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Abstract. In this paper we explore the role of case adaptation for fea-
ture vector prediction problems. We focus on software project effort. We
study three data sets that range from small (less than 20 cases) through
medium (approximately 80 cases) to large (approximately 400 cases).
These are typical sizes for this problem domain. We compare two variants
of a linear size adjustment technique and (as a baseline) a simple k-NN
approach. Our results show that the linear scaling techniques studied re-
sult in statistically significant improvements to predictions. However, the
size of these improvements is relatively small, typically about 10%. The
results include a number of extreme outliers which might be problematic
if the techniques are to be used in practice. This suggests further work
is required to cope better with the outlier problem.

1 Introduction

Over the past 15 years case-based reasoning (CBR) has been successfully applied
to a wide range of problem domains. Our particular interest is in predicting
effort (and related factors such as duration) for software projects. Of course to
be useful, such predictions are required at an early stage. This is important
because software projects are difficult to justify or manage if it isn’t possible to
estimate how long they will last and how much effort they will consume. For this
reason cost modelling has been an active research topic for more than 30 years.
Despite this activity, no one technique has been found to be consistently effective.
It has proved to be challenging for a number of reasons. Typically, data sets are
small, as projects occur relatively infrequently, perhaps just a few per year. Data
is heterogeneous so merging data from different environments is seldom fruitful.
Data collection environments are characterised by change, noise and uncertainty.
Moreover, software engineering is a predominantly creative activity, consequently
we do not have a strong underlying theory.

Various research groups, including ours, started to explore the application
of CBR methods to predicting project effort, motivated in part by the obvious
similarities between project managers seeking to estimate based on recall of past
similar projects, and the formal use of analogies in CBR [17, 19, 5]. Encouraging
results were reported, for example, in an analysis of 9 different data sets and
using stepwise regression (SWR) as a benchmark, CBR was found to consistently
outperform SWR [20]. Several more recent studies, however, failed to replicate



these results [3]. Closer investigation revealed that this later work used relatively
large case bases with more than 40 features. Unfortunately, this prevented them
from using an effective feature subset selection approach, instead applying a
simple filter method based on a t test. This then initiated research on the use
of meta-heuristic search techniques and, subsequently, we have successfully used
greedy search methods, such as forward selection search, to yield good results
from large case-bases [12, 13].

Our previous work differs from many other CBR approaches in that we have
not made significant use of adaptation, that is modifying the solution(s) of re-
trieved cases in some systematic way. Effectively we have used a k-Nearest Neigh-
bour (k-NN) method using inverse distance weighting. In this paper we address
the question does case adaptation improve the quality of our predictions? To ex-
plore this question we use three different project data sets that are representative
of the different data sets we encounter in software effort prediction.

The remainder of this paper is organised as follows. The next section reviews
different case adaptation strategies and then describes a structural adaptation al-
gorithm that has been successfully applied to web projects. The following section
provides background on the three case bases used for our analysis. We then de-
scribe our method of data collection and analysis. This is followed by the study’s
results. We conclude with a discussion of the results and make suggestions for
follow up work.

2 Related Work on Case Adaptation

One aspect of CBR that is attracting much interest is adaptation. This involves
modification of the proposed solution in order to better fit the target case. As
well as enabling CBR systems to accommodate novel situations, adaptation may
also be useful in counteracting the impact of occasionally retrieving poor cases
[18].

The value of adaptation has been investigated by many researchers with vary-
ing results. The need for adaptation seems to be largely application dependent.
For example, as suggested by Hanney et al. [7], classification tasks might be ac-
complished with little or no adaptation, while design and prediction applications
call for varying degrees of adaptation strategies to achieve acceptable outcomes.
Another challenge relates to the difficulties of eliciting the adaptation knowl-
edge [4] although a range of new techniques such as the incremental approach
are being investigated [10].

Wilke and Bergmann [25] classify adaptation into three main types:

– null adaptation
– transformational adaptation
– generative adaptation

Null adaptation, the simplest, involves directly applying the solution from the
retrieved case(s) to the target case. This is the approach adopted by a simple



Nearest Neighbour technique and in a slightly more sophisticated form such as
inverse distance weighted mean for kNN when k > 1.

With transformational adaptation, the old solution derived from the retrieved
case is modified. There are two general approaches to achieving this. First, there
is what is often termed structural transformation based on some function of the
target and retrieved case feature vectors. Examples include Finnie et al. [5] and
Hanney and Keane [8]. The other approach — often used when dealing with more
complex problem representations — is rule-based transformation. Here, rules are
either elicited from a domain expert or learnt using an induction algorithm. The
use of fuzzy rule induction has also been proposed, see Shiu et al. [21].

Generative adaptation entails deriving the solution to the problem from-
scratch. In principle, the derivation is handled by the case-based system, largely
independent of the case base. Voss [23] describes a number of examples of this
approach and more recently Munoz-Avila et al. described a hybrid generative
adaptation method that involves user interaction [16].

In the field of software project prediction, cEstor is an early example of an
adaptive case-based reasoning system developed by Prietula et al. [17]. The case
adaptation knowledge was actually acquired in the raw form from an expert
doing the task. This knowledge was translated into procedural rules in the form
of if <conditions> then <actions>. The result was good predictions but a
lack of generality even to other data sets in the same problem domain.

Finnie et al. [5, 6] used structural adaptation for predicting effort using CBR.
Their adaptation model was primarily based on the relative size of the source and
the target case and involved adaptation by means of a simple linear regression
model. Effort was estimated by using a multiplier computed on the basis of the
contribution of the selected features to productivity. Overall they found MM-
REs3 for a simple regression model of 62.3%, neural net 35.2% and CBR 36.2%
(smaller MMREs are preferred). Structural adaptation has also been applied by
Walkerden and Jeffery [24] and Mendes et al. [15]. Both studies employ adapta-
tion rules based on the linear size adjustment to the estimated effort. The linear
size adjustment attempts to take into account the difference in size between the
target and finished projects. For Walkerden and Jeffery, once the most similar
finished project in the case base has been retrieved, its effort value is adjusted to
estimate effort for the target project. A linear extrapolation is performed along
the dimension of a single ‘size’ feature that is chosen as being strongly correlated
with effort. The linear size adjustment is represented as follows:

e�
i = ei

st

s
(1)

where e is the actual effort of a retrieved project, s is the value of a size re-
lated feature for that project and e� is the adjusted effort value to be used in
calculating the predicted effort for the target case. Note that st is the value for

3 Mean magnitude of relative error (MMRE) is a widely used indicator of prediction

accuracy and is defined as 100
n

�i=n

i=1
|xi−x̂i|

xi
where n is the number of predictions x̂

of x.



the size feature that typically might be a measure of functionality described in
the system specification using function points [22]. Mendes et al. [15] apply two
types of adaptation rules, both based on linear size adjustment. The first type
is called “adaptation without weights”, and calculated by generalising the linear
size adjustment to an arbitrary number of size related features, and then the
estimated efforts generated averaged to obtain an effort estimate (Equation 2).
When using this adaptation, all size measures contribute equally towards total
estimated effort, indicated by the use of a simple average.
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where êt is the predicted effort for the target case, we are basing the prediction
on k retrieved cases and there are q size related features. We denote each such
feature as s1i . . . sqi for the ith retrieved case.

The second type of adaptation rule they used is called “adaptation with
weights”. In this type of adaptation, different weights are applied to size metrics
to indicate the strength of relationship between a size metric and effort (see
Equation 3).
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where wj is the weight or relative significance w attributed to the jth size mea-
sure s.

As stated in the introduction, to date, our approach has been a null adap-
tation, and to focus on feature and case subset selection in order to reduce
the likelihood of retrieving poor analogies. Given the positive results of other
researchers in this problem domain we now examine the impact of using a struc-
tural adaptation method i.e. a linear size adjustment similar to that employed by
Mendes et al. [15]. This approach is selected because our solution representation
is trivial (a single continuous feature) and the case representation is merely a
feature vector so the more complex adaptation strategies appear unwarranted at
this stage. Moreover, we wish to have a method that generalises to many data
sets, unlike say, the method of Prietula et al. [17] where the adaptation rules are
couched in terms of the specific features of a particular data set. In addition, we
wish to avoid the problems of knowledge elicitation given that we do not possess
any deep theory of software project management!

3 Our Data Sets

In this section we provide some background on the three data sets used in our
study. These are chosen to represent varying sizes of data set that are commonly
encountered in the project prediction domain. The data sets are:



– BT: a small data set (n = 18) derived from one division of a large telecommu-
nications company. This is representative of many organisations that embark
upon an internal data collection programme to support their effort prediction
activities. The data is relatively homogeneous.

– Desharnais: a medium sized data set (n = 77) collected by a Canadian
software house from projects distributed amongst 11 different organisations.

– Finnish: a large data set (n = 405) collected by the benchmarking organisa-
tion STTF Ltd. This data is collected over a number of years for a diverse
range of software developers thus this is the most heterogeneous of the three
data sets. Therefore the data set used in this paper is at the large end of
this spectrum. The features are a mixture of continuous, discrete and cate-
gorical. However, there are a number of missing data values and also some
features that would not be known at prediction time and so are not included
in our analysis. Removing features with missing values or after-the-event
data, leaves a subset of 42 features that are actually used in the case study.
The data set also exhibits significant multi-collinearity, in other words there
are strong relationships between features as well as with the feature to be
predicted, namely effort.

Data set no. of cases (n) no. of features (p) no. of continuous features
BT 18 3 3
Desharnais 77 9 8
Finnish 405 42 37

Table 1. Example Data Set Classification Scheme

Table 1 provides some summary information for each of the three data sets.
It must be emphasised that the data sets are quite varied not only in terms of
size but also in terms of the specific features that have been collected. Building
prediction systems from such small case bases as exemplified by the BT data
set is a common challenge in this problem domain. The three data sets con-
trast considerably, from the extreme simplicity of the BT data set to the large
number of features and cases contained in the Finnish data set. In large data
sets, such as the Finnish, there is clearly more scope for feature subset selection
and potentially for adaptation to overcome problems of poor analogies. For this
reason a sub-research question is: what, if any, relationship exists between data
set complexity and the value of case adaptation?

4 Method

The techniques to be compared in this study are variants of a linear size ad-
justment scheme. The techniques used are based on those of Mendes [15], but
with some amendments. This study does not assume that all available features



are suitable for scaling. Firstly, the data sets used in this paper contain some
categorical features and these features are clearly not suitable for linear adjust-
ment. Although differences in categorical features could be used for adaptation
we will leave this for further work and concentrate on only the continuous fea-
tures. Secondly, not all of the continuous features may be suitable for adaptation.
We use robust correlation (e.g., Spearman’s rank correlation) as a means of se-
lecting which features will be scaled. The rationale here is that linear scaling
would only work if there were a monotonic relationship (at least locally to the
target case) between a particular feature and effort. The correlation is intended
to be an indication of whether such a relationship exists and so whether linear
adaptation is likely to be useful for that feature.

Two variants of linear adaptation are are investigated in this paper. In variant
one, only the most highly correlated feature (either positively or negatively) is
used for linear size adjustment (single feature adjustment). The second variant
applies size adjustment to any feature that is significantly correlated with the
dependent variable (multiple feature adjustment).

This study is restricted to the unweighted feature formulation presented in
Equation 2. However, there are some issues with this formulation that need
to be addressed. Firstly, it is assumed that if sij > stj then the effort should
be adjusted upward, i.e., that all features are positively correlated to effort.
Although this may have been a reasonable assumption in the study from Mendes
[15] where all features were size measures, this may not be the case for the
data sets in this study where the features represent various attributes of the
systems under development or the development environment, e.g. the level of
reuse or experience. An alternative formulation for negatively correlated features
is presented in Equation 4. Here sij and stj have been swapped so that effort
will be adjust negatively if sij increases.
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Another issue is that, in Equation 2, êt will become infinite if sij = 0 (as
it would if stj = 0 in Equation 4). To avoid this problem, features that would
introduce a zero into the denominator (for a particular case) are excluded in the
calculation (for that case).

The work of the study will be to build prediction systems based on the vari-
ants of linear size adjustment previously described and compare their accuracy.
Standard prediction system validation requires a training set and a hold-out set,
however, previous studies [9, 11] have shown that results vary widely depending
on the random allocation of cases in these sets due to the heterogeneity of the
data set. Large numbers of such sets may be necessary to provide acceptable
confidence limits on the result and to allow statistical testing of apparent differ-
ences. The results gained from these adaptation techniques are also compared to
case-based prediction without adaptation (simple k-NN prediction) to provide a
benchmark.
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Previous studies have shown that feature subset selection (FSS) prior to
building case-based prediction systems can greatly improve their accuracy [1, 2,
12, 13]. This study investigates whether these strategies can improve a prediction
system already tuned using FSS. Although, ideally, FSS should be repeated for
each training set, it is computationally prohibitive given the large numbers of
prediction systems to be built. Instead we perform one FSS for each treatment
of each data set, based on a jack-knife 4 of the entire data set. This means that
the same feature subset is used for each training set within a treatment and
for some of these training sets it will be sub-optimal. However, since a previous
study [13] has shown the optimal feature subset varies little with variations in
the randomly sampled cases present in the training set, this should have little
impact on the results.

Prediction accuracy is measured using the MMRE and the Sum of absolute
residuals (Sum(|r|)). MMRE is chosen as it is a standard measure of predic-
tion accuracy in software effort prediction and also because it allows comparison
between data sets. The sum of absolute residuals is also used as it is less vulner-
able to bias than the asymmetric MMRE [14]. Since the absolute residuals were
skewed, we used a non-parametric test to check the significance of our results.
The data was naturally paired (the same 100 training and validation sets were
used within each data set), so we used the Wilcoxon Signed Rank test to com-
pare the difference in location between two populations. The procedure followed
for the data collection is given below:

1. Remove any after-the-event 5 features from the data (other than the depen-
dent variable).

2. No adaptation (simple k-NN)
(a) Do feature subset selection

Subset search settings:
– Use mean of the 2 nearest neighbours as the prediction.
– Jackknife the data set and use the Sum(|r|) as the measure of pre-

diction system accuracy.
– Search for the feature set that gives the lowest Sum(|r|). Use the

most effective search technique for the size of the data set and num-
ber of features (by exhaustive search other than for the Finnish data
set which uses a forward selection search).

(b) Run 100 validation trials with randomly sampled training sets with a 2:1
split between training and hold-out sets.

(c) Collect MMRE and Sum(|r|) values for each of the 100 sets.
3. Single feature adaptation

4 Jack-knifing is a form of hold-one-out validation where each case is removed from
the training set in turn and the remaining cases used to make a prediction for the
holdout case

5 These are features present in the published data sets that would not be known at
prediction time.



(a) Calculate the correlations between the dependent variable and the other
(continuous) features. As some of the features are measured on an in-
terval scale and most of the continuous variables are not normally dis-
tributed the non-parametric Spearman rank correlation is used.

(b) Do feature subset selection. Subset search settings will be as for ‘No
adaption’ except that linear distance adjustment is used on the feature
with the highest correlation (the adjustment is done in the direction of
that correlation - positive or negative).

(c) Run 100 validation trials based on the same 100 training sets as for ‘no
adaptation’.

(d) Collect MMRE and Sum(|r|) values.
4. Multiple feature adaptation

(a) Calculate the significant correlations between the dependent variable
and the other features at a significance level of α =0.05). Bonferroni
adjustment will be used to adjust α based on the number of features to
be tested.

(b) Do feature subset selection. Subset search settings are as for ‘single fea-
ture adaptation’ except that all features significantly correlated with
effort are used for adjustment.

(c) Run 100 validation trials based on the same 100 training sets as for ‘no
adaptation’.

(d) Collect MMRE and Sum(|r|) values.

5 Results

5.1 BT Data Set

No Adaptation: Given that the BT data set (following the removal of after-
the-event features) contained only 3 independent variables an exhaustive feature
selection was straightforward and resulted in only one variable being selected for
use. The Sum(|r|) results from running the 100 validation trials using just this
feature and no adaptation are given in first boxplot of Figure 1. The median
Sum(|r|) is 872 and the median MMRE is 46.6%.

Single Feature Adaptation: In single feature adaptation the feature with the
highest Spearman rank correlation is selected. The feature subset selection using
single feature adaptation selected two variables. The results for the validation
of the single adaptation technique are shown in the second boxplot of Figure 1.
The median Sum(|r|) is 877 and the median MMRE is 63.1%.

Multiple feature adaptation: Both (continuous) features must were signifi-
cantly correlated and so both were adapted.

The feature subset search using multiple feature adaptation chose the same
features as for single feature adaptation. As only one of these FSS selcted features
was adapted, the results are identical. These are shown in the third boxplot of
Figure 1.



Fig. 1. Boxplot of results for BT data set

Summary of BT results: Using a two-tailed Wilcoxon signed rank test on
the Sum(|r|) values (α = 0.05), there are no significant differences between the
results from the different treatments indicating we have no grounds for believing
that adjustment has either a positive or negative impact upon the accuracy of
predictions for this data set.

5.2 Desharnais Data Set

No adaptation: Following the removal of after-the-event features the Deshar-
nais data set contains 9 independent variables, so an exhaustive feature selection
was also possible with this data set. The feature subset search resulted in three
variables being selected for adaptation. The results from running the 100 vali-
dation trials using just this feature set and no adaptation are given in the first
boxplot of Figure 2. The median Sum(|r|) is 49377 and the median MMRE is
51.6%.

Single feature adaptation: With single feature adaptation the feature subset
selected contained three variables (2 continuous and 1 categorical). The results
for the validation of the single adaptation technique are shown in the second
boxplot of Figure 2. The median Sum(|r|) is 44754 and the median MMRE is
41.2%.

Multiple feature adaptation: The correlations for four of the features are
significant and these are therefore selected for adjustment.

Feature subset selection chose the same three features as for single feature
adaptation, and the only feature which is scaled is also the same, the results are
identical. These are shown in the third boxplot of Figure 2.



Fig. 2. Boxplot of results for Desharnais data set

Summary of Desharnais results: Using a two-tailed Wilcoxon signed rank
test (α = 0.05), there are significant differences between the results from the
different treatments. Both adaptation techniques give better results than the
simple k-NN treatment (p ≤ 0.0001).

5.3 Finnish Data Set

No adaptation: After the removal of features and cases with missing data,
the Finnish data set contains 42 independent variables, so an exhaustive feature
selection was not possible with this data set. The alternative forward selection
search strategy was used instead. The feature subset search resulted in four
variables being selected for use. The results from running the 100 validation
trials using just this feature set and no adaptation are given in first boxplot of
Figure 3. The median Sum(|r|) is 358022 and the median MMRE is 108.8%.

Single feature adaptation: The results for the validation of the single adapta-
tion technique are shown in the second boxplot of Figure 3. The median Sum(|r|)
is 320645 and the median MMRE is 71.7%.

Multiple feature adaptation: Since the adaptation must be done in the
direction of the correlation, significant positive and negative correlations are
handled separately. Of the 37 continuous variables, 16 features were selected for
positive adaptation and 10 features for negative adaptation.

The feature subset selected consisted of six features and although this feature
set is different from that used for ‘single adaptation’ (and therefore has different
results), there is actually only one scaled variable used.



The results for the validation of the multiple adaptation technique are shown
in the third boxplot of Figure 3. The median Sum(|r|) is 310190 and the median
MMRE is 71.2%.

Fig. 3. Boxplot of results for Finnish dataset

Summary of Finnish results: Using a two-tailed Wilcoxon signed rank test
(α = 0.05), there are significant differences between the results from the different
treatments. Both single adaptation and multiple adaptation give significantly
better results than the simple k-NN treatment (p ≤ 0.0001 and p = 0.0069
respectively). The difference between single adaptation and multiple adaptation
is not significant (p = 0.0555).

5.4 Analysis of extreme outliers

One notable feature of the results where adaptation was applied to the Finnish
data set is the large number of extreme outliers produced. Each outlier rep-
resents one sampled training set where the Sum(|r|) of the predictions made



was particularly high. Further investigation showed that rather than particular
training sets producing generally poor results, the poorer Sum(|r|) values were
caused by a few extreme predictions. These extreme predictions were in turn
caused by extreme adjustment multipliers on these predictions (sometimes as
much as several hundred).

Fig. 4. Scatter plot of scaling against improvement in prediction

What we’re particularly interested in is whether linear size adjustment im-
proves prediction as compared to the basic k-NN approach. If there is a relation-
ship between the size of the scaling used when doing adjustment and the likely
improvement in prediction, then it may be possible to apply transformation or
capping to the scaling values to reduce the number and size of outliers. In or-
der to investigate this further, the relationship between the size of the scaling
and improvement in prediction was examined. Figure 4 shows a smoothed plot of
scaling against improvement for single feature adaptation of the Finnish data set.
The large amount of random variation in the Sum(|r|) values required smooth-
ing to extract the underlying trend (here a rolling mean of 100 predictions was
used). Scaling is shown on a Log10 scale to compress the higher scaling values



whilst still giving detail for small fractional values present. The points with the
most extreme negative improvement values have been omitted to improve the
clarity of the diagram.

Figure 4 clearly shows a pattern of improvement against scaling. For scaling
values close to zero, improvement is close to zero. This would be expected since
at scaling = 0 linear size adjustment is equivalent to k-NN and so the results
should not differ. As the scaling moves away from zero (in both positive and
negative directions) the adjustment improves the accuracy of the predictions.
As the scaling continues to move away from zero the level of improvement starts
to reduce. For very large adjustment values linear size adjustment produces less
accurate predictions. Extrapolating the trend in very small (fractional) scaling
suggests that the same would also happen in the negative direction. From figure
4 we can estimate that (for this data set) scaling values above 8 and below 0.05
will (on average) give worse predictions. These values could be used as capping
limits on the scaling values.

6 Discussion and Conclusions

Table 2 gives a summary of the results. Two of the three data sets showed sta-
tistically significantly improved results when using linear size adjustment whilst
the smallest data set (BT) showed no significant difference in either direction.
So it seems that linear scaling adaptation generally improves the accuracy of the
predictions. It must be noted, however, that although the improvements were
relatively modest (improvements in median Sum(|r|) were 9.4% for Desharnais
and 13.4% for the Finnish data set) these are cumulative improvements over and
above those possible through feature subset selection. Moreover, given the value
of many software projects, 10% of total costs may well represent a considerable
amount of money. Also, this adaptation approach is entirely automated which
yields the advantage of avoiding explicit knowledge elicitation. It can also be
applied to different data sets containing different features.

BT Desharnais Finnish
Sum(|r|) MMRE Sum(|r|) MMRE Sum(|r|) MMRE

No adaptation (k-NN) 872 46.6% 49377 51.6% 358022 108.8%
Single adaptation 877 63.1% 44754 41.2% 320645 71.7%
Multiple adaptation 877 63.1% 44754 41.2% 310190 71.2%

Table 2. Summary of results

Applying adaptation to the Finnish data set produced a significant number
of extreme outliers. Linear size adjustment assumes that similar cases will have
an approximately linear relationship between the adapted features and the tar-
get feature. For the Finnish data set, the adapted feature was a size measure



(Function Points) and the target feature was effort. The root cause of the out-
liers was the large variation in productivity (size/effort) for the projects. When
apparently similar cases have widely varying productivity, gross errors in esti-
mation can result. Although the intention was to see the effect of both single and
multiple features being adapted, the suggested method selected a single primary
size measure for scaling in each case. This was due to the combination of using
feature subset selection to improve accuracy (which also reduces the number
of available features) and also the introduced requirement for a feature to be
significantly correlated before it could be considered for adjustment.

The combination of the modest effect size of the improvements and the pres-
ence of extreme outliers means that, although this form of adaptation did show
significant improvements, the authors would advise some caution in using this
method in practice. Further work is necessary to investigate whether transform-
ing or clamping the magnitude of the scaling would solve the outlier problem.
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