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Variance-Constrained Filtering for a Class of
Nonlinear Time-Varying Systems With Multiple
Missing Measurements: The Finite-Horizon Case
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Abstract—This paper is concerned with the robust �� finite-
horizon filtering problem for a class of uncertain nonlinear dis-
crete time-varying stochastic systems with multiple missing mea-
surements and error variance constraints. All the system parame-
ters are time-varying and the uncertainty enters into the state ma-
trix. The measurement missing phenomenon occurs in a random
way, and the missing probability for each sensor is governed by an
individual random variable satisfying a certain probabilistic distri-
bution in the interval [0 1]. The stochastic nonlinearities under con-
sideration here are described by statistical means which can cover
several classes of well-studied nonlinearities. Sufficient conditions
are derived for a finite-horizon filter to satisfy both the estimation
error variance constraints and the prescribed �� performance
requirement. These conditions are expressed in terms of the fea-
sibility of a series of recursive linear matrix inequalities (RLMIs).
Simulation results demonstrate the effectiveness of the developed
filter design scheme.

Index Terms—Discrete time-varying systems, error variance
constraint, recursive matrix inequalities, robust filtering,
stochastic nonlinearities, stochastic systems.

I. INTRODUCTION

I N the past three decades, the optimal filtering or state es-
timation problems have been extensively studied by aca-

demic researchers and successfully applied in many branches
of engineering such as signal processing and control design.
Among a variety of existing approaches, Kalman filtering has
proven to be one of the most popular one that has found wide ap-
plications in signal processing [25]. One vital assumption with

Manuscript received May 26, 2009; accepted January 02, 2010. Date of pub-
lication February 08, 2010; date of current version April 14, 2010. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Ivan W. Selesnick. This work was supported in part by the Engi-
neering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant
GR/S27658/01, the Royal Society of the U.K., National Natural Science Foun-
dation of China by Grants 60825303 and 60834003, National 973 Project of
China by Grant 2009CB320600, Fok Ying Tung Education Foundation by Grant
111064, the Youth Science Fund of Heilongjiang Province of China by Grant
QC2009C63, and by the Alexander von Humboldt Foundation of Germany.

H. Dong is with the Space Control and Inertial Technology Research Center,
Harbin Institute of Technology, Harbin 150001, China. She is also with the
College of Electrical and Information Engineering, Daqing Petroleum Institute,
Daqing 163318, China.

Z. Wang is with the Department of Information Systems and Com-
puting, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K. (e-mail:
Zidong.Wang@brunel.ac.uk).

D. W. C. Ho is with Department of Mathematics, City University of Hong
Kong, Kowloon, Hong Kong.

H. Gao is with the Space Control and Inertial Technology Research Center,
Harbin Institute of Technology, Harbin 150001, China.

Digital Object Identifier 10.1109/TSP.2010.2042489

the traditional Kalman filtering is that an exact model is re-
quired for the system whose states are to be estimated and the
noise sources are stationary white-noise signals with known sta-
tistics. Obviously, such an assumption is sometimes restrictive
in applications and, therefore, the robust and/or filtering
approaches have been recently developed to improve the ro-
bustness of Kalman filters, see [1]–[3], [5], [6], [8], [14], [17],
[18], [24], [26], [28], [30] and the references therein. Gener-
ally speaking, the robust filtering approach guarantees an upper
bound to the quadratic cost (i.e., estimation error variance) in
spite of various parameter uncertainties, and subsequently min-
imizing this upper bound locally, while the filtering theory
aims at designing an estimator that ensures a bound on the in-
duced -norm of the operator from the noise signals to the es-
timation error [21]. The Riccati matrix equation or linear ma-
trix inequality approaches have been frequently exploited in de-
signing robust filters.

It is quite common in practise that the filtering performance
requirements are described in terms of the upper bounds on the
estimation error variances. A typical example is the tracking
problem for highly maneuvering targets where the estimation
error variance is no longer required to be the minimum, but
should satisfy the specified upper bound constraint [21]. As a re-
sult, the variance-constrained filter design problem has received
much research attention, see, e.g. [11] and [21]. It should be
pointed out that, in almost all literature mentioned so far, the
systems under consideration are assume to be time-invariant
and the infinite-horizon (or steady-state) filtering problems have
been dealt with using linear matrix inequality (LMI) approach
owing to the numerical efficiency of the Matlab LMI toolbox.
It is well known that time-varying systems are very often en-
countered in engineering applications and therefore the finite-
horizon filtering problem makes more sense for online imple-
mentation. Unfortunately, for time-varying systems, there have
been very few results published on filtering problems with vari-
ance constraints despite their practical importance, not to men-
tion the simultaneous consideration of the and robustness
constraints. Note that, in [11], by solving two discrete Riccati
difference equations, the robust filtering problem with error
variance constraints has been investigated for linear discrete
time-varying systems.

In practical systems within a networked environment, the
measurement signals is usually subject to probabilistic infor-
mation missing (data dropouts or packet losses), which may
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be caused for a variety of reasons, such as the high manoeu-
vrability of the tracked target, a fault in the measurement,
intermittent sensor failures, network congestion, accidental loss
of some collected data, or some of the data may be jammed
or coming from a very noisy environment, etc. Such a missing
measurement phenomenon that typically occurs in networked
control systems has attracted considerable attention during the
past few years, see [4], [9], [10], [12], [13], [19], [20], [23], and
the references therein. Up to now, in most reported paper con-
cerning missing measurements, a common assumption is that
the measurement signal is either completely missing or com-
pletely available, and all the sensors have the same data missing
probability [7], [22]. Such an assumption, however, does have
its limitations since it cannot cover some practical cases where
multiple missing measurements occur, for example, the case
when only partial information is missing and the case when
the individual sensor has different missing probability [12],
[13], [16], [23]. It is also noticed that, although the nonlinear
filtering problem has been a research focus for several decades
[1], there has been little literature handling the filtering problem
for nonlinear systems with partial missing measurements from
individual sensors. Therefore, there is a practical need to deal
with the robust finite-horizon filtering problem for discrete
nonlinear time-varying stochastic systems with both error
variance constraints and multiple missing measurements.

Motivated by the above discussions, in this paper, we aim to
investigate the robust filtering problem for a class of un-
certain nonlinear discrete time-varying stochastic systems with
error variance constraints and multiple missing measurements,
where all the system parameters are time-varying and the un-
certainties enter into the state matrix. The measurement missing
probability for each sensor is governed by an individual random
variable satisfying a certain probabilistic distribution in the in-
terval [0 1], and the stochastic nonlinearities under considera-
tion here are described by statistical means. Note that a sim-
ilar infinite-horizon problem has been added in [23] for time-
invariant systems only without considering the variance con-
straints. The main contribution of this paper is mainly three-
fold: 1) The system model addressed is new, which is quite com-
prehensive to cover time-varying parameters, stochastic nonlin-
earities, multiple missing measurements as well as parameter
uncertainties, hence reflecting the reality more closely; 2) the
problem addressed is new in the sense that this paper represents
the first of few attempts to deal with the variance-constrained
finite-horizon filtering problem for stochastic systems with mul-
tiple missing measurements; and 3) the algorithm developed is
new which is computationally appealing in terms of the recur-
sive linear matrix inequalities (RLMIs), hence suitable for on-
line application.

Notation: The notation used in the paper is fairly standard.
The superscript “ ” stands for matrix transposition, denotes
the -dimensional Euclidean space, is the set of all real
matrices of dimension , and and 0 represent the identity
matrix and zero matrix, respectively. The notation means
that is real symmetric and positive definite; the notation
refers to the norm of a matrix defined by

and stands for the usual norm. In symmetric block ma-
trices or complex matrix expressions, we use an asterisk to rep-
resent a term that is induced by symmetry, and stands
for a block-diagonal matrix. In addition, and will,
respectively, mean expectation of and expectation of condi-
tional on . The set of all nonnegative integers is denoted by
and the set of all nonnegative real numbers is represented by .

means the variance of . represents the trace of
a matrix . If is a matrix, (respectively, )
means the largest (respectively, smallest) eigenvalue of . Ma-
trices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

II. PROBLEM FORMULATION

In this paper, we consider the following discrete uncertain
nonlinear time-varying stochastic system defined on :

(1)

where represents the state vector, is the
process output, is the signal to be estimated,

is a zero mean Gaussian white noise sequence with covari-
ance , and are known, real, time-
varying matrices with appropriate dimensions. The parameter
uncertainty is a real-valued time-varying matrix of the
form

(2)

where and are known time-varying matrices with appro-
priate dimensions, and is an unknown time-varying matrix
satisfying .

The functions and are sto-
chastic nonlinear functions which are described by their statis-
tical characteristics as follows:

(3)

(4)

and

(5)

where , , , and ( ; ) are
known matrices.

Remark 1: As pointed out in [15], [27], and [29], the non-
linearity description in (3)–(5) encompasses many well-studied
nonlinearities in stochastic systems such as: 1) linear system
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with state- and control-dependent multiplicative noise; 2) non-
linear systems with random vectors dependent on the norms of
states and control input; and 3) nonlinear systems with a random
sequence dependent on the sign of a nonlinear function of states
and control inputs.

In this paper, the measurement with sensor data missing is
paid special attention, where the multiple missing measure-
ments are described by

(6)

where is the actual measurement signal of the plant
(1), with being un-
related random variables which are also unrelated with . It
is assumed that has the probabilistic density function

on the interval [0,1] with mathematical expecta-
tion and variance . is defined by

Note that could satisfy any discrete probabilistic distributions
on the interval [0,1], which includes the widely used Bernoulli
distribution as a special case. In the sequel, we denote

.
Remark 2: In real-time systems, the measurement data may

be transferred through multiple sensors. For different sensor, if
there exists the data loss (also called packet dropout or measure-
ment missing) phenomenon, the data missing probability may
be different [9], [10], [12], [13], [23]. In this sense, it would be
more reasonable to assume that the data missing law for each
individual sensor satisfies individual probabilistic distribution.
In (6), can take value on the interval [0 1] and the associated
probability may differ from each other. It is easy to see that the
widely adopted Bernoulli distribution is now included as a spe-
cial case.

In this paper, we consider the following time-varying filter for
system (1)

(7)

where represents the state estimate, is the
estimated output, and are appropriately dimen-
sioned filter parameters to be determined.

Setting , we subsequently obtain an aug-
mented system as follows:

(8)

where

(9)

The state covariance matrix of the augmented system (8) can
be defined as

(10)

Our aim in this paper is to design a finite-horizon filter in
the form of (7) such that the following two requirements are
satisfied simultaneously:

For given scalar , matrix and the initial
state , the performance index

(11)

is achieved for all admissible parameter uncertainties and
all stochastic nonlinearities.

For a sequence of specified definite matrices
, at each sampling instant , the estimation

error covariance satisfies

(12)

Remark 3: In the desired performance requirement (R2),
the estimation error variance at each sampling time point is
required to be not more than an individual upper bound. Note
that the specified error variance constraint may not be minimal
but should meet engineering requirements, which gives rise to
a practically acceptable “window” with the hope to keep the
estimated states within such a “window”. On the other hand,
since the variance constraint is relaxed from the minimum to
the acceptable one, there would exist much freedom that can be
used to attempt to directly achieve other desired performance
requirements, such as the robustness and disturbance
rejection attenuation level as discussed in this paper.

The finite-horizon filter problem in the presence of missing
measurements addressed above is referred to as the robust finite-
horizon filter problem for uncertain nonlinear discrete time-
varying stochastic systems with variance constraint and multiple
missing measurements.

III. ANALYSIS OF AND COVARIANCE PERFORMANCES

A. Performance

We start with analyzing the performance, i.e., presenting
sufficient conditions under which the performance index is
achieved for a given filter.

Theorem 1: Consider the system (1) and suppose that the
filter parameters , and in (7) are given. For a pos-
itive scalar and a positive definite matrix , the

performance requirement defined in (11) is achieved for all
nonzero if, with the initial condition
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there exists a sequence of positive definite matrices
satisfying the following recursive matrix

inequalities:

(13)

where

Proof: Define

(14)

Noticing (3) and the filter structure in (7), we have

(15)

Substituting (8) into consideration, we have

(16)

Taking (5) into consideration, we have

(17)

Adding the zero term to
results in

(18)

Summing up (18) on both sides from 0 to with respect
to , we obtain

(19)

Hence, the performance index defined in (11) is given by

(20)

Noting that , and the initial condition
, we know and the proof is now

complete.

B. Variance Analysis

Let us now deal with the error variance analysis issue for the
addressed nonlinear stochastic time-varying systems.

Theorem 2: Consider the system (1) and let the filter parame-
ters , and in (7) be given. We have

if, with initial condition , there ex-
ists a sequence of positive definite matrices sat-
isfying the following matrix inequality:

(21)

where

(22)

Proof: As we know from (12), the Lyapunov-type equation
that governs the evolution of state covariance is given by

(23)

Since

we obtain

We now complete the proof by induction. Obviously,
. Letting , we arrive at

(24)

and therefore the proof is finished.
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Furthermore, in light of Theorem 2, we have the following
corollary.

Corollary 1: The inequality holds

To conclude the above analysis, we present a theorem which
intends to take both the performance index and the covari-
ance constraint into consideration in a unified framework via the
RLMI method.

Theorem 3: Consider the system (1) and let the filter parame-
ters , and in (7) be given. For a positive scalar

and a positive definite matrix , if there exist families of
positive definite matrices , and

satisfying the following recur-
sive matrix inequalities:

(25)

(26)

(27)

with the initial condition

(28)

where

then, for the filtering error system (8), we have and
,

.
Proof: Based on the previous analysis on the perfor-

mance and state estimation covariance, we just need to show

that, under initial conditions (28), (25) and (26) imply (13), and
(27) is equivalent to (21).

From Schur Complement, (25) is equivalent to

(29)

which, by the property of matrix trace, can be rewritten as

and (26) is equivalent to

(30)

where

Hence, it is easy to see that (13) can be obtained by (25) and
(26) under the same initial condition.

In the same way, we can easily obtain that (27) is equivalent
to (21). Thus, according to Theorem 1, Theorem 2 and Corollary
1, the index defined in (20) satisfies and, at the same
time, the system error covariance achieves

, . The
proof is complete.

Up to now, the analysis problem has been dealt with for the
filtering problem for a class of uncertain nonlinear dis-

crete time-varying stochastic systems with error variance con-
straints and multiple missing measurements. In the next section,
we proceed to solve the filter design problem using the devel-
oped RLMI approach.

IV. ROBUST FINITE HORIZON FILTER DESIGN

In this section, an algorithm is proposed to cope with the ad-
dressed filter design problem for the uncertain discrete time-
varying nonlinear stochastic system (1). It is shown that the filter
matrices can be obtained by solving a certain set of RLMIs.
In other words, at each sampling instant , a set of
LMIs will be solved to obtain the desired filter matrices and, at
the same time, certain key parameters are obtained which are
needed in solving the LMIs for the th instant.

Theorem 4: For a given disturbance attenuation level ,
a positive definite matrix and a sequence of prespecified
variance upper bounds , if there exist families
of positive definite matrices , ,

, , positive scalars
, ,

and families of real-valued matrices ,
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, and , under initial
conditions

(31)

such that the following recursive LMIs:

(32)

(33)

(34)

(35)

are satisfied with the parameters updated by

(36)

where

then the addressed robust finite horizon filter design
problem is solved for the stochastic nonlinear system (1).

Proof: The proof is based on Theorem 3. We suppose that
the variables and can be decomposed as follows:

It is easy to see that (32) and (25) are equivalent.
In order to eliminate the parameter uncertainty in (26),

we rewrite it in the following form:

(37)

where

Then, from Schur Complement and S-procedure, it follows that
(26) is equivalent to (33). Similarly, we can see that (27) is also
equivalent to (34). Therefore, according to Theorem 3, we have

and
, . From (35), it is obvious that

,
. It can now be concluded that the require-

ments and are simultaneously satisfied. The proof is
complete.
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By means of Theorem 4, we can summarize the Robust Filter
Design algorithm as follows.

Algorithm

Step 1. Given the performance index , the positive
definite matrix and the error initial condition

, select the initial values for matrices
which satisfy the

condition (31) and set .
Step 2. Obtain the values of matrices

and
the desired filter parameters
for the sampling instant by solving the LMIs
(32)–(35).

Step 3. Set and obtain by the
parameter update formula (36).

Step 4. If , then go to Step 2, else go to Step 5.
Step 5. Stop.

Remark 4: From an engineering viewpoint, the recursive
Kalman filter is efficient because only the estimated state from
the previous time step and the current measurement are needed
to compute the estimate for the current state. In fact, the main
aim of this paper is to modify the traditional Kalman filtering
approach to handle a class of nonlinearities and missing mea-
surements with variance constraints. For the techniques used,
we propose to replace the traditional recursive Riccati equa-
tions by the recursive linear matrix inequalities (RLMI) for the
computational convenience. On the other hand, it would be
interesting to deal with the corresponding robust steady-state
filtering problem when the system parameters become time-in-
variant. This is one of our future research topics.

Remark 5: In Theorem 4, the robust finite-horizon filter
is designed by solving a series of recursive linear matrix in-
equalities (RLMIs) where both the current measurement and the
previous state estimation are employed to estimate the current
state. Such a recursive filtering process is particularly useful for
real-time implementation such as online tracking of highly ma-
neuvering targets. On the other hand, we point out that our main
results can be extended to the case of dynamic output feedback
control for the same class of nonlinear stochastic time-varying
systems and the results will appear in the near future.

V. ILLUSTRATIVE EXAMPLES

In this section, we present a numerical simulation example to
illustrate the effectiveness of the developed filter design method.

First of all, let us discuss the practical application of the devel-
oped theory to the target tracking problem through networked
transmission, which is an important branch of signal processing.
Let the maneuvering target be accelerating with random bursts
of gas from its reaction control system (RCS) thrusters and the
state vector consist of the position and velocity. Obviously, due
to the high maneuver of the tracked target, it is neither possible
nor necessary to track the target in a precise way. Instead, as
discussed in Remark 3, an acceptable compromise is to keep the
target within a given “window” as frequent as possible, and such

a requirement can be expressed as upper bounds on the estima-
tion error covariance. For online tracking, the system parameters
would have to be time-varying that contain some uncertainties.
Also, because of the bandwidth limit of the signal transmission
channel, there are inevitably probabilistic measurement missing
and probabilistic nonlinearities. In such a case, there is an urgent
need to investigate the robust filtering problem for the un-
certain nonlinear discrete time-varying stochastic systems with
error variance constraints and multiple missing measurements.

Motivated by the background discussed above, we consider
the following discretized maneuvering target tracking system
that is uncertain, time-varying with stochastic nonlinearities:

(38)
with the state initial value ,

and . Where the uncertain parameter
satisfies .

Let have the unity covariance and the nonlinear functions
and be given as follows:

where ( 1, 2) is the th element of , and ( ,
2) are zero mean, uncorrelated Gaussian white noise processes
with unity variances that is also uncorrelated with . It can be
easily checked that the above class of stochastic nonlinearities
satisfies

Assuming that the probabilistic density functions of and
in [0 1] are described by

(39)

from which the expectations and variances can be easily calcu-
lated as , , , and .
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TABLE I
RECURSIVE PROCESS

Fig. 1. The error variance upper bound and actual error variance.

Fig. 2. Output � and its estimate.

Set the disturbance attenuation level as and
, and choose the parameters’

initial values satisfying (31). According to Algorithm RFD,
the time-varying LMIs in Theorem 4 can be solved recursively
subject to given initial conditions and prespecified performance
indices. Table I lists the matrix variables , , , and
the desired parameters of filter , , from the time

to .

Fig. 3. Estimation error.

Fig. 4. The state � and its estimate.

The simulation results are shown in Figs. 1–5. Fig. 1 gives
the error variance upper bound and actual error variance with

and . Fig. 2 plots the output
and its estimation , whereas the estimation error is shown
in Fig. 3. The actual states , and their estimates ,
are depicted in Fig. 4 and Fig. 5, respectively. All the simula-
tion results confirm that the desired finite-horizon performance
is well achieved and the proposed algorithm is indeed
effective.
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Fig. 5. The state � and its estimate.

Remark 6: As with the use of traditional Kalman filtering,
we can seek to use the stationary value of the initial parameters

, , ( , 2, 3) in our design. That is, letting the time-
varying parameters be fixed as , the matrix inequalities
(31)–(35) become LMIs of , and ( , 2, 3) which
can then be solved and chosen as the initial values.

VI. CONCLUSION

In this paper, the problem of robust filtering problem
has been discussed for a class of uncertain nonlinear discrete
time-varying stochastic systems with error variance constraints
and multiple missing measurements. The measurement missing
phenomenon is assumed to occur in a random way, and the
missing probability for each sensor is governed by an individual
random variable satisfying a certain probabilistic distribution in
the interval [0 1]. The stochastic nonlinearities under consid-
eration here has been widely used in engineering applications.
Sufficient conditions for the finite-horizon filter to satisfy state
estimation error variance constraints and prescribed perfor-
mance have been given in terms of the feasibility of a series of
RLMIs. Simulation results have demonstrated the effectiveness
of the developed filtering technique in a target tracking example.
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