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Distributed H∞ Filtering for Polynomial Nonlinear
Stochastic Systems in Sensor Networks
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Abstract—In this paper, the distributed H∞ filtering problem
is addressed for a class of polynomial nonlinear stochastic systems
in sensor networks. For a Lyapunov function candidate whose
entries are polynomials, we calculate its first- and second-order
derivatives in order to facilitate the use of Itô’s differential
role. Then, a sufficient condition for the existence of a feasible
solution to the addressed distributed H∞ filtering problem is
derived in terms of parameter-dependent linear matrix inequal-
ities (PDLMIs). For computational convenience, these PDLMIs
are further converted into a set of sums of squares (SOSs) that
can be solved effectively by using the semidefinite programming
technique. Finally, a numerical simulation example is provided to
demonstrate the effectiveness and applicability of the proposed
design approach.

Index Terms—Sensor networks, stochastic systems, polynomial
systems, distributed H∞ filtering, sum of squares, parameter-
dependent linear matrix inequalities.

I. INTRODUCTION

F ILTERING or state estimation problem has long been
one of the fundamental problems in signal processing,

communications and control application [1], [14], [18]. The
Kalman filtering approach is widely recognized as one of the
most effective ways to deal with such estimation problems. In
contrast with the classical Kalman filtering approach, the H∞
filtering technology has the advantage of being able to provide
a bound for the worst-case estimation error without the need
for knowledge of noise statistics. Therefore, in the past few
decades, significant advances have been made in the analysis
and synthesis of H∞ filters, see e.g. [9], [22], [25].

The nonlinearity and stochasticity are arguably two of
the main resources in reality that have contributed to the
system complexity. As a result, an increasing research attention
has been devoted to the H∞ filtering problem for nonlinear
stochastic systems. For example, in [20], the H∞ filtering
problems have been investigated for a general class of discrete-
time nonlinear stochastic systems, and a great deal of effort
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has been devoted in [26] to study the H∞ filtering problem for
continuous-time stochastic systems with a very general form.
In these papers, the solutions to the H∞ filtering problems
have been characterized in terms of Hamilton-Jacobi-Isaacs
inequalities that are somewhat difficult to solve.

As a well-known fact, there exists a rather general class of
nonlinear functions which can be approximated by polynomi-
als via the Taylor expansion centered in one point of interest,
and the introduced conservatism (or approximation error) can
be reduced by increasing the degree of the polynomials.
Instead of working on general nonlinear systems, one could
investigate the corresponding polynomial systems with help
from the theories of positive polynomial and sum of squares
(SOS) expressions [3]. Actually, for many stability issues, one
needs to establish positivity of some functions such as the
Lyapunov functions. For polynomial functions, such a task
can be simplified by testing if the function is a SOS of poly-
nomials. Recently, some researchers have directly formulated
the desired solution by means of parameter-dependent linear
matrix inequalities (PDLMIs), where the dependence on the
parameter is polynomial. These PDLMIs can be solved by
utilizing some available SOS solvers.

Sensor networks have recently received increasing interests
due to their extensive application in areas such as information
collection, environmental monitoring, industrial automation
and intelligent buildings [6], [12]. Consequently, the problem
of distributed filtering or estimation for sensor networks has
gained considerable research attention and some novel dis-
tributed filters have been reported, see e.g. [2]. In addition,
the consensus-based distributed filtering technology has been
developed in parallel to the rapid development of multi-agent
consensus control theory, For example, a distributed filter has
been introduced in [15] that allows the nodes of a sensor
network to track the average of n sensor measurements using
an average consensus based distributed filter called consensus
filter. The distributed Kalman filtering (DKF) problem con-
sidered in [19] has also been based on the average consensus,
where the node hierarchy has been used with nodes performing
different types of processing and communications.

Looking into the issues discussed above, a thorough litera-
ture search reveals that the distributed nonlinear H∞ filtering
problem has so far received very little attention despite its
importance in signal processing and sensor networks, and this
gives rise to the main motivation for our current investigation.
In this paper, we aim to make one of very first few attempts
to address the distributed H∞ filtering problem for a class of
polynomial nonlinear stochastic systems that are represented
in a state-dependent linear-like form. By choosing a general
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polynomial Lyapunov functional, sufficient conditions are es-
tablished for the existence of the distributed H∞ filters, and
the desired distributed H∞ filters can be designed in terms
of PDLMIs. When the polynomial system is degenerated to a
linear system, it is shown that these PDLMIs can be reduced
to the numerically more tractable linear matrix inequalities
(LMIs). Then, we proceed to derive the solution to the
PDLMIs by solving the problem of the corresponding SOS
decomposition with the aid of available SOS solvers. Finally,
an illustrative simulation example is provided.

Notation The notation used here is fairly standard except
where otherwise stated. Rn and Rn×m denote, respectively,
the n dimensional Euclidean space and the set of all n ×m
real matrices. ‖A‖ refers to the norm of a matrix A defined
by ‖A‖ =

√
trace(AT A). The notation X ≥ Y (respectively,

X > Y ), where X and Y are real symmetric matrices,
means that X − Y is positive semi-definite (respectively,
positive definite). Sym{A} denotes the symmetric matrix
A + AT . In represents the identity matrix of dimension n.
diagn{Ai} stands for a block-diagonal matrix with the ith
diagonal element being Ai and the notation vecn{xi} denotes[
x1 x2 · · · xn

]
. Moreover, let (Ω, F , {Ft}t≥0, P) be a

complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e., it is right continuous and contains all
P-null sets). E{x} stands for the expectation of the stochastic
variable x with respect to the given probability measure
P. Denoted by L2([0,∞),Rn) the space of non-anticipatory
square integrable n-dimensional vector-valued stochastic pro-
cess f(·) = {f(t)}t≥0 with respect to {Ft}t≥0 with the norm
‖f‖L2 = {E ∫ +∞

0
‖f(t)‖2dt} 1

2 . In symmetric block matrices,
“∗” is used as an ellipsis for terms induced by symmetry.
Matrices, if they are not explicitly specified, are assumed to
have compatible dimensions.

II. PROBLEM FORMULATION

Consider the following polynomial nonlinear Itô-type
stochastic systems (the time variable t is suppressed for
simplicity):

{
dx = f(x)dt + g(x)vdt + fw(x)dw,

z = m(x),
(1)

with n sensors modeled by:

yi = li(x) + si(x)v, i = 1, 2, · · · , n (2)

where x ∈ Rnx is the state vector, z ∈ Rnz is the signal to
be estimated, yi ∈ Rny is the measurement output measured
by sensor i from the plant, w is a standard one-dimensional
Brownian motion defined on (Ω, F , P), and v ∈ Rnv is the
exogenous disturbance input belonging L2([0,∞),Rnv ).

The nonlinear functions f(x), g(x), fw(x), m(x), li(x),
and si(x) (i = 1, 2, · · · , n) are polynomial functions in x,
which can be written as the following state-dependent linear-
like form:

f(x) = F (x)x, g(x) = G(x), fw(x) = Fw(x)x,

li(x) = Li(x)x, si(x) = Si(x), m(x) = M(x)x,
(3)

where F (x) ∈ Rnx×nx , G(x) ∈ Rnx×nv , Fw(x) ∈ Rnx×nx ,
Li(x) ∈ Rny×nx , Si(x) ∈ Rny×nv and M(x) ∈ Rnz×nx are
polynomial matrices in x.

In this paper, it is assumed that the n sensor nodes are
distributed in space according to a fixed network topology
represented by a directed graph G = (V, E ,A) of order n
with the set of nodes (sensors) V = {1, 2, · · · , n}, set of edges
E ⊆ V×V , and an adjacency matrix A = [aij ]. An edge of G is
denoted by (i, j). The adjacency elements associated with the
edges of the graph are positive, i.e., aij > 0 ⇐⇒ (i, j) ∈ E .
Moreover, aii = 1 for all i ∈ V . The set of neighbors of
node i ∈ V plus the node itself is denoted by Ni = {j ∈
V : (i, j) ∈ E}. Also, in the sensor network, it is assumed
that each sensor node can receive the information from its
neighboring nodes according to the given network topology.
The information considered here consists of the neighboring
measurements and estimates at current time.

The following filter structure is adopted on sensor node i:




dx̂i =
∑

j∈Ni

K̂ijaij x̂jdt +
∑

j∈Ni

Ĥijaijyjdt

ẑi = M̂ix̂i

(4)

where x̂i ∈ Rnx and ẑi ∈ Rnz are, respectively, the estimates
for x and z on the node i, K̂ij ∈ Rnx×nx , Ĥij ∈ Rnx×ny

and M̂i ∈ Rnz×nx are filter parameters to be determined. The
initial values of filters are x̂i(0) = 0 for all i = 1, 2, · · · , n.

Remark 1: The filter structure in (4) accounts for the com-
munications between the underlying node and its neighboring
nodes where the sensor nodes are distributed over a spatial
region. Moreover, once all filters parameters are obtained,
each filter is able to estimate the system state independently
according to (4), which merits the “distributed” feature of the
filtering algorithm.

Remark 2: Note that a polynomial can always be written as
the state-dependent linear-like form (3). Moreover, considering
the issue of easily implementation, in this paper, we adopt the
linear time-invariant filter (4) that can be readily designed in
practical engineering. In the case that the dynamics of system
(1) is fully dominated by the polynomial nonlinearities, an
alternate strategy is to construct a filter that includes higher-
order approximations of the polynomial system (1) by using
the approach of Carleman-linearization (see e.g. [7], [17]) to
improve the filtering quality.

Setting ei = x− x̂i and z̃i = z − ẑi, the following system
that governs the filtering error dynamics for the sensor network
can be obtained from (1) and (4):




dei =
(
F (x)−

∑

j∈Ni

ĤijaijLj(x)−
∑

j∈Ni

K̂ijaij

)
xdt

+
(
G(x)−

∑

j∈Ni

ĤijaijSj(x)
)
vdt

+
∑

j∈Ni

K̂ijaijejdt + Fw(x)xdw

z̃i =
(
M(x)− M̂i

)
x + M̂iei.

(5)

Introduce the following notations that will be used in the
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sequel:

F̄ (x) = vecT
n{FT (x)}, Ḡ(x) = vecT

n{GT (x)},
F̄w(x) = vecT

n{FT
w (x)}, M̄(x) = vecT

n{MT (x)},
L̄(x) = vecT

n{LT
i (x)}, S̄(x) = vecT

n{ST
i (x)},

II = vecT
n{Inx

}, M̃ = diagn{M̂i},
e = vecT

n{eT
i }, z̃ = vecT

n{z̃T
i }.

(6)

Then, the error dynamics governed by (5) can be rewritten as
the following compact form





de =
(
F̄ (x)− H̄L̄(x)− K̄II

)
xdt + K̄edt

+
(
Ḡ(x)− H̄S̄(x)

)
vdt + F̄w(x)xdw,

z̃ =
(
M̄(x)− M̃II

)
x + M̃e,

(7)

where

K̄ = [K̂ijaij ]n×n, H̄ = [Ĥijaij ]n×n (8)

are two sparse matrices satisfying K̄ ∈ Wnx×nx
and H̄ ∈

Wnx×ny
, where Wp×q is defined as

Wp×q = {Ū =[Uij ] ∈ Rnp×nq

|Uij ∈ Rp×q, Uij = 0 if j /∈ Ni}.
(9)

Subsequently, by letting η =
[
xT eT

]T
, the combination

of (1) and (7) yields the following augmented system
{

dη =
(
F(x)η + G(x)v

)
dt + Fw(x)ηdw,

z̃ =M(x)η,
(10)

where

F(x) =
[

F (x) 0
F̄ (x)− H̄L̄(x)− K̄II K̄

]
,

G(x) =
[

G(x)
Ḡ(x)− H̄S̄(x)

]
,Fw(x) =

[
Fw(x) 0
F̄w(x) 0

]
,

M(x) =
[
M̄(x)− M̃II M̃

]
.

(11)

Before proceeding, we introduce the following stability
concepts for stochastic system (10).

Definition 1: [8] The zero-solution of the augmented
system (10) with v = 0 is said to be globally asymp-
totically stable in probability if (i) for any ε > 0,
limη(0)→0 P{supt≥0 ‖η(t)‖ > ε} = 0; and (ii) for any initial
condition η(0), P{limt→∞ η(t) = 0} = 1.

We are now ready to state the distributed H∞ filtering
problem as follows. In this paper, we are interested in seeking
filter parameters M̂i ∈ Rnz×nx , K̂ij ∈ Rnx×nx , and Ĥij ∈
Rnx×ny (i = 1, 2, · · · , n, j ∈ Ni) such that the following two
requirements are simultaneously satisfied.

a) The zero-solution of the augmented system (10) with v =
0 is globally asymptotically stable in probability.

b) Under the zero-initial condition, the filtering error z̃
satisfies

‖z̃‖L2 < γ‖v‖L2 (12)

for all nonzero v where γ > 0 is a given disturbance
attenuation level.

III. MAIN RESULTS

Let us start by dealing with the analysis problem for the
stability and H∞ performance of the polynomial nonlinear
stochastic system (10). For this purpose, we select the follow-
ing Lyapunov function candidate:

V (η) = ηTQ(η)η, (13)

where Q(η) ∈ Rd×d is a symmetrical polynomial matrix in
η ∈ Rd that satisfies QT (η) = Q(η) > 0 for all η. Here, for
notational convenience, we have written d = (n + 1)nx.

The following lemma gives the first- and second-order
derivatives of the real-value function V (η) with respect to the
vector η. Note that such derivatives are crucial in using Itô
formula for our stochastic analysis.

Lemma 1: Consider the real-valued function V (η) defined
in (13). The first- and second-order derivatives of the real-
value function V (η) with respect to the vector η ∈ Rd are
given as follows:

Vη(η) =2ηTQ(η) + ηTDQ(η)(Id ⊗ η)
Vηη(η) =2Q(η) + 2Sym{DQ(η)(Id ⊗ η)}

+ (Id ⊗ ηT )WQ(η)(Id ⊗ η)

(14)

where

DQ(η) =







∂Q11
∂η1

· · · ∂Q1d

∂η1
...

...
∂Qd1
∂η1

· · · ∂Qdd

∂η1


 · · ·




∂Q11
∂ηd

· · · ∂Q1d

∂ηd

...
...

∂Qd1
∂ηd

· · · ∂Qdd

∂ηd







WQ(η) =







∂2Q11
∂η2

1
· · · ∂2Q1d

∂η2
1

...
...

∂2Qd1
∂η2

1
· · · ∂2Qdd

∂η2
1


 · · ·

...


∂2Q11
∂η1∂ηd

· · · ∂2Q1d

∂η1∂ηd

...
...

∂2Qd1
∂η1∂ηd

· · · ∂2Qdd

∂η1∂ηd


 · · ·




∂2Q11
∂ηd∂η1

· · · ∂2Q1d

∂ηd∂η1
...

...
∂2Qd1
∂ηd∂η1

· · · ∂2Qdd

∂ηd∂η1




...


∂2Q11
∂η2

d
· · · ∂2Q1d

∂η2
d

...
...

∂2Qd1
∂η2

d
· · · ∂2Qdd

∂η2
d







(15)

Proof: The proof of this lemma follows from some
straightforward algebraic manipulations, and is therefore omit-
ted.
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In the following theorem, a sufficient condition is derived to
guarantee that the requirements a) and b) given in the previous
section are simultaneously met.

Theorem 1: Let the filter parameters M̂i ∈ Rnz×nx , K̂ij ∈
Rnx×nx and Ĥij ∈ Rnx×ny (i = 1, 2, · · · , n, j ∈ Ni) and the
disturbance attenuation level γ > 0 be given. Then, the zero-
solution of the augmented system (10) with v = 0 is globally
asymptotically stable in probability and the filtering error z̃
satisfies the H∞ performance constraint (12) for all nonzero
exogenous disturbances under the zero-initial condition if, for
all η ∈ Rd, there exists a symmetric polynomial matrix Q(η)
satisfying

Q(η) > 0, (16)[
Ω1(η) Ω2(η)
ΩT

2 (η) −γ2Inv

]
< 0, (17)

where

Ω1(η) =Sym{Q(η)F(x)}+MT (x)M(x)

+
1
2

Sym{DQ(η)(Id ⊗ η)F(x)}
+ FT

w (x)R(η)Fw(x),

Ω2(η) =Q(η)G(x) +
1
2
DQ(η)(Id ⊗ η)G(x), (18)

R(η) =Q(η) + Sym{DQ(η)(Id ⊗ η)}
+

1
2
(Id ⊗ ηT )WQ(η)(Id ⊗ η).

Proof: Let us first show that the zero-solution of the
nonlinear stochastic system (10) is globally asymptotically
stable in probability when v = 0. By using Itô’s formula,
the stochastic differential of V (η) defined as (13) along the
trajectory of system (10) with v = 0 is given by

dV (η) = Lv≡0V (η)dt + Vη(η)Fw(x)ηdw

where

Lv≡0V (η) = Vη(η)F(x)η +
1
2
ηTFT

w (x)Vηη(η)Fw(x)η.

By using Lemma 1 and noting that Ω1(η) < 0 is implied
by (17), one can have

Lv≡0V (η) = ηT
(
Ω1(η)−MT (x)M(x)

)
η < 0

which indicates that the system (10) with v = 0 is globally
asymptotically stable in probability based on the Lyapunov
stability theory for stochastic systems [8].

Next, we shall show that the filtering error z̃ satisfies
the H∞ performance constraint (12) under the zero initial
condition. Adopting the same Lyapunov function V (η) and
using Itô’s formula again, we can obtain the differential of
V (η) along the trajectory of system (10) as follows:

dV (η) = LvV (η)dt + Vη(η)Fw(x)ηdw (19)

where

LvV (η) =Vη(η)
(
F(x)η + G(x)v

)

+
1
2
ηTFT

w (x)Vηη(η)Fw(x)η.

By integrating (19) from 0 to T with respect to t and taking
expectation, one has

E
{

V (η(T ))
}
− E

{
V (η(0))

}
= E

{∫ T

0

LvV (η(t))dt
}

by which, and together with η(0) = 0 and V (η) ≥ 0, we have
from (17) that

E
{∫ T

0

(‖z̃(t)‖2 − γ2‖v(t)‖2)dt
}

= E
{∫ T

0

(‖z̃(t)‖2 − γ2‖v(t)‖2 + LvV (η(t))
)
dt

}

−E
{

V (η(T ))
}

+ E
{

V (η(0))
}

≤ E
{∫ T

0

( [
ηT (t) vT (t)

]

×
[
Ω1(η(t)) Ω2(η(t))
ΩT

2 (η(t)) −γ2Inv

] [
η(t)
v(t)

])
dt

}
< 0.

Letting T → +∞ in the above, the H∞ performance in
(12) follows immediately which ends the proof.

Having conducted the performance analysis in Theorem 1,
we are now in a position to deal with the problem of designing
distributed H∞ filters for polynomial nonlinear stochastic
systems. Noticing that the matrices H̄ and K̄ consist of all
desired filters parameters independent of variable η, we choose
Q(η) as Q(η) = diag{Q(x), P}, where Q(x) ∈ Rnx×nx

is a symmetric polynomial matrix in x satisfying QT (x) =
Q(x) > 0 for all x, and P ∈ Rnnx×nnx is a constant positive
definite matrix. Correspondingly, the differential matrices of
Q(x) with respect to x defined as the form of (15) are denoted
by DQ(x) and WQ(x).

By using Schur complement and noting (11), it is easily
shown that (17) is equivalent to




Σ1(x) ∗ ∗ ∗
Σ2(x) PK̄ + K̄T P ∗ ∗
Σ3(x) ḠT (x)P − S̄T (x)H̄T P −γ2Inv

∗
Σ4(x) M̃ 0 −Innz




< 0 (20)

where

Σ1(x) =Sym{Q(x)F (x)}+ F̄T
w (x)PF̄w(x)

+
1
2

Sym{DQ(x)(Inx
⊗ x)F (x)}

+ FT
w (x)R(x)Fw(x),

Σ2(x) =PF̄ (x)− PH̄L̄(x)− PK̄II ,

Σ3(x) =GT (x)Q(x) +
1
2
GT (x)(Inx

⊗ xT )DT
Q(x),

Σ4(x) =M̄(x)− M̃II ,
R(x) =Q(x) + Sym{DQ(x)(Inx

⊗ x)}
+

1
2
(Inx ⊗ xT )WQ(x)(Inx ⊗ x).

(21)

It is observed that, due to the existence of nonlinear terms
PK̄ and PH̄ , condition (20) is not an LMI but a BMI (bilinear
matrix inequality), which could lead to a nonconvex feasible
set. In order to cast it into a solvable LMI, one alternative
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approach is to take X = PK̄ and Y = PH̄ . To derive the
constraints for X and Y , we introduce the following useful
lemma.

Lemma 2: Let P = diag{P1, P2, · · · , Pn} with Pi ∈ Rp×p

(1 ≤ i ≤ n) being invertible matrices. If X = PW for W ∈
Rnp×nq, then we have W ∈ Wp×q ⇐⇒ X ∈ Wp×q.

Based on Lemma 2, we can obtain the following theorem
which shows that the addressed distributed filter design prob-
lem is solved for the polynomial nonlinear stochastic system
(1) if a parameter-dependent LMI-like inequality is feasible.

Theorem 2: Let the disturbance attenuation level γ > 0
be given. The distributed H∞ filtering problem is solved for
polynomial nonlinear stochastic system (1) if there exist a
symmetric polynomial matrix Q(x), a set of constant positive
definite matrices PT

i = Pi > 0 (i = 1, 2, · · · , n), two constant
matrices X ∈ Wnx×nx

and Y ∈ Wnx×ny
, and a set of constant

matrices M̂i (i = 1, 2, · · · , n) such that

Q(x) > 0, (22)
Υ(x) < 0, (23)

for all x ∈ Rnx , where

Υ(x) =




Σ1(x) ∗ ∗ ∗
Σ̄2(x) X + XT ∗ ∗
Σ3(x) ḠT (x)P − S̄T (x)Y T −γ2Inv

∗
Σ4(x) M̃ 0 −Innz


 ,

Σ̄2(x) = PF̄ (x)− Y L̄(x)−XII ,
P = diag{P1, P2, · · · , Pn}, (24)

and Σ1(x), Σ3(x), Σ4(x) are defined in (21). Moreover, if (22)
and (23) are true, the desired parameters M̂i (i = 1, 2, · · · , n)
are directly derived, and parameters K̄ and H̄ are given by

K̄ = P−1X, H̄ = P−1Y. (25)

Accordingly, parameters K̂ij and Ĥij (i = 1, 2, · · · , n, j ∈
Ni) can be derived from (8).

Proof: By setting P = diag{P1, P2, · · · , Pn} and noting
X = PK̄ and Y = PH̄ , the inequality (17) follows from (23)
immediately, and (16) can be guaranteed by (22) as well as the
positive definiteness of matrix P . In addition, from Lemma 2,
it follows that K̄ ∈ Wnx×nx

and H̄ ∈ Wnx×ny
. The rest of

the proof can be easily accomplished by using Theorem 1.
Before we move onto the computational issue of handling

PDLMIs obtained in Theorem 2, let us first show that these
PDLMIs can be reduced to the numerically more tractable
linear matrix inequalities (LMIs) when the polynomial system
is degenerated to a linear system. Let the nonlinear system (1)
be reduced to a linear system, i.e., f(x), g(x), fw(x), m(x),
li(x), and si(x) are taken as

f(x) = Fx, g(x) = G, fw(x) = Fwx,

li(x) = Lix, si(x) = Si, m(x) = Mx.
(26)

Choosing the Lyapunov matrix Q(x) as a constant positive
definite matrix Q, we obtain the following corollary immedi-
ately from Theorem 2.

Corollary 1: Let the disturbance attenuation level γ > 0
be given. The distributed H∞ filtering problem is solved for

linear stochastic system (1) with (26) if there exist a positive
definite matrix QT = Q > 0, a set of positive definite matrices
PT

i = Pi > 0 (i = 1, 2, · · · , n), two matrices X ∈ Wnx×nx

and Y ∈ Wnx×ny and a set of matrices M̂i (i = 1, 2, · · · , n)
such that



Sym{QF}+ FT
w QFw + F̄T

w PF̄w

PF̄ − Y L̄−XII
GT Q

M̄ − M̃II
∗ ∗ ∗

X + XT ∗ ∗
ḠT P − S̄T Y T −γ2Inv

∗
M̃ 0 −Innz


 < 0,

(27)

where
F̄ = vecT

n{FT }, F̄w = vecT
n{FT

w }, S̄ = vecT
n{ST

i },
Ḡ = vecT

n{GT }, M̄ = vecT
n{MT }, L̄ = vecT

n{LT
i },

and M̃ and P are defined in (6) and (24), respectively.
Moreover, if (27) is true, the parameters M̂i (i = 1, 2, · · · , n)
are directly obtained and the parameters K̂ij and Ĥij (i =
1, 2, · · · , n, j ∈ Ni) can be derived from (8) and (25).

Let us now discuss the PDLMIs, based on which the
solution to the distributed H∞ filtering synthesis problem is
formulated in Theorem 2. In general, solving such PDLMIs in-
volves an infinite set of LMIs and is therefore computationally
hard. Fortunately, noting that Υ(x) is actually a polynomial
matrix in x, we are motivated to employ the computational
method relying on the SOS decomposition of multivariate
polynomials to solve (22) and (23). For the convenience of
the readers, in what follows, we first introduce some basic
notions and necessary foundations on SOS theory.

Definition 2: For x ∈ Rl, a multivariate polynomial f(x)
is a SOS if there exist polynomials f1(x), · · · , fm(x) such
that f(x) =

∑m
i=1 f2

i (x).
Remark 3: Obviously, the degree of SOS polynomial is

even. In [5], it has been shown that the polynomial with even
degree f(x) is a SOS if and only if there exists a positive
semidefinite matrix Q such that f(x) = ZT (x)QZ(x), where
Z(x) is a column vector whose entries are all monomials in x
with degree no greater than half of that of f(x). Based on this,
it is possible to numerically compute a SOS decomposition by
using semidefinite programming.

The theory of SOS polynomials can be extended, in a par-
allel way, for SOS matrix polynomials. A matrix polynomial
F (x) ∈ RN×N is SOS if there exist matrix polynomials
F1(x), · · · , Fm(x) such that F (x) =

∑m
i=1 FT

i (x)Fi(x). As
proposed in [4], this can be established with an LMI by using
the SMR for matrix polynomials, that is, F (x) is SOS if and
only if there exists a positive semidefinite matrix Q such that
F (x) = (Z(x)⊗ IN )T Q(Z(x)⊗ IN ).

In the following lemma, the SOS decomposition provides a
computational relaxation for the nonnegativity of multivariate
polynomial matrices.

Lemma 3: [16] Let F (x) be an N × N symmetric poly-
nomial matrix in x ∈ Rl. Then, we have the implication:
vT F (x)v is a SOS, where v ∈ RN =⇒ F (x) ≥ 0 for all
x ∈ Rl.
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Theorem 3: Let the disturbance attenuation level γ > 0 be
given. Suppose that, for the nonlinear stochastic system (1),
there exist a symmetric polynomial matrix Q(x), a set of con-
stant positive definite matrices PT

i = Pi > 0 (i = 1, 2, · · · , n),
two constant matrices X ∈ Wnx×nx

and Y ∈ Wnx×ny
, a set

of constant matrices M̂i (i = 1, 2, · · · , n), and two positive
constant scalars ε1 > 0 and ε2 > 0 such that the following
expressions

νT
1 (Q(x)− ε1Inx)ν1, (28)

− [
νT
1 νT

2

]
(Υ(x) + ε2Id+nnz+nv

)
[
ν1

ν2

]
(29)

are sums of squares, where ν1 and ν2 are arbitrary vectors with
appropriate dimension, and Υ(x) is defined in (24). Then, the
distributed H∞ filtering problem is solvable. In this case, the
desired parameters M̂i (i = 1, 2, · · · , n) are directly obtained,
and parameters K̂ij and Ĥij (i = 1, 2, · · · , n, j ∈ Ni) can be
derived from (8) and (25).

Proof: By Lemma 3, it follows from (28) and (29) that
Q(x) > 0 and Υ(x) < 0, respectively. Therefore, the proof of
Theorem 3 follows directly from Theorem 2.

It is shown in Theorem 3 that the PDLMIs in Theorem
2 can be transformed into a set of SOSs that can be solved
effectively by using the semidefinite programming technique.

IV. AN ILLUSTRATIVE EXAMPLE

To demonstrate the applicability of the proposed filtering
techniques, in this example, we consider the localization
problem of Unmanned Aerial Vehicles (UAVs) [13]. For the
purpose of model simplicity, we consider the movement of
UAV in a beeline only. The dynamic model of a UAV is usually
a nonlinear system containing some monomials. Moreover, the
Itô-type stochastic perturbations are inevitable in practical en-
gineering that should also been taken into account. Reserving
the monomials and linearizing the other nonlinearities, we can
obtain the dynamic model of the UAV as follows:




ds =(−s + 0.2132α + 0.1521s2α + 0.01v)dt− 0.1123sdw

dα =(−0.5000α− 0.1018α3 + 0.01v)dt

+ (0.2182sα2 − 0.1231α)dw,
(30)

where s is the position and α is the ground speed of the UAV.
The signal to be estimated is chosen as z = s + α.

It is assumed that the measurements of the UAV are
measured by the following three sensors: y1 = −s + 0.1v,
y2 = −α + 0.1v and y3 = s + α + 0.1v, where the
networked topology is represented by a directed graph G =
(V, E ,A) with the set of nodes V = {1, 2, 3}, set of edges
E = {(1, 1), (1, 3), (2, 1), (2, 2), (3, 2), (3, 3)} and the adja-
cency matrix A = [aij ]3×3 where adjacency elements aij = 1
when (i, j) ∈ E ; otherwise, aij = 0.

To employ the distributed filtering scheme proposed in this
paper, we denote x =

[
s α

]T
and then rewrite the system

(30) and the sensor model, respectively, into the following
state-dependent linear-like forms:

{
dx = F (x)xdt + G(x)vdt + Fw(x)xdw

z = M(x)x
(31)

and

yi = Li(x)x + Si(x)v, i = 1, 2, · · · , n, (32)

where

F (x) =
[−1 0.2132 + 0.1521s2

0 −0.5000− 0.1018α2

]
, G(x) =

[
0.01
0.01

]
,

Fw(x) =
[−0.1123 0
0.2182α2 −0.1231

]
, L1(x) =

[−1 0
]
,

L2(x) =
[
0 −1

]
, L3(x) =

[
1 1

]
,M(x) =

[
1 1

]
,

S1(x) = S2(x) = S3(x) = 0.1.

The H∞ performance level is taken as γ = 0.1 and the
values of ε1 and ε2 are fixed at 10−5. We choose YALMIP
and SeDuMi as SOS and SDP solvers, respectively. We choose
Q(x) as a symmetric polynomial matrix of degree 2 and solve
the sums of squares (28)-(29) to obtain the variables Q(x), P1,
P2, P3, X , and Y as shown in Appendix.

Then, by (8) and (25), all parameters of the desired dis-
tributed filters can be derived as follows:

K11 =
[−98.1172 −9.2805

5.7581 −25.4391

]
, H11 =

[−160.5274
6.6549

]
,

K13 =
[

63.0614 −8.4844
−5.2445 23.6384

]
, H13 =

[
187.2951
0.6733

]
,

K21 =
[
97.2006 10.4094
0.2031 20.9471

]
, H21 =

[−123.5114
21.2000

]
,

K22 =
[−109.3737 1.9398

2.0041 −25.0969

]
, H22 =

[
123.7794
−25.4859

]
,

K32 =
[

76.6447 −15.4559
−7.4080 20.0689

]
, H32 =

[−26.8159
−26.8263

]
,

K33 =
[−86.1482 3.3113

5.1804 −26.3714

]
, H33 =

[
87.0761
23.1480

]
,

M̂1 =
[
0.1000 0.0923

]
, M̂2 =

[
0.1000 0.0926

]
,

M̂3 =
[
0.1000 0.0925

]
.

In the simulation, the exogenous disturbance input is se-
lected as v(t) = exp(−t/200)×n(t) where n(t) is uniformly
distributed over [−2.5, 2.5]. Simulation results are presented in
Figs. 1-4. Fig. 1 plots the output z(t) and its estimates from
the filters 1, 2, and 3. Fig. 2 shows the estimation error z̃i(t)
(i = 1, 2, 3). The actual state response s(t) and its estimates
from the filters 1, 2, and 3 are depicted in Fig.3, and the actual
state response α(t) and its estimates from the filters 1, 2, and 3
are plotted in Fig. 4. Under the zero-initial condition, the L2-
norms of the filtering error z̃ and the external disturbance v are
computed as 1.2735 and 13.3673, respectively, which confirm
that the H∞ performance constraint (12) is well achieved.

V. CONCLUSIONS

In this paper, we have made an attempt to investigate the
distributed H∞ filtering problem for a class of polynomial
nonlinear stochastic systems represented in a state-dependent
linear-like form. By choosing a general polynomial Lyapunov
functional, sufficient conditions have been established for
the existence of the distributed H∞ filters, and the desired
distributed H∞ filters have been designed in terms of PDLMIs.
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Fig. 1. Output z(t) and its estimates.
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Fig. 2. Filtering errors z̃i(t), i=1,2,3.

As a by-product, when the polynomial system is degenerated
to a linear system, it has been shown that these PDLMIs can
be reduced to the numerically more tractable linear matrix
inequalities (LMIs). Then, we have derived the solution to
the PDLMIs by solving the problem of the corresponding
SOS decomposition with the aid of available SOS solvers.
Further research topics include the the analysis of polynomial
nonlinear filter for the polynomial nonlinear system and the
study on the performance of polynomial filter.
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