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Abstract

This paper is concerned with the H∞ filtering problem for a general class of nonlinear discrete-time stochastic systems with
randomly varying sensor delays, where the delayed sensor measurement is governed by a stochastic variable satisfying the
Bernoulli random binary distribution law. In terms of the Hamilton-Jacobi-Isaacs inequalities, preliminary results are first
obtained that ensure the addressed system to possess an l2-gain less than a given positive scalar γ. Next, a sufficient condition
is established under which the filtering process is asymptotically stable in the mean square and the filtering error satisfies the
H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Such a sufficient condition
is then decoupled into four inequalities for the purpose of easy implementation. Furthermore, it is shown that our main
results can be readily specialized to the case of linear stochastic systems. Finally, a numerical simulation example is used to
demonstrate the effectiveness of the results derived.
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1 Introduction

Filtering problem has long been one of the fundamen-
tal problems in signal processing, communications and
control application. The filtering problem can be briefly
described as the design of an estimator from the mea-
sured output to estimate the state of the given system.
There have been many different kinds of filters designed
under different conditions, see e.g. [2, 3] and the refer-
ences therein. In particular, Kalman filtering has proven
to be the most representative one among varieties of fil-
ters. In general, the assumption that measured data con-
tains information about the current state of the system
is needed in the Kalman filtering approach. However,
in practical application such as engineering, biological
and economic systems, the measured output may be de-
layed. Therefore, the problem of filtering with delayed
measurements has been attracting considerable research
interests, see [7, 12] for some recent publications, where
the time-delays in the measurement is customarily as-
sumed to be deterministic.
It is quite common in practice that the time-delays oc-
cur in a random way, rather than a deterministic way, for
a number of engineering applications such as real-time
distributed decision-making and multiplexed data com-
munication networks. Hence, there is a great need to de-
velop new filtering approaches for the system with ran-
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domly varying delayed measurements, and some efforts
have been made in this regard so far, see e.g. [11,14,15].
On the other hand, nonlinear H∞ filtering or H∞ state
estimation has been an active branch within the gen-
eral research area of nonlinear filtering problems. As
nonlinear H∞ control theory develops, the nonlinear
H∞ filtering technologies have been extensively devel-
oped. Especially, the H∞ filtering problems for nonlin-
ear and/or stochastic systems have received increasing
research attention, see e.g. [8, 12, 13], where the nonlin-
earities have been assumed to be bounded by a linearity-
like form (e.g., Lipschitz and sector conditions), and
the filters have been designed by solving a set of LMIs.
With respect to general stochastic systems, the nonlin-
ear H∞ filtering problem has also been paid great efforts
in [9, 16]. Unfortunately, the H∞ filtering problem for
general nonlinear discrete-time stochastic systems with
randomly varying sensor delays has not been properly
investigated yet, and the purpose of this paper is there-
fore to tackle such a problem by establishing a rather
general framework.

In this paper, the H∞ filtering problem is addressed for
a general class of nonlinear discrete-time stochastic sys-
tems with randomly varying sensor delays. We first ob-
tain a theorem which provides a Hamilton-Jacobi-Isaacs
(HJI) inequality guaranteeing that the system under in-
vestigation has an l2-gain less than a given scalar γ > 0.
Second, we derive a sufficient condition under which the
filtering process is asymptotically stable in the mean
square and the filtering error satisfies H∞ performance
constraint for all nonzero exogenous disturbances under
the zero-initial condition. We then decouple such a suffi-
cient condition into four inequalities that can be checked
more easily. Moreover, as we expect, our main results are
specialized to linear system case without any difficulty.
Finally, a numerical simulation example is exploited to
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show the effectiveness of the results derived.

2 Problem Formulation and Preliminaries

The notation used here is fairly standard except where
otherwise stated.
Let (Ω, F , Prob) be a complete probability space, where
Prob, the probability measure, has total mass 1. E{x}
stands for the expectation of the stochastic variable x
with respect to the given probability measure Prob.
Consider the following class of nonlinear discrete-time
stochastic systems⎧⎪⎨⎪⎩

�xk+1 =�f(�xk) + �g(�xk)�vk

+ �s(�xk)w1
k + �h(�xk)�vkw2

k

zk =�m(�xk),

(1)

where �xk ∈ R
n is the state vector, zk ∈ R

m is
the state combination to be estimated, and {wk} �
{[(w1

k)T , (w2
k)T ]T } is an R

l+1-valued, zero-mean white-
noise sequence on a probability space (Ω, F , Prob) with
the covarianceE{wkwT

k } = Θ̃ = diag{θ1, θ2, · · · , θl, θ} =
diag{Θ, θ}. Obviously, Θ = E{w1

kw1
k

T } and θ =
E{(w2

k)2}. Let (Ω, F , {Fk}k∈I+ , Prob) be a filtered
probability space where {Fk}k∈I+ is the family of sub
σ-algebras of F generated by {wk}k∈I+ . In fact, each
Fk is assumed to be the minimal σ-algebras generated
by {wi}0≤i≤k−1 while F0 is assumed to be some given
sub σ-algebras of F , independent of Fk for all k > 0.
The exogenous disturbance input vk ∈ R

q, which is
assumed to satisfy {vk}k∈I+ ∈ l2([0,∞), Rq), where
l2([0,∞), Rq) is the space of nonanticipatory square-
summable stochastic process v = {vk}k∈I+ with respect
to (Fk)k∈I+ with the following norm:

‖v‖2
2 = E

{ ∞∑
k=0

‖vk‖2

}
=

∞∑
k=0

E
{‖vk‖2

}
.

The initial state �x0 is assumed to be independent of the
process {wk}k∈I+ . The nonlinear functions �f : R

n → R
n,

�g : R
n → R

n×q, �h : R
n → R

n×q, �s : R
n → R

n×l,
�m : R

n → R
m in (1) are all assumed to be smooth,

time-invariant, matrix-valued functions with �f(0) = 0,
�s(0) = 0 and �m(0) = 0.

Remark 1 In model (1), vk is an exogenous input that
usually describes the external disturbance, and wk repre-
sents both the exogenous random inputs and parameter
uncertainty of the system (see [1]). In [16], the H∞
filtering problem has been investigated for a class of
continuous-time Itô-type stochastic nonlinear systems
disturbed by the one-dimensional Wiener process. Actu-
ally, model (1) can be viewed as a discrete-time version
of the system in [16] in the case of multidimensional
Wiener process.

The delayed sensor measurement is described by

�yk =�l(�xk) + �k(�xk)�vk (2)
yk = (1 − γk)�yk + γk�yk−1, (3)

where �yk ∈ R
p is the ideal output vector, yk ∈ R

p is the
actual measured output vector, and γk ∈ R is a Bernoulli
distributed white sequence taking the values of 1 and 0
with

Prob{γk = 1} = E{γk} := β (4)
Prob{γk = 0} = 1 − E{γk} := 1 − β. (5)

Here, γk ∈ R is assumed to be uncorrelated with wk, vk,
and �x0. Moreover, the nonlinear functions �l : R

n → R
p,

�k : R
n → R

p×q in (2) are also assumed to be smooth,
time-invariant, matrix-valued functions with �l(0) = 0.
Note that the system measurement model (3) was used
in [11, 14].

By setting

xk :=

[
�xk

�xk−1

]
, vk :=

[
�vk

�vk−1

]
,

f(xk) :=

[
�f(�xk)
�xk

]
, g(xk) :=

[
�g(�xk) 0

0 0

]
,

h(xk) :=

[
�h(�xk) 0

0 0

]
, s(xk) :=

[
�s(�xk)

0

]
,

l(xk) :=

[
�l(�xk)

�l(�xk−1)

]
, k(xk) :=

[
�k(�xk) 0

0 �k(�xk−1)

]
,

m(xk) := �m(�xk), Cγk
:=

[
(1 − γk)Ip γkIp

]
,

(6)

we can combine the nonlinear stochastic system (1) and
the delayed sensor measurement (2)-(3) into a new form
as follows⎧⎪⎪⎨⎪⎪⎩

xk+1 =f(xk) + g(xk)vk

+ s(xk)w1
k + h(xk)vkw2

k

yk =Cγk
(l(xk) + k(xk)vk)

zk =m(xk).

(7)

In this paper, we are interested in constructing a filter
of the following form for system (7):{

x̂k+1 = f̂(x̂k) + Ĝ(x̂k)yk

ẑk = m̂(x̂k), f̂(0) = 0, m̂(0) = 0, x̂0 = 0,
(8)

where x̂k ∈ R
2n is the state estimate of the stochastic

system (7), ẑk ∈ R
m is the estimated output of the filter,

and f̂ , Ĝ and m̂ are filter parameters of appropriate
dimensions that are smooth functions to be scheduled.
Defining

ηk :=
[
xT

k x̂T
k

]T

, E :=
[
−Ip Ip

]
, Cβ :=

[
(1 − β)Ip βIp

]
,

we can get the following augmented system
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⎧⎪⎨⎪⎩
ηk+1 =f̃(ηk) + g̃(ηk)vk + h̃(ηk)vkw2

k + s̃(ηk)w1
k

+ (γk − β)(f̄ (ηk) + ḡ(ηk)vk)
z̃k :=zk − ẑk = m(xk) − m̂(x̂k),

(9)

where

f̃(ηk) =

[
f(xk)

f̂(x̂k) + Ĝ(x̂k)Cβ l(xk)

]
,

g̃(ηk) =

[
g(xk)

Ĝ(x̂k)Cβk(xk)

]
,

f̄(ηk) =

[
0

Ĝ(x̂k)El(xk)

]
, s̃(ηk) =

[
s(xk)

0

]
,

ḡ(ηk) =

[
0

Ĝ(x̂k)Ek(xk)

]
, h̃(ηk) =

[
h(xk)

0

]
.

(10)

In this paper, we aim to design the filter gain matrices
f̂(x̂k), Ĝ(x̂k) and m̂(x̂k) in (8) such that the following
requirements are simultaneously satisfied:

a) The zero-solution of the augmented system (9) with
vk = 0 is robustly asymptotically stable in the mean
square.

b) Under the zero-initial condition, the filtering error z̃k
satisfies
∞∑

k=0

E{‖z̃k‖2} < γ2
∞∑

k=0

E{‖vk‖2} (11)

for all nonzero vk where γ > 0 is a given disturbance
attenuation level.

3 Main Results

We first consider the following general stochastic system{
ηk+1 = Hk(ηk, vk, γk, wk)
z̃k = m̃k(ηk).

(12)

where Hk : R
4n×R

2q×R×R
l+1 → R

4n and m̃k : R
4n →

R
m are smooth, time-variant nonlinear matrix-valued

functions, and ηk, vk, γk, wk are defined previously.
Lemma 1 Consider the general stochastic system (12).
For the given scalar γ > 0, if there exist a family of posi-
tive real valued functions: Vk : R

4n×I
+ → R

+ (Vk(0) = 0
for all k ∈ I

+) satisfying the following HJI inequality

Vk(η) > sup
v∈R2q

{
‖z̃k‖2 − γ2‖v‖2

+Ewk,γk
{Vk+1[Hk(η, v, γk, wk)]}

}
(13)

for all nonzero η ∈ R
4n where Ey{·} is defined as in [1],

then the system (12) has l2-gain less than γ, i.e., the
following H∞ criterion is satisfied:

k−1∑
i=j

E{‖z̃i‖2} < E{Vj(ηj)} + γ2
k−1∑
i=j

E{‖vi‖2} (14)

for all 0 ≤ j < k and for all v ∈ R
2q.

Proof: This proof can be accomplished readily along the
same line of the proof of Theorem 2 in [1] by paying
attention to the random variable γk.
Remark 2 Note that the augmented system (9) un-
der consideration in this paper is time-invariant, and
is therefore a special case of the general stochastic
system (12). For the nonlinear time-invariant system
ηk+1 = H(ηk, vk, γk, wk) and the time-invariant filter-
ing error z̃k = zk − ẑk = m(xk) − m̂(x̂k), we can easily
obtain the following HJI inequality from (13):

V (η) ≥ sup
v∈R2q

{
‖z̃‖2 − γ2‖v‖2

+Ewk,γk
{V [H(η, v, γk, wk)]}

}
(15)

which can ensure the time-invariant system to have l2-
gain less than γ.
Remark 3 Under the zero-initial condition, the require-
ment (11) for the filter error z̃k to satisfy can be obtained
from the H∞ criterion (14) as long as one takes j = 0
and then lets k → +∞.
Corollary 1 Consider the augmented system (9) with a
given disturbance attenuation level γ > 0. If there exists
a positive definite matrix Q = QT > 0 satisfying

A := γ2I − g̃T (η)Qg̃(η) − β(1 − β)ḡT (η)Qḡ(η)
−θh̃T (η)Qh̃(η) > 0, (16)

for all η ∈ R
4n, and

ηT Qη > BA−1BT + β(1 − β)f̄T (η)Qf̄(η) + ‖z̃‖2

+f̃T (η)Qf̃(η) + trace[Θ
1
2 s̃T (η)Qs̃(η)Θ

1
2 ], (17)

for all nonzero η ∈ R
4n, where

B := f̃T (η)Qg̃(η) + β(1 − β)f̄T (η)Qḡ(η), (18)

then the error z̃k satisfies the H∞ performance constraint
(11) for all nonzero exogenous disturbances under the
zero-initial condition.
Proof: We define the positive real-valued function V (η)
as V (η) = ηT Qη for all η ∈ R

4n. Then, we have

sup
v∈R2q

{
‖z̃‖2 − γ2‖v‖2 + Ewk,γk

{V [H(η, v, γk, wk)]}
}

= sup
v∈R2q

{
− vT Av + 2Bv + β(1 − β)f̄T (η)Qf̄(η)

+f̃T (η)Qf̃(η) + trace[Θ
1
2 s̃T (η)Qs̃(η)Θ

1
2 ] + ‖z̃‖2

}
= BA−1BT + f̃T (η)Qf̃(η) + β(1 − β)f̄T (η)Qf̄(η)

+trace[Θ
1
2 s̃T (η)Qs̃(η)Θ

1
2 ] + ‖z̃‖2

< ηT Qη(= V (η)) (19)

where the second equation holds when maximizing v∗ =
A−1BT by applying the “completing the square” rule.
Therefore, by Lemma 1 and Remark 3, the proof of
Corollary 1 is complete.
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Theorem 1 Given the disturbance attenuation level γ >

0 and the filter parameters f̂ , Ĝ and m̂. If there exist two
positive definite matrices Q1 = QT

1 > 0 and Q2 = QT
2 >

0 satisfying
A = γ2I − β(1 − β)kT (x)ET ĜT (x̂)Q2Ĝ(x̂)Ek(x)

−kT (x)CT
β ĜT (x̂)Q2Ĝ(x̂)Cβk(x) − gT (x)Q1g(x)

−θhT (x)Q1h(x) > 0, (20)

for all x ∈ R
2n, x̂ ∈ R

2n, and
H(x, x̂) := BA−1BT + 2f̂T (x̂)Q2Ĝ(x̂)Cβ l(x) + ‖z̃‖2

+lT (x)CT
β ĜT (x̂)Q2Ĝ(x̂)Cβl(x) − xT Q1x

+fT (x)Q1f(x) + f̂T (x̂)Q2f̂(x̂) − x̂T Q2x̂

+β(1 − β)lT (x)ET ĜT (x̂)Q2Ĝ(x̂)El(x)

+trace[Θ
1
2 sT (x)Q1s(x)Θ

1
2 ] < 0, (21)

for all nonzero x ∈ R
2n, x̂ ∈ R

2n, where

B = fT (x)Q1g(x) + lT (x)CT
β ĜT (x̂)Q2Ĝ(x̂)Cβk(x)

+β(1 − β)lT (x)ET ĜT (x̂)Q2Ĝ(x̂)Ek(x)
+f̂T (x̂)Q2Ĝ(x̂)Cβk(x), (22)

then the zero-solution of the augmented system (9) with
vk = 0 is asymptotically stable in the mean square and the
filtering error z̃k satisfies the H∞ performance constraint
(11) for all nonzero exogenous disturbances under the
zero-initial condition.
Proof: By taking Q = diag{Q1, Q2} and noticing the
definition of f̃(.), g̃(.), h̃(.), s̃(.), f̄(.) and ḡ(.) in (10), it
follows immediately (16), (17) and (18) reduce to (20),
(21) and (22), respectively. Therefore, we known easily
from Corollary 1 that the filtering error z̃k satisfies (11)
for all nonzero exogenous disturbances under the zero-
initial condition.
Next, define the difference of the Lyapunov function as

∆V (ηk) = E {V (ηk+1)|ηk} − V (ηk), (23)

where V (η) = ηT Qη = xT Q1x + x̂T Q2x̂ and η =
[xT x̂T ]T . Calculating the difference of V (ηk) along the
system (9) with vk = 0 and taking the mathematical
expectation, it follows from (20) and (21) that

E {∆V (ηk)} = E {V (ηk+1) − V (ηk)}
= E

{
fT (xk)Q1f(xk) + f̂T (x̂k)Q2f̂(x̂k) − xT

k Q1xk

−x̂T
k Q2x̂k + lT (xk)CT

β ĜT (x̂k)Q2Ĝ(x̂k)Cβl(xk)

+β(1 − β)lT (xk)ET ĜT (x̂k)Q2Ĝ(x̂k)El(xk)
+2f̂T (x̂k)Q2Ĝ(x̂k)Cβ l(xk)

+trace[Θ
1
2 sT (xk)Q1s(xk)Θ

1
2 ]

}
.

≤ E {H(xk, x̂k)} < 0,

which, by the Lyapunov stability theory, shows the zero-
solution of the augmented system (9) with vk = 0 is
asymptotically stable in the mean square, and the proof
of Theorem 1 is then complete.

Remark 4 Theorem 1 is proved mainly by the “com-
pleting the square” technique which results in very lit-
tle conservatism. In fact, Theorem 1 can be specialized
to the existing results for systems with either Lipschitz
or sector-bounded nonlinearities and for linear systems,
which means that Theorem 1 serves as a theoretic basis
for the H∞ filtering problems of nonlinear stochastic sys-
tems.
Obviously, it is generally difficult to solve the inequali-
ties (20) and (21). In the following corollary, we aim to
decouple the conditions of Theorem 1 into four inequal-
ities that can be solved independently and more easily.
Under the standard assumption of kT (x)k(x) ≡ I (see
e.g. [5]), the following corollary is obtained.
Corollary 2 Given the disturbance attenuation level
γ > 0 and the filter parameters f̂ , Ĝ and m̂. The H∞
filtering problem for the system (7) is solved by filter
(8) if there exist three positive constants λ, µ and ε
and two positive definite matrices Q1 = QT

1 > 0 and
Q2 = QT

2 > 0 satisfying:

CT
β ĜT (x̂)Q2Ĝ(x̂)Cβ

+β(1 − β)ET ĜT (x̂)Q2Ĝ(x̂)E ≤ λI, (24)
γ2I − gT (x)Q1g(x) − θhT (x)Q1h(x) ≥ (µ + λ)I, (25)

for all x ∈ R
2n, x̂ ∈ R

2n, and

H1(x) :=
3
µ
‖fT (x)Q1g(x)‖2 + fT (x)Q1f(x) + (

3λ2

µ

+λ + ε−1)‖l(x)‖2 − xT Q1x + 2‖m(x)‖2

+trace[Θ
1
2 sT (x)Q1s(x)Θ

1
2 ] < 0, (26)

H2(x̂) := (
3
µ

+ ε)‖f̂T (x̂)Q2Ĝ(x̂)Cβ‖2 − x̂T Q2x̂

+f̂T (x̂)Q2f̂(x̂) + 2‖m̂(x̂)‖2 < 0, (27)

for all nonzero x ∈ R
2n, x̂ ∈ R

2n.
Proof: Using the elementary inequality ‖a + b‖2 ≤
2(‖a‖2 + ‖b‖2), we can get

‖z̃‖2 = ‖m(x) − m̂(x̂)‖2 ≤ 2‖m(x)‖2 + 2‖m̂(x̂)‖2. (28)

Similarly, it follows easily from (22) and (24)-(25) that

BA−1BT ≤ 3
µ

(
‖fT (x)Q1g(x)‖2 + λ2‖l(x)‖2

+‖f̂T (x̂)Q2Ĝ(x̂)Cβ‖2
)
. (29)

Applying the well-known fact: 2xT y ≤ εxT x + ε−1yT y,
∀ ε > 0, we have

2f̂T (x̂)Q2Ĝ(x̂)Cβl(x)

≤ ε‖f̂T (x̂)Q2Ĝ(x̂)Cβ‖2 + ε−1‖l(x)‖2. (30)

Then, we can obtain from (24), (28)-(30) that

H(x, x̂) ≤ H1(x) + H2(x̂) < 0. (31)
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Therefore, the proof of this corollary follows directly
from that of Theorem 1.
For the purpose of practical applications, we are now in
a position to study the problem of H∞ filtering for the
nonlinear system (7) but with a linear filter. In what
follows, we adopt a linear filter of the following structure{

x̂k+1 = Ff x̂k + Gfyk

ẑk = Mf x̂, x̂0 = 0.
(32)

Corollary 3 Given the disturbance attenuation level
γ > 0 and the filter parameters Ff , Gf and Mf . If there
exist two positive constants µ and ε and two positive defi-
nite matrices Q1 = QT

1 > 0 and Q2 = QT
2 > 0 satisfying

γ2I − gT (x)Q1g(x) − θhT (x)Q1h(x)
≥ (µ + λmax(w̄))I, for all x ∈ R

2n, (33)
3
µ
‖fT (x)Q1g(x)‖2 + fT (x)Q1f(x) − xT Q1x

+ (
3λ2

max(w̄)
µ

+ λmax(w̄) + ε−1)‖l(x)‖2 + 2‖m(x)‖2

+ trace[Θ
1
2 sT (x)Q1s(x)Θ

1
2 ]

< 0, for all nonzero x ∈ R
2n, (34)

(
3
µ

+ ε)FT
f Q2GfCβCT

β GT
f Q2Ff

+FT
f Q2Ff − Q2 + 2MT

f Mf < 0, (35)

where

w̄ := CT
β GT

f Q2GfCβ + β(1 − β)ET GT
f Q2GfE, (36)

then the H∞ filtering problem for the system (7) is solved
by linear filter (32).

Proof: Noting the fact that w̄ ≤ λmax(w̄)I, this corollary
follows immediately from Corollary 2.

Now, let us take a look at the linear system. As we expect,
the filter parameters can be characterized by the solution
to a set of LMIs that can be easily solved by utilizing
available software packages on the condition that the
system (1) is degenerated to a linear system.

Let �f(�xk) = �F�xk, �g(�xk) = �G, �h(�xk) = �H , �S(�xk) = �S�xk,
�l(�xk) = �L�xk, �m(�xk) = �M�xk and �k(�xk) = �K, where
�K satisfies the hypothesis that �KT �K = I. Here, Θ =
E{w1

kw1
k

T } is reduced to a scalar θ1. Similar to what we
have done previously, we can obtain a linear stochastic
system as follows⎧⎨⎩

xk+1 = Fxk + Gvk + Hvkw2
k + Sxkw1

k

yk = Cγk
(Lxk + Kvk)

zk = Mxk,

(37)

where

F =

[
�F 0
In 0

]
, G =

[
�G 0
0 0

]
, H =

[
�H 0
0 0

]
, S =

[
�S 0
0 0

]
,

L =

[
�L 0
0 �L

]
, K =

[
�K 0
0 �K

]
, M =

[
�M 0

]
.

In the case when the linear filter (32) with Ff = F and
Mf = M is still employed, then it can be seen from the
following corollary that the filter parameter Gf can be
designed by solving certain LMIs.

Corollary 4 Given the disturbance attenuation level
γ > 0. The H∞ filtering problem for the system (7) is
solved by the linear filter (32) with Ff = F and Mf = M
if there exist two positive definite matrices Q1 = QT

1 > 0
and Q2 = QT

2 > 0, one real matrix X, and two positive
constants λ and µ such that the following LMIs hold for
a given positive scalar ε > 0:⎡⎢⎣ −λI CT

β XT β(1 − β)ET XT

XCβ −Q2 0
β(1 − β)XE 0 −β(1 − β)Q2

⎤⎥⎦ < 0,(38)

(µ + λ − γ2)I + GT Q1G + θHT Q1H < 0,(39)⎡⎢⎣ Γ FT Q1G λLT

GT Q1F −µ
3 I 0

λL 0 −µ
3 I

⎤⎥⎦ < 0,(40)

⎡⎢⎣−Q2 + 2MT M + FT Q2F FT XCβ FT XCβ

CT
β XT F −µ

3 I 0
CT

β XT F 0 −ε−1I

⎤⎥⎦ < 0,(41)

where

Γ = −Q1 + (λ + ε−1)LT L

+2MT M + FT Q1F + θ1S
T Q1S. (42)

Moreover, if the LMIs (38)-(41) are feasible, the desired
filter parameter is given by

Gf = Q−1
2 X. (43)

Proof: Noting that f(x) = Fx, g(x) = G, h(x) = H ,
s(x) = Sx, l(x) = Lx, k(x) = K, f(x̂) = F x̂, Ĝ(x̂) =
Gf , m(x) = Mx, m̂(x̂) = Mx̂, and together with (43), it
can be seen that (38)-(41) imply (24)-(27), respectively,
in virtue of Schur’s complement formula. The rest of the
proof follows directly from Corollary 2.
Remark 5 The parameter ε > 0 is fixed so that (40)
and (41) are LMIs. In implementation, a linear search
algorithm can be used to find a suitable scalar ε > 0.
Similar strategy has been adopted in [6].

4 An Illustrative Example
Consider the following nonlinear discrete-time stochastic
system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x1,k+1 = − �x3
1,k

1 + 5�x2
1,k

− 1
5
�x2,k +

1
2
�vk

+ (
√

20
5

�x1,k −
√

20�x2
1,k�x2,k

1 + 5�x2
1,k

)w1
k

�x2,k+1 = − �x2,k

4 + �x2
1,k + �x2

2,k

+
1
2
�vkw2

k +
1
4
�x2,kw1

k

zk =
1
6
�x1,k +

1
5
�x2,k

(44)
the delayed sensor measurement

�yk =− �x1,k�x2,k

4 + 3�x2
2,k

+ �vk (45)

yk = (1 − γk)�yk + γk�yk−1. (46)

Let the disturbance attenuation be γ = 1.65, the vari-
ance be θ = θ1 = 0.5 and the probability be Prob{rk =
1} = β = 0.8. We adopt a linear filter as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x̂k+1 =

⎡⎢⎢⎢⎢⎣
0.25 −0.05 0 0.02
−0.05 0.3333 0 0

0 0 0.25 0
0.02 0 0 0.3333

⎤⎥⎥⎥⎥⎦ x̂k +

⎡⎢⎢⎢⎢⎣
0.5
0.5
0.5
0.5

⎤⎥⎥⎥⎥⎦ yk

ẑk =
[
0.2 0.1667 0 0

]
x̂k, x̂0 = 0.

(47)
It is not difficult to verify that f̂ , Ĝ and m̂ satisfy the
conditions of Theorem 1 with Q1 = diag{4, 4, 0.32, 0.05}
and Q2 = diag{1, 1, 1, 1}. Therefore, it follows from The-
orem 1 that the filter of the form (47) is a desired state
estimator. Simulation results are shown in Fig. 1 and
Fig. 2, where the trajectory and estimation of the out-
put zk are given in Fig. 1 and the estimation error z̃k is
depicted in Fig. 2, which coincide with our theoretical
analysis.
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