816

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 21, NO. 2, APRIL 2006

Voltage Harmonic Reduction for Randomly
Time-Varying Source Characteristics
and Voltage Harmonics
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Abstract—Potential applications of probabilistic modeling of
current and voltage harmonics concern many aspects of power
system engineering as accurate prediction of power system
harmonic behavior provides important information to utility
companies and equipment designers. In this paper, a method of re-
ducing the expected value of the total voltage harmonic distortion
for a specified range of source impedance values at different buses
by using LC compensators, where it is desired to maintain a given
power factor at a specified value, is presented. The criterion is
based on mean value estimation of source and load characteristics,
which are enabled by sampling measurements performed on the
examined electrical plant as well as statistical analysis.

Index Terms—Harmonics, power factor, probability.

I. INTRODUCTION

HE increasing presence of current and voltage harmonics

in distribution and transmission systems is well known.
The harmonics are due to the widespread use of nonlinear loads
both for efficient energy utilization in residential, commercial,
and industrial areas and for increasing the flexibility of power
systems; they can seriously damage the system components and
operation.

Over the past several years’, electric utilities have experi-
enced and research groups have confirmed the nondeterministic
nature of harmonics due to continual changes in system config-
urations, in linear load demands, and in operating modes of non-
linear loads. Taking into account the time-varying nature of har-
monics, it is useful to introduce random variables and to apply
probabilistic techniques of analysis.

From the energy users point of view, the utility is an equiv-
alent source that either supplies him or her with harmonics, or
absorbs harmonics generated by him or her. In this study, both
the equivalent source and load are considered to generate har-
monics. Itis assumed that the load harmonics are not sufficiently
serious to suggest tuned filters, but when combined with source
harmonics, the use of a pure capacitive compensator would de-
grade power factor and overload the equipment. The remedy
explored here is the insertion of a reactor in series with the
local compensating capacitor. This will reduce the energy users’
distortion, without regard to his or her neighbors. In such an
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arrangement, the LC compensator may actually have a lower
volt-ampere rating (or cost) than that of a pure capacitive com-
pensator [1], [2].

In other attempts at optimizing the LC compensator [3], the
main objective has been to maximize the load power factor. This
may also reduce the total harmonic distortion of voltage and cur-
rent, but it may not minimize them. In other words, the problem
of minimizing voltage harmonic distortion is not solved by max-
imizing power factor.

In addition, it is necessary to consider randomly varying
source harmonics and impedances. Fixed solutions for one
harmonic source condition may not be optimal for another.
Therefore, time variations of the harmonics [4], [S] and im-
pedances must be considered in designing optimum capacitors
and/or filters [6], [7]. Reference [4] reviews the problems asso-
ciated with the direct application of the fast Fourier transform
(FFT) to compute harmonic levels of nonsteady state distorted
waveforms, and various ways to describe recorded data in sta-
tistical terms. Each statistical description is applied to a set of
recorded data for illustration purposes. Reference [5] includes
tools for calculating probabilities of rectangular and phasor
components of individual as well as multiple harmonic sources.

A procedure for determining the statistical distribution volt-
ages resulting from dispersed and random current sources is re-
viewed. Some applications of statistical representation of har-
monics are also discussed. If the characteristics of these time-
varying quantities are not known apriori, they can be either
found by parameters estimation [8]-[10], or measurements [11],
[12]. A microcomputer-based parameter estimator [8] for deter-
mining the distribution characteristics of a power system is dis-
cussed. The use of this parameter estimator is illustrated on an
analog of a single-phase feeder. It is found that even in the pres-
ence of source harmonics and with a nonlinear load, the system
parameters can be determined to a high degree of accuracy. Such
measurements can be used in the design of a fixed-components
optimal compensator or permit the dynamic control of an online
optimal compensator. The measurement of harmonic distortion
in power systems is almost always a compromise between the
desirable and the possible. In an ideal world, it would be pos-
sible to use calibrated voltage dividers with a well-established
frequency response connected to the higher voltage system bus-
bars and current transformers with good response in each of the
three phases. The reality, however, is different, as the only ac-
cess given will be to existing voltage transformers and current
transformers. The choice of how to calculate harmonics in a
power system is also often a compromise, which depends on the
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system information available to the designer and also the pur-
pose for which the calculations are being made. The author [12]
discusses the voltage transducers and measurement instruments
for harmonics measurement. Calculations in the frequency do-
main and the time domain are discussed.

In this paper, an optimization criterion of LC compensators to
minimize the expected value (EVTHD) of the total voltage har-
monic distortion (VTHD) while constraining the power factor
(PF) and the values of the compensator which cause resonance.
The method is tested by using two case studies taken from pre-
vious publications, and the results are compared with other pub-
lished techniques.

The basic approach to harmonic reduction is first explained,
and the objective function expression and analysis are discussed.
Then, the suggested optimization algorithm is presented. Fi-
nally, the simulated results are discussed.

The major attribute of the method is that unlike conventional
approaches, it guarantees convergence to the optimal solution.
This accomplishment is a direct result from the improvement
in the algorithm in which provisions are made to identify and
to avoid compensator values which would create resonance
conditions, the problem formulation in which the effect of the
Thevenin impedance on the load voltage is included while
calculating the optimal compensator value and taking into
consideration the manufacturer’s standard values for power
shunt capacitors.

II. BASIC APPROACH TO HARMONIC REDUCTION

Fig. 1 is a single-phase equivalent circuit of a bus with an LC
compensator, experiencing voltage harmonic distortion at har-
monic order K because of a voltage source vsx , and harmonic
current sources within the load itself ¢,k .

The Thevenin voltage source representing the utility supply
and the harmonic current source representing the nonlinear load
is

vs(t) = > vsk(t) (0
K
and
iL(t) =) iLk(t) 2)
K

where K is the order of harmonic present.
The K'th harmonic Thevenin impedance is

Zrk = Rok + X7k (3)
and the K'th harmonic load impedance is
Zrk = Rk + X k- “)
The K'th harmonic compensator impedance is
Zcxk = R+j(K Xp, — X¢/K). )

To simplify the analysis, only the load model using the
respective active and reactive powers at the fundamental fre-
quency is considered while sizing the compensators. This
model (Fig. 1) is adequate where VTHD is less than 10% [13].

N

POWER
SYSTEM |V, Vi %g [% 6 L

1 )

Fig. 1. Single-phase equivalent circuit for the A'th harmonic with shunt LC
compensator.

The voltage harmonic distortion at the compensated load ter-
minals is defined as

| 3 Vik
K>1
VTHD = ————

Vio (6)
where
VSK(CR) — ILK(DR * ER)
Vi = Ak + Ak @
where
CR  Recrk +iXcLk;
DR R +J (KXL — Xc/K),
ER  Rorx +jXrik;
Ak Rrixk + RRik + Rrkx) — Xk +
Xtk) (KXy — Xc/K);
Ajk Xtk + RRxk + Xox) + Rk +
Rox) (KX1, — Xo/K).
Zorx = ZrxZcx
(Zrk + Zck)
_ (Renk + iXcLk) ®)
Zix + Zck

where RCLK is RRLK — XLK (KXL — Xc/K), and XCLK is
RXrk + Rikx (KXL, — X¢/K).

Lok = VANARS
(ZTk + Z1K)
(RX7rk +jXTLK)

f— 9
(ZTk + Z1K) ©)

where Rtk is RrxRekx — X1 Xk, and Xk is Rrg Xk +
RrkXrtk. The compensated PF at the load is given as

Pr
PF =
Vils
Gk V2
— Z 2LK LK2 (10)
V2L > Vik
where
Vsk (AR + jBR) + Ik (CR)
Isk = - (11
Ak +jArk
AR =R + Rix
BR = (XLK + KXL - Xc/K)
Yk =Grk — jBrk. (12)
The transmission loss (TL) is given as
(13)

TL =) TixRik.
K



The network efficiency (n) is given as
Py
n= Ps
_ > Gk Vik
- Y TkRrk + X Gk Vig

The statistical characterization of the input data consists of
checking: 1) which of the components have to be considered as
random in nature and which of them can be kept fixed; ii) what
are the statistical features to characterize the random nature of
the variables identified in i). With reference to problem ii), the
random nature of the nondeterministic components is analyzed
by distinguishing the cases of linear loads, generators, and con-
verters; only then is the probabilistic nature of the system ad-
mittance terms discussed.

Linear Loads: In the case of balanced power systems, the
statistical characterization of linear loads has been fully ana-
lyzed [14], considering both dependent and total impedance be-
tween load demands.

Converters: If the hypothesis of constant direct current is as-
sumed, then the dc load can be simulated by a direct current
generator, whose statistical characterization can be carried out
by the knowledge acquired of the expected operational process
[15].

Generators: There are no difference between balanced and
unbalanced systems because, in both cases, the input data are
the three-phase real power. The statistical characterization of
the three-phase real power has been fully analyzed, considering
both independent and dependent generation systems [14].

System Admittance: The uncertainties of the terms of the
system admittance are linked to the system structures and, for
an assigned structure, to the values of the electrical parameters
of the equivalent circuits of the power system components (line,
transformers, etc.). The electrical parameter values of network
components at the fundamental frequency could be considered
deterministic; at the harmonic frequencies the only uncertain-
ties, which have to be taken into account, are those due to the
statistical nature of the linear loads [15].

For randomly time-varying source harmonics and source
impedances, the EVTHD must be expressed as a function of
Xc and X7, and of the statistics of random variables. Because
distribution system harmonic generators are generally current
sources, a positive correlation exists between Thevenin har-
monic impedance components Xrx and Rrpg, and source
harmonic voltage Vsg, which is a product of source imped-
ances and Norton equivalent current sources. Source voltage,
Thevenin resistance, and reactance are linearly correlated to
each other at each harmonic order K > 1 in the most extreme
case. Then

7 (14)

Vsk =Gk XK
and
Rtk = Tk Xk
where G and Tk are constants for X > 1, and X7k is a

random variable which is linear with frequency.
Then, the expected value of Vi squared can be written as

E(Vig) =E dicX
LK kX2 + b Xk +ak /|

5)
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By definition
“+oo
E (Vik) = / f(X 1K) VidXTK

— 00

(16)

where f(Xr) is the probability density function of X . If
the Thevenin reactance X is assumed to have a uniform dis-
tribution function with minimum value G and maximum value
vk, E (V2 ) from (16) becomes

2 dg e Xk
E(V = dX
(Vix) 7K — Bk /ﬂK cx X2y + b Xtk + ak =
(7
_dxk dk /"YK b Xtk + ax dX
ck k(7K — Ok) Jox cx X3y + b Xk + ak =
(18)

where
ag by + b
bk  2akibki + 2akxobka;
CK Ay + Ak

ak1 TkRrx — Xpx — (KX — X¢/K);
ak2 TxXrk + Rik + Tk (KXt — Xc/K);
bki —Xix (KX — X¢/K);

bke Rik (KXi — Xc¢/K);

dx  [GE —2GkTklik + (T: +1) By

(KXp, — Xo/K)? (REy + Xix) -

The integration of E (V7,) for K > 1 can be calculated
[16]. Then, the expected value of VTHD? can be expressed
from (6) as

Y B(Vik)
E(VTHD?) =221 __

(19)
Vi

System resonant conditions are the most important factors
affecting system harmonic levels. Parallel resonance is high
impedance to the flow of harmonic current, while series reso-
nance is low impedance to the flow of harmonic current [17]. In
actual electrical systems utilizing PF correction, both types of
resonance or a combination of both may occur if the resonant
point happens to be close to one of the frequencies generated
by harmonic sources in the system.

The expected impedance seen from the source is given by

Z =177k + ZoLk
7 (Rrk +jX1x) + (Rork + jXcork)
(Zrk + Zck) )
The resonance peaks can be obtained by setting the imaginary
part of (20) to zero, resulting in a quadratic equation in X and
X, for any given harmonic order K

(20)

Xc\’ Xc¢

AKX, —— ) +A KXy, ——]+A3=0 (21)
K K

where Aj is Xtk + Xk, Az is the R} + X7 + 2X 1k XTK,

and Az is R*Xpk 4+ Xtk [(R+ Rrk)? 4+ X} ] and by taking

the solution of (21) where the square root of the discriminant is

positive. (The other solution corresponds to resonance between



ZOBAA: VOLTAGE HARMONIC REDUCTION FOR TIME-VARYING SOURCE CHARACTERISTICS 819

the load and the combination of source impedance and compen-
sator). Note that for sufficiently large load resistance and/or load
reactance, (21) reduces to

KX — % + X =0
which then represents only the series resonance, which repre-
sents all possible combinations of X< and Xy values which
result in resonance between the Thevenin impedance and com-
pensated load. Under these conditions, the PF will reach a min-
imum. It is evident that the number of series resonance lines will
depend on the number of harmonics present in the source.

One problem that is to be addressed is whether the values
obtained from theoretical optimization solution can be obtained
from the standard manufactured values. Depending on the
voltage, manufacturers have discrete capacitive values for the
available capacitors. In the presented method, manufacturers’
standard values for shunt capacitors are taken into consideration
[18]. The standard values are considered as constraints in the
sense that the capacitance chosen should be one of these values.

From the above, £(VTHD?), PF and 7 can be expressed as
functions of X< and X7.

After formulating the objective function and the constraints,
the problem addressed in this study becomes

Min. E(VTHD?)(Xc,Xt)
St.: 90% < PF(Xc,Xp) < 95%
85% < n(Xc, X1,) < 100%
(X¢,XL) is not part of solution of (21).

(22)

(23)

where PF in distribution systems may be allowed within certain
limits according to the operating authority, and similarly for the
7. That is the reason for using these limits.

III. SUGGESTED OPTIMIZATION ALGORITHM

Each value of the reactive power ratings ()¢; of the particular
voltage [18] is used to calculate the corresponding value of X ¢;.
This value is then substituted into the objective function and
constraints to become one variable equation in X7,.

Then, (23) can be rewritten in the form

Min. E(VTHD?)(Xc¢,Xt)
S.t.: 90% S PF(Xc/XL) S 95%
85% < (X, X1) < 100%

(Xci, X1) is not part of solution of (21). (24)

The precalculated inductor values for series resonance are
used to subdivide the entire search region into small regions.
The algorithm used in this study can be summarized as follows:

Step 1) Select a value of Qci{Qc1 — Qcn}
in kvar [18] where n is the number of
discrete values available for the partic-
ular voltage rating used. Then, calculate
X, from the following:

Vi

Qci

Step 2) Starting at an initial point X
in the range of values enclosed by the

Xei =

lowest order resonance peaks will not
create resonance condition as stated in
(21).

Step 3) Using the Penalty Function method
[19] to solve the following problem:

Min. f(Xy) = E(VTHD?)(X¢i, X1)

+ > pm(max[0, g (Xei, XL)])  (25)
where p is penalty parameter, m is
counter, and ¢,s are functions described
as the following:

g1 (XCI XL) 0 9 PF(XC17 XL)
g2(XC1 L) PF (XCi~ XL) —0.95
93(Xci, Xp) =0.85 — n(Xci, XL)

g4(Xci, Xp) =n(Xci, Xp) — 1.0.

For a certain value of u&?, the Golden
search method [19] can be applied for
obtaining the optimal X{+l where J 1is
counter.

Step 4) If /L,(;{) (max [O,gm (XCi,XéJH))D < €
where € is a preselected small positive
number (¢ < 1), then terminate the iter-
ative procedure and go to step 1. If the

stopping criterion is not satisfied, then
update the value of u&? using
pl ) = Bl (26)

where fisascalar. Then, returntostep3.
Step 5) Compare all of the local minima
and find the global minimum.

Reference [20] shows that the starting penalty parameter
value (%) = 10. Values of /3 in the range 0.1-0.5 work well
for most problems. In the optimization process, the resistance
of the compensator reactor has been neglected due to its small
value with respect to its fundamental reactance (less than 5%)

[2].

IV. SIMULATED RESULTS AND DISCUSSION

Two cases of an industrial plant were simulated using the op-
timization method. The numerical data in case 1 were primarily
taken from an example in [3] where the inductive three-phase
load is 5100 kW with a displacement factor (dPF) of 71.65%
and harmonic current sources are listed in Table I. The 60-cycle
supply bus voltage and Thevenin impedance are 4.16 kV line
to line and (0.011 54 + j0.1154)€2, respectively. Fundamental
parameters and load harmonics were assumed to be time-in-
variant quantities. The voltage-source harmonics and Thevenin
impedance for K > 1 were assumed to be randomly time-
varying quantities with their expected values as listed in Table I
and their standard deviation (o) equal to 5%. The source and
load were arbitrarily chosen to have the same harmonic content
as suggested in [3]. These harmonic magnitudes are generally
independent. The parameter values of the above cases were then
applied to the optimization algorithm and the optimization re-
sults are described below.
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TABLE 1
SYSTEM PARAMETERS AND SOURCE HARMONICS
Parameters & Harmonics Case 1 Case 2
R [€2] 0.01154 0.01154
X1 [Q] 0.1154 0.1154
E(X15) [Q] 0.5570 0.5570
E(X17) [Q] 0.8078 0.8078
E(X111) [Q] 1.2694 1.2694
E(X115) [Q] 1.5002 1.5002
RL, [Q] 1.7421 1.7421
XL, [Q] 1.6960 1.6960
Vsi[V] 2400. 2400.
E(Vss) [%Vsi] 5 !
E(Vs7) [%Vsi] 3 7
E(Vsi1) [%Vsi] 2 2
E(Vsi3) [%Vsi] 1 1
I1s (% Is1) 5 5
I (% Is)) 3 3
L (% Is1) 2 2
ILD (% ISI) 1 1

B
254

2

EVTHDZ15 o
ew 7Y e et '
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Fig. 2. Global minimum points for case 1 during the search method.

Figs. 2 and 3 show the improvement in choosing the value
of X¢ and X, during the search method and how it affects the
objective function.

Now we compare the proposed method with simulated results
presented in [21] where the proposed method is applied to the
same cases under study neglecting the uncertainty of the source
and load characteristics (Table III). The problem addressed in
[21] is

Min.
S.t.:

VTHD(X¢;, X1)
90% < PF(Xci, X1) < 100%
(X¢i, X1,) is not part of solution of (21).

Source and load harmonics as well as impedances are gen-
erally time-varying at random. An optimal LC compensator de-
signed for the mean values of those random variables (Table III)
does not necessarily render an optimum average power factor
(Table IT) and may even be overloaded when implemented to the
time-varying case. Therefore, time variations of the harmonics
and impedances must be considered in designing an optimal
fixed LC compensator.

Table IV shows the required capacitive reactance, the power
factor, the supply current, the efficiency, and the transmission
loss for the load being linear and neglecting the uncertainty of
the source and load characteristics [22].
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Fig. 3. Power factor values for global minimum points of case 1.
TABLE 11
SIMULATED RESULTS FOR THE PRESENTED OPTIMIZATION METHOD
Parameter Case 1 Case 2
Qc [Kvar] 850. 850.
Xc [Q] 6.78 6.78
X [Q] 0.3090 0.3090
PF [%] 91.06 91.14
dPF [%] 91.23 91.23
Is[A] 778.40 766.32
n[%] 99.57 99.59
TL [kW] 6.99 6.78
ITHD [%] 22.16 13.01
VTHD [%] 2.85 4.67
EVTHD [%] 2.74 4.40
TABLE III

SIMULATED RESULTS FOR THE OPTIMIZATION METHOD IN [21]

Parameter Case 1 Case 2
Qc [Kvar] 850. 850.
Xc [Q] 6.78 6.78
X [Q] 0.3085 0.3085
PF [%] 89.12 90.38
dPF [%] 91.23 91.23
Is[A] 777.58 766.28
Nn[%] 99.57 99.59
TL[kW] 6.98 6.78
ITHD [%] 21.69 12.99
VTHD [%] 2.83 4.46

The most important concepts to be illustrated involve the
evaluation of harmonic current limits at individual customers
and harmonic voltage limits on the overall system. These
limits are typically evaluated at the point of common coupling
between the supplier and the customer. In the IEEE Standard
519-1992 [17], the objectives of the nonlinear load harmonic
current limits are to limit the maximum individual harmonic
voltage to 3% of the fundamental voltage and the total harmonic
distortion of the voltage to 5%. Fig. 4 shows the values of the
load harmonic voltage after compensation.

Fig. 4 shows that the resultant values all come out well within
standard limits except the seventh harmonic for case 2. Thus, to
reduce voltage distortion, two factors can be modified: the level
of harmonic currents, and transformer impedance. Using phase-
shifting techniques may reduce the level of harmonic currents,
and low impedance plays a crucial role in reducing voltage dis-
tortion. Now, low-impedance phase-shifting transformers [23]
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TABLE IV
SIMULATED RESULTS FOR THE OPTIMIZATION METHOD IN [22]

TABLE V
CAPACITOR LiMITS (IEEE STD. 18-1992) FOR CASE 1
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Case

Xc(Q)

PF (%)

Is(A)

n(%)

TL (kW)

3.02

91.66

770.77

99.25

6.86

Item

Calculated (%)

Limit (%)

Exceeds limit

rms voltage

102.81

110.

No

rms current

105.96

135.

No

S}

2.85

87.22

812.64

99.18

7.62

kvar

Percentage harmonic voltage

| J_l
0
5 7 11 13

Harmonic order

M Case | OCase 2
Fig. 4. Perecntage of harmonic voltage of the load after compensation.

have thus been designed. They allow the treatment of harmonic
currents while providing a path of low impedance. The quality
and reliability of the electrical system can thus be considerably
improved through the use of a single piece of equipment.
IEEE Standard 18-2002 [18] specifies the following contin-
uous capacitor ratings:
1) 135% of rated rms current (I¢), including fundamental
and harmonic current

Ic = /ZI@K
K

where the capacitor current at harmonic number K and
Ick is given
_ Vsk(Rek +jXrek) — Ik (Rrrk + jXTLK)
Ak +jAsx
2) 110% of rated rms voltage (V¢), including harmonics but
excluding transients

Ve = /ZV%K
K

where the capacitor voltage at harmonic number K and
Vk is given

27)

Iek

(28)

Tk * X
Vex = %
3) 135% of nameplate kvar (Qc¢)
Qc = Ve xIc. (29)

The following is the illustration of the calculation of the ca-
pacitor duty of the compensator for case 1.

1) capacitor current distortion = 25.35%;

2) rms capacitor current = 374.99 A;

3) fundamental capacitor current = 353.90 A;

capacitor voltage distortion = 4.05%;

4) rms capacitor voltage = 4276.89 V;

5) fundamental capacitor voltage = 4273.60 V.

Table V shows the calculated capacitor limits compared with
the standard limits for case 2.

Comparison of the calculated and standard limits shows that
all values lie within the standard limits. It is usually a good idea

108.94 135. No

to use capacitors with a higher voltage rating in some cases be-
cause of the voltage rise across the reactor at the fundamental
frequency and due to the harmonic loading. Also, we can take
into consideration Vg, I, and Q¢ as constraints in the opti-
mization method to confirm that the results will lie within the
standard limits.

The following is the illustration of the calculation of the re-
actor design specifications of the compensator for case 1:

1) reactor impedance = 0.3090 €;

2) reactor rating = 0.819 mH;

3) harmonic current = 123.99 A;

4) fundamental current = 353.90 A.

Finally, the compensator cost (C) is defined as

C=Ugx*Sc+ U *S. (30)
where Uc and Uy, = are the unit cost of capacitor and inductor,
and are considered to be constant parameters.

For capacitors and reactors, volt-ampere ratings are defined
as [24]:

EICKXC 1/2
Sc = KT XK:I%JK kVA 31
and
1/2
S = [ZICKKXL S k| kVA. (32
K K

Using (30)—(32) to calculate the cost of compensator for cases
under study, the cost is U.S.$ 6899.47 for case 1 and U.S.$
6587.04 for case 2 with U¢ and Uy, taken equal to U.S.$ 2/kvar.
Reference [2] describes the method for the evaluation of the pa-
rameters of the LC compensator for nonlinear loads taking into
account cost constraints. Comparison of the results shows that
the same power factor can be obtained by LC compensation at
a lower cost, or a high power factor can be achieved by the LC
compensator at the same cost.

Finally, the advantages of the presented method over the con-
ventional approaches as mentioned above include the improve-
ment in the accuracy of the solution and in the ability of the de-
veloped algorithm to guarantee convergence to the optimal so-
lution. Using this method, the global optimal solution as well as
the local optimums are determined. These additional informa-
tion can be useful for performing a cost-benefit decision analysis
before implementing the optimal LC compensator.

V. CONCLUSION

The recent trend of harmonic system standards, in fact, is
deeply considering the random nature of voltage and current
harmonics. The IEC publication 1000-3-6 uses probabilistic ap-
proaches both in comparing the actual current and voltage har-
monic levels with the planning levels and in assessing the emis-
sion limits for distorting loads; the IEEE Std. 519 only slightly
addresses the probabilistic application of harmonic distortion



822

limits, but various efforts are in progress to more extensively
include the probabilistic aspects.

An optimal LC compensator designed for the mean values of
those random values does not necessarily render optimum av-
erage power factor, and may be overloaded when implemented
to the time-varying case. Therefore, time variations of the har-
monics and impedances must be considered in designing an op-
timal fixed LC compensator. If these characteristics of these
time variations are priori not known, they can be found by mea-
surements.

In this paper, a method is presented for minimizing the value
of the voltage total harmonic distortion at the load bus where
it is desired to maintain a given power factor with probabilistic
source harmonics and impedances.

Two cases are tested, and the general performance of the pro-
posed method is satisfactory, providing improvement of distor-
tion levels and power factor correction, compared with other
published results.

APPENDIX
DERIVATION OF (7)

From Fig. 1:
Vsk =1Isk * (Rrk + jX1K) + Vik
Vik = (Isk — k). * Zerk.

By simplification of the above equation and using (3)—(5) and
(8)-(9), the supply current is obtained

_ Vsk(AR +jBR) + ILk(CR)

I . A1l
S Ak +jAjxk (A1)
Then, the load voltage is given by
VSK(CR) - ILK (DR * ER)
Vik = . A2
t A + Ak A2
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