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Abstract

Many genetic regulatory networks (GRNs) have the capacity to reach different stable states. This capacity is
defined as multistability which is an important regulation mechanism. Multiple time-delays and multivariable regulation
functions are usually inevitable in such GRNs. In this paper, multistability of GRNs is analyzed by applying the control
theory and mathematical tools. This study is to provide a theoretical tool to facilitate the design of synthetic gene
circuit with multistability in the perspective of control theory. By transforming such GRNs into a new and uniform
mathematical formulation, we put forward a general sector-like regulation function that is capable of quantifying the
regulation effects in a more precise way. By resorting to up-to-date techniques, a novel Lyapunov-Krasovskii functional
(LKF) is introduced for achieving delay dependence to ensure less conservatism. New conditions are then proposed to
ensure the multistability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the delays.
Our multistability conditions are applicable to several frequently used regulation functions especially the multivariable
ones. Two examples are employed to illustrate the applicability and usefulness of the developed theoretical results.
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I. INTRODUCTION

Systems biology is the study of an organism, viewed as an integrated and interacting network of genes,
proteins and biochemical reactions which give rise to life, instead of analyzing individual components or
aspects of the organism [1-3]. The focus on systems as opposed to individual genes or pathways is shared
by the contemporaneous discipline of systems biology, which analyzes biological organisms in their entirety
[4-6]. The spirit of genetic engineering in which genes and gene products are considered as a whole system
could be extended to synthetic biology. In synthetic biology, the ultimate goal is to engineer unnatural
biological systems that function in living organism to investigate natural biological phenomena for a variety
of applications. It is reasonable to expect that ideas and method from systems and control theory which
is powerful in analyzing dynamical properties and designing controller to achieve desired performance will
lead to new understanding of the underlying biological processes therefore having potential applications in
designing synthetic gene circuit.
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The synthetic genetic regulatory networks (GRNs) prove to be a powerful tool in studying gene regulation
processes in living organisms [7-12]. By using ordinary differential equations to describe the rates of con-
centration change in biochemical substance, such as genes, proteins, activators, repressors, enzymes, factors
or products of a biochemical network, more detailed understanding and insights of the dynamic behavior
exhibited by biological systems can be explored [13,14]. In particular, since GRNs are high-dimensional and
nonlinear, it is also indispensable to consider the network dynamics from the viewpoint of systems and control
theory [15-17].

Obviously, the precise structure of a mathematical model should be consistent with the dynamical behaviors
of the system. It has been recognized that the slow processes of transcription, translation and diffusion to
the place of action of a protein inevitably cause time delays. Also, for different substance in GRNs, time
delays of biochemical reactions may vary due to the different reaction pathways. Time delays are frequently
encountered in many other practical engineering systems besides GRNs, such as communication, electronics,
and chemical systems. Therefore, in order to have more accurate models, it is necessary to take time-delays
into account in GRNs. In the past decade, stability analysis and synthesis problems for various time-delay
control systems have gained considerable research interests and a large amount of results have appeared in
the literature, see, e.g. [18-21].

On the other hand, the regulation functions, which are either linear or nonlinear, play a crucial role in
determining qualitative properties of GRNs, such as the number and the stability of steady states. The
regulatory mechanism are actually descriptions of biochemical reaction kinetics law such as mass action law,
Hill law, Henri-Michaelis-Menten law, etc. The linear or nonlinear regulation function are often single-variable
and has a form of monotonicity with the single variable. Then the regulation functions for different substance
in GRNs add together to regulate a certain kind. In synthetic GRNs, one of the simplest ways to implement
such an additive input function is to provide a gene with multiple promoters, each responding to one of the
inputs. However, to describe the complicated relationship between different biochemical substance in GRNs,
it is natural to introduce multivariable regulation functions, in which different variables are multiplying or
coupling together. GRNs with regulation functions of such forms have been reported in [22-24]. It should
be mentioned that, even though there are no multivariable terms, the types of regulation functions could be
diverse, most of which are nonlinear [13, 14].

Due to the nonlinearity of regulation functions, the coexistence of multiple steady states which refers to
multistability is possible. The traditional notion of stability named as monostability in GRNs [25-27] is
concerned with unique equilibrium point, and this differs significantly from the multistability mentioned here.
It is noticed that multistability has certain properties which are not shared by other mechanisms of integrative
control, therefore plays an important role in the dynamics of living cells and organisms [28-30]. For example,
the maintenance of phenotypic differences in the absence of genetic or environmental differences, which has
been demonstrated experimentally for the regulation of the lactose operon in Escherichia coli, may attribute
to multistability. Cell differentiation might also be explained as multistability [31]. Bistability, a basic case
of multistability, has a property that there are two stable fixed points. It has become increasingly clear that
bistability is an important recurring theme in cell signaling and of particular relevance to biological systems
that switch between discrete states, generate oscillatory responses. As stated in [32], bistability is a new way
of looking at cell cycle control.

Recently, a lot of efforts have been made to the mathematical modeling of GRNs with multistability. In [§],

a synthetic genetic co-repressive switches in the well known lac operon in the bacteria Escherichia coli were
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constructed and a model with two components was proposed. A more detailed mathematical model in which
the parameters were all estimated from reported experimental data was developed in [22], and it was shown
that there was bistability in the lactose operon dynamics for realistic extracellular lactose concentration values.
A simplification of the above model that considered only the role of S-galactosidasein the operon regulation
and ignores that of lactose permease, which also displayed bistability, was introduced in [23]. In [12], the
dynamics of the bistable lactose utilization network of Escherichia coli has been quantitatively investigated
in single cell experiments. In [24], Cdc2-Cyclin B/Weel system was transformed to a two-variable problem
under necessary assumptions and displaying bistability.

Theoretical results obtained for the multistability of a GRN have been scattered in the literature. The
biological system with multistability and hysteresis has been modeled as monotone dynamic systems in [33],
where the rich and elegant theory of monotone dynamic system provides an efficient mathematical tool for
analysis (see [34] and references therein). Especially, in the biological systems with bistability, each stable
mode of operation is associated with an appropriate invariant set in the state space and stability with respect
to each set has been studied in terms of a local notion of input-to-state stability with respect to compact
sets [35]. In the control communities, stability analysis should always be performed prior to the controller
design. On one hand, the results on multistability should facilitate the design of synthetic gene circuits with
multistability while these results are difficult to extend to engineering. On the other hand, time-delays and
multivariable regulation functions have not been considered in these results. How to analyze multistability of
time-delay GRNs with multivariable regulation functions in order to be potential in synthetic biology remains
as an open problem. Therefore, it is essential and important to investigate the multistability of delayed GRNs
with multivariable regulation functions. In the survey paper [36], the trigger and significance of this study have
been summarized for considering the possible control scheme for the switch of different phenotypes in terms
of epigenetics. In [36], the essential roles of time delays, negative loop and positive loop have been thoroughly
discussed. Time delays have a close relationship with oscillations, even with one element negative loops. In
any case, a negative loop plays to generate homeostasis around a steady state located near the thresholds,
while a positive loop is a necessary condition to generate multistationarity or a multiplicity of regimes in a
more general way. Despite the importance of gaining straightforward insight on the cause of multistability,
to the best of the authors’ knowledge, there has been little effort towards the theoretical research on this
challenging problem. Such a situation motivates our present study.

Lyapunov—Krasovskii functional (LKF) theory and linear matrix inequality (LMI) technique are powerful
tools in stability analysis and controller design and have been extensively studied in the control communities
(see [37—41] and references therein). Although there are also reports on the multistability analysis for neural
networks [42, 43|, these results are focusing on the analysis rather than aiming at design. Even in this
community, there are seldom reports on multistability analysis by LKF and LMI. To facilitate the readers in
biology area, let us briefly discuss the LKF theory and LMI technique. Lyapunov’s direct method (also called
the second method of Lyapunov) allows us to determine the stability of a system without explicitly solving
differential equations. The method is a generalization of the idea that if there is some “measure of energy”
in a system, then we can study the rate of change of the energy of the system to ascertain stability [44]. In
case of systems with time-delay, such measure of energy is often adopted as the LKF, which is typically of the
quadratic form. By calculating the derivative of the LKF, it is usually concluded that the overall time-delay
system is stable if certain LMIs are feasible [37—41]. Note that the solvability of LMIs can be easily checked

by using the Matlab toolbox, and a growing number of dynamics analysis problems can be converted into the
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feasibility of LMIs [45].

In this paper, we are concerned with the multistability of GRNs with multiple time-delays. Multivariable
and several different types of regulation functions are considered. We then generalize the mathematical
formulation of such GRNs by proposing a sector-like regulation function. A novel LKF is introduced and the
most updated techniques are employed to achieve delay-dependence. A sufficient condition is then derived
for the multistability of a GRN with multiple time delays and multivariable regulation functions in the form
of LMIs. An important feature with the results to be reported is that, all the multistability conditions are
dependent on the delays, made possible by utilizing the up-to-date techniques to achieve delay dependence.
Second, our multistability conditions are applicable to several different regulation functions, which cover many
types of currently investigated GRNs, especially including the complicated multivariable regulation functions.
Two examples which have been tested by reported experiments are employed to illustrate the applicability
and usefulness of the developed theoretical results. Example 1 is a Cdc2-Cyclin B/Weel system model and
example 2 is a lactose system model. The GRNs in both of these examples display bistability.

Notation: The notation used throughout the paper is standard. The superscript 7" indicates matrix trans-
position; R” denotes the n-dimensional Euclidean space and R*** is the set of all n x k real matrices. Apk
denotes A € R***_ T and 0 denote identity matrix and zero matrix respectively, the notation P > 0 means that
P is symmetric and positive definite and the symbol * indicates symmetric blocks in the LMIs. In addition,

diag{...} stands for a block-diagonal matrix and for a matrix A, sym(A) denotes A + A”.

II. MODEL AND PRELIMINARIES

In this section, we introduce a GRN model which can be described by the following differential equations

fori=1,2,...,n:

n n n
zZi(t) = —aizi(t) + Zbijfij(zj(t)) + Zcijgij (2 (t — 7)) + Zdijyij(t)hij (2(t)) + wi, (1)
Jj=1 Jj=1 J=1
where z1,..., 2, are biochemical substance, such as genes, proteins, activators, repressors, enzymes, factors
or products of a biochemical network, and z(-) = [21(-), z2(+), ..., z.(-)]} € R™ is the substance state vector.

Their rates of degradation are denoted by a; € RT. 2;, the rate of change in z;, represents concentration
change of a variable due to production or degradation. u; is defined as a basal rate. f;;(-) and g;;(-) represent
the feedback regulation function of the jth substance on the ith substance, which are generally nonlinear or
linear single-variable functions.

Due to the fact that time delays occur in transcription, translation and diffusion to the place of action of a
protein, and for different biochemical substance in GRNs, the time-delays at different stages may be different,
and therefore the regulation function with multiple time delays g;;(-) is introduced. In many synthetic GRN,
the monotone regulation functions are not just simply added together in practice, but may be coupled with
another variable which indicates the relationship between two biochemical substance in GRNs [22,24]. Then,
Y35 (-)hij(2;(+)) is introduced in the model to describe such a complicated property. To ease notation, h;(-) is
also called regulation function, which has the same property with f;;(-) and g;;(-) and we call y;;(-)hij(2;(-))
multivariable regulation function. y;;(-) is an element that belongs to [21(-), 22(-), ..., 2 (-)]F but yi;(-) # 2;(-).
Obviously, if y;;(-) = 2;(-), i (-)hij(2;(+)) would have a similar form with f;;(z;(-)) and the multivariable term
can be eliminated. Regulation function is used to capture the combined effect of several regulatory proteins on
the control of gene expression or protein degradation and it describes the connection and topology structure

of biochemical substance.
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Remark 1: Linear control theory has received great research interest and the corresponding results have
been fruitful. However, almost all practical systems are inherently nonlinear. Sometimes, linearization is a
powerful tool, but it may prevent us from gaining the insight of nonlinear phenomenon. In neural networks, the
structure of the model described by nonlinear differential equations is similar to the GRNs’ structure discussed
here [46,47]. In neural networks, the activation function is like the regulation function in GRNs, but it is just
a monotone nonlinear function of only one variable which is totally different from the multivariable regulation
functions. The regulation mechanism in GRNs not only follows the “adding” logic like neural networks but
also the “coupling” logic. In neural networks, the approach to dealing with nonlinearity is usually based on a
“linearization” idea that sets a linear boundary to be an approximation of the nonlinear activation functions.
Such an idea works well when there is one variable, but may face unmanageable difficulties when it comes to
the multivariable regulation functions. In other words, we are not able to inherit the method for dealing with
nonlinear terms in neural networks. Therefore, there is a need to transform the model into a new form so as
to facilitate the handling of such nonlinear terms.

In the following, let us consider the regulation functions in order to show the existence of multiple equilibrium
points, hence the multistability.

Remark 2: We consider a simplified GRN model:

n
Gt) = —aizi(t) + ) _bijRij(%(2). (2)
j=1
A regulation function often found in the literature is the Hill type [14]:
Hij
z; (1)
Rij () = —7—5—, (3)
i i
;" +z; (t)
with 6; > 0 is the threshold for the regulatory influence of z; on a target biochemical substance z;, and H;; is
the Hill coefficients. The function ranges from 0 to 1 and increases as z; — o0, so that an increase in z; will
tend to increase the expression rate of the biochemical substance, then biochemical substance j is an activator

of gene 7. If biochemical substance j is an repressor of gene 4, then

Ry =1 O @
Hj J +z; 7 (t)
Then, the GRN (2) can be rewritten as
Zi(t) = —aizi(t) + Zbin'j(Zj(t)) +u (5)
j=1
fori=1,2,...,n, with
_ z: 7 (t)
Rij(z(t) = H]J—Hja uj = Z Qg
07 +77 (1) j<F

where F; is the set of all the j which is a repressor of gene 4, and u; is defined as a basal rate. If b;; = «j,
zj is an activator of z; if bj; = 0, z; is no link with z;; if b;; = —«yj, z; is a repressor of z;. If 6; = 1, the
regulation function is in a standard form. (3) and (4) can be easily transformed to standard form.

no_
Let Z;(t) = 0, that is, a;2;(t) — u; = ) bjjR;j(2;(t)), whose solution defines the equilibrium point. For
i=1

convenience, we consider one variable case, i.e., we define right hand of the equality above f(z) = 2 /(1 +
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zHii), left hand h(z) = az — u. It is shown that there could be three cross points at most when H;; =2 in

Fig. 1(a) and two cross points when H;; = 1 in Fig. 1(b).

(a) (b)
1 0.8
0.8 0.6
Tz 06 S
= < 04
o4 g
02 0.2
0 0
0 05 1 15 2 25 0 0.5 1 15 2
z z

Fig. 1. (a) f(2) = 22/(1 + 2?) and h(z) = 0.4z. Three equilibrium points can be achieved. (b) f(z) = z/(1 + z) and

h(z) = 0.4z. Two equilibrium points can be obtained.

Assume that a GRN (1) has N equilibrium points and let z; = (2}, 25y, ..., 2}5,)" be the kth equilibrium

point, 1 =1,2,--- , N. So we have

n n n
0= —aizp; + > bijfii(z) + D _ciigis(zig) + D _digtiihij (z4;) + i

=1 j=1 =1
Subtracting (6) from (1) gives
g() — 2y = —ailz(t) = zp] + ) bij [fij(z(®) = fij(z0))]
=1
+> cij [9i(zi(t = 70)) = 9ij ()] + D _diz [ (hij (2 (£)) — yiiihis (2h;)] -
7=1 7=1
Let
zij (1) = zi;(),
rri() = 2() — 2k
ykii () = i (1) — Yk
Trij(zrg) = fij(zeg + 25) — fij(z5),
gklj(xkj) = gz]($kj + ZZ]) g (ng)
hkzy( ky) = hz](xky + zZ]) hz](zkg)
hklj (xky (t)) = zklj( )hkw (xky (t))
Y dijhij(Ze)wi(t) = =D eriari(t).
7j=1 7j=1
We have
Gri(t) = —aimpi(t) + D _bijfrij(ri () + > cijgnij(we; (t Zdwhkl] (ks (1) = D _enijza; (t)-

(6)

(16)
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For convenience, see Appendix for the derivation.

Equivalently, (16) can be written as

#(t) = — (A + Ep) a(t) + ZB Frila(t) + ZC gri(z(t — 7)) + ZD hii( (1)), (17)
=1
where
[ 211 (1) frin (k1 (2))
w0 = | 2O ptetey = | P

| Tin(t) Trin(@rn (1))
[ gir (21 (t — 7)) Yri1 (£) hiir (21 (1))

oot — 7)) = gkiZ(ika:(t - 7)) Fala(t) = ykz'z(t)hk?(ivkz(t))
| Gkin (xkn (t - Tz)) Ykin (t)hkin (xkn (t))

Consider the regulation function f;; (2;), which is divided into £ f;;j max piecewise intervals along the variable

z;. If there exist N equilibrium points of (1), we let k;jmax = IV and select NV intervals

0) (i) )
O, — [5017,5117]6“7 X [flijaf%j]ézﬁ X X [5(N—1)ij,€Nz’j]6N”,
P (68,080,000, ) = (1,0,.,0) o (0,1,.,0) 01 (0,..,0,1), i =1,2,..m

Then, the kth equilibrium point lies in the following region

Q H H lc 113751%3

i=1 j=1

3

Similarly, consider the regulation function g;; (2;) , linear function r;; (2;;(t)) = 2;;(t) and regulation function

hij (z;) , the kth equilibrium point lies in the following regions

n n n n n n
Q H H (k— ].1,]7>\k2] ) Qrk = H ml_I (k— 1zy70kz] 7Q H QH H(k— 1zyuukz]
=1 j=1 1=1 7j=1 =1 7=1
respectively.

Assumption 1: Let kfijmax = N. Bach regulation function in (1), fi; (-), 4,7 = 1,2,...,n, satisfies the
following condition when Vg, yi € [§iik—1), Sijkls Tk # Yk, L <k < N:

- - fij () — fij (yx) <arf

kij = Tk — Uk kij >

— + .
where a; j and a; ; are nonnegative constants.

Because the kth equilibrium point is shifted to origin, the new equilibrium point 0 lies in the region

Q H H (k— 11]75/@1]

where g(k_l)ij = f(k—1)ij - Z;;j <0, gkij = &kij — z;;j > 0.
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By (9), (11) and Assumption 1, it is not difficult to verify that Vz; € [E(k_l)ij, 0) U (0,5, i =1,2,...,n,

__ frij (z)) ¥
Qi < TJ < Xijo (18)
and it is easy to see that fy;; (0) = 0.
Similarly, by (9), (12) and Assumption 1, it is not difficult to verify that Vz; € [X(k,l)ij,O) U (0, inj],
1=1,2,...,n,
_ Gkij (%) +
Bkij < TJ < IBkZ’ja (19)

where S\(k_l)ij = Nk-1)ij — ZZj <0, j\kij = Akij — z;j > 0, ﬁk_ij and B,jij are nonnegative constants. It is easy
)

k—1
to see that gg;; (0) =0

Letting Tpij = Ok—1)ij and :v,jij = Okij, we get
s < Ykig(t) < @ (20)

Obviously, z; j and a;,jz ; are positive constants because the concentration of biochemical substance can’t be
negative.
Similarly, by (9), (13) and Assumption 1, it is not difficult to verify that Va; € [fx—1)ij,0) U (0, fgijl,
i=1,2,...,n,
oy < hmgx(fﬁy) < O—l:rz'j’ (21)
J
where fik_1)ij = H(k—1)ij — z,’;j <0, figij = Pkij — ZZJ- > 0, O and O']j;ij are nonnegative constants. It is easy
to see that hy;; (0) = 0.
Let Krijmax = knijmax = N, 4,5 = 1,2,...,n, 1 <k < N and v = 25,0550 Tiig = hiOrie BY (20), (21)
and Assumption 1, we can have the following corollary.
Corollary 1: Each multivariable regulation function in (17), yrijhrii(z;), i,j = 1,2,...,n, satisfies the
following condition when Va; € [X;j(5—1),0) U (0, Xiji], Yypij € [:v,;ij,:v,jij]:

Yiii <

+
kij > < Viig

YkijPkij (25)
. — lkij*

Ly

Remark 3: The inequalities (18), (19) and (21) are similar to the one proposed in [49, 50] for the activa-
tion function of neural networks. As pointed out in [49, 50], this description could be non-monotonic, and
is more general than the usual sigmoid functions and the recently commonly used Lipschitz conditions. We
like to point out that such a description is very precise/tight in quantifying the lower and upper bounds
of the regulation functions, hence very helpful for using LMI-based approach to reduce the possible conser-

vatism.

III. MULTISTABILITY CONDITIONS OF GRNS

In this section, we present our multistability condition for the GRN with multiple time delays and multi-
variable regulation functions described in the previous section.

Definition 1: A GRN is said to have N-stability if it has N (N > 1) stable equilibrium points. In this case,
the GRN is said to be N-stable. Specially, a GRN has bistability if N = 2.
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Theorem 1: The system in (1) is asymptotically N-stable, if there exist matrices P, > 0, Qx; > 0, Zy; > 0,

and diagonal matrices U,;, Ui Vg, Viis Wkt and W, k=1,---,
following LMIs hold:

N,i=1,-

,n, 7 = 1,2, such that the

O + Ap + AL <0, (22)
where
n
Or = Orp+ > _(Okqi+ Okzi + Orui + Opvi + Opwe),
i=1
Orp = MpPiMip,Oy; = MkTUrU;EMka + M, kU— UM, kU
®k;Qi == MgQiQkiMina ®k;Vi == MgV+ thMleJ'_ + M V MkV 5
Orzi = MsziZkazz-, Orwi = M,CTW_+W;:EM;€W1_+ + M kW* WM, W
n n n
Ay = X[-(A+E) —10 ) B Y C ) Di
i=1 i=1 i=1
Pk _ 0, P M,p = [ (U 0n,4n2 ] ’
| P O LI 0 (ans1yn
_ 0 I, O
Qki _ le n ] ,Min _ [ n n,(4n+1)n ] :
On  —Qki 0n,(i+1)n I 0n,(4n7i)n
Zyi = TiZki On y Myyz; = [ On_In Ot ] )
0y, —1/7iZ; n Onin —In 0n,(4nfi)n
Ulj _ 01 U,:;+ _ MkU+ _ [ \/ Fm n,(4n+1)n
7 ? . ?
| Ui —Ug ' 0, (n-l—i—l—l) \/_I On,(3n—i)n
U- = | O UI;z ] M o [ V n,(4n+1)n ]
ki — - — | RU; T ’
' L Uki _Uki ‘ U8 S(n+i+1)n _\/§In 0, ,(3n—i)n |
AT 01 sz ] M+ = [ (i Dn v [2Gfi On (4n—i)n
1 ? . )
L Ve Vi ’ On,(2n4it+1)n \/§In On,2n—i)n
V_ N [ On sz M N [ ,(i+1)n \/ sz S(4n—i)n ]
ki - — | Mev- T ’
' L Ve Vi ' 0n,(2n+i+1) —V2I, 0n,(2n7i)n |
W]:; = 0n+ W’:;+ 7MkW+ - Hkl 4n+1) ] )
Wi =W | Pl On@atityn V2L Op iy
W? _ [ O’n, Wk_l M o _\/ Hk‘l 4TL+1> ]
ki - — | Mew o T :
' L Wkl _Wki i ‘ L 0n,(3n+i+1)n _\/ijn On,(nfi)n
Proof: See Appendix. |
If time delay is assumed to be zero, then the GRN becomes:
n
4i(t) = —aizi(t) + ) _bijfij(z (1) + mezzy hij (7). (23)

i=1
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For the kth equilibrium point, by transformation we have
n
i(t) = — (A+ By) a(t) + ZB f(e(®) + 3 Dia(a(t)). (24)

Based on Theorem 1, we can get the following corollary.
Corollary 2: The system in (23) is asymptotically N-stable, if there exist matrices P, > 0, and diagonal
matrices U", Ur., Wit and W, k=1,--- ,N,i=1,--+ ,n, j = 1,2, such that the following LMIs hold:

O+ A+ AL <0, (25)

where

n
Or = MipPMip+ Y (Orvi + Opwa),

=1
_ T 77+
Okvi = My UMy + kU_U,”MkU,
Opwi = M,{W#W,;;MW;JFM,CW?W My~

Ay = X[-(A+E,) -1 ZBi ZDi]a
-1 i1

_ 0, P On I 0Opop2
b, = s Myp = ;
L Py 0y I 0n,(2n+1)
U+ _ On U]j; M. 4 — \/ sz ,(2n+1)n
ki U+ —U+ P TRU; \/— )
ki ki Onivryn V2In Op2n—iyn |
g [0, U B [ ~V1/2F;; Opgniim |
ki - - kU7 T ’
' Ukl _Uk;z ' 0n,(i+1) _\/i-[n 0, ,(2n—i)n
ot 0, W o= v1 n,(2n+1)n
L "V ke ki 0, J(nt+i+1)n On,(n—i)n J
- [ 0, W, —v1 /2H,; ki Yn,(2n+1)n ]
Wi = W= —W- kaW; = .
L ki T ki 0n,(n+i+1)n _\/§In On,(n—i)n J

Remark 4: Though not in ordinary form of LMIs, Theorem 1 and Collary 2 are indeed in the standard LMIs
form, which can be easily solved by the standard software. Moreover, this form simplified as W;X Wx +
W? YWy is more laconic. It expresses the LMIs in several parts, each of which has a symmetric structure
with the matrix variable to be determined in center. Here, Wx is the parameter matrix of linear combination
of vector elements. For example, az; + bzs = 0 could be written as Wxz! = 0, where Wx = [a b]and
z=[z1 =z |

Remark 5: In our main results, we propose a general sector-like regulation function to derive stability condi-
tions for GRNs with both multiple time-delays and multivariable regulation functions. Up-to-date techniques
are utilized for achieving delay dependence to ensure less conservatism. In the next section, the obtained

general multistability conditions are demonstrated via two practical examples.

IV. ILLUSTRATIVE EXAMPLES

In this section, two examples are employed to show 1) the generality of our proposed regulation function;

and 2) the applicability of our main results for multistability. There are multivariable regulation functions in
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both of the examples. Specifically, Example 1 is concerned with a Cdc2-Cyclin B/Weel system and Example
2 is about a reduced model of lactose system.
Example 1. Consider the well-known Cdc2-Cyclin B/Weel system in cell cycle described in [24]:

. prai(ves)™

= 1 ) — P1v®2) 7
. Bozox]

= (=) — 2T 26
xT9 a2( x2) K2 +x’1)/z ( )

where z1 denotes active Cdc2, o denotes active Weel; a3 = as = 1, 81 = 200, B2 = 10 are rate constants;
K, =30, Ky = 1 are Michaelis (saturation) constants; v, = 7, = 4 are Hill coefficients; and v is a coefficient
that reflects the strength of the influence of Weel on Cdc2-Cyclin B. We select v = 1 which guarantees the
bistability of (26).

(a) (b)

10 15 20 10 15 20

Fig. 2. Transient behavior of system (26).

Simulation results are depicted in Fig. 2. It is shown that two stable states can be achieved. The solid lines
represent the stable states and the dashed lines represent the unstable states.

Letting y; = =1, y2 = {L‘Q/\4/ 30, we obtain the standard form:

) Bry1ys
= a2
Y1 1Y1 1t y%
. Bayayi s
o = —Qgyz — T+ 1/V30, (27)
L+y;

where the regulation function h(z) = z*/ (1 + '), and d(z) = h(z) = 423/ (1 +:r4)2 < 1.065. f(x) and
h(z) are depicted in Fig. 3. We can get three equilibrium points z} = (1,0.17)T, x5 = (0.51,0.62)7 and
zh = (0.14,1)T of (26), or ¥ = (0.9947,0.0719)T, y3 = (0.51,0.26)T and y3 = (0.1357,0.4258)T of (27).

We rewrite model (27) into a compact matrix form
4(t) = — (A + Ey) 2(t) + Dhy(2(t)),

where
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When yi € [0.55, +00) x[0,0.25], H," = diag{1.065,0.0620} xdiag{0.25, +o0}, H; = diag{0, 0} xdiag{0,0.55},
we can obtain a feasible solution by solving LMIs with the following obtained matrix variables (for space con-
sideration, we only list the matrix variables P, W1+ and W ; and for a valid simulation, we take 100 as a
substitute for +oo in yj and H;):

9.4 31.1 1221.6 0 67300 0
P = 3 W 1+ = ) W 1_ = .
31.1 9138.3 0 3584.8 0 153330

When y5 € [0.45,0.55]x[0.25, 0.35], Hy = diag{0.5586,0.1665} x diag{0.35,0.5}, H; = diag{0.3363,0.0620} x
diag{0.25,0.45}. The solution is infeasible.
When 3 € [0,0.45]x[0.35, +00), Hy" = diag{0.3363, 1.065} xdiag{+00,0.45}, H; = diag{0, 0} xdiag{0.35,0},

we can obtain a feasible solution by solving LMIs with the following obtained matrix variables:

P, _ | 00647 0.0878 L | o084 0 _ | 1274051 0
>~ 1 00878 28020 |2 0 17.0333 | ? 0 97.9623 |

0.8} h(x)

d(x)

h(x),d(x)

| I I I i
0 0.5 1 15 2 25 3
X

Fig. 3. h(z) =2*/ (1 +2*), and d(z) = 423/ (1 +x4)2.

Example 2:. In this example, we consider a reduced model of lactose system. The lac operon consists of a
promoter/operator region and three larger structural genes, lacZ, lacY, and lacA. In the presence of external
lactose (Le), lactose is transported into the cell by a permease (P). Intracellular lactose (L) is then broken
down into glucose, galactose, and allolactose (A) by the enzyme [-galactosidase (B). The allolactose (A) feeds
back to bind with the lactose repressor and enables the transcription process to proceed. Once the mRNA has
been produced, the process of translation is initiated. The lacZ gene encodes for the mRNA responsible for
the production of S-galactosidase (B) and translation of the lacY gene produces mRNA ultimately responsible
for the production of a membrane permease (P).

In [23], it is assumed that there is a constant permease concentration and lactose is in a quasisteady state
across the membrane. Therefore, there is a one-to-one relationship between the external and internal lactose.
Then lactose (L) and permease (P) dynamics are not considered. A reduced model of three differential

equations is considered in [23]:

L
— auB — BuB — 44
B —7 Ba Kira ad
B = ape "M, —ApB, (28)
1+ Ki(e P AL )"
SR S1C 0 M,

MK+ Ki(e P A, )"
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where M is the mRNA concentration, B is the 8 galactosidase concentration, A is the concentration of

allolactose (the effector in the lac operon), L is the intracellular lactose concentration, A, = A(t — 7),

M., = M(t — 7). and the bacterial growth rate is given by p. The parameters are given in Table 1.

Table 1. Parameter values

parameter value unit parameter value unit
n 2 K 7200
I 3.03 x 1072 | min—! K 2.52 x 1072 | (uM)~2
ay 997 nm-min =" Kj, 0.97 mM
ap 1.66 x 1072 | min—! Ka 1.95 mM
aa 1.76 x 10* | min~! Ba 2.15 x 10* | min~!
M 0.411 min~! ™ 0.10 min
YB 8.33 x 10™* | min~! B 2.00 min
YA 1.35 x 1072 | min—!
We rewrite model (28) into a compact matrix form
i =— (A+ Ey) z + Bfi(z) + Cigk1(2r,,) + Cogiz(@7,) + Dhy(x),
where
1+ Ki(e M A )" A L
ga) = EUCTAD L=
K+ Ki(e hT A" Ko+ A Kp+L
[ Ay, A— A; Ark A, — A
r = By, = B — BZ y Ly = BTMk - BTM - BZ )
| M, M — M; M,k M,,, — M}
[ A,k A, — AL 0
Trg = By = B:, — By, r(@t) = | By |,
| M, M., — M; 0
[ 9(Aryk) 9(Arzk) [ Bh(Ag)
gkl(xTM) = 0 7gk2(x7'3) = 0 7hk($(t)) = 0 )
MTMk MTBk; | 0
[44 0 0 0 Bah(A}) © [0 auL O
A = s 0 |,Exr=1]0 0 o(,B=10 0 0],
i 0 A 0 0 0 0 0 0
i 0 0 0 0 0 —B4 0 0
C, = 0 0|,C0=1]00 age®s | ,D=| 0 0 0|.
L ay 0 0 0 0 0 0 00

There are three equilibrium points with L = 50uM:

SS;
SS;
SS:

(A7, BY,CYT) = (4.27 pM,0.23 nM, 0.46 nM),
(A3, B5,C5) = (11.73 uM, 0.7 nM, 1.39 nM),
(A%, BI,CF) = (64.68 M, 16.42 nM, 32.71 nM),
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SS7 and 5§53 are stable, SS3 is unstable. In the following, we show the effectiveness of our theorem.

When SS; € [0,8] x [0,0.4] x [0,1], F} = diag{0,1,0}, F; = diag{0,1,0}, G}, = G}, = diag{5.5967 x
1075,0,1}, Gy, = Gy, = diag{0,0,1}, H," = diag{5.1282 x 107%,0,0} x diag{0.4,0,0}, H; = diag{5.0864 x
10=%,0,0} x diag{0, 0,0}, we can obtain a feasible solution by solving LMIs with the following obtained matrix

variables (for space consideration, we only list the matrix variable P;):

0.0040 —0.0310 —0.0006
Py = | —-0.0310 1.2819 —0.0492
—0.0006 —0.0492 0.0261

When SS3 € [8,15] x [0.4,10] x [1,15], F," = diag{0,1,0}, F, = diag{0,1,0}, G, = G+, = diag{1.0482 x
107%,0,1}, G5, = G, = diag{5.5967 x 107°,0,1}, H," = diag{5.0864 x 107%,0,0} x diag{10,0,0}, H, =
diag{5.0502 x 1074,0,0} x diag{0.4,0,0}, the solution is infeasible.

When S5 € [15,400) x [10,+00) x [15,+00), F3 = diag{0,1,0}, F; = diag{0,1,0}, G5; = G4, =
diag{1.215 x 1073,0,1}, G5, = G5, = diag{0,0,1}, H;" = diag{5.0502 x 107*,0,0} x diag{+00,0,0}, H; =
diag{4.6401 x 107*,0, 0} x diag{10,0,0}, we can obtain a feasible solution by solving LMIs with the following

obtained matrix variables (for space consideration, we only list the matrix variables P;):

0.0029  0.0028 —0.0025
Py = 0.0028  0.5506 —0.0344 |,
—0.0025 —0.0344 0.0181

which confirms the bistability of this GRN.

V. CONCLUSION

In this paper, we have made an effort to show the possibility of applying control theory to investigate the
multistability of a GRN, therefore having potential applications in the design of synthetic gene circuits with
multistability. A novel and uniform mathematical formulation is proposed to describe a GRN with multiple
time delays and multivariable regulation functions. A method has been presented for the analysis of mul-
tistability of such a GRN. By using a Lyapunov-Krasovskii functional (LKF) approach and linear matrix
inequalities (LMIs) techniques, the multistability criteria for a GRN with multiple time delays and multivari-
able regulation functions have been established in the form of LMIs, which can be readily verified by using
standard numerical software. An important feature of the results reported here is that all the multistability
conditions are dependent on the delays, which is made possible by utilizing the most updated techniques for
achieving delay dependence. Also, our multistability conditions are applicable to several different regulation
functions, which cover many types of currently investigated GRNs, especially including the complicated multi-
variable regulation functions. T'wo examples have been employed to illustrate the applicability and usefulness
of the developed theoretical results, which are concerned with, respectively, a Cdc2-Cyclin B/Weel system
model and a lactose system model, both of which display bistability.



REVISED 15

APPENDIX
A. Derivation of (16)
By (7), (8), (9), (10), (11), (12), (13), (14) and (15), we have

Eri(t) = —aimpi(t) + Y bigfrig (@i (1) + D cijghij (ki (t — 7))
=1 =1
+de Yrij () ig (@15 (8) + 275) + Ykighwig (@i ()]
= —aiz(t) + sz‘jfkij(ivkj(t)) + D cijgrij (T (t — 7))
j=1 j=1

+Zdzy ykz] l] xk]( ) + ZZ]) - ykij(t)hij(Z;j)]

+Zdz’jykij(t)hij(22j) + > dijyi i (@ri (1))

j=1
n n n
= —aimgi(t) + Y digyrii (hi (2kg) + D b fui (wri (1) + D _cisgni (aai (E = 72))
= j=1 j=1
n
D [digynii (b (05 () + digys; (0 i (2 (£))]
j=1
n
= —a;wki(t) + Zdzth Z1ej) Ykis () + Zblﬂf’m zj(t)) + Zcijgkij ((t — 7))
j=1 j=1 j=1
+dijyri (g (@r; (1))
7=1

Then (16) could be obtained.

B. Proof of Theorem 1

We first show that the kth equilibrium point is asymptotically stable. The Lyapunov-Krasovskii functional

is defined as follows:

Vi(z(t)) = Vkl( () + Viz(2(t)) + Vis(z(1)), (A1)
Vir(z(t) = (t) Pr(t), (A2)
Vialw(t)) = Z / @) Quir()da (A3)

Via(z(t) = / /w 0) Zyidb (@) dadp. (A1)
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The derivatives of Vi;(x(t)), j = 1,2, 3, are given by

Via(z(t)) = 22" (t)Pei(t),

Vie(z(t) = Z[xT(t)Qkﬂ(t) — 2" (t — 1) Quiz(t — 7)),

| 121 .

Vis(z(t)) = > [rsd” (t) Zi(t) — / i (@) Zpid () dal.
i=1 =i

From Jensen’s inequality, we can easily get

t
— /t_ | il(a) Zpid(a)da

[ o] [ o]

- 1 [2(t) — x(t — 7)]" Zpi [2() — 2(t — 7)],

[3

By (18), for any scalar u;'l > 0, it is clear that for i =1,--- ,n,

> it g (0) |05 (6) = gl (0)] = 0,
j=1

then
SN [t s (3 () ety () = i Ty (5 (8)) g (5 (1))] = 0,
i=1j=1
or equivalently
> Urile®) UL FSo(t) — fra(@(®) U fri(z(£)] > 0.
i=1

Similarly, for any scalars u,; > 0, v,ji > 0 and v;; > 0, we have, respectively,

n

> ki@ () Ugg fri(e(t)) — fri(a(t)Up; Frya(t)] > 0,
i=1
n
> ki@t — )ik Gt — 7) = gra(@(t — 7)) Vi gra( (8 — 7)) > 0,
i=1
and .
> ki@t — 1) Vi gri(@(t — 7)) = gri(a(t — 7))V, Gy (t — 7)) > 0.
i=1
Also, by Corollary 1, for any scalars w,‘;- > 0 and w;; > 0, we have that for s =1,--- ,n,
D (ki (w(8)) W Hi () — P (w(8)) W g ((£))] > 0.
i=1
and

n

> i)W hai(2(t) — hai ((8)) W, Hgz ()] > 0.
=1

16

(A9)

(A10)

(A1)

(A12)

(A13)

(A14)
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In addition, based on (17), for any matrices X, we have

Gk (t) X | = (A+ Eg) z(t) + ZB fri(@(t)) + Zcigm'(iv(t — 7)) + ZDiﬁki(iv(t)) —a(t)| =0,  (Al5)

with
x(t)
(t)
o ox@=7)
Gk (t) = Fole(t)) :
gr(a(t — 7))
hi(z(t))
where
z(t— 1) frr(z(t))
z(t—T x(t
Wi—1) = (t | 2) u(at)) = sz(. () ’
| 2(t—7,) Jin(z(t))
[ gr1 (@t — 7)) f}kl(%‘(t))
z(t — T _ hio(z
(@t —1)) = gr2( (t: 2)) (a(t) = k2(. (t)
i gkn(x(t - Tn)) Bkn(x(t))

By using (17) and (A8)-(A15), we have
Vi(a(t)) < 22" ( )P (t)

+Z (O)Qriz(t) — " (t — 1) Qriz(t — 7)]

'I‘Z{Tz t) Zyi®(t) — Ti [2(t) — x(t - Ti)]T Zyi [2(t) — z(t — 73)]}

+Y[2fki(x(O) U Fiha(t) = 2fui(x(0) Ug, fra( (1))
1=1

+Y [2fri(@ (D)) Uy fri(w(t) — 2 ki) Uy, iy (t)]

=1

+> 20k (2(t — 1))Vl Gt — 1) — 20k (w(t — 7)) Vil gra(z(t — 7))
im1

+Z[29ki($(t — 7))V gri (@ (t — 73)) — 298 (2(t — 73))V, Gyt — 73)]
i—1

n

+ 3 [k (w () Wik Hfw(t) — 2R (@(0) Wy ((2))]
=1

+Z 2hi (1)) W hii((t)) — 2k ((8)) Wi, Hyw (1))



REVISED 18

+2(, (t) X[— (A + Ek) a;(t) + ZBszz($(t)) + Zngm(m(t — Tz))
i=1 =1

+Y Dibyi((t)) — (1))
i=1

= G @) Ok + A+ AL (@),

which follows from (22) that Vi (z(t)) < —eg ||z(2)||? for a sufficiently small e > 0, k = 1,--- , N and z(t) # 0,
then the asymptotic N-stability is established and the GRN (1) is N-stable.
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