Algorithms for Worst Case Identification in H,, and in the
v—gap metric

P. Date?, G. Vinnicombe?

& Center for Analysis of Risk and Optimisation Modelling Applications, Brunel University, UK

 Department of Engineering, University of Cambridge, UK

Abstract

This paper considers two robustly convergent algorithms for identification of a linear system from its (possibly) noisy frequency
response data. Both algorithms are based on the same principle; obtaining a good worst case fit to the data under a smoothness
constraint on the obtained model. However they differ in their notions of distance and smoothness. The first algorithm yields
an FIR model of a stable system from and is optimal, in a certain sense for a finite model order. The second algorithm may
be used for modelling unstable plants and yields a real rational approximation in the £2-gap. Given a model and a controller
stabilising the true plant, a procedure for winding number correction is also suggested.
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1 Introduction

Worst case identification has attracted a lot of attention
since its definitive formulation in [7]. These identification
algorithms use an assumption that the true, unknown
plant belongs to a subset ¥ of the set of linear systems
and that the additive measurement noise belongs to a
bounded set =. Suitable choices of ¥ and = enable us to
derive bounds on the worst case identification error. The
identification algorithm is said to be untuned if it is in-
dependent of the definitions of ¥ and =; and is said to be
tuned otherwise. Examples of untuned algorithms may
be found in [7], [6] and [8]; while tuned algorithms are
investigated in [1], [4], [5]. [10] and [9] provide a review
of a variety of worst case H, identification techniques.
[8] also gives some results related to identification in the
gap metric and related metrics.

The approach presented here differs from most conven-
tional algorithms in two important aspects:

e Provided the frequency response of the model transfer
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function is sufficiently smooth and under reasonable
(qualitative) assumptions that the frequency response
of the true plant is also smooth and the measurement
noise does not have a periodic component, the worst
case fit between the noisy frequency response sam-
ples and the frequency response of the model over a
sufficiently dense grid of measurement frequencies is
a good indication of the ‘true’ distance between the
plant and the model. The algorithms presented here
offer an explicit trade-off between a quantity related to
smoothness of the frequency response of the model and
the worst case fit achieved over the given frequency
response samples. Two different algorithms presented
differ in their notions of the worst case distance and
smoothness.

e In most conventional untuned algorithms, the model
order is a function of length of data. This restriction
is removed in the work presented here, obtaining ro-
bustly convergent algorithms one of which is optimal,
in a certain sense, for a finite model order.

Motivation for this work comes from the analysis of the
optimal achievable worst case error by Zames et al in [14]
and from a subsequent tuned FIR approximation scheme
suggested by Glaum, Lin and Zames [4]. One of the two
algorithms suggested here is a modification of a simi-
lar method discussed in [8]. This modification yields the
property of optimality under finite model order as men-
tioned above.



The rest of the paper is organised as follows. Section 2
defines the notation used in the subsequent work. An
untuned algorithm for identification in H, is proposed
in section 3. In section 4, a related algorithm for in the
v—gap metric is described. Both the algorithms are il-
lustrated using simulation examples in section 5.

2 Notation

Let R and C denote the sets of real and complex num-
bers respectively. C"* denotes the space of n x 1 com-
plex vectors. Let D := {z € C : |2|] < 1}. Let 0D de-
note the boundary of D. R represents the space of all
real rational transfer functions. £, denotes the normed
space of all functions essentially bounded on D and hav-
ing norm || f||z.. := ess sup, o(f(e’*)), where 7 () rep-
resents the maximum singular value. H,, denotes the
normed space of functions analytic in D and having
norm || f|leo 1= sup,cp | f(2)] < 00. RH s represents the
subspace of real rational transfer functions in H,. For
P € RHo, P*(2) := PT(271). A subset of Ho of spe-
cial interest here is

Pr(a) ={f : f € Hoor | F'llo < @} where f'(z) := £.

ls denotes the space of bounded sequences. A ball in [,
is defined by Bloo(€) := {v : v € loo, |[V]|lc < €}.

Kolmogorov n-width of a subset P C Hoo in Heo is
defined by [11]

d,(P) =inf su inf ||z —
AP =inf supinf o=yl

where the left-most infimum is taken over all n-
dimensional subspaces X,, of H,,. Thus d,(P) repre-
sents the optimal worst case error achievable by ap-
proximating a system in P by a linear combination of n
basis functions in H.,. A subspace which achieves this
error for Py (a) is

S, = span{l,z,...,2"" '} (1)

where span is over real field. Further, the exact value
of n-width in this case is [11] d,,(P1(a)) = 2. In repre-
senting LMIs, we use Q7 and Q* respectively to denote
transpose and complex conjugate transpose of a matrix
Q. O xn and I, respectively represent m X n zero ma-
trix and T, x,, identity matrix. diag(a;) represents a com-
plex block diagonal matrix with block matrices a; along
the diagonal.

3 Identification in H,
3.1 Problem Formulation

A priori Information : The plant transfer function
P(z) to be identified is a single input single output

(SISO) system which belongs to Pi(a). The noise
v corrupting measurement belongs to Bl (e). Here,
€ € [0,00), a € [0,00) are known constants.

A posteriori Information: A vector of (not necessar-
ily uniformly spaced) noisy frequency response samples

P,=[P, P, ...P, 1" P, =PE“)+v; (2

where w; € (0,7),4=1,2, ..., m. Also given is a cor-
responding vector of (angular) frequencies

W=lwws ... wm]T. (3)

d = max; |wiy1 — w;| is the maximum separation be-
tween adjacent angular frequencies. The frequencies
w1 < wy < ... < wy are distributed such that

§ > max(wy, ™ — W) (4)
holds. Define
0,m)™ == {z:z € R™, z, € [0,m)Vie[l,m]} (5)
and let S, be as defined in (1).

Find : An algorithm A5 : C™ x [0,7)™ + S, such that
the worst case error defined by

e(Az: a,€,1m,0) = sup || A5(Po, W) = Ploo
P e Py(a),v € Bl (€)
(6)

converges as follows

lim e(A45 : a,€e,n,8) <dn(P1) + 7e,

§—0

lim e(Az: a,€,n,8) <g(a,d,¢). (7)
n—oo

For a given a, g is a function monotonically increasing
in both ¢ and € such that lim. ¢ limj ,; g(c,d,€) = 0.
~ is a constant independent of both data and a priori
information. In addition, derive explicit bounds on the
above error.

From (7), as e — 0 and & — 0, e(45 : a,6,n,8) —

d,(P1). This is the optimality property alluded to ear-
lier.

3.2 Identification Algorithm

A5(P,,W) € S, is asolution of the following optimisa-
tion problem:

minimise A subject to f € S, and

max { max_ | f(c) = P, iclnf'um} <A (®

1€[1,m]



where ky = ky (S)T 0< ki <ooand0 < r < 1arecon-
stants. For a finite data, user only needs to specify a sin-

gle constant k'l, the decomposition of k1 into a constant
and d-dependent part will be used later in section 3.3 to
prove robust convergence.

Recalling the definition of S, in (1), Az(P,, W) must

be of the form Az(P,, W) = Z;é apz®, ap € R The
steps to implement (8) are outlined below.

e Define
O1xn-30 1
A= |37 B= ]7
I3 0 On—3x1
C=[2a23a3... n—l)an_l],D=a1,
:I:]_e.?“’t...e(" 1)]W1j|’i=]_,27”"m
T
[ao ap -+ Qp— 1j| )
)\(ATXA - X) ATXB cT
L, = BTXA )\(BTXB—I) D,
C D —-A

_ —kih 0Tgr — P,
L, = diag - !
0 — P,, —ki\

e Solve

) |

inf A subject to X >0, L; <0,7 =1, 2.

@0,@1,--,8n—1

e Let ay, £k = 0,1,...,n — 1 be the values of deci-

sion variables which minimise X. Then Az(P,,W) =

n—1 »
koakz

The next result shows that the procedure outlined above
actually amounts to solving (8).

Theorem 1 Let P(z) =
as above. Then

1 T .
> h—o arz", with ay. obtained

max {max |P(e?“) — P,
K]

Rl }
—_ 3 Jwi _ 7. !
= inf max { max| f(e) = Pu. Rall £l | (9)

Proof : Let f(z) = Y7_s axz*. From [3] and from
definition of L, the conditions L; < 0and and X > 0
correspond to ||f'|lcc < A. Also, max; k' | f(e?¥i) —
< Ais enforced by L < 0. [

Wi

Remark 2 In [8], the authors pose the same problem
as (8) with r = 1. Here, it is shown that choosing r < 1
yields a much stronger convergence property. Further, an
analytic, LMI based solution for this problem is provided
which may be easily generalised to multivariable case.

3.3 Convergence and a priori Error Bounds

Let w* € [0,7). For convenience of notation, denote
P(z) = (A5(P.,,W)) (2). Using triangle inequality,

|P(e7") = P(e/7)] < (1Pl + A + € + 1P'llo3
(10)
where A = |P,, — P(e/“?)|.Alongwith (10), the following
result of Glaum et al ( [4, lemma 3.1]) is central to the
derivation of error bound:

Lemma 3 ([4]) For aprioriinformationv € Bly(e), P €

P1 and a posteriori information as in section 3.1, there

ezists a P(z) € S, which satisfies the following con-
straints:

Pal<er 4%

D(pdwi) _
Plet) .

2
Pl < =
1Ploe < 0

where § > 0 is arbitrary.

Theorem 4

lim e(As:

n—o0 4
lime(Az: @, €, n,0) < 2e+ — (11)
3—0 n
where e(A5 : @, €, n,0) is as defined in (6) and g(-) is

such that limy_, , lim o g(a,6,€) =0.

Proof: Let ky = k; (S)T where0 < k; < ocand0 <7 <
1 are constants. From lemma 3,

. Jwsq _Pw ,k‘ Ioo ST
frrelgimax{lg[lla’x]”(e ) Al ()}

a ab 2a0) 7
<max<e+5+z,k1{a+ﬁ}(5) ) (12)

=\ ¢
for an arbitrary § > 0. Choose § = (%) for arbitrary
(,0< ¢ <randlet

<\ ¢ =\ —
a afd 20(6)7¢) =y
)\cpt :max(e—i—ﬁ-%z(E) ,kl{a+W} (6) )

Then it is easy to show that

< 1—7 —
- 1 (8) 5
= < 7 —
e(A5:a, €,n,0) < <k1 5 —|—1> /\opt+a2—|—e

from which the result follows. =



3.4 Choice of ky

To choose constant &; in (8), the following procedure
may be adopted:

(1) Solve
minimise A subject to f € S, and
max [fE) R <A (13)
€ll,m

Let 5\1 be the minimum cost and let fl € S, be
the solution which achieves this cost.

(2) If the slope of Nyquist plot of f; is deemed too
CA1
. [FAS N
¢ > 1 and solve (8). Let f5 be the solution and Ao
be the achieved cost. Then it is easy to see that
maXie[1,m | f2(€*") — Po,| < (A and [|fillo <
I/1]lso- ¢ thus specifies the trade-off between the
deterioration in the worst case fit and the reduction

in worst case slope of the model.

high by visual inspection, set k; = for some

4 Identification in the v—gap metric
4.1  The v—gap metric

Consider a plant P; = NiMi_lwith {N;, M;} right co-

T
prime and G; = [NZT MZT]
malised right graph symbol of P;. The v—gap between
two plants Py and P is defined as [12]

inner. G; is called the nor-

6, (FPo, Pr) = o Qi_f}feﬁw | Go — G1Q |loo if I(Po, P1) =0

)

= 1 otherwise (14)

where I(Py, P1) := wno det (G{Gy) and wno (g) de-
notes the winding number of g(z) evaluated on the
standard Nyquist contour indented around any poles on

OD. When the winding number condition is satisfied,
0, (Po, P1) equals the £, -gap, defined by

0r,(Po, P1) := sgp k(Po, P1)(e?*) (15)
where k(Py, P)(e*) is the pointwise chordal distance,
k(Py, P)(e7) := Qiréfc 7 (Go — G1Q) (e'¥)
=5 ((I+PP)™ (R — R)(I + By R) ™ ) ().
Given a nominal controller C' that stabilises a (possibly

frequency weighted) plant Py, a useful closed loop per-

formance measure is b(Py,C) = ||H(P0,C')||;o1 where
the closed loop transfer function H (P, C) is defined by

H(Py, C) = [i

(I—CPy)! [_c I] .

0,(Po, P1) is a measure of difference in closed loop per-
formance (as expressed by b(P;, C) of two feedback loops
H(Py,C) and H(Py,()). It is known that [12] any con-
troller C stabilising Py and achieving b(Py, C') > « sta-
bilises the plant set {P; : 6, (Fo, P1) < a}. Further, given
P(),P1 and C such that b(P(),C) > 5,;(P0,P1), the fol-
lowing properties hold [12]:

K(Po, P1)(e’) < G(H(Py,C) — H(Py,C))(e™)
< k(Po, P)(e’)T(H (P, C)) (") T(H(P1, C)) (),
b(P,C) > b(Py,C) — 6,(Fo, Pr). (16)

From (16), it follows that any controller C' that stabilises
amodel P; with a good b(P;,C) also stabilises the true
plant Py, without any significant deterioration in perfor-
mance, provided §,(Pp, P1) is small. In the subsequent
sections, an untuned algorithm is presented which at-
tempts to achieve a small v—gap between the plant and
the model.

4.2 Problem Formulation

A priori Information: The true plant to be identified
belongs to the plant set defined by

P2(B) ={P:G» € C', [|GLllc <B}  (17)

where G, = df—zp and C! represents the space of func-

tions with a continuous derivative on 0D. The noise
corrupting measurement belongs to Bl (€). Here, € €
[0,00), B € [0,00) are known constants.

A posteriori Information: A SISO plant is consid-
ered for notational simplicity. A vector of (not necessar-
ily uniformly spaced) noisy frequency response samples
of the normalised right graph symbol of the true plant

Py(z) is given:
U1,i
V2,i

(18)

T .
Go=[GT, GT, - @7, . Gy = Gole™) +

w

where w; € (0,7),7 = 1,2, ..., m are such that (4)
holds and vi,v2 € Bly(€). Also given is a frequency
vector as in (3).

An affinely parameterised model structure is used for
identification which in SISO case is defined by

Snp={f:f=1AF)" fr €Sn, 2€ 5} (19)

For a constant matrix (resp. transfer function matrix)

T
X = [;UIT sz] with 25 a square and invertible (resp.



invertible in R), let Quot (X) := z,25". For the in-
formation and model set above and for an algorithm
Az : C*™ x[0,m)™ — S, 2, define the worst case error by

e(AE : ﬂa €M, 3)

= sup sup 0z, (FPo, Quot(A5(G,,W))) (20)
v1€Bloo () PoEP2(B)
Vo EElm (6)

where § = max; |w;11 — w;|, as before. Finally, define an
optimisation problem

min  max (max 7 ((G,) — ()R, s)

fESn 2 [3
Qi €C, |Q;|<h
(21)
where Af = ko [[f'llcc, k2 = k2 (6)", 0 < ko < o0,
0<r<landl1< h< o are constants.

Theorem 5 Let A3(G,,W) and {Q e Ci =
1,...,m} be such that, A3(G,, W) = Quot(f5), f5 €
Sn,2 and

max (m;j:mx T (Gw,- — f}(ejwz')(:)i) , ko ||f,si||00)
= min  max(max? (Gu, — /()Q:)  FallFl)

Qi€C,|Qi|<h

Here, ky = ks (S)T,O <k <ooand0<r <1 and
h > 1 are real constants.

Then, lim lim e(45: B3,€,n,8) < h1(B,n,¢€)

e—0 5§—0
and 11_% nl;rrgoe(Ag : B,6,n,0) < ha(B,0,¢€). (22)
Here hyi(:),ha(-) satisfy limz  lime o h2(B,0,€) =
0, limy 00 limeyo h1(B,m,€) = 0.

Proof: Let P; = A3(G,,W). At any point w* € [0,7),
it may be shown that the following bound holds:

KR () < B2 4 VB £ 3(Gu, — fi(e*)Q)
hé
. 23)

The proof from here onwards in along the same lines as
the proof of theorem 4 and is omitted. =

Some remarks on this result are in order.

e First, note the similarity of results in theorems 5 and 4.
Both the algorithms presented offer a trade-off be-
tween worst case fit and worst case complexity and
yield a worst case error which converges independently
with respect to model order and the number of data
points. Both algorithms also use a similar, LMI-based
numerical implementation.

e In a realistic situation, P, as defined in (2) will be
known. A procedure to re-cast (21) in terms of P, is
described in the next section.

e A good approximation in Lo— gap is not necessarily
a good approximation in v—gap, since the winding
number condition may not be satisfied. Given a con-
troller stabilising the true plant, a winding number
correction can be carried out, as shown in section 4.6.

Here, the problem of identification in v—gap metric is
solved in three steps:

(1) Re-write the problem (21) in terms of P,,.
(2) Solve

min max {max 7(Gu, — (H(e)Q0), kall £l }
n,2
[Q:|<h

(24)
where ks and A > 1 are user chosen constants. Let

f solve this problem and let P; = Quot(f).
(3) Given P; and a controller stabilising Py, solve

i Sc, (P, P
PER, T(P.Py)—0 £2(P, P)

Let P> be the solution. Then by triangle inequality,
max H(Puh' s Py (ejwi )) < max E(Pwi ’ P (ejwi ))
¢ K2
+5L2(P17P2)- (25)

These three steps are discussed in detail in sec-
tions 4.3, 4.4 and 4.6 respectively.

4.8 Reformulating the Problem in Terms of Plant Fre-
quency Response

Let R™*™ denote real rational transfer functions with
m outputs and n inputs. Let P,, = Quot (G,,). Then
P, represents the available experimental frequency re-
sponse data for the true plant Py at the measurement
frequency w;. The following result allows us to re-phrase
the problem (21) in terms of P,,:

Lemma 6 Given P, € R™*" P, € C"*" 3 Q €
C<n Fy € Cmtm)xn guch that

A(Puiy PL(e) = 7 (F. = Ga()Q)

and at any w;, the matriz F; can be written as a function
of the point frequency response matrix P,,, .

Proof:

T

[N

Let Fi = (P, (I + P2, Pu)~4)7 (I + P3,Po) 4"

(26)'



Then it may be shown that s(P,,,Pi(e?*)) =
o (F; — G1(G1F})). Details are omitted. =

T
— Pwi 1

For astable SISO plant Py, F; = AR IR
Given P,,, as defined in (2) and F; as defined above,
k(P,,, Po(e?*)) < T(F; — Go(e?i)) < /2. Tt is not
clear how to relate this bound to assumptions on mea-
surement noise. From a practical point of view, a proper
measure of noise in the present context will be

P Po(eiwi)) < THRes=Po(ei) e ; 4
k(P,;, Po(e?¥)) < E(I+P;1.Pmi)% <e€ solving (24)

yields X as a local optimum and if f € Sy 2 achieves
this cost, then k(Py(e?“i), Quot(f)(e’i)) < A+ €.

4.4 Approximation in the Lo -gap

An iterative procedure for approximation in the £s-gap
is given below. SISO case is discussed for ease of notation.

Given : A vector of frequency response samples P,, de-
fined as in (2).

Initialisation : Set k = 1, Qoyi =1Vi € [1,m].

Step A : Solve

jmin (max7 (F; ~ fule)Qs-1,0), Fall fhll) (27)

where k5 is a user chosen constant, F; is obtained from
P, usingA (26) and f;, = %’i . Both the constraints & (F;—
(@) Qr-1,) < Xand ks||fillcc < A may be written
as affine constraints in the parameters of fx, in a manner
similar to the constraints in section 3.2. Thus, (27) may
be written as an LMI optimisation problem. Let fk be
the solution to (27).

Step B : Solve LMI optimisation

min  max 7 (F; — fk(ejwi)Qk,i) (28)
Qr,; €C i€[l,m]
[Q,i|<h

where h > 1 is a user chosen constant. Let Qk,i, i =
1,...,m be the solution to (28). If max;o(F; —

fk(ej‘”f)Qk,i) is less than a specified tolerance, stop;
otherwise set k£ := k + 1 and go to step A.

Define vg; := max; o(F; — fk (ej‘”")Ql,,-). Thus vg, k-1
and vy, i, give the achieved cost at steps A and B respec-

tively at k** iteration. The achieved cost in the above
procedure is non-increasing with each iteration.

Lemma 7 Fork > 1, max (Vgt1,ks Ukk) < Ukk—1-

Proof : Omitted.

4.5 Numerical Implementation

During initial stages of iteration, it is better to solve
simpler versions of (27)-(28):

fkrgkigr"l’2 <mzjax o (F; — fk(ej“”)Qk—Li)) (29)

Qﬂiféc max o (Fi — fr(e™)Qu.i) (30)

The first step here avoids the constraint on ||f'||o and
the second step has a closed-form solution

A fx e.jwi F
Qk,i = A*fk(—A)z (31)
[i(e79%) fr(e74%)

This choice speeds up iterations considerably. As the
iterations approach convergence, (29) may be replaced
by (27), with ky chosen using || f;||oo, using a procedure
similar to one in section 3.4. The condition |Qx ;| < h
is necessary to prove worst case convergence (see (23)),
but in practice the use of (28) in place of (30) is rarely
required.

4.6 Satisfying the Winding Number Constraint

Let n (H(P,C)) represent the number of closed
loop unstable poles of H(P,C) and let be,(P,C) =
|| H (P, C)||Zio7 regardless of stability of H(P,C).
be,(P,C) = 0 if H(P,C) has a pole on 9D. Let
fr = [f1, Fo4]" be the solution to (27) at k" iteration,
andlet P, = f1, & f2_7 ,1 . Then the above procedure ensures
that max; &(P;(e?“t), P,,) < vk, but it doesn’t guar-
antee that I(Py, Py) = 0. Suppose, a controller C' which
stabilises the true plant Py results in 5 (H(P1,C)) = k
and bz, (P1,C) = a. From [13], if another model P,
satisfies I(P»,P1) < —k and 6z,(P1,P2) < a, then
n(H(P»,C)) = 0. A method for finding P> which guar-
antees I(Py, P;) < —k is outlined in the next theorem.

Theorem 8 Given Py and v < 1, the following are
equivalent.

(1) P, : I(Pg,Pl) < —k andégz(Pl,Pg) <7

(2) v>+/1-02(Hg,)

where o, (Hg) is the kth largest singular value of
Hankel operator H,.

When the condition 2 is satisfied, such a P, may be con-
structed as Py = { Quot(X)}* where X = [z1 x2)7 sat-
isfieszy " € R, X € Hoo(—yn—t and[|Gs—X ||oo < 7.
Here G3 is the normalised right graph symbol for P3 :=
Pf, deg(P1) = n and Hoo(—)n—r denotes the space of
functions analytic outside the unit disk except for at most
n — k stable poles.



Proof : Omitted for brevity; see [2].

As illustrated in the proof of this result [2], one can
construct a P, which solves
inf (5[,2 (Pl,PQ). (32)
Py€ER
I(Ps,P1)<—k

Then max; &(P,,, P>(e’“!) may be bounded as in (25).
From ([13],chapter 3), it may be shown that I(P,, Py) =
0 provided b, (PQ, C) > O, (P(), PQ) and b, (Pl, C) >
Oc,(P1, P2). If both Py and P, are stable (i.e. sta-
bilised by C' = 0), I(P1, Py) = 0 provided b, (P1,0) >
0z, (P1, Po). This may be approximately verified and the
above procedure is unnecessary in this case. If the plant
is unstable, the stabilising controller used to collect any
operational data may also be used to to build model P.

It is instructive at this stage to compare briefly the two
algorithms presented so far. The main advantages of the
procedure in section 3.2 is its numerical and conceptual
simplicity and the fact that it can incorporate a priori
information in terms of known poles. On the other hand,
the algorithm presented in sections 4.3-4.6 may be used
to model unstable plants, even those with poles on the
imaginary axis.

5 Simulation Examples

To illustrate the algorithm for identification in H ., con-
sider a plant
5(s+0.1)

Pols) = s2+3s5+2
Frequency response samples at 30 frequencies, logarith-
mically spaced between 0.1 rad/s and 10 rad/s are used
for estimation. These frequencies are mapped to JD
by Tustin transformation, with sampling period 0.28s.
Gaussian distributed complex noise is added to the fre-
quency response, with variance approximately 2% of
|Po(e“i)| at each w;. This data yields e = 0.2634 and
6 = 0.158. An FIR model of order 16 is identified by min-
imising X subject to (13). This yields a worst case error
of 0.0866 and the worst case slope of the obtained model
is 3143. The problem (8) is then solved with ( = 4. The
worst case error in this case is 0.0923 and the worst case
slope is 837.1. In fig. 1, the solid line shows the noisy fre-
quency response of the true plant, the dotted line shows
the response of the first approximate FIR model and the
dash-dot line shows the response of model with smooth-
ing constraint. The slope of Bode plot in the later case
is somewhat smoother at frequencies beyond 4 rad/s.

As an example for the algorithm for identification in the
v—gap metric, consider an unstable plant

2(s—1)

Po(s) = s(s2+04s+1)

Log Magnitude

Phase (degrees)

10° 10° 10
Frequency (radians/sec)

Fig. 1. Bode Plots: Frequency response samples and FIR
approximation

Frequency response samples of this plant at 40 frequen-
cies, logarithmically spaced between 0.1 rad/s and 30
rad/s are used for estimation. These frequencies are
mapped to 0D by Tustin transformation with sampling
period 0.105s. Gaussian distributed complex noise is
added to the frequency response, with variance ap-
proximately 2% of of |Py(e?“i)| at each w;. This data
yields max; k(P,,, Po(e?*?)) = 0.0749 and § = 0.2. An
initial model P, is obtained using fitsys command in
MATLAB which yields max; k(P,,, P,(e/%)) = 0.7755.
Coprime factors of P, are used to generate an initial
Qo,;- 50 iterations of (29)- (30) yield a model P; with
max; k(P,,, P1(jw;)) = 0.045. P; is de-stabilised by a
controller Cy which stabilises the true plant and has
b(Py,Co) = 0.1029. Using the procedure described
in section 4.6, another model P» stabilised by Cj is
obtained. Finally, max; x(P,,, P2(jw;)) = 0.066. P,
obtained is given by

—0.0863s2 + 2.3101s — 1.6950

P. =0.04
2(s) = 0.0475 + 53 + 0.6263s2 + 0.9987s + 0.1009

and §, (P, P>) = 0.06. In fig. (2), the solid line shows the
noisy frequency response of the true plant. The dashed
line indicates the response of the model.

6 Conclusion

Two robustly convergent algorithms for identification of
linear systems from noisy frequency response data are
suggested. In both the algorithms, the central idea is to
provide an explicit trade-off between the complexity of
the model (in terms of the worst case slope of the model
or its coprime factors) and the quality of approxima-
tion (in terms of the worst case fit to frequency response
data). The first algorithm yields an FIR model of a sta-
ble system and is optimal, in a certain sense for a fi-



Log Magnitude

Phase (degrees)

Frequency (radians/sec)

Fig. 2. Bode Plots: Frequency response samples and v—gap
approximation

nite model order. The second algorithm may be used for
modelling unstable plants and yields a real rational ap-
proximation in the L5 -gap. Both algorithms are based
on LMI optimisation. Given a model and a controller
stabilising the true plant, a procedure for winding num-
ber correction is also suggested.
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