Robust H_∞ Filtering for a Class of Nonlinear Networked Systems With Multiple Stochastic Communication Delays and Packet Dropouts

Hongli Dong, Zidong Wang, Senior Member, IEEE, and Huijun Gao, Member, IEEE

Abstract—In this paper, the robust H_∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval [0 1]. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a given level by means of the H_∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H_∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. The filtering conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.

Index Terms—Networked systems, nonlinear systems, packet dropout, robust H_∞ filtering, stochastic systems, stochastic time-varying communication delays.

I. INTRODUCTION

The objective of H_∞ filtering is to design an estimator for a given system such that the L_2 gain from the exogenous disturbance to the estimation error is less than a given level γ. H_∞ filtering is closely related to many robustness problems such as stabilization and sensitivity minimization of uncertain systems, and has therefore gained persistent attention from the early 1980s; see [1], [2], [6], [8], [22], [27], [29], [33], and the references therein.

To address the robustness issue, in recent years, the robust H_∞ filtering problems have been extensively investigated for a variety of complex dynamical systems, such as Markovian jumping systems [28], fuzzy systems [5], [26], time-varying systems [12], [18], [30], stochastic systems [32], and nonlinear systems [7], [21]. Furthermore, recognizing that both nonlinearity and stochasticity are commonly encountered in engineering practice, the robust H_∞ filtering problems for nonlinear stochastic systems have stirred a great deal of research interests. For example, the stochastic H_∞ filtering problem for time-delay systems subject to sensor nonlinearities have been dealt with in [23] and [24]. In [32], the robust H_∞ filtering problem for affine nonlinear stochastic systems with state and external disturbance-dependent noise has been studied, where the filter can be designed by solving second-order nonlinear Hamilton–Jacobi inequalities. So far, in comparison with the fruitful literature available for continuous-time systems, the corresponding H_∞ filtering results for discrete-time systems have been relatively few.

On another research frontier, in the past decade, networked control systems (NCSs) have attracted much attention owing to their successful applications in a wide range of areas for the advantage of decreasing the hardwiring, the installation cost and implementation difficulties. Nevertheless, the NCS-related challenging problems arise inevitably that would degrade the system performances. Such network-induced problems include, but are not limited to, the communication delays (also called network-induced time-delays) [3], [7], [10], [22], [23], [30], [35], and packet dropouts (probabilistic information missing, missing measurement) [4], [13], [17], [19], [20], [25]. In most relevant literature, the network-induced time-delays have been commonly assumed to be deterministic, which is fairly unrealistic as, by nature, delays resulting from network transmissions are typically time-varying and random. Very recently, researchers have started to model the communication delays in various probabilistic ways and, accordingly, some initial results have appeared [31], [34], among which the binary random communication delay has received much research attention due to its practicality and simplicity in describing network-induced delays.

The packet dropout (often named as missing measurement) serves as one of the most frequently occurred phenomenon with

Robert A. Finkel, Member, IEEE

Manuscript received July 21, 2009; accepted November 19, 2009. First published December 18, 2009; current version published March 10, 2010. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. James Lam. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., under Grant GR/S27658/01, the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, National Natural Science Foundation of China under Grant 60825303, 60814003, 973 Project under Grant 2009CB320600, Fok Ying Tung Education Foundation under Grant 111064, and the Youth Science Fund of Heilongjiang Province under Grant QC2009C63.

H. Dong is with the Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China, and also with the College of Electrical and Information Engineering, Daqing Petroleum Institute, Daqing 163318, China.

Z. Wang is with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K. (e-mail: Zidong.Wang@brunel.ac.uk).

H. Gao is with the Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2038965
the networked control systems that has attracted considerable research attention during the past few years. In most results reported until now, however, it has been implicitly assumed that the measurement signal is either completely available (denoted by 1) or completely missing (denoted by 0), and all the sensors have the same missing probability [8], [22]. Unfortunately, such an assumption cannot cover some practical cases where partial/multiple missing measurements take place for an array of sensors, such as the case when the individual sensor has different missing probability and the case when only partial information is missing [19], [20], [25]. Note that the nonlinear filtering problem has been intensively investigated by researchers for several decades. However, to the best of the authors’ knowledge, the filtering problem has not yet been addressed for uncertain stochastic nonlinear systems with multiple randomly occurred communication delays and partial missing measurements from individual sensors. It is, therefore, the main purpose of this paper to shorten such a gap by investigating the robust H_{∞} filtering for discrete nonlinear networked systems with multiple stochastic communication delays and multiple missing measurements.

Motivated by the above analysis, in this paper, we aim to investigate the robust H_{∞} filtering problem for discrete uncertain nonlinear networked systems with multiple stochastic time-varying communication delays and multiple missing measurements.

The main contributions of this paper are summarized as follows: 1) a new model is proposed to describe the multiple network communication delays, each of which satisfies an individual Bernoulli distribution; 2) a combination of important factors contributing to the complexity of NCSs are investigated in a unified framework which comprises partial measurement missing, sector nonlinearities and parameter uncertainties; and 3) stochastic analysis is conducted to enforce the H_{∞} performance for the addressed “complex” systems in addition to the usual stability requirement. By means of LMIs, a sufficient condition for the robustly exponential stability of the filtering error dynamics is obtained and a prescribed H_{∞} disturbance rejection attenuation level is guaranteed, and the explicit expression of the desired filter parameters is also derived. A numerical simulation example is used to demonstrate the effectiveness of the presented filtering scheme in this paper.

The rest of this paper is organized as follows. Section II formulates the problem under consideration. The exponentially stability condition and robust H_{∞} performance of the filter error system are given in Section III. The filter design problem is solved in Section IV. An illustrative example is given in Section V and we conclude the paper in Section VI.

Notation: The notation used in the paper is fairly standard. The superscript “T” stands for matrix transposition, \mathbb{R}^{n} denotes the n-dimensional Euclidean space, $\mathbb{R}^{m \times n}$ is the set of all real matrices of dimension $m \times n$; I and 0 represent the identity matrix and zero matrix, respectively. The notation $P > 0$ means that P is real symmetric and positive definite; the notation $\|A\|$ refers to the norm of a matrix A defined by $\|A\| = \sqrt{\text{tr}(A^{T}A)}$ and $\|\cdot\|_{2}$ stands for the usual L_{2} norm. In symmetric block matrices or complex matrix expressions, we use an asterisk (*) to represent a term that is induced by symmetry, and $\text{diag}\{\cdots\}$ stands for a block-diagonal matrix. In addition, $E\{x\}$ and $E\{x|y\}$ will, respectively, mean expectation of x and expectation of x conditional on y. The set of all nonnegative integers is denoted by \mathbb{N}^{+} and the set of all nonnegative real numbers is represented by \mathbb{R}^{+}. If A is a matrix, $\lambda_{\text{max}}(A)$ (respectively, $\lambda_{\text{min}}(A)$) means the largest (respectively, smallest) eigenvalue of A. Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION

To start with, let us denote the following for presentation clarity:

$$\bar{x}(k) := \sum_{i=1}^{q} \alpha_{i}(k)x(k - \tau_{i}(k))$$ \hspace{1cm} (1)

where $\tau_{i}(k)$ (for $i = 1, 2, \cdots, q$) are the random communication delays to be discussed in detail.

Consider the following discrete-time uncertain nonlinear networked system with multiple stochastic communication delays:

\[
\begin{align*}
\dot{x}(k+1) &= (A + \Delta A)x(k) + A_{d}\vartheta(k) + Ff(x(k)) + g(x(k), \hat{x}(k), k)u(k) + D_{1}v(k) \\
\dot{y}(k) &= Cx(k) + D_{2}v(k) \\
z(k) &= Lx(k) \\
x(j) &= \varphi(j), j = -d_{M}, -d_{M} + 1, \cdots, 0
\end{align*}
\]

where $x(k) \in \mathbb{R}^{n}$ represents the state vector; $\vartheta(k) \in \mathbb{R}^{n}$ is defined in (1); $\vartheta(k) \in \mathbb{R}^{n}$ is the process output; $z(k) \in \mathbb{R}^{m}$ is the signal to be estimated; $v(k) \in \mathbb{R}^{m}$ is the exogenous disturbance signal belonging to $L_{2}[0, \infty)$; $\varphi(k)$ (for $j = -d_{M}, -d_{M} + 1, \cdots, 0$) are the initial conditions. $u(k)$ is a scalar Wiener process (Brownian motion) satisfying $E\{u(k)\} = 0$, $E\{u^2(k)\} = 1$, $E\{u(k)u(j)\} = 0$ ($k \neq j$), and $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{N} \rightarrow \mathbb{R}^{n}$ is the continuous function quantifying the noise intensity which satisfies

$$g^{T}(x(k), \hat{x}(k), k)g(x(k), \hat{x}(k), k) \leq \rho_{1}x^{T}(k)x(k) + \rho_{2}\hat{x}^{T}(k)\hat{x}(k)$$

where $\rho_{1} > 0$ and $\rho_{2} > 0$ are known constant scalars. The parameter uncertainties ΔA is a real-valued matrix of the form

$$\Delta A = HA(k)E$$ \hspace{1cm} (3)

where H and E are known constant matrices with appropriate dimensions, and $F(k)$ is the unknown time-varying matrix function satisfying $F^{T}(k)F(k) \leq I$.

The vector-valued nonlinear functions f is assumed to satisfy the following sector-bounded conditions with $f(0) = 0$:

\[
[f(x) - f(y) - R_{1}(x-y)^{T}f(x) - f(y) - R_{2}(x-y)]^{T} \leq 0
\]

(4)

where $R_{1}, R_{2} \in \mathbb{R}^{m \times n}$ and $R_{1} - R_{2}$ is a positive definite matrix.

Remark 1: It is customary that the nonlinear function f is said to belong to $[R_{1}, R_{2}]$ (see [14]). The nonlinear description in (4) is quite general that include the usual Lipschitz conditions.
as a special case. Note that both the control analysis and model reduction problems for systems with sector nonlinearities have been intensively studied; see, e.g., [9] and [15].

The random variables $\alpha_i(k) \in \mathbb{R}$ ($i = 1, 2, \cdots, q$) in (2) are mutually uncorrelated Bernoulli distributed white sequences obeying the following probability distribution law:

$$\text{Prob}\{\alpha_i(k) = 1\} = \mathbb{E}\{\alpha_i(k)\} = \bar{\alpha}_i,$$

$$\text{Prob}\{\alpha_i(k) = 0\} = 1 - \bar{\alpha}_i.$$

The following assumption is needed on the random communication time-delays considered.

Assumption 1: The communication delays $\tau_i(k) (i = 1, 2, \cdots, q)$ are time-varying and satisfy $d_m \leq \tau_i(k) \leq d_M$, where d_m and d_M are constant positive scalars representing the lower and upper bounds on the communication delays, respectively.

Remark 2: The way the communication delays are described in (1) is believed to be new because, different from most existing literature, such a description exhibits the following two features: 1) the communication delays are allowed to occur in any fashion, either discretely, successively, or even distributionally; and 2) each possible delay could occur independently and randomly according to an individual probability distribution which can be specified a priori through statistical test.

In this paper, the packet dropout (missing measurement) phenomenon constitutes another focus of our present research. The multiple packet dropouts are described by

$$y(k) = \Xi C x(k) + D_2 v(k)$$

$$= \sum_{j=1}^{r} \beta_j C_j x(k) + D_2 v(k)$$

where $y(k) \in \mathbb{R}^n$ is the actual measurement signal of (2), $\Xi := \text{diag}\{\beta_1, \beta_2, \ldots, \beta_r\}$ with β_j ($j = 1, \ldots, r$) being r unrelated random variables which are also unrelated with $\alpha_i(k)$ and $u(k)$. It is assumed that β_j has the probabilistic density function $q_j(\cdot) (j = 1, \ldots, r)$ on the interval $[0, 1]$ with mathematical expectation μ_j and variance σ_j^2. C_j is defined by

$$C_j := \text{diag}\{0, 0, 0, 1, 0, \ldots, 0\} C.$$

Note that β_j could satisfy any discrete probabilistic distributions on the interval $[0, 1]$, which includes the widely used Bernoulli distribution as a special case. In the sequel, we denote $\bar{\Xi} = \mathbb{E}\{\Xi\}$.

Remark 3: In real systems, the measurement data may be transferred through multiple sensors. On one hand, for different sensor, the data missing probability may be different. On the other hand, due to various reasons such as sensor aging and sensor temporal failure, the data missing at one moment might be partial, and therefore the missing probability cannot be simply described by 0 or 1. In (5), the diagonal matrix Ξ accounts for the probabilistic missing status of the array of sensors where the random variable β_j corresponds to the jth sensor. Also, β_j can take value on the interval $[0, 1]$ and the probability for β_j to take different values may differ from each other. It is easy to see that the widely used Bernoulli distribution is included here as a special case.

According to the above analysis, we have the following system to be investigated:

$$\begin{align*}
\dot{x}(k+1) &= (A + \Delta A) x(k) + A_d \hat{x}(k) + F f(x(k)) + g(x(k), \hat{x}(k), k) u(k) + D_1 v(k) \\
y(k) &= \Xi C x(k) + D_2 v(k) \\
\bar{z}(k) &= \sum_{j=1}^{r} \beta_j C_j x(k) + D_2 v(k) \\
\dot{\hat{x}}(k+1) &= A_f \hat{x}(k) + B_f y(k) \\
\hat{z}(k) &= C_f \hat{x}(k)
\end{align*}$$

(6)

In this paper, we are interested in obtaining $\hat{z}(k)$, the estimate of the signal $z(k)$, from the actual measured output $y(k)$. The full-order filter to be considered is given as follows:

$$\begin{align*}
\dot{\hat{x}}(k+1) &= A_f \hat{x}(k) + B_f y(k) \\
\hat{z}(k) &= C_f \hat{x}(k)
\end{align*}$$

(7)

where $\hat{x}(k) \in \mathbb{R}^n$ represents the state estimate, $\hat{z}(k) \in \mathbb{R}^m$ is the estimated output, and A_f, B_f, C_f are appropriately dimensioned filter matrices to be determined.

Augmenting the model of (6) to include the states of the filter (7), the filtering error system is given by

$$\begin{align*}
\bar{x}(k+1) &= (\bar{A} + \bar{A}_d) \bar{x}(k) + \sum_{i=1}^{q} (\bar{A}_{di} + \bar{A}_d) \bar{x}(k - \tau_i(k)) \\
&\quad + \bar{D}_u u(k) + \bar{F} f(x(k)) + \bar{D}_v v(k) \\
\bar{z}(k) &= \bar{L} \bar{x}(k)
\end{align*}$$

(8)

where

$$\bar{x}(k) = \begin{bmatrix} x^T(k) & \hat{x}^T(k) \end{bmatrix}^T, \quad \bar{z}(k) = z(k) - \hat{z}(k),$$

$$\bar{L} = [L \quad -C_f], \quad \bar{F} = [F^T \quad 0]^T,$$

$$\bar{A} = \begin{bmatrix} A + \Delta A^T & 0 \\ B_f \Xi C & A_f \end{bmatrix}, \quad \bar{A}_d = \begin{bmatrix} 0 & 0 \\ B_f (\Xi - \Xi) C & 0 \end{bmatrix},$$

$$\bar{A}_{di} = \begin{bmatrix} \bar{\alpha}_i k \quad 0 \\ 0 \quad 0 \end{bmatrix}, \quad \bar{L}_d = \begin{bmatrix} 0 & \bar{\alpha}_d k \quad 0 \\ 0 \quad 0 \quad 0 \end{bmatrix},$$

$$\bar{D}_u = \begin{bmatrix} g(x(k), \hat{x}(k), k) \quad 0 \quad 0 \end{bmatrix}, \quad \bar{D}_v = \begin{bmatrix} 0 & \bar{D}_1 \quad \bar{D}_2 \end{bmatrix}.$$
the system (6) such that, for all admissible parameter uncertainties, nonlinearity, multiple communication delays and packet dropouts, the following two requirements are satisfied simultaneously:

R1) the filter error system (8) is exponentially stable in the mean square;

R2) under zero initial condition, the filtering error \(\overline{z}(k) \) satisfies

\[
\sum_{k=0}^\infty \mathbb{E}\left\{ \| \overline{z}(k) \|^2 \right\} \leq \gamma^2 \sum_{k=0}^\infty \mathbb{E}\left\{ \| v(k) \|^2 \right\}
\]

(9)

for all nonzero \(v(k) \), where \(\gamma > 0 \) is a prescribed scalar.

III. ROBUST \(H_\infty \) FILTERING PERFORMANCE ANALYSIS

Before proceeding further, we introduce the following lemmas which will be needed for the derivation of our main results.

Lemma 1: (Schur Complement) Given constant matrices \(S_1, S_2, S_3 \) where \(S_1 = S_1^T \) and \(0 < S_2 = S_2^T \), then \(S_1 + S_2^T S_3 \) is positive definite if and only if

\[
\begin{bmatrix} S_1 & S_2 \\ S_2^T & S_3 \end{bmatrix} < 0 \quad \text{or} \quad \begin{bmatrix} -S_2 & S_1 \\ S_1^T & -S_3 \end{bmatrix} < 0.
\]

(10)

Lemma 2: (S-procedure) Let \(L = L^T \) and \(H \) be real matrices of appropriate dimensions with \(F \) satisfying \(F^T F \leq I \), then \(L + HFE + E^T F^T H \leq 0 \), if and only if there exists a positive scalar \(\varepsilon > 0 \) such that \(L + \varepsilon^{-1} HE + \varepsilon F^T E \leq 0 \) or equivalently,

\[
\begin{bmatrix} L & H & \varepsilon E^T \\ H^T & -\varepsilon I & 0 \\ \varepsilon E & 0 & -\varepsilon I \end{bmatrix} < 0.
\]

(11)

Let us first consider the robust exponential stability analysis problem for the filter error system (8) with \(v(k) = 0 \).

Theorem 1: Let the filter parameters \(A_f, B_f, \) and \(C_f \) be given and the admissible conditions hold. Then, the filtering error system (8) with \(v(k) = 0 \) is robustly exponentially stable in the mean square if there exist matrices \(P > 0, Q_j > 0 \) \((j = 1, 2, \ldots, q) \) and positive constants \(\lambda_1, \lambda_2 \) satisfying

\[
\Omega = \begin{bmatrix} \Omega_{11} & \ast & \ast \\ \ast & \Omega_{22} & \ast \\ \ast & \ast & \Omega_{33} \end{bmatrix} < 0,
\]

(12)

\[
P \leq \lambda_1 I,
\]

(13)

where

\[
\begin{aligned}
\Omega_{11} &= \lambda_1 A_f - P + \sum_{j=1}^q (d_m - d_m + 1) Q_j + A_f^T P A_f \\
&+ \sum_{j=1}^q \rho_j C_f P C_f - \lambda_2 G^T \hat{R}_1 G, \\
\Omega_{22} &= \text{diag}\left\{ -Q_1 + \hat{A}_1, -Q_2 + \hat{A}_2, \ldots, -Q_q + \hat{A}_q \right\} \\
&+ \sum_{j=1}^q \rho_j C_f P C_f - \lambda_2 G^T \hat{R}_1 G, \\
\Omega_{33} &= F^T P A_f - \lambda_2 \hat{R}_2 G, \quad \Omega_{33} = F^T P A_f - \lambda_2 \hat{R}_2 G, \quad \Omega_{33} = F^T P A_f - \lambda_2 \hat{R}_2 G, \\
\hat{A}_i &= \hat{\alpha}_i (1 - \hat{\alpha}_k) A_f P A_f + \lambda_1 \rho_2 \hat{W}_i, \quad i = 1, 2, \ldots, q, \\
\hat{R}_1 &= (\hat{R}_1^T \hat{R}_2 + \hat{R}_2^T \hat{R}_1) / 2, \\
\hat{G} &= [I \ 0], \quad \hat{Z} = [\hat{A}_d \ \hat{A}_d \ 0 \ \hat{A}_d],
\end{aligned}
\]

\[
\hat{Z}_n = [T_1 \ T_2 \ \cdots \ T_q], \quad \hat{C}_j = \begin{bmatrix} 0 & B_f C_j \\ 0 & 0 \end{bmatrix},
\]

\[
\hat{A}_d = \begin{bmatrix} A_d & 0 \\ 0 & 0 \end{bmatrix}, \quad \hat{P}_d = \begin{bmatrix} \rho \hat{I} & 0 \\ 0 & 0 \end{bmatrix},
\]

\[
W_i = \begin{bmatrix} \hat{\alpha}_i (1 - \hat{\alpha}_k) I & 0 \\ 0 & 0 \end{bmatrix}, \quad T_i = \begin{bmatrix} \hat{\alpha}_i I & 0 \\ 0 & 0 \end{bmatrix}.
\]

Proof: Let

\[
\Theta_j(k) = \{ x(k - \tau_j(k)) \times x(k - \tau_j(k) + 1), \ldots, x(k) \} \quad (j = 1, \ldots, q)
\]

\[
\chi(k) = \{ \Theta_1(k) \cup \Theta_2(k) \cup \cdots \cup \Theta_q(k) \} = \bigcup_{j=1}^q \Theta_j(k).
\]

Choose the following Lyapunov functional for system (8):

\[
V(\chi(k)) = \sum_{i=1}^3 V_i(k)
\]

where

\[
V_1(k) = \pi^T(k) \pi(k), \quad V_2(k) = \sum_{j=1}^q \sum_{i=k-\tau_j(k)}^k \pi^T(i) Q_j \pi(i),
\]

\[
V_3(k) = \sum_{j=1}^q \sum_{m=-d_m+1}^{d_m-1} \sum_{i=k+m}^k \pi^T(i) Q_j \pi(i)
\]

with \(P > 0, Q_j > 0 \) \((j = 1, 2, \ldots, q) \) being matrices to be determined. Then, along the trajectory of system (8) with \(v(k) = 0 \), we have

\[
\mathbb{E}\{\Delta V|\chi(k)\} = \mathbb{E}\{\mathbb{V}(\chi(k+1)) - \mathbb{V}(\chi(k))\} = \mathbb{E}\{(\mathbb{V}(\chi(k+1)) - \mathbb{V}(\chi(k))|\chi(k)\}
\]

\[
= \sum_{i=1}^3 \mathbb{E}\{\Delta V_i|\chi(k)\}.
\]

(14)

From (8), we can obtain that

\[
\mathbb{E}\{\Delta V_1|\chi(k)\}
\]

\[
= \mathbb{E}\{\pi^T(k+1) P \pi(k + 1) - \pi^T(k) P \pi(k) \| \chi(k)\}
\]

\[
= \mathbb{E}\{\pi^T(k) (\pi^T P A_f + A_f^T P \pi) \| \chi(k)\}
\]

\[
+ 2 \pi^T(k) \pi P \left(\sum_{i=1}^q \hat{A}_d \pi (k - \tau_i(k)) \right)
\]

\[
+ 2 \pi^T(k) \pi P f(x(k))
\]

\[
+ \sum_{i=1}^q \pi^T(k - \tau_i(k)) \hat{A}_d \pi A_f \hat{R}_1 \pi (k - \tau_i(k))
\]

\[
+ \left(\sum_{i=1}^q \hat{A}_d \pi (k - \tau_i(k)) \right)^T
\]

\[
	imes P \left(\sum_{i=1}^q \hat{A}_d \pi (k - \tau_i(k)) \right)
\]

\[
+ 2 \left(\sum_{i=1}^q \hat{A}_d \pi (k - \tau_i(k)) \right)^T P f(x(k))
\]

\[
+ \pi^T(k) \pi f(x(k))\}
\]
Letting
\[\xi(k) = [\pi^T(k) \pi^T(k - \tau_1(k)) \cdots \pi^T(k - \tau_q(k)) f^T(x(k))]^T \]
the combination of (16) and (17) results in
\[E\{\Delta V[\pi(k)]\} \leq \xi^T(k) \Omega_1 \xi(k) \] (18)
where
\[\Omega_1 = \begin{bmatrix} \Omega_{11} + \lambda_2 G T \hat{R}_1 G & * & * \\ Z T PA & \Omega_{22} & * \\ F^T P D \hat{Z} & F^T P F & \end{bmatrix}. \]
Notice that (4) implies
\[\begin{bmatrix} \pi(k) \\ f(x(k)) \end{bmatrix}^T \begin{bmatrix} G T \hat{R}_1 G & \hat{R}_2 \\ \hat{R}_2 G & I \end{bmatrix} \begin{bmatrix} \pi(k) \\ f(x(k)) \end{bmatrix} \leq 0, \] (19)
From (18) and (19), it follows that
\[E\{\Delta V[\pi(k)]\} \leq \xi^T(k) \Omega \xi(k). \]
According to Theorem 1, we have \(\Omega < 0 \). Hence, for all \(\xi(k) \neq 0 \), \(E\{\Delta V[\pi(k)]\} \leq \xi^T(k) \Omega \xi(k) < 0 \). Furthermore, from Theorem 1 in [22], the robustly exponential stability of system (8) can be confirmed in the mean square sense. The proof is complete.

Next, we will analyze the \(H_\infty \) performance of the filtering error system (8).

Theorem 2: Let the filter parameters \(A_f, B_f \) and \(C_f \) be given and \(\gamma \) be a prespecified positive constant. Then the filtering error system (8) is robustly exponentially stable in the mean square for \(\gamma(k) = 0 \) and satisfies \(\|\hat{v}(k)\|_2 \leq \gamma \|v(k)\|_2 \) under the zero initial condition for any nonzero \(v(k) \in L_2(0, +\infty) \), if there exist matrices \(P > 0, Q_j > 0 \) (\(j = 1, 2, \cdots q \)) and positive constant scalars \(\lambda_1, \lambda_2 \) satisfying
\[\Phi < 0 \]
(20)
\[P \leq \lambda_1 I \]
(21)
where
\[\Phi = \begin{bmatrix} \Phi_{11} & * & * \\ \Omega_{11} & \Phi_{22} & * \\ D_f^T P A & D_f^T P D \hat{Z} & \end{bmatrix} \]
\[\Phi_{11} = \Omega_{11} + L^T L, \]
with \(\Omega_{11}, \Omega_{22}, \Omega_{31}, \Omega_{32}, C_f, A_f, A_{\nu}, W_i, T_i, \hat{Z}, \hat{Z}_i, \hat{R}_1, \hat{R}_2, \) and \(\hat{A}_j \) being defined as in Theorem 1.

Proof: It is clear that \(\Phi < 0 \) implies \(\Omega < 0 \). According to Theorem 1, the filtering error system (8) is robustly exponentially stable in the mean square.

Let us now deal with the \(H_\infty \) performance of the system (8). Construct the same Lyapunov-Krasovskii functional as in Theorem 1. A similar calculation as in the proof of Theorem 1 leads to
\[E\{\Delta V[\pi(k)]\} \leq \xi^T(k) \Omega \xi(k) \] (22)
where
\[
\xi_0(k)=[\bar{\xi}^T(k)\bar{\xi}^T(k-\tau_1(k))\cdots\bar{\xi}^T(k-\tau_p(k)) f^T(x(k)) \nu^T(k)]^T
\]
\[
\Omega_2 = \begin{bmatrix}
\Omega_{11} + \lambda_2 G^T R_1 G & * & * & * \\
F^T P \bar{A} & \Omega_{22} & F^T P \bar{Z} & * \\
F^T P \bar{A} & D^T \bar{P} \bar{A} & D^T \bar{P} \bar{Z} & D^T \bar{P} F \\
D^T \bar{P} \bar{A} & D^T \bar{P} \bar{Z} & D^T \bar{P} F & D^T \bar{P} D_1
\end{bmatrix}.
\]

In order to deal with the H_{∞} performance of the filtering system (8), we introduce the following index:
\[
J(n) = \mathbb{E} \sum_{k=0}^{n} [\bar{\xi}(k) - \gamma^2 \nu^T(k) \nu(k)]^T
\]
where n is non-negative integer. Obviously, our aim is to show $J(n) < 0$ under the zero initial condition. From (19), (22), and (23), one has
\[
J(n) = \mathbb{E} \sum_{k=0}^{n} [\bar{\xi}(k) - \gamma^2 \nu(k)] + \Delta V(\chi(k))
\]
\[
\leq \mathbb{E} \sum_{k=0}^{n} \left[\bar{\xi}^T(k) \Xi^T \Xi(k) - \gamma^2 \nu^T(k) \nu(k) \right] + \Delta V(\chi(k))
\]
\[
= \mathbb{E} \left[\bar{\xi}_0(k) \nu_0(k) - \lambda_2 [\bar{\xi}(k) f(x(k))] + \bar{\xi}^T(k) \Omega_2 \xi_0(k) \right]
\]
\[
= \xi_0(k) \nu_0(k).
\]

According to Theorem 2, we have $J(n) \leq 0$. Letting $n \to \infty$, we obtain
\[
\|ar{\xi}(k)\|_2 \leq \gamma \|
u(k)\|_2
\]
which completes the proof of Theorem 2.

IV. ROBUST H_{∞} FILTER DESIGN

In this section, we aim at solving the H_{∞} filter design problem for the system (6), that is, we are interested in determining the filter matrices in (7) such that the filtering error system in (8) is exponentially stable with a guaranteed H_{∞} performance. The following theorem provides sufficient conditions for the existence of such H_{∞} filters for system (8).

Theorem 3: Let $\gamma > 0$ be a given positive constant and the admissible conditions hold. Then, for the nonlinear system (6) with multiple communication delays and packet dropouts, there exists an admissible H_{∞} filter of the form (7) such that the filtering error system (8) is robustly exponentially stable in the mean square for $\gamma(k) = 0$ and also satisfies $\|ar{\xi}(k)\|_2 \leq \gamma \|ar{\nu}(k)\|_2$ under the zero initial condition for any nonzero $\nu(k) \in L_2[0, +\infty]$, if there exist positive definite matrices $\hat{P}, Q_j \geq 0$ ($j = 1, 2, \cdots, q$), positive constant scalars $\varepsilon, \lambda_1, \lambda_2$ and matrices X, C_f, where
\[
A \leq 0, \quad P \leq \lambda_1 I
\]
where

$$
\hat{\Omega}_{11} = -P + \sum_{j=1}^{q}(d_{M} - d_{m} + 1)Q_{j} = \lambda_{2}C_{2}^{T} \hat{R}_{1}G,
$$

$$
\hat{C} = [\sigma_{1}C_{1}^{T} \sigma_{2}C_{2}^{T} \cdots \sigma_{r}C_{r}^{T}]^{T}.
$$

In order to avoid partitioning the positive definite matrices P and Q_{j}, we rewrite the parameters in Theorem 2 in the following form:

$$
\check{A} = \hat{A}_0 + H_{0}F(k)E_{0} + \hat{E}K\hat{R}_{3}, \quad \check{C} = \hat{E}K\hat{R}_{2},
$$

$$
\check{L} = \hat{L}_0 + C_{f}\hat{R}_{3}, \quad \check{D}_1 = \hat{D}_0 + \hat{E}K\hat{D}_1,
$$

$$
K = [A_f \quad B_f], \quad X = P\hat{E}K,
$$

and therefore we can get (26). Then, from Lemma 2, we can obtain (24). This completes the proof of this theorem.

Remark 4: In Theorem 3, the robust H_{∞} filtering problem is solved for a class of discrete-time nonlinear networked systems with multiple stochastic communication delays and multiple packet dropouts by using an LMI approach. Obviously, our main results can be easily specialized to many special cases, for example, the cases when there are no nonlinearities, or no stochastic disturbances, or no parameter uncertainties, etc. These specialized results are not listed here to keep the exposition concise. It is also worth pointing out that the main results in this paper can be easily extended to the delayed jumping systems with sensor nonlinearities [24] and other more complicated systems. Note that we mainly focus on the effects brought by multiple stochastic communication delays and packet dropouts, which are two of the most important network-induced characteristics.

Remark 5: Lemma 2 is used to tackle the norm-bounded parameter uncertainties in the proof of Theorem 3. Comparing to existing literature, the system we consider is more comprehensive since the random delays, partial measurement missing, sector nonlinearities, parameter uncertainties and stochastic disturbances are simultaneously taken into account. For deterministic time-delay system, a lot of research attention has been paid on the selection of Lyapunov functionals to reduce the conservatism; see, e.g., [11]. Similarly, for the discrete-time stochastic system considered in this paper, we could further reduce the conservativeness of the main results by paying an effort towards the construction of more general Lyapunov functionals (e.g., the one used in [16]), which leaves a relatively minor research issue for further investigation.

Remark 6: Our main results are based on the LMI conditions. The LMI Control Toolbox implements state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than classical convex optimization algorithms, it should be kept in mind that the complexity of LMI computations remains higher than that of solving, say, a Riccati equation. For instance, problems with a thousand design variables typically take over an hour on today’s workstations. However, research on LMI optimization is a very active area in the applied math, optimization and the operations research community, and substantial speed-ups can be expected in the future.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to demonstrate the effectiveness of the developed method. The system data of (2) are given as follows:

$$
A = \begin{bmatrix}
0.2 & 0 & 0.1 \\
0.1 & -0.3 & 0.1 \\
0.1 & 0 & -0.2
\end{bmatrix}, \quad H = \begin{bmatrix}
0.1 \\
0.2 \\
0.1
\end{bmatrix},
$$

$$
F(k) = \sin(0.6k), \quad E = \begin{bmatrix}
0.1 & 0.1 \\
0.1 & 0.1 \\
0.1 & 0.1
\end{bmatrix},
$$

$$
A_d = \begin{bmatrix}
0.2 & 0 & 0.1 \\
0.1 & -0.3 & 0.1 \\
0.1 & 0 & -0.2
\end{bmatrix}, \quad F = \begin{bmatrix}
0.2 & 0 & 0.1 \\
0.1 & 0.3 & 0.1 \\
0.1 & 0 & 0.2
\end{bmatrix},
$$

$$
D_1 = \begin{bmatrix}
-0.2 & 0 & 0.1 \\
-0.1 & 0.1 & 0.1 \\
0 & 0.2 & 0.1
\end{bmatrix}, \quad C = \begin{bmatrix}
-0.6 & 0.9 & 0.6 \\
0.2 & 0.1 & 0.1
\end{bmatrix},
$$

$$
D_2 = \begin{bmatrix}
0.9 & -0.6 & 0.1 \\
0.5 & 0.8 & 0.1 \\
0.2 & 0.3 & 0.1
\end{bmatrix}, \quad L = \begin{bmatrix}
-0.1 & 0 & 0.1
\end{bmatrix}.
$$

Let $\gamma = 0.9, f(x(k)) = 0.4\sin(x(k))$ and $g(x(k),\hat{x}(k),k) = 0.5x(k) + 0.5\hat{x}(k)$. Assume that the time-varying communication delays satisfy $2 \leq \tau_i(k) \leq 6 (i = 1, 2)$ and $\alpha_1 = E\{\alpha_1(k)\} = 0.8, \quad \alpha_2 = E\{\alpha_2(k)\} = 0.6$.

Suppose that the probabilistic density functions of β_1, β_2 and β_3 in $[0 1]$ are described by

$$
q_1(s_1) = \begin{cases}
0s_1 = 0 \\
0.1s_1 = 0.5, \quad q_2(s_2) = \begin{cases}
0.1s_2 = 0 \\
0.1s_2 = 0.5, \quad 0.8s_2 = 1
\end{cases} \\
0s_3 = 0, \\
0.2s_3 = 0.5, \\
0.8s_3 = 1
\end{cases}
$$

from which the expectations and variances can be easily calculated as $\mu_1 = 0.95, \mu_2 = 0.85, \mu_3 = 0.9, \sigma_1 = 0.15, \sigma_2 = 0.32$ and $\sigma_3 = 0.2$. The initial condition is set to be $x_0 = [1.0 - 1.0]^T, \hat{x}_0 = [0 0 0]^T$ and the external disturbance v_k is described by

$$
v_k = \begin{cases}
0.1, \quad 20 \leq k \leq 50 \\
-0.1, \quad 70 \leq k \leq 100 \\
0, \quad \text{else}
\end{cases}
$$

We would like to design a filter in the form of (7) so that the filtering error system in (8) is exponentially stable with a guaranteed H_{∞} norm bound γ. By applying Theorem 3 with help from Matlab LMI toolbox, we can obtain the desired H_{∞} filter parameters as follows (other matrices are omitted for space saving):

$$
A_f = \begin{bmatrix}
0.3170 & 0.2021 & 0.1123 \\
0.3169 & 0.3169 & 0.3169 \\
0.3170 & 0.1106 & 0.3170
\end{bmatrix},
$$

$$
B_f = \begin{bmatrix}
-0.0079 & -0.0407 & 0.0941 \\
-0.0080 & -0.0408 & 0.0948 \\
-0.0079 & -0.0406 & 0.0942
\end{bmatrix},
$$

$$
C_f = \begin{bmatrix}
0.3280 & 0.1220 & 0.4231
\end{bmatrix}.
$$
The simulation results are shown in Figs. 1–6. Fig. 1 plots the estimation error $z(k) - \hat{z}(k)$. The actual state response $x_i(k)$ and the estimate $\hat{x}_i(k)$ ($i = 1, 2, 3$) are depicted in Figs. 2–4, respectively. Fig. 5 shows the time-varying delays $\tau_i(k)$ ($i = 1, 2$). The Bernoulli sequences $\alpha_i(k)$ ($i = 1, 2$) are drawn in Fig. 6. All the simulation have confirmed our theoretical analysis for the problems of robust H_{∞} filtering for discrete nonlinear networked systems with multiple time-varying random communication delays and multiple packet dropouts.
VI. CONCLUSION

In this paper, we have studied the robust H_{∞} filtering problem for nonlinear networked systems with multiple time-varying random communication delays and multiple packet dropouts. The discrete-time system under study involves parameter uncertainties, state-dependent stochastic disturbances (multiplicative noises or Itô-type noises), multiple stochastic time-varying delays, sector-bounded nonlinearities and multiple packet dropouts. By means of LMIs, sufficient conditions for the robustly exponential stability of the filtering error dynamics have been obtained and, at the same time, the prescribed H_{∞} disturbance rejection attenuation level has been guaranteed. Then, the explicit expression of the desired filter parameters has been derived. A numerical example has been provided to show the usefulness and effectiveness of the proposed design method.

REFERENCES

Hongli Dong received the B.Sc. degree in computer science and technology from the Heilongjiang Institute of Science and Technology, Harbin, China, in 2000 and the M.Sc. degree in control theory and engineering from the Daqing Petroleum Institute, Daqing, China, in 2003. She is now a lecturer at the Daqing Petroleum Institute and she is currently working towards the Ph.D. degree in control science and engineering at the Harbin Institute of Technology, Harbin, China. Her research interests is primarily in robust control and networked control systems. She is an active reviewer for many international journals.
Zidong Wang (SM’03) was born in Jiangsu, China, in 1966. He received the B.Sc. degree in mathematics from Suzhou University, Suzhou, China, in 1986, the M.Sc. degree in applied mathematics and the Ph.D. degree in electrical and computer engineering, both from the Nanjing University of Science and Technology, Nanjing, China, in 1990 and 1994, respectively.

He is now a Professor of Dynamical Systems and Computing at Brunel University, U.K. His research interests include dynamical systems, signal processing, bioinformatics, control theory, and applications. He has published more than 120 papers in refereed international journals.

Dr. Wang is currently serving as an Associate Editor for 12 international journals, including the IEEE Transactions on Automatic Control, the IEEE Transactions on Neural Networks, the IEEE Transactions on Signal Processing, the IEEE Transactions on Systems, Man, and Cybernetics—Part C, and the IEEE Transactions on Control Systems Technology.

Huijun Gao (M’06) was born in Heilongjiang Province, China, in 1976. He received the M.S. degree in electrical engineering from the Shenyang University of Technology, Shenyang, China, in 2001 and the Ph.D. degree in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2005.

He is now a Professor at Harbin Institute of Technology, China. His research interests include network-based control, robust control/filter theory, model reduction, time-delay systems, and multidimensional systems, and their applications. He has published more than 80 papers in refereed international journals.

Dr. Gao is an Associate Editor or member of editorial board for several journals, such as the IEEE Transactions on Systems, Man, and Cybernetics—Part B, the IEEE Transactions on Industrial Electronics, the International Journal of Systems Science, the Journal of Intelligent and Robotics Systems, and the Journal of the Franklin Institute.