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We describe the design process of a diagnostic system 

for monitoring the anaesthetic state of patients during 

surgical interventions under general anaesthesia.  This 

subject has received much attention from the research 

community especially since the advent of balanced 

anaesthesia, which has made the detection of awareness 

much more difficult.  Mid-Latency Auditory Evoked 

Potentials (MLAEPs) obtained during general 

anaesthesia are used to design a neuro-fuzzy system for 

the determination of the level of unconsciousness after 

feature extraction using multiresolution wavelet analysis 

(MRWA). 

 

The neuro-fuzzy system proves to be a useful tool in 

eliciting knowledge for the fuzzy system: the 

anaesthetist’s expertise is indirectly coded in the 

knowledge rule-base through the learning process with 

the training data.  The anaesthetic depth of the patient, 

as deduced by the anaesthetist from the clinical signs 

and other haemodynamic variables, noted down during 

surgery, is subsequently used to label the MLAEP data 

accordingly.  This anaesthetist-labelled data, used to 

train the neuro-fuzzy system, is able to produce a 

classifier that successfully interprets unseen data 

recorded from other patients.  This system is not 

limited, however, to the combination of drugs used here.  

Indeed, the similar effects of inhalational and analgesic 

anaesthetic drugs on the MLAEPs demonstrate that the 

system could potentially be used for any anaesthetic and 

analgesic drug combination. 

 

We also suggest the use of a closed-loop architecture 

that would automatically provide the drug profile 

necessary to maintain the patient at a safe level of 

sedation. 
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INTRODUCTION 
 

 

Ever since the introduction of muscle relaxants into 

clinical anaesthesia, there has existed the possibility of 

not recognising an inadequately anaesthetised patient.  

Many of the classic signs of light anaesthesia are made 

unreliable or are ablated by muscle relaxants.  Coupled 

with this, the general tendency to use balanced 

anaesthetic techniques using several drugs to control 

each of anaesthesia, analgesia and paralysis to maintain 

the patient at a lighter plane (for safety) of anaesthesia 

has increased the risk of awareness.  There have been 

reports of incomplete general anaesthesia by patients 

who were pharmacologically paralysed while under 

general anaesthesia (1).  Anaesthetists now use 

autonomic responses (changes in blood pressure and 

heart rate, sweating and lacrimation) to determine the 

depth of anaesthesia (DOA).  Unfortunately, these 

responses are also affected by other drugs such as 

opioids and anticholinergics, making the responses 

unreliable.  Matters were furthermore made more 

complicated by the introduction of intravenous 

anaesthetics.  Unlike inhalational anaesthetics, the 

relation between dose rate and blood level concentration 

of intravenous agents varies widely between subjects 

(2), making it inappropriate for diagnosing DOA. 

 

The MLAEP, on the other hand, has been shown to 

produce graded changes with increasing concentration 

of anaesthetic drugs and they have also been shown to 

give the balance between the depression of the nervous 

system caused by the anaesthetic drugs and arousal 

caused by surgical stimulation (3).  There has since 

then been an extensive investigation on the effects of 

various inhalational and intravenous anaesthetic agents 

on the various components of the AEP.  The outcome 

points to the fact that the MLAEP may effectively be 

used as an indicator of anaesthetic depth during surgery. 

 

These encouraging results obtained with the use of 

MLAEP have prompted this study in which the MLAEP 

are used to produce a reliable indicator of DOA that 

may be used in the operating theatre.  In various 

studies, the latencies of the characteristic peaks of the 

MLAEP are obtained after visual inspection, and these 

are interpreted by an expert to get the DOA.  In an 

automated system, these features have to be 

automatically extracted; such a feature extraction 

method using a neural network as a time-series 

approximation was described and used in (4).  

Previous studies (5,6) have also required that the 

baseline observations be obtained as these are used with 

the intra-operative observations to calculate the depth of 

anaesthesia.  Baseline observations are often difficult to 

obtain and they are also highly corrupted by noise and 

the large EEG signal.  It is now known that anaesthetic 

drugs at the same potency produce similar graded 

changes in humans; Schwender et al (7) was able to 

create MLAEP from individual responses from several 

patients under the same anaesthetic depth.  It was 

deemed to be feasible to produce a DOA monitor that 

would not require baseline values.  This is investigated 



 

here through the use of MRWA to extract significant 

features from the MLAEP (8). 

 

 

MID-LATENCY AUDITORY EVOKED 
POTENTIAL 
 

 

The Auditory Evoked Potential (AEP) are brain 

responses to auditory stimuli, usually loud clicks 

through earphones.  The AEP which lasts for about 1 

second is made up of three parts: the brainstem response 

which is the first 10 ms of the response, the MLAEP 

which lasts from 10 to about 50 ms, and the Late 

Cortical Response which lasts from 50 to 1000 ms.  

The MLAEP contains three characteristic peaks (Na, Pa 

and Nb) which have been studied by several 

investigators.  The changes in latencies and amplitudes 

of these peaks with several anaesthetic drugs 

(intravenous and inhalational) and with surgical stimuli 

have been shown to correlate well with observed 

anaesthetic depth as well as with signs of awareness. 

 

The amplitudes of the AEPs are typically in the order of 

a few microvolts and are embedded in the ongoing EEG 

waveform whose amplitude is typically a few tens of 

microvolts.  Ensemble averaging has been an effective 

tool for the enhancement of the AEP waveform.  It is 

generally assumed that the noise (background EEG) will 

be uncorrelated with each presentation and will tend to 

cancel itself due to the averaging process.  In this 

research work, averages of 200 individual responses 

were created.  This corresponds to a recording time of 

about 30 s, which is an acceptable sample time for 

prediction of DOA.  The system developed at the 

Northwick Park Hospital was used to record the AEPs.  

The stimulus rate for the clicks was set to 6.1224 Hz 

and after each click the first 120 ms of the response, 

corresponding to 121 points at a sampling rate of 1 

KHz, was stored. 

 

 

PATIENTS AND METHODS 
 

 

Fourteen patients, ASA I or II, were studied after 

obtaining their informed consent.  They were all 

premedicated with 10-20 mg temazepam.  All the 

patients were also given fentanyl as part of the balanced 

anaesthetic technique.  After loss of consciousness in 

the anaesthetic room, they were intubated.  In some 

cases, if apnoea occurred, the patients were manually 

ventilated.  The patient was then brought to the 

operating theatre.  In the set of experiments a Target 

Control Infusion (TCI) system was used for ten of the 

patients, three were anaesthetised using a manually 

controlled infusion pump, and the last patient was 

anaesthetised using enflurane. 

During the surgical procedure, the DOA as determined 

by the anaesthetist was noted at relevant stages and 

these were used to label the data collected.  Four DOA 

levels, Awake/Light (AWAKE), OK Light (OKL), OK 

and OK Deep (OKD), were used as they were though to 

be the most clinically significant. 

 

 

FEATURE EXTRACTION AND VALIDATION 
 

 

The advantages of using a MRWA of event-related 

potentials (of which the AEP is one) was demonstrated 

by Samar (8).  An analysis in the time domain is 

usually carried out by selecting the few peaks of 

interest, measuring their amplitudes and/or latencies, 

and discarding the rest of the waveform information.  

Also, this time-series analysis can easily be corrupted 

by noise, even when the signal has been band-pass 

filtered.  This method loses all the information coded 

within the peaks, intermittent peaks, time-relations 

between peaks, slopes and other higher derivatives.  

The wavelet transform is able to retain this information. 

 

The MRWA using Daubechies Wavelets (9) was used 

to decompose the signal into approximations at different 

scales of resolution.  The Daubechies 6 Wavelet with 

12 wavelet coefficients, found to give very satisfactory 

results, was used to carry out a decomposition of the 

original MLAEP signal into its detail components and 

the residual component.  Before the AEP is analysed 

using the MRA, it is padded with zeroes to make the 

sequence length 128 samples instead of the 121; the 

MRA requires the length be a modulo 2 number.  Since 

each decomposition level is also accompanied by 

decimation by 2, the complete decomposition process 

produces six detail sequences and a residual sequence, 

giving a total of 128 wavelet coefficients (due to the 

orthogonality of the transform).  The six detail 

components are called D1, D2, D3, D4, D5 and D6 and 

the number of coefficients in each sequence are 64, 32, 

16, 8, 4, and 2 respectively.  Thus each wavelet 

coefficient of D1 spans a time of 2 ms, that of D2 spans 

a time of 4 ms, and similarly for the others.  Also, D1 

contains the highest frequency components and D6 the 

low-frequency components of the AEP signal. 

 

Selected Detail components were used to create the 

features used, and the selection was based on the results 

obtained from a student t-test (p<0.05) on the detail 

components.  The components D6 and the residual 

were not used since they contain mostly the residual 

EEG.  The early and late components of details D1-D4, 

not part of the MLAEP, were removed, and the energy 

contained in the remaining samples of each detail was 

computed.  For D5, the core of the MLAEP signal, 

each of the four samples (D5_1, D5_2, D5_3 and D5_4) 

was analysed individually.  The first and last samples 

of D5, as expected, did not produce consistently 

significant difference when the data was obtained at 

different DOA levels, and were thus discarded.  Thus, 

the feature vector used consisted of the six values 

D1-D4, D5_2 and D5_3. 

 



 

The features from the first nine patients were used to 

construct a training/validation set, and the data from the 

remaining five patients were used for testing.  The 

student t-test was again used to test for significant 

difference between the data, for all the patients, between 

the different DOA levels, as shown in Table 1.  There 

is no significant difference between AWAKE and OKL 

for D5_2 and D5_3, since the AEPs still have high 

frequencies at these DOA levels. 

 

A set of 1000 features, with 250 patterns from each of 

the classes was created for training the classifier. 

 

 

NEURO-FUZZY CLASSIFIER 
 

 

The primary bottleneck of knowledge-based systems is 

the tedious rule-base acquisition.  It is the 

determination of these fuzzy rules from the data that 

plays an important role in the performance of the fuzzy 

system.  While for some systems, the knowledge 

obtained from the expert is sufficient to create a fuzzy 

system for classification, this is not true for all.  Still, 

for many systems where the expert knowledge is 

available, this is usually dependent on one or very few 

experts’ opinions.  In the cases where enough data are 

available, it may prove to be better to directly 

implement these fuzzy rules from the data through a 

learning process.  The membership functions 

determined from the experts are also rarely optimal in 

terms of carrying out the classification process as 

required: they differ from person to person as well as 

from time to time. 

 

Neural networks, where the network weights can be 

used to represent knowledge, can be substituted for 

fuzzy systems in the event that the rule base acquisition 

proves to be difficult.  The adaptivity of the neural 

network’s weights means that knowledge may be 

imparted to the system from input/output data.  

However, this learning in neural networks would 

produce a blackbox model which is not transparent, 

unlike fuzzy systems.  Furthermore, a priori knowledge 

cannot be used to improve the neural network’s 

performance.  In the last decade, researchers have been 

showing a large interest in the combination of both 

techniques and the term neuro-fuzzy system has often 

been coined in the literature (10). 

 

When input/output data are available, it might prove 

sufficient or indeed beneficial to implement the fuzzy 

rules from these data.  In our case, the data obtained 

during surgery was labelled and could thus be used to 

train the neuro-fuzzy system.  The expert knowledge is 

acquired during data collection through interaction with 

the anaesthetist.  This expert knowledge is then 

implemented in the fuzzy classifier by using the labelled 

data set to optimise the rules that were obtained.  The 

neuro-fuzzy system used in this paper is the one 

reported in Bersini and Bontempi (11).  This trainable 

Fuzzy Inference System (FIS) is based on the Takagi 

and Sugeno approach (12) and uses gaussian 

membership functions.  The centres of the rules are 

initialised using a fuzzy clustering algorithm (13).  

The centres and widths of the membership functions are 

optimised using the gradient-based 

Levenberg-Marquardt algorithm (14) and the outputs 

are found using the pseudo-inverse method.  The 

system uses the 10-fold cross-validation method: train 

on 9 subsets and test on the remaining subset.  The FIS 

architecture is shown in Figure 1. 

 

An FIS network of 16 rules was found to give the best 

compromise between network complexity and 

performance.  Although performance could be 

increased using a more complex network, this was not 

significantly so, and thus the less complex network of 

16 rules was used. 

 

 

DECISION MAKING 
 

 

Decision-making during general anaesthesia involves 

determining the amount of anaesthetic drug required to 

maintain a stable level of DOA.  When the TCI system 

is used for infusion, the decision-making unit 

determines the concentration of drug in plasma that the 

TCI should aim for.  We have developed a simulated 

closed-loop infusion system where the target 

concentration to be aimed from by the TCI system is 

determined by the DOA level. 

 

The effects of the anaesthetic and analgesic drugs on the 

patients are modelled using fuzzy logic patient models.  

The anaesthetic patient model produces a set of features 

based on the concentration of anaesthetic in plasma, the 

level of stimulation by surgery and the patient 

sensitivity.  The level of stimulation itself is derived 

from the analgesic patient model which characterises 

the effect of the analgesic drug on the level of pain 

perceived by the patient.  An intelligent controller then 

determines the correct target concentration based on the 

concentration level trend and the DOA level trend. 

 

 

RESULTS 
 

 

The FIS network of 16 rules gave a correct 

classification of 78.9 % on the training/validation data.  

The number of incorrect classifications in each of the 

four DOA levels were: AWAKE 44, OKL 69, OK 76 

and OKD 22.  The number of incorrect classifications 

of OK and OKL are higher because, clinically, there is 

little difference between these two levels.  Figure 2 

below shows the results obtained for patient 1 who 

underwent varicose veins surgery and who was also 

paralysed.  The period of actual OKD observed was 

because the surgical interference during that period was 

not high.  The classifier correctly identifies the period 



 

of OKD and OK during the course of this surgical 

procedure.  The short periods of OKD observed 55 to 

75 minutes after start of surgery when the TCI value 

was 5000 ng ml
-1

, is acceptable because there was only 

intermittent surgical interference then.  At the end of 

surgery, the DOA was still OK because recording was 

stopped before the patient was awake. 

 

 

CONCLUSION 
 

 

This research work has demonstrated that the use of 

MLAEP for determining the depth of anaesthesia is 

possible.  Wavelet features derived from the MLAEP 

signal recorded during surgery can be used to diagnose 

the DOA level during the surgical procedure.  The 

student t-test showed that there is a significant 

difference between the wavelet features recorded at 

different levels of DOA.  We were also able to show 

that there was little patient inter-variability as there was 

a significant difference between the features from 9 

patients.  The neuro-fuzzy classifier successfully 

extracted rules from the training data and was 

successfully able to classy features from new patients.  

We also suggest that the use of a pseudo closed-loop 

system, where the anaesthetist maintains overall control, 

could be used to advise the anaesthetist on the amount 

of anaesthetic to be used. 
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Table 1 -  Results of carrying out a student t-test test of significance between different DOA levels. 

 

 D5_2 D5_3 D4 D3 D2 D1 

AWAKE-OKL 0.248 0.129 0.000 0.000 0.000 0.000 

OKL-OK 0.000 0.000 0.000 0.000 0.000 0.000 

OK-OKD 0.000 0.000 0.000 0.000 0.002 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  The neuro-fuzzy inference system architecture 

 

 

 

 

 

Figure 2:  Results of classifying MLAEP features from patient Jay15 using the neuro-fuzzy classifier 
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