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LC Compensators Based on Transmission
Loss Minimization for Nonlinear Loads

Ahmed Faheem Zobaa, Senior Member, IEEE, and Abdel Aziz, Member, IEEE

Abstract—This paper presents a method employing the penalty
function search algorithm to determine the LC compensator value
for the optimal power factor correction in nonsinusoidal systems.
The objective of the proposed method is to minimize the transmis-
sion loss while the power factor and efficiency are taken as con-
straints and utilized in order to solve the multiobjective optimiza-
tion problem by transforming it into a single objective one. Exam-
ples show that the load nonlinearity can have a significant impact
on optimal compensator sizes.

Index Terms—Harmonics, power factor, reactive power opti-
mization.

I. INTRODUCTION

HE increasing proliferation of electronic equipment and

appliances connected to the power line represents an
important, growing challenge to power providers and users
alike. These nonlinear loads degrade power quality because
they reduce the power factor and introduce harmonic current.
The power factor is of great concern to the utilities because
low power factor results in harmonic currents, which propagate
through the system and produce potentially dangerous harmonic
voltages. Amplification of harmonic currents and voltages can
have detrimental effects on other elements of the system [1].
On the other hand, if a nonlinear load generates significant
harmonic currents locally, tuned filters [2], [3] may be installed
to prevent the currents from being injected into the system.
However, such filters are resorted only for heavily nonlinear
loads because of the high cost. An important side effect of
adding a filter is that it creates a sharp parallel resonance point
at a frequency below the notch frequency [4]. This resonant
frequency must be safely away from any significant harmonic.
Filters are commonly tuned slightly lower than the harmonic
to be filtered so as to provide a margin of safety in case of any
change in system parameters. If they were tuned exactly to the
harmonic, changes in either capacitance or inductance with
temperature or failure might shift the parallel resonance into the
harmonic. This might be worse than without a filter because the
resonance is generally very sharp. That is why filters are added
to the system starting with the lowest problem harmonic. For
example, installing a seventh-harmonic filter usually requires
a fifth-harmonic filter to be installed as well. The new parallel
resonance with a seventh filter only would be very near the
fifth, which is generally disastrous. In [5], both the equivalent
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source and load are considered to generate harmonics. The
different criteria for the design of the LC compensator: i)
maximizing power factor, ii) minimizing transmission loss,
and iii) maximizing transmission efficiency, are discussed.
While discussing such criteria, the nonlinearity of the load
by using direct polytope search method should be taken into
account. In [6], the manufacturer’s standard values for power
shunt capacitors are taken into consideration. These values are
considered as constraints in the sense that the solution for the
capacitor should be one of the standard values. The different
criteria for the design of the LC compensator are discussed by
using the golden section search method. Such criteria are dis-
cussed to compare the values obtained in [6] with real practical
values in the market. Reference [7] formulates the problem of
minimizing the transmission losses with expressions for the
power factor and efficiency taken as constraints neglecting the
harmonic contents of the nonlinear loads. Reference [8] shows
the voltage and reactive power ratings of shunt capacitors. The
inductive reactive values are almost continuous and there is
little limitation on the manufacturer’s values.

This paper generalizes the method used in [7], taking into
account the nonlinearity of the loads, the frequency-dependent
nature of the supply source, compensator values which would
create resonant conditions, the effect of the transmission-line
impedance on the load voltage, and the manufacturer’s standard
values for power shunt capacitors. The major attribute of this
method is that it, unlike conventional approaches, guarantees
convergence to the optimal solution. Finally, the contribution of
the newly developed method is demonstrated in examples taken
from previous publications.

II. HARMONIC MODELING

References [9]-[12] demonstrate the representation of the
power system loads and extended networks. Nonlinear loads
are commonly represented by ideal current source at their
characteristic frequencies. Characteristic harmonic orders K
and the harmonic injection currents Iz i of a line-commutated
converter, operating under ideal conditions, are [9]

K=nxp=xl1l
1
ILAZ?1

respectively, where n is any integer number; p is the pulse
number of converter; and I; is the fundamental current.

This model is adequate where the voltage harmonic distortion
(THDy,) is less than 10% [10].

The source is often represented by an impedance, found from
the short-circuit test [11]. Linear loads are modeled as a resis-
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tance in parallel with an inductance, selected to account for the
respective active and reactive powers at the fundamental fre-
quency.

Finally, the linear load is represented by admittance

Yk =Grx — jBrk

or impedance
Zrk = Rrx +j X1k

which is a function of the order of the applied voltage harmonic
frequencies. The configuration of the employed system is given
in Fig. 1.

In [12], a new model for the distribution system, including
nonlinear loads, is introduced. The model is based on measure-
ments, where current and voltage measurements at two different
operating conditions are used to derive an equivalent Norton
model for the distribution system

1 2
ViR = Vi

1 2) -
II(K) - II(K)

Zrk =
To simplify the analysis, only the load model using the respec-
tive active and reactive powers at the fundamental frequency is

considered while sizing compensators.

III. DERIVATION OF THE OBJECTIVE FUNCTION

Let

Xe capacitive reactance of the compensator;

X, inductive reactance of the compensator;

R compensator resistance at the fundamental
frequencys;

Rri, X7  resistance and reactance of the source found
from the short-circuit test at the fundamental
frequency;

Rri, Xrk  resistance and reactance of the load selected to
account for the respective active and reactive
powers at the fundamental frequency.

Then
. X
Zex =R+ <KXL - %)
(Rerk + jXcrk)
ZoLk = . (D
(Zik + Zck)
where
Xc
Rerx =RRpx — X1k <KXL - 7)
Xc
Xerxk =RXrpk + Bri <KXL - ?>
Dot = (Rrrx + i Xr1K)
TLE =
(Zrk+Z1K)
where

Rrix =RrxRrix — Xrx X1k
Xrix =RrgXix + Xk Rk
7 =Zrx + ZcLk-
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Fig. 1. Power system under study with shunt LC compensator.

Following the previous definitions, the compensated line current
(Isk) and the load voltage (V7 k) at each harmonic order (K)
are given, respectively, by the following equations:

_ Vsg(AR+ jBR) + IrxCR

I 2
SK Arg + jAsk @
VSK(CR) — ILK(DR * ER)
Vik = : 3)
Arg + jAIK
where
AR R + RLK;
BR (Xpx + Kxp — Xc/K);
CR Rorx + jXcrk;
DR R+ j(Kxr — Xc/K);
ER Rrikx + jX1LKs
Ak Rrix + R(Rokx + Rrx)—( Xk + Xrr)(Kxr —
Xc/K);
Ajk Xtk + R(RLx + Xrr)+(Rok + Rrr ) (Kxr —
Xc/K).
The compensated power factor at the load is given as
P, GrrV?
pp=fo _  2GiVik (4)
Vils vZ@KZVLZK
The transmission loss is given as
TL =" IR )
K
The transmission efficiency is given as
P, GrrV?
n= L Z LKV K (6)

T Ps T Y I2gRri+ Y GrxViy

IV. HARMONIC RESONANCE CONSTRAINT

System resonant conditions are the most important factors
affecting system harmonic levels. Parallel resonance is high
impedance to the flow of harmonic current, while series reso-
nance is low impedance to the flow of harmonic current [13].
In actual electrical systems utilizing power factor correction,
both types of resonance or a combination of both may occur if
the resonant point happens to be close to one of the frequencies
generated by harmonic sources in the system.

For the system configuration given in Fig. 1, the driving point
impedance can be determined by the following equation:

(Rrx +jXrK) + (Rerk + 7 XcLk)

7 =
(Zrrk + Zek)

NG)
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Setting the imaginary part of this impedance equal to zero, series
resonance, results in the following quadratic equation:

Xo\2 X,
Ay <KXL—70> + A, (KXL—YC>+A3=0 (8)

where A; equals Xpx + Xrx; Az is equal
to R%K + X%K + 2XpxgXrg; and Az equals
R?’Xrx  + Xrx [(R+ Rrpx)*+ X3g] Solving  (8)
for finding X and X¢

Ky, Yo _ Aok /-1y

K 24,

Hence, using only the set values for shunt capacitors, we can
obtain values for the inductive reactance since (8) will then be-
come a one-variable equation in Xy, only.

Note that for sufficiently large load resistance and/or load re-
actance, (8) reduces to

KXL—&-FXTK:U 9
K

which then represents only the series resonance, that represents
all possible combinations of X and X, values which result
in resonance between the transmission impedance and compen-
sated load. Under these conditions, the power factor will reach a
minimum. It is evident that the number of series resonance lines
will depend on the number of harmonics present in the trans-
mission source.

V. SKIN EFFECT CONSTRAINT

Skin effect is an alternating current phenomenon where the
current in a conductor tends to flow more densely near the outer
surface of a conductor than in the center area. Skin effect will be
applied in the analysis to account for the impact on the system
impedance of the frequency dependence of the resistive compo-
nent of the load. On utilizing voltages, such as industrial power
systems, the equivalent system reactance is often dominant by
the service transformer impedance [14]. For lines and cables, an
estimated correction factor [15] for skin effect is applied by in-
creasing the resistance with frequency by

0.646 K2
R=Rx* |1+ ————|forli 10
M R TN STI ] R (10)
or
R =R*[0.187 + 0.532K /%] for cables. (11)

For transformers, an estimated correction factor [15] for skin
effect is applied by increasing the resistance with frequency by
K15 The exception to this rule is with some transformers. Be-
cause of stray eddy current losses, the apparent resistance of
large transformers may vary almost proportionately with the fre-
quency [16]. Finally, in most power systems, one can generally
assume that the resistance does not change significantly when
studying the effects of harmonics less than the ninth [14].

VI. CAPACITOR LOADING CONSTRAINT

One problem that is to be addressed is whether the values ob-
tained from theoretical optimization solution can be obtained
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from standard manufactured values. Depending on the voltage,
manufacturers have discrete capacitors available. In the pre-
sented method, manufacturers standard values for shunt capac-
itor are taken into consideration. The standard values are consid-
ered as constraints in the sense that the capacitor chosen should
be one of these values.

VII. PROPOSED SOLUTION OF THE PROBLEM

The power factor PF, the transmission loss T'L, and the
transmission efficiency 7 can be expressed as functions of X¢
and X, using (4)—(6). Each value of the reactive power rat-
ings Q¢; of the particular voltage [8] is used to calculate the
corresponding value of X ;. This value is then substituted into
the objective function to become one variable equation in X,
which can be solved by using the penalty function method.

After formulating the objective function and the constraints,
the problem addressed in this study becomes

Minimize TL(X¢q, X1)

09 < PF(X¢i, X)) <1.0

0.85 < n(Xei, X£) < 1.0

Xci, X1 is not part of the solution of (8).
(12)

Subject to :

Naturally, the solution will satisfy the upper limit of the power
factor and efficiency constraints. Power factor in distribution
systems may be allowed within certain limits according to
the authority, and similarly for the efficiency so the presented
method will generalize the limits of the constraints.

This problem can be rewritten in the form

Minimize TL(Xci, X1)

91(Xci, X,) =09 — PF(X¢i, X1,) <0.0

92(Xci, Xp) = PF( X, Xp) — 1.0 <0.0

93(Xci, X)) =0.85 — n(X¢i, X1,) <0.0

94(Xci, X1) =n(Xei, Xr) —1.0<0.0

Xc¢i, X, is not part of the solution of (8).
(13)

Subject to :

Note that in order to have the algorithm to guarantee conver-
gence, the objective function has to be a unimodal function [17].
Due to the resonant conditions, there might be local minimums
to which the solution will converge. To avoid this problem, the
precalculated compensator values for series resonance will be
used to subdivide the entire search region into numerous small
regions. Within these regions, the local minimums are identi-
fied and, hence, the global minimum. Note that the square of
the root mean square (rms) value of the line current at a given
harmonic order (72 ) is a unimodal (convex) function. Conse-
quently, within these regions, the objective function T'L is also
convex function [18]. As a result, the convergence to an optimal
solution is guaranteed.

VIII. SEARCH ALGORITHM

The suggested search algorithm is discussed below.
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Step 1: Choose the first value of the
standard manufactured reactive power
rating of capacitors in kvar [8]

Qci ={Qc1,Qc2-..Qcn}

where n is the number of discrete values
available for the particular voltage
rating used and ¢ has a starting value
of 1.

(14)

Step 2: Using only the selected value of
Qci, calculate X¢; from the following
equation:
V2
Xeoi = ==L, (15)
" Qe

Substitute the value of Xg; into (8)

to become one variable problem in X,
and solve it to get the precalculated
inductor values for series resonance.
These values are used to subdivide the
entire search region into small regions.
Step 3: Let penalty parameter pu > 1,
scalar § > 0, and J = 1. Starting with
XéD to solve the following problem:

Min. TL(X¢i, X£) + Y ttm(max[0, gm (Xci, X1))).-

For a certain value of MSP, the golden
search method [1] can be applied for ob-
taining the optimal X According to
the penalty function method, the wvalue
o .

m’  1s updated using

of pm
J+1 J
pl Y = pull).
Step 4: The previous step is repeated
until convergence is achieved using

p$D (max(0, gm (Xei, X)) < e

Step 5: If ¢+ = n stop; otherwise,
i by (i+1) and go to step 2.

Step 6: After stopping, scan through to
get the global minimum.

replace

Reference [19] shows that the starting penalty parameter
value 1(®) = 10. Values of /3 are in the range 0.1-0.5 work
well for most problems. The algorithm will stop when a fea-
sible point will be reached or when the relative change in the
objective function is small (less than ¢ = 1075).

In the optimization process, the resistance of the compensator
reactor has been neglected due to its small value with respect to
its fundamental reactance (less than 5%) [20].

IX. EXAMPLES AND SIMULATED RESULTS

Four cases of an industrial plant were simulated using the
optimization method; the numerical data were primarily taken
from an example in [13] where the inductive three-phase load
is 5100 kW with a displacement factor (dPF) of 0.7165. The
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TABLE 1
SYSTEM PARAMETERS AND SOURCE HARMONICS
PARAMETERS & CASE 1 CASE 2 CASE 3 CASE 4
HARMONICS
Short Circuit MVA 150 80 80 80
R (Q) 0.01154 | 0.02163 0.02163 0.02163
X () 0.1154 0.2163 0.2163 0.2163
Ry (Q) 1.742 1.742 1.742 1.742
X1 (Q2) 1.696 1.696 1.696 1.696
Vi (kV) 2.4 2.4 2.4 2.4
Vi3 (%Vs1) 0 0 0 3
Vss (%Vs1) 4 4 5 5
Vs7(%Vs1) 3 3 3 3
Vs11 (%Vs1) 0 0 2 2
V13 (%Vs1) 0 0 1 1
I (A) 0 0 304 304
Is (A) 33 33 33 33
I, (A) 25 25 25 25
Ie (A) 0 0 26 26
I (A) 8 3 8 8
Tz (A) 9 9 9 9
Uncompensated PF (%) 71.58 71.57 68.50 68.54
~ 20
Q
3
=
£
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=
=
2
E
g
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o (=3
vy o
— o
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: (=]
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3
=
S
z
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Capacitive reactance of the compensator (ohms)

(®)

Fig. 2. Global minimum points for case 4 during the search method. (a) TL
against X ;.. (b) TL against X .

60-cycle supply bus voltage is 4.16 kV (line-to-line). The resis-
tance and fundamental reactance values are given in Table I. In
this study, it is assumed that the load harmonics are not suf-
ficiently serious to suggest tuned filters, but when combined
with source harmonics, the use of a pure capacitive compen-
sator would degrade the power factor and overload equipment.
Consequently, an LC compensator is selected.

Fig. 2 shows the improvement in choosing the value of X7,
during the search method and how it affects the objective function.
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Transmission loss (kW/phase)
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Inductive reactance of the compensator (ohms)

Fig. 3. Global and local minimum points for case 4.
TABLE 1I
SIMULATED RESULTS FOR THE PRESENTED OPTIMIZATION METHOD
Xe XL PF Is n TL
CASE
() (©) (%) A) (%) kW)
1 4.27 0.827 99.65 705.85 99.66 5.75
2 4.27 0.743 99.72 701.40 99.36 10.64
3 4.61 0.654 97.60 711.52 99.34 10.95
4 4.27 0.633 97.52 715.99 99.34 11.09
TABLE III

SIMULATED RESULTS FOR THE OPTIMIZATION METHOD IN [21]

Xc PF Is n TL
CASE
) %) @) %) kW)
1 7.81 85.24 807.64 99.54 7.53
2 3.12 93.84 751.45 99.28 12.21
3 3.02 91.66 770.77 99.25 12.85
4 2.85 87.22 812.64 99.18 14.28

Fig. 3 shows the location of the global minimum point and
the local minimum points, which are located in the subdivisions
where the resonant conditions exist.

Comparison of the results: Table II shows that a lower short-
circuit capacity corresponds to a higher power factor at the same
conditions. This is to be expected since with higher transmis-
sion impedance, less harmonic current will flow into the com-
pensated load, cases 1 and 2. Also, it is shown that additional
harmonic contents result in lower power factor. This is caused
by the increase in compensated line current due to the additional
harmonics, cases 3 and 4. Comparing these results with Table II
for the same system data but with the load being linear, we real-
ized a degraded power factor, a high line current, and, hence, an
increase in transmission loss and a decrease in the transmission
efficiency. Table III shows the required capacitive reactance, the
power factor, the supply current, the efficiency, and the trans-
mission loss for the same system data but with the load being
linear.

Finally, in the IEEE Standard 519-1992 [13], the objectives of
the nonlinear load harmonic current limits are to limit the max-
imum individual harmonic voltage to 3% of the fundamental
voltage and the total harmonic distortion of the voltage to 5%.
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TABLE IV
HARMONIC DISTORTIONS AND DISPLACEMENT FACTOR AFTER COMPENSATION
CASE THD; (%) THDy (%) dPF (%)
1 7.32 422 99.99
2 6.43 3.93 99.99
3 18.28 5.55 99.34
4 21.68 5.92 99.92

Table IV shows the distortion levels and the displacement
factor after compensation when taking harmonic components
into account. The resultant values all come out well within stan-
dard limits except cases 3 and 4 where the load harmonics may
be sufficiently serious to suggest tuned filters. It is shown that
in all cases, the proposed method improves the performance of
the system under study.

X. CAPACITOR LOADING STANDARDS

ANSV/IEEE Standard 18-1992 [8] specifies the following
continuous capacitor ratings:

1) 135% of nameplate kvar;

2) 110% of rated rms voltage (including harmonics but ex-
cluding transients);

3) 180% of rated rms current (including fundamental and
harmonic current);

4) 120% of peak voltage (including harmonics).

The capacitor bank data for case 1 are

bank rating: 4050 kvar;

voltage rating: 4160 V (L-L);

operating voltage: 4160 V (L-L);

supplied compensation: 4050 kvar;

fundamental current rating: 562.08 A;

fundamental frequency: 60 Hz;

capacitive reactance: 4.267 2;

voltage distortion: 0.71%;

rms capacitor voltage: 2966.22 V,

capacitor current distortion: 3.74%;

rms capacitor current: 695.68 A.
The fundamental current full-load current for the 4050-kvar ca-
pacitor bank without the series inductor is determined from

4050 1000
/3% 4160

The capacitor is subjected principally to four harmonics: the
fifth, the seventh, the eleventh, and the thirteenth. This results
in 3.40% fifth-harmonic current, 1.51% seventh-harmonic cur-
rent, 0.18% eleventh-harmonic current, and 0.32% thirteenth-
harmonic current (Table V).

Table V summarizes capacitor evaluation for case 1 that is
designed to help evaluate the various capacitor duties against
the standards.

Finally, Table VI shows that the resultant values all come out
well below standard limits.

Ic = 562.08 A.

XI. CONCLUSION

A mathematical model is developed and a solution method is
presented for an optimal power factor correction of distribution
circuits having nonlinear loads. The main contribution of this



ZOBAA: LC COMPENSATORS BASED ON TRANSMISSION LOSS MINIMIZATION FOR NONLINEAR LOADS

TABLE V
CAPACITOR CAPABILITIES FOR CASE 1 WHEN SUPPLIED BY
NONSINUSOIDAL VOLTAGES

Harmonic | Frequency Voltage Voltage Current Current
No. (Hz) (%) W) (%) (A)
1 60 100.00 2966.1 100 695.2
2 120 0.00 0.00 0.00 0.00
3 180 0.00 0.00 0.00 0.00
4 240 0.00 0.00 0.00 0.00
5 300 0.68 26.20 3.40 23.70
6 360 0.00 0.00 0.00 0.00
7 420 0.22 6.70 1.51 10.50
8 480 0.00 0.00 0.00 0.00
9 540 0.00 0.00 0.00 0.00
10 600 0.00 0.00 0.00 0.00
11 660 0.02 1.60 0.18 1.20
12 720 0.00 0.00 0.00 0.00
13 780 0.02 0.40 0.32 2.20
TABLE VI
CAPACITOR BANK LIMITS FOR CASE 1
Item Calculated (%) Limit (%) Exceeds limit
Peak voltage 100.94 120.00 No
rms voltage 100.00 110.00 No
rms current 100.07 180.00 No
kvar 100.07 135.00 No

work is the introduction of nonlinear loads on the problem, and
also the proposed solution method.

For nonlinear loads, it is suggested to use LC compensators.
Such compensators have dual purposes. The first is that they act
as compensators to improve the power factor of the nonlinear
loads. Second, they act as filters of the harmonic load currents;
thus preventing the proliferation of the network with these cur-
rents. It is shown that the LC compensator sizes can be quite dif-
ferent when nonlinear loads are present in a system when com-
pared to those found by neglecting harmonic components.

Four cases are tested, and the general performance of the pro-
posed method is satisfactory, providing transmission losses re-
duction, improvement of distortion levels, and power factor cor-
rection, compared with other published results.
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