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 RegulatoryNetworks with Multivariable Regulation Fun
tionsWei Pana;b, Zidong Wang
;d;�, Huijun Gaoa, Yurong Lie and Min DueAbstra
tMany geneti
 regulatory networks (GRNs) have the 
apa
ity to rea
h di�erent stable states. This 
apa
ity isde�ned as multistability whi
h is an important regulation me
hanism. Multiple time-delays and multivariable regulationfun
tions are usually inevitable in su
h GRNs. In this paper, multistability of GRNs is analyzed by applying the 
ontroltheory and mathemati
al tools. This study is to provide a theoreti
al tool to fa
ilitate the design of syntheti
 gene
ir
uit with multistability in the perspe
tive of 
ontrol theory. By transforming su
h GRNs into a new and uniformmathemati
al formulation, we put forward a general se
tor-like regulation fun
tion that is 
apable of quantifying theregulation e�e
ts in a more pre
ise way. By resorting to up-to-date te
hniques, a novel Lyapunov-Krasovskii fun
tional(LKF) is introdu
ed for a
hieving delay dependen
e to ensure less 
onservatism. New 
onditions are then proposed toensure the multistability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the delays.Our multistability 
onditions are appli
able to several frequently used regulation fun
tions espe
ially the multivariableones. Two examples are employed to illustrate the appli
ability and usefulness of the developed theoreti
al results.KeywordsMultistability, multivariable regulation fun
tion, geneti
 regulatory networks, Lyapunov-Krasovskii fun
tional, linearmatrix inequality, multiple time-delays. I. Introdu
tionSystems biology is the study of an organism, viewed as an integrated and intera
ting network of genes,proteins and bio
hemi
al rea
tions whi
h give rise to life, instead of analyzing individual 
omponents oraspe
ts of the organism [1{3℄. The fo
us on systems as opposed to individual genes or pathways is sharedby the 
ontemporaneous dis
ipline of systems biology, whi
h analyzes biologi
al organisms in their entirety[4{6℄. The spirit of geneti
 engineering in whi
h genes and gene produ
ts are 
onsidered as a whole system
ould be extended to syntheti
 biology. In syntheti
 biology, the ultimate goal is to engineer unnaturalbiologi
al systems that fun
tion in living organism to investigate natural biologi
al phenomena for a varietyof appli
ations. It is reasonable to expe
t that ideas and method from systems and 
ontrol theory whi
his powerful in analyzing dynami
al properties and designing 
ontroller to a
hieve desired performan
e willlead to new understanding of the underlying biologi
al pro
esses therefore having potential appli
ations indesigning syntheti
 gene 
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REVISED 2The syntheti
 geneti
 regulatory networks (GRNs) prove to be a powerful tool in studying gene regulationpro
esses in living organisms [7{12℄. By using ordinary di�erential equations to des
ribe the rates of 
on-
entration 
hange in bio
hemi
al substan
e, su
h as genes, proteins, a
tivators, repressors, enzymes, fa
torsor produ
ts of a bio
hemi
al network, more detailed understanding and insights of the dynami
 behaviorexhibited by biologi
al systems 
an be explored [13, 14℄. In parti
ular, sin
e GRNs are high-dimensional andnonlinear, it is also indispensable to 
onsider the network dynami
s from the viewpoint of systems and 
ontroltheory [15{17℄.Obviously, the pre
ise stru
ture of a mathemati
al model should be 
onsistent with the dynami
al behaviorsof the system. It has been re
ognized that the slow pro
esses of trans
ription, translation and di�usion tothe pla
e of a
tion of a protein inevitably 
ause time delays. Also, for di�erent substan
e in GRNs, timedelays of bio
hemi
al rea
tions may vary due to the di�erent rea
tion pathways. Time delays are frequentlyen
ountered in many other pra
ti
al engineering systems besides GRNs, su
h as 
ommuni
ation, ele
troni
s,and 
hemi
al systems. Therefore, in order to have more a

urate models, it is ne
essary to take time-delaysinto a

ount in GRNs. In the past de
ade, stability analysis and synthesis problems for various time-delay
ontrol systems have gained 
onsiderable resear
h interests and a large amount of results have appeared inthe literature, see, e.g. [18{21℄.On the other hand, the regulation fun
tions, whi
h are either linear or nonlinear, play a 
ru
ial role indetermining qualitative properties of GRNs, su
h as the number and the stability of steady states. Theregulatory me
hanism are a
tually des
riptions of bio
hemi
al rea
tion kineti
s law su
h as mass a
tion law,Hill law, Henri-Mi
haelis-Menten law, et
. The linear or nonlinear regulation fun
tion are often single-variableand has a form of monotoni
ity with the single variable. Then the regulation fun
tions for di�erent substan
ein GRNs add together to regulate a 
ertain kind. In syntheti
 GRNs, one of the simplest ways to implementsu
h an additive input fun
tion is to provide a gene with multiple promoters, ea
h responding to one of theinputs. However, to des
ribe the 
ompli
ated relationship between di�erent bio
hemi
al substan
e in GRNs,it is natural to introdu
e multivariable regulation fun
tions, in whi
h di�erent variables are multiplying or
oupling together. GRNs with regulation fun
tions of su
h forms have been reported in [22{24℄. It shouldbe mentioned that, even though there are no multivariable terms, the types of regulation fun
tions 
ould bediverse, most of whi
h are nonlinear [13, 14℄.Due to the nonlinearity of regulation fun
tions, the 
oexisten
e of multiple steady states whi
h refers tomultistability is possible. The traditional notion of stability named as monostability in GRNs [25{27℄ is
on
erned with unique equilibrium point, and this di�ers signi�
antly from the multistability mentioned here.It is noti
ed that multistability has 
ertain properties whi
h are not shared by other me
hanisms of integrative
ontrol, therefore plays an important role in the dynami
s of living 
ells and organisms [28{30℄. For example,the maintenan
e of phenotypi
 di�eren
es in the absen
e of geneti
 or environmental di�eren
es, whi
h hasbeen demonstrated experimentally for the regulation of the la
tose operon in Es
heri
hia 
oli, may attributeto multistability. Cell di�erentiation might also be explained as multistability [31℄. Bistability, a basi
 
aseof multistability, has a property that there are two stable �xed points. It has be
ome in
reasingly 
lear thatbistability is an important re
urring theme in 
ell signaling and of parti
ular relevan
e to biologi
al systemsthat swit
h between dis
rete states, generate os
illatory responses. As stated in [32℄, bistability is a new wayof looking at 
ell 
y
le 
ontrol.Re
ently, a lot of e�orts have been made to the mathemati
al modeling of GRNs with multistability. In [8℄,a syntheti
 geneti
 
o-repressive swit
hes in the well known la
 operon in the ba
teria Es
heri
hia 
oli were
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onstru
ted and a model with two 
omponents was proposed. A more detailed mathemati
al model in whi
hthe parameters were all estimated from reported experimental data was developed in [22℄, and it was shownthat there was bistability in the la
tose operon dynami
s for realisti
 extra
ellular la
tose 
on
entration values.A simpli�
ation of the above model that 
onsidered only the role of �-gala
tosidasein the operon regulationand ignores that of la
tose permease, whi
h also displayed bistability, was introdu
ed in [23℄. In [12℄, thedynami
s of the bistable la
tose utilization network of Es
heri
hia 
oli has been quantitatively investigatedin single 
ell experiments. In [24℄, Cd
2-Cy
lin B/Wee1 system was transformed to a two-variable problemunder ne
essary assumptions and displaying bistability.Theoreti
al results obtained for the multistability of a GRN have been s
attered in the literature. Thebiologi
al system with multistability and hysteresis has been modeled as monotone dynami
 systems in [33℄,where the ri
h and elegant theory of monotone dynami
 system provides an eÆ
ient mathemati
al tool foranalysis (see [34℄ and referen
es therein). Espe
ially, in the biologi
al systems with bistability, ea
h stablemode of operation is asso
iated with an appropriate invariant set in the state spa
e and stability with respe
tto ea
h set has been studied in terms of a lo
al notion of input-to-state stability with respe
t to 
ompa
tsets [35℄. In the 
ontrol 
ommunities, stability analysis should always be performed prior to the 
ontrollerdesign. On one hand, the results on multistability should fa
ilitate the design of syntheti
 gene 
ir
uits withmultistability while these results are diÆ
ult to extend to engineering. On the other hand, time-delays andmultivariable regulation fun
tions have not been 
onsidered in these results. How to analyze multistability oftime-delay GRNs with multivariable regulation fun
tions in order to be potential in syntheti
 biology remainsas an open problem. Therefore, it is essential and important to investigate the multistability of delayed GRNswithmultivariable regulation fun
tions. In the survey paper [36℄, the trigger and signi�
an
e of this study havebeen summarized for 
onsidering the possible 
ontrol s
heme for the swit
h of di�erent phenotypes in termsof epigeneti
s. In [36℄, the essential roles of time delays, negative loop and positive loop have been thoroughlydis
ussed. Time delays have a 
lose relationship with os
illations, even with one element negative loops. Inany 
ase, a negative loop plays to generate homeostasis around a steady state lo
ated near the thresholds,while a positive loop is a ne
essary 
ondition to generate multistationarity or a multipli
ity of regimes in amore general way. Despite the importan
e of gaining straightforward insight on the 
ause of multistability,to the best of the authors' knowledge, there has been little e�ort towards the theoreti
al resear
h on this
hallenging problem. Su
h a situation motivates our present study.Lyapunov{Krasovskii fun
tional (LKF) theory and linear matrix inequality (LMI) te
hnique are powerfultools in stability analysis and 
ontroller design and have been extensively studied in the 
ontrol 
ommunities(see [37{41℄ and referen
es therein). Although there are also reports on the multistability analysis for neuralnetworks [42, 43℄, these results are fo
using on the analysis rather than aiming at design. Even in this
ommunity, there are seldom reports on multistability analysis by LKF and LMI. To fa
ilitate the readers inbiology area, let us brie
y dis
uss the LKF theory and LMI te
hnique. Lyapunov's dire
t method (also 
alledthe se
ond method of Lyapunov) allows us to determine the stability of a system without expli
itly solvingdi�erential equations. The method is a generalization of the idea that if there is some \measure of energy"in a system, then we 
an study the rate of 
hange of the energy of the system to as
ertain stability [44℄. In
ase of systems with time-delay, su
h measure of energy is often adopted as the LKF, whi
h is typi
ally of thequadrati
 form. By 
al
ulating the derivative of the LKF, it is usually 
on
luded that the overall time-delaysystem is stable if 
ertain LMIs are feasible [37{41℄. Note that the solvability of LMIs 
an be easily 
he
kedby using the Matlab toolbox, and a growing number of dynami
s analysis problems 
an be 
onverted into the



REVISED 4feasibility of LMIs [45℄.In this paper, we are 
on
erned with the multistability of GRNs with multiple time-delays. Multivariableand several di�erent types of regulation fun
tions are 
onsidered. We then generalize the mathemati
alformulation of su
h GRNs by proposing a se
tor-like regulation fun
tion. A novel LKF is introdu
ed and themost updated te
hniques are employed to a
hieve delay-dependen
e. A suÆ
ient 
ondition is then derivedfor the multistability of a GRN with multiple time delays and multivariable regulation fun
tions in the formof LMIs. An important feature with the results to be reported is that, all the multistability 
onditions aredependent on the delays, made possible by utilizing the up-to-date te
hniques to a
hieve delay dependen
e.Se
ond, our multistability 
onditions are appli
able to several di�erent regulation fun
tions, whi
h 
over manytypes of 
urrently investigated GRNs, espe
ially in
luding the 
ompli
ated multivariable regulation fun
tions.Two examples whi
h have been tested by reported experiments are employed to illustrate the appli
abilityand usefulness of the developed theoreti
al results. Example 1 is a Cd
2-Cy
lin B/Wee1 system model andexample 2 is a la
tose system model. The GRNs in both of these examples display bistability.Notation: The notation used throughout the paper is standard. The supers
ript T indi
ates matrix trans-position; Rn denotes the n-dimensional Eu
lidean spa
e and Rn�k is the set of all n� k real matri
es. An;kdenotes A 2 Rn�k : I and 0 denote identity matrix and zero matrix respe
tively, the notation P > 0 means thatP is symmetri
 and positive de�nite and the symbol � indi
ates symmetri
 blo
ks in the LMIs. In addition,diagf: : :g stands for a blo
k-diagonal matrix and for a matrix A, sym(A) denotes A+AT .II. Model and PreliminariesIn this se
tion, we introdu
e a GRN model whi
h 
an be des
ribed by the following di�erential equationsfor i = 1; 2; : : : ; n:_zi(t) = �aizi(t) + nXj=1bijfij(zj(t)) + nXj=1
ijgij(zj(t� �i)) + nXj=1dijyij(t)hij(zj(t)) + ui; (1)where z1; : : : ; zn are bio
hemi
al substan
e, su
h as genes, proteins, a
tivators, repressors, enzymes, fa
torsor produ
ts of a bio
hemi
al network, and z(�) = [z1(�); z2(�); : : : ; zn(�)℄T 2 Rn is the substan
e state ve
tor.Their rates of degradation are denoted by ai 2 R+. _zi; the rate of 
hange in zi, represents 
on
entration
hange of a variable due to produ
tion or degradation. ui is de�ned as a basal rate. fij(�) and gij(�) representthe feedba
k regulation fun
tion of the jth substan
e on the ith substan
e, whi
h are generally nonlinear orlinear single-variable fun
tions.Due to the fa
t that time delays o

ur in trans
ription, translation and di�usion to the pla
e of a
tion of aprotein, and for di�erent bio
hemi
al substan
e in GRNs, the time-delays at di�erent stages may be di�erent,and therefore the regulation fun
tion with multiple time delays gij(�) is introdu
ed. In many syntheti
 GRNs,the monotone regulation fun
tions are not just simply added together in pra
ti
e, but may be 
oupled withanother variable whi
h indi
ates the relationship between two bio
hemi
al substan
e in GRNs [22,24℄. Then,yij(�)hij(zj(�)) is introdu
ed in the model to des
ribe su
h a 
ompli
ated property. To ease notation, hij(�) isalso 
alled regulation fun
tion, whi
h has the same property with fij(�) and gij(�) and we 
all yij(�)hij(zj(�))multivariable regulation fun
tion. yij(�) is an element that belongs to [z1(�); z2(�); : : : ; zn(�)℄T but yij(�) 6= zj(�).Obviously, if yij(�) = zj(�); yij(�)hij(zj(�)) would have a similar form with fij(zj(�)) and the multivariable term
an be eliminated. Regulation fun
tion is used to 
apture the 
ombined e�e
t of several regulatory proteins onthe 
ontrol of gene expression or protein degradation and it des
ribes the 
onne
tion and topology stru
tureof bio
hemi
al substan
e.



REVISED 5Remark 1: Linear 
ontrol theory has re
eived great resear
h interest and the 
orresponding results havebeen fruitful. However, almost all pra
ti
al systems are inherently nonlinear. Sometimes, linearization is apowerful tool, but it may prevent us from gaining the insight of nonlinear phenomenon. In neural networks, thestru
ture of the model des
ribed by nonlinear di�erential equations is similar to the GRNs' stru
ture dis
ussedhere [46,47℄. In neural networks, the a
tivation fun
tion is like the regulation fun
tion in GRNs, but it is justa monotone nonlinear fun
tion of only one variable whi
h is totally di�erent from the multivariable regulationfun
tions. The regulation me
hanism in GRNs not only follows the \adding" logi
 like neural networks butalso the \
oupling" logi
. In neural networks, the approa
h to dealing with nonlinearity is usually based on a\linearization" idea that sets a linear boundary to be an approximation of the nonlinear a
tivation fun
tions.Su
h an idea works well when there is one variable, but may fa
e unmanageable diÆ
ulties when it 
omes tothe multivariable regulation fun
tions. In other words, we are not able to inherit the method for dealing withnonlinear terms in neural networks. Therefore, there is a need to transform the model into a new form so asto fa
ilitate the handling of su
h nonlinear terms.In the following, let us 
onsider the regulation fun
tions in order to show the existen
e of multiple equilibriumpoints, hen
e the multistability.Remark 2: We 
onsider a simpli�ed GRN model:_zi(t) = �aizi(t) + nXj=1bijRij(zj(t)): (2)A regulation fun
tion often found in the literature is the Hill type [14℄:Rij (zj) = zHijj (t)�Hijj + zHijj (t) ; (3)with �j > 0 is the threshold for the regulatory in
uen
e of zj on a target bio
hemi
al substan
e zi, and Hij isthe Hill 
oeÆ
ients. The fun
tion ranges from 0 to 1 and in
reases as zj !1, so that an in
rease in zj willtend to in
rease the expression rate of the bio
hemi
al substan
e, then bio
hemi
al substan
e j is an a
tivatorof gene i. If bio
hemi
al substan
e j is an repressor of gene i, thenRij (zj) = 1� zHijj (t)�Hijj + zHijj (t) : (4)Then, the GRN (2) 
an be rewritten as_zi(t) = �aizi(t) + nXj=1bij �Rij(zj(t)) + ui (5)for i = 1; 2; : : : ; n; with �Rij(zj(t)) = zHijj (t)�Hijj + zHijj (t) ; ui = Xj2Fi �ij ;where Fi is the set of all the j whi
h is a repressor of gene i; and ui is de�ned as a basal rate: If bij = �ij ;zj is an a
tivator of zi; if bij = 0; zj is no link with zi; if bij = ��ij ; zj is a repressor of zi. If �j = 1; theregulation fun
tion is in a standard form. (3) and (4) 
an be easily transformed to standard form.Let _zi(t) = 0; that is, aizi(t) � ui = nPj=1bij �Rij(zj(t)); whose solution de�nes the equilibrium point. For
onvenien
e, we 
onsider one variable 
ase, i.e., we de�ne right hand of the equality above f(z) = zHij=(1 +



REVISED 6zHij ); left hand h(z) = az � u: It is shown that there 
ould be three 
ross points at most when Hij = 2 inFig. 1(a) and two 
ross points when Hij = 1 in Fig. 1(b).
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Fig. 1. (a) f(z) = z2=(1 + z2) and h(z) = 0:4z: Three equilibrium points 
an be a
hieved. (b) f(z) = z=(1 + z) andh(z) = 0:4z: Two equilibrium points 
an be obtained.Assume that a GRN (1) has N equilibrium points and let z�k = (z�k1; z�k2; : : : ; z�kn)T be the kth equilibriumpoint, i = 1; 2; � � � ; N: So we have0 = �aiz�ki + nXj=1bijfij(z�kj) + nXj=1
ijgij(z�kj) + nXj=1dijy�kijhij(z�kj) + ui: (6)Subtra
ting (6) from (1) gives_zi(t)� _z�ki = �ai [zi(t)� z�ki℄ + nXj=1bij �fij(zj(t))� fij(z�kj)� (7)+ nXj=1
ij �gij(zj(t� �i))� gij(z�kj)�+ nXj=1dij �yij(t)hij(zj(t))� y�kijhij(z�kj)� :Let zkij(�) = zij(�); (8)xki(�) = zi(�)� z�ki; (9)ykij(�) = yij(�)� y�kij; (10)fkij(xkj) = fij(xkj + z�kj)� fij(z�kj); (11)gkij(xkj) = gij(xkj + z�kj)� gij(z�kj); (12)hkij(xkj) = hij(xkj + z�kj)� hij(z�kj); (13)�hkij(xkj(t)) = zkij(t)hkij(xkj(t)); (14)nXj=1dijhij(z�kj)xkij(t) = � nXj=1ekijxkj(t): (15)We have_xki(t) = �aixki(t) + nXj=1bijfkij(xkj(t)) + nXj=1
ijgkij(xkj(t� �i)) + nXj=1dij�hkij(xkj(t))� nXj=1ekijxkj(t): (16)



REVISED 7For 
onvenien
e, see Appendix for the derivation.Equivalently, (16) 
an be written as_x(t) = � (A+Ek)x(t) + nXi=1Bifki(x(t)) + nXi=1Cigki(x(t� �i)) + nXi=1Di�hki(x(t)); (17)where x(t) = 266664 xk1(t)xk2(t)...xkn(t)
377775 ; fki(x(t)) = 266664 fki1(xk1(t))fki2(xk2(t))...fkin(xkn(t))

377775 ;
gki(x(t� �i)) = 266664 gki1(xk1(t� �i))gki2(xk2(t� �i))...gkin(xkn(t� �i))

377775 ; �hki(x(t)) = 266664 yki1(t)hki1(xk1(t))yki2(t)hki2(xk2(t))...ykin(t)hkin(xkn(t))
377775 :Consider the regulation fun
tion fij (zj) ; whi
h is divided into kfijmax pie
ewise intervals along the variablezj : If there exist N equilibrium points of (1), we let kfijmax = N and sele
t N intervals
f = 8<: [�0ij ; �1ij ℄Æ(i)1ij � [�1ij ; �2ij ℄Æ(i)2ij � � � � � [�(N�1)ij ; �Nij℄Æ(i)Nij ;�Æ(i)1ij ; Æ(i)2ij ; :::; Æ(i)Nij� = (1; 0; :::; 0) or (0; 1; :::; 0) ; :::; or (0; :::; 0; 1) ; i = 1; 2; :::; n 9=; :Then, the kth equilibrium point lies in the following region
fk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij℄359=; :Similarly, 
onsider the regulation fun
tion gij (zj) ; linear fun
tion rij (zij(t)) = zij(t) and regulation fun
tionhij (zj) ; the kth equilibrium point lies in the following regions
gk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij ℄359=; ; 
rk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij℄359=; ;
hk = 8<: nYi=124\ nYj=1[�(k�1)ij ; �kij℄359=;respe
tively.Assumption 1: Let kfijmax = N . Ea
h regulation fun
tion in (1), fij (�) ; i; j = 1; 2; : : : ; n; satis�es thefollowing 
ondition when 8xk; yk 2 [�ij(k�1); �ijk℄; xk 6= yk; 1 � k � N :��kij � fij (xk)� fij (yk)xk � yk � �+kij ;where ��kij and �+kij are nonnegative 
onstants.Be
ause the kth equilibrium point is shifted to origin, the new equilibrium point 0 lies in the region�
fk = 8<: nYi=124\ nYj=1[��(k�1)ij ; ��kij℄359=; :where ��(k�1)ij = �(k�1)ij � z�kj < 0; ��kij = �kij � z�kj > 0:



REVISED 8By (9), (11) and Assumption 1, it is not diÆ
ult to verify that 8xj 2 [��(k�1)ij ; 0) [ (0; ��kij ℄; i = 1; 2; : : : ; n;��kij � fkij (xj)xj � �+kij; (18)and it is easy to see that fkij (0) = 0:Similarly, by (9), (12) and Assumption 1, it is not diÆ
ult to verify that 8xj 2 [��(k�1)ij ; 0) [ (0; ��kij ℄;i = 1; 2; : : : ; n; ��kij � gkij (xj)xj � �+kij ; (19)where ��(k�1)ij = �(k�1)ij � z�kj < 0; ��kij = �kij � z�kj > 0, ��kij and �+kij are nonnegative 
onstants. It is easyto see that gkij (0) = 0:Letting x�kij = �(k�1)ij and x+kij = �kij; we getx�kij � ykij(t) � x+kij: (20)Obviously, x�kij and x+kij are positive 
onstants be
ause the 
on
entration of bio
hemi
al substan
e 
an't benegative.Similarly, by (9), (13) and Assumption 1, it is not diÆ
ult to verify that 8xj 2 [��(k�1)ij ; 0) [ (0; ��kij ℄;i = 1; 2; : : : ; n; ��kij � hkij (xj)xj � �+kij; (21)where ��(k�1)ij = �(k�1)ij � z�kj < 0; ��kij = �kij � z�kj > 0, ��kij and �+kij are nonnegative 
onstants. It is easyto see that hkij (0) = 0:Let krijmax = khijmax = N; i; j = 1; 2; : : : ; n; 1 � k � N and 
�kij = x�kij��kij, 
+kij = x+kij�+kij. By (20), (21)and Assumption 1, we 
an have the following 
orollary.Corollary 1: Ea
h multivariable regulation fun
tion in (17), ykijhkij(xj); i; j = 1; 2; : : : ; n; satis�es thefollowing 
ondition when 8xj 2 [��ij(k�1); 0) [ (0; ��ijk℄; 8ykij 2 [x�kij ; x+kij℄:
�kij � ykijhkij (xj)xj � 
+kij:Remark 3: The inequalities (18), (19) and (21) are similar to the one proposed in [49, 50℄ for the a
tiva-tion fun
tion of neural networks. As pointed out in [49, 50℄, this des
ription 
ould be non-monotoni
, andis more general than the usual sigmoid fun
tions and the re
ently 
ommonly used Lips
hitz 
onditions. Welike to point out that su
h a des
ription is very pre
ise/tight in quantifying the lower and upper boundsof the regulation fun
tions, hen
e very helpful for using LMI-based approa
h to redu
e the possible 
onser-vatism. III. Multistability Conditions of GRNsIn this se
tion, we present our multistability 
ondition for the GRN with multiple time delays and multi-variable regulation fun
tions des
ribed in the previous se
tion.De�nition 1: A GRN is said to have N -stability if it has N (N � 1) stable equilibrium points. In this 
ase,the GRN is said to be N -stable. Spe
ially, a GRN has bistability if N = 2:



REVISED 9Theorem 1: The system in (1) is asymptoti
ally N -stable, if there exist matri
es Pk > 0; Qkj > 0; Zkj > 0;and diagonal matri
es U+ki; U�ki; V +ki ; V �ki ; W+ki and W�ki ; k = 1; � � � ; N; i = 1; � � � ; n; j = 1; 2; su
h that thefollowing LMIs hold: �k +�k +�Tk < 0; (22)where �k = �kP + nXi=1(�kQi +�kZi +�kUi +�kV i +�kWi);�kP = MTkP �PkMkP ;�kUi =MTkU+i �U+kiMkU+i +MTkU�i �U�kiMkU�i ;�kQi = MTkQi �QkiMkQi ;�kV i =MTkV +i �V +kiMkV +i +MTkV �i �V �kiMkV �i ;�kZi = MTkZi �ZkiMkZi ;�kWi =MTkW+i W+kiMkW+i +MTkW�i �W�kiMkW�i ;�k = X[� (A+Ek) � I 0 nXi=1Bi nXi=1Ci nXi=1Di℄;�Pk = " 0n PkPk 0n # ;MkP = " 0n In 0n;4n2In 0n;(4n+1)n # ;�Qki = " Qki 0n0n �Qki # ;MkQi = " In 0n;(4n+1)n0n;(i+1)n In 0n;(4n�i)n # ;�Zki = " �iZki 0n0n �1=�iZki # ; MkZi = " 0n In 0n;4n2In 0n;in �In 0n;(4n�i)n # ;�U+ki = " 0n U+kiU+ki �U+ki �# ;MkU+i = " p1=2F+ki 0n;(4n+1)n0n;(n+i+1)n p2In 0n;(3n�i)n # ;�U�ki = " 0n U�kiU�ki �U�ki # ;MkU�i = " �p1=2F�ki 0n;(4n+1)n0n;(n+i+1)n �p2In 0n;(3n�i)n # ;�V +ki = " 0n V +kiV +ki �V +ki �# ;MkV +i = " 0n;(i+1)n p1=2G+ki 0n;(4n�i)n0n;(2n+i+1)n p2In 0n;(2n�i)n # ;�V �ki = " 0n V �kiV �ki �V �ki # ;MkV �i = " 0n;(i+1)n �p1=2G�ki 0n;(4n�i)n0n;(2n+i+1)n �p2In 0n;(2n�i)n # ;�W+ki = " 0n W+kiW+ki �W+ki # ;MkW+i = " p1=2H+ki 0n;(4n+1)n0n;(3n+i+1)n p2In 0n;(n�i)n # ;�W�ki = " 0n W�kiW�ki �W�ki # ;MkW�i = " �p1=2H�ki 0n;(4n+1)n0n;(3n+i+1)n �p2In 0n;(n�i)n # :Proof: See Appendix.If time delay is assumed to be zero, then the GRN be
omes:_zi(t) = �aizi(t) + nXj=1bijfij(zj(t)) + nXj=1bijzij(t)hij(zj(t)): (23)



REVISED 10For the kth equilibrium point, by transformation we have_x(t) = � (A+Ek) x(t) + nXi=1Bifki(x(t)) + nXi=1Di�hki(x(t)): (24)Based on Theorem 1, we 
an get the following 
orollary.Corollary 2: The system in (23) is asymptoti
ally N -stable, if there exist matri
es Pk > 0; and diagonalmatri
es U+ki; U�ki; W+ki and W�ki ; k = 1; � � � ; N; i = 1; � � � ; n; j = 1; 2; su
h that the following LMIs hold:�k +�k +�Tk < 0; (25)where �k = MTkP �PkMkP + nXi=1(�kUi +�kWi);�kUi = MTkU+i �U+kiMkU+i +MTkU�i �U�kiMkU�i ;�kWi = MTkW+i �W+kiMkW+i +MTkW�i �W�kiMkW�i ;�k = X[� (A+Ek) � I nXi=1Bi nXi=1Di℄;�Pk = " 0n PkPk 0n # ;MkP = " 0n In 0n;2n2In 0n;(2n+1)n # ;�U+ki = " 0n U+kiU+ki �U+ki �# ;MkU+i = " p1=2F+ki 0n;(2n+1)n0n;(i+1)n p2In 0n;(2n�i)n # ;�U�ki = " 0n U�kiU�ki �U�ki # ;MkU�i = " �p1=2F�ki 0n;(2n+1)n0n;(i+1)n �p2In 0n;(2n�i)n # ;�W+ki = " 0n W+kiW+ki �W+ki �# ;MkW+i = " p1=2H+ki 0n;(2n+1)n0n;(n+i+1)n p2In 0n;(n�i)n # ;�W�ki = " 0n W�kiW�ki �W�ki # ;MkW�i = " �p1=2H�ki 0n;(2n+1)n0n;(n+i+1)n �p2In 0n;(n�i)n # :Remark 4: Though not in ordinary form of LMIs, Theorem 1 and Collary 2 are indeed in the standard LMIsform, whi
h 
an be easily solved by the standard software. Moreover, this form simpli�ed as W TXXWX +W TY YWY is more la
oni
. It expresses the LMIs in several parts, ea
h of whi
h has a symmetri
 stru
turewith the matrix variable to be determined in 
enter. Here, WX is the parameter matrix of linear 
ombinationof ve
tor elements. For example, ax1 + bx2 = 0 
ould be written as WXxT = 0; where WX = [ a b ℄ andx = [ x1 x2 ℄:Remark 5: In our main results, we propose a general se
tor-like regulation fun
tion to derive stability 
ondi-tions for GRNs with both multiple time-delays and multivariable regulation fun
tions. Up-to-date te
hniquesare utilized for a
hieving delay dependen
e to ensure less 
onservatism. In the next se
tion, the obtainedgeneral multistability 
onditions are demonstrated via two pra
ti
al examples.IV. Illustrative ExamplesIn this se
tion, two examples are employed to show 1) the generality of our proposed regulation fun
tion;and 2) the appli
ability of our main results for multistability. There are multivariable regulation fun
tions in



REVISED 11both of the examples. Spe
i�
ally, Example 1 is 
on
erned with a Cd
2-Cy
lin B/Wee1 system and Example2 is about a redu
ed model of la
tose system.Example 1. Consider the well-known Cd
2-Cy
lin B/Wee1 system in 
ell 
y
le des
ribed in [24℄:_x1 = �1(1� x1)� �1x1(vx2)
1K1 + (vx2)
1 ;_x2 = �2(1� x2)� �2x2x
21K2 + x
21 ; (26)where x1 denotes a
tive Cd
2, x2 denotes a
tive Wee1; �1 = �2 = 1; �1 = 200; �2 = 10 are rate 
onstants;K1 = 30; K2 = 1 are Mi
haelis (saturation) 
onstants; 
1 = 
2 = 4 are Hill 
oeÆ
ients; and v is a 
oeÆ
ientthat re
e
ts the strength of the in
uen
e of Wee1 on Cd
2-Cy
lin B. We sele
t v = 1 whi
h guarantees thebistability of (26).
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Fig. 2. Transient behavior of system (26).Simulation results are depi
ted in Fig. 2. It is shown that two stable states 
an be a
hieved. The solid linesrepresent the stable states and the dashed lines represent the unstable states.Letting y1 = x1; y2 = x2= 4p30; we obtain the standard form:_y1 = ��1y1 � �1y1y421 + y42 + 1;_y2 = ��2y2 � �2y2y411 + y41 + 1= 4p30; (27)where the regulation fun
tion h(x) = x4= �1 + x4�, and d(x) = _h(x) = 4x3= �1 + x4�2 � 1:065: f(x) andh(x) are depi
ted in Fig. 3. We 
an get three equilibrium points x�1 = (1; 0:17)T ; x�2 = (0:51; 0:62)T andx�3 = (0:14; 1)T of (26); or y�1 = (0:9947; 0:0719)T ; y�2 = (0:51; 0:26)T and y�3 = (0:1357; 0:4258)T of (27).We rewrite model (27) into a 
ompa
t matrix form_z(t) = � (A+Ek) z(t) +D�hk(z(t));where h(z) = z41 + z4 ; z(t) = " z1(t)z2(t) # = " y1(t)� y�k1y2(t)� y�k2 # ; �h(z(t)) = " y2(t)h(z1(t))y1(t)h(z2(t)) # ;A = " �1 00 �2 # ; Ek = " �1h(y�k2) 00 �2h(y�k1) # ;D = " 0 ��1��2 0 # :



REVISED 12When y�1 2 [0:55;+1)�[0; 0:25℄, H+1 = diagf1:065; 0:0620g�diagf0:25;+1g; H�1 = diagf0; 0g�diagf0; 0:55g;we 
an obtain a feasible solution by solving LMIs with the following obtained matrix variables (for spa
e 
on-sideration, we only list the matrix variables P1; W+1 and W�1 ; and for a valid simulation, we take 100 as asubstitute for +1 in y�1 and H+1 ):P1 = " 9:4 31:131:1 9138:3 # ;W+1 = " 1221:6 00 3584:8 # ;W�1 = " 67300 00 153330 # :When y�2 2 [0:45; 0:55℄�[0:25; 0:35℄, H+2 = diagf0:5586; 0:1665g�diagf0:35; 0:5g; H�2 = diagf0:3363; 0:0620g�diagf0:25; 0:45g. The solution is infeasible.When y�3 2 [0; 0:45℄�[0:35;+1); H+3 = diagf0:3363; 1:065g�diagf+1; 0:45g; H�3 = diagf0; 0g�diagf0:35; 0g;we 
an obtain a feasible solution by solving LMIs with the following obtained matrix variables:P2 = " 0:0647 0:08780:0878 2:8020 # ;W+2 = " 0:0784 00 17:0333 # ;W�2 = " 127:4051 00 97:9623 # :
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Fig. 3. h(x) = x4= �1 + x4�, and d(x) = 4x3= �1 + x4�2 :Example 2:. In this example, we 
onsider a redu
ed model of la
tose system. The la
 operon 
onsists of apromoter/operator region and three larger stru
tural genes, la
Z, la
Y, and la
A. In the presen
e of externalla
tose (Le), la
tose is transported into the 
ell by a permease (P ). Intra
ellular la
tose (L) is then brokendown into glu
ose, gala
tose, and allola
tose (A) by the enzyme �-gala
tosidase (B). The allola
tose (A) feedsba
k to bind with the la
tose repressor and enables the trans
ription pro
ess to pro
eed. On
e the mRNA hasbeen produ
ed, the pro
ess of translation is initiated. The la
Z gene en
odes for the mRNA responsible forthe produ
tion of �-gala
tosidase (B) and translation of the la
Y gene produ
es mRNA ultimately responsiblefor the produ
tion of a membrane permease (P ).In [23℄, it is assumed that there is a 
onstant permease 
on
entration and la
tose is in a quasisteady statea
ross the membrane. Therefore, there is a one-to-one relationship between the external and internal la
tose.Then la
tose (L) and permease (P ) dynami
s are not 
onsidered. A redu
ed model of three di�erentialequations is 
onsidered in [23℄: _A = �AB LKL + L � �AB AKA +A � ~
AA;_B = �Be���BM�B � ~
BB; (28)_M = �M 1 +K1(e���MA�M )nK +K1(e���MA�M )n � ~
MM;



REVISED 13where M is the mRNA 
on
entration, B is the � gala
tosidase 
on
entration, A is the 
on
entration ofallola
tose (the e�e
tor in the la
 operon), L is the intra
ellular la
tose 
on
entration, A�M � A(t � �M),M�B �M(t� �B). and the ba
terial growth rate is given by �. The parameters are given in Table 1.Table 1. Parameter valuesparameter value unit parameter value unitn 2 K 7200� 3:03 � 10�2 min�1 K1 2:52 � 10�2 (�M)�2�M 997 nm�min�1 KL 0:97 mM�B 1:66 � 10�2 min�1 KA 1:95 mM�A 1:76 � 104 min�1 �A 2:15 � 104 min�1
M 0:411 min�1 �M 0:10 min
B 8:33 � 10�4 min�1 �B 2:00 min
A 1:35 � 10�2 min�1We rewrite model (28) into a 
ompa
t matrix form_x = � � �A+Ek�x+ �Bfk(x) + �C1gk1(x�M ) + �C2gk2(x�B ) + �D�hk(x);where g(A� ) = 1 +K1(e���A� )nK +K1(e���A� )n ; h(A) = AKA +A; �L = LKL + Lx = 264 AkBkMk 375 = 264 A�A�kB �B�kM �M�k 375 ; x�M = 264 A�MkB�MkM�Mk 375 = 264 A�M �A�kB�M �B�kM�M �M�k 375 ;x�B = 264 A�BkB�BkM�Bk 375 = 264 A�B �A�kB�B �B�kM�B �M�k 375 ; fk(x(t)) = 264 0Bk0 375 ;gk1(x�M ) = 264 g(A�Mk)0M�Mk 375 ; gk2(x�B ) = 264 g(A�Bk)0M�Bk 375 ; �hk(x(t)) = 264 Bh(Ak)00 375 ;�A = 264 ~
A 0 00 ~
B 00 0 ~
M 375 ; Ek = 264 0 �Ah(A�k) 00 0 00 0 0 375 ; �B = 264 0 �A �L 00 0 00 0 0 375 ;�C1 = 264 0 0 00 0 0�M 0 0 375 ; �C2 = 264 0 0 00 0 �Be���B0 0 0 375 ; �D = 264 ��A 0 00 0 00 0 0 375 :There are three equilibrium points with L = 50�M:SS�1 = (A�1; B�1 ; C�1 ) = (4:27 �M; 0:23 nM; 0:46 nM);SS�2 = (A�2; B�2 ; C�2 ) = (11:73 �M; 0:7 nM; 1:39 nM);SS�3 = (A�3; B�3 ; C�3 ) = (64:68 �M; 16:42 nM; 32:71 nM);



REVISED 14SS�1 and SS�3 are stable, SS�2 is unstable. In the following, we show the e�e
tiveness of our theorem.When SS�1 2 [0; 8℄ � [0; 0:4℄ � [0; 1℄, F+1 = diagf0; 1; 0g; F�1 = diagf0; 1; 0g; G+11 = G+12 = diagf5:5967 �10�5; 0; 1g; G�11 = G�12 = diagf0; 0; 1g; H+1 = diagf5:1282 � 10�4; 0; 0g � diagf0:4; 0; 0g; H�1 = diagf5:0864 �10�4; 0; 0g�diagf0; 0; 0g; we 
an obtain a feasible solution by solving LMIs with the following obtained matrixvariables (for spa
e 
onsideration, we only list the matrix variable P1):P1 = 264 0:0040 �0:0310 �0:0006�0:0310 1:2819 �0:0492�0:0006 �0:0492 0:0261 375 :When SS�2 2 [8; 15℄ � [0:4; 10℄ � [1; 15℄; F+2 = diagf0; 1; 0g; F�2 = diagf0; 1; 0g; G+21 = G+22 = diagf1:0482 �10�4; 0; 1g; G�21 = G�22 = diagf5:5967 � 10�5; 0; 1g; H+2 = diagf5:0864 � 10�4; 0; 0g � diagf10; 0; 0g; H�2 =diagf5:0502 � 10�4; 0; 0g � diagf0:4; 0; 0g; the solution is infeasible.When SS�3 2 [15;+1) � [10;+1) � [15;+1); F+3 = diagf0; 1; 0g; F�3 = diagf0; 1; 0g; G+21 = G+32 =diagf1:215 � 10�3; 0; 1g; G�31 = G�32 = diagf0; 0; 1g; H+3 = diagf5:0502 � 10�4; 0; 0g � diagf+1; 0; 0g; H�3 =diagf4:6401� 10�4 ; 0; 0g�diagf10; 0; 0g; we 
an obtain a feasible solution by solving LMIs with the followingobtained matrix variables (for spa
e 
onsideration, we only list the matrix variables P2):P2 = 264 0:0029 0:0028 �0:00250:0028 0:5506 �0:0344�0:0025 �0:0344 0:0181 375 ;whi
h 
on�rms the bistability of this GRN. V. Con
lusionIn this paper, we have made an e�ort to show the possibility of applying 
ontrol theory to investigate themultistability of a GRN, therefore having potential appli
ations in the design of syntheti
 gene 
ir
uits withmultistability. A novel and uniform mathemati
al formulation is proposed to des
ribe a GRN with multipletime delays and multivariable regulation fun
tions. A method has been presented for the analysis of mul-tistability of su
h a GRN. By using a Lyapunov-Krasovskii fun
tional (LKF) approa
h and linear matrixinequalities (LMIs) te
hniques, the multistability 
riteria for a GRN with multiple time delays and multivari-able regulation fun
tions have been established in the form of LMIs, whi
h 
an be readily veri�ed by usingstandard numeri
al software. An important feature of the results reported here is that all the multistability
onditions are dependent on the delays, whi
h is made possible by utilizing the most updated te
hniques fora
hieving delay dependen
e. Also, our multistability 
onditions are appli
able to several di�erent regulationfun
tions, whi
h 
over many types of 
urrently investigated GRNs, espe
ially in
luding the 
ompli
ated multi-variable regulation fun
tions. Two examples have been employed to illustrate the appli
ability and usefulnessof the developed theoreti
al results, whi
h are 
on
erned with, respe
tively, a Cd
2-Cy
lin B/Wee1 systemmodel and a la
tose system model, both of whi
h display bistability.



REVISED 15AppendixA. Derivation of (16)By (7), (8), (9), (10), (11), (12), (13), (14) and (15), we have_xki(t) = �aixki(t) + nXj=1bijfkij(xkj(t)) + nXj=1
ijgkij(xkj(t� �i))+ nXj=1dij �ykij(t)hij(xkj(t) + z�kj) + y�kijhkij(xkj(t))�= �aixki(t) + nXj=1bijfkij(xkj(t)) + nXj=1
ijgkij(xkj(t� �i))+ nXj=1dij �ykij(t)hij(xkj(t) + z�kj)� ykij(t)hij(z�kj)�+ nXj=1dijykij(t)hij(z�kj) + nXj=1dijy�kijhkij(xkj(t))= �aixki(t) + nXj=1dijykij(t)hij(z�kj) + nXj=1bijfkij(xkj(t)) + nXj=1
ijgkij(xkj(t� �i))+ nXj=1[dijykij(t)hkij(xkj(t)) + dijy�kij(t)hkij(xkj(t))℄= �aixki(t) + nXj=1dijhij(z�kj)ykij(t) + nXj=1bijfkij(xj(t)) + nXj=1
ijgkij(xj(t� �i))+ nXj=1dijykij(t)hkij(xkj(t)):Then (16) 
ould be obtained.B. Proof of Theorem 1We �rst show that the kth equilibrium point is asymptoti
ally stable. The Lyapunov-Krasovskii fun
tionalis de�ned as follows: Vk(x(t)) = Vk1(x(t)) + Vk2(x(t)) + Vk3(x(t)); (A1)Vk1(x(t)) = xT (t)Pkx(t); (A2)Vk2(x(t)) = nXi=1 Z tt��i xT (�)Qkix(�)d�; (A3)Vk3(x(t)) = nXi=1 Z 0��i Z tt+� _xT (�)Zki _x(�)d�d�: (A4)



REVISED 16The derivatives of Vkj(x(t)); j = 1; 2; 3; are given by_Vk1(x(t)) = 2xT (t)Pk _x(t); (A5)_Vk2(x(t)) = nXi=1 [xT (t)Qkix(t)� xT (t� �i)Qkix(t� �i)℄; (A6)_Vk3(x(t)) = nXi=1 [�i _xT (t)Zki _x(t)� Z tt��i _xT (�)Zki _x(�)d�℄: (A7)From Jensen's inequality, we 
an easily get�Z tt��i _xT (�)Zki _x(�)d�� � 1�i �Z tt��i _x(�)d�T �T Zki �Z tt��i _x(�)d��= � 1�i [x(t)� x(t� �i)℄T Zki [x(t)� x(t� �i)℄ ; (A8)By (18), for any s
alar u+ki � 0; it is 
lear that for i = 1; � � � ; n;nXj=1u+kijfkij(xj(t)) h�+kijxj(t)� fkij(xj(t))i � 0;then nXi=1 nXj=1 hu+kijfkij(xj(t))�+kijxj(t)� u+kijfkij(xj(t))fkij(xj(t))i � 0;or equivalently nXi=1 [fki(x(t))U+kiF+kix(t)� fki(x(t))U+kifki(x(t))℄ � 0: (A9)Similarly, for any s
alars u�ki � 0; v+ki � 0 and v�ki � 0; we have, respe
tively,nXi=1 [fki(x(t))U�kifki(x(t)) � fki(x(t))U�kiF�kix(t)℄ � 0; (A10)nXi=1 [gki(x(t� �i))V +kiG+kix(t� �i)� gki(x(t� �i))V +ki gki(x(t� �i))℄ � 0; (A11)and nXi=1 [gki(x(t� �i))V �ki gki(x(t� �i))� gki(x(t� �i))V �kiG�kix(t� �i)℄ � 0: (A12)Also, by Corollary 1, for any s
alars w+ki � 0 and w�ki � 0; we have that for i = 1; � � � ; n;nXi=1 [�hki(x(t))W+kiH+kix(t)� �hki(x(t))W+ki�hki(x(t))℄ � 0: (A13)and nXi=1 [�hki(x(t))W�ki�hki(x(t)) � �hki(x(t))W�kiH�kix(t)℄ � 0: (A14)



REVISED 17In addition, based on (17), for any matri
es X; we have�k (t)X "� (A+Ek) x(t) + nXi=1Bifki(x(t)) + nXi=1Cigki(x(t� �i)) + nXi=1Di�hki(x(t))� _x(t)# = 0; (A15)with �k (t) = 26666666664
x(t)_x(t)�(t� �)fk(x(t))gk(x(t� �))�hk(x(t))

37777777775 ;where �(t� �) = 266664 x(t� �1)x(t� �2)...x(t� �n)
377775 ; fk(x(t)) = 266664 fk1(x(t))fk2(x(t))...fkn(x(t))

377775 ;
gk(x(t� �)) = 266664 gk1(x(t� �1))gk2(x(t� �2))...gkn(x(t� �n))

377775 ; �hk(x(t)) = 266664 �hk1(x(t))�hk2(x(t))...�hkn(x(t))
377775 :By using (17) and (A8)-(A15), we have_Vk(x(t)) � 2xT (t)Pk _x(t)+ nXi=1 �xT (t)Qkix(t)� xT (t� �i)Qkix(t� �i)�+ nXi=1f�i _xT (t)Zki _x(t)� 1�i [x(t)� x(t� �i)℄T Zki [x(t)� x(t� �i)℄g+ nXi=1 [2fki(x(t))U+kiF+kix(t)� 2fki(x(t))U+kifki(x(t))℄+ nXi=1 [2fki(x(t))U�kifki(x(t)) � 2fki(x(t))U�kiF�kix(t)℄+ nXi=1 [2gki(x(t� �i))V +kiG+kix(t� �i)� 2gki(x(t� �i))V +ki gki(x(t� �i))℄+ nXi=1 [2gki(x(t� �i))V �ki gki(x(t� �i))� 2gki(x(t� �i))V �kiG�kix(t� �i)℄+ nXi=1 [2�hki(x(t))W+kiH+kix(t)� 2�hki(x(t))W+ki�hki(x(t))℄+ nXi=1 [2�hki(x(t))W�ki�hki(x(t))� 2�hki(x(t))W�kiH�kix(t)℄
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h follows from (22) that _Vk(x(t)) < ��k kx(t)k2 for a suÆ
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