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This paper is concerned with the robust fault detection

problem for a class of discrete-time networked systems with

distributed sensors. Since the bandwidth of the communication

channel is limited, packets from different sensors may be

dropped with different missing rates during the transmission.

Therefore, a diagonal matrix is introduced to describe the

multiple packet dropout phenomenon and the parameter

uncertainties are supposed to reside in a polytope. The aim is to

design a robust fault detection filter such that, for all probabilistic

packet dropouts, all unknown inputs and admissible uncertain

parameters, the error between the residual (generated by the

fault detection filter) and the fault signal is made as small as

possible. Two parameter-dependent approaches are proposed

to obtain less conservative results. The existence of the desired

fault detection filter can be determined from the feasibility of

a set of linear matrix inequalities that can be easily solved by

the efficient convex optimization method. A simulation example

on a networked three-tank system is provided to illustrate the

effectiveness and applicability of the proposed techniques.
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I. INTRODUCTION

Due to the rapid development of network

technology, more and more practical complex

systems have their sensors, actuators, and controllers

connected via communication networks [3, 14,

27, 32]. These kinds of systems, also called

networked control systems (NCSs), can be found in

a variety of engineering areas such as automobiles,

manufacturing plants, and aircrafts systems. With

respect to traditional control systems, NCSs have

many advantages such as low cost, reduced weight

and power requirements, simple installation and

maintenance, and high reliability. However, the

usage of network cables inevitably makes the

analysis and design of the NCSs complicated. The

limited bandwidth of the communication channel

brings new issues such as network-induced time

delay, data missing, and quantization effect, which

constitute potential sources of instability and poor

performance of NCSs. Methods developed from

conventional control theory are no longer applicable

for the analysis and design for NCSs and should be

modified to account for the additional complexity

[1, 21]. Among the effects introduced by the limited

bandwidth of communication networks, in this paper,

attention is focused on the data missing phenomenon

that results from transmission errors in physical

network links or from buffer overflows due to

congestion [8, 10].

Packet dropouts can be modeled within a

deterministic framework [29, 30, 32]. However, more

and more research attention has recently been paid to

various probabilistic settings since the packet dropout

is inherently of a random bahavior. For example, in

[22], [23], a Bernoulli distributed white sequence

taking on values of 0 and 1 has been used to describe

the missing measurement. In [18], finite-state Markov

chains have been introduced to model correlated

dropouts. In [25], Poisson processes have been

employed to model stochastic dropouts in continuous

time. Very recently, the multiple packet dropouts have

been considered in [19], [20] where the number of

possible consecutive packet dropouts is limited by a

known bound.

It is worth pointing out that, in the context of

network-induced packet dropouts, most existing

literature has dealt with the problems of stability

analysis, controller synthesis, or the state estimation

[6, 26]. Although the fault detection and isolation

(FDI) is widely recognized as an important technique

to guarantee higher safety and reliability standards

of modern control systems [4, 16], only few results

have been dedicated to the topic of FDI for networked

systems [5, 31]. On the other hand, most reported

results concerning NCSs have focused on the case

when the network has one channel only [28] or the

case when the measurements at a certain time instant
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are sent via the communication network in one packet.

However, in many real networked systems, it is quite

common that the sensors are spatially located in the

remote node [11, 12, 15], and data from different

sensors may have different missing rates (dropout

probabilities) for different channels due to their

individual characteristics. Furthermore, modeling

errors are generally unavoidable and any system

design should be robust against possible parameter

uncertainties or variations. Unfortunately, up to now,

the robust fault detection problem has not yet drawn

any research attention for networked systems with

distributed sensors having individual data missing

probability, and the purpose of this paper is therefore

to shorten such a gap.

In this paper, attention is focused on a kind

of networked systems with distributed sensors as

shown in Fig. 1. At a certain time instant, data

from different sensors are packed in different

packets and then sent to the fault detection node via

communication networks. Packets are transmitted

through different channels, and they may be

lost at different missing rates due to the limited

bandwidth of the common communication channels.

A diagonal matrix is introduced to model the multiple

packet dropout phenomenon, and polytopic type

uncertainties of system parameters are considered.

Two parameter-dependent approaches are developed

to reduce the design conservatism from traditional

quadratic stability methods.

Notation: The notations used throughout the

paper are fairly standard. Rn and Rn£m denote,
respectively, the n dimensional Euclidean space and

the set of all n£m real matrices; AT denotes the
transpose of a matrix A; P > 0 means that P is real

symmetric and positive definite; Prf¶g represents
the occurrence probability of the event “¶”; Ef%g
stands for the expectation of a stochastic variable %;

l2[0,1) is the space of all square-summable vector
functions over [0,1); kxk is the standard l2 norm of

x, i.e., kxk= (xTx)1=2. In symmetric block matrices,
“¤” is introduced to represent the term that can be

determined by symmetry. diagf¢ ¢ ¢g stands for a
block-diagonal matrix and the notation diagqf»g is
employed to represent diagf» ¢ ¢ ¢»| {z }

q

g.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of discrete-time

networked systems with distributed sensors:

xk+1 = A¸xk +B¸wk +E¸fk

x0 = '0
(1)

where xk 2Rn is the state vector; wk 2Rp is the
disturbance input belonging to l2[0,1); fk 2 Rq is the
fault to be detected; '0 is a given initial value; A¸,

Fig. 1. Fault detection for networked system with distributed

sensors.

B¸, and E¸ are real constant matrices with appropriate

dimensions.

Since the bandwidth of the communication channel

is limited, data generated from sensors may be lost or

occupied by noise during the transmission process.

Consider that the sensors are distributively located

at the system side, packets from different sensors

may be lost with different missing rates. To describe

this phenomenon, a diagonal matrix £k is introduced

which results in the following new measurement

model:
yk =£kC¸xk +D¸wk (2)

where yk 2 Rm is the measurement received at the
fault detection filter node. £k = diagfμ1k , : : : ,μmk g is
a diagonal matrix that accounts for the different

missing rate of the individual channel. Specifically,

for any 1· r ·m, μrk 2 f0,1g is a Bernoulli distributed
stochastic variable satisfying

Prfμrk = 1g= Efμrkg= ¯r

Prfμrk = 0g= 1¡Efμrkg= 1¡¯r:
(3)

where ¯r(1· r ·m) are exactly known scalars taking
values in [0,1].

REMARK 1 Similar to the idea of incompleteness

matrix in measurement model adopted in [17], a

diagonal matrix with its diagonal entries taking

values of 0 or 1 is employed to model the multiple

packets dropout phenomenon in networked system

with distributed sensors. μrk = 0 corresponds the

dropout of the rth packet in time instant k and μrk = 1

represents the ideal transmission of this packet. In

terms of such a newly introduced diagonal matrix,

the following three cases that usually occur in a

networked environment can be dealt with in a unified

framework. a) The first is ideal transmission, which

means that the network status is perfect and no

packet dropout phenomenon happens. In this case,

¯r = 1 for 1· r ·m. b) The second partial packet
dropouts, where some packets are lost during the

transmission and, at a certain time, only part of the

measurements are received by the fault detection filter

node. This corresponds to the multiple packet case

with ¯r = 0 for some 1· r ·m. c) The third is one
packet transmission case, where at a certain instant,

all dimensions of the measurement are either lost

completely or transmitted successfully with the same

missing rate. This binary measurement model can be
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recovered by imposing μrk = μk for all 1· r ·m and is
widely used in recent literature [22, 23].

The above measurement model (2) can be further

transformed into the following form

yk =

mX
r=1

μrkC
r
¸xk +D¸wk (4)

where

Cr¸ = diagf
r¡1z }| {

0, : : : ,0,1,

m¡rz }| {
0, : : : ,0gC¸: (5)

All system matrices in (1) and (2) are supposed to

have appropriate dimensions. Note that in practice it

may be difficult or impossible to obtain exact models.

Therefore, the present paper considers the parameters

which are subject to uncertainties of polytopic type,

i.e.,
−¸ = (A¸,B¸,E¸,C¸,D¸) 2 < (6)

where < is a given convex polyhedral domain
described by v vertices:

<=
(
−¸ j −¸ =

vX
i=1

¸i−i;

vX
i=1

¸i = 1,¸i ¸ 0
)

(7)

and −i = (Ai,Bi,Ei,Ci,Di) denotes the ith vertex of the

polytope.

A full-order fault detection filter of the following

form is interested in

x̃k+1 =Gx̃k +Kyk

rk = Lx̃k
(8)

where x̃k 2Rn is the filter state vector, rk 2 Rq is the
so-called residual that is compatible with the fault

vector fk. Our main aim is to make the error between

residual and fault signal as small as possible.

By defining ´k = [x
T
k x̃

T
k ]
T, vk = [w

T
k f

T
k ]

T and

r̃k = rk ¡fk, we obtain the following overall fault
detection dynamics.

´k+1 =

"
A0¸+

mX
r=1

(μrk ¡¯r)Ar¸
#
´k +B¸vk

r̃k = C¸´k +D¸vk
(9)

with initial condition ´0, where

A0¸ =

264 A¸ 0

mX
r=1

¯rKCr¸ G

375
Ar¸ =

·
0 0

KCr¸ 0

¸
, B¸ =

·
B¸ E¸

KD¸ 0

¸
C¸ = [0 L], D¸ = [0 ¡ I]:

(10)

Considering the existence of the stochastic

variables μrk (1· r ·m), let us recall the definition
of stochastic stability in the mean-square sense for the

fault detection system (9).

DEFINITION 1 Reference [22] system (9) with vk = 0
is said to be exponentially mean-square stable if, for
any initial conditions, there exist constants ® > 0 and
· 2 (0,1) such that

Efk´kk2g · ®·kEfk´0k2g, k 2 Z+: (11)

Assumption 1 System (1) is exponentially
mean-square stable or has been stabilized by
local controller (or networked controller) to be
exponentially mean-square stable.

Based on the above definition, the robust
network-based fault detection filter design (RNFDFD)
problem with distributed sensors can now be
formulated as the following robust H1 filtering
problem [7, 9, 26]: designing a robust H1 filter of
the form (8) for the system (1)—(2) such that, for
all admissible parameter uncertainties and possible
multiple packet dropouts, 1) the overall fault detection
dynamics (9) are exponentially mean-square stable
when vk = 0 and, 2) under zero initial condition, the
infimum of ° is made small in the feasibility of

sup
vk 6=0

Efkr̃kk2g
kvkk2

< °2, ° > 0: (12)

In this paper, the residual evaluation function Jk as
well as the threshold Jth are adopted as

Jk =

(
kX
s=0

rTs rs

)1=2
Jth = sup

vk2l2,fk=0
EfJkg:

(13)

Furthermore, the occurrence of faults can then
be detected by comparing Jk with the prescribed Jth
according to:

Jk > Jth)with faults) alarm

Jk · Jth) no faults:

III. FAULT DETECTION FILTER PERFORMANCE
ANALYSIS

In this section, for a given fault detection filter,
the H1 performance analysis problem is discussed.
The following lemma is helpful in deriving our main
results in the sequel.

LEMMA 1 Consider the networked system (1) with
multiple packet dropouts (2). Given a scalar ° > 0 and
a fault detection filter (8) with parameters G, K and
L, if there exists a positive definite matrix P̧ = PT¸ > 0
satisfying26666664

¡I 0 0 C¸ D¸
¤ ¡P̧ d 0 ½dP̧ dAc¸ 0

¤ ¤ ¡P̧ P̧ A0¸ P̧ B¸
¤ ¤ ¤ ¡P̧ 0

¤ ¤ ¤ ¤ ¡°2I

37777775< 0 (14)
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where P̧ d = diagmfP̧ g, ½d = diagf½1I2n, : : : ,½mI2ng,
½r =

p
¯r(1¡¯r) (1· r ·m), Ac¸ = [A1T¸ : : :AmT¸ ]T,

and A0¸, Ar¸, B¸, C¸, D¸ is defined in (10), then the
fault detection dynamic (9) is exponentially

mean-square stable and satisfies the H1 attenuation

condition (12).

PROOF Consider a Lyapunov functional

Vk = ´
T
k P̧ ´k (15)

where P̧ > 0. Noting that for 1· r ·m and 1· s·m,

Ef(μrk ¡¯r)(μsk ¡¯s)g=
½
¯r(1¡¯r), r = s

0, r 6= s
(16)

we can calculate the difference of Vk with vk = 0 as

below:

¢Vk := EfVk+1(´k+1) j ´k, : : : ,´0g¡Vk(´k)

= ´Tk

"
A0T¸ P̧ A0¸+

mX
r=1

½2rArT¸ P̧ Ar¸¡ P̧
#
´k:

It follows from Schur complement [2] that (LMI)

(14) implies ¢Vk < 0 for all non-zero ´k. A proper

positive scalar # > 0 can also be found such that

¢Vk <¡#k´kk2. Furthermore, from [22, Lemma 1],

it can be confirmed that the fault detection system (9)

is exponentially mean-square stable.

Next, for any non-zero vk, it follows from (9) and

(15) that

¢Vk +Efr̃Tk r̃kg¡ °2EfvTk vkg · ÂTk
·
¥1 ¥2

¤ ¥3

¸
Âk

(17)
where

Âk = [´
T
k vTk ]

T

¥1 =A0T¸ P̧ A0¸+
mX
r=1

½2rArT¸ P̧ Ar¸¡ P̧ + CT¸C¸

¥2 =A0T¸ P̧ B¸+ CT¸D¸
¥3 = BT¸ P̧ B¸+DT¸D¸¡ °2I:

Again, using Schur complement [2], it can be

observed from (14) and (17) that for any ´k and vk
that are not all zero,

¢Vk +Efr̃Tk r̃kg¡ °2EfvTk vkg< 0: (18)

Now, summing up (18) from 0 to 1 with respect

to k yields

1X
k=0

Efkr̃kk2g< °2
1X
k=0

Efkvkk2g+EfV0g¡EfV1g:

(19)

Since the system (9) is exponentially mean-square

stable, it is straightforward to see that (12) holds

under the zero initial condition. The proof is

completed.

IV. ROBUST FAULT DETECTION FILTER DESIGN

This section provides a solution to the RNFDFD

design problem. The following is an equivalent form

of Lemma 1.

LEMMA 2 Consider the networked system (1) with

distributed sensors (2) and a given fault detection filter

of the form (8). For any fixed −¸ 2 <, there exists a
matrix P̧ = PT¸ > 0 such that (14) holds if and only if

there exist matrices P̧ = PT¸ > 0 and M¸ satisfying26666664

¡I 0 0 C¸ D¸
¤ ª1 0 ½dM

T
¸dAc¸ 0

¤ ¤ ª2 MT
¸ A0¸ MT

¸ B¸
¤ ¤ ¤ ¡P̧ 0

¤ ¤ ¤ ¤ ¡°2I

37777775< 0 (20)

where ª1 = P̧ d ¡MT
¸d ¡M¸d, ª2 = P̧ ¡MT

¸ ¡M¸,
M¸d = diagmfM¸g.
PROOF The proof is similar with that for Corollary 1

in [9] and is omitted here.

REMARK 2 The superiority of Lemma 2 to Lemma 1

owes to the introduction of an additional free matrix

M¸, which eliminates the product term of P̧ and

the system matrices. This provides us an effective

way to get a less conservative than the “quadratic

result” [9] when parameter uncertainty is taken into

consideration in the robust fault detection design

procedure.

The following theorem deals with the addressed

fault detection filter design problem with fixed system

parameters.

THEOREM 1 Consider the networked system (1) and

(2) with fixed and known parameters −¸ 2 <. There
exist matrices P̧ = PT¸ > 0, M¸, as well as a filter with

parameters G, K, L satisfying (20) if and only if there

exist P̧̄ > 0, R¸, S¸, Ţ , Ḡ, K̄, L̄, satisfying26666664

¡I 0 0 ©1 ©2

¤ ©3 0 ©4 0

¤ ¤ ©5 ©6 ©7

¤ ¤ ¤ ©8 0

¤ ¤ ¤ ¤ ¡°2I

37777775< 0 (21)

where ½̃d = diagf½1In, : : : ,½mIng and
©1 = [0 L̄], ©2 = [0 ¡ I]

©3 =

"
P̄1¸d ¡R¸d ¡RT¸d P̄2¸d ¡ S¸d ¡ Ţ d

¤ P̄3¸d ¡ Ţ d ¡TT¸d

#
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©4 =

"
½̃dK̄dC

c
¸ 0

½̃dK̄dC
c
¸ 0

#
, K̄d = diagmfK̄g

©5 =

"
P̄1¸¡R¸¡RT¸ P̄2¸¡ S¸¡ Ţ

¤ P̄3¸¡ Ţ ¡TT¸

#

©6 =

266664
RT¸A¸+ K̄

mX
r=1

¯rCr¸ Ḡ

ST¸A¸+ K̄

mX
r=1

¯rCr¸ Ḡ

377775
©7 =

"
RT¸B¸+ K̄D¸ RT¸E¸

ST¸B¸+ K̄D¸ ST¸E¸

#

©8 =¡P̧̄ , P̧̄ =

"
P̄1¸ P̄2¸

¤ P̄3¸

#
P̄1¸d = diagmfP̄1¸g, P̄2¸d = diagmfP̄2¸g
P̄3¸d = diagmfP̄3¸g, R¸d = diagmfR¸g
S¸d = diagmfS¸g, Ţ d = diagmfŢ g:

Moreover, if (21) is feasible, the parameters of the

desired fault detection filter can be obtained by·
G K

L 0

¸
=

·
T¡1¸ 0

0 I

¸·
Ḡ K̄

L̄ 0

¸
: (22)

PROOF (Necessity) Suppose there exist matrices

P̧ , M¸ and fault detection filter parameters G, K, L

satisfying (20). Rewrite the following matrices into the

block type of the following form

P̧ =

·
P1¸ P2¸

¤ P3¸

¸
, M¸ =

·
M1¸ M2¸

M3¸ M4¸

¸
:

Without loss of generality, it can be assumed that

M3¸ and M4¸ are nonsingular. Define

T¸ =
·
I 0

0 M¡1
4¸ M3¸

¸
,

T¸d = diagmfT¸g

P̧̄ =

"
P̄1¸ P̄2¸

¤ P̄3¸

#
= T T¸ P̧ T¸:

(23)

Postmultiplying and premultiplying (20) with

diagfI,T¸d,T¸,I,Ig and its transpose, together with
(10), it can be obtained that266666664

¡I 0 0 ©̄1 D¸
¤ diagmf©̄3g 0 ©̄2 0

¤ ¤ ©̄3 ©̄4 ©̄5

¤ ¤ ¤ ¡P̧̄ 0

¤ ¤ ¤ ¤ ¡°2I

377777775
< 0 (24)

where

©̄1 = [0 LM¡1
4¸ M3¸], ©̄3 =

"
©̄6 ©̄7

¤ ©̄8

#

©̄2 =

"·
½1M

T
3¸KC

1
¸ 0

½1M
T
3¸KC

1
¸ 0

¸T
, : : : ,

·
½mM

T
3¸KC

m
¸ 0

½mM
T
3¸KC

m
¸ 0

¸T#T

©̄4 =

"
MT
1¸A¸+ ©̄9 MT

3¸GM
¡1
4¸ M3¸

MT
3¸M

¡T
4¸ M

T
2¸A¸+ ©̄9 MT

3¸GM
¡1
4¸ M3¸

#

©̄5 =

·
MT
1¸B¸+M

T
3¸KD¸ MT

1¸E¸

MT
3¸M

¡T
4¸ M

T
2¸B¸+M

T
3¸KD¸ MT

3¸M
¡T
4¸ M

T
2¸E¸

¸
©̄6 = P̄1¸¡M1¸¡MT

1¸,

©̄7 = P̄2¸¡M2¸M¡1
4¸ M3¸¡MT

3¸M
¡1
4¸ M3¸

©̄8 = P̄3¸¡MT
3¸M

¡1
4¸ M3¸¡MT

3¸M
¡T
4¸ M3¸

©̄9 =

mX
r=1

¯rMT
3¸KC

r
¸:

Consider a new matrix ¤ 2 R2mn£2mn with its
entries being ¤®¯,(2®¡1)¯ = ¤(®+m)¯,2®¯ = 1 for all
1· ®·m and 1· ¯ · n, and other entries being all
zero. Once again, perform congruence transformation

to (24) by diagfI,¤T,I,I,Ig, we can infer that (24) is
equivalent to266666664

¡I 0 0 ©̄1 D¸
¤ ©̃3 0 ©̃2 0

¤ ¤ ©̄3 ©̄4 ©̄5

¤ ¤ ¤ ¡P̧̄ 0

¤ ¤ ¤ ¤ ¡°2I

377777775
< 0 (25)

where

©̃3 =

"
©̃6 ©̃7

¤ ©̃8

#
, ©̃2 =

·
½̃dM

T
3¸dKdC

c
¸ 0

½̃dM
T
3¸dKdC

c
¸ 0

¸

©̃6 = P̄1¸d ¡M1¸d¡MT
1¸d, Cc¸ =

h
C1T¸ : : :CmT¸

iT
©̃7 = P̄2¸d ¡M2¸dM¡1

4¸dM3¸d ¡MT
3¸dM

¡1
4¸dM3¸d

©̃8 = P̄3¸d ¡MT
3¸dM

¡1
4¸dM3¸d ¡MT

3¸dM
¡T
4¸dM3¸d

M1¸d = diagmfM1¸g, M2¸d = diagmfM2¸g
M3¸d = diagmfM3¸g, M4¸d = diagmfM4¸g
Kd = diagmfKg:

Define new matrices

R¸ =M1¸, S¸ =M2¸M
¡1
4¸ M3¸

Ţ =MT
3¸M

¡1
4¸ M3¸, Ḡ =MT

3¸GM
¡1
4¸ M3¸

K̄ =MT
3¸K, L̄= LM¡1

4¸ M3¸:

(26)
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By substituting (26) to (25), (21) can be obtained and

then the necessity is proved.

(Sufficiency) Suppose there exist matrices P̧̄ > 0,

R¸, S¸, Ţ , Ḡ, K̄, L̄ satisfying (21), it is straightforward

to know that Ţ is nonsingular. It can be further

noted that nonsingular matrices M4¸ and M3¸ satisfy

Ţ =M3¸M
¡1
4¸ M3¸. Introduce nonsingular matrix T¸ as

in (23) and define the following matrices

M¸ =

·
R¸ S¸M

¡1
3¸ M4¸

M3¸ M4¸

¸
P̧ = T ¡T¸ P̧̄ T ¡1¸

G =M¡T
3¸ ḠM

¡1
3¸ M4¸

K =M¡T
3¸ K̄

L= L̄M¡1
3¸ M4¸

(27)

one can get P̧ > 0.

Performing congruence transformation to (21)

first by diagfI,¤,I,I,Ig (¤ is defined as before), and
second by diagfI,T ¡1¸d ,T ¡1¸ ,I,Ig, (20) can be obtained.
The proof of sufficiency is finished.

Furthermore, from the proof of sufficiency, if there

exist matrices P̧̄ > 0, R¸, S¸, Ţ , Ḡ, K̄, L̄ satisfying

(21), the parameters of the fault detection filter

satisfying (20) can be obtained by (27). The transfer

function from vk to r̃k can be further given by

Tvr̃(z) = L(zI¡G)¡1K: (28)

Substituting (27) into (28) and considering the

relationship Ţ =MT
3¸M

¡1
4¸ G3¸, we can get

Tvr̃(z) = L̄M
¡1
3¸ M4¸(zI¡M¡T

3¸ ḠM
¡1
3¸ M4¸)

¡1M¡T
3¸ K̄

= L̄(zI¡T¡1¸ Ḡ)¡1T¡1¸ K̄ (29)

which means that the desired fault detection filter

parameters can also be given by (22). This ends the

proof.

From Theorem 1, we provide two different fault

detection filter design results for the networked system

(1) with multiple packet dropout (2), both of which

are based on the idea of parameter-dependent

stability.

THEOREM 2 Consider networked system (1) with

parameter uncertainty (6) and multiple packet dropouts

(2). The RNFDFD problem is solvable if there exist

matrices P̄i = P̄
T
i > 0, R, S, T, Ḡ, K̄, L̄ satisfying26666664

¡I 0 0 ª1 ª2

¤ ª3 0 ª4 0

¤ ¤ ª5 ª6 ª7

¤ ¤ ¤ ª8 0

¤ ¤ ¤ ¤ ¡°2I

37777775< 0 (30)

for all 1· i· v, where ½̃d = diagf½1In, : : : ,½mIng and

ª1 = [0 L̄], ª2 = [0 ¡ I]

ª3 =

"
P̄1id ¡Rd¡RTd P̄2id¡ Sd¡Td

¤ P̄3id¡Td ¡TTd

#

ª4 =

"
½̃dK̄dC

c
i 0

½̃dK̄dC
c
i 0

#
, K̄d = diagmfK̄g

ª5 =

"
P̄1i¡R¡RT P̄2i¡ S¡T

¤ P̄3i¡T¡TT

#

ª6 =

266664
RTAi+ K̄

mX
r=1

¯rCri Ḡ

STAi+ K̄

mX
r=1

¯rCri Ḡ

377775
ª7 =

"
RTBi+ K̄Di RTEi

STBi+ K̄Di STEi

#

ª8 =¡P̄i, P̄i =

"
P̄1i P̄2i

¤ P̄3i

#
P̄1id = diagmfP̄1ig, P̄2id = diagmfP̄2ig
P̄3id = diagmfP̄3ig, Rd = diagmfRg
Sd = diagmfSg, Td = diagmfTg:

Moreover, if (30) is feasible, the parameters of the

desired fault detection filter can be given by·
G K

L 0

¸
=

·
T¡1 0

0 I

¸·
Ḡ K̄

L̄ 0

¸
: (31)

PROOF For any system with parameters satisfying

(6), we can always find coefficients ¸i (i= 1, : : : ,v),

such that − =
Pv
i=1¸i−i,

Pv
i=1¸i = 1, ¸i ¸ 0. If (30)

holds for all i= 1, : : : ,v, take the convex combination

of inequalities (30) and then (21) can be obtained. Set

R¸ = R, S¸ = S and Ţ = T, from Lemma 1, Lemma 2

and Theorem 1, it can be confirmed that the fault

detection dynamics (9) are exponentially mean-square

stable and satisfy the H1 attenuation level (12).

Moreover, from Theorem 1, we can confirm

that for any uncertain parameters of (1) and (2), the

parameters of the fault detection filter can be given

by (27). Considering Ţ = T, we can obtain the fault

detection filter parameters of the form (31). This ends

the proof.

Next, we provide an alternative fault

detection filter design result, based on the idea of

parameter-dependent stability.

THEOREM 3 Consider networked system (1) with

parameter uncertainty (6) and multiple packet dropouts

(2). The RNFDFD problem is solvable if there exist
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matrices P̄j = P̄
T
j > 0, Rj , Sj , T, Ḡ, K̄, L̄ satisfying

¡ij +¡ji < 0, 1· i· j · v (32)

where ½̃d = diagf½1In, : : : ,½mIng and

¡ij =

26666664

¡I 0 0 §1 §2

¤ §3 0 §4 0

¤ ¤ §5 §6 §7

¤ ¤ ¤ §8 0

¤ ¤ ¤ ¤ ¡°2I

37777775 (33)

with

§1 = [0 L̄], §2 = [0 ¡ I]

§3 =

"
P̄1jd¡Rjd ¡RTjd P̄2jd¡ Sjd¡Td

¤ P̄3jd¡Td¡TTd

#

§4 =

"
½̃dK̄dC

c
i 0

½̃dK̄dC
c
i 0

#
, K̄d = diagmfK̄g,

§5 =

"
P̄1j ¡Rj ¡RTj P̄2j ¡ Sj ¡T

¤ P̄3j ¡T¡TT

#

§6 =

266664
RTj Ai+ K̄

mX
r=1

¯rCri Ḡ

STj Ai+ K̄

mX
r=1

¯rCri Ḡ

377775
§7 =

"
RTj Bi+ K̄Di RTj Ei

STj Bi+ K̄Di STj Ei

#

§8 =¡P̄j , P̄j =

"
P̄1j P̄2j

¤ P̄3j

#
P̄1jd = diagmfP̄1jg, P̄2jd = diagmfP̄2jg
P̄3jd = diagmfP̄3jg, Rjd = diagmfRjg
Sjd = diagmfSjg, Td = diagmfTg:

Moreover, if (32) and (33) are feasible, the parameters

of the desired fault detection filter can be given by (31).

PROOF Suppose there exist matrices P̄i = P̄
T
i > 0,

Ri, Si, T, Ḡ, K̄, L̄ satisfying (32) and (33). For any

system with parameters satisfying (6), one can find

coefficients ¸i (i= 1, : : : ,v), such that − =
Pv
i=1¸i−i,Pv

i=1¸i = 1, ¸i ¸ 0. Notice that the following
relationship holds

vX
j=1

vX
i=1

¸i¸j¡ij =

vX
i=1

¸2i ¡ii+

v¡1X
i=1

vX
j=i+1

¸i¸j(¡ij +¡ij)< 0:

(34)
Choosing

R¸ =

vX
j=1

¸jRj , S¸ =

vX
j=1

¸jSj

and considering the description of the uncertain

parameters, one can see that the left-hand side of

(21) is equivalent to
Pv
j=1

Pv
i=1¸i¸j¡ij . Therefore, it

follows from (32), (34), and Theorem 1 that the fault

detection dynamics (9) are exponentially mean-square

stable and satisfy the H1 attenuation level (12).

The explanation of the fault detection filter

parameters of the form (31) is similar to that in the

proof of Theorem 2, and is omitted here.

REMARK 3 Based on the idea of parameter-

dependent stability, Theorem 2 and Theorem 3

provide two different robust fault detection filter

design results, both of which are less conservative

than parameter-independent results. Since Theorem 1

provides a sufficient and necessary result, all

conservatism in Theorem 2 and Theorem 3 reside in

1) the employment of a specific Lyapunov functional

and, 2) the treatments in deriving the fault detection

design results from Theorem 1. By employing more

matrix variables, Theorem 3 provides less conservative

results at the costs of more decision variable number

and the increment of computational complexity.

If we fix some matrices as invariant for different

parameters, we can get a parameter-independent

fault detection design result, which is given in the

following corollary without proof.

COROLLARY 1 An alternative parameter-independent

approach to solve the RNFDFD problem is to impose

P1j = P1, P2j = P2, P3j = P3 to the conditions (30)

indicated in Theorem 2. The parameters of the desired

robust fault detection filter can be given in (31).

REMARK 4 It should be pointed out that (30) in

Theorem 2 and (32) in Theorem 3 are all LMIs, which

can be solved by the efficient interior-point algorithms

with the help of Matlab LMI toolbox [2]. Note that

if it is not a prior prescribed, the scalar °2 can be

regarded as an optimization variable. Furthermore, by

replacing the feasibility problem with the optimization

problem, it is possible to obtain the minimal noise

attenuation level bound for the overall fault detection

dynamics (9) using Theorem 2 and Theorem 3.

V. AN ILLUSTRATIVE EXAMPLE

In this section, an internet-based three-tank system

is introduced to illustrate the effectiveness of our

proposed fault detection techniques. Three-tank

system DTS200 is a nonlinear experimental plant

manufactured and provided by Amira Automation

Company in Germany. The layout of DTS200 system

and all system variables can be found in [24].

The levels of tank i can be measured by pressure

sensor i, and pump i (set to a constant value) is

used to supply water to compensate the outflow of

tank i (i= 1,2). Unknown input comes from 1) the

pump inaccuracy and, 2) the level fluctuation during
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TABLE I

Robust Fault Detection Filter Design Result

Method Theorem 2 Theorem 3 Corollary 1

° 1.0028 1.0027 1.0031

LMI number 4 10 4

Decision variable number 130 184 67

G (£10¡4)
24 9902 ¡41 5

¡54 9897 10

¡391 ¡144 9801

35 24 9901 ¡42 7

¡55 9900 11

¡389 ¡146 9810

35 24 9905 ¡40 5

¡51 9898 10

¡362 ¡0141 9801

35
K (£10¡4)

24¡132 ¡223
¡81 ¡253
¡602 ¡1591

35 24¡131 ¡226
¡83 ¡246
¡598 ¡1558

35 24¡129 ¡214
¡77 ¡246
¡571 ¡1522

35
L (£10¡9) [¡1622 2832 ¡ 3176] [¡1529 2425 ¡ 2919] [¡1663 3095 ¡ 3523]

the injection process, which can be regarded as an

exponential disturbance and can be mathematically

described by adding one term Bwk in (1). Consider the

potential leak fault fk in tank 3. The main aim is to

alarm the fault after it occurs.

Consider that there are two uncertain parameters

(outflow coefficients of tank 1 and tank 2) in the

system with their uncertain ranges given by 0:45·
az1 · 0:55 and 0:55· az2 · 0:65. In this case, the
vertex number of the polytope is 4. After linearizing

the Internet-based three-tank system at the equilibrium

point h1 = 0:502 m, h2 = 0:218 m, h3 = 0:360 m,

discretizing the result with sampling period Ts = 0:25 s

and rewriting the system in incremental form, we can

obtain the following system parameters.

A1 =

2640:9974 0:0000 0:0026

0:0000 0:9951 0:0024

0:0026 0:0024 0:9950

375

A2 =

2640:9974 0:0000 0:0026

0:0000 0:9955 0:0024

0:0026 0:0024 0:9950

375

A3 =

2640:9979 0:0000 0:0021

0:0000 0:9951 0:0024

0:0021 0:0024 0:9955

375

A4 =

2640:9979 0:0000 0:0021

0:0000 0:9955 0:0024

0:0021 0:0024 0:9955

375

B1 =

26416:2190 0:0000

0:0000 16:2007

0:0212 0:0193

375

B2 =

26416:2190 0:0000

0:0000 16:2038

0:0212 0:0193

375

B3 =

26416:2229 0:0000

0:0000 16:2007

0:0174 0:0193

375

B4 =

26416:2229 0:0000

0:0000 16:2038

0:0174 0:0193

375

E1 = E2 =

264 0:02120:0193

16:1997

375

E3 = E4 =

264 0:01740:0193

16:2036

375
C1 = C2 = C3 = C4 =

·
1 0 0

0 1 0

¸

D1 =D2 =D3 =D4 =

·
0 0

0 0

¸
:

At a certain instant, level heights of tank 1

and tank 2 are packed into different packets and

transmitted to fault detection node though different

communication channels. Suppose the missing rate

for these two sensors is 0.4 and 0.3, respectively, i.e.,

¯1 = 0:6, ¯2 = 0:7.

First, consider the robust fault detection filter

design problem using Theorem 2, Theorem 3 and

Corollary 1. The design results are summarized

in Table I. From Table I, we can observe that

the least conservative robust fault detection filter

can be designed by using Theorem 3. However,

Theorem 3 has the most decision variables in the

design procedure and is more time consuming.

Parameter-independent technique using Corollary 1

is more conservative than the parameter-dependent

one using Theorem 2 or Theorem 3, but it can be

solved rapidly. The technique in Theorem 2 is a
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Fig. 2. Robust fault detection filter output rk .

TABLE II

Thresholds for Fault Detection

Method Theorem 2 Theorem 3 Corollary 1

Jth(£10¡17) 6.3417 6.0282 7.0395

trade-off between conservatism and computational

complexity.

Next, let us determine the thresholds for each

robust fault detection filters. For k = 0,1, : : : ,300, the

unknown input wk is taken as wk = 10
¡6£ sin(10k)£

Àk, where Àk is uniformly distributed over [¡0:5,0:5].
The fault signal is set to be fk = 0. After 400 times

Monte Carlo simulations without fault, the following

thresholds shown in Table II can be obtained.

Finally, real time fault detection simulation is

provided. The fault signal is set to be fk = 0 before

t= 25 s and fk = 1 otherwise. The outflow coefficients

of tank 1 and tank 2 are randomly chosen as az1 =

0:4833 and az2 = 0:6. Three robust fault detection

filters designed by the aforementioned approaches

have been tested for the time domain simulation. Here,

attention is focused on the parameter-dependent case

stated in Theorem 3, and the results in other cases are

similar. Fig. 2 shows the residual evolution signal of

the robust fault detection filter and Fig. 3 provides

the evaluation function of the residual signal, where

the dashed line is the threshold Jth. From Fig. 3, we

can observe that the fault can be detected in 9 seconds

after its occurrence.

The detection delay steps in all cases are listed

in Table III, from which we know that both the

parameter-independent result and the parameter-

TABLE III

Fault Detection Time Delay Step Td

Method Theorem 2 Theorem 3 Corollary 1

Td(s) 10 9 11

dependent method can be used for fault detection

and generally, the less conservative the fault detection

filter, the faster the fault detection process.

VI. CONCLUSION

In this paper, the robust fault detection problem for

a class of networked systems with distributed sensors

has been investigated. Data from different sensors

are packed in different packets and then transmitted

via different communication channels with different

characteristics. Since the bandwidth of the network is

limited, packets from different channels have different

missing rates. A diagonal matrix has been utilized to

model this multiple packet dropout and our aim is to

design a robust fault detection filter such that, for all

incomplete measurements and system uncertainties,

the residual of the fault detection filter approaches

the fault signal as much as possible. After properly

state augmentation, the original problem has been

transformed into a robust H1 filtering problem and

two different parameter-dependent results have been

proposed in the form of LMIs, which can be easily

solved by using the efficient convex optimization

method. Simulation results on an internet-based

three-tank system have been given to demonstrate the

applicability of the proposed design procedures.
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Fig. 3. Residual evaluation function.
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