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Abstract 
This paper proposes a model for portfolio optimisation, in which distributions are characterised and 
compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified 
confidence level. The problem is multi-objective and transformed into a single objective problem in 
which variance is minimised while constraints are imposed on the expected value and CVaR. In the 
case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-
CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular 
efficient solutions of the proposed model. In addition, the model has efficient solutions that are 
discarded by both mean-variance and mean-CVaR models, although they may improve the return 
distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return 
distribution of the chosen portfolios is presented. 

 

1. Introduction and motivation 
Mean-risk models are still the most widely used approach in the practice of 

portfolio selection. With mean-risk models, return distributions are characterized and 
compared using two statistics: the expected value and the value of a risk measure. 
Thus, mean-risk models have a ready interpretation of results and in most cases are 
convenient from a computational point of view. Sceptics on the other hand may 
question these advantages since the practice of describing a distribution by just two 
parameters involves great loss of information. 

It is evident that the risk measure used plays an important role in making the 
decisions. Variance was the first risk measure used in mean-risk models (Markowitz 
1952) and, in spite of criticism and many proposals of new risk measures (see for 
example Fishburn (1977), Yitzhaki (1982), Konno and Yamazaki (1991), Ogryczak 
and Ruszczynski (1999, 2001), Rockafellar and Uryasev 2000, 2002), variance is still 
the most widely used measure of risk in the practice of portfolio selection. For 
regulatory and reporting purposes, risk measures concerned with the left tails of 
distributions (extremely unfavourable outcomes) are used. The most widely used risk 
measure for such purposes is Value-at-Risk (VaR). However, it is known that VaR 
has undesirable theoretical properties (it is not subadditive, as shown, for example, in 
Tasche (2002) and thus fails to reward diversification). In addition, optimisation of 
VaR leads to a non-convex NP-hard problem which is computationally intractable. In 
spite of a considerable amount of research, optimising VaR is still an open problem 
(see for example Larsen et al. 2002, Leyffer et al. 2005 and references therein). For 
these reasons, another risk measure concerned with the left tail, the Conditional 
Value-at-Risk (CVaR), is gaining more popularity. CVaR has attractive theoretical 
properties: it controls the magnitude of losses beyond VaR and it is coherent (see for 
example Artzner et al. 1999, Acerbi and Tasche 2002, Tasche 2002, Pflug 2000, 



Rockafellar and Uryasev 2002). In addition, CVaR is easy to optimise. Optimising 
CVaR is a convex programming problem. In the case when the random variables 
under consideration are discrete, with a finite number of outcomes, represented by 
various outcomes under different scenarios, optimising CVaR leads to a linear 
programming model of finite dimension (Rockafellar and Uryasev 2000, 2002). 

Variance and CVaR quantify risk from different perspectives. Variance measures 
the spread around the expected value of a random variable, while CVaR measures the 
expected loss corresponding to a number of worst cases, depending on the chosen 
confidence level. Thus, the mean-variance and the mean-CVaR models may lead to 
very different solutions. A portfolio obtained as a solution in the mean-variance 
model may be considered unacceptable by a regulator, since it may have an 
excessively large CVaR, leading to big losses under unfavourable scenarios. On the 
other hand, traditional fund managers may consider a portfolio obtained with the 
mean-CVaR model unacceptable since it may have an excessively large variance and 
thus an excessively small Sharpe index (see Luenberger 1998) 

In this paper, we seek to address the requirements of the traditional fund manager 
and the regime imposed by the regulator. We propose a model for portfolio selection 
that uses both variance and CVaR in order to make decisions. We call this model the 
mean-variance-CVaR model. Random variables are described and compared using 
three statistics: the expected value, variance and CVaR. Thus, the model may be 
considered as belonging to the family of mean-risk models. 

We formally define the preference relation for random variables in this model. 
The efficient solutions with respect to this preference relation are such that, we cannot 
improve on one statistic (of the three: expected value, variance and CVaR) without 
worsening another. Mathematically, the problem is multi-objective (maximise 
expected return, minimise variance, minimise CVaR) and the efficient solutions of the 
mean-variance-CVaR model are the Pareto optimal solutions of the multi-objective 
problem.  

We prove that the efficient solutions of this model may be found by solving a 
single objective optimisation problem in which variance is minimised while 
constraints are imposed on the expected return and the CVaR level. The practical 
importance of this approach is twofold. Firstly, a solution obtained in this way has an 
intuitive appeal. For example, if the CVaR of a mean-variance efficient portfolio is 
considered as unacceptably large, a constraint could be imposed on the CVaR level 
and a new portfolio obtained, which has a minimal variance under these conditions. 
Secondly, the problem is tractable from a computational point of view. In the case 
where the random variables under consideration are discrete and described by their 
realisations under various scenarios, the problem is one of quadratic programming. 

Generally, the mean-variance and mean-CVaR efficient portfolios are particular 
efficient solutions of the proposed model1. However, most of the efficient portfolios 
in the mean-variance-CVaR model are dominated in both mean-variance and mean-
CVaR models, although they may represent improved distributions: a compromise 
between the classical fund managers’ and the regulators’ points of view. 

 
The rest of this paper is structured as follows. In section two the portfolio 

selection problem is described. Section three is concerned with mean-risk models, in 
                                                 
1 There may be a situation when several mean-CVaR efficient portfolios have the same mean return 
and the same (optimal) CVaR, but different variances. Only the portfolio with the minimal variance is 
efficient in the proposed model. The same discussion applies for mean-variance efficient portfolios. We 
reconsider the issue in Section 4.4. 
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particular with the mean-variance and the mean-CVaR models. In section four we 
present the mean-variance-CVaR model. Firstly, the preference relation among 
random variables is defined. The efficient solutions of the proposed model are Pareto 
non-dominated solutions of a multi-objective problem. Secondly, an optimisation 
approach for solving the multi-objective problem is proposed. With this approach, the 
efficient solutions of the proposed model are found by solving a single optimisation 
problem, in which variance is minimised and constraints are imposed on the expected 
value and the CVaR level. Thirdly, we describe how all the efficient solutions of the 
model may be obtained. Finally, the algebraic form of the mean-variance-CVaR 
model for the case of scenario models is presented. Section five presents the 
computational results. A dataset, drawn from the FTSE 100 index is used to evaluate 
the performance of the proposed model. For several fixed levels of expected return, 
we consider the mean-variance and the mean-CVaR efficient portfolios together with 
other portfolios, efficient only in the mean-variance-CVaR model. We evaluate their 
performances using both in-sample and out-of-sample analysis. Section six presents 
the conclusions. 
 

2 The portfolio selection problem 
 
 The problem of portfolio selection with one investment period is an example 
of the general problem of deciding between random variables when larger outcomes 
are preferred. Decisions are required on the amount (proportion) of capital to be 
invested in each of a number of available assets such that at the end of the investment 
period the return is as high as possible. Consider a set of n assets, with asset j in 
{1,…,n} giving a return Rj at the end of the investment period. Rj is a random 
variable, since the future price of the asset is not known. Let xj be the proportion of 
capital invested in asset j (xj=wj/w where wj is the capital invested in asset j and w is 
the total amount of capital to be invested), and let x=(x1,…,xn) represent the portfolio 
resulting from this choice. This portfolio’s return is the random variable: 
Rx=x1R1+…+xnRn, with distribution function )()( rRPrF x ≤=  that depends on the 
choice x=(x1,…,xn). 

To represent a portfolio, the weights (x1,…,xn) must satisfy a set of constraints 
that forms a feasible set A of decision vectors. The simplest way to define a feasible 
set is by the requirement that the weights must sum to 1 and short selling is not 
allowed. For this basic version of the problem, the set of feasible decision vectors is  

A={ / , ),...,( 1 nxx 1
1

=∑
=

n

j
jx },...,1{,0 njx j ∈∀≥ }.                                               (1) 

Consider a different portfolio defined by the decision vector y=(y1,…,yn)∈ A, 
where yj is the proportion of capital invested in asset j. The return of this portfolio is 
given by the random variable Ry=y1R1+…+ynRn. 

The problem of choosing between portfolio x=(x1,…,xn) and portfolio 
y=(y1,…,yn) becomes the problem of choosing between random variables Rx and Ry. 
The criteria by which one random variable is considered “better” than another random 
variable need to be specified and models for choosing between random variables 
(models for preference) are required. The purpose of such models is firstly, to define a 
preference relation among random variables and secondly, to identify random 
variables that are non-dominated with respect to that preference relation. 
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The next issue is to consider a practical representation for the random 
variables that describe asset and portfolio returns. We treat these random variables as 
discrete and described by realisations under T states of the world, generated using 
scenario generation or finite sampling of historical data. For any i∈{1,…,T}, let state 

ωi occur with probability pi, . Thus, the random returns are defined on a 

discrete probability space {Ω,F,P} with Ω={ω

1
1

=∑
=

T

i
ip

1,…, ωT}, F a σ-field and P(ωi)= pi. 
Let rij be the return of asset j under scenario i, i∈{1,…,T}, j∈{1,…,n}. Thus, 

the random variable Rj representing the return of asset j is finitely distributed over 
{r1j,…,rTj} with probabilities p1,…pT. The random variable Rx representing the return 
of portfolio x=(x1,…,xn) is finitely distributed over {Rx1,…, RxT}, where 
Rxi=x1ri1+…+xnrin, ∀i∈{1,…T}.  

 

3 Mean-Risk Models 

3.1 The general case 
  

 Mean-risk models were developed in early fifties for the portfolio selection 
problem. In his seminal work “Portfolio selection”, Markowitz (1952) proposed 
variance as a risk measure. Since then, many alternative risk measures have been 
proposed. The question of which risk measure is most appropriate is still the subject 
of much debate. 
 In mean- risk models, two scalars are attached to each random variable: the 
expected value (mean) and the value of a risk measure. Preference is then defined 
using a trade-off between the mean where a larger value is desirable and risk where a 
smaller value is desirable: 
In the mean-risk approach with the risk measure denoted by ρ, random variable Rx 
dominates (is preferred to) random variable Ry if and only if: E(Rx)≥E(Ry) and 
ρ(Rx)≤ρ(Ry) with at least one strict inequality. Alternatively, we can say that portfolio 
x dominates portfolio y. 

In this approach, the choice x (or the random variable Rx) is efficient (non-
dominated) if and only if there is no other choice y such that Ry has higher expected 
value and less risk than Rx. This means that, for a given level of minimum expected 
return, Rx has the lowest possible risk, and, for a given level of risk, it has the highest 
possible expected return. Plotting the efficient portfolios in a mean-risk space gives 
the efficient frontier. 

Thus, the efficient solutions in a mean-risk model are Pareto efficient solutions 
of a multi-objective problem, in which the expected return is maximised and the risk 
is minimised:  

Max {(E(Rx), -ρ(Rx)): x∈A} 
 
Generally, for a multi-objective problem: 
Max {f(x)=(f1(x),…,fT(x)): x∈A},                                                            (2) 

the Pareto preference relation is defined as follows: 
A feasible solution x1∈A Pareto dominates another feasible solution x2∈A if 
fi(x1)≥fi(x2) for all i with at least one strict inequality. 
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x0 is a Pareto efficient (non-dominated) solution of (2) if and only if there does 
not exist a feasible x such that x Pareto dominates x0. In other words, a Pareto 
efficient solution is a feasible solution such that, in order to improve upon one 
objective function, at least one other objective function must assume a worse value. 
 

In order to find an efficient portfolio, we solve an optimisation problem with 
decision variables x1,…xn: 
 
Minimise ρ(Rx) 
Subject to: E(Rx)≥d and (x1,…xn}∈A, 
 
where d represents the desired level of expected return for the portfolio.  

Varying d and repeatedly solving the corresponding optimisation problem 
identifies the minimum risk portfolio for each value of d. These are the efficient 
portfolios that compose the efficient set. By plotting the corresponding values of the 
objective function and of the expected return respectively in a return- risk space, we 
trace out the efficient frontier. 

An alternative formulation, which explicitly trades risk against return in the 
objective function, is  
 
Maximize   E(RX)- τρ(RX)    (τ≥0) 
Subject to: (x1,…xn}∈A. 
 

Varying the trade-off coefficient τ and repeatedly solving the corresponding 
optimisation problems traces out the efficient frontier. 

 

3.2 The mean-variance model 
The variance of a random variable Rx is defined as its second central moment: 

]))([()( 22
Xxx RERER −=σ . 

An important property is that the variance of the portfolio return 
Rx=x1R1+…+xnRn, resulting from choice (x1,…,xn), can be expressed as: 

kjj

n

k

n

j
kx xxR σσ ∑∑

= =

=
1 1

2 )( , where σkj is the covariance of Rk and Rj, 

and thus variance is expressed as a quadratic function of x1,…,xn. 
 
The mean-variance model can be formulated for the portfolio selection problem as 
follows: 

Minimize   kjj

n

k

n

j
k xx σ∑∑

= =1 1

Subject to    

                    dx j

n

j
j ≥∑

=1

μ

                    
njx

x

j

n

i
j

...1,0

1
1

=∀≥

=∑
=
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where μj = the expected rate of return of asset j, j∈{1,…,n}; 
           σkj = the covariance between returns of asset k and asset j, with k, j∈{1,…,n}; 
           d=the desired expected value of the portfolio return. 
 

3.3 The mean-CVaR model 
 

Let Rx be a random variable representing the return of a portfolio x over a given 
holding period and A%=α∈(0,1) a percentage which represents a sample of “worst 
cases” for the outcomes of Rx (usually, α=0.01 or α=0.05). 
 The definition of CVaR at the specified level α is the mathematical transcription 
of the concept “average of losses in the worst A% of cases”2 (Acerbi and Tasche 
2002), where a “loss” is a negative outcome of Rx (thus the loss associated with Rx is 
described by the random variable –Rx).  

Formally, the Conditional Value-at-Risk at level α of Rx is defined as minus 
the mean of the α-tail distribution of Rx, where the α-tail distribution is obtained by 
taking the lower α part of the distribution of Rx (corresponding to extreme 
unfavourable outcomes) and rescaling its distribution function to span [0,1]: 

]}))(()[()1({1)(
)}({

α
α

αα
α α −≤−−=

≤ xXxRqRXx RqRPRqRERCVaR
xX

        (3) 

where qα is an α-quantile of Rx, meaning that P(Rx<r)≤α≤P(Rx≤r) (see Laurent 2003 
for more details on α-quantiles), 
and 1{Relation}=1, if Relation is true 
                      0, if Relation is false. 
(see Rockafellar and Uryasev 2000, 2002 for more details). 

An important result, proved by Rockafellar and Uryasev (2000, 2002), and 
independently by Ogryczak and Ruszczynski (2002), is that the CVaR of a random 
variable Rx can be calculated by solving a convex optimisation problem. Moreover, 
CVaR can be minimised over the set of feasible decision vectors. These results are 
summarised below: 
 
Proposition 3.1 (CVaR calculation and optimisation): Let Rx be a random variable 
depending on a decision vector x that belongs to a feasible set A, and α∈(0,1). 
Consider the function: 

vvREvxF x −+−= +}]{[1),(
αα , where  

            [u]+ =u for u≥0 
            [u]+ =0 for u<0. 
Then:   

(a) As a function of v,  is finite and continuous (hence convex) and 
. 

αF
),(min)( vxFRCVaR

Rvx αα ∈
=

                                                 
2 This is not necessarily the same as “the expected value of losses exceeding VaR at confidence level 
α”, as it is defined in earlier papers on CVaR. The two definitions lead to the same results when the 
distribution of the random variable under consideration is continuous, but differences may appear when 
the considered distribution has discontinuities –see Acerbi and Tasche 2002, Rockafellar and Uryasev 
2002 for more details. 
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In addition, the set consisting of the values of v for which the minimum is 
attained, denoted by Aα(x), is a non-empty, closed and bounded interval (possibly 
formed by just one point). 
 
(b) Minimising CVaRα with respect to x∈A is equivalent to minimising  with 

respect to (x,v)∈ AxR: 
αF

     . ),(min)(min
),(

vxFRCVaR
AxRvxxAx αα ∈∈

=

In addition, a pair (x*,v*) minimises the right hand side if and only if x* 
minimises the left hand side and v*∈ Aα(x*). 
 
(c)  is convex with respect to x and  is convex with respect to     
(x,v). 

)( xRCVaRα ),( vxFα

 
Thus, if the set A of feasible decision vectors is convex (which is the case for 

the basic version of the portfolio selection problem), and even if we impose a 
further lower limit on the expected return, minimising CVaR is a convex 
optimisation problem. 

 
In the case when Rx is a discrete random variable (as described in Section 2), 

calculating and optimising CVaR are linear programming problems. Suppose that 
Rx has T possible outcomes Rx1, …,RxT with probabilities p1,…, pT. Then: 

vRvpvxF
T

i
xii −−= +

=
∑ ][1),(

1αα  .  

For the portfolio selection problem, as presented in Section 2, where Rxi=  

with r

∑
=

n

j
ijj rx

1

ij the return of asset j under scenario i, 

vrxvpvxF ij

T

i

n

j
ji −−= +

= =
∑ ∑ ][1),(

1 1αα . 

Thus, the mean-CVaRα model can be formulated for the portfolio selection problem 
as follows: 

 

Minimise  ∑
=

+−
T

i
ii ypv
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1
α
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4 The Mean-Variance-CVaR model 

4.1 The theoretical background 
 
In this section, a model for portfolio selection is proposed, in which random 

variables are described by three statistics: the expected value, the variance and the 
CVaR at a specified confidence level α∈(0,1). We claim that taking three parameters 
into consideration, instead of two, gives a better modelling power. The proposed 
model may bring an improvement in the solution, in the case where a mean-variance 
efficient portfolio has an excessively large CVaR, or a mean-CVaR efficient portfolio 
has an excessively large variance. 

The idea of restricting the risk of a distribution from two different perspectives 
has been used before in various contexts. 

Konno et al. (1993) proposed a “mean- absolute deviation skewness portfolio 
optimisation model”, in which the lower semi-third moment of the portfolio return is 
maximised subject to constraints on the mean and on the absolute deviation of the 
portfolio return. A “mean- variance-skewness portfolio optimisation model” was 
proposed by Konno et al. (1995): they maximised the third moment of the portfolio 
return subject to constraints on the mean and on the variance of the portfolio return. 
Optimisation approaches are provided, in which the corresponding cubic and 
quadratic functions are approximated by linear functions. 

Wang (2000) proposed a model in which the portfolio return has constraints on 
both variance and Value-at-Risk (VaR), and a maximum expected return under these 
conditions. However, no practical optimisation approach is provided. 

Harvey et al. (2003) proposed a model in which random variables are chosen with 
respect to their expected value, variance and skewness. Thus, it may be considered 
that they use two risk measures in order to control the selection of a solution: the 
variance and the negative of skewness. Their model has a distributional assumption 
for portfolio returns and uses an expected utility maximisation approach, with the 
utility function depending on the expected value, variance and skewness. 

Jorion (2003) proposed that a portfolio return distribution should have constraints 
on both variance and “tracking error volatility”, which is “the volatility of the 
deviation of the active portfolio from the benchmark”, with a maximum expected 
return under these conditions. Thus, this approach may also fall into the category of 
index-tracking models. 

There have been various formulations of portfolio selection problems as multiple 
criteria models (see for example Ogryczak 2000, 2002). However, to the best of our 
knowledge, the use of CVaR together with variance within a multi-attribute model is 
novel. A categorised bibliography on the applications of multiple criteria decision-
making techniques in finance is provided in Steuer and Na (2003). 

The model proposed in this paper does not assume a particular distribution for the 
returns and, in addition, is convenient from a computational point of view. We define 
a preference relation for random variables and provide an optimisation approach for 
finding the efficient solutions with respect to this preference relation. 

 
Consider again the portfolio selection problem described in Section 2, with the 

random variable Rx and Ry describing the returns of portfolios x and y respectively, 
with x,y∈A.  
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We consider a model for choice under risk that we refer to as the mean-variance-
CVaR model, in which the preference relation among random variables is defined as 
follows: 

In the mean-variance-CVaR model, a random variable Rx is preferred to a random 
variable Ry (or, similarly, the portfolio x is preferred to portfolio y) if and only if 
E(Rx)≥E(Ry),  and CVaR)()( 22

yx RR σσ ≤ α(Rx)≤ CVaRα(Ry), with at least one strict 
inequality. 

Thus, the non-dominated (efficient) solutions in the mean-variance-CVaR model 
are the Pareto efficient solutions of a multi-objective problem in which the expected 
value is maximised while the variance and the CVaR are minimised: 
(MVC): max (E(Rx), - CVaR),(2

xRσ− α(Rx)) 
              Subject to: x∈A. 

 
When plotting the efficient solutions in a mean-variance-CVaR space, a 

surface is obtained; we refer to this surface as “the efficient frontier” of the mean-
variance-CVaR model. 
 

4.2 An optimisation approach 
 
The next issue to address is how to obtain the efficient solutions of the mean-

variance-CVaR model.  
Firstly, the multi-objective problem (MVC) is transformed into a single 

objective problem in which one objective function is optimised while lower limits are 
imposed on the remaining objective functions and transformed into constraints.  This 
method, known in multi-objective optimisation as the “ε-constraint method” (Haimes 
et al. 1971, see also Steuer 1986) generally requires some regularization in order to 
guarantee that an optimal solution of the single-objective problem obtained is a Pareto 
optimal solution of the original multi-objective problem. 

 
We choose to minimise variance for two reasons. Firstly, it is more intuitively 

appealing to impose limits on the expected value and CVaR, rather than on variance. 
Secondly, we show that minimising variance is more convenient from a 
computational point of view. In either case, a convex optimisation problem would be 
obtained3, irrespective of which statistic we choose for the objective function, but, 
when optimising variance, a quadratic programming problem is obtained, as shown 
below. 
 

In what follows, for a random variable Rx that depends on the decision vector x, 
the variance of Rx is denoted alternatively by or . Similarly, the 
Conditional Value-at-Risk at level α of R

)(2 xσ )(2
xRσ

x is denoted by CVaRα(x) or CVaRα(Rx), 
and the expected value of Rx by E(x) or E(Rx).  
 
We consider the following optimisation problem: 
(P1): min  )(2 xσ

                                                 
3 As stated in Proposition 3.1, CVaR is a convex function of x. Variance is also convex of x, since the 
variance-covariance matrix is positive semi-definite. The expected value is linear thus convex of x. 
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         Subject to: CVaRα(x)≤z 
                           E(x)≥d 
                            x∈A. 
where z and d are real numbers. 

 
It is easy to prove that: if x* is a Pareto optimal solution of (MVC) then x* is also an 
optimal solution of (P1) with z=CVaRα(x*) and d=E(x*). 
Indeed, assume that x* is not an optimal solution of (P1). Obviously x* is a feasible 
solution of (P1). Denote by x’ an optimal solution of (P1). It follows that 
σ2(x’)<σ2(x*), CVaRα(x’)≤CVaRα(x*) and E(x’)≥E(x*), which means that x’ Pareto 
dominates x* and we have a contradiction. 
 
The converse is also true, with the additional assumption of uniqueness of the optimal 
solution: 

If x* is the unique optimal solution of (P1), then x* is also a Pareto optimal 
solution of (MVC). 

Indeed, assume that x* is Pareto dominated in (MVC) and denote by x’ a point 
that Pareto dominates x*. This means that σ2(x’)≤σ2(x*), CVaRα(x’)≤CVaRα(x*)≤z 
and E(x’)≥E(x*)≥d with at least one strict inequality. Thus x’ is another feasible 
solution of (P1) such that σ2(x’)≤σ2(x*), which is a contradiction.  

 
Remark 4.1: If the covariance matrix of returns is positive definite, then variance is a 
strictly convex function of x. In this case, minimising variance over a convex set has 
at most one optimal solution; thus, the possibility of multiple optimal solutions for 
(P1) is eliminated. This is usually the case; if there are no redundant assets (ones that 
can be replicated by the remaining of the assets) or risk-free assets in the collection of 
assets considered, then the covariance matrix is positive definite. 
 
We summarise these results below: 
Proposition 4.1: If the covariance matrix is positive definite, a point x* is a Pareto 
efficient solution of (MVC) if and only if x* is an optimal solution of (P1) with 
z=CVaRα(x*) and d=E(x*). 
Thus, in the case of a positive definite covariance matrix of returns, the Pareto 
efficient solutions of (MVC) can be fully characterised as optimal solutions in (P1) 
with active constraints on mean and on CVaR. 

In fact, the above statement is true for the general case of a (positive semi-
definite) covariance matrix - see Proposition A1 in Appendix A. Also, in Appendix A 
we present a method for obtaining all the Pareto efficient solutions of (MVC) for the 
general case when the covariance matrix of returns is positive semi-definite. 

 
The next issue that arises is how to represent the CVaR constraint in (P1). As 

presented in Proposition 3.1, the function vRvEvxF x −−= +}]{[1),(
αα  may be used 

both for calculating the CVaR of a given random variable and for optimising CVaR 
with respect to all feasible decisions vectors. 

Furthermore, Krokhmal et al. (2002) proved that the same function  
may be used for imposing an upper limit on the CVaR of a random variable, while 
maximising its expected value.  

),( vxFα
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Their result may be extended to a much more general case. In fact, the 
constraint “CVaRα(x)≤z” can be replaced with the constraint “ ” in all 
optimisation problems, irrespective of the form of the objective function or the 
feasible set. 

zvxF ≤),(α

Proposition 4.2: Consider two optimisation problems (P) and (P’) with A ⊂Rn 
a feasible set of decision vectors and the objective function f: Rn→R of any form: 

(P): min f(x) 
Subject to:  zxCVaR ≤)(α

                   x∈A 
 
(P’): min f(x) 
Subject to:  zvxF ≤),(α

                   x∈A, v∈R. 
In (P), the variables are x1,…,xn while in (P’), the variables are x1,…,xn and v. 
 
Then: (P) and (P’) achieve the same optimal value. Moreover, a point x*∈P is 

an optimal solution for (P) iff there exists v*∈R such that (x*,v*) is an optimal 
solution for (P’). If, in addition, the constraint zxCVaR ≤)(α  in (P) is active, then 
v*∈ Aα(x*) (meaning that )*,(min*)*,( vxFvxF

Rv α∈
= ). 

 
Proof: As stated in Proposition 3.1, ),(min)( vxFxCVaR

Rv αα ∈
= . Thus, the 

problem (P) may be written as: 
(P): min f(x) 
       Subject to: zvxF

Rv
≤

∈
),(min α  

                           x∈A 
Suppose now that x* is an optimal solution for (P). Obviously (x*,v*) is a 

feasible solution for (P’), where v* is such that )*,(min*)*,( vxFvxF
Rv α∈

= . Assume 

that there exists (x’,v’) another feasible solution for (P’) such that f(x’)<f(x*). Since 
 it follows that zvxF ≤)','(α zvxF

Rv
≤

∈
),'(min α ; thus, x’ is a feasible solution of (P1) 

which improves the objective function as compared to x*, which is a contradiction. 
Similarly, in a straightforward way, the converse may be proven; the last part 

of the proposition is obvious. 
 

Thus, we consider another optimisation problem, with variables 
x=(x1,..,xn)∈A⊂Rn and v∈R: 
(P2): min  )(2 xσ
         Subject to: ≤z ),( vxFα

                           E(x)≥d 
                            x∈A, v∈R 
 
where A is the (convex) set of feasible decision vectors, as given, for example, by 
(1).  
 

The result below follows from Propositions 4.1 and 4.2: 

 11



 
Proposition 4.3: If the covariance matrix of returns is positive definite, the 

Pareto efficient solutions of (MVC) are fully characterised as optimal solutions of 
(P2) with active constraints on mean and on CVaR4. 

 
In other words, x* is a Pareto efficient solution of (MVC) if and only if there 

exists v*∈R such that (x*,v*) is an optimal solution to (P2) with *)*,( vxFz α=  and 
d=E(x*). 
 

Therefore, varying d and z in the problem (P2) such that the constraints on 
CVaR and on the expected value are active produces all the efficient solutions of the 
mean-variance-CVaR model. As shown in Section 4.4, this means varying d and z 
between some finite limits that can be easily determined. 

 

4.3 Alternative optimisation approaches 
 
The optimisation approach described in the previous subsection is not unique. A 

commonly used method of obtaining a Pareto efficient solution of a multi-objective 
optimisation problem is to use a scalarizing function, meaning a real-valued function 
that is a composite of all objective functions. When optimised, the scalarizing 
function produces a Pareto efficient solution of the multi-objective optimisation 
problem. Thus, the problem is reduced to a single objective optimisation problem. We 
give below two examples of scalarizing functions, leading to two alternative 
optimisation approaches for the mean-variance-CVaR model.  

The most common scalarizing function is a weighted sum of the objective 
functions in the original multi-objective optimisation problem. The general 
requirement on weights is that they should be strictly positive but usually they are 
normalised such they sum to 1. In our case, the single objective optimisation problem 
that results is: 
Max                                                                  (P3) )()()( 3

2
21 xCVaRwxwxEw ασ −−

Subject to: x∈A 
where w1, w2, w3 are strictly positive5. 
 
It is clear that every optimal solution of (P3) is a Pareto efficient solution of (MVC).  
 
The converse is not always true, in the sense that there may be Pareto optimal 
solutions of (MVC) that cannot be obtained as optimal solutions of a problem (P3) 
with strictly positive w1, w2 and w3 (for example, the Pareto optimal solution of 
(MVC) that globally minimises variance).  
However, due to the convexity of all objective functions on (MVC), every Pareto 
optimal solution of (MVC) can be obtained as an optimal solution of (P3) with non-
negative weights (see Jahn 1985). For example, the Pareto optimal solution of (MVC) 
that globally minimises variance is obtained as an optimal solution of (P3) with w1= 
w3=0, w2=1. 
                                                 
4 This statement holds even without the assumption of a positive definite covariance matrix – the proof 
is given in Appendix A. 
5 If additionally there is the assumption of unique optimal solutions of (P3) when some of the weights 
are zero, then only the non-negativity condition is required for w1,w2 and w3.
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This approach has several disadvantages (see Das and Dennis 1997), one of 

them being the fact that the weights w1, w2, w3 are rather difficult to interpret. It is 
more meaningful to set desired levels of expected return and of CVaR and solve (P2).  

Another example of a scalarizing function is obtained by considering target 
values (called reference points or aspiration points) for the values of the objective 
functions. This technique for multi-objective optimisation, named The Reference 
Point Method is fully described in Wierzbicki 1998. Consider the general multi-
objective problem  
(MO’): Max(f1(x),f2(x),…,fT(x)) 
           Subject to: x∈X, 
And let w*1, w*2,…, w*T be the user-defined aspiration points  for the objective 
functions. The simplest form of scalarizing function is: 

∑
=

≤≤
−+−=

T

k
kkkkTkw wxfwxfx

11* )*)(()*)((min)( εγ                                                 (4) 

where ε>0 is an arbitrary small parameter. 
 

The terms in (4) are usually replaced by more complicated 
functions of x and w*

kk wxf *)( −

k, γk(x,w*k), which must satisfy certain properties (see for 
example Wierzbicki 1998, Makowski and Wierzbicki 2003). These functions are 
called partial achievement functions since they measure the actual achievement of the 
k-th objective function with respect to its corresponding aspiration level w*k. 
Various functions γk(x,w*k) provide a wide modelling environment for measuring 
individual achievements. Other examples of such functions may be found in 
Wierzbicki 1998, Makowski and Wierzbicki 2003. 

Provided that all the reference points lie between the lower and the upper 
bound of the corresponding objective function, the maximisation of (4) provides a 
Pareto efficient solution of (MO’). The converse is true, in the sense that for every 
Pareto efficient solution of (MO’), there exist aspiration levels such that this efficient 
solution maximises the corresponding achievement function (see Wierzbicki 1998). 

In our case, the scalarizing achievement function to maximise is:  
+−−−= )}(*),(*,*)(min{)( 3

2
21* xCVaRwxwwxExw ασγ  

 
)}](*)(**)([ 3

2
21 xCVaRwxwwxE ασε −+−+−+                                       

where ε>0 is an arbitrary small parameter.  
 

The Reference Point Method is primarily designed for obtaining a specific 
solution of a multi-objective problem rather than the whole set of efficient solutions. 
Although all the efficient solutions may obtained with this method by choosing 
appropriate reference points, care must be taken in choosing the reference points 
between the lower and upper bound of each objective function. The lower bounds for 
the objective functions are difficult to find and often approximations are used.  

In contrast, the optimisation method described in Section 4.2 produces the 
entire set of efficient solutions of the mean-variance-CVaR model with no difficulty, 
as described in the next section. 
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4.4 The efficient frontier of the mean-variance-CVaR model 
 
We consider the case when the covariance matrix of returns is positive definite; 

the general case of a positive semi-definite covariance matrix is treated in Appendix 
A. 

As presented in Section 4.2, varying the right hand sides d and z in (P2) such that 
the corresponding constraints on mean and CVaR are active produces all the efficient 
solutions of (MVC). 

Thus, the level d for the expected value must lie in the interval [dmin,dmax]. We 
define dmin=max{dminvar, dminCVaR}, where dminvar and dminCVaR are the expected returns 
of the minimum variance portfolio (mean-variance efficient) and minimum CVaR 
portfolio (mean-CVaR efficient) respectively. dminvar may be found as the optimal 
value of  the variable d0 in the problem: 
min  )(2 xσ
         Subject to: E(x)≥d0

                            x∈A, d0∈R. 
 
dminCVaR may be found as the optimal value of  the variable d1 in the problem: 
min Fα(x,v) 
         Subject to: E(x)≥d1

                            x∈A, v∈R, d1∈R. 
 
To be more precise, dminCVaR may be found as above only when the minimisation of 
Fα(x,v) with respect to (x,v) over AxR provides a unique optimal solution. In the case 
of non-unique optimal solutions, we can obtain portfolios having the same minimal 
CVaR but different expected returns; among these, we are interested in the portfolio 
with the maximum expected return. To obtain this portfolio, we denote by CVaRmin 
the optimal value of the above problem and solve another optimisation problem: 
 
max E(x) 
         Subject to: Fα(x,v)≤CVaRmin

                            x∈A, v∈R. 
 
We define dmax as the maximum possible expected return6: the optimal value of the 
objective function in the problem: 
 
max  E(x) 
         Subject to: x∈A. 
 
Furthermore, for a specific d*∈[dmin,dmax], the level z of CVaRα must lie in the 
interval [zd*,min,zd*,max], where zd*,min is the best (minimum) CVaRα level for the 
expected return d* and zd*,max is the CVaRα level of the (unique) portfolio that 
minimises variance for the expected return d*.  
zd*,min is the optimal value of the objective function in the problem: 
 

                                                 
6 dmax is also equal to the highest expected return of the component assets in the portfolio selection 
problem. 
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Min Fα(x,v) 
Subject to: E(x)≥d* 
                   x∈A, v∈R. 
 
zd*,max may be found as the optimal value of the objective function in the problem: 
 
Min Fα(x*,v) 
Subject to: v∈R, 
 
where x*=(x*1,…,x*n) is the (unique) portfolio that minimises variance for the mean 
return d*. 

 
The fact that the imposed limit z on CVaRα is greater than or equal to zd*,min 

ensures that the problem (P2) is not infeasible, while z being less than or equal to 
zd*,max ensures that the constraint on CVaR in (P2) is active. When solving problem 
(P2) for a level of expected return equal to d* and a CVaR level equal to zd*,min, we 
obtain a mean-CVaR efficient portfolio; more precisely, the mean-CVaR efficient 
portfolio with the lowest variance for expected return d*. 

When solving problem (P2) for a level of expected return equal to d* and a CVaR 
level equal to zd*,max, we obtain the mean-variance efficient portfolio with expected 
return d*. 

For a fixed level of expected return, the efficient solutions in the mean-
variance-CVaR model form a curve when plotted in a variance-CVaR space, where 
the lower end of this curve is represented by the mean- CVaR efficient solution (with 
the lowest variance) and the upper end is represented by the mean- variance efficient 
solution. The other points of this curve are not efficient in either the mean- variance or 
the mean-CVaR model. 

 

variance

C
Va

R

 
 Fig. 4.1: The efficient solutions of the mean-variance-CVaR model, for a fixed level of 
expected value, plotted in a variance-CVaR space. 

 
For the maximum level of expected return dmax, this curve degenerates into just one 
point, with the coordinates equal to the variance and CVaR of the (only) efficient 
portfolio obtained for dmax, consisting of the asset with the highest expected return. 
 

4.5 The formulation of the mean-variance-CVaR model for scenario 
models 
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For the portfolio selection problem, as presented in Section 2, consider T 
scenarios and n assets with  

rij= the return of asset j under scenario i, for i=1…T and j=1…n; 
pi= the probability of scenario i occurring, for i=1…T; 
μj = the expected return of asset j, j=1…n; 
σjk = the covariance between the returns of assets j and k, for j,k=1…n. 

As presented in Section 3.3, the function  can be written as: αF

vrxvpvxF ij

T

i

n

j
ji −−= +

= =
∑ ∑ ][1),(

1 1αα . 

 
Thus, we write the mean-variance-CVaR model as: 

Min  jkk

n

kj
j xx σ∑

=1,

Subject to: 

dx j

n

j
j ≥∑

=

μ
1

 

zvyp
T

i
ii ≤−∑

=1

1
α

 

ij

n

j
ji rxvy ∑

=

−≥
1

,  ∀i∈{1,…,T} 

0≥iy , ∀i∈{1,…,T} 

1
1

=∑
=

n

j
jx  

0≥jx  ∀j∈{1,…,n} 
 
The minimisation is over v, x1,…,xn, y1,…,yT. 
 

5 Computational results 

5.1 The data set and methodology 
 
The purpose of this section is to investigate the practical performance of the 

mean-variance-CVaR model as compared to that of the mean-variance or mean-CVaR 
model. Precisely, for several levels of expected return, we select portfolios that are 
efficient in the mean-variance-CVaR model, but dominated in the mean-variance or 
mean-CVaR model, and we also consider the corresponding mean-variance efficient 
portfolio and the mean-CVaR efficient portfolio. We compare their in-sample and 
out-of-sample performances. 

We use CVaR at 0.01 confidence level. 
A dataset, drawn from the FTSE 100 index, was used for this analysis. The returns 

of the 76 stocks that belonged to the index throughout the period January 1993- 
December 2003 were considered (for each of the remaining 24 stocks data there is at 
least one missing data item in the specified period). The dataset consists of monthly 
returns and has 132 time periods, considered as equally probable scenarios (n=76, 
T=132). For the out-of sample analysis, the behaviour of the portfolios obtained was 

 16



examined over the eighteen months following the date of selection (January 2004- 
June 2005). The models were written in the MPL modelling language (Maximal 
Software Inc. 2000) and processed using CPLEX 9.0 optimisation solver (ILOG 
2003). The matrix of covariances of the returns is computed from historical data. 

 

5.2  In-sample analysis 
 

We consider six levels of expected return, which divide the interval [dmin,dmax] 
(see Section 4.4) into 5 equal parts: d1=dmin =0.009268, d2= 0.014034, d3= 0.018801, 
d4= 0.023567, d5= 0.028334, d6= dmax=0.0331. For each level of expected return di, 
with i=1...5, we determine zdi,min: the minimum level of CVaR (corresponding to the 
mean-CVaR efficient portfolio) and zdi,max: the maximum level of CVaR (the lowest 
CVaR of a mean-variance efficient portfolio with expected return di) and, between 
them, another 3 equally spaced levels of CVaR. Thus, the interval [zdi,min, zdi,max] for 
CVaR is divided into 4 equal parts. For a specific level of expected return, when 
solving the mean-variance-CVaR model with these CVaR levels, we obtain 5 
portfolios, denoted by: PCVaR, P1/4CVaR, P1/2CVaR, P3/4CVaR and Pvar respectively. Thus, 
PCVaR is the mean-CVaR efficient portfolio (with the lowest variance, for the specified 
expected return) and Pvar is the (unique) mean-variance efficient portfolio for the 
specified expected return (see fig. 5.1)7. 

We first investigate the composition of the considered portfolios. For all levels of 
expected return, the mean-variance efficient portfolios have considerably more assets 
in their composition than the mean-CVaR efficient portfolios. This was expected, 
since the “diversification effect” is the basis of the mean-variance theory.  

 

variance

CVaR

 

Pvar

P3/4CVaR

P1/2CVaR

P1/4CVaR

PCVaR

Fig. 5.1: The efficient frontier for a fixed level of expected return, in a variance-CVaR space. 
The interval for CVaR is divided into 4 equal parts. 

 
The other three portfolios P1/4CVaR, P1/2CVaR, P3/4CVaR have usually a number of 

assets in composition significantly higher than mean-CVaR efficient portfolios, but 
usually smaller than mean-variance efficient portfolios. There are cases in which these 
portfolios are as well as or even more diversified than the mean-variance efficient 
portfolios (see Table 5.1 below); we notice that this happens when the expected return 
of the portfolio is high, thus, at high levels of risk. However, in most cases, the 

                                                 
7 The CVaR level of P1/2CVaR is the arithmetic mean of the CVaR levels of PCVaR and Pvar. Similarly, the 
CVaR level of P1/4CVaR is the arithmetic mean of the CVaR levels of PCVaR and P1/2CVaR.
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number of assets in the composition increases while the level of variance decreases 
(and the level of CVaR increases). Generally, the assets there are in the composition 
of mean-CVaR efficient portfolios are also in the composition of portfolios with a 
higher CVaR level. However, there are assets in the composition of the mean-CVaR 
portfolios but not in the composition of portfolios with a higher CVaR level. This 
aspect happens for small portfolio expected returns, thus, at low levels of risk. It may 
be noticed that, while the expected portfolio return (and thus the risk) increases, those 
assets are no longer in the composition of any efficient portfolio.  
The portfolio weights of the efficient portfolios considered are presented in Appendix 
B. 

 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

d1=0.00927 10 17 20 22 23 
d2=0.01403 12 16 20 21 21 
d3=0.01880 8 11 13 12 13 
d4=0.02357 5 7 8 8 7 

d5=0.02833 3 4 5 6 6 
 
Table 5.1: The number of assets in the composition of mean-variance-CVaR efficient portfolios. 
 
We next investigate the in-sample performances of P1/4CVaR, P1/2CVaR, P3/4CVaR, as 
compared with those of PCVaR and Pvar. We analyse their return distributions using 
common in sample parameters. Obviously, the CVaR levels of P1/4CVaR, P1/2CVaR, 
P3/4CVaR are better than the CVaR of Pvar. On the other hand, their variance is generally 
significantly smaller than that of PCVaR. All the other in-sample parameters are 
between those of PCVaR and Pvar. In most cases, PCVaR has the return distribution with 
the best skewness, kurtosis and minimum of returns but also with the worst variance. 
In contrast, Pvar has the return distribution with the best variance but usually the worst 
skewness, kurtosis and minimum of returns. This is in line with the modelling 
paradigm since minimisation of CVaR leads to reduction in the (weighted) tail of the 
resulting portfolio return distribution. The other portfolios P1/4CVaR, P1/2CVaR, P3/4CVaR 
represent a compromise in between these two “extremes”. Their return distribution 
improves in the left tail, as compared with Pvar and also has a significantly smaller 
spread around the mean, as compared with PCVaR. In particular, P1/4CVaR has return 
distributions with the variance significantly smaller than that of PCVaR at the expense 
of a relatively small increase in CVaR. This aspect can be seen from Tables 5- 10 
(with the best values in italic bold and the worst values enclosed by rectangles) in 
Appendix C and is also illustrated in Fig. 5.1. 

In Fig. 5.2 below the histogram of the return distribution of PCVaR for expected 
return d1=0.00927 is presented. This distribution is positively skewed, with a short left 
tail, a long right tail and a large probability of outcomes below the expected value. 
Therefore, the probability of large losses is very small, but there is a large probability 
of small losses. In addition, this distribution is particularly “flat”, that is, not 
concentrated around the expected value. 
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Fig. 5.2: The histogram of the return distribution of PCVaR for expected return d1=0.00927. 
 
In Fig. 5.3 below the histogram of the return distribution of Pvar for the same expected 
return d1=0.00927 is presented. This distribution is negatively skewed, with a long left 
tail, a short right tail and also a large probability of outcomes above the expected 
value; thus, there is a large probability of small gains. This distribution is 
concentrated around the expected value. 
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Fig. 5.3: The histogram of the return distribution of Pvar for expected return d1=0.00927. 
 
In Fig. 5.4 below the histogram of the return distribution of P1/4CVaR for the same 
expected return d1=0.00927 is presented. This distribution has approximately the 
same shape as the return distribution of Pvar: concentrated around the expected value 
and with a large probability of outcomes just above the expected value. However, its 
left tail is shorter, due to the constraint imposed on the CVaR level, and thus the 
probability of large losses is reduced. 
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Fig. 5.4: The histogram of the return distribution of P1/4CVaR for expected return d1=0.00927. 
 

5.3 Out-of-sample analysis 
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We analyse the performance of the portfolios described in the previous section 
over the next 18 time periods following the date of selection (January 2004-June 
2005).  

The portfolios that are non-efficient in either the mean-variance or the mean-
CVaR model, denoted by P1/4CVaR, P1/2CVaR and P3/4CVaR, have an out-of-sample 
performance comparable to that of the mean-variance and the mean-CVaR efficient 
portfolios. It may be noted the generally good out-of-sample performance of the 
mean-CVaR portfolios and the somewhat poorer performance of the mean-variance 
portfolios, although the differences were not significant. 

In general, the best out-of-sample parameters correspond to mean-CVaR 
portfolios, but for some levels of expected return, P1/4CVaR had equally good or even 
better out-of-sample parameters (see Tables 5.2 and 5.3 below, with the best values in 
italic bold and the worse values enclosed by rectangles). 
 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Mean 0.016294 0.01472 0.013835 0.013556 0.01345
Median 0.013106 0.015918 0.01456 0.012515 0.011549
Standard Deviation 0.029173 0.026514 0.025082 0.023893 0.022882
Minimum -0.03494 -0.03156 -0.03316 -0.02945 -0.02491
Maximum 0.052624 0.07282 0.071134 0.068515 0.066001
 
Table 5.2: Ex-post parameters of the mean-variance-CVaR efficient portfolios with in-sample 
mean return d1= 0.009268. 
 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Mean 0.01133 0.012532 0.012342 0.012352 0.012342
Median 0.010171 0.013783 0.013118 0.012365 0.01231
Standard Deviation 0.028682 0.031943 0.03221 0.032159 0.032581
Minimum -0.04247 -0.03263 -0.03614 -0.03817 -0.04004
Maximum 0.081765 0.08752 0.082737 0.078024 0.072908
 
Table 5.3: Ex-post parameters of the mean-variance-CVaR efficient portfolios with in-sample 
mean return d3= 0.01880. 

 
Figure 5.5 presents the compound out-of-sample returns of the mean-variance-CVaR 
efficient portfolios with in-sample mean return d1= 0.009268. P1/4CVaR had a better 
out-of-sample performance than PCVaR in the first eight out-of-sample periods 
(January - August 2004) (moreover, PCVaR had a compound return less than one in 
February 2004, which means that its value fell below the amount invested). At the 
same time, P1/4CVaR had a better out-of-sample performance than Pvar in the last ten 
out-of-sample periods (September 2004 - June 2005). 
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Fig. 5.5: Ex-post compounded returns of the mean-variance-CVaR efficient portfolios with in-
sample mean return d1= 0.009268. 
 
Figure 5.6 presents the compounded out-of-sample returns of the mean-variance-
CVaR efficient portfolios with in-sample mean return d3= 0.01880. P1/4CVaR had a 
better out-of-sample performance than both PCVaR and Pvar, although the differences 
are small. 
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Fig. 5.6: Ex-post compounded returns of the mean-variance-CVaR efficient portfolios with in-
sample mean return d3= 0.01880. 
 

6 Summary and Conclusions 
 
In this paper, we presented a model for portfolio selection, which selects a 

solution (distribution) on the basis of three parameters: the expected value, the 
variance and the CVaR at a specified confidence level. We called this model the 
mean-variance-CVaR model. The problem of selecting an efficient solution of this 
model is multi-objective: the expected value is maximised, while the variance and 
CVaR are minimised. We chose variance and CVaR mainly because they are well 
established risk measures that quantify risk from different perspectives: variance 
measures the deviation around the expected value while CVaR measures the average 
loss over a specified number of worst cases. 

Computationally, the problem reduces to solving a single objective problem in 
which variance is minimised, while constraints are imposed on the expected value and 
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CVaR. In the practice of portfolio selection, the random variables under consideration 
are usually represented as discrete and described by realisations under various 
scenarios. In this case, the problem is one of quadratic programming, thus routinely 
solved by standard available software. Having a constraint on CVaR rather than on 
the variance has advantages not only from a computational point of view. It is more 
natural to impose a maximum CVaR level than a maximum variance level, since 
CVaR represents the mean of the worst outcomes of a distribution.  

Varying the right hand side of the constraints on the expected value and on 
CVaR such that these constraints are active produces all the efficient solutions of the 
mean-variance-CVaR model. 

When solving the model for a fixed level of expected return, there is a range of 
efficient solutions. Plotted in a variance-CVaR space, they form a curve, with one end 
represented by the minimum variance portfolio (with the lowest CVaR), the other 
represented by the minimum CVaR portfolio (with the lowest variance).  

The model was tested on a dataset drawn from the FTSE 100 index. Several 
levels of expected return were considered, and, for each level of expected return, five 
portfolios that were efficient in the mean-variance-CVaR model, were analysed: the 
minimum variance portfolio, the minimum CVaR portfolio and other three portfolios  
that were dominated in both mean-variance and mean-CVaR models. As expected, the 
best in-sample parameters concerning the left tail of distributions corresponded to 
mean-CVaR efficient portfolios: highest skewness, lowest kurtosis and highest 
maximum. However, the return distributions of mean-CVaR efficient portfolios have 
also the highest variances. In contrast, the mean-variance efficient portfolios have the 
return distributions with the lowest variance, but also with the “worst” left tail (as 
described by skewness, kurtosis, minimum and CVaR). The other portfolios, efficient 
only in the mean-variance-CVaR model, improve on the left tail of the mean-variance 
efficient distributions: they have higher skewness, lower kurtosis higher maximum 
and higher CVaR. In some cases, this improvement comes at the expense of only a 
marginal increase in variance. The out-of-sample performances of these portfolios are 
comparable to those of the mean-variance and mean-CVaR efficient portfolios. In two 
out of five cases, such a portfolio achieved the highest mean of out-of-sample returns 
and in almost all cases led to the highest maximum of out-of-sample returns. 

As a final remark, it may be noted that the proposed model does not dismiss 
mean-variance or mean-CVaR models, but on the contrary, it “embeds” them. Most of 
the mean-variance and the mean-CVaR efficient solutions are particular solutions of 
the proposed model. For example, a mean-variance efficient solution is not a solution 
of the proposed model only if there is another mean-variance efficient solution with 
the same mean and variance but with lower CVaR. Likewise, from the set of mean-
CVaR efficient solutions with a specified mean return, only the one(s) with the lowest 
variance is solution of the proposed model. Thus, the proposed model makes a 
“positive” discrimination between mean-variance and mean-CVaR efficient solutions. 
In addition, the mean-variance-CVaR model has a range of solutions that are normally 
discarded by both mean-variance and mean-CVaR model. These solutions may bring 
an improvement in the distribution, in the case when the CVaR of a mean-variance 
efficient portfolio is considered to be unacceptably large. They represent a 
compromise between regulators’ requirements for short tails and classical fund 
managers’ requirements for small variance. In making the final choice, the personal 
preference of the decision-maker plays a key role. 
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Appendix A. The general case of a positive semi-definite covariance 
matrix 

 
Here we describe a method of producing the entire efficient frontier of the mean-

variance-CVaR model for the general case when the covariance matrix of returns is 
positive semi-definite. In this case, the minimisation of variance over a convex set 
may not have a unique optimal solution. Thus, when using the optimisation problem 
(P2) as described in Section 4.4, we may obtain solutions that are Pareto dominated in 
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(MVC)8. However, we can still use (P2) to produce the entire set of Pareto non-
dominated solutions of (MVC), provided the right hand sides d and z for the mean and 
CVaR constraints are chosen as described below. 

The level d for the expected value must lie in the interval [d’min,dmax] where dmax is 
the maximum possible expected return (as presented in Section 4.4). We define 
d’min=max{d’minvar, dminCVaR}, where d’minvar and dminCVaR are the expected returns of 
the minimum variance portfolio (mean-variance efficient) and minimum CVaR 
portfolio (mean-CVaR efficient) respectively. dminCVaR may be found as described in 
Section 4.4. The expected return of the minimum variance portfolio d’minvar cannot be 
determined so straightforward as for the case of a positive definite covariance matrix. 
We cannot just minimise variance over the whole feasible set A (with no constraints 
on the mean) since there may be different optimal solutions to this problem, with the 
same (optimal) variance but with different expected returns. Among these solutions 
that globally minimise variance, we consider only the one with the maximum 
expected return. To obtain this solution, we first solve the problem: 
 
min  )(2 xσ
Subject to: x∈A. 
 
Denote the optimum value of this problem by σmin.  
In order to find the specific optimal solution of this problem with the maximum 
possible expected return, we propose a convex program with quadratic constraint: 
 
max  )(xE
Subject to:  min

2 )( σσ ≤x
                    x∈A. 
The optimal value of the above optimisation problem is d’minvar. 
 
Furthermore, for a specific d∈[d’min,dmax], the right hand side for the CVaR constraint 
z must lie in the interval [zd,min,z’d,max]; zd,min is the best (minimum) CVaRα level for 
the expected return d  and may be found as described in Section 4.4. z’d,max is the 
minimum CVaRα level of the mean-variance efficient portfolios with expected return 
d9. 

In order to determine z’d,max, one may solve two optimisation problems. 
Firstly, the optimal variance for the expected return d (denoted by σ2

d) may be found 
as the optimal value of the objective function in the problem: 
 
min  )(2 xσ
Subject to: E(x)≥d 
                   x∈A. 
 
Secondly, z’d,max may be found as the optimal value of the objective function in the 
problem: 
                                                 
8 For example, multiple optimal solutions of (P2) may have the same variance, the same expected 
return but different CVaRs; only the one with the lowest CVaR is Pareto efficient in (MVC). 
9 In case there are several mean-variance efficient portfolios with expected return d, with different 
CVaR levels, only the portfolio with the lowest CVaR is efficient in the (MVC) model; its CVaR level 
is denoted by zd,max. 
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Min Fα(x,v) 
Subject to: E(x)≥d 
                 σ2(x)≤σ2

d

                 x∈A, v∈R. 
 
Proposition A.1: Consider the optimisation problem 
(P1): min  )(2 xσ
         Subject to: ≤z )(xCVaRα

                            E(x)≥d 
                            x∈A. 
 
If x* is an optimal solution of (P1) for d∈[d’min,dmax] and z∈[zd,min,z’d,max] (as 
described above), then x* is Pareto efficient in (MVC). 
 
Proof: Assume that x* is not Pareto efficient in (MVC). Denote by x’ a feasible 
solution of (MVC) that Pareto dominates x*. This means that σ2(x’)≤σ2(x*), 
CVaRα(x’)≤CVaRα(x*)≤z and E(x’)≥E(x*)≥d with at least one strict inequality. Thus, 
x’ is a feasible solution of (P1). The case σ2(x’)<σ2(x*) is excluded since this 
contradicts the fact that x* is an optimal solution of (P1). It only remains the 
possibility that x’ and x* are both optimal solutions of (P1) and 
CVaRα(x’)<CVaRα(x*)≤z or E(x’)>E(x*)≥d.  
Consider first the case CVaRα(x’)<CVaRα(x*)≤z; thus, x’ is an optimal solution of 
(P1) and the constraint ≤z is not binding. Since (P1) is a convex 
optimisation problem, it follows that x’ is an optimal solution of the “reduced” 
problem, obtained from (P1) by removing the constraint on CVaR: 

)(xCVaRα

(P1red): min  )(2 xσ
            Subject to: E(x)≥d 
                               x∈A. 
This means that both x’ and x* are mean-variance efficient portfolios with expected 
return d∈[d’min,dmax]. Thus, we have two mean-variance efficient solutions with the 
same variance, the same expected return d but different CVaRs. 
CVaRα(x’)<CVaRα(x*)≤z≤z’d,max. However, z’d,max is, by construction, the lowest 
possible CVaR of a mean-variance efficient portfolio with mean return d and we have 
a contradiction.  
Obviously the constraint E(x)≥d  in (P1) is binding for d∈[d’min,dmax]; thus, the case 
E(x’)>E(x*)≥d is also impossible and this ends the proof. 
 

Thus, when the right hand sides d and v are chosen as above, the constraints 
on CVaR and on mean are active. 

It was shown in Section 4.2 that the constraint ≤z can be replaced 
with the constraint F

)(xCVaRα

α(x,v)≤z, v∈R and thus the problem (P2), equivalent to (P1), is 
obtained: 
(P2): min  )(2 xσ
         Subject to: ≤z ),( vxFα

                            E(x)≥d 
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                            x∈A, v∈R 
 

Solving problem (P2) with d varying between d’min and dmax and z varying 
between zd,min and z’d,max as described above produces all the efficient solutions of the 
mean-variance-CVaR model. 
 
 

Appendix B. The composition of efficient portfolios 
 
asset index PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0.028 0.074 0.059 0.049 0.047
5 0.194 0.050 0.034 0.027 0.024

11 0 0.055 0.068 0.065 0.052
13 0 0.059 0.070 0.075 0.072
16 0 0.013 0.029 0.025 0.018
17 0 0.005 0.026 0.046 0.048
21 0 0 0.008 0.009 0.007
24 0 0 0 0.008 0.023
25 0 0.018 0.026 0.037 0.045
27 0.004 0.049 0.076 0.076 0.071
40 0.208 0.093 0.081 0.064 0.067
42 0 0.017 0.044 0.056 0.051
43 0.061 0.086 0.067 0.061 0.056
44 0.026 0.075 0.059 0.046 0.052
45 0.073 0.078 0.066 0.052 0.042
48 0 0 0 0 0.007
63 0 0 0 0 0.015
64 0 0 0 0.002 0.005
65 0.025 0.100 0.066 0.057 0.039
66 0 0 0.006 0.045 0.064
69 0.171 0.073 0.035 0.010 0 
70 0 0 0.033 0.056 0.064
72 0 0.026 0.051 0.059 0.069
73 0.211 0.129 0.094 0.077 0.063

Table 1: The portfolio weights of the efficient portfolios for d1= 0.009268. 
 
 
 
 
 
 
asset index PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0.095 0.106 0.099 0.087 0.082
5 0.140 0.075 0.059 0.058 0.059

10 0.044 0 0 0 0 
13 0 0.067 0.071 0.080 0.084
16 0.032 0.036 0.031 0.015 0.011
17 0 0.043 0.064 0.073 0.075
21 0.011 0.042 0.043 0.046 0.050
24 0 0 0 0.001 0.014
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25 0.019 0.007 0.021 0.025 0.020
27 0 0.045 0.039 0.028 0.020
28 0.074 0.031 0 0 0 
40 0 0.060 0.064 0.047 0.033
42 0 0 0.000 0.005 0.006
43 0 0.031 0.006 0 0 
44 0.056 0.111 0.100 0.080 0.082
45 0.179 0.165 0.133 0.116 0.103
48 0 0 0 0.015 0.020
56 0 0 0.013 0.029 0.039
58 0.024 0.009 0.017 0.027 0.032
63 0 0.005 0.034 0.043 0.048
65 0 0 0.003 0.019 0.025
66 0 0 0.028 0.042 0.050
69 0.079 0 0 0 0 
70 0 0 0.036 0.054 0.061
73 0.246 0.164 0.140 0.110 0.085

Table 2: The portfolio weights of the efficient portfolios for d2= 0.01403. 
 
 
asset index PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0.143 0.128 0.124 0.123 0.119
5 0.091 0.024 0.043 0.056 0.064

13 0 0 0 0 0.024
16 0 0 0.002 0.022 0.036
17 0 0.028 0.056 0.062 0.061
21 0.038 0.094 0.107 0.119 0.130
44 0.062 0.161 0.135 0.130 0.124
45 0.298 0.228 0.215 0.187 0.165
48 0 0 0.000 0 0 
56 0.045 0.066 0.085 0.103 0.118
58 0.084 0.080 0.075 0.073 0.070
63 0 0.023 0.024 0.016 0.004
73 0.239 0.164 0.125 0.093 0.065
76 0 0.004 0.010 0.016 0.020

Table 3: The portfolio weights of the efficient portfolios for d3= 0.0188. 
 
 
 
 
 
 
 
asset index PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0.044 0.154 0.147 0.135 0.134
21 0.262 0.175 0.190 0.203 0.218
44 0 0 0.017 0.032 0.045
45 0.381 0.276 0.256 0.246 0.218
56 0 0.103 0.138 0.174 0.204
58 0.171 0.181 0.168 0.154 0.145
73 0.141 0.090 0.056 0.021 0 
76 0 0.021 0.027 0.035 0.036
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Table 4: The portfolio weights of the efficient portfolios for d4= 0.02357. 
 
 
asset index PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

4 0 0 0 0.013 0.015
21 0.298 0.331 0.335 0.323 0.327
45 0.234 0.158 0.097 0.056 0.016
56 0 0.071 0.136 0.159 0.195
58 0.469 0.441 0.429 0.418 0.405
76 0 0 0.003 0.032 0.042

 
Table 5: The portfolio weights of the efficient portfolios for d5= 0.02833. 
 
For the highest level of expected return d6= dmax=0.0331, the efficient portfolio 
consists of the asset no 58. 

 

Appendix C. The in-sample parameters for the return distributions of 
efficient portfolios 
 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.010905 0.009989 0.010678 0.011774 0.011348
Standard Deviation 0.039557 0.032288 0.030899 0.030186 0.030006
Skewness 0.175763 -0.43318 -0.59261 -0.75996 -0.89894
Kurtosis -0.16328 0.214433 0.763715 1.35481 1.964419
Minimum -0.05813 -0.06857 -0.08198 -0.09601 -0.10946
Maximum 0.128209 0.085995 0.084375 0.081927 0.077194
 
Table 6: In-sample parameters for the return distributions of efficient portfolios in the mean-
variance-0.01CVaR model with expected return d1= 0.009268. 
 

 
 
 
 
 
 
 
 
 

 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.009982 0.016801 0.016398 0.017359 0.0176
Standard Deviation 0.043277 0.035516 0.034453 0.03398 0.033852
Skewness 0.238317 -0.5367 -0.64824 -0.75897 -0.87193
Kurtosis 0.100689 0.329636 0.799505 1.213484 1.633637
Minimum -0.07056 -0.07906 -0.08756 -0.09606 -0.10498
Maximum 0.149618 0.095584 0.093019 0.090123 0.087926
 
Table 7: In-sample parameters for the return distributions of efficient portfolios in the mean-
variance-0.01CVaR model with expected return d2= 0.014034. 
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  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.019982 0.021909 0.021945 0.022453 0.02225
Standard Deviation 0.051467 0.045116 0.043917 0.043138 0.042869
Skewness 0.105138 -0.27928 -0.35782 -0.44374 -0.50531
Kurtosis 0.816632 0.588582 0.748811 1.016336 1.309189
Minimum -0.09186 -0.10046 -0.11094 -0.12183 -0.13216
Maximum 0.188287 0.139995 0.132851 0.127387 0.12672
 
Table 8: In-sample parameters for the return distributions of efficient portfolios in the mean-
variance-0.01CVaR model with expected return d3= 0.018801 
 
 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.026665 0.02185 0.023582 0.022484 0.023786
Standard Deviation 0.071333 0.061135 0.059382 0.058374 0.058031
Skewness 0.595438 -0.12047 -0.23122 -0.30692 -0.36555
Kurtosis 3.354617 0.816052 0.797705 0.808283 0.834841
Minimum -0.12247 -0.13142 -0.14231 -0.1528 -0.16327
Maximum 0.367729 0.204922 0.181086 0.162425 0.159635
 
Table 9: In-sample parameters for the return distributions of efficient portfolios in the mean-
variance-0.01CVaR model with the expected return d4= 0.023567. 
 
 
  PCVaR P1/4CVaR P1/2CVaR P3/4CVaR Pvar

Median 0.035256 0.032523 0.027021 0.023606 0.022036
Standard Deviation 0.091039 0.088892 0.087699 0.087357 0.087337
Skewness 0.319572 0.215952 0.112308 0.050204 0.041352
Kurtosis 1.470049 1.069079 0.885207 0.817357 0.841093
Minimum -0.19129 -0.19541 -0.19749 -0.19974 -0.20228
Maximum 0.358639 0.308329 0.26884 0.266499 0.267819
 
Table 10: In-sample parameters for the return distributions of efficient portfolios in the mean-
variance-0.01CVaR model with expected return d5= 0.028334. 
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