MEASURING DISTANCE BETWEEN SYSTEMS UNDER BOUNDED POWER
EXCITATION

P. DATE* AND G. VINNICOMBEf

Abstract. This work suggests a way of measuring distance between two linear systems under a given bounded power
excitation. The measure introduced can be used to bound from above and below the difference in closed loop behaviour of two
plants with the same controller for a specified reference or disturbance spectrum. Given an unknown, single input ‘real’ plant
and its identified model, an upper bound on the distance between the plant and its model as expressed by this measure can be
obtained from time domain data.
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1. Introduction. Robust control theory is often motivated based on square summable or square inte-
grable (bounded energy) signals. In many practical applications, the signals are better modelled as persistent
disturbances. Motivating robust control design or analysis from a persistent signals viewpoint is complicated
by the fact that the set of ‘quasi-stationary’ bounded power signals which induces the infinity norm is not
a linear vector space [1]. Nevertheless, interpreting and extending standard robust control results in a per-
sistent signals set-up has been an active area of research for the last few years; see [2], [1] and references
therein.

Given a controller which robustly stabilises two plants (or a plant and its model), it is known that the
difference in closed loop frequency response of the two plants with the same controller can be bounded from
below and above using pointwise chordal distance between the frequency responses of the two plants. A
natural question to ask is whether the difference in closed loop response of two systems for a given reference
and disturbance spectrum can be bounded from above and below using an appropriate, signal dependent
notion of distance. This work provides an affirmative answer to this question.

Specifically, the problem considered is as follows. Consider two closed loops (P, Cy,C2) and (Ps, Cy, Ca),
each with the same controller C' = C;Cs, the same controller configuration (C; in the forward path, Cs in
the feedback path) and (possibly) different plants Py, P,. These two loops may represent the ‘achieved’
closed loop (i.e. with the real plant) and the ‘designed’ closed loop (i.e. with the model). For a given
bounded power excitation (which could be a reference or a disturbance signal), the difference in the closed
loop behaviour will be small if the two plants P; and P, are close in an appropriate sense. It is known that
the difference in closed loop behaviour would be small (at least, for any square summable excitation) if the
distance between the two systems as measured by the v—gap metric (discussed in more details in section 3)
or by the gap metric is small. However, even if the v—gap is large, it is possible that the difference in the
closed loop response is small for a specific range of spectra of interest provided we find a controller which
stabilises both systems with adequate stability margins. Here, a measure of distance over a subset of linear
shift invariant systems is introduced which characterises the difference in closed loop response for a given
range of signal spectra. Upper and lower bounds on this difference are established in terms of this new
measure. For a plant and its candidate model, bounds on this measure are given in terms of time domain
data.

The rest of the paper is organised as follows. Section 2 outlines the notation and defines the sets of
signals and systems used in this paper. Section 3 introduces the v—gap metric. A new function ¢, for
measuring distance between two systems is introduced in section 4. In section 5, this function 4, is used to
bound from above and below the difference in closed loop performance for a given range of signal spectrum.
Bounds on ¢, from time domain data are introduced in section 6. Section 7 illustrates the use of this function
with examples and finally section 8 briefly summarises the contribution of this paper.

2. Preliminaries. Let R and C denote the sets of real and complex numbers respectively. C™*"
denotes the space of m x n complex matrices. Z denotes set of integers. /o (Z) denotes the space of bounded
sequences indexed by integers. For A € C™*" g;(A) denotes the i—th largest singular value of A. Maximum
and minimum singular values of a matrix A are denoted by 7(A) and g(A) respectively.
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e Signals: Let R,(7) = limy o0 Et o Yu(t = T)u” (t). Define

={u|u € lo(Z),u(t) =0Vt <0, R,(7) existsV 7, ¢y (w Z Ry (7)e ™ exists Vw }.

(2.1)

Here, power spectrum ¢,(w) need not be bounded and may contain impulses in general. This set
is called as a set of quasi-stationary signals in [3]. Define semi-norm ||f||s := 1/ trace R;(0). For

signals with continuous spectrum, the equality ||f||s = \/ 3 | trace ¢y (w) dw also holds.

For two signals v, w € 8", define
N-1

lim % S ot - rw" (#)

N —oo
t=0

and @y (W) := Z R,.(T)e —jTw

T=—00

R,.(7) :

provided the limits exist for each 7 and each w. For v, w € 8™, note that v +w € S™ provided the
cross-correlation function R, ,(7) exists for all 7 and the cross power spectrum ¢y, (w) exists for all
w. This set is obviously not a linear space and may be embedded in a linear space which includes
non-stationary signals [1]. However, the use of 8™ here to model persistent signals is motivated by
two reasons. First, the correlation or spetrum based description is deemed as natural to describe
persistent disturbances, even in a non-probabilistic setting. Secondly, the spectral content of a signal
in 8™ proves useful in assessing the performance of feedback systems in terms of their graph symbols
restricted to imaginary axis. This point will become apparent in sections 4 and 5.

e Systems: Let D := {z € C: |z| < 1}. Let 9D denote the boundary of D. L denotes the normed
space of all functions essentially bounded on D and having norm ||f||z.. := ess sup, (f(e’*)),
where o(-) represents the maximum singular value. Ho, denotes the normed space of functions
analytic in D and having norm || f||e := sup,cp o(f(2)) < .

Consider a linear, shift invariant discrete time system P, which can be expressed as P = NM~1 =
M~'N with

1. N and M are right coprime and G = N] inner; and

B
2. N and M are left coprime and G = [-M N] co-inner.

G (resp. G) is called the normalised right ( resp. normalised left) graph symbol of plant P. The
set of systems of interest here are those with continuous normalised graph symbols:

Pmxm = {P:G,G exist and are continuous on 9D}.

The superscript m x n is dropped when it is clear from context. The normalised graph symbols of a
plant P; will be denoted as G; and G;. The set P™*™ includes all systems whose normalised graph
symbols may be uniformly approximated by real rational transfer functions; this follows from ([4],
theorem 7.12). However, it is worth mentioning that there are systems which have a continuous
frequency response on the unit circle but whose normalised graph symbols are not continuous on
the unit circle; see [5] for an example.

The set of all real rational transfer functions with n inputs and m outputs, denoted by R™*", is a
subset of P™*™.

The controller is denoted by C and its normalised right (left) inverse graph symbol is denoted by

K= m (k=[-0 7).

3. The v—gap metric. The notion of measuring distance between linear systems in terms of distance
between their graph spaces was introduced by Vidyasagar in [6]. In this paper, a metric called the graph
metric was introduced which is characterised by the smallest distance, in a certain sense, between the coprime
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factors of two systems. This work was followed by a number of advances in characterisation and computation
of similar metrics under which feedback stability is a robust property. The pointwise gap metric [7], the
gap metric [8] and the chordal metric [9] induce the same topology as the graph metric. [10] discusses the
properties of gap metric related to robustness for normalised coprime factor perturbations.

In [11], a metric called the v—gap metric was defined. It is closely related to the gap metric but has a nicer
frequency response interpretation and leads to less conservative robustness results in general. Specifically,
the v—gap between two plants P; and P; is defined as [11]

0P, B) = inf 1G1 = GaQlleo i I(P1, P2) =0

)

= 1 otherwise (3.1)

where I(P;, P,) := wno det (G5G1) = wno det (G1G3) and wno (g) denotes the winding number of g(z)
evaluated on the standard Nyquist contour indented around any poles and zeros on JD. For a real rational
transfer matrix X such that X, X! € L., the winding number wno det (X) = n(X~!) —n(X) where n(f)
denotes the number of unstable poles of f. Thus v—gap is seen to be the infinity norm of the smallest
perturbation of the normalised coprime factorisation G of P; which yields a - not necessarily coprime -
factorisation G2@Q) of P». The choice of factorisation of P, , i.e. the choice of ) is constrained by the winding
number condition. If G2Q is constrained to be coprime instead, one gets the gap ( instead of v—gap )
between P; and P,. See e.g. section 9.3 in [13] for details.
When the winding number condition is satisfied, §,(P;, P2) equals the £2-gap,

82,(P1, P2) = ||G2Ghloo = sup 6(Py, Py)(e7). (3.2)
k(Py, P»)(e?) is the pointwise chordal distance defined by
WP B)(e™) = (T + PBy) 3(PL = B)(I+ PR #) (). (3.3)

0, (P1, P;) is a measure of difference in the closed loop performance of Py in feedback with a controller C
and P, in feedback with the same controller C. Given a nominal controller C' that stabilises a (possibly
frequency weighted) plant P;, a useful closed loop performance measure is

-1
loo

= inf o(KG;) (™)
= inf o(G.K) (&™) (3.4)

where ¢(-) denotes the minimum singular value and the closed loop transfer function H(P;, C) is defined by

F;

H(P;,C) = [ ;

] I-cp)y'[-Cc I].
It is known that any controller stabilising a plant P; and achieving b(P;,C) > « stabilises the plant set
{P2:6,(P1,P,) < a} [11]. More importantly, the pointwise difference in the closed loop performance of

nominal plant P; and a perturbed plant P, for the same controller C' can be quantified in terms of x(Py, P»)
as [11]:

K(P1, Po) (™) <T(H(Py,C) — H(P,, C))(e"*)
< k(P1, P2)(e?)G(H (P, 0))(e?)G(H (P2, C))(e*). (3.5)

The upper bound in (3.5) is useful only if C stabilises both P; and Ps.

The aim here is to characterise the difference in closed loop behaviour, in a fashion similar to (3.5), for
signals belonging to the set S™ as defined in (2.1). The next section defines a way of measuring distance
between systems under a specific bounded power excitation.
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4. A New Measure of Distance. Let ® be a set of functions defined by

®:={X|X:[-m,7] > R X(w) >0

X (w) is monotonic non-decreasing and bounded }. (4.1)

For X € ®, define a semi-norm
1 ™
Xl = 5 [ dx () (42)
™ —T

The definition (4.2) may be related to the the set S™ as follows. Let r € S™ be such that ¢, = xI™*",
where z(w) > 0 is a continuous, scalar and bounded real function over [—m, 7]. Let

w

X (w) = / o(r)dr

—T
Then X € & and % = z ([4], theorem 6.20). Also, the equality
7l = nllX]lo (4.3)

follows from the definitions of semi-norms || - ||s and || - ||s. Functions belonging to the set ® will later be
used in section 5 to express bounds on the range of spectra of interest.
Now define a function 4, : P™*™ x P™*" x & —» R,

2

6.(PL, Py, X) := {2i / " trace ((G2G1)*(G2G1) (7)) dX(w)} . (4.4)

T J—x

Thus 62(P;, Py, X) is seen to be a Stieltjes integral of trace ((G‘gGl)*(égGl)) with respect to a ‘weight’
X (w)!. The choice of this weight will be determined by the shape of spectrum of interest. For a given pair
Py, P, € P™*" trace ((égGl)*(égGl)) may be easily shown to be a continuous function mapping [—, 7]
to R. Also, X is monotonic from the definition of ®. From these two facts, it follows that d,(Py, Py, X) is
well defined for any P, P, € P™*™ ([4], theorem 6.8).

The following lemma sums up properties of §, as a measure of distance between systems in P™*™:

LEMMA 1.

e For a given X, € ® and P, Py € P™*",

0< 6f(P1,P2,X0) < nl| Xo||ls and (4.5)

0. (P, P2, Xy) = 0.(Ps, P, X,)- (4.6)
e For given X, € ® and P;, Py, P; € P™*",
61(P13P23X0) S 6m(P15P3aX0) + 6m(P35P23X0)' (47)

e Suppose X, € ® is continuously differentiable, with % > 0 over an interval [wo,w,] C [—m,7].
Then

5.(P1, Py, X,) =0 & k(P1, P2)(e*) =0V w € [wo,w,] (4.8)

where k(-,-) is chordal distance as defined in (3.3).

e Suppose Xo(w) = Y0, a;h(w — w;) where {w;}, i = 1,2,3,... is a sequence of distinct points in
[—7, 7] and {a;} is such that a; > 0Vi and the sequence of partial sums ) a; is convergent. Here
h(-) represents the unit step function. Then

8, (P1, Py, X,) =0 k(PL, P2)(e?) = 0V w;. (4.9)

I'Wherever square roots of positive numbers are used, it will be assumed that positive square root is considered.
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ui(f) ua(f)

0 P; >

6

F1c. 5.1. Closed Loop System

Proof : See Appendix.

For any continuously differentiable X € @ such that % > 0Vw € [—m,m], the above result shows
that 6,(Py, P2, X) is a metric over P™*™. Further, for P;, P, € P™*"™ and a scalar transfer function
z, ' € Hoo N PLX1 it may be easily shown that

i X(w) = /w (72 dr,

-7
then 5m (Pl, PQ, X) = ||GQG11'||2
In general, however, X need not even be continuous for §, (P, P>, X) to be well defined.

5. Closed Loop Error Bounds. Consider the closed loop in figure 5.1. Let [—[7 17] be the nor-

malised left inverse graph symbol of controller C' = C1Cy (i.e. C = V-0 and U andf/' are left coprime).
C} is square transfer function matrix, and is chosen such that VC; € Ho, inf, o(VCi)(e’¥) > 0. The

transfer function from r to [Z] in figure 5.1 with P = P; can easily be shown to be

T(P;,C1,C) == G.(KG,)™V (. (5.1)

Define two constants dependent on controller configuration:

a, = inf g (VC;)(e*) (5.2)
=1ifC, =V, C, =0
IR T, Ci=1,C,=V"'T. (5.3)

V1+ICIE

sup 7 (VCy)(e?*)

and 0,

=1ifC, =V, C, =0
<1ifCy=I1,Co=V WorifC, =V1U, Cy, =I. (5.4)

Note that these definitions do not exclude ‘open loop’ case; C; = I, Cy = 0.

Suppose that upper and lower bounds on the spectrum of disturbance or excitation r of interest are
known. This information can be used to bound the difference in closed loop response of two plants to r, as
the next theorem shows.

THEOREM 1. Suppose, T(P;,C1,C2) as defined in (5.1) are exponentially stable, with Py, P, € P™*™,
Let r € 8™ be such that ¢, (w) is continuous, where S™ is the set defined in (2.1). Let x,, z, be Riemann
integrable functions on [—m, 7| such that, 3 v > 0 for which

vz, < 0;(p)(w) <vxVw, i=1,2,...,n (5.5)
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Let X,(w) = / z,(1)dr, k=1,2. (5.6)
Then, for b(P;,C) as defined in (3.4), a. and B. as defined in (5.2)-(5.4) and the semi-norm ||-||s as defined
in (4.2),

1.

ac(sw(PhP%Xl) ”(T(Pl:ClaC?)_T(P%Cva?))r”s ﬁc(sm(PhP27X2)
< < . (5.7
V[ Xole lI7lls Vvl Xills b(P1, C) b(P2, C)
2. Further, if Cy = V-Y(KG1) and Cy = C7'C, then
52(P17P2aX1) < ||(T(P1701702)_T(P2701702))r||s < 6Z(P1aP2JX2) (58)

VillXalls  — [I7[ls = V[ Xuls b(P, C)

Proof: See Appendix.
Several remarks on this result are in order.

e To guarantee that the filtered signal T'(P;, C1, C2) r to be in 8™, the impulse response of T'(P;, Cy, C2)
should be in I; (i.e. should be absolutely summable) [1]. One simple way to ensure this is to impose
exponential stability condition. From a practical point of view, of course, this is a perfectly sensible
requirement.

e The equality (4.3) explains the presence of 1/n||X,||s in (5.7). To explore this further, let # € S* be
such that ¢, is continuous. Let X,;, X, € & be such that % =¢, = %. Then |72 = || X.]|s =
|| X2]|e- Define spectral distribution function [1]

Fi(w) = _w ¢+ (T)dT.

Then F; is continuous over [—m, 7| and % = ¢,. Using this definition in (5.7) yields a simpler
expression

A /Bcém(P17P27Fﬁ)
a.0,(PL, Py, F;) < |(T(Py,C1,C2) = T (P, C1,C)) 7|y < b(P.O)b(P,.0)

To re-emphasise the main motivation of this work, note that ¢, (P, P, F,) may be small for F. of
interest even if §, (P, P») is large.
e In proving theorem 1, we will use the equality

1 K3
trace R, (0) = —/ trace ¢, (w) dw.
2 J_,
This is certainly true when ¢, is continuous, but may not be true in general. For single input
systems, ¢, may be allowed to have the form

l

$r(w) = da(w) + Y _ 6w — wy)

i=1

where ¢,(w) is continuous, w; € [—m, 7] and &(-) is Dirac delta function. Impulses in the spectral
density of r represent periodic excitation. It is reasonable to expect that the frequencies of periodic
reference (or disturbance) are known. The bounds in (5.7)-(5.8) will still make sense if we allow
jump discontinuities in X7, X2 at the frequencies of periodic excitation. For multi-input systems,
it is more difficult to account for delta functions due to necessity of bounding singular values of
spectrum.

e Note that the parameter « in (5.5) doesn’t appear in (5.7) or (5.8). This is important, since it
implies that the bounds in (5.7)-(5.8) are scale invariant; in the sense that one only needs to know
the bounds on the shape of singular values of spectral density ¢,.. The actual magnitude of spectral
density is irrelevant.



e For a multi-input system, these bounds make sense for comparing performance under simultaneous
excitation of all inputs. To compare behaviour when o, (¢,)(w) = 0Vw (i.e. to compare the response
when some but not all inputs are excited), £; should be zero; but that makes the lower bound in (5.7)
zero and the upper bound becomes unbounded. Even in that case, the following bound still holds:

/Bc’y(sm(P17p27X2)
b(P,C)b(P,,C) "

|(T(Py,C1,Co) = T(P,,C1,Ca))rllg <

This may be easily shown following the steps of proof of theorem 1.
Suppose, P, is a model for a ‘true’ plant P;. For a ‘reasonable’ controller C' (i.e. which stabilises both
the true plant and the model with adequate stability margins), theorem 1 shows that the difference in the
designed and the achieved closed loop response to a persistent excitation r € S™ is small if §,(P1, P, ¢,) is
small. The results are relevant in comparing the designed and the achieved tracking performance (when r
is a reference) and in comparing noise rejection of two closed loops (when r is a disturbance). These error
bounds may also prove useful in assessing the suitability of a reduced order model to design a controller for
a high order plant.
If r, € 8™ is such that the ¢, (w) = I"™*™, then

|T(Py,Ch,Co) —T(Py,Ch,Co)rolls = [|T(Pr,C1,C2) — T (P, C1,Co)ll2.

This observation leads to the following 2— norm inequality:

COROLLARY 1. Suppose Py, P, € P™*™ and a controller C stabilises both P, and P,. Let C' = V-lg =
C1C5 where [—[7 f/] is normalised left graph symbol of C and Ci is a square matrix function such that
VCi € Hoo, inf, a (VC1) > 0. Further, suppose T(Py,Cy,Cs) as defined in (5.1) be exponentially stable.
Then,

a.||GaGill2 < ||IT(Py,Cy,Co) — T(Py,C1,Co)ll2 < B 1l G2G

< 5P, C) b(P, O) (59)

where a., B. are as defined in (5.2)- (5.4).
Proof: follows from (5.7), with ¢, = ["*", &1 — dXa — 71 g

Given an unknown true plant Py, a model P, and a spectral distribution F,, it is not possible to measure
0. (Py, P,, F,) directly. The next section introduces bounds on 6, (P, P,, F,.) for a given single input ‘true’
plant Py and a model P, in terms of data from a time domain identification experiment.

6. Bounds on §,(Fy, Py, X). The main result in this section is restricted to single input systems. A
partial generalisation to the multiple input case is possible and is discussed at the end of the section.

Consider a plant Py € P™*1. For a closed loop system as shown in figure 5.1 (with P; = B), the a
posteriori data is given by

z:= [Z] =Go(KGy)tVCyr+ H(C, Py)w (6.1)

where H(C, By) is a closed loop transfer function as defined in section 3, H(C, Py) = K(GoK)™1Go. y, u

(and possibly, r) are measured signals and w = [—wﬂh] is unmeasured noise or disturbance. Suppose,
2

r,wy, € S, wy € 8™ are such that

N-—

,_a

1

m T(t—7)=0V7, i=1,2. (6.2)

t:O

This deterministic assumption corresponds to the idea that the reference r and the noise signals w; are
r

uncorrelated. Also, suppose that the transfer function from |w;| to [Z] is exponentially stable. Assume
wa



that ¢, is continuous and define the spectral distribution function of r as before,
w
F.(w) = or(T)dT.
— T

The data z from (6.1) can be used for identifying a model for Py. One common method for parametric, time
domain identification is the prediction error method [3]. This method solves

main||X'gz||‘S subject to  X,(oc0) = [I 0]. (6.3)

Here, X, is a left graph symbol of model parameterised by a (real) parameter vector 6 and z is output-input
data as in (6.1). This is sometimes referred to as the ‘direct’ prediction error in literature [12], as opposed
to methods that use a measurable reference.

Prediction error identification approach has elegant statistical properties and is widely studied in liter-
ature; [3] offers a very comprehensive treatment. For a model P, obtained by the prediction error method,
it is desired to obtain an estimate of &,(Py, P,, F,). Let G, be the normalised left graph symbol of P,. The
following result gives bounds on d,(Py, P,, F.) in terms of time domain data:

THEOREM 2. Let P, be a candidate model for Py with both Py, P, € P™*!. Suppose, r,w1, € S', wy €

T

S™ are such that (6.2) holds. Let C = C1C> be such that the transfer function from |wi | to [Z] in figure 5.1
(%)

is exponentially stable. Let z be as defined in (6.1) and let a. and (. be as defined in (5.2)-(5.4). Then

2 A2 16 2 12 _ 2 A 2
P0Gz = 160wl _ oy p oy« 1G22 = PP C) [Cowl 6.
32 @ o2
Proof: See Appendix.
From (6.4), it follows that
5.(Po, Py, ) < MGe2lls. (6.5)

c

For a given model P,, measured data z and a given a. the right hand side can be explicitly evaluated.
Combining (5.7) and (6.5) gives

(T (Po, C1, Co) = T(Po, Cr, Co))rlls _ [IGo 2]l B
lIrlls = Irlls  a.b(FPo, C)b(Fs, C)
If ”ﬁ'ﬁTZS”S is small, any ‘good’ controller C' (i.e. with sufficiently large robust stability margins b(Py, C') and

b(P,,C)) should yield a small difference in closed loop behaviour for excitation r. However, the upper bound
above can not be evaluated from data due to the presence of an unknown term b(Fo, C).
If |Gow||s =~ 0 and if C; = V=1, Cy = U, (6.4) yields an aesthetically pleasing expression

b(Po,C) ||és zlls < 0.(Po, Py, Fy) < ||ée 2||s-

Note that the model P, need not be obtained from the same experimental data z used in the bounds;
the results hold for any candidate model P, so far as the data z is generated according to (6.1) and (6.2)
holds. In particular, note that (6.5) does not use any a priori assumptions about the order or the relative
stability of the plant Py. The exponential stability of the closed loop is the only assumption used here.

The result above is valid for single input systems. A generalisation to multivariable plants is possible in
the case when the spectrum of r is a scalar function times identity.

COROLLARY 2. Let P, be a candidate model for Py with both Py, P, € P™*"™. Suppose, r,wi,€
S™ wy € 8™ are such that (6.2) holds. Further, suppose r € S™ is such that ¢, = x I"*"™ where x is a
scalar, continuous spectrum. Let X (w) = ffﬂ z(7)dr. Let C = C1Cy be such that the transfer function from
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r

wy | to [Z] in figure 5.1 is exponentially stable. Let z be as defined in (6.1) and let o, and 3. be as defined
w2

in (5.2)-(5.4). Then

2 A 2 (15 2 2 2 _ 12 A 2
b (Po,C)IIGe;QIIS |Go w3 < (R, P, X) < 1Go 2lls = b°(2, O) |Go wlls

Proof: This may be shown following the steps of the proof of theorem 2. Details are omitted.
REMARK 1. Under the assumption (6.2), an upper bound similar to (6.5) also holds in the case of
prediction error cost in (6.3). If 0, is an argument which minimises the cost in (6.3), it can be shown that

1Ko, Xorlls < [I1Xe, 2ls-

where X, = Go(KGo)~'VCy. This may be easily proved from the proof of theorem 2. The quantity
I X, Xor||s, unlike 8,(Py, P,,, F.), depends on the choice and the configuration of controller C.

REMARK 2. The bounds presented above are ‘distribution-free’ and use only a non-probabilistic assump-
tion (6.2) about noise. Developing results equivalent to theorem 2 in a probabilistic setting is an interesting
and challenging area of future research.

(6.6)

a?

7. Examples. Here we consider some examples to see how this new measure can be useful in comparing
closed loop response of systems to persistent excitation. Consider a pair of plants
2(z+1) (z+1)2
z2—06" (22 -0.62+1.2)°

The v—gap error between P; and P, is significantly large (= 0.64). Suppose, the spectrum of interest is a
low frequency spectrum which satisfies

Pl(Z) = PQ(Z) =

’71’1("‘)) S ¢T0 S ’Y'Z'Z(w)'

for some 7 > 0, where 1) = Ai()i(e7), ) = -y o
and  z3(w) = fo(e) fa(e™¥), fa(2) = zO_.OOQ.;8'

Note that the exact value of v (and hence the energy in the signal) is immaterial. Let F;(w) = ffﬂ x;(T)dT,
i=1,2. Then

5m(P1;P27F1) = 0.0294 and 62(P17P27F2)

= 0.0724.
||F2||<I> ||F1||<I>

(These may be computed as 2— norm of GoGifi,i=1, 2). Thus, given a controller C which stabilises both Py
and P, with a ‘good’ stability margins, the difference in closed loop gains T'(Py, Cy, Cs) — T'(Ps, C1, C2) over

this spectrum is guaranteed to be small. In this particular case, a simple integral controller C; = %,

Cy = —1 yields stability margins b(P;,C) = 0.408, b(P»,C) = 0.401.

For the same plants P;, P, as above, if we consider fi(z) = fa(z) =1—0.9271, then

P, P, F; P, P, F.
dm( 1, 25 1) — 6a:( 1, 2, 2) :0.4469
||F2||<I> ||Fl||<I>

so0 that no controller can make the difference in closed loop gains T(Py, C1, Cs) — T(Py, C1, Cs) smaller than
0.4469 o, over this spectrum, with a. as defined in (5.2).

Next, consider another pair of plants

z—1 z—1
— P, = —
z—0.99’ 1(2) z —1.01
The v—gap between P; and P, is 1. Suppose, P3 and P, are to be compared from the perspective of white
noise rejection. Then ||G4Gs||2 = 0.055, which means any ‘reasonable’ controller will yield a similar closed
loop white noise rejection for both P; and P, (provided such a controller exists). The controller C; = 1,
C3 = —1 in this case yields b(Ps, C) = b(Py,C) = 0.7071.
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8. Conclusion. A new measure d,(-,-, X) is introduced for measuring distance between linear shift
invariant systems. It is shown that this measure can be used to characterise the difference in closed loop
behaviour of two feedback systems under a given persistent excitation. For a plant P, and a model P,
bounds on this measure with respect to a given reference spectrum are obtained in terms of data from a
time domain identification experiment.

Appendix A.

First, some technical results necessary for proofs of lemma 1 and theorems 1-2 are given.

FACT 1. For any complex matriz Q € C™*", let Frobenius norm be defined as usual, ||Q|?> =
trace (Q*Q) = trace (QQ*) = Yi", 0%(Q), where m = min(m,n). For a pair of complez matrices Q,
R of compatible dimensions, with R square and invertible, the following inequalities hold

a(R)|Qll- < QR < F(R)[|Q]]~ (A.1)

Proof: The upper bound is well known [2]. The lower bound follows from
1Qllr = IQRR"||r < F(R™HIIQRI|r- (A.2)

]
The next result proves the the formula for inf,, a(VCy)(e?) stated in (5.3). o
LEMMA 2. Let [—U V] be the normalised left inverse graph symbol for C = V~'U. Then

inf o (7)(E) = ——— (A3

VI+ICIE

Proof: From ([13], section 2.3),

) U) B B
_QC =L~and 2V =1—_2U A4
70) = g w00 =1-7(0) (A.4)
A rearrangement of (A.4) and taking the infimum of both sides leads to (A.3). "

The proofs that follow also use some identities from ([13], section 3.2) for manipulation of normalised graph
symbols:

(G1G2)*(G1Gs) + (G5G1)(G3Gh)* =1, (A.5)
(G2G1)*(G2Gh) + (G5G1)*(G3Gh) =1, (A.6)
G3Ga + GGy =1, (A7)

K(G2K) 'Gy 4+ G2(KGs) 'K = 1. (A.8)

In the rest of the proofs, the argument e/* will be omitted for brevity wherever it is obvious from the context.
Proof of Lemma 1:
Property (4.5) is obvious. To prove (4.6), note that

07 (G2G1) () = 1— 07, (G5G1)(e™) (from (A.5))
= 02(G1G2)(e?*) (from (A.6)).

Next, using (A.7),

52(Py, Py, ) = % /W > 07 (GaGh ) dX,(w) = 1 /ﬂ " 02 (6o (G35 + G3G5) G ) dXo(w)
T =1

4 2 J_ 4
= =1
1 T n ) B 1 T n ) B
S % /ﬂ_;o—i (G2 G3) dXo((A)) + g [ﬂ ;Ui (G3 Gl) dXo(w) (Ag)
< (82(P2, P3, X,) + 62(Ps, P1, X,)) (A.10)
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from which (4.7) follows.

To prove (4.8), let z(w) = 4X2 and note that

L. (Z o (5’201)@”)) aX(@) > | min o) [ trace (6261 (o) ()

i—1 [wO ,wP] 0

On the other hand, if X,(w) = 3252, a;h(w — w;), then from ([4],theorem 6.16),
82(Pi, P2, X Za trace ( GzG1)*(é2G1)) (e7)

from which (4.9) follows. "

Proof of Theorem 1:
Note that

(5 (Pl,Pz,X) / trace ((éQGl)*(égcl)) x; dw, = 1,2.

1

27
This follows from the definition (5.6) of X
Upper Bound: We have

X, (w) and from ([4], theorem 6.20).

I(T(Py,C,Cy) — T(Py, Cy, Cy)) > = H(Gl(f(Gl)*l —G2(1~(G2)*1) ey

2

S

- H( 16,61 (KGy)™ ) (Venr| (A.11)
(pre-multiplying by the left hand side of equality in (A.7) and using the fact GoG2 = 0)

<% (sgp 7 (égK)l) (sgp 7> (IN(G1)1> (sgp o (f/Cl)> 62(Py, Py, Xy). (A.12)
where the last step uses

") iaf (G2G1) < vz iaf (G2Gh).
i=1 i=1
Also, note that
1 1 1 (A.13)

< < :
ny[[Xelle = [I7I3 = nyllXille

The result then follows using (A.11)-(A.13) and using the definitions of 8, and of b(P;,C) in (5.4) and (3.4)
respectively. ~ ~ ~
Lower Bound: Put L = (KG1)™%, Q = (KG2)"'(KG1). Then

H(GI(I%GI)*—GQ(R@) N ey =@ - e ey
st [0 Wg (61~ Ga@)}) do (using o(1) > 1)
/wlza (G1 - G2Q)d
- i=1
and xlgaf( - G2Q)) wlga ([N] —GzQ)) (using (A.6))
> xi o2 (GQGI). (A.14)



Hence

n

« 2 m _
z . 7;: /_ ) 5 o? (GQGl) do. (A.15)

i=1

H (Gl(f(Gl)’l - GQ(KGQ)*I) (Ve r

The result follows from (A.15) and (A.13). 5 ;
The upper and lower bounds in the second part may be proven similarly substituting C; = V~1(KG1)
in (A.11) and (A.14). n

Proof of Theorem 2:

From (6.1),
2= [Z] = Go(KGo) ' VCir + K(GoK) ' Gow (A.16)
so that
1Gozll2 = [(GsGo)(KGo) (Vi) rll% + (G, K)(GoK) ' Gowl? (A.17)

(since ¢p, = 0)

< (sup 62(KG0)_1) (sup 62(1701)) 82(Py, P, F,) + (sup 62(6501()_1) |Gowl|?.  (A.18)

The lower bound follows from (A.1) using the definitions of 8. and b(P,,C). To derive the upper bound,
note that

Guzll? > (inf o? (BGo) *) (inf o® (VCh)) 82(R0, Pu, )
+ (inf 0 (G, K)) (inf o® (GoE)™) || Gowl2.
The result then follows using
inf ¢ (KGo)™!(¢’*) 2 1, inf g (GoK)™!(¢/) 2 1
and inf 0 (G,K) (') = b(P,,0). ]
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