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Abstract

This paper is concerned with a new distributed H∞-consensus filtering problem over a finite-horizon for sensor networks
with multiple missing measurements. The so-called H∞-consensus performance requirement is defined to quantify bounded
consensus regarding the filtering errors (agreements) over a finite-horizon. A set of random variables are utilized to model the
probabilistic information missing phenomena occurring in the channels from the system to the sensors. A sufficient condition
is first established in terms of a set of difference linear matrix inequalities (DLMIs) under which the expected H∞-consensus
performance constraint is guaranteed. Given the measurements and estimates of the system state and its neighbors, the filter
parameters are then explicitly parameterized by means of the solutions to a certain set of DLMIs that can be computed
recursively. Subsequently, two kinds of robust distributed H∞-consensus filters are designed for the system with norm-bounded
uncertainties and polytopic uncertainties. Finally, two numerical simulation examples are used to demonstrate the effectiveness
of the proposed distributed filters design scheme.

Key words: Sensor networks; distributed H∞-consensus filtering; discrete time-varying systems; difference linear matrix
inequalities; finite-horizon; data missing.

1 Introduction

The past few decades have witnessed constant research
interests on various aspects of sensor networks due pri-
marily to the fact that sensor networks have been exten-
sively applied in many fields such as information collec-
tion, environmental monitoring, industrial automation
and intelligent buildings. In particular, the distributed
filtering or estimation for sensor networks has been an
ongoing research issue that attracts increasing attention
from researchers in the area. Compared to the single
sensor, filter i in a sensor network estimates the system
state based not only on the sensor i’s measurement, but
also on its neighboring sensors’ measurements accord-
ing to the topology of the given sensor network. Such a
problem is usually referred to as the distributed filtering
or estimation problem. The main difficulty in designing
distributed filters lies in how to deal with the compli-
cated coupling between one sensor and its neighboring
sensors.

So far, considerable research efforts have been made
with respect to distributed filtering and some novel dis-
tributed filters are proposed, see e.g [2, 11, 19]. Also,
the consensus problems of multi-agent networks have
stirred a great deal of research interests, and a rich body
of research results has been reported in the literature,
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see e.g. [1, 5, 6, 8, 10, 13, 15, 16]. Recently, the consen-
sus problem has also been studied for designing dis-
tributed Kalman filters (DKFs) [7,9,12]. For example, a
distributed filter has been introduced in [9] that allows
the nodes of a sensor network to track the average of n
sensor measurements using an average consensus based
distributed filter called consensus filter. The DKF algo-
rithm presented in [9] has been modified in [7], where
another two novel DKF algorithms have been proposed
and the communication complexity as well as packet-
loss issues have been discussed. As is well known, a vari-
ety of robust and/or H∞ filtering approaches have been
proposed in the literature to improve the robustness of
the filters against parameter uncertainties and exoge-
nous disturbances. In this sense, it seems natural to in-
clude the robust and/or H∞ performance requirements
for the distributed consensus filtering problems, and this
constitutes one of the two motivations for our current
investigation.

Virtually all practical engineering systems are time-
varying. A finite-horizon filter could provide better tran-
sient performance for filtering process especially when
the noise inputs are non-stationary. Therefore, it is of
vital importance to consider the filtering problems for
time-varying system over a finite horizon. Some efforts
have been made on this issue. For example, in [18], a ro-
bust finite-horizon Kalman filter has been designed for
uncertain systems with multiplicative noises by means
of two discrete Riccati difference equations. Using the
same approach, the robust finite-horizon filtering prob-
lem has been investigated for uncertain system with
randomly varying sensor delay in [17]. In addition to
the recursive Riccati equation approach, the difference
linear matrix inequality (DLMI) method serves as an-
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other effective tool for handling finite-horizon control
and filtering problems for time-varying systems. DLMI
approach has been originally proposed in [3, 4], which
has proven to be computationally appealing due mainly
to the numerical efficiency of LMI algorithms. Up to
now, the robust and/or H∞ distributed consensus fil-
tering problem has not been adequately addressed for
time-varying systems over a finite horizon, which gives
rise to the second motivation of our research.

In response to the above discussion, in this paper, we
aim to deal with the distributed H∞-consensus filtering
problem for sensor networks with multiple missing mea-
surements. The main contributions can be summarized
as follows: 1) the concept ofH∞-consensus is introduced
to quantify the consensus degree over a finite horizon;
2) the distributed filtering problem is addressed for a
class of time-varying systems in the sensor network rep-
resented by a directed graph; and 3) a set of random
variables is introduced to model the probabilistic data
missing occurring in the process of information transmis-
sion from the system to each sensor. By resorting to the
DLMI technique, the filter parameters can be designed
in a recursive way, subject to the H∞-consensus perfor-
mance constraint, via the measurements and estimates
from the system state as well as its neighbors. Based on
the analysis and synthesis results established, we fur-
ther discuss the robust distributed H∞-consensus filter-
ing problem for system with norm-bounded uncertain-
ties and polytopic uncertainties, respectively, in terms
of a set of DLMIs which can be solved by using available
software. Finally, two numerical simulation examples are
exploited to show the effectiveness of the distributed fil-
tering techniques proposed in this paper.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. Rn and R

n×m denote, re-
spectively, the n dimensional Euclidean space and the
set of all n×m real matrices. ‖A‖ refers to the norm of a

matrixA defined by ‖A‖ =
√

trace(ATA). The notation
X ≥ Y (respectively, X > Y ), where X and Y are real
symmetric matrices, means that X−Y is positive semi-
definite (respectively, positive definite). MT represents
the transpose of the matrix M . I denotes the identity
matrix of compatible dimension. diagn{Ai} stands for a
block-diagonal matrix with the ith diagonal element be-
ing Ai and the notation diagin{A} is employed to stand
for the block-diagonal matrix with the ith diagonal ele-
ment being A and others being zero matrices. vecn{xi}

denotes
[

x1 x2 · · · xn

]

.E{x} stands for the expectation

of the stochastic variable x. Prob{·} means the occur-
rence probability of the event “·”. l2[0 N−1] is the space
of square summable vector-value functions f(k) in inter-

val [0 N − 1] with the norm ‖f‖2 = (
∑N−1

k=0 ‖f(k)‖2)
1

2 .
In symmetric block matrices, “∗” is used as an ellipsis
for terms induced by symmetry. Matrices, if they are not
explicitly specified, are assumed to have compatible di-
mensions.

2 Problem Formulation and Preliminaries

Consider a sensor network whose topology is represented
by a directed graph G = (V , E ,A) of order n with the
set of nodes (sensors) V = {1, 2, · · · , n}, set of edges

E ⊆ V × V , and a weighted adjacency matrix A = [aij ]
with nonnegative adjacency elements aij . An edge of G
is denoted by (i, j). The adjacency elements associated
with the edges of the graph are positive, i.e., aij > 0 ⇐⇒
(i, j) ∈ E . Moreover, we assume aii = 1 for all i ∈ V , and
therefore (i, i) can be regarded as an additional edge.
The set of neighbors of node i ∈ V plus the node itself
are denoted by Ni = {j ∈ V : (i, j) ∈ E}.

The plant is described by the following class of discrete
time-varying systems defined on k ∈ {0, 1, · · · , N − 1}:

{

x(k + 1) = A(k)x(k) +B(k)v(k)

z(k) = M(k)x(k)
(1)

where x(k) ∈ R
nx is the immeasurable state, z(k) ∈ R

nz

is the output to be estimated, and v(k) ∈ R
nv is the

disturbance input belonging to l2[0 N − 1]. The initial
state x(0) is an unknown vector.

For every i (1 ≤ i ≤ n), the model of sensor node i is
given as follows:

yi(k) = γi(k)Ci(k)x(k) +Di(k)v(k) (2)

where yi(k) ∈ R
ny is the measured output received by

the sensor i from the plant, and the stochastic vari-
able γi(k) ∈ R is a Bernoulli distributed white sequence
taking values of 1 and 0 with Prob{γi(k) = 1} = βi

and Prob{γi(k) = 0} = 1 − βi. Here, βi ∈ [0 1] is
a known constant. The matrices concerned above, i.e.,
A(k), B(k), M(k), Ci(k), and Di(k) are known matri-
ces with appropriate dimensions. Moreover, throughout
this paper, all stochastic variables γi(k) (1 ≤ i ≤ n, 0 ≤
k ≤ N − 1) are assumed to be independent in k and i.

In the sensor network, the information available for the
filter on the sensor node i comes from not only the sensor
i but also its neighbors. Motivated by this fact, the filter
is of the following structure on sensor node i:






x̂i(k + 1) =Wii(k)x̂i(k) +Hii(k)[yi(k)

− βiCi(k)x̂i(k)] + ui(k)

ẑi(k) =M(k)x̂i(k)

(3)

where x̂i(k) ∈ R
nx is the state estimate of sensor node i

and ẑi(k) ∈ R
nz is the estimate for z(k) from the filter

on sensor node i. ui(k) ∈ R
nx , which represents how the

sensor i communicates the information with its neigh-
boring sensors j (j ∈ Ni/{i}), is expressed as follows:

ui(k) =
∑

j∈Ni/{i}

Wij(k)aij x̂j(k)

+
∑

j∈Ni/{i}

Hij(k)aij [yj(k)− βjCj(k)x̂j(k)].
(4)

Here, matrices Wij(k), Hij(k) (j ∈ Ni) in (3) and (4)
are parameters of the filter for sensor node i which are
to be determined. Moreover, the initial values of filters
are assumed to be x̂i(0) = 0 for all 1 ≤ i ≤ n.

Remark 1 In the framework of sensor networks, it is
important to establish a filter structure to suitably repre-
sent how each node communicates information with its
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neighboring nodes. For this purpose, some types of fil-
ters (estimators) have been proposed, see [7,9,11,19] for
more details. Filter (3) with (4) proposed here consists of
two parts: one is used to describe the contribution to the
estimate from the node itself; and the other is employed
to represent the communications between the underlying
node and its neighboring nodes. On the other hand, it is
well known that Kalman filtering is an effective approach
and the structure of Kalman filter is widely adopted due
to its simplicity and practicality. In fact, the structure of
filter (3) with (4) stems from that of the Kalman filters
by taking into account the communications between the
sensor nodes. In order to show the generality of such a
filter structure, let us consider the case where there is no
communication between the node i and its neighboring
nodes, the filter (3) with (4) will be reduced to

x̂i(k + 1) =Wii(k)x̂i(k) +Hii(k)[yi(k)− βiCi(k)x̂i(k)],

which covers the existing ones in available literature.

Letting ei(k) = x(k)− x̂i(k) and z̃i(k) = z(k)− ẑi(k), we
can obtain the following system that governs the filtering
error dynamics for the sensor network:


















































































ei(k + 1) =
∑

j∈Ni

Wij(k)aijej(k)

−
∑

j∈Ni

βjHij(k)aijCj(k)ej(k)

+
(

B(k)−
∑

j∈Ni

Hij(k)aijDj(k)
)

v(k)

+
(

A(k) −
∑

j∈Ni

Wij(k)aij

−
∑

j∈Ni

(γj(k)− βj)Hij(k)aijCj(k)
)

x(k)

z̃i(k) = M(k)ei(k)

(5)

for i = 1, 2, · · · , n.

Definition 1 The filtering errors z̃i(k) (i = 1, 2, · · · , n)
are said to satisfy the H∞-consensus performance con-
straints if the following inequalities hold

1

n

n
∑

i=1

‖z̃i‖
2
E2

≤ γ̄2

{

‖v‖22 +
1

n

n
∑

i=1

eTi (0)Siei(0)

}

(6)

where ‖z̃i‖E2
=

(

E
∑N−1

k=0 ‖z̃i(k)‖2
)

1

2

, for some given

disturbance attenuation level γ̄ > 0 and for some given
positive definite matrices Si = ST

i > 0 (1 ≤ i ≤ n).

Remark 2 In a sensor network, each sensor node can
only receive the information from its neighboring nodes.
Therefore, it turns out to be conservative to require ev-
ery filtering error from a sensor node to satisfy the cen-
tral H∞ performance constraints. Actually, only an av-
erage consensus needs to be reached by all nodes of the
network regarding the value of filtering error z̃i over a
finite-time interval, i.e.H∞-consensus performance con-
straint guarantees that each filter estimates the system
state well. Such an average consensus can be understood
as an approximate agreement within a bounded set quan-
tified by the H∞-norm.

Definition 2 Filters of the form (3)-(4) (i = 1, 2, · · · , n)
are said to be distributed H∞-consensus filters if their
filtering errors z̃i(k) (i = 1, 2, · · · , n) satisfy the H∞-
consensus performance constraints (6).

In this paper, we are interested in finding the filter gain
matrices Wij(k), Hij(k) (i = 1, 2, · · · , n, j ∈ Ni) such
that the filtering errors z̃i(k) (i = 1, 2, · · · , n) from (5)
satisfy the H∞-consensus performance constraints (6).

3 Finite-Horizon Distributed H∞-Consensus
Filtering

In this section, we investigate the distributed H∞-
consensus filtering problem for system (1) with n sen-
sors whose topology is determined by the given graph
G = (V , E ,A). For convenience of later analysis, we
denote

e(k) = vecTn{e
T
i (k)}, x̄(k) = vecTn{x

T (k)},

z̃(k) = vecTn{z̃
T
i (k)}, Ā(k) = diagn{A(k)},

B̄(k) = vecTn{B
T (k)}, D̄(k) = vecTn{D

T
i (k)},

M̄(k) = diagn{M(k)}, Ei
n(k) = diagin{Ci(k)},

Gβ(k) = diagn{βiCi(k)}, αi = βi(1− βi).

(7)

Then, the error dynamics governed by (5) can be rewrit-
ten in the following compact form



































e(k + 1) =
(

Ā(k)− W̄ (k)−
n
∑

i=1

(γi(k)− βi)

× H̄(k)Ei
n(k)

)

x̄(k) +
(

W̄ (k)− H̄(k)Gβ(k)
)

× e(k) +
(

B̄(k)− H̄(k)D̄(k)
)

v(k)

z̃(k) = M̄(k)e(k)

(8)

where

W̄ (k) = [Oij(k)]n×n, with Oij(k) = Wij(k)aij ,

H̄(k) = [Ōij(k)]n×n, with Ōij(k) = Hij(k)aij .
(9)

Obviously, since aij = 0 when j /∈ Ni, W̄ (k) and H̄(k)
are two sparse matrices which can be expressed as

W̄ (k) ∈ Wnx×nx
, H̄(k) ∈ Wnx×ny

(10)

where Wp×q = {Ū = [Uij ] ∈ R
np×nq|Uij ∈ R

p×q, Uij =
0 if j /∈ Ni}.

It is not difficult to see that the set Wp×q has a nice
property in the following lemma that will be used in
analyzing the filter performance. The proof of the lemma
is straightforward and is therefore omitted.

Lemma 1 Let Q = diag{Q1, Q2, · · · , Qn} with Qi ∈
R

p×p (1 ≤ i ≤ n) being invertible matrices. For W ∈
R

np×nq, if X = QW , then we have W ∈ Wp×q ⇐⇒ X ∈
Wp×q.

Setting η(k) =
[

x̄T (k) eT (k)
]T

, the combination of (8)

and (1) yields the following augmented system
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η(k + 1) =
(

A(k) +

n
∑

i=1

(γi(k)− βi)Fi(k)
)

× η(k) + B(k)v(k)

z̃(k) =M(k)η(k)

(11)

where

A(k) =

[

Ā(k) 0

Ā(k)− W̄ (k) W̄ (k)− H̄(k)Gβ(k)

]

,

M(k) =
[

0 M̄(k)
]

,Fi(k) =

[

0 0

−H̄(k)Ei
n(k) 0

]

,

B(k) =

[

B̄(k)

B̄(k)− H̄(k)D̄(k)

]

.

(12)

For presentation convenience, theH∞-consensus perfor-
mance constraints (6) can be rewritten as

‖z̃‖2
E2

≤ γ̄2
{

n‖v‖22 + eT (0)Re(0)
}

(13)

where R = diag{S1, S2, · · · , Sn}.

To this end, the addressed distributedH∞-consensus fil-
tering problem for system (1) over the finite time-horizon
amounts to analyzing the L2-gain of the augmented sys-
tem (11), which is a state-multiplicative stochastic sys-
tem due to the existence of the stochastic variables γi
(1 ≤ i ≤ n). The problem of L2-gain analysis for such a
stochastic system has been fully studied in [4] and the
corresponding bounded real lemma (BRL) has been de-
rived. Corresponding to the problem addressed in this
paper, we modify the BRL in [4] in the following lemma.

Lemma 2 Consider the stochastic system (11). Given
a positive scalar γ̄ > 0 and a positive definite matrix
RT = R > 0, if there exists a positive definite matrix
QT (k) = Q(k) > 0 satisfying

AT (k)Q(k + 1)A(k) +

n
∑

i=1

αiF
T
i (k)Q(k + 1)Fi(k)

+AT (k)Q(k + 1)B(k)Θ−1(k)BT (k)Q(k + 1)A(k)

+MT (k)M(k)−Q(k) ≤ 0 (14)

with the initial condition ηT (0)Q(0)η(0) ≤ γ̄2eT (0)Re(0)
and such that

Θ(k) := nγ̄2I − BT (k)Q(k + 1)B(k) > 0, (15)

for all k = 0, 1, · · · , N − 1, then the filtering error z̃(k)
satisfies the H∞ performance constraints (13).

Proof: By considering the facts of E{(γi(k) − βi)} = 0,
E{(γi(k)−βi)

2} = αi andE{(γi(k)−βi)(γj(k)−βj)} = 0
(i 6= j), and using the “completing the square” technique
to v(k), it can be shown from (14) that

E

{

‖z̃(k)‖2
}

− nγ̄2‖v(k)‖2

+E

{

ηT (k + 1)Q(k + 1)η(k + 1)− ηT (k)Q(k)η(k)
}

=E

{

−
(

v(k)− v∗(k)
)T

Θ(k)
(

v(k)− v∗(k)
)

+ ηT (k)

×
(

AT (k)Q(k + 1)B(k)Θ−1(k)BT (k)Q(k + 1)A(k)

+AT (k)Q(k + 1)A(k) +
n
∑

i=1

αiF
T
i (k)Q(k + 1)Fi(k)

+MT (k)M(k)−Q(k)
)

η(k)
}

≤E

{

−
(

v(k)− v∗(k)
)T

Θ(k)
(

v(k)− v∗(k)
)

}

(16)

where v∗(k) = Θ−1(k)BT (k)Q(k+1)A(k)η(k) and Θ(k)
is defined in (15). Noting that Θ(k) > 0, it follows from
(16) that

E

{

N−1
∑

k=0

‖z̃(k)‖2
}

≤ nγ̄2
N−1
∑

k=0

‖v(k)‖2

− E

{

ηT (N)Q(N)η(N)
}

+ ηT (0)Q(0)η(0)

(17)

which concludes that the H∞ performance con-
straints (13) is satisfied under the initial condition
ηT (0)Q(0)η(0) ≤ γ̄2eT (0)Re(0) as long as Q(N) > 0.
The proof is complete.

Next, let us focus our attention on the design problem
of the finite-horizon distributedH∞-consensus filters for
system (1).

The following theorem provides a design method for the
distributed H∞-consensus filtering problem.

Theorem 1 Given a positive scalar γ̄ > 0 and pos-
itive definite matrices Si = ST

i > 0 (1 ≤ i ≤ n).
The finite-horizon distributed H∞-consensus filter-
ing problem is solvable if there exist some fam-
ilies of positive definite matrices {Q1(k)}0≤k≤N ,
{Q2(k) = diagn{Pi(k)}}0≤k≤N and two families of ma-
trices {X(k)}0≤k≤N−1, {Y (k)}0≤k≤N−1 satisfying the
constraints

X(k) ∈ Wnx×nx
, Y (k) ∈ Wnx×ny

, (18)

the initial condition

x̄T (0)Q1(0)x̄(0) +

n
∑

i=1

eTi (0)Pi(0)ei(0)

≤ γ̄2
n
∑

i=1

eTi (0)Siei(0),

(19)

and the following set of DLMIs

Γ(k) = ΓT (k) ≤ 0 (20)

for all 0 ≤ k ≤ N − 1, where Γ(k) = [Γij(k)]6×6

and Γ11(k) = −Q1(k), Γ13(k) = ĀT (k)Q1(k +
1), Γ14(k) = ĀT (k)Q2(k + 1) − XT (k), Γ16(k) =
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vecn{−αiE
iT
n (k)Y T (k)}, Γ22(k) = −Q2(k)+M̄T (k)M̄(k),

Γ24(k) = XT (k)−GT
β (k)Y

T (k), Γ33(k) = −Q1(k + 1),

Γ35(k) = Q1(k + 1)B̄(k), Γ44(k) = −Q2(k + 1),
Γ45(k) = Q2(k + 1)B̄(k)− Y (k)D̄(k), Γ55(k) = −nγ̄2I,
Γ66(k) = diagn{−αiQ2(k + 1)}, and others are zero
matrices. Furthermore, if the set of DLMIs (20) with
(18)-(19) are feasible, the desired filter parameters are
given by

W̄ (k) = Q−1
2 (k + 1)X(k)

H̄(k) = Q−1
2 (k + 1)Y (k)

(21)

for all 0 ≤ k ≤ N − 1.

Proof: In terms of Lemma 2, the filter parameters W̄ (k)
and H̄(k) should satisfy the condition (14) which is guar-
anteed by























−Q1(k) 0 ĀT (k)Q1(k + 1)

∗ Γ22(k) 0

∗ ∗ −Q1(k + 1)

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

Ω1(k) 0 Ω2(k)

Ω4(k) 0 0

0 Q1(k + 1)B̄(k) 0

−Q2(k + 1) Ω5(k) 0

∗ −nγ̄2I 0

∗ ∗ Γ66(k)























≤ 0

(22)

and Q(k) = diag2{Qi(k)}, where

Ω1(k) = ĀT (k)Q2(k + 1)− W̄T (k)Q2(k + 1),

Ω2(k) = vecn{−αiE
iT
n (k)H̄T (k)Q2(k + 1)},

Ω4(k) = W̄T (k)Q2(k + 1)−GT
β (k)H̄

T (k)Q2(k + 1),

Ω5(k) = Q2(k + 1)B̄(k)−Q2(k + 1)H̄(k)D̄(k).

By noting (21), (22) follows from (20) directly. Moreover,
we know that W̄ (k) and H̄(k) satisfy the constraints (10)
by Lemma 1, and the initial condition ηT (0)Q(0)η(0) ≤
γ̄2eT (0)Re(0) can be guaranteed by (19). The rest of the
proof follows from Lemma 2.

4 Robust Distributed H∞-Consensus Filtering
for Uncertain Systems

In this section, the problem of robust finite-horizon dis-
tributed H∞-consensus filtering is considered for two
classes of uncertain systems, i.e., systems with norm-
bounded uncertainties and systems with polytopic un-
certainties.

4.1 Norm-bounded uncertainties

In this case, thematrixA(k) in plant (1) and thematrices
Ci(k) (1 ≤ i ≤ n) in sensor model (2) are supposed to be

in the form ofA(k) = ~A(k)+∆A(k) andCi(k) = ~Ci(k)+

∆Ci(k) (1 ≤ i ≤ n). Here, matrices ~A(k), ~Ci(k) (1 ≤
i ≤ n) are known while ∆A(k), ∆Ci(k) (1 ≤ i ≤ n) are
unknown matrices representing parameter uncertainties
that satisfy the following admissible condition:

[

∆A(k)

∆Ci(k)

]

=

[

S(k)

Si(k)

]

F (k)T (k) (23)

where S(k), T (k), Si(k) (1 ≤ i ≤ n) are known real ma-
trices and F (k) is the unknown matrix-valued function
subject to FT (k)F (k) ≤ I, for all k = 0, 1, · · · , N − 1.
Denote
Ã(k) = diagn{ ~A(k)}, G̃β(k) = diagn{βi

~Ci(k)},

S̃1(k) = diagn{S(k)}, S̃2(k) = diagn{βiSi(k)},

T̃ (k) = diagn{T (k)}, Ẽi
n(k) = diagin{ ~Ci(k)},

F̃ (k) = diagn{F (k)}, S̃3i(k) = diagin{Si(k)}.

(24)

Then, the matrices Ā(k),Gβ(k) andE
i
n(k) can be rewrit-

ten as
Ā(k) = Ã(k) + S̃1(k)F̃ (k)T̃ (k),

Gβ(k) = G̃β(k) + S̃2(k)F̃ (k)T̃ (k),

Ei
n(k) = Ẽi

n(k) + S̃3i(k)F̃ (k)T̃ (k).

(25)

Based on Theorem 1, the problem of robust finite-
horizon distributed H∞-consensus filtering is solved in
the following theorem for time-varying system (1) with
norm-bounded uncertainties.
Theorem 2 Given a positive scalar γ̄ > 0 and pos-
itive definite matrices Si = ST

i > 0 (1 ≤ i ≤ n).
The robust finite-horizon distributed H∞-consensus
filtering problem for the system (1) with norm-
bounded uncertainties is solvable if there exist some
families of positive definite matrices {Q1(k)}0≤k≤N ,
{Q2(k) = diagn{Pi(k)}}0≤k≤N , two families of matri-
ces {X(k)}0≤k≤N−1, {Y (k)}0≤k≤N−1, and two families
positive scalars {ε1(k)}0≤k≤N−1, {ε2(k)}0≤k≤N−1 sat-
isfying the constraint (18), initial condition (19) and the
following set of DLMIs

Ξ(k) = ΞT (k) ≤ 0 (26)

for all 0 ≤ k ≤ N − 1, where Ξ(k) = [Ξij(k)]8×8

and Ξ11(k) = −Q1(k) + ε1(k)T̃
T (k)T̃ (k), Ξ13(k) =

ÃT (k)Q1(k + 1), Ξ14(k) = ÃT (k)Q2(k + 1) − XT (k),

Ξ16(k) = vecn{−αiẼ
iT
n (k)Y T (k)}, Ξ22(k) = −Q2(k) +

M̄T (k)M̄(k) + ε2(k)T̃
T (k)T̃ (k), Ξ24(k) = XT (k) −

G̃T
β (k)Y

T (k), Ξ33(k) = −Q1(k + 1), Ξ35(k) = Q1(k +

1)B̄(k), Ξ37(k) = Q1(k+1)S̃1(k), Ξ44(k) = −Q2(k+1),

Ξ45(k) = Γ45(k), Ξ47(k) = Q2(k + 1)S̃1(k), Ξ48(k) =

−Y (k)S̃2(k), Ξ55(k) = −nγ̄2I, Ξ66(k) = Γ66(k),

Ξ67(k) = vecTn{−αiS̃
T
3i(k)Y

T (k)}, Ξ77(k) = −ε1(k)I,
Ξ88(k) = −ε2(k)I, and others are zero matrices. Fur-
thermore, if the set of DLMIs (26) subject to (18)-(19)
are feasible, the desired filter parameters are given by
(21) for all 0 ≤ k ≤ N − 1.
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Proof: By noting (25), the matrix Γ(k) in (20) can be
expressed as the summation of two parts, i.e., Γ(k) =

Γ̃(k) + ∆Γ(k). Here, Γ̃(k) has the same form of Γ(k)

with all Ā(k), Gβ(k), and Ei
n(k) being replaced by Ã(k),

G̃β(k), and Ẽi
n(k), respectively. By denoting

M̃T
1 (k) =

[

0 0 S̃T
1 (k)Q1(k + 1)

S̃T
1 (k)Q2(k + 1) 0 ΞT

67(k)
]T

,

M̃T
2 (k) =

[

0 0 0 −S̃T
2 (k)Y

T (k) 0 0
]T

,

Ñ1(k) =
[

T̃ (k) 0 0 0 0 0
]

,

Ñ2(k) =
[

0 T̃ (k) 0 0 0 0
]

,

(27)

the other part ∆Γ(k) can be written as follows

∆Γ(k)≤ ε−1
1 (k)M̃1(k)M̃

T
1 (k) + ε1(k)Ñ

T
1 (k)Ñ1(k)

+ε−1
2 (k)M̃2(k)M̃

T
2 (k) + ε2(k)Ñ

T
2 (k)Ñ2(k).

This inequality can be obtained by noting F̃T (k)F̃ (k) ≤
I and employing a well-known elementary inequality
(see, e.g., Lemma 1 in [14]). Subsequently, by using the

Schur complement, we know that Γ(k) = Γ̃(k)+∆Γ(k) ≤
0 is implied by (26), and the rest of the proof follows
directly from Theorem 1.

4.2 Polytopic uncertainties

To consider the problem of robust finite-horizon dis-
tributed H∞-consensus filtering for system with ploy-
topic uncertainties, the matrix A(k) in plant (1) and
the matrices Ci(k) (1 ≤ i ≤ n) in sensor model (2)

are rewritten as A(ξ)(k), and C
(ξ)
i (k) (1 ≤ i ≤ n), re-

spectively. Here, we assume that A(ξ)(k) and C
(ξ)
i (k)

(1 ≤ i ≤ n) are unknown time-varying matrices which
contain polytopic uncertainties as follows:

Φ(ξ) := (A(ξ)(k), C
(ξ)
i (k), i = 1, 2, · · · , n) ∈ R (28)

where R is a convex polyhedral set described by v ver-
tices

R :=
{

Φ(ξ)|Φ(ξ) =
v

∑

m=1

ξmΦ(m),

v
∑

m=1

ξm = 1, ξm ≥ 0,m = 1, 2, · · · , v
}

(29)

and Φ(m) := (A(m)(k), C
(m)
i (k), i = 1, 2, · · · , n) are

known matrices for all m = 1, 2, · · · , v.

The following theorem provides a DLMI approach to the
design problem of robust finite-horizon distributed H∞-
consensus filters for time-varying systems with polytopic
uncertainties.

Theorem 3 Given a positive scalar γ̄ > 0 and pos-
itive definite matrices Si = ST

i > 0 (1 ≤ i ≤ n).
The robust finite-horizon distributed H∞-consensus
filters can be designed for the time-varying systems

(1) with polytopic uncertainties if there exist some
families of positive definite matrices {Q1(k)}0≤k≤N ,
{Q2(k) = diagn{Pi(k)}}0≤k≤N and two families of ma-
trices {X(k)}0≤k≤N−1, {Y (k)}0≤k≤N−1 satisfying the
constraint (18), initial condition (19) and the following
set of DLMIs

Π(k) = ΠT (k) ≤ 0 (30)

for all m = 1, 2, · · · , v and all 0 ≤ k ≤ N − 1, where
Π(k) = [Πij(k)]6×6 and Π11(k) = −Q1(k), Π13(k) =

Ā(m)T (k)Q1(k + 1), Π14(k) = Ā(m)T (k)Q2(k + 1) −

XT (k), Π16(k) = vecn{−αiE
i(m)T
n (k)Y T (k)}, Π22(k) =

Γ22(k), Π24(k) = XT (k) − G
(m)T
β (k)Y T (k), Π33(k) =

−Q1(k+1),Π35(k) = Q1(k+1)B̄(k),Π44(k) = −Q2(k+
1), Π45(k) = Γ45(k), Π55(k) = −nγ̄2I, Π66(k) =

Γ66(k), Ā(m)(k) = diagn{A
(m)(k)}, E

i(m)
n (k) =

diagin{C
(m)
i (k)},G

(m)
β (k) = diagn{βiC

(m)
i (k)}, and oth-

ers are zero matrices. Furthermore, if the set of DLMIs
(30) with (18)-(19) are solvable, the desired filter pa-
rameters are given by (21) for all 0 ≤ k ≤ N − 1. Here,

(A(m)(k), C
(m)
i (k), i = 1, 2, · · · , n) are the matrices in

(29) at the mth vertex of the polytope.

Proof:The proof is straightforwardand is therefore omit-
ted.

5 Illustrative Examples

Consider the sensor network (with 6 nodes) whose topol-
ogy is represented by a directed graph G = (V , E ,A)
with the set of nodes V = {1, 2, 3, 4, 5, 6}, set of edges
E = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 2), (2, 4), (3, 3), (3, 6),
(4, 2), (4, 4), (4, 6), (5, 3), (5, 5), (6, 1), (6, 4), (6, 6)} and
the adjacency matrix A = [aij ]6×6 where adjacency ele-
ments aij = 1 when (i, j) ∈ E ; otherwise, aij = 0.

The nominal time-varying system considered here is
given by














x(k + 1) =

[

0 −0.4

0.6 0.7 sin(6k)

]

x(k) +

[

0.5

1

]

v(k)

z(k) =
[

0.1 0.1
]

x(k)

(31)

with the initial value x(0) =
[

0.2 −0.1
]T

. The

exogenous disturbance input v(k) is selected as
v(k) = 0.3 cos(5t). For each i, (i = 1, 2, 3, 4, 5, 6), the
model of sensor i is described as follows:

yi(k) = γi(k)
[

0.3 0.2 sin(6k)
]

x(k) + v(k). (32)

The probabilities are taken as β1 = 0.9, β2 = 0.95, β3 =
0.85, β4 = 0.9, β5 = 0.8, and β6 = 0.85. The disturbance
attenuation level and the positive definite matrix are
given as γ̄ = 1 and S1 = S2 = S3 = S4 = S5 = S6 =
diag{2, 2}, respectively.

Example 1: In this example, the system (31) is assumed
to be subject to the norm-bounded uncertainties which
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satisfy the admissible condition (23) with the following
parameters

S(k) =

[

0

−0.1

]

, T (k) =
[

0.1 0
]

, S1(k) = S2(k)

= S3(k) = S4(k) = S5(k) = S6(k) = 0.1.

(33)

We first choose the initial positive definite matrices
Q1(0) = I12 and P1(0) = P2(0) = P3(0) = P4(0) =
P5(0) = P6(0) = I2 to satisfy the initial condition (19).
Then the set of DLMIs in Theorem 2 can be solved
recursively by using Matlab (with the YALMIP 3.0 and
SeDuMi 1.1). Accordingly, all filter parameters can be
obtained in terms of (21).

In the simulation, we set F (k) = cos(0.1k), and repeat
the experiment 100 times. Simulation results are pre-
sented in Figs. 1-2. The output z(k) and its average esti-
mates are depicted in Fig. 1. All average filtering errors
are given in Fig. 2. The simulation has confirmed that
the designed distributed filters perform very well.

Example 2: In this example, we assume that the system
(31) and the sensor models are subject to the polytopic
uncertainties as follows:














x(k + 1) =

[

0 −0.4 + ξ

0.6 0.7 sin(6k)

]

x(k) +

[

0.5

1

]

v(k)

z(k) =
[

0.1 0.1
]

x(k)

(34)

yi(k) = γi(k)
[

0.3 + ξ 0.2 sin(6k)
]

x(k) + v(k) (35)

where the uncertain parameter ξ is unknown but as-
sumed to belong to the known range [−0.05 0.05].

We first choose the same initial positive definite matrices
as those in Example 1. Then, by employing Matlab (with
the YALMIP 3.0 and SeDuMi 1.1), we can solve the set
of DLMIs (30) in Theorem 3 recursively and derive all
desired filters parameters. When the uncertain parame-
ter in the system (34) is taken as ξ = 0.02, we can obtain
the corresponding simulation results as shown in Figs. 3-
4, which also have demonstrated the effectiveness of the
distributed filtering technology presented in this paper.
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Fig. 1. Output z(k) and its average estimates.
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