusion
if and only if bM ′c ⊆ bMc. Further, an input sequence x̄ distinguishes M
from M ′ under inclusion if bM ′c(x̄) 6⊆ bMc(x̄).

We can extend the notion of a checking experiment for an FSM to a
checking experiment for a stream X-machine.

Definition 11. Let M be a stream X-machine and let Ψ be a set of stream
X-machines with the same input and output alphabets that denotes a fault
domain. Then a set TX of input sequences is a checking experiment for M
given Ψ under equivalence if for all M ′ ∈ Ψ with bM ′c 6= bMc there exists
some x̄ ∈ TX such that bM ′c(x̄) 6= bMc(x̄).

11

Definition 12. Let M be a stream X-machine and let Ψ be a set of stream
X-machines with the same input and output alphabets that denotes a fault
domain. Then a set TX of input sequences is a checking experiment for M
given Ψ under inclusion if for all M ′ ∈ Ψ with bM ′c 6⊆ bMc there exists some
x̄ ∈ TX such that bM ′c(x̄) 6⊆ bMc(x̄).

2.6. Specify for test conditions and test hypotheses

The work on testing from stream X-machines traditionally places two
restrictions on the stream X-machines considered: the specify for test condi-
tions place restrictions on the specification stream X-machine while the test
hypotheses place restrictions on the stream X-machine that models the IUT.
Originally these were all grouped together under the name design for test
conditions. The idea is that the specify for test conditions can be ‘designed
into’ a system in order to assist testing while the test hypotheses represent
beliefs about the IUT that allow us to restrict the set of models that could
represent the IUT and to reason about test effectiveness. The notion of
test hypothesis here is similar to that used in other areas of testing from
a formal specification [33, 34, 35, 36] and relates strongly to the concept
of a fault domain. Naturally, the test hypotheses are much less restrictive
than the specify for test conditions. We first describe the traditional specify
for test conditions for testing from a stream X-machine (see, for example
[22, 7, 37, 25]).

The set Φ of processing relations in M is output distinguishable if from
observing an input/output pair from a known memory we can determine
which relation was applied. This condition holds if, given any two different
f1, f2 ∈ Φ, memory value m ∈ M, and input x ∈ I, the two relations
cannot lead to the same output value in response to x when the memory is
m. This property allows the tester to determine which relation from Φ has
been executed based on observed input/output behaviour (see, for example,
[22, 7]).

Definition 13. Φ is output distinguishable if for all f1, f2 ∈ Φ with f1 6= f2,
all x ∈ In, y ∈ Out, and m,m′ ∈ M such that ((m,x), (y,m′)) ∈ f1, there
does not exist m′′ ∈M such that ((m,x), (y,m′′)) ∈ f2.

Consider the stream X-machine MV . Its set of processing relations is
output distinguishable since the different processing relations send output to
different devices such as lights, the screen, and the slots that output coins.

12

The set Φ of processing relations in M is observable if for every f ∈ Φ,
from the memory value before f is applied, the input used and the output
produced we can determine the new memory value after f has been applied.
This allows the tester to determine the expected memory based on the input
and the output observed (as long as Φ is output distinguishable) [22]. If
this property does not hold then it is difficult for the tester to determine the
next input to be applied in order to trigger a given relation f ′ since this can
depend on the unknown memory value.

Definition 14. Φ is observable if for all f ∈ Φ, x ∈ In,m ∈ M we have
that

(y1,m1), (y2,m2) ∈ f(m,x)⇒ ((y1 = y2)⇒ (m1 = m2)).

Consider again MV . All but one of the processing relations are deter-
ministic and so are trivially observable. The exception is the button that
leads to change being returned. This is observable since the memory after
the operation is fully defined by the coins in the machine (specified by the
memory) before the operation and the coins output.

The set Φ of processing relations in M is complete if for each f ∈ Φ and
memory m, the tester can always apply an input that is capable of triggering
f . Naturally, this does not require there to be a transition with label f from
every state, just that if there is such a transition then we can always choose
an input to trigger it.

Definition 15. Φ is complete if for all m ∈ M and f ∈ Φ there exists
x ∈ In such that (m,x) ∈ dom f .

It is straightforward to show that the set of relations of MV is complete.
The following are the specify for test conditions.

Definition 16. Stream X-machine M = (In,Out, S,Mem,Φ, F, s0,m0, S)
has the specify for test conditions if the following hold:

1. Φ is output distinguishable;

2. Φ is observable; and

3. Φ is complete.

13

While these specify for test conditions place restrictions on the stream
X-machine M used to specify or design the required behaviour, a stream X-
machine that does not satisfy these conditions can be rewritten to one that
does [7]. This process of rewriting M can involve adding new inputs and
outputs but these could either be removed or hidden in the final system.

Some work has looked at weakening the specify for test conditions [24, 25,
26] but has focussed on the use of particular FSM test generation techniques.
It would be interesting to generalise the results in this paper to weaker specify
for test conditions but this is a problem for future work.

We now describe the test hypotheses, which assume that the IUT I be-
haves like an unknown stream X-machine MI = (In,Out, S ′,Mem,Φ′, F ′,
s′0,m0, S

′). The approaches to testing from stream X-machines essentially
assume that the IUT has been built out of ‘correct’ components, possibly as
a result of the IUT having been built out of components that are known to be
correct or through these components having previously been tested. As a re-
sult faults can only occur through an incorrect state transition structure [7].
If we are testing for equivalence then this assumption that the IUT is built
out of trusted components corresponds to saying that M and MI have the
same sets of processing relations (Φ′ = Φ). When testing for conformance,
we make the weaker assumption that each element of the set Φ′ of relations
of MI conforms to a relation in M [23].

Definition 17. Given f ′ ∈ Φ′ and f ∈ Φ, we say that f ′ conforms to f ,
written f ′ ≤ f , if dom f ′ = dom f and f ′ ⊆ f . Further, we write Φ′ ≤ Φ if
for all f ′ ∈ Φ′ there exists f ∈ Φ such that f ′ ≤ f .

It is possible to extend ≤ to take sequences of relations in the natural
way [22].

Based on Φ being output distinguishable, it is straightforward to show2

that under the specify for test conditions, for every f ′ ∈ Φ′ there is exactly
one f ∈ Φ such that f ′ ≤ f and the relation f will be denoted absΦ(f ′).
Reasoning about A(MI) and A(M) is simplified if we use the same alphabet
Φ rather than separate alphabets Φ and Φ′ and this leads to the following
definition of the abstraction AbsΦ(MI) of MI produced by replacing each
relation f ′ in A(MI) by the unique relation f ∈ Φ such that f ′ ≤ f .

2This is proved in [23].

14

Definition 18. Given stream X-machine MI = (In,Out, S ′,Mem,Φ′, F ′, s′0,m0, S
′)

and relation set Φ such that Φ′ ≤ Φ, AbsΦ(MI) is the automaton (S ′, s′0,Φ, F
′′, S ′)

such that F ′′ is defined by the following.

F ′′ = {((s′i, absΦ(f ′)), s′j)|((s′i, f ′), s′j) ∈ F ′}

The following result, which is Proposition 2 in [23], shows that if Φ′ ≤ Φ
and Φ satisfies the specify for test conditions then Φ′ also satisfies some of
these conditions.

Proposition 1. Let us suppose that stream X-machine M = (In,Out, S,
Mem,Φ, F, s0,m0, S) satisfies the specify for test conditions. If Φ′ ≤ Φ then
Φ′ is complete and observable.

It is now possible to formally state the test hypotheses for the case where
we have a fault domain Ψ.

Definition 19. Let M = (In,Out, S,Mem,Φ, F, s0,m0, S) be a stream X-
machine, I the IUT, and Ψ the fault domain. The IUT is said to satisfy the
test hypotheses if the following hold:

1. I behaves like an unknown stream X-machine MI = (In,Out, S ′,Mem,
Φ′, F ′, s′0,m0, S

′) such that A(MI) is deterministic and minimal;

2. Φ′ ≤ Φ;

3. MI ∈ Ψ.

The first two test hypotheses correspond to the IUT being built out of
correct components while the last one says that the IUT is equivalent to a
member of the given fault domain. Note that previous work on testing from
a stream X-machine has considered one particular fault domain, in which
there is a known upper bound on the number of states of MI . However, in
this paper we show that it is possible to use any fault domain Ψ: we can
utilise checking experiment generation algorithms for the corresponding FSM
problem where such algorithms exist.

If the IUT is nondeterministic then we have the usual problem that we
have to repeat tests in order to observe the alternative responses of the IUT
to these tests. If the nondeterminism is due to concurrency then we might
be able to use methods such as deterministic testing [38, 39] or reachability
testing [40] in order to ensure that all relevant interleavings are tested. This

15

can be generalised by making an assumption, called the complete testing
assumption (see, for example, [41]), that it is sufficient to repeat a test k
times for some prior k. Naturally, the value of k used may increase for
longer test sequences and this may favour checking experiments that consist
of many short sequences rather than a few long sequences. Throughout this
paper we make the complete testing assumption. Note that this assumption
holds trivially in one important case: when the IUT is deterministic.

2.7. Test functions

In the literature on testing from a stream X-machine M it is normal to
identify a set of sequences in L(M) and to then test to determine which of
these is implemented in the IUT. The testing problem then reduces to finding
an appropriate set of sequences from Φ∗. An implementation M ′ is said to
implement σ̄ if σ̄ ∈ L(AbsΦ(M ′)). A test function is used in order to test
whether the IUT implements a sequence σ̄ ∈ Φ∗.

The test function has as input an element σ̄ of Φ∗ and returns an input
sequence x̄. If σ̄ ∈ L(M) then the input sequence x̄ returned is in the input
domain of σ̄. Otherwise, x̄ has the property that if σ̄′ is the longest prefix of
σ̄ that is not in L(M) then x̄ is in the input domain of σ̄′. In the first case,
by applying x̄ to the IUT we are checking that a sequence that should be
implemented is actually implemented. In the second case, we are checking
that a sequence that should not be implemented indeed is not.

The following definition is based on one in [7].

Definition 20. A test function for a stream X-machine M is a function t
of type Φ∗ → In∗ that satisfies the following conditions:

1. t(ε) = ε.

2. Let us suppose that σ̄′ ∈ L(M), t(σ̄′) = x̄1, and there exists ȳ1 ∈
Out∗ and m′ ∈ Mem such that ((m0, x̄1), (ȳ1,m

′)) ∈ ‖σ̄′‖ and x̄1/ȳ1

is a behaviour of the IUT. Then choose some such ȳ1 and m′ and let
t(σ̄′f) = x̄1x for some x ∈ In such that (m′, x) ∈ dom f .

3. Let us suppose that σ̄′ ∈ L(M), t(σ̄′) = x̄1, and there exists ȳ1 ∈ Out∗
such that x̄1/ȳ1 6∈ bMc is a behaviour of the IUT. Then t(σ̄′f) = x̄1.

4. Let us suppose that σ̄′ 6∈ L(M) and t(σ̄′) = x̄1. Then t(σ̄′f) = x̄1.

We can make the following observations regarding these rules.

16

1. The first rule is the base case since testing terminates when there are
no more relations in the sequence σ̄ being considered.

2. The second rule is the recursive case where the sequence σ̄′ is contained
in L(M) and so we are looking for an input that can follow x̄1 and
trigger f . The test function chooses some such input. The memory
after x̄1/ȳ1 is known because Φ is observable.

3. The third rule is the recursive case where the sequence σ̄′ is contained
in L(M) but we have already observed a failure x̄1/ȳ1 in applying the
test function and so there is no need to continue.

4. In the last (recursive) rule it is sufficient to determine whether σ̄′ has
been implemented and we can then stop testing.

Observe that the IUT is an implicit parameter of the test function.
Consider the stream X-machine MV and a test function t for this. If we

were to apply t to the sequence σ̄ = Insert Insert Vend then since this se-
quence is in L(A(MV)) the test function could return any input sequence
in the input domain of σ̄. For example, it could return input sequence
(10,UserIn)(20,UserIn)V . In contrast, if we apply t using the sequence
σ̄′ = Vend TopUp TopUp then we find that the shortest prefix of this that is
not in L(A(MV)) is the sequence σ̄′1 = Vend TopUp and so the test function
returns an input sequence such as V(10,ManagerIn) in the input domain
of σ̄′1.

There are many possible test functions for a given stream X-machine and
we assume that some such function has been defined for the specification
M . It is possible to generalise the notion of a test function to a test process,
which is adaptive, and in practice this will make testing more efficient (see, for
example, [23]). However, the use of a test function simplifies the description
and the results in this paper do not depend on whether we use a test process
or a test function.

Recall that we make the complete testing assumption, which is that in
testing an input sequence will be applied sufficiently often to observe all pos-
sible output sequences. We thus introduce the following notation to represent
the set of input/output sequences that can be observed when applying a test
function.

Definition 21. Given a stream X-machines M1, a test function t of type
Φ∗ → In∗ and a sequence σ̄ ∈ Φ∗ such that t(σ̄) = x̄ we let the set of test

17

runs of M1 with t and σ̄ be:

R(t, σ̄,M1) = bM1c(x̄)

Here R(t, σ̄,M1) is exactly the set of input/output sequences that can
occur when we are applying x̄ = t(σ̄) to M1, which could be a stream X-
machine that models the actual behaviour of the IUT. Since we make the
complete testing assumption, we will assume that all of these will be observed
in testing if we are testing an IUT equivalent to M1 with t and σ̄. Recall that
the complete testing assumption always holds in the important case where
the IUT is deterministic.

We now prove a result that shows that under the specify for test conditions
two sequences of relations can have a common input/output sequence if and
only if they are the same sequences.

Proposition 2. Let us suppose that Φ is a observable, output-distinguishable
and complete set of processing relations and σ̄ and σ̄′ are in Φ∗. Then 〈σ̄〉 ∩
〈σ̄′〉 6= ∅ if and only if σ̄ = σ̄′.

Proof
First assume that σ̄ = σ̄′. Since Φ is complete we have that σ̄ and σ̄′ are
feasible and so 〈σ̄〉 6= ∅ and 〈σ̄′〉 6= ∅. Thus, since σ̄ = σ̄′, we have that
〈σ̄〉 ∩ 〈σ̄′〉 6= ∅ as required.

Now assume that 〈σ̄〉 ∩ 〈σ̄′〉 6= ∅. If σ̄ and σ̄′ have different lengths then
we immediately have that 〈σ̄〉 ∩ 〈σ̄′〉 = ∅ and so we can assume that they
have the same length.

We will use proof by induction on the length of σ̄. The base case, of
sequences of length 0, follows immediately. Inductive hypothesis: the result
holds for all sequences of length less than k and we let σ̄ = f1, . . . , fk and
σ̄′ = f ′1, . . . , f

′
k denote sequences of length k. Let σ̄1 = f1, . . . , fk−1 and

σ̄′1 = f ′1, . . . , f
′
k−1. Clearly if 〈σ̄1〉 ∩ 〈σ̄′1〉 = ∅ then 〈σ̄〉 ∩ 〈σ̄′〉 = ∅ and so

we only need to consider the case where 〈σ̄1〉 ∩ 〈σ̄′1〉 6= ∅. By the inductive
hypothesis we know that σ̄1 = σ̄′1. Now consider some input/output sequence
x̄1x/ȳ1y ∈ 〈σ̄1fk〉 ∩ 〈σ̄1f

′
k〉, x ∈ In, y ∈ Out. Since Φ is observable we must

have that the memory value m after input/output x̄1/ȳ1 when applying σ̄1

is uniquely defined. Further, both fk and f ′k can produce input/output x/y
from memory m and so, since Φ is output-distinguishable, we have that
f ′k = fk. The result thus follows. �

18

The following result, which generalises Lemmas 9 and 10 of [23] (for test
processes) to the case where the IUT can be nondeterministic, is the crucial
property of a test function.

Proposition 3. Let us suppose that M = (In,Out, S,Mem,Φ, F, s0,m0, S)
is a specification that satisfies the specify for test conditions, M1 = (In,Out,
S ′,Mem,Φ′, F ′, s′0,m0, S

′) is a stream X-machine and Φ′ ≤ Φ. Further, let
us suppose that t is a test function and σ̄ ∈ Φ∗ such that either σ̄ ∈ L(M) or
σ̄ = σ̄′f for some σ̄′ ∈ L(M) and f ∈ Φ. We have that R(t, σ̄,M1)∩〈σ̄〉 6= ∅
if and only if σ̄ ∈ L(AbsΦ(M1)).

Proof
First assume that we have that R(t, σ̄,M1)∩ 〈σ̄〉 6= ∅ and so we are required
to prove that σ̄ ∈ L(AbsΦ(M1)).

Assume that (x̄, ȳ) ∈ R(t, σ̄,M1) ∩ 〈σ̄〉. Thus, (x̄, ȳ) ∈ bM1c and so
(x̄, ȳ) ∈ 〈σ̄1〉 for some σ̄1 ∈ L(AbsΦ(M1)). Thus, 〈σ̄〉 ∩ 〈σ̄1〉 6= ∅ and so, by
Proposition 2, we have that σ̄ = σ̄1 as required.

Now assume that σ̄ ∈ L(AbsΦ(M1)) and so we need to prove thatR(t, σ̄,M1)∩
〈σ̄〉 6= ∅. This follows immediately from the definition of the test function
since we must have that t(σ̄) is an input sequence x̄ such that x̄ ∈ dom 〈σ̄〉.
�

This essentially says that if we apply a test function t to the M1 with
σ̄ ∈ Φ∗ and one possible resultant input/output sequence is consistent with
σ̄ ((x̄, ȳ) ∈ 〈σ̄〉) then L(AbsΦ(M1)) must contain σ̄ and so σ̄ must have been
implemented.

3. Transforming Stream X-machine problems into FA problems

We have already seen that given a stream X-machine M there is a cor-
responding FA A(M) produced by abstracting out the memory, input, and
output. We also assume that the IUT behaves like an unknown stream X-
machine MI in a fault domain Ψ and thus that the testing problem is one of
deciding whether MI is one of the elements of Ψ that conform to M . If we
let A(Ψ) = {A(M ′)|M ′ ∈ Ψ} be the set of abstractions of elements of the
fault domain then it seems natural to ask whether the problem of deciding
whether MI conforms to M is equivalent to a problem of deciding whether
A(MI) is related to A(M) in some way and whether this can be done for both
testing for equivalence and testing for inclusion. In this section we prove that

19

there is such a correspondence; results in Sections 4 and 5 then show that
each FA problem, under equivalence and inclusion, corresponds to an FSM
problem that can be solved using checking experiments.

We now give results regarding how L(A(M)) and L(A(M ′)) must relate
for stream X-machines M ′ and M such that either bM ′c = bMc or bM ′c ⊆
bMc. These will be used in the proofs of the main results in this section.

Proposition 4. Let us suppose that M and M ′ are stream X-machines with
sets Φ and Φ′ of processing relations with Φ′ ≤ Φ and let N = A(M) and
N ′ = AbsΦ(M ′). Then bM ′c ⊆ bMc if and only if L(N ′) ⊆ L(N).

Proof
First let us suppose that bM ′c ⊆ bMc. We need to prove that L(N ′) ⊆ L(N)
and so it is sufficient to prove that for all σ̄′ ∈ L(N ′) we have that σ̄′ ∈ L(N).

Let σ̄′ be some element of L(N ′). Since Φ is complete we have that
〈σ̄′〉 6= ∅ and thus, since bM ′c ⊆ bMc and 〈σ̄′〉 ⊆ bM ′c there is some sequence
σ̄ ∈ L(N) such that 〈σ̄〉∩ 〈σ̄′〉 6= ∅. But, by Proposition 2 we must have that
σ̄ = σ̄′ and so the result follows.

Now let us suppose that L(N ′) ⊆ L(N). We have that bMc =
⋃
σ̄∈L(N) 〈σ̄〉

and bM ′c =
⋃
σ̄∈L(A(M ′)) 〈σ̄〉. Further,

⋃
σ̄∈L(A(M ′)) 〈σ̄〉 ⊆

⋃
σ̄∈L(N ′) 〈σ̄〉 and so

the result follows. �

Proposition 5. Let us suppose that M and M ′ are stream X-machines with
the same set of processing relations Φ and let N = A(M) and N ′ = A(M ′).
Then bM ′c = bMc if and only if L(N ′) = L(N).

Proof
This follows immediately from Proposition 4 by noting that bM ′c = bMc if
and only if bM ′c ⊆ bMc ∧ bMc ⊆ bM ′c and that L(N ′) = L(N) if and only
if L(N ′) ⊆ L(N) ∧ L(N) ⊆ L(N ′). �

We are now in the position to relate the testing problem for a Stream
X-machine M under equivalence to sequences for the FA A(M).

Theorem 1. Let us suppose that M is a stream X-machine with set Φ of
processing relations that satisfies the specify for test conditions and let N =
A(M). Let Ψ be a fault domain for M such that every element of Ψ has
set Φ of processing relations. If a set TA ∈ P(Φ∗) distinguishes N from fault
domain A(Ψ) under equivalence then the test function t, when applied to each
element of TA and M ′ ∈ Ψ, distinguishes M from M ′ under equivalence.

20

Proof
Let M ′ be some element of Ψ such that bM ′c 6= bMc and assume that the
test function t is being applied to an implementation that is equivalent to M ′.
Let N ′ = A(M ′). Since for all σ̄ ∈ Φ∗ we have that R(t, σ̄,M ′) = bM ′c(x̄)
for x̄ = t(σ̄) it is sufficient to prove that for some σ̄ ∈ TA we have that
R(t, σ̄,M ′) 6= R(t, σ̄,M). By Proposition 5 we know that, since bMc 6=
bM ′c, we have that L(N) 6= L(N ′). Thus set TA ∈ P(Ψ∗) distinguishes N
from N ′ under equivalence and so there is some σ̄ ∈ TA such that either
σ̄ ∈ L(N) \ L(N ′) or σ̄ ∈ L(N ′) \ L(N).

Let σ̄′ denote a shortest prefix of σ̄ such that σ̄′ ∈ L(N) \ L(N ′) or
σ̄′ ∈ L(N ′) \L(N). By the minimality of σ̄′ either σ̄′ ∈ L(N) or σ̄′ = σ̄′′f for
some σ̄′′ ∈ L(N) and f ∈ Φ.

Case 1: σ̄′ ∈ L(N) \ L(N ′). By Proposition 3, R(t, σ̄′,M) ∩ 〈σ̄′〉 6= ∅.
Further, if R(t, σ̄′,M ′) ∩ 〈σ̄′〉 6= ∅ then, by Proposition 3, σ̄′ ∈ L(N ′) and so
we must have that R(t, σ̄′,M ′) ∩ 〈σ̄′〉 = ∅. Thus, R(t, σ̄′,M ′) 6= R(t, σ̄′,M)
and so applying t with σ̄′ distinguishes M and M ′. Clearly, this also holds if
we apply t with σ̄ as required.

Case 2: σ̄′ ∈ L(N ′)\L(N). By Proposition 3 we know that R(t, σ̄′,M ′)∩
〈σ̄′〉 6= ∅. Proof by contradiction: assuming that R(t, σ̄′,M ′) = R(t, σ̄′,M)
and so that R(t, σ̄′,M) ∩ 〈σ̄′〉 6= ∅. By Proposition 3, we must have that
σ̄′ ∈ L(N), providing a contradiction as required. �

The following result is a generalisation of one in [23]3 and will be used for
reasoning about testing under inclusion.

Proposition 6. Let us suppose that M is a stream X-machine with relation
set Φ that satisfies the specify for test conditions and the IUT behaves like
a stream X-machine MI with relation set Φ′ such that Φ′ ≤ Φ. Then MI

conforms to M under inclusion if and only if L(AbsΦ(MI)) ⊆ L(A(M)).

Proof
First let us suppose that MI conforms to M under inclusion and consider
some σ̄ ∈ L(AbsΦ(MI)) and so there is some σ̄′ ∈ L(A(MI)) such that σ̄′ ≤ σ̄.
Since Φ is complete, and so Φ′ is complete, there is some (x̄, ȳ) ∈ 〈σ̄′〉 ⊆ bMIc
and clearly we have that (x̄, ȳ) ∈ 〈σ̄〉. Since MI conforms to M under
inclusion, bMIc ⊆ bMc and so there is some σ̄1 ∈ L(A(M)) with (x̄, ȳ) ∈ 〈σ̄1〉.

3The result in [23] required the IUT to be deterministic

21

Thus 〈σ̄1〉 ∩ 〈σ̄〉 6= ∅ and so, by Proposition 2, σ̄1 = σ̄. Thus σ̄ ∈ L(A(M)),
as required.

We now assume that L(AbsΦ(MI)) ⊆ L(A(M)) and are required to prove
that MI conforms to M under inclusion. Consider some (x̄, ȳ) ∈ bMIc: it is
sufficient to prove that (x̄, ȳ) ∈ bMc. Since (x̄, ȳ) ∈ bMIc there exists some
σ̄′ ∈ L(A(MI)) such that (x̄, ȳ) ∈ 〈σ̄′〉. But, since L(AbsΦ(MI)) ⊆ L(A(M))
there is some σ̄ ∈ L(A(M)) such that σ̄′ ≤ σ̄ and so (x̄, ȳ) ∈ 〈σ̄〉 ⊆ bMc.
The result thus follows. �

We can now relate the notion of a checking experiment for a stream X-
machine M under inclusion and test sequences that distinguish the FA A(M)
from AbsΦ(Ψ) under inclusion.

Theorem 2. Let us suppose that M is a stream X-machine with set Φ of
processing relations that satisfies the specify for test conditions and let N =
A(M). Let Ψ be a fault domain for M and assume that for each element
M ′ ∈ Ψ we have that M ′ has a set Φ′ of processing relations such that
Φ′ ≤ Φ. If a set TA ⊆ L(N) distinguishes N from fault domain AbsΦ(Ψ)
under inclusion then the test function t, when applied to each element of TA
and M ′ ∈ Ψ with bM ′c 6⊆ bMc, distinguishes M from M ′ under inclusion.

Proof
By Proposition 6 we know that M ′ conforms to M under inclusion if and only
if L(AbsΦ(M ′)) ⊆ L(A(M)). We require to prove that for all M ′ ∈ Ψ with
bM ′c 6⊆ bMc there is some σ̄ ∈ TA such that R(t, σ̄,M ′) 6⊆ R(t, σ̄,M). Con-
sider some such M ′ and N ′ = AbsΦ(M ′) and assume that the test function t is
being applied to an implementation that is equivalent to M ′. By Proposition
4 we know that L(N ′) 6⊆ L(N). Since TA distinguishes N from fault domain
AbsΦ(Ψ) under inclusion there is some σ̄ ∈ TA such that σ̄ ∈ L(N ′) \ L(N).

Let σ̄′ denote a shortest prefix of σ̄ such that with σ̄′ ∈ L(N ′) \ L(N).
By the minimality of σ̄′, σ̄′ = σ̄′′f for some σ̄′′ ∈ L(N) and f ∈ Φ. By
Proposition 3, R(t, σ̄′,M ′) ∩ 〈σ̄′〉 6= ∅. Further, by Proposition 3, since
σ̄′ 6∈ L(N) we have that R(t, σ̄′,M) ∩ 〈σ̄′〉 = ∅. We therefore have that
R(t, σ̄′,M ′) 6⊆ R(t, σ̄′,M) and so R(t, σ̄,M ′) 6⊆ R(t, σ̄,M) as required. �

Note that Theorems 1 and 2 operate in one direction but not the other.
That is, we have not proved that if we find a set TA of sequences from Φ∗

such that t applied to the elements of TA distinguishes M from the elements
of Ψ then TA also distinguished A(M) from the elements of AbsΦ(Ψ). In fact,
results need not hold in the opposite direction since if we apply t to an IUT

22

equivalent to M ′ with sequence σ̄, it is possible for the output to distinguish
M ′ from M even if σ̄ 6∈ L(A(M)) and σ̄ 6∈ L(AbsΦ(M ′)): the application of
the test function to the IUT with σ̄ might lead to the application of an input
sequence x̄ that triggers a sequence σ̄′ 6= σ̄ such that σ̄′ 6∈ L(A(M)).

4. Testing for equivalence

We have shown that the problem of finding a checking sequence for a
stream X-machine M with a given fault domain can be solved by considering
the corresponding FA problem and that this can be done both when testing
for equivalence and when testing for inclusion. In this section we show how
the FA problem when testing for equivalence can be converted into a problem
of producing a checking sequence for a particular FSM. As a result, the
problem of producing a checking experiment for a stream X-machineM under
equivalence can be solved by producing a checking experiment for an FSM
generated from M .

If we are interested in testing for equivalence then we need to slightly
adapt what we mean by building the IUT from trusted components. This is
because under this notion of correctness, a component of the IUT conforms
to a relation f in the specification if and only if it is equivalent to f . Thus,
rather than saying that the stream X-machine MI that models the IUT has
a relation set Φ′ such that Φ′ ≤ Φ, we require that MI has relation set Φ.

We now show how checking experiments for FSMs under equivalence can
be used, first relating the problem of distinguishing FA under equivalence to
the problem of distinguishing FSMs under equivalence.

Given FA N with alphabet Z it is possible to define a corresponding
FSM FE(N). Since we are concerned with reactive systems all states are
final states and so we are only interested in such FA.

Definition 22. Given FA N = (S, s0, Z, δ, S) we define the FSM FE(N) =
(S ∪ {se}, s0, Z, {0, 1}, δ′) in which se 6∈ S, for all z ∈ Z we have that
δ(se, z) = {(se, 0)} and for all s ∈ S and z ∈ Z we have that

1. If (s, z) ∈ dom δ and δ(s, z) = s′ then δ′(s, z) = {(s′, 1)}
2. If (s, z) 6∈ dom δ then δ′(s, z) = {(se, 0)}

The basic idea is that as long as the sequence of inputs being applied to
FE(N) corresponds to an element of L(N) the response to an input is 1 but
once this is no longer the case all future outputs are 0.

23

Note that since we only consider deterministic FA, any FSM FE(N) will
also be deterministic. Given a set Ψ of FA we let FE(Ψ) denote the corre-
sponding set of FSMs: FE(Ψ) = {R|∃N ∈ Ψ.R = FE(N)}. The following
shows how L(N) and L(FE(N)) relate.

Proposition 7. Given FA N and R = FE(N) we have that z1, . . . , zk ∈
L(N) if and only if z1/1, . . . , zk/1 ∈ L(R).

Proof
We will prove a slightly stronger result, this being that for FA N and R =
FE(N), z̄ = z1, . . . , zk is the label of a path of N with ending state s ∈ S if
and only if z1/1, . . . , zk/1 is the label of a path of R with ending state s.

We first prove that if z̄ = z1, . . . , zk is the label of a path of N with
ending state s then z1/1, . . . , zk/1 is the label of a path of R with ending
state s. We use proof by induction on the length of the sequence. The result
follows immediately for the base case, which is the empty sequence. Now
let us assume that it holds for all sequences of length less than k > 0 and
consider some z̄ = z1, . . . , zk and state s ∈ S such that z̄ is the label of a
path of N with ending state s. Clearly z1, . . . , zk−1 is the label of a path
of N with ending state s′ for some s′ ∈ S. By the inductive hypothesis,
z1/1, . . . , zk−1/1 is the label of a path of M with ending state s′. It is now
sufficient to observe that in N there is a transition from s′ to s with label zk
and thus in R there is a transition from s′ to s with label zk/1.

We now prove that if z1/1, . . . , zk/1 is the label of a path of R with ending
state s ∈ S then z̄ = z1, . . . , zk is the label of a path of N with ending state
s. Again we use proof by induction on the length of the sequence and the
result follows immediately for the base case, which is the empty sequence.
Now let us assume that it holds for all sequences of length less than k > 0
and consider some z̄ = z1, . . . , zk and state s ∈ S such that z1/1, . . . , zk/1 is
the label of a path of R with ending state s. Clearly z1/1, . . . , zk−1/1 is the
label of a path of R with ending state s′ for some s′ ∈ S. By the inductive
hypothesis, z1, . . . , zk−1 is the label of a path of N with ending state s′. It
is now sufficient to observe that in R there is a transition from s′ to s with
label zk/1 and thus in N there is a transition from s′ to s with label zk. �

It therefore appears that there should be some relationship between sets
of sequences that distinguish an FA N from elements of a fault domain and
checking experiments for FE(N). However, FE(N) is completed through the
addition of a state se and so not all paths in FE(N) correspond to paths of

24

N and so we have to be careful in defining such a relationship. Specifically,
we have to make sure that we do not use a sequence σ̄ to distinguish FE(N)
from some FE(N ′) when σ̄ is not in L(N) and also is not in L(N ′). Given a
checking experiment TF for FE(N), in this paper we overcome this by using
the prefixes of sequences in TF in order to distinguish N from elements of
its fault domain. These prefixes are only required for reasoning about the
FA that corresponds to a stream X-machine: in testing from a stream X-
machine we gain nothing by using prefixes of a test sequence and so can
eliminate them.

We are now in a position to show that for FA N , checking experiments of
FE(N) under equivalence correspond to sequences that distinguish N from
the corresponding fault domain.

Theorem 3. Let us suppose that we have FA N = (S, s0, Z, δ, S) with fault
domain Ψ, R = FE(N) and TF ∈ P(Z∗) is a test suite for R. Let TA denote
the set of prefixes of TF . TF is a checking experiment for R with FE(Ψ) under
equivalence if and only if TA distinguishes N from Ψ under equivalence.

Proof
First assume that TA distinguishes N from Ψ under equivalence and let R′

be an element of FE(Ψ) such that L(R′) 6= L(R). Then we are required to
prove that TF contains a sequence that distinguishes between R′ and R. Let
N ′ denote the FA in Ψ such that R′ = FE(N ′).

By Proposition 7 we know that L(N) 6= L(N ′) and so, since TA distin-
guishes N from Ψ under equivalence we must have that TA distinguishes N
from N ′ under equivalence. There are two cases:

1. There is some z̄ = z1, . . . , zk ∈ TA such that z̄ ∈ L(N)\L(N ′). Thus, by
Proposition 7 we have that z1/1, . . . , zk/1 ∈ L(R) and z1/1, . . . , zk/1 6∈
L(R′) and so z̄ distinguishes R′ and R as required.

2. There is some z̄ ∈ TA such that z̄ ∈ L(N ′) \ L(N). By Proposition 7
we have that z1/1, . . . , zk/1 ∈ L(R′) and z1/1, . . . , zk/1 6∈ L(R) and so
z̄ distinguishes R′ and R as required.

Now assume that TF is a checking experiment for R in FE(Ψ) and let N ′

be an element of Ψ such that L(N ′) 6= L(N). We are required to prove that
TA contains a sequence that distinguishes N from N ′ under equivalence and
we let R′ = FE(N ′).

By Proposition 7 we have that L(R) 6= L(R′) and so, since TF is a checking
experiment for R given FE(Ψ) we must have that TF distinguishes R and R′.

25

Choose some shortest z̄ = z1, . . . , zk ∈ TA that distinguishes R and R′. By
the minimality of z̄ we must have that exactly one of R and R′ responds to
z̄ through a sequence of 1s and so we have two cases:

1. z1/1, . . . , zk/1 ∈ L(R)\L(R′). By Proposition 7 we have that z̄ ∈ L(N)
and z̄ 6∈ L(N ′) and so z̄ distinguishes N from N ′ under equivalence as
required.

2. z1/1, . . . , zk/1 ∈ L(R′)\L(R). By Proposition 7 we have that z̄ ∈ L(N ′)
and z̄ 6∈ L(N) and so z̄ distinguishes N from N ′ under equivalence as
required.

�
We can now put results together to relate checking experiments for FSMs

and stream X-machines under equivalence.

Theorem 4. Let us suppose that M = (In,Out, S,Mem,Φ, F, s0,m0, S) is a
stream X-machine specification with relation set Φ that satisfies the specify for
test conditions. Let us suppose that Ψ is the fault domain used with M and all
elements of Ψ have relation set Φ. If a set TF ⊆ Φ∗ is a checking experiment
for FE(A(M)) with FE(Ψ) under equivalence then the test function t, when
applied to each element of TF and M ′ ∈ Ψ with bM ′c 6= bMc, distinguishes
M from M ′ under equivalence.

Proof
Let TA denote the set of prefixes of sequences in TF . Clearly t, when ap-
plied to each element of TF and M ′ ∈ Ψ, distinguishes M from M ′ under
equivalence if and only if t, when applied to each element of TA and M ′ ∈ Ψ,
distinguishes M from M ′ under equivalence. The result therefore follows
from Theorems 1 and 3. �

It is clear that the processes of producing FE(M) and converting the
resultant checking experiment TF into a checking experiment for M can both
be performed in polynomial time.

5. Testing for inclusion

In this section we show how checking experiments for FSMs can be used
when testing for inclusion. We first relate the problem of distinguishing
FA under inclusion to the problem of distinguishing FSMs under inclusion.
Given FA N with alphabet Z it is possible to define a corresponding FSM
FI(N) for testing for inclusion.

26

Definition 23. Given FA N = (S, s0, Z, δ, S) we define the FSM FI(N) =
(S ∪ {se}, s0, Z, {0, 1}, δ′) in which se 6∈ S, for all z ∈ Z we have that
δ(se, z) = {(se, 0)} and for all s ∈ S and z ∈ Z we have that

1. If (s, z) ∈ dom δ and δ(s, z) = s′ then δ′(s, z) = {(s′, 1), (s′, 0)}
2. If (s, z) 6∈ dom δ then δ′(s, z) = {(se, 0)}

The idea here is that while an input sequence is in L(N), the FSM FI(N)
follows the corresponding path and can produce either 0 or 1 at each stage.
If an implementation FA N ′ does not have this sequence then the behaviour
of FI(N ′) is restricted to some subset of this but this is acceptable under
inclusion. However, if the implementation FA N ′ has a sequence σ̄ ∈ L(N ′)
that is not in L(N) then FI(N ′) can produce an output sequence consisting
only of 1s in response to σ̄ but the specification FI(N) cannot.

Note that even if N is a deterministic FA, FSM FI(N) can be nondeter-
ministic. Given a set Ψ of FA we let FI(Ψ) denote the corresponding set of
FSMs: FI(Ψ) = {R′|∃N ∈ Ψ.R′ = FI(N)}.

The following shows how L(N) and L(FI(N)) relate.

Proposition 8. Given FA N and M = FI(N), z̄ = z1, . . . , zk ∈ L(N) if
and only if z1/y1, . . . , zk/yk ∈ L(R) for all y1, . . . , yk ∈ {0, 1}.

Proof
We will prove that for FA N and R = FI(N), z̄ = z1, . . . , zk is the label of a
path of N with ending state s ∈ S if and only if z1/y1, . . . , zk/yk is the label
of a path of R with ending state s for all y1, . . . , yk ∈ {0, 1}.

We first prove that if z̄ = z1, . . . , zk is the label of a path of N with ending
state s then z1/y1, . . . , zk/yk is the label of a path of R with ending state s
for all y1, . . . , yk ∈ {0, 1}. We use proof by induction on the length of the
sequence being considered. The result follows immediately for the base case
ε. Now let us assume that it holds for sequences of length less than k and
consider some z̄ = z1, . . . , zk and state s ∈ S such that z̄ is the label of a
path of N with ending state s. Clearly z1, . . . , zk−1 is the label of a path
of N with ending state s′ for some s′ ∈ S. By the inductive hypothesis,
z1/y1, . . . , zk−1/yk−1 is the label of a path of R with ending state s′ for all
y1, . . . , yk−1 ∈ {0, 1}. It is now sufficient to observe that in N there is a
transition from s′ to s with label zk and thus in M there is a transition from
s′ to s with label zk/0 and there is a transition from s′ to s with label zk/1.

27

We now prove that if z1/y1, . . . , zk/yk is the label of a path of R with
ending state s ∈ S for all y1, . . . , yk ∈ {0, 1} then z̄ = z1, . . . , zk is the label
of a path of N with ending state s. Again we use proof by induction on the
length of the sequence and the result follows immediately for the base case
ε. Now let us assume that it holds for all sequences of length less than k
and consider some z̄ = z1, . . . , zk and state s ∈ S such that z1/y1, . . . , zk/yk
is the label of a path of R with ending state s for all y1, . . . , yk ∈ {0, 1}.
Clearly z1/y1, . . . , zk−1/yk−1 is the label of a path of R with ending state s′

for all y1, . . . , yk−1 ∈ {0, 1} for some s′ ∈ S. By the inductive hypothesis,
z1, . . . , zk−1 is the label of a path of N with ending state s′. It is now sufficient
to observe that in R there is a transition from s′ to s with label zk/0 and
a transition from s′ to s with label zk/1 and thus in N there is a transition
from s′ to s with label zk. �

Again, we have the issue that a sequence z̄ may distinguish between FSMs
FI(N) and FI(N ′) but we may have to use a prefix of this to distinguish
between N and N ′.

Theorem 5. Let us suppose that we have FA N = (S, s0, Z, δ, S) with fault
domain Ψ, R = FI(N) and TF ∈ P(Z∗) is a test suite for R. TF is a
checking experiment for R with FI(Ψ) under inclusion if and only if the set
TA of prefixes of TF distinguishes N from Ψ under inclusion.

Proof
First assume that TA distinguishes N from Ψ under inclusion and let R′

be an element of FI(Ψ) such that L(R′) 6⊆ L(R). Then we are required to
prove that TF contains a sequence that distinguishes between R′ and R under
inclusion. Let N ′ denote the FA in Ψ such that R′ = FI(N ′).

By Proposition 8, L(N ′) 6⊆ L(N) and so, since TA distinguishes N from Ψ
under inclusion we must have that TA distinguishes N from N ′ under inclu-
sion. Consider an element z̄ of TA such that z̄ = z1, . . . , zk ∈ L(N ′) \ L(N).
By Proposition 8 we have that z1/y1, . . . , zk/yk ∈ L(R′) for all y1, . . . , yk ∈
{0, 1} and z1/1, . . . , zk/1 6∈ L(R) and so z̄ distinguishes R from R′ under
inclusion. Since a prefix of a test sequence in TF distinguishes R from R′

under inclusion we have that TF distinguishes R from R′ under inclusion as
required.

Now assume that TF is a checking experiment for R in FI(Ψ) under
inclusion and let N ′ be an element of Ψ such that L(N ′) 6⊆ L(N). We are
required to prove that TA contains a sequence that distinguishes N from N ′

under inclusion. Let R′ = FI(N ′).

28

By Proposition 8, L(R′) 6⊆ L(R) and so, since TF is a checking experiment
for R given FI(Ψ) under inclusion we must have that TF distinguishes R and
R′ under inclusion. Consider some shortest prefix z̄ = z1, . . . , zk of a sequence
from TF that distinguishes R and R′ under inclusion. Clearly z̄ ∈ TA. By the
definition of R = FI(N) and R′ = FI(N ′) and the minimality of z̄ we must
have that z1/1, . . . , zk/1 ∈ L(R′) and z1/1, . . . , zk/1 6∈ L(R). By Proposition
8 we have that z̄ ∈ L(N ′) and z̄ 6∈ L(N) and so z̄ distinguishes N from N ′

under inclusion as required. �
We can now put these results together to relate checking experiments for

FSMs and stream X-machines under inclusion.

Theorem 6. Let us suppose that M = (In,Out, S,Mem,Φ, F, s0,m0, S) is
a stream X-machine specification with relation set Φ that satisfies the specify
for test conditions. Let us suppose that Ψ is the fault domain used with M
and all elements of Ψ have relation sets of the form Φ′ such that Φ′ ≤ Φ.
If a set TF ⊆ Φ∗ is a checking experiment for FI(A(M)) with FI(Ψ) under
inclusion then for all M ′ ∈ Ψ we have that the test function t, when applied
to each element of TF , distinguishes M from Ψ under inclusion.

Proof
Let TA denote the set of prefixes of sequences in TF . Clearly t, when applied
to each element of TF and M ′ ∈ Ψ, distinguishes M from M ′ under inclusion
if and only if t, when applied to each element of TA and M ′ ∈ Ψ, distinguishes
M from M ′ under inclusion. The result thus follows from Theorems 2 and
5. �

Finally, note that the processes of producing FI(M) and converting the
resultant checking experiment TF into a checking experiment for M can both
be performed in polynomial time.

6. Observations regarding test generation

In this section we make some general observations and describe ways
in which test generation can be made more efficient. The first observation
relates to the class of algorithms, for generating a checking experiment, that
can be used. The proposed method operates by converting a stream X-
machine M into an FSM R and then producing a checking experiment from
R. The FSM R need not be strongly connected and it might therefore appear
that we cannot use methods for generating checking experiments that require

29

strongly connected FSMs (see, for example, [10, 2, 42, 32, 11]). However, R
can be converted into a strongly connected FSM Rc by adding a reset: an
input r that takes Rc back to its initial state (with fixed output) irrespective
of the current state. Checking experiments can then be generated from Rc,
any test sequence that contains resets essentially representing a set of test
sequences.

6.1. Testing deterministic implementations

In some situations it is known that the IUT is deterministic and it may
then be possible to make use of this knowledge. Let us suppose that we are
testing for equivalence and the checking experiment TF produced from the
FSM R, that corresponds to M , contains a sequence of the form σ̄f/0σ̄′ for
some σ̄ and σ̄′ in which σ̄ does not contain 0. It is possible to remove σ̄′

since we know that all outputs after the first 0 must be 0 and this makes
the test more efficient. If σ̄ has input portion f1, . . . , fk then testing from M
based on σ̄f/0 is effectively checking that f1, . . . , fk is implemented in the
IUT and that it cannot be followed by f . Since M is completely specified,
there is some f ′ ∈ Φ such that f1, . . . , fk, f

′ ∈ L(A(M)) and the domains
of f and f ′ intersect. Thus, since the IUT is deterministic, it is sufficient
to check that f1, . . . , fk, f

′ is implemented: a deterministic implementation
cannot implement both f1, . . . , fk, f and f1, . . . , fk, f

′. Thus we can replace
σ̄f/0 by σ̄f ′/1 in TF . If TF already contains a sequence that starts with
σ̄f ′/1 then we can simply remove σ̄f/0. This provides opportunities for
further optimisation and a similar observation can be made when testing for
inclusion rather than equivalence.

6.2. Issues raised by nondeterminisim

If the specification is nondeterministic then there is scope for making
testing more efficient by applying an adaptive approach: rather than repeat-
edly trying to execute a sequence σ̄ of processing relations from a checking
experiment, we use an adaptive process that allows us to try to execute an
alternative sequence from the checking experiment if testing diverges from σ̄
without producing a failure. In order to do this we have to define an adaptive
test process and it should then be possible to utilise adaptive methods for
testing from FSMs (see, for example, [43, 30, 44, 45]).

30

7. Conclusions

When testing against a formal model or specification, a fault domain de-
scribes a set of possible behaviours for the implementation under test (IUT).
The presence of a fault domain Ψ allows the tester to reason about test ef-
fectiveness and potentially to produce a test that determines correctness as
long as the IUT is functionally equivalent to an unknown element of Ψ. Such
a test is called a checking experiment.

Stream X-machines are a state based formalism that have associated with
them a particular approach to development. Under this approach, the IUT is
built from trusted components and testing constitutes determining whether
these components have been put together correctly. Previous work has shown
that some methods for generating checking experiments from finite state
machines (FSMs) can be adapted to produce checking sequences for stream
X-machines but only a few of the many methods for generating checking
sequences from FSMs have been considered.

This paper has shown that any method for generating a checking sequence
from an FSM can be applied to produce a checking sequence for a stream X-
machine. This holds whether we are testing that the IUT is equivalent to the
specification or that every trace (input/output sequence) of the IUT is also
a trace of the specification. It is possible to convert the stream X-machine
M into an FSM R from which a checking sequence TF can be generated
and also to convert TF into a checking experiment for M . In addition, this
conversion process can be computed in polynomial time. We considered two
cases: testing for equivalence and testing for inclusion. Interestingly, the
approach to be used does not depend on whether the specification or IUT
are deterministic but on the conformance relation used.

The results in this paper have two main consequences. First, they show
how any checking experiment method, for FSMs, can be adapted to testing
from a stream X-machine. The second benefit is that they show that we can
use methods for producing checking experiments from FSMs that have fault
domains other than the one traditionally used when testing from a stream X-
machine. Thus the results make many more methods for generating checking
experiments available to the tester and allow the tester to test for a wider
range of sets of faults.

There are several lines of future work. First, recent work has shown how
the traditional specify for test conditions used with stream X-machines can
be weakened [24, 26] and it seems likely that the results in this paper can

31

be generalised along similar lines. Second, we have shown how a checking
experiment might be further reduced and there may be additional scope for
such optimisation.

References

[1] T. S. Chow, Testing software design modelled by finite state machines,
IEEE Transactions on Software Engineering 4 (1978) 178–187.

[2] F. C. Hennie, Fault-detecting experiments for sequential circuits, in:
Proceedings of Fifth Annual Symposium on Switching Circuit Theory
and Logical Design, Princeton, New Jersey, 1964, pp. 95–110.

[3] E. P. Moore, Gedanken-experiments, in: C. Shannon, J. McCarthy
(Eds.), Automata Studies, Princeton University Press, 1956.

[4] A. Petrenko, N. Yevtushenko, Testing from partial deterministic FSM
specifications, IEEE Transaxtions on Computers 54 (9) (2005) 1154–
1165.

[5] S. Eilenberg, Automata, languages and machines, Vol. A, Academic
Press, 1974.

[6] M. Holcombe, X-machines as a basis for dynamic system specification,
Software Engineering Journal 3 (2) (1988) 69–76.

[7] M. Holcombe, F. Ipate, Correct Systems: Building a Business Process
Solution, Springer-Verlag, 1998.

[8] ITU-T, Recommendation Z.100 Specification and description language
(SDL), International Telecommunications Union, Geneva, Switzerland,
1999.

[9] D. Harel, M. Politi, Modeling reactive systems with statecharts: the
STATEMATE approach, McGraw-Hill, New York, 1998.

[10] G. Gonenc, A method for the design of fault detection experiments,
IEEE Transactions on Computers 19 (1970) 551–558.

[11] H. Ural, X. Wu, F. Zhang, On minimizing the lengths of checking se-
quences, IEEE Transactions on Computers 46 (1) (1997) 93–99.

32

[12] ITU-T, Recommendation Z.500 Framework on formal methods in con-
formance testing, International Telecommunications Union, Geneva,
Switzerland, 1997.

[13] M. Holcombe, An integrated methodology for the specification, verifica-
tion and testing of systems, The Journal of Software Testing, Verification
and Reliability 3 (3/4) (1993) 149–163.

[14] D. Jackson, M. Holcombe, F. Ratnieks, Trail geometry gives polarity to
ant foraging networks, Nature 432 (2004) 907–909.

[15] R. H. Smallwood, M. Holcombe, The epitheliome project: multiscale
agent-based modeling of epithelial cells, in: IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro (ISBI 2006), 2006,
pp. 816–819.

[16] I. Stamatopoulou, M. Gheorghe, P. Kefalas, Modelling dynamic organi-
zation of biology-inspired multi-agent systems with communicating X-
machines and population p systems, in: Workshop on Membrane Com-
puting, 2004, pp. 389–403.

[17] C. A. Rouff, M. G. Hinchey, J. L. Rash, W. F. Truszkowski, Towards a
hybrid formal method for swarm-based exploration missions, in: SEW,
2005, pp. 253–264.

[18] J. Aguado, T. Balanescu, A. J. Cowling, M. Gheorghe, M. Holcombe,
F. Ipate, P Systems with Replicated Rewriting and Stream X-Machines
(Eilenberg Machines), Fundam. Inform. 49 (1–3) (2002) 17–33.

[19] T. Balanescu, H. Georgescu, M. Gheorghe, C. Vertan, Communicating
stream X-machines systems are no more than X-machines, Journal of
Universal Computing 5 (9) (1999) 494–507.

[20] F. Bernardini, M. Gheorghe, M. Holcombe, P X systems = P systems
+ X machines, Natural Computing 2 (3) (2003) 201–213.

[21] K. Bogdanov, M. Holcombe, Statechart testing method for aircraft con-
trol systems, The Journal of Software Testing, Verification and Reliabil-
ity 11 (1) (2001) 39–54.

33

[22] R. M. Hierons, M. Harman, Testing conformance to a quasi-non-
determinstic stream X-machine, Formal Aspects of Computing 12 (6)
(2000) 423–442.

[23] R. M. Hierons, M. Harman, Testing conformance of a deterministic
implementation to a non-deterministic stream X-machine, Theoretical
Computer Science 323 (1–3) (2004) 191–233.

[24] R. M. Hierons, F. Ipate, Testing a deterministic implementation against
a non-controllable non-deterministic stream X-machine, Formal Aspects
of Computing 20 (6) (2008) 597–617.

[25] F. Ipate, M. Holcombe, Generating test sets from non-deterministic
stream X-machines, Formal Aspects of Computing 12 (6) (2000) 443–
458.

[26] F. Ipate, Testing against a non-controllable stream X-machine using
state counting, Theoretical Computer Science 353 (1–3) (2006) 291–316.

[27] F. Ipate, M. Holcombe, An integration testing method that is proved
to find all faults, International Journal of Computer Mathematics 63
(1997) 159–178.

[28] G. L. Luo, G. v. Bochmann, A. Petrenko, Test selection based on com-
municating nondeterministic finite-state machines using a generalized
Wp-method, IEEE Transactions on Software Engineering 20 (2) (1994)
149–161.

[29] N. Yevtushenko, A. Petrenko, Synthesis of test experiments in some
classes of automata, Automatic Control and Computer Sciences 4.

[30] R. M. Hierons, Testing from a non-deterministic finite state machine
using adaptive state counting, IEEE Transactions on Computers 53 (10)
(2004) 1330–1342.

[31] M. O. Rabin, D. Scott, Finite automata and their decision problems,
IBM Journal of Research and Development 3 (2) (1959) 114–125.

[32] R. M. Hierons, H. Ural, Optimizing the length of checking sequences,
IEEE Transactions on Computers 55 (5) (2006) 618–629.

34

[33] M. C. Gaudel, Testing can be formal too, in: 6th International Joint
Conference CAAP/FASE Theory and Practice of Software Develop-
ment (TAPSOFT’95), Vol. 915 of Lecture Notes in Computer Science,
Springer, 1995, pp. 82–96.

[34] M.-C. Gaudel, Testing from formal specifications, a generic approach, in:
Ada–Europe, Vol. 2043 of Springer Lecture Notes in Computer Science,
Springer-Verlag, 2001, pp. 35–48.

[35] M.-C. Gaudel, P. R. James, Testing algebraic data types and processes:
a unifying theory, Formal Aspects of Computing 10 (5–6) (1998) 436–
451.

[36] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. A. Vilkomir, M. R. Woodward, H. Zedan, Using
formal specifications to support testing, ACM Compututing Surveys
41 (2).

[37] F. Ipate, M. Holcombe, A method for refining and testing generalised
machine specifications, International Journal of Computer Mathematics
68 (1998) 197–219.

[38] Y. Lei, R. H. Carver, D. C. Kung, V. Gupta, M. Hernandez, A state
exploration-based approach to testing java monitors, in: 17th Interna-
tional Symposium on Software Reliability Engineering (ISSRE 2006),
2006, pp. 256–265.

[39] K.-C. Tai, R. H. Carver, E. E. Obaid, Debugging concurrent ada pro-
grams by deterministic execution, IEEE Transactions on Software En-
gineering 17 (1) (1991) 45–63.

[40] Y. Lei, R. H. Carver, Reachability testing of concurrent programs, IEEE
Transactions on Software Engineering 32 (6) (2006) 382–403.

[41] G. Luo, A. Petrenko, G. v. Bochmann, Selecting test sequences for
partially-specified nondeterministic finite state machines, in: The 7th
IFIP Workshop on Protocol Test Systems, Chapman and Hall, Tokyo,
Japan, 1994, pp. 95–110.

35

[42] R. M. Hierons, H. Ural, Reduced length checking sequences, IEEE
Transactions on Computers 51 (9) (2002) 1111–1117.

[43] R. M. Hierons, Adaptive testing of a deterministic implementation
against a nondetermistic finite state machine, The Computer Journal
41 (5) (1998) 349–355.

[44] D. Lee, M. Yannakakis, Principles and methods of testing finite–state
machines – a survey, Proceedings of the IEEE 84 (8) (1996) 1089–1123.

[45] P. Tripathy, K. Naik, Generation of adaptive test cases from non-
deterministic finite state models, in: Proceedings of the 5th Interna-
tional Workshop on Protocol Test Systems, Montreal, 1992, pp. 309–
320.

36

