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Global Synchronization Control of General Delayed
Discrete-Time Networks With Stochastic

Coupling and Disturbances
Jinling Liang, Zidong Wang, Senior Member, IEEE, Yurong Liu, and Xiaohui Liu

Abstract—In this paper, the synchronization control problem is
considered for two coupled discrete-time complex networks with
time delays. The network under investigation is quite general to
reflect the reality, where the state delays are allowed to be time
varying with given lower and upper bounds, and the stochastic
disturbances are assumed to be Brownian motions that affect
not only the network coupling but also the overall networks. By
utilizing the Lyapunov functional method combined with linear
matrix inequality (LMI) techniques, we obtain several sufficient
delay-dependent conditions that ensure the coupled networks to be
globally exponentially synchronized in the mean square. A control
law is designed to synchronize the addressed coupled complex
networks in terms of certain LMIs that can be readily solved using
the Matlab LMI toolbox. Two numerical examples are presented
to show the validity of our theoretical analysis results.

Index Terms—Control law, coupled networks, linear matrix
inequality (LMI), Lyapunov functional, stochastic disturbance,
synchronization, time-varying delay.

I. INTRODUCTION

COMPLEX networks exist in our lives. For example, the
brain is a neural network; the global economy is a net-

work of national economies; computer viruses routinely spread
through the Internet; food webs, ecosystems, and metabolic
pathways can be represented by networks. The complexity of
networks in the social, biological, engineering, and physical sci-
ences gives rise to many challenges for scientists and engineers.
In order to better understand the dynamical behaviors of differ-
ent kinds of complex networks, an important and interesting
phenomenon to investigate is the synchrony of all dynamical
nodes. Synchronization problem have been attracting recurrent
research interests for many complex networks that include, but
are not limited to, large-scale and complex networks of chaotic
oscillators [6], [12], [19], [27], the coupled systems exhibiting
spatiotemporal chaos and autowaves [15], [26], and the array of
coupled neural networks with or without delays [2], [8], [13],
[14], [23]. For example, the theta rhythm related to the behavior
of animals is produced by partial synchronization of neuronal
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activity in the hippocampal network [22], and an excessive
synchronization of the neuronal activity over a wide area in
the brain results in the epileptic rhythm [17]. Moreover, it has
recently been revealed that, for message delivery in networks, a
good synchronization can help achieve secure communication
in terms of stable and high transportation rate.

It has now been well recognized that time delays may cause
undesirable dynamic network behaviors such as oscillation
and instability [5], [10], [16], [24]. Therefore, synchronization
problem for complex networks with time delays has gained
increasing research attention. For example, the synchronization
criteria have been established in [7] for complex dynamical
network models with coupling delays for both continuous
and discrete time cases, which have further been improved
in [5] by using less conservative delay-dependent techniques.
A variational method has been used in [11] to deal with
the synchronization problem for an array of linearly coupled
identical connected neural networks with delays, whereas the
similar problem has been addressed in [23] for an array of
coupled nonlinear systems with delay and nonreciprocal time-
varying coupling. More recently, by using Lyapunov functional
method and Kronecker product technique, the global exponen-
tial synchronization has been established in [3] for arrays of
coupled identical delayed neural networks with constant and
delayed coupling. A notable fact is that most of the existing
results have been concerned with the synchronization problem
for continuous-time and deterministic complex networks with
or without delays.

As pointed out in [18], it is rather challenging to understand
the interaction topology of complex networks because of the
discrete and random nature of network topology. On one hand,
in a real complex network, the signal transfer could be per-
turbed randomly from the release of probabilistic causes such as
neurotransmitters [20] and packet dropouts [21]. Synchroniza-
tion control problem for stochastic networks has recently begun
to receive initial research attention. For example, in [25], the
synchronization control problem has been considered for sto-
chastic neural networks with time-varying delays, and a novel
control method has been given to estimate the controller gain.
In [9], the complete synchronization has been achieved between
unidirectionally coupled Chua’s circuits within stochastic per-
turbation. Furthermore, in [4], by introducing the stochastic
coupling term, the complete synchronization problem has been
investigated for an array of linearly stochastically coupled
neural networks with time delays. It is worth mentioning that
the network coupling could occur in both a deterministic and

1083-4419/$25.00 © 2008 IEEE



1074 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

a stochastic way, and the stochastic perturbations could act
on both the coupling term and the overall networks. On the
other hand, discrete-time networks could be more suitable to
model digitally transmitted signals in a dynamical way. Note
that discrete-time networks have already been applied in a wide
range of areas, such as image processing, time series analysis,
quadratic optimization problems, and system identification.
Unfortunately, despite its importance in practice, the global
synchronization problem for discrete-time networks with both
stochastic coupling and stochastic disturbances with or without
delays has not been fully investigated yet, which constitutes the
main focus of this paper.

In this paper, we are interested in the synchronization control
problem for stochastic discrete-time complex networks with
time delays, where the stochastic disturbances are assumed to
be Brownian motions that affect not only the network coupling
but also the overall networks. Our main purpose is to establish
some delay-dependent criteria to ensure that the two identical
delayed networks with stochastic disturbances are globally
exponentially synchronized. Based on the Lyapunov functional
method and the stochastic analysis theory, we like to analyze
and design appropriate feedback controllers with the hope that
the derived synchronization criteria can be expressed in the
form of linear matrix inequalities (LMIs). Note that the LMIs
can be effectively solved and checked by the algorithms such as
the interior-point method [1].

The rest of this paper is organized as follows. In Section II,
some notations are introduced first, and then the coupled net-
work model is presented. In Section III, via the Lyapunov func-
tional method combined with the LMI technique, main results
for synchronization are obtained, and the controller design is
proposed. Two illustrative examples are given in Section IV to
demonstrate the effectiveness of the acquired results. Finally, in
Section V, we give the conclusion of this paper.

II. NOTATIONS AND PROBLEM FORMULATION

Throughout this paper, the notation P > 0 means that P
is real symmetric and positive definite. ‖ · ‖ refers to the
Euclidean vector norm and the induced matrix norm. λmin(·)
and λmax(·) denote the minimum and maximum eigenvalue,
respectively. In symmetric block matrices, we use an asterisk
“∗” to represent a term that is induced by symmetry. Let E{·} be
the mathematical expectation operator with respect to the given
probability measure P and (Ω,F ,P) be a complete probability
space with a natural filtration {Ft}t≥0. For integers α, β with
α < β, N[α, β] denotes the discrete interval given by N[α, β] =
{α, α + 1, . . . , β − 1, β} and C(N[α, β], Rn) means the set of
all functions φ : N[α, β] → R

n. I stands for the identity matrix
with appropriate dimensions. Matrices, if not explicitly stated,
are assumed to have compatible dimensions.

To facilitate the readers, let us present the complex networks
in a step-by-step way. We start with the following master
network:

s(k + 1) = As(k) + Bf (s(k)) + Cfd (s (k − τ(k))) (1)

where k = 1, 2, . . . and s(k)=(s1(k), s2(k),. . . ,sn(k))T ∈ R
n

is the state vector of the network; A is a constant matrix;
matrices B and C are the connection weight matrix and the
delayed connection weight matrix, respectively; τ(k) is a
time-varying delay in the state which satisfies

τm ≤ τ(k) ≤ τM (2)

where τm and τM are known positive integers representing
the lower and upper bounds of the delay; f(s(k)) =
(f1(s1(k)), f2(s2(k)),. . . ,fn(sn(k)))T and fd(s(k−τ(k))) =
(fd1(s1(k−τ(k))),fd2(s2(k−τ(k))),. . . ,fdn(sn(k−τ(k))))T

are the nonlinear functions. In system (1), {φ(k) : k =
−τM ,−τM + 1, . . . , 0} is a given initial condition sequence in
C(N[−τM , 0], Rn).

Throughout of this paper, the following assumption is always
made.
Assumption 1: [10] There exist constants l−i , l+i , k−

i , k+
i such

that the following inequalities

l−i ≤ fi(u) − fi(v)
u − v

≤ l+i

k−
i ≤ fdi(u) − fdi(v)

u − v
≤ k+

i , (i = 1, 2, . . . , n)

hold for all different u, v ∈ R.
As discussed in the introduction, real-world networks are

usually coupled, and stochastic disturbances could enter both
the network coupling and the overall networks. Therefore, in
this paper, an array of linearly coupled identical networks with
time-varying delay under study (the slave networks) is proposed
as follows (without loss of generality, we only consider the case
that two networks are coupled):

xi(k+1)= Axi(k)+Bf (xi(k))+Cfd (xi (k−τ(k)))+ui(k)
+H (k, xi(k)−s(k), xi (k−τ(k))−s (k−τ(k)))

× ωi1(k)+
2∑

j=1

GijΓxj(k) (di+ωi2(k)) (3)

where i = 1, 2 and xi(k) = (xi1(k), xi2(k), . . . , xin(k))T ∈
R

n; di > 0 denotes the coupling strength; ui(·) is the
control input to ensure that xi(k) − s(k) → 0 as k → ∞;
ωi1(·), ωi2(·)(i = 1, 2) are independent scalar Wiener process
(Brownian Motion) on the probability space (Ω,F ,P)
satisfying

E {ωij(k)} = 0
E
{
ω2

ij(k)
}

= 1
E {ωij(s)ωij(t)} = 0 (s �= t) (4)

in which i, j = 1, 2. It is assumed that H : R × R
n × R

n →
R

n is the diffusion coefficient vector and there exist matrices
G1, G2 such that

HT(k, x, y)H(k, x, y) ≤ ‖G1x‖2 + ‖G2y‖2,

∀(k, x, y) ∈ R × R
n × R

n. (5)

Furthermore, Γ ∈ R
n×n is a constant inner coupling matrix of

the nodes, and G = (Gij)2×2 is the out-coupling matrix of the



LIANG et al.: GLOBAL SYNCHRONIZATION CONTROL OF GENERAL DELAYED DISCRETE-TIME NETWORKS 1075

network defined as follows. If there is a connection from node
j to node i(i �= j), then Gij > 0; otherwise, Gij = 0.

Remark 1: It can be seen that matrix G reflects the topolog-
ical structure of the networks and it also satisfies the diffusive
coupling conditions

Gii = −
∑
j �=i

Gij , (i, j = 1, 2). (6)

Moreover, (5) and (6) infer that when the synchronization
is reached, the synchronization state is just a solution of an
isolated node model (1).
Remark 2: It is notable that, in addition to the constant

couplings in our model (3), we consider the state-dependent
stochastic sequences ωi1(k) on the overall network and ωi2(k)
on the coupling term. This represents one of the first attempts to
deal with both deterministic and stochastic disturbances on the
coupling as well as the overall network dynamics. In this sense,
the model (3) is more natural and general than the existing ones
including that introduced in [4].

In order to investigate the global synchronization for coupled
networks (3), we let ei(k) = xi(k) − s(k) be the synchroniza-
tion error. Then, the error system follows immediately from (1)
and (3) as follows:

ei(k + 1) = Aei(k) + Bg (ei(k)) + Cgd (ei (k − τ(k)))
+ ui(k) + H (k, ei(k), ei (k − τ(k))) ωi1(k)

+
2∑

j=1

GijΓej(k) (di + ωi2(k)) (7)

where g(ei(k))=f(xi(k))−f(s(k)) and gd(ei(k−τ(k)))=
fd(xi(k − τ(k))) − fd(s(k − τ(k))).

From Assumption 1, one has

l−i ≤ gi(u)
u

≤ l+i , k−
i ≤ gdi(u)

u
≤ k+

i ,

(u ∈ R \ {0}, i = 1, 2, . . . , n) . (8)

For simplicity, we denote L1 = diag{l−1 l+1 , l−2 l+2 , . . . , l−n l+n },
L2 =diag{(−(l−1 + l+1 )/2,−(l−2 + l+2 )/2,. . . ,−(l−n + l+n )/2};
K1 = diag{k−

1 k+
1 , k−

2 k+
2 , . . . , k−

nk+
n }, K2 = diag{−(k−

1 +
k+
1 )/2,−(k−

2 + k+
2 )/2,. . . ,−(k−

n + k+
n )/2}.

Definition 1: The coupled network system (3) is said to be
globally exponentially synchronized in the mean square if there
exist two constants ϑ > 0 and µ ∈ (0, 1) such that

E
{
‖xi(k) − s(k)‖2

}
= E

{
‖ei(k)‖2

}
≤ ϑµk

× max
s∈N[−τM ,0]

E{‖ei(s)‖2}, i = 1, 2

hold for all k ≥ κ, where κ is a sufficiently large positive
integer.

To obtain our main results, we need the following lemma
known as the Schur complement:
Lemma 1: Let Q(x) = QT(x), R(x) = RT(x), and S(x)

depend affinely on x [1]. Then, the following LMI:[
Q(x) S(x)
ST(x) R(x)

]
> 0

holds if and only if one of the following conditions holds:
1) R(x) > 0, Q(x) − S(x)R−1(x)ST(x) > 0;
2) Q(x) > 0, R(x) − ST(x)Q−1(x)S(x) > 0.

III. MAIN RESULTS

In this section, by utilizing the Lyapunov functional method
combining with the LMI techniques, let us first derive delay-
dependent stability criterion for the following unforced system
of (7):

ei(k + 1) =Aei(k) + Bg (ei(k)) + Cgd (ei (k − τ(k)))
+ H (k, ei(k), ei (k − τ(k))) ωi1(k)

+
2∑

j=1

GijΓej(k) (di + ωi2(k)) (9)

and then design a controller ui(k) that synchronizes the coupled
network (3) with stochastic disturbances.
Theorem 1: The unforced system (9) is globally exponen-

tially stable in the mean square if there exist seven positive
definite matrices P , Q1, Q2, R1, R2, R̄1, R̄2, four positive
diagonal matrices Si = diag{si1, si2, . . . , sin}(i = 1, 2, 3, 4)
and a scalar λ > 0 such that the following LMIs hold:

P < λI Ξ =
[

Ξ11 Ξ12

ΞT
12 Ξ22

]
< 0 (10)

where we have the expressions for Ξ11, Ξ12, and Ξ22, shown
at the bottom of the next page, with Π2 =

(
G11G12(1 + d2

1) +
G22G21(1 + d2

2)
)
ΓT PΓ + d1G12A

T PΓ + d2G21ΓT PA

Π1 = (τM − τm + 1)Q1 + ATPA − P + λGT
1 G1 − S1L1

+ R1 + R̄1 +
(
(1 + d2

1)G
2
11 +

(
1 + d2

2

)
G2

21

)
ΓTPΓ

+ d1G11(ATPΓ + ΓTPA)
Π3 = (τM − τm + 1)Q2 + ATPA − P + λGT

1 G1 − S2L1

+ R2 + R̄2 +
(
(1 + d2

1)G
2
12 + (1 + d2

2)G
2
22

)
ΓTPΓ

+ d2G22(ATPΓ + ΓTPA).

Proof: It follows easily from (8) that(
gi (e1i(k)) − l−i e1i(k)

) (
gi (e1i(k)) − l+i e1i(k)

)
≤ 0,

i = 1, 2, . . . , n (11)

which is equivalent to[
e1(k)

g (e1(k))

] [
l−i l+i δiδ

T
i − l−

i
+l+

i

2 δiδ
T
i

− l−
i

+l+
i

2 δiδ
T
i δiδ

T
i

]
×
[
eT
1 (k) gT (e1(k))

]
≤ 0, i = 1, 2, . . . , n (12)

where δi is the n-dimensional unit column vector having one
element on its ith row and zeros elsewhere. Multiplying both
sides of (12) by s1i and summing up from 1 to n with respect
to i, we have[

e1(k)
g (e1(k))

] [
L1S1 L2S1

L2S1 S1

] [
eT
1 (k) gT (e1(k))

]
≤ 0. (13)
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Similarly, we have the following inequalities:[
e2(k)

g (e2(k))

] [
L1S2 L2S2

L2S2 S2

] [
eT
2 (k) gT (e2(k))

]
≤ 0 (14)[

e1 (k − τ(k))
gd (e1 (k − τ(k)))

] [
K1S3 K2S3

K2S3 S3

]
×
[
eT
1 (k − τ(k)) gT

d (e1 (k − τ(k)))
]
≤ 0 (15)[

e2 (k − τ(k))
gd (e2 (k − τ(k)))

] [
K1S4 K2S4

K2S4 S4

]
×
[
eT
2 (k − τ(k)) gT

d (e2 (k − τ(k)))
]
≤ 0. (16)

Consider the following Lyapunov functional of system (9):

V (k)= V1(k)+V2(k)+V3(k)+V4(k)+V5(k)

=
2∑

i=1

eT
i (k)Pei(k)+

2∑
i=1

k−1∑
j=k−τ(k)

eT
i (j)Qiei(j)

+
2∑

i=1

k−1∑
j=k−τm

eT
i (j)Riei(j)+

2∑
i=1

k−1∑
j=k−τM

eT
i (j)R̄iei(j)

+
2∑

i=1

−τm∑
j=−τM+1

k−1∑
m=k+j

eT
i (m)Qiei(m). (17)

Calculating the difference of V1(k) along the solutions of (9)
and taking the mathematical expectation, noting the indepen-
dent properties of stochastic processes ωi1(·), ωi2(·), and (4),
we obtain (18), shown at the bottom of the next page.

Similarly, we have

E {∆V2(k)} =
2∑

i=1

E

{
eT
i (k)Qiei(k) − eT

i (k − τ(k))

× Qiei (k − τ(k))

+
k−τm∑

j=k+1−τ(k+1)

eT
i (j)Qiei(j)

+
k−1∑

j=k−τm+1

eT
i (j)Qiei(j)

−
k−1∑

j=k−τ(k)+1

eT
i (j)Qiei(j)

}

≤
2∑

i=1

E

{
eT
i (k)Qiei(k) − eT

i (k − τ(k))

× Qiei (k − τ(k))

+
k−τm∑

j=k+1−τM

eT
i (j)Qiei(j)

}
(19)

E{∆V3(k)} =
2∑

i=1

E

{
eT
i (k)Riei(k) − eT

i (k − τm)

× Riei(k − τm)

}
(20)

E {∆V4(k)} =
2∑

i=1

E

{
eT
i (k)R̄iei(k) − eT

i (k − τM )

× R̄iei(k − τM )

}
(21)

E {∆V5(k)} =
2∑

i=1

E

{
(τM − τm)eT

i (k)Qiei(k)

−
k−τm∑

j=k+1−τM

eT
i (j)Qiei(j)

}
. (22)

Conditions (5) and (10) indicate that

HT (k, ei(k), ei (k−τ(k)))PH (k, ei(k), ei (k−τ(k)))

≤λ
(
eT
i (k)GT

1 G1ei(k)+eT
i (k−τ(k)) GT

2 G2ei (k−τ(k))
)
,

i=1, 2. (23)

Ξ11 =


Π1 0 0 0 ATPB − S1L2 + d1G11ΓTPB ATPC + d1G11ΓTPC
∗ −R1 0 0 0 0
∗ ∗ −Q1 + λGT

2 G2 − S3K1 0 0 −S3K2

∗ ∗ ∗ −R̄1 0 0
∗ ∗ ∗ ∗ BTPB − S1 BTPC
∗ ∗ ∗ ∗ ∗ CTPC − S3



Ξ12 =


Π2 0 0 0 d2G21ΓTPB d2G21ΓTPC
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

d1G12B
TPΓ 0 0 0 0 0

d1G12C
TPΓ 0 0 0 0 0



Ξ22 =


Π3 0 0 0 ATPB − S2L2 + d2G22ΓTPB ATPC + d2G22ΓTPC
∗ −R2 0 0 0 0
∗ ∗ −Q2 + λGT

2 G2 − S4K1 0 0 −S4K2

∗ ∗ ∗ −R̄2 0 0
∗ ∗ ∗ ∗ BTPB − S2 BTPC
∗ ∗ ∗ ∗ ∗ CTPC − S4


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Denoting

ξ(k)=
(
eT
1 (k) eT

1 (k − τm) eT
1 (k − τ(k)) eT

1 (k − τM )

gT (e1(k)) gT
d (e1 (k − τ(k))) eT

2 (k)
eT
2 (k − τm) eT

2 (k − τ(k)) eT
2 (k − τM )

gT (e2(k)) gT
d (e2 (k − τ(k)))

)T

it follows from (13)–(16) and (18)–(23) that

E {∆V (k)} ≤ E
{
ξT(k)Ξξ(k)

}
≤ −λmin(−Ξ)E

{
‖e1(k)‖2 + ‖e2(k)‖2

}
. (24)

From the definition (17) of V (k), it is easy to obtain that

E {V (k)} ≥λmin(P )E
{
‖e1(k)‖2 + ‖e2(k)‖2

}
(25)

E {V (k)} ≤λmax(P )E
{
‖e1(k)‖2 + ‖e2(k)‖2

}
+ ρE


k−1∑

j=k−τM

(
‖e1(j)‖2 + ‖e2(j)‖2

) (26)

where ρ=(τM − τm + 1)max{λmax(Q1), λmax(Q2)}+ max
{λmax(R1), λmax(R2)} + max{λmax(R̄1), λmax(R̄2)}. For

any given scalar ε > 1, taking k to be sufficiently large, we
have from (24) and (26) that

E
{
εkV (k)

}
= E

{
V (0)+

k−1∑
j=0

(
εj+1∆V (j)+εj(ε−1)V (j)

)}

≤E

{
λmax(P )

(
‖e1(0)‖2 + ‖e2(0)‖2

)

+ ρ

−1∑
j=−τM

(
‖e1(j)‖2 + ‖e2(j)‖2

)
+ (−ελmin(−Ξ) + (ε − 1)λmax(P ))

×
k−1∑
j=0

εj
(
‖e1(j)‖2+‖e2(j)‖2

)
+(ε−1)ρ

×
k−1∑
j=0

j−1∑
l=j−τM

εj
(
‖e1(l)‖2 + ‖e2(l)‖2

)}
(27)

E {∆V1(k)} = E {V1(k + 1) − V1(k)}

=
2∑

i=1

E


Aei(k) + Bg (ei(k)) + Cgd (ei (k − τ(k))) + di

2∑
j=1

GijΓej(k)

T

×P

Aei(k) + Bg (ei(k)) + Cgd (ei (k − τ(k))) + di

2∑
j=1

GijΓej(k)


−eT

i (k)Pei(k) + H (k, ei(k), ei (k − τ(k))) PH (k, ei(k), ei (k − τ(k)))

+

 2∑
j=1

GijΓej(k)

T

P

 2∑
j=1

GijΓej(k)




=
2∑

i=1

E

{
eT
i (k)(ATPA − P )ei(k) + gT

d (ei (k − τ(k))) CTPCgd (ei (k − τ(k)))

+ gT (ei(k)) BTPBg (ei(k)) + 2eT
i (k)ATP [Bg (ei(k)) + Cgd (ei (k − τ(k)))]

+ 2gT (ei(k)) BTPCgd (ei (k − τ(k))) + H (k, ei(k), ei (k − τ(k)))PH (k, ei(k), ei (k − τ(k)))

}

+ E

{((
1 + d2

1

)
G2

11 +
(
1 + d2

2

)
G2

21

)
eT
1 (k)ΓTPΓe1(k) +

((
1 + d2

1

)
G2

12 +
(
1 + d2

2

)
G2

22

)
× eT

2 (k)ΓTPΓe2(k) + 2
(
G11G12

(
1 + d2

1

)
+ G21G22

(
1 + d2

2

))
eT
1 (k)ΓTPΓe2(k)

+ 2
[
d1G11e

T
1 (k)ATPΓe1(k) + eT

1 (k)
(
d1G12A

TPΓ + d2G21ΓTPA
)
e2(k) + d2G22e

T
2 (k)ATPΓe2(k)

]
+ 2
[
d1G11e

T
1 (k)ΓTPBg (e1(k)) + d1G12e

T
2 (k)ΓTPBg (e1(k))

+ d2G21e
T
1 (k)ΓTPBg (e2(k)) + d2G22e

T
2 (k)ΓTPBg (e2(k))

]
+ 2
[
d1G11e

T
1 (k)ΓTPCgd (e1 (k − τ(k))) + d1G12e

T
2 (k)ΓTPCgd (e1 (k − τ(k)))

+ d2G21e
T
1 (k)ΓTPCgd (e2 (k − τ(k))) + d2G22e

T
2 (k)ΓTPCgd (e2 (k − τ(k)))

]}
(18)
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where

E


k−1∑
j=0

j−1∑
l=j−τM

εj
(
‖e1(l)‖2 + ‖e2(l)‖2

)
≤ E

{
τMετM

−1∑
l=−τM

(
‖e1(l)‖2 + ‖e2(l)‖2

)

+

(
k−1−τM∑

l=0

τM∑
s=1

+
k−1∑

l=k−τM

k−l∑
s=1

)

× εlεs
(
‖e1(l)‖2 + ‖e2(l)‖2

)}
≤ τ2

MετM sup
l∈N[−τM ,0]

E

{
‖e1(l)‖2 + ‖e2(l)‖2

}
+ τMετM E

{
k−1∑
l=0

εl
(
‖e1(l)‖2 + ‖e2(l)‖2

)}
. (28)

Substituting (28) into (27) gives

E
{
εkV (k)

}
≤ p1(ε) sup

l∈N[−τM ,0]

E

{
‖e1(l)‖2 + ‖e2(l)‖2

}

+p2(ε)E

{
k∑

l=0

εl
(
‖e1(l)‖2 + ‖e2(l)‖2

)}
(29)

where p1(ε) = λmax(P ) + ρτM + ρ(ε − 1)τ2
MετM , p2(ε) =

(ε−1)λmax(P )−ελmin(−Ξ) + ρ(ε − 1)τMετM . Since p1(ε)
and p2(ε) are continuous functions of ε and p1(1) > 0, p2(1) <
0, there must exist a scalar µ > 1 such that p1(µ) > 0 and
p2(µ) ≤ 0, which leads to the fact that

E

{
‖e1(k)‖2 + ‖e2(k)‖2

}
≤ p1(µ)

λmin(P )

(
1
µ

)k

sup
l∈N[−τM ,0]

× E

{
‖e1(l)‖2 + ‖e2(l)‖2

}
. (30)

From Definition 1, (30) means that the coupled network system
(9) is globally exponentially stable in the mean square, and the
proof is then completed. �

Next, we are going to design a controller ui(k) in order to
make the coupled system (3) to be synchronized. For simplicity
of the implementation, we adopt the following memoryless
state-feedback controller:

ui(k) = Kei(k). (31)

Substitute (31) into (7) to give the following closed-loop
system:

ei(k + 1) = (A + K)ei(k) + Bg (ei(k))

+ Cgd (ei (k − τ(k)))

+ H (k, ei(k), ei (k − τ(k))) ωi1(k)

+
2∑

j=1

GijΓej(k) (di + ωi2(k)) (32)

where K ∈ R
n×n is a constant gain matrix to be determined.

Theorem 2: The coupled stochastic disturbed system (3) is
globally exponentially synchronized in the mean square via
the memoryless state-feedback controller (31) if there exist
seven positive definite matrices P , Q1, Q2, R1, R2, R̄1, R̄2,
four positive diagonal matrices Si(i = 1, 2, 3, 4), one arbi-
trary matrix K̃, and a scalar λ > 0 such that the following
LMIs hold:

P < λI Σ =
[

Σ11 Σ12

ΣT
12 Σ22

]
< 0 (33)

where the expressions for Σ11, Σ12, Σ22, Υ2, Υ1, and Υ3 are
shown at the bottom of the next page. Moreover, the controller
gain is given by K = P−1K̃T.

Proof: From Theorem 1, one knows that system (33)
is globally exponentially stable in the mean square if there
exist seven matrices P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0,
R̄1 > 0, R̄2 > 0, four diagonal matrices Si > 0(i = 1, 2, 3, 4),
and a scalar λ > 0 such that

P < λI Ξ̃ =
[

Ξ̃11 Ξ̃12

Ξ̃T
12 Ξ̃22

]
< 0 (34)

where Ξ̃11, Ξ̃12, and Ξ̃22 are similar as Ξ11, Ξ12, and Ξ22 in
Theorem 1 with the only difference that A is substituted by
A + K.

On the other hand, by Lemma 1, Ξ̃ < 0 is equivalent to

Σ̃ =
[

Σ̃11 Σ̃12

Σ̃T
12 Σ̃22

]
< 0 (35)

where Σ̃11, Σ̃12, and Σ̃22 are the same as Σ11, Σ12, and Σ22 by
just noting that K = P−1K̃T. �

In the following, one special case is discussed. The proof of
the subsequent corollary is similar to that of Theorem 2 and,
hence, omitted here. Consider the coupled network system (3)
without stochastic terms. In this case, (3) reduces to

xi(k + 1) = Axi(k) + Bf (xi(k))

+Cfd (xi (k − τ(k))) + ui(k) + di

2∑
j=1

GijΓxj(k) (36)

and we can obtain the following result:
Corollary 1: The discrete-time coupled system (36) is glob-

ally exponentially synchronized via the memoryless state-
feedback controller (31) if there exist seven positive definite
matrices P , Q1, Q2, R1, R2, R̄1, R̄2, four positive diagonal
matrices Si(i = 1, 2, 3, 4) and one arbitrary matrix K̃ such that
the following LMI holds:

∆ =
[

∆11 ∆12

∆T
12 ∆22

]
< 0 (37)

where the expressions for ∆11, ∆12, ∆22, Θ2, Θ1, and Θ3 are
shown at the bottom of page 1080. Moreover, the controller gain
K = P−1K̃T.
Remark 3: In our main results, the synchronization control

problem is considered for two coupled discrete-time complex
networks with time-delays, and the control law is designed
to synchronize the addressed coupled complex networks in
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terms of certain LMIs that can be readily solved using Matlab
LMI toolbox. It should be pointed out that the variables of the
LMIs are essentially the parameters of the addressed complex
networks. Therefore, once an adequate complex network is es-
tablished, and the corresponding parameters are identified, we
can analyze the exponential synchronization control problem
of the complex network by simply checking the feasibility
of the LMIs. Note that the verification of the solvability of
LMIs can be conveniently done by utilizing the numerically
efficient Matlab LMI toolbox, and no turning of parameters
will be needed [1]. In the past decade, LMIs have gained much
attention for their computational tractability and usefulness in
system engineering (see, e.g., [1]) as the so-called interior point
method has been proved to be numerically very efficient for
solving the LMIs. The number of analysis and design problems
that can be formulated as LMI problems is large and continues
to grow.

IV. TWO NUMERICAL EXAMPLES

In this section, two simple examples are presented to justify
Theorem 2 acquired in the previous section.

Example 1: Consider an isolated network (1) with pa-
rameters as follows:

τm = 2

A =


−0.0830 −0.9386 −0.6559 −0.5539
−0.6616 −0.5905 −0.4519 −0.6801
−0.5170 −0.4406 −0.8397 −0.3672
−0.1710 −0.9419 −0.5326 −0.2393



B =


−0.002 0.01 0.001 0

0 −0.002 −0.013 0.01
−0.01 0.001 0.002 0

0 0 0.01 0.012



C =


0.03 0 0 0.03
−0.03 0.03 0 0.03

0 −0.03 0.003 0.03
0 0.03 −0.03 0.036


and f(s(k)) = fd(s(k)) = (tanh(2s1(k)), tanh(−4s2(k)),
tanh(−2s1(k)), tanh(2s1(k)))T. It can be easily determined
that K1 = L1 = 0 and K2 = L2 = diag{−1, 2, 1,−1}.

Σ11 =



Υ1 0 0 0 −S1L2 + d1G11ΓTPB d1G11ΓTPC ATP + K̃
∗ −R1 0 0 0 0 0
∗ ∗ −Q1 + λGT

2 G2 − S3K1 0 0 −S3K2 0
∗ ∗ ∗ −R̄1 0 0 0
∗ ∗ ∗ ∗ −S1 0 BTP
∗ ∗ ∗ ∗ ∗ −S3 CTP
∗ ∗ ∗ ∗ ∗ ∗ −P



Σ12 =



Υ2 0 0 0 d2G21ΓTPB d2G21ΓTPC 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

d1G12B
TPΓ 0 0 0 0 0 0

d1G12C
TPΓ 0 0 0 0 0 0

0 0 0 0 0 0 0



Σ22 =



Υ3 0 0 0 −S2L2 + d2G22ΓTPB d2G22ΓTPC ATP + K̃
∗ −R2 0 0 0 0 0
∗ ∗ −Q2 + λGT

2 G2 − S4K1 0 0 −S4K2 0
∗ ∗ ∗ −R̄2 0 0 0
∗ ∗ ∗ ∗ −S2 0 BTP
∗ ∗ ∗ ∗ ∗ −S4 CTP
∗ ∗ ∗ ∗ ∗ ∗ −P


Υ2 =

(
G11G12

(
1 + d2

1

)
+ G22G21

(
1 + d2

2

))
ΓTPΓ + d1G12(ATPΓ + K̃Γ) + d2G21(ΓTPA + ΓTK̃T)

Υ1 = (τM − τm + 1)Q1 − P + λGT
1 G1 − S1L1 + R1 + R̄1 +

((
1 + d2

1

)
G2

11 +
(
1 + d2

2

)
G2

21

)
ΓTPΓ

+ d1G11

(
ATPΓ + ΓTPA + K̃Γ + ΓTK̃T

)
Υ3 = (τM − τm + 1)Q2 − P + λGT

1 G1 − S2L1 + R2 + R̄2 +
((

1 + d2
1

)
G2

12 +
(
1 + d2

2

)
G2

22

)
ΓTPΓ

+ d2G22

(
ATPΓ + ΓTPA + K̃Γ + ΓTK̃T

)
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Now, let two identical networks in (1) be coupled and dis-
turbed with the following parameters:

d1 = 0.1, d2 = 0.2

G =
[
−0.1 − a 0.1 + a

0.2 −0.2

]

Γ =


−0.0579 −0.0444 −0.0404 −0.0260
−0.0867 −0.0300 −0.0390 −0.0087
−0.0407 −0.0401 −0.0360 −0.0429
−0.0113 −0.0833 −0.0140 −0.0257


G1 =

 0.0595 0.0990 0.1570 0.0007
0.0850 0.1413 0.0148 0.0441
0.0238 0.0487 0.0788 0.0003


G2 =

 0.0568 0.0525 0.2703 0.1448
0.0427 0.0416 0.2818 0.1128
0.0804 0.1797 0.0664 0.1571

 .

Let a = 0 and τM vary from the value 3. By using the Matlab
LMI Control Toolbox, a feasible solution to the LMIs in (33)
can always be found when τM ∈ N[3, 5]. For example, taking
τM = 4, the corresponding solution is listed as follows:

P =


122.7081 5.7527 6.1273 4.8039
5.7527 131.0024 7.1094 6.4317
6.1273 7.1094 141.2300 16.6209
4.8039 6.4317 16.6209 124.8004



Q1 =


18.8309 2.2670 3.8593 3.0423
2.2670 21.1439 4.3440 4.3243
3.8593 4.3440 32.4577 10.2498
3.0423 4.3243 10.2498 23.0821



Q2 =


18.8315 2.2673 3.8595 3.0424
2.2673 21.1442 4.3441 4.3243
3.8595 4.3441 32.4578 10.2500
3.0424 4.3243 10.2500 23.0829



R1 = R̄1 =


18.6853 −1.4547 −2.6639 −1.7570
−1.4547 16.9616 −3.3628 −2.6644
−2.6639 −3.3628 11.7259 −5.0486
−1.7570 −2.6644 −5.0486 16.4176



R2 = R̄2 =


18.6854 −1.4543 −2.6635 −1.7567
−1.4543 16.9614 −3.3624 −2.6640
−2.6635 −3.3624 11.7260 −5.0485
−1.7567 −2.6640 −5.0485 16.4171



K̃ =


18.1433 91.8042 82.3544 34.6644
128.1228 91.4326 88.0246 133.0618
90.7563 70.6068 134.8563 87.5989
75.0734 94.9697 63.6401 41.3365


S1 = diag{13.0810, 4.0177, 7.3422, 10.3274}
S2 = diag{13.0815, 4.0183, 7.3428, 10.3272}
S3 = diag{8.5475, 1.9206, 3.1295, 5.6770}
S4 = diag{8.5480, 1.9208, 3.1298, 5.6775}
λ = 159.7163.

∆11 =



Θ1 0 0 0 −S1L2 + d1G11ΓTPB d1G11ΓTPC ATP + K̃
∗ −R1 0 0 0 0 0
∗ ∗ −Q1 − S3K1 0 0 −S3K2 0
∗ ∗ ∗ −R̄1 0 0 0
∗ ∗ ∗ ∗ −S1 0 BTP
∗ ∗ ∗ ∗ ∗ −S3 CTP
∗ ∗ ∗ ∗ ∗ ∗ −P



∆12 =



Θ2 0 0 0 d2G21ΓTPB d2G21ΓTPC 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

d1G12B
TPΓ 0 0 0 0 0 0

d1G12C
TPΓ 0 0 0 0 0 0

0 0 0 0 0 0 0



∆22 =



Θ3 0 0 0 −S2L2 + d2G22ΓTPB d2G22ΓTPC ATP + K̃
∗ −R2 0 0 0 0 0
∗ ∗ −Q2 − S4K1 0 0 −S4K2 0
∗ ∗ ∗ −R̄2 0 0 0
∗ ∗ ∗ ∗ −S2 0 BTP
∗ ∗ ∗ ∗ ∗ −S4 CTP
∗ ∗ ∗ ∗ ∗ ∗ −P


Θ2 =

(
G11G12d

2
1 + G22G21d

2
2

)
ΓTPΓ + d1G12(ATPΓ + K̃Γ) + d2G21(ΓTPA + ΓTK̃T)

Θ1 = (τM − τm + 1)Q1 − P − S1L1 + R1 + R̄1 +
(
d2
1G

2
11 + d2

2G
2
21

)
ΓTPΓ + d1G11(ATPΓ + ΓTPA + K̃Γ + ΓTK̃T)

Θ3 = (τM − τm + 1)Q2 − P − S2L1 + R2 + R̄2 +
(
d2
1G

2
12 + d2

2G
2
22

)
ΓTPΓ + d2G22(ATPΓ + ΓTPA + K̃Γ + ΓTK̃T)



LIANG et al.: GLOBAL SYNCHRONIZATION CONTROL OF GENERAL DELAYED DISCRETE-TIME NETWORKS 1081

Moreover, the controller gain matrix is obtained by

K = P−1K̃T =


0.0840 0.9578 0.6559 0.5533
0.6602 0.5858 0.4379 0.6696
0.5262 0.4416 0.8406 0.3662
0.1704 0.9403 0.5421 0.2266

 .

From Theorem 2, we know that the two coupled subsystems
with stochastic disturbances and different initial conditions are
globally exponentially synchronized with the given control law.
Now, to show that the value of the parameter “a” does influence
the synchronous motion, we let τM ≡ 4, and the parameter “a”
vary from −0.1. According to our main results, the LMIs in (33)
are always feasible when a ∈ [−0.1, 2.4853]. In other words,
the coupled network is synchronized when a ∈ [−0.1, 2.4853].
Example 2: In order to analyze the influence of stochastic

disturbances onto the dynamics of the coupled system, we now
consider model (36) without stochastic disturbances and then
compare the synchronous behavior with that in Example 1. The
coefficients and parameters are the same as those in Example 1.
By using the Matlab LMI Control Toolbox, a solution to the
LMI in (37) can always be found when τM ∈ N[3, 53]. Com-
paring to the results in Example 1, we arrive at the conclusion
that the random disturbances reduce the synchronous dynamics.
For example, take τM = 53, the corresponding solution is listed
as follows:

P =


470.8045 153.3697 −41.7123 −106.7561
153.3697 823.3083 −24.4258 −337.0709
−41.7123 −24.4258 143.3909 59.6581
−106.7561 −337.0709 59.6581 425.6428



Q1 =


7.4625 2.9786 −0.0726 −1.5957
2.9786 15.3541 −0.5364 −6.2125
−0.0726 −0.5364 1.9650 0.7852
−1.5957 −6.2125 0.7852 7.5622



Q2 =


7.4905 2.9875 −0.0617 −1.5946
2.9875 15.3753 −0.5344 −6.2285
−0.0617 −0.5344 1.9718 0.7872
−1.5946 −6.2285 0.7872 7.5860



K̃ =


100.2649 485.3352 66.0326 −127.1442
421.8741 301.5249 65.1491 126.7220
282.9604 257.8321 114.8793 63.3447
323.7366 551.0384 26.5753 −166.5562



R1 =R̄1 =


26.2741 −0.9600 −14.2561 −8.7078
−0.9600 7.9973 1.2198 −5.5421
−14.2561 1.2198 12.1709 6.8628
−8.7078 −5.5421 6.8628 10.1536



R2 =R̄2 =


26.2832 −0.8757 −14.1574 −8.6561
−0.8757 7.7390 1.3061 −5.1645
−14.1574 1.3061 12.2651 6.8822
−8.6561 −5.1645 6.8822 9.7521


S1 = diag{9.4119, 0.9675, 8.0734, 5.5794}
S2 = diag{9.7495, 0.9816, 7.8801, 5.4895}
S3 = diag{4.8229, 1.2810, 0.8603, 2.3303}
S4 = diag{4.8486, 1.2796, 0.8589, 2.3449}.

Moreover, the controller gain matrix is obtained as

K =


0.0835 0.9575 0.6558 0.5532
0.6594 0.5857 0.4380 0.6699
0.5261 0.4416 0.8409 0.3661
0.1707 0.9398 0.5423 0.2266

 .

From Corollary 1, we know that the two coupled subsystems
without stochastic disturbances and with different initial con-
ditions are globally exponentially synchronized with the given
control law.

V. CONCLUSION

In this paper, the synchronization problem has been analyzed
for two identical coupled discrete-time complex networks with
time-varying delay. In the complex system, both the overall
networks and the network couplings are subject to stochastic
disturbances. First, an easy-to-verify condition has been es-
tablished under which the synchronization error dynamics is
globally exponentially stable in the mean square. Second, a
controller is designed to guarantee the coupled system to be
synchronized by using a combination of LMI approach and the
stochastic analysis tools. The LMI-based conditions obtained in
this paper are dependent not only on the lower bound but also
on the upper bound of the time-varying delay, which can be
solved efficiently via the Matlab LMI Toolbox. Two numerical
examples have been presented to show the validity of our
theoretical analysis results.
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