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The Endcap Electromagnetic Calorimeter of the Compact Muon Solenoid detector 

(CMS) at the Large Hadron Collider (LHC) uses vacuum phototriodes (VPTs), which 

operate in the full 3.8T magnetic field of the experiment, to detect the scintillation light 

from the lead tungstate crystals. Initial measurements of the variation in response of 

VPTs, induced by sudden changes in the illuminating light pulse rate, prompted the 

inclusion of a dedicated stability pulser based on light emitting diodes (LEDs). The 

response of production VPTs, under simulated LHC operating conditions, has been 

investigated in three independent studies: in-situ tests with the installed endcaps at 

CERN, and separate VPT studies by groups at the University of Virginia, USA and 

Brunel University, UK. In this work, results are presented which illustrate the magnitude 

of the effect to demonstrate the expected stability of the VPTs during normal LHC 

operation, with a proposed regime for operating the stability pulser to minimise 

variations in response. It is demonstrated that a continuous signal at a rate of 100Hz is 

sufficient to reduce the change in the VPT response to <0.2%. 

1.   Introduction 

CMS
1
 is one of two general purpose particle physics experiments recently 

installed at the Large Hadron Collider (LHC) at CERN. The electromagnetic 

calorimeter uses large monocrystals of the scintillator lead tungstate coupled to 

sensitive photodetectors. The development of small radiation tolerant vacuum 

phototriodes (VPTs) which detect the scintillation light in the endcap region of 

the electromagnetic calorimeter (EE), has been previously reported
2
. Since then, 

16100 production VPTs (type PMT188) have been manufactured to CMS 

specifications by Research Institute Electron (RIE), St Petersburg, Russia
3
 and 

14648 were installed in the endcaps.  

The VPTs used in CMS are single gain-stage devices with a diameter of 

26mm and an active area of approximately 280mm
2
. In the absence of 

electrostatic focussing, VPTs require the presence of a strong, quasi-axial 

magnetic field for stable operation and as such, the devices comprise an anode of 

very fine (10 m pitch) copper mesh, allowing them to operate in the 3.8T field. 

VPTs have been seen to exhibit changes in response which are related to the 

average current being drawn from them
1
. To minimise these effects during 

repeated LHC beam-on and beam-off cycles a dedicated LED pulser system, 

comprising blue and orange LEDs, has been installed in the endcaps. 
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2.   In situ and Laboratory Tests 

2.1.   Data from VPT in the CMS endcaps 

The response of the production VPTs has been evaluated during a month-long 

data taking exercise in late 2008 (Cosmic Run at Four Tesla (CRAFT)), by 

supplying a pulsed load light to simulate a typical cycle of LHC operation. Initial 

in-situ tests of 200 VPTs showed an average 0.4% decrease in response at B=0T 

during the application of the load of 10kHz, followed by a 4-5% change in 

response when the load was removed, as shown in Figure 1
4
. By contrast, with 

the solenoid operating at its nominal axial magnetic field of 3.8T, the average 

response of the VPTs increased during application of the load by ~0.4% and 

decreased by 0.1% when the load was removed. Tests are underway to see if the 

residual effects at 3.8T are reduced in the presence of a constant low-rate 

background signal. 

 

 
 

Figure 1. Average normalised response of 200 VPTs for two high rate LED pulsing tests at B=0T 

(open circles) and B=3.8T (filled circles) at CRAFT. In both tests, LED pulsing with a rate of 10kHz 

was performed for a period of 17 hours and turned off at the point T=0 hours. The VPT response 

was normalised to the value at T = -10 hours in both tests. 
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2.2.    Extended tests on an individual VPT 

 Recent tests, conducted at Brunel University, have concentrated on one 

production VPT operated continuously at 15° to a 4.0T field over an extended 

period of time, currently in excess of six months. Tests have been carried out 

during a simulated LHC cycle i.e. with a constant signal of 100Hz during both 

the ‘off’ period of 8 hours (latterly 4 hours) and the ‘on’ period of 16 hours (20 

hours), when a load pulse is added to simulate the average current that would be 

present in the endcaps at nominal LHC luminosity. Figure 2 shows the most 

recent results of VPT response as a function of charge taken from the 

photocathode of the VPT. The experimental arrangement at Brunel uses two 

separate LEDs, both temperature stabilised, to supply the signal and load pulses 

and a pin diode provides a reference. The stability of the VPT was studied by 

exposing the photocathode to blue LED light – black data points correspond to a 

cathode current of 0.25nA, with the grey data points resulting from an increased 

cathode current of 1nA (although from 6.0×10
-3 

C onwards, the signal rate was 

reduced to 10Hz). 1nA is the predicted cathode photocurrent drawn at =2.1 at 

L=10
34

cm
-2

s
-1

.  It should be noted that the x-axis zero is a relative zero, as the 

VPT under investigation had been used in tests prior to this study, providing an 

initial cathode charge of ~0.6mC. The y-axis shows the ratio of the peak of the 

VPT signal to that of the pin reference photodiode monitoring the LED intensity. 

 
 

Figure 2. Dark data: load = 10kHz, <IC> ~ 0.25 nA; Light data: load = 20kHz,  <IC> ~ 1.0 nA  
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Fitting the data shown in Figure 2 with two exponential terms (shown as a black 

curve in the Figure) has been found to account well for the initial fast decrease 

(due to ‘conditioning’ of the VPT) and the slower, long term decrease (‘ageing’), 

with a constant term of 0.53 an R
2
 value of 0.99. 

 Figure 3 shows, in more detail, a series of seven consecutive 24-hour cycles. 

The Figure indicates there is a smooth downward drift, associated with 

‘conditioning’ of the VPT and variations in response of < 0.2% which may be 

attributed to the simulated LHC on/off cycle. The relatively rapid, systematic 

changes in the VPT response, small spikes seen at 0.8 and 6.9 days (and 

indicated in the figure), are correlated with a small, rapid drop in the VPT pre-

amplifier temperature when the magnet cryostat was being filled with liquid 

nitrogen.  

 

 
 

Figure 3. An example of seven consecutive cycles, where black lines indicate 100Hz signal only 

and grey denote 100Hz signal plus 20kHz load. In the presence of the Load pulse, <IC> ~ 1.0 nA.  
 

3.   Conclusions and Future Work 

Results of recent studies of VPT response have been discussed and in particular, 

the successful operation of a real VPT at full field with a realistic load for an 

extended period of time has been reported. From this work, a change of <0.2% 

has been seen in simulated LHC on/off cycles; this meets the requirements of 

precision calorimetry in CMS. This extensive testing of a single VPT also 
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indicates a decrease in response of ~25% over six months, as expected for such 

vacuum photodetectors, tending towards a non-zero plateau. The studies at 

Brunel will continue with investigation of the effect of a lower background 

signal of 10Hz, and then will be extended to include other VPTs. 

A CMS group at the University of Virginia have conducted initial tests with 

a 16 hour on/8 hour off cycle and an photocurrent of 10 nA, and have observed 

variations in the VPT response of ~0.3%, which have been attributed to 

temperature variations. Their apparatus is currently being modified to enable 

simultaneous testing of five VPTs at 3.8T. 

It is proposed that the stability pulser on the EE at the LHC will provide the 

required 100Hz signal and that the required short-term stability will be obtained. 

Acknowledgments 

We thank the technical and administrative staff at CERN and other CMS 

Institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO 

(Belgium); CNPq, CAPES, FAPERJ and FAPESP (Brazil); MES (Bulgaria); 

CERN; CAS; MST and NSFC (China); MST (Croatia); RPF (Cyprus); Academy 

of Sciences and NICPB (Estonia); Academy of Finland, ME and HIP (Finland); 

CEA and CNRS/IN2P3 (France); BMBF, DFG and HGF (Germany); GSRT and 

Leventis Foundation (Greece); OTKA and NKTH (Korea); CINVESTAV, 

CONACYT, SEP and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); 

FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan): MST 

and MAE (Russia); MSD (Serbia); MCINN and CPAN (Spain); Swiss Funding 

Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC 

(United Kingdom); DOE and NSF (USA). 

 

References 

1. The CMS Experiment at the CERN LHC, The CMS Collaboration, 

Chatrchyan, S et al, Journal of Instrumentation 3 (2008) S08004 

 

2.               Bell, K W et al; Nuclear Instruments and Methods in Physics Research A  

469 (2001) pp 29-46 

 

3.      National Research Institute Electron, Morisa Toreza Ave., 68, 194223 St.  

Petersburg, Russia 

 

4.  Performance and Operation of the CMS Crystal Electromagnetic  

Calorimeter, The CMS Collaboration, CMS Paper CFT-09-004 submitted to 

Journal of Instrumentation 


