
REVISED 1

A Delay-Dependent LMI Approach to Dynamics

Analysis of Discrete-Time Recurrent Neural

Networks with Time-Varying Delays
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Abstract

In this Letter, the analysis problem for the existence and stability of periodic solutions is investigated for a class

of general discrete-time recurrent neural networks with time-varying delays. For the neural networks under study,

a generalized activation function is considered, and the traditional assumptions on the boundedness, monotony and

differentiability of the activation functions are removed. By employing the latest free-weighting matrix method, an

appropriate Lyapunov-Krasovskii functional is constructed and several sufficient conditions are established to ensure the

existence, uniqueness, and globally exponential stability of the periodic solution for the addressed neural network. The

conditions are dependent on both the lower bound and upper bound of the time-varying time delays. Furthermore, the

conditions are expressed in terms of the linear matrix inequalities (LMIs), which can be checked numerically using the

effective LMI toolbox in MATLAB. Two simulation examples are given to show the effectiveness and less conservatism

of the proposed criteria.
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I. Introduction

In the past few decades, delayed recurrent neural networks (especially delayed Hopfield neural networks,

delayed cellular neural networks and delayed bidirectional associative memory neural networks) have found

successful applications in many areas such as signal processing, pattern recognition, associative memories, and

optimization solvers. Many important results have been reported on the existence, uniqueness, and global

asymptotic or exponential stability of the equilibrium point for recurrent neural networks with constant delays

or time-varying delays, see [1, 2, 7, 8, 10,17,18,22–25] and the references therein for some recent publications.

It is well known that studies on neural dynamical systems not only involve a discussion of stability proper-

ties, but also involve many dynamic behaviors such as periodic oscillation, bifurcation, and chaos. In many

applications, the properties of periodic solutions are of great interest, which have been successfully applied

in, for example, learning theory [21] since effective learning usually requires repetition. In addition, an equi-

librium point can be viewed as a special periodic solution of neural networks with arbitrary period. In this

sense, the analysis of periodic solutions of neural networks can be considered to be more general than that of
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equilibrium point. Recently, the existence and stability of the periodic solution have been studied for recurrent

neural networks with constant delays or time-varying delays, see e.g. [13,19,27] and references therein.

It is worth noticing that, up to now, most recurrent neural networks have been assumed to act in a

continuous-time manner. However, when implementing the continuous-time recurrent neural network for

computer simulation, for experimental or computational purposes, it is essential to formulate a discrete-time

system that is an analogue of the continuous-time recurrent neural network. To some extent, the discrete-time

analogue inherits the dynamical characteristics of the continuous-time recurrent neural network under mild

or no restriction on the discretization step-size, and also remains functional similarity to the continuous-time

recurrent neural network and any physical or biological reality that the continuous-time recurrent neural

network has [15]. Unfortunately, as pointed out in [16], the discretization can not preserve the dynamics of

the continuous-time counterpart even for a small sampling period. Therefore, there is a crucial need to study

the dynamics of discrete-time neural networks.

Recently, the dynamics analysis problem for discrete-time recurrent neural networks with or without time

delays has received considerable research interest, see for example [6,9,11,12,14–16,20,28–31] and references

therein. In [12,14–16], the global exponential stability has been investigated for discrete-time delayed recurrent

neural networks, and several sufficient conditions for checking the global exponential stability of the equilibrium

point have been obtained. In [9], the global robust stability problem has been considered for a general class

of discrete-time interval neural networks that contain time-invariant uncertain parameters with their values

being unknown but bounded in given compact sets, and three sufficient conditions ensuring the global robust

stability have been given. In [28, 29], the authors have studied the stability and bifurcation problems for a

class of discrete-time neural networks. In [31], the stability and convergence of the periodic solution have

been studied for discrete-time neural network of two neurons. In [6,20], several sufficient conditions have been

derived for checking the existence and global exponential stability of the periodic solution for discrete-time

recurrent neural networks with constant delay. In [11], the existence of a unique almost periodic sequence

solution has been studied for discrete-time neural networks without delay. In [30], the authors have investigated

the existence and global exponential stability of the periodic solutions for discrete-time BAM neural networks

with periodic coefficients and distributed delays,

It should be pointed out that, the given criteria in [6,20] have been based upon certain diagonal dominance

or M -matrix conditions on weight matrices of the networks, which only depend on absolute values of the

weights and ignore the signs of the weights. Therefore, the conditions are somewhat conservative. In [14], a

linear matrix inequality (LMI) approach has been developed to deal with the analysis problem of exponential

stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. Unfortunately, the

construction of Lyapunov functional used in [14] appeared to be conservative, and there is much room to

reduce the possible conservatism. Motivated by the above discussions, the objective of this Letter is to study

the existence and stability of the periodic solution for discrete-time recurrent neural network with time-varying

delays by employing a new Lyapunov-Krasovskii functional as well as a unified LMI approach. Under more

general description on the activation functions, we utilize the latest free-weighting matrix method [3–5, 7, 8]

and obtain several less conservative conditions, which can be checked numerically using the effective LMI

toolbox in MATLAB. Two simulation examples are given to show the effectiveness and less conservatism of

the proposed criteria.

Notations: The notations are quite standard. Throughout this Letter, Rn and Rn×m denote, respectively,

the n-dimensional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix
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transposition. The notation X ≥ Y (respectively, X > Y ) means that X and Y are symmetric matrices, and

that X−Y is positive semidefinite (respectively, positive definite). ‖ · ‖ is the Euclidean norm in Rn. If A is a

matrix, denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} =
√

λmax(ATA), where λmax(A)

(respectively, λmin(A)) means the largest (respectively, smallest) eigenvalue of A. For integers a, b, and a < b,

N [a, b] denotes the discrete interval given N [a, b] = {a, a+ 1, · · · , b− 1, b}. C(N [−τ, 0], Rn) denotes the set of

all functions φ: N [−τ, 0] → Rn. Sometimes, the arguments of a function or a matrix will be omitted in the

analysis when no confusion can arise.

II. Model description and preliminaries

In this Letter, we consider the following neural network model

x(k + 1) = Cx(k) +Af(x(k)) +Bf(x(k − τ(k))) + I(k) (1)

for k = 1, 2, · · · , where x(k) = (x1(k), x2(k), · · · , xn(k))T ∈ Rn, xi(k) is the state of the ith neuron at time

k; f(x(k)) = (f1(x1(k)), f2(x2(k)), · · · , fn(xn(k)))T ∈ Rn, fj(xj(k)) denotes the activation function of the

jth neuron at time k; I(k) = (I1(k), I2(k), · · · , In(k))T ∈ Rn, Ii(k) represents the external input on the ith

neuron at time k; the positive integer τ(k) corresponds to the transmission delay and satisfies τ ≤ τ(k) ≤ τ

(τ ≥ 0 and τ ≥ 0 are known integers); C = diag(c1, c2, · · · , cn), ci (0 ≤ ci < 1) describes the rate with which

the ith neuron will reset its potential to the resting state in isolation when disconnected from the networks

and external inputs; A = (aij)n×n is the connection weight matrix, B = (bij)n×n is the delayed connection

weight matrix.

When I(k) = I is constant, model (1) becomes the following model:

x(k + 1) = Cx(k) +Af(x(k)) +Bf(x(k − τ(k))) + I (2)

for k = 1, 2, · · · .
The initial conditions associated with models (1) and (2) are given by

xi(s) = φi(s), s ∈ N [−τ , 0], i = 1, 2, · · · , n. (3)

Throughout this Letter, we make the following assumptions:

(H1) I(k) and τ(k) are periodic functions with common period ω for k = 1, 2, · · · .
(H2) There exist constants F−

j and F+
j (i = 1, 2, · · · , n) such that

F−

j ≤ fj(α1) − fj(α2)

α1 − α2
≤ F+

j

for all α1 6= α2.

Definition 1: The periodic solution x∗(k) of model (1) with (3) is said to be globally exponentially stable if

there exist two positive constants M > 0 and 0 < ε < 1 such that

‖x(k) − x∗(k)‖ ≤Mεk sup
s∈N [−τ,0]

‖φ(s) − φ∗(s)‖

for all k = 1, 2, · · · , where x(k) is any solution of model (1) with (3), φ(s) and φ∗(s) are the initial functions

of solutions x(k) and x∗(k), respectively.
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Definition 2: The equilibrium point x∗ of model (2) with (3) is said to be globally exponentially stable if

there exist two positive constants M > 0 and 0 < ε < 1 such that

‖x(k) − x∗‖ ≤Mεk sup
s∈N [−τ,0]

‖φ(s) − x∗‖

for all k = 1, 2, · · · , where x(k) is any solution of model (2) with (3), φ(s) is the initial functions of solutions

x(k).

Lemma 1: [22] Given constant matrices P , Q and R, where P T = P , QT = Q, then

[

P R

RT −Q

]

< 0

is equivalent to the following conditions

Q > 0, P +RQ−1RT < 0.

III. Main result

In this section, we shall establish our main criteria based on the LMI approach.

For presentation convenience, in the following, we denote

F1 = diag(F−

1 F
+
1 , F

−

2 F
+
2 , · · · , F−

n F
+
n ), F2 = diag(

F−

1 + F+
1

2
,
F−

2 + F+
2

2
, · · · , F

−

n + F+
n

2
). (4)

Theorem 1: Under assumptions (H1) and (H2), there exists exactly one ω-periodic solution of model (1)

with (3) and all other solutions of model (1) with (3) converge exponentially to it as k → +∞, if there exist

five n × n symmetric positive definite matrices P , Q, R, Z1 and Z2, two n× n positive diagonal matrices D

and H, three 5n× n matrices S1, S2 and S3 such that the following LMI holds:

W =

[

W1 + Ξ + ΞT W2

W T
2 −W3

]

< 0, (5)

where

W1 =

















Π1 − F1D 0 0 Π2 + F2D Π3

0 −Q− F1H 0 0 F2H

0 0 −R 0 0

ΠT
2 + F2D 0 0 Π4 −D Π5

ΠT
3 F2H 0 ΠT

5 Π6 −H

















,

Ξ =
[

S1 + S3 −S1 + S2 −S2 − S3 0 0
]

,

W2 =
[ √

τS1

√
τ − τS2

√
τS3

]

, W3 = diag(Z1, Z1, Z2),

with

Π1 = CPC − P + (1 + τ − τ)Q+R+ τ(C − E)(Z1 + Z2)(C − E), Π2 = CPA+ τ(C − E)(Z1 + Z2)A,

Π3 = CPB + τ(C − E)(Z1 + Z2)B, Π4 = ATPA+ τAT (Z1 + Z2)A,

Π5 = ATPB + τAT (Z1 + Z2)B, Π6 = BTPB + τBT (Z1 + Z2)B.
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Proof: Let Ω =
{

φ|φ ∈ C(N [−τ, 0], Rn)
}

. For φ ∈ Ω, define

‖φ‖ = sup
s∈N [−τ,0]

‖φ(s)‖,

then Ω is a Banach space with the topology of uniform convergence.

For any φ,ψ ∈ Ω, let x(k, φ) and x(k, ψ) be the solutions of model (1) starting from φ and ψ, respectively.

Define

x(k)(φ)(θ) = x(k + θ, φ), θ ∈ N [−τ , 0], k = 1, 2, · · · ,

and then x(k)(φ)(θ) ∈ Ω for all k = 1, 2, · · · . It follows from model (1) that

x(k + 1, φ) − x(k + 1, ψ) = C
(

x(k, φ) − x(k, ψ)
)

+A
(

f(x(k, φ)) − f(x(k, ψ))
)

+B
(

f(x(k − τ(k), φ)) − f(x(k − τ(k), ψ))
)

. (6)

Letting

y(k) = x(k, φ) − x(k, ψ), g(k) = f(x(k, φ)) − f(x(k, ψ)),

model (6) can then be simplified as

y(k + 1) = Cy(k) +Ag(k) +Bg(k − τ(k)). (7)

Consider the following Lyapunov-Krasovskii functional candidate for model (7) as

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k), (8)

where

V1(k) = yT (k)Py(k), (9)

V2(k) =
k−1
∑

i=k−τ(k)

yT (i)Qy(i), (10)

V3(k) =

k−τ
∑

l=k−τ+1

k−1
∑

i=l

yT (i)Qy(i), (11)

V4(k) =

k−1
∑

i=k−τ

yT (i)Ry(i), (12)

V5(k) =

−1
∑

i=−τ

k−1
∑

l=k+i

ηT (l)(Z1 + Z2)η(l), (13)

η(k) = y(k + 1) − y(k).
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Calculating the difference of Vi(k) (i = 1, 2, · · · , 5) along the trajectories of model (7), we obtain

∆V1(k) =
(

Cy(k) +Ag(k) +Bg(k − τ(k))
)T

P
(

Cy(k) +Ag(k) +Bg(k − τ(k))
)

− yT (k)Py(k)

= yT (k)(CPC − P )y(k) + 2yT (k)CPAg(k) + 2yT (k)CPBg(k − τ(k))

+gT (k)ATPAg(k) + 2gT (k)ATPBg(k − τ(k)) + gT (k − τ(k))BTPBg(k − τ(k)), (14)

∆V2(k) =

k
∑

i=k+1−τ(k+1)

yT (i)Qy(i) −
k−1
∑

i=k−τ(k)

yT (i)Qy(i)

=
k−τ
∑

i=k+1−τ(k+1)

yT (i)Qy(i) +
k−1
∑

i=k−τ+1

yT (i)Qy(i) + yT (k)Qy(k)

−
k−1
∑

i=k−τ(k)+1

yT (i)Qy(i) − yT (k − τ(k))Qy(k − τ(k))

≤
k−τ
∑

i=k+1−τ(k+1)

yT (i)Qy(i) + yT (k)Qy(k) − yT (k − τ(k))Qy(k − τ(k))

≤
k−τ
∑

i=k+1−τ

yT (i)Qy(i) + yT (k)Qy(k) − yT (k − τ(k))Qy(k − τ(k)), (15)

∆V3(k) =

k+1−τ
∑

l=k−τ+2

k
∑

i=l

yT (i)Qy(i) −
k−τ
∑

l=k−τ+1

k−1
∑

i=l

yT (i)Qy(i)

= (τ − τ)yT (k)Qy(k) −
k−τ
∑

l=k−τ+1

yT (l)Qy(l), (16)

∆V4(k) = yT (k)Ry(k) − yT (k − τ)Ry(k − τ), (17)

and

∆V5(k) =

−1
∑

i=−τ

[

ηT (k)(Z1 + Z2)η(k) − ηT (k + i)(Z1 + Z2)η(k + i)
]

= τηT (k)(Z1 + Z2)η(k) −
k−τ(k)−1

∑

i=k−τ

ηT (i)Z1η(i) −
k−1
∑

i=k−τ(k)

ηT (i)Z1η(i) −
k−1
∑

i=k−τ

ηT (i)Z2η(i)

= τ
[

yT (k)(C −E)(Z1 + Z2)(C − E)y(k) + 2yT (k)(C − E)(Z1 + Z2)Ag(k)

+2yT (k)(C − E)(Z1 + Z2)Bg(k − τ(k)) + gT (k)AT (Z1 + Z2)Ag(k)

+2gT (k)AT (Z1 + Z2)Bg(k − τ(k)) + gT (k − τ(k))BT (Z1 + Z2)Bg(k − τ(k))
]

−
k−τ(k)−1

∑

i=k−τ

ηT (i)Z1η(i) −
k−1
∑

i=k−τ(k)

ηT (i)Z1η(i) −
k−1
∑

i=k−τ

ηT (i)Z2η(i). (18)

Denoting

α(k) = (yT (k), yT (k − τ(k)), yT (k − τ), gT (k), gT (k − τ(k)))T ,
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Π =

















Π1 0 0 Π2 Π3

0 −Q 0 0 0

0 0 −R 0 0

ΠT
2 0 0 Π4 Π5

ΠT
3 0 0 ΠT

5 Π6

















,

it follows from (8), (14)-(18) that

∆V (k) ≤ αT (k)Πα(k) −
k−τ(k)−1

∑

i=k−τ

ηT (i)Z1η(i) −
k−1
∑

i=k−τ(k)

ηT (i)Z1η(i) −
k−1
∑

i=k−τ

ηT (i)Z2η(i)

= αT (k)Πα(k) −
k−τ(k)−1

∑

i=k−τ

ηT (i)Z1η(i) −
k−1
∑

i=k−τ(k)

ηT (i)Z1η(i) −
k−1
∑

i=k−τ

ηT (i)Z2η(i)

+2αT (k)S1

[

y(k) − y(k − τ(k)) −
k−1
∑

i=k−τ(k)

η(i)
]

+2αT (k)S2

[

y(k − τ(k)) − y(k − τ) −
k−τ(k)−1

∑

i=k−τ

η(i)
]

+2αT (k)S3

[

y(k) − y(k − τ) −
k−1
∑

i=k−τ

η(i)
]

≤ αT (k)
(

Π + Ξ + ΞT + τS1Z
−1
1 ST

1 + (τ − τ)S2Z
−1
1 ST

2 + τS3Z
−1
2 ST

3

)

α(k)

−
k−1
∑

i=k−τ(k)

(

ST
1 α(k) + Z1η(i)

)T

Z−1
1

(

ST
1 α(k) + Z1η(i)

)

−
k−τ(k)−1

∑

i=k−τ

(

ST
2 α(k) + Z1η(i)

)T

Z−1
1

(

ST
2 α(k) + Z1η(i)

)

−
k−1
∑

i=k−τ

(

ST
3 α(k) + Z2η(i)

)T

Z−1
2

(

ST
3 α(k) + Z2η(i)

)

≤ αT (k)
(

Π + Ξ + ΞT + τS1Z
−1
1 ST

1 + (τ − τ)S2Z
−1
1 ST

2 + τS3Z
−1
2 ST

3

)

α(k). (19)

From (H2), we have

(

gi(k) − F−

i yi(k)
)(

gi(k) − F+
i yi(k)

)

≤ 0, i = 1, 2, · · · , n,
(

gi(k − τ(k)) − F−

i yi(k − τ(k))
)(

gi(k − τ(k)) − F+
i yi(k − τ(k))

)

≤ 0, i = 1, 2, · · · , n,

which are equivalent to

[

y(k)

g(k)

]T




F−

j F
+
j eje

T
j −F−

j +F+

j

2 eje
T
j

−F−

j +F+

j

2 eje
T
j eje

T
j





[

y(k)

g(k)

]

≤ 0, j = 1, 2, · · · ,m, (20)

[

y(k − τ(k))

g(k − τ(k))

]T




F−

j F
+
j eje

T
j −F−

j +F+

j

2 eje
T
j

−F−

j +F+

j

2 eje
T
j eje

T
j





[

y(k − τ(k))

g(k − τ(k))

]

≤ 0, j = 1, 2, · · · ,m, (21)
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where er denotes the unit column vector having 1 element on its rth row and zeros elsewhere.

Letting D = diag(d1, d2, · · · , dn) and H = diag(h1, h2, · · · , hn), we have from (19)-(21) that

∆V (k) ≤ αT (k)
(

Π + Ξ + ΞT + τS1Z
−1
1 ST

1 + (τ − τ)S2Z
−1
1 ST

2 + τS3Z
−1
2 ST

3

)

α(k)

−
m

∑

j=1

dj

[

y(k)

g(k)

]T




F−

j F
+
j eje

T
j −F−

j +F+

j

2 eje
T
j

−F−

j +F+

j

2 eje
T
j eje

T
j





[

y(k)

g(k)

]

−
m

∑

j=1

hj

[

y(k − τ(k))

g(k − τ(k))

]T




F−

j F
+
j eje

T
j −F−

j +F+

j

2 eje
T
j

−F−

j
+F+

j

2 eje
T
j eje

T
j





[

y(k − τ(k))

g(k − τ(k))

]

= αT (k)
(

Π + Ξ + ΞT + τS1Z
−1
1 ST

1 + (τ − τ)S2Z
−1
1 ST

2 + τS3Z
−1
2 ST

3

)

α(k)

−
[

y(k)

g(k)

]T [

F1D −F2D

−F2D D

][

y(k)

g(k)

]

−
[

y(k − τ(k))

g(k − τ(k))

]T [

F1H −F2H

−F2H H

][

y(k − τ(k))

g(k − τ(k))

]

= αT (k)
(

W1 + Ξ + ΞT + τS1Z
−1
1 ST

1 + (τ − τ)S2Z
−1
1 ST

2 + τS3Z
−1
2 ST

3

)

α(k).

Define G = W1 + Ξ + ΞT + τS1Z
−1
1 ST

1 + (τ − τ)S2Z
−1
1 ST

2 + τS3Z
−1
2 ST

3 . From (5) and Lemma 1, we know

that G < 0 and therefore

∆V (k) ≤ −λmin(−G)‖α(k)‖2 ≤ −λmin(−G)‖y(k)‖2. (22)

From the definition of V (k), it is easy to verify that

V (k) ≤ λmax(P )‖y(k)‖2 + ρ

k−1
∑

i=k−τ

‖y(i)‖2 + 2τλmax(Z1 + Z2)
k−1
∑

i=k−τ

‖y(i + 1)‖2, (23)

where ρ = (1 + τ − τ)λmax(Q) + λmax(R) + 2τλmax(Z1 + Z2).

For any scalar µ > 1, it follows from (22) and (23) that

µj+1V (j + 1) − µjV (j) = µj+1∆V (j) + µj(µ− 1)V (j)

≤
[

µj(µ− 1)λmax(P ) − µj+1λmin(−G)
]

‖y(j)‖2

+ρµj(µ− 1)

j−1
∑

i=j−τ

‖y(i)‖2

+2τλmax(Z1 + Z2)µ
j(µ− 1)

j−1
∑

i=j−τ

‖y(i+ 1)‖2. (24)

Summing up both sides of (24) from 0 to k − 1 with respect to j, we have

µkV (k) − V (0) ≤
[

(µ− 1)λmax(P ) − µλmin(−G)
]

k−1
∑

j=0

µj‖y(j)‖2

+ρ(µ− 1)

k−1
∑

j=0

j−1
∑

i=j−τ

µj‖y(i)‖2

+2τλmax(Z1 + Z2)(µ− 1)

k−1
∑

j=0

j−1
∑

i=j−τ

µj‖y(i + 1)‖2. (25)
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It is easy to compute that

k−1
∑

j=0

j−1
∑

i=j−τ

µj‖y(i)‖2 ≤
(

−1
∑

i=−τ

i+τ
∑

j=0

+

k−1−τ
∑

i=0

i+τ
∑

j=i+1

+

k−1
∑

i=k−τ

k−1
∑

j=i+1

)

µj‖y(i)‖2

≤ τµτ sup
s∈N [−τ,0]

‖y(s)‖2 + τµτ

k−1
∑

i=0

µi‖y(i)‖2. (26)

Similarly, we have

k−1
∑

j=0

j−1
∑

i=j−τ

µj‖y(i+ 1)‖2 ≤ τµτ sup
s∈N [−τ,0]

‖y(s)‖2 + τµτ

k
∑

i=1

µi‖y(i)‖2. (27)

From (23), we obtain

V (0) ≤
[

λmax(P ) + ρτ + 2τ 2λmax(Z1 + Z2)
]

sup
s∈N [−τ,0]

‖y(s)‖2. (28)

It follows from (25)-(28) that

µkV (k) ≤ L1(µ) sup
s∈N [−τ ,0]

‖y(s)‖2 + L2(µ)
k

∑

j=0

µi‖y(i)‖2, (29)

where

L1(µ) = λmax(P ) + ρτ + 2τ2λmax(Z1 + Z2) + (µ− 1)ρτµτ + 2(µ− 1)τ 2µτλmax(Z1 + Z2),

L2(µ) = (µ− 1)λmax(P ) − µλmin(−G) + (µ− 1)ρτµτ + 2(µ− 1)τ 2µτλmax(Z1 + Z2).

Since L2(1) < 0, by the continuity of functions L2(µ), we can choose a scalar β > 1 such that L2(β) ≤ 0.

Obviously, L1(β) > 0. From (29), we get

βkV (k) ≤ L1(β) sup
s∈N [−τ ,0]

‖y(s)‖2. (30)

From the definition of V (k), we have

V (k) ≥ λmin(P )‖y(k)‖2. (31)

Let M =
√

L1(β)
λmin(P ) , ε =

√

1
β
, then M > 0, 0 < ε < 1. It follows from (30) and (31) that

‖y(k)‖ ≤Mεk sup
s∈N [−τ,0]

‖y(s)‖

for all k = 1, 2, · · · . That is

‖x(k, φ) − x(k, ψ)‖ ≤Mεk‖φ− ψ‖ (32)

for all k = 1, 2, · · · .
We can choose a positive integer L such that

MεLω ≤ 1

4
. (33)

Define a Poincarè mapping θ : Ω → Ω by

θ(φ) = x(ω)(φ).
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Then, we can derive from (32) and (33) that

‖θ(L)(φ) − θ(L)(ψ)‖ ≤ 1

4
‖φ− ψ‖, (34)

which implies that θ(L) is a contraction mapping and therefore there exists a unique fixed point φ∗ ∈ Ω such

that

θ(L)(φ∗) = φ∗.

Note that

θ(L)(θ(φ∗)) = θ(θ(L)(φ∗)) = θ(φ∗),

which shows that θ(φ∗) ∈ Ω is also a fixed point of θ(L), and hence

θ(φ∗) = φ∗,

or

x(ω)(φ∗) = φ∗.

Let x(k, φ∗) be the solution of model (1) through (0, φ∗). From assumption (H1), we know that x(k+ω, φ∗)

is also a solution of model (1). It follows from the fact

x(k+ω)(φ∗) = x(k)(x(ω)(φ∗)) = x(k)(φ∗)

that

x(k + ω, φ∗) = x(k, φ∗)

for k = 1, 2, · · · , which indicates that x(k, φ∗) is exactly one ω-periodic solution of model (1). To this end,

it is easy to see that all other solutions of model (1) converge exponentially to it as k → +∞. The proof is

completed.

Remark 1: In assumption (H2) of this Letter, the constants F−

j and F+
j (i = 1, 2, · · · , n) are allowed to be

positive, negative or zero. Hence, assumption (H2) is weaker than the following assumption (H3):

(H3) There exists a positive diagonal matrix F = diag(F1, F2, · · · , Fn) such that

|fj(u1) − fj(u2)| ≤ Fj |u1 − u2|

for all u1, u2 ∈ R, j = 1, 2, · · · , n. Assumption (H3) was mostly used in literature [6, 12, 15, 16, 20, 30].

Obviously, the activation functions such as sigmoid type and piecewise linear type are also the special case of

the function satisfying assumption (H2).

Remark 2: In [6,20], the given periodicity criteria for discrete-time recurrent neural network with constant

delays were based upon spectral radius or M-matrix conditions on weight matrices of the networks, which

only depend on absolute values of the weights and ignore the signs of the weights, and hence are somewhat

conservative.

Remark 3: In model (2), for any constant T ≥ 0, we have I = I(k + T ) = I(k) for k = 1, 2, · · · . Thus, by

the above result, when the sufficient condition in Theorem 1 is satisfied, one unique periodic solution becomes

a periodic solution with any positive constants as its period. So, the periodic solution reduced to a constant

solution, that is, an equilibrium point. Furthermore, all other solutions globally exponentially converge to this

equilibrium point as k → +∞. The unique equilibrium point of model (2) is globally exponentially stable.

Thus, by applying Theorem 1, we can easily obtain the following result.
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Corollary 1: Under assumption (H2) and condition (5), model (2) has one unique equilibrium point, which

is globally exponentially stable.

Remark 4: In [12,14,30], the boundedness of activation functions was required. In [9], the differentiability

of activation functions was required. However, the boundedness and differentiability of activation functions

have been removed in this Letter. Moreover, as shown in [3–5,7,8], the use of the latest free-weighting matrix

method in this Letter leads to delay-dependent and less conservative LMI conditions, which can be checked

numerically using the effective LMI toolbox in MATLAB.

IV. Examples

Example 1. Consider a discrete-time recurrent neural network (1), where

C =

[

0.1 0

0 0.2

]

, A =

[

−0.1 0.1

−0.1 0.05

]

, B =

[

0.05 0.1

0.05 0.05

]

,

f1(y) = tanh(2y), f2(y) = tanh(−4y), I1(k) = −3 sin(
kπ

2
), I2(k) = 2 cos(

kπ

2
), τ(k) = 3 + sin(

kπ

2
).

It can be verified that assumptions (H1) and (H2) are satisfied with F−

1 = 0, F+
1 = 2, F−

2 = −4, F+
2 = 0,

τ = 2, τ = 4, ω = 4. Thus,

F1 =

[

0 0

0 0

]

, F2 =

[

1 0

0 −2

]

.

By the Matlab LMI Control Toolbox, we find a solution to the LMI in (5) as follows:

P =

[

1055.1 −888.9

−888.9 2845.7

]

, Q =

[

129.6014 −143.8212

−143.8212 498.7914

]

, R =

[

55.2379 −43.8092

−43.8092 96.5058

]

,

Z1 =

[

49.3081 −68.1327

−68.1327 110.0119

]

, Z2 =

[

39.2746 −56.1519

−56.1519 87.8631

]

,

D =

[

129.4471 0

0 66.6214

]

,H =

[

47.5456 0

0 42.5023

]

,

S1 =
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−0.4771 0.7415

−1.2612 2.0908

−3.5770 4.0615

−6.4967 11.4255


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
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
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
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
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−0.3899 1.9731

−11.8190 19.5288

0.5649 −0.8447

−0.3821 0.7001

1.0156 −0.9129

−0.6661 1.5394

−2.9507 3.4808
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1.0456 −1.5582
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,

Therefore, by Theorem 1, we know that model (1) with above given parameters has exactly one 4-periodic

solution and all other solutions of the model converge exponentially to it as k → +∞, which is further verified

by the simulation given in Figure 1.
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Fig. 1. State responses of the discrete-time recurrent neural network with initial conditions (x1(s), x2(s))
T = (0.5,−0.3)T ,

s ∈ N [−4, 0].

It should be pointed out that the theorems in [6,20] are not applicable to judge the periodicity of this model

since the criteria in [6, 20] fail.

Example 2. Consider a discrete-time recurrent neural network (2), where

C =

[

0.26 0

0 0.1

]

, A =

[

0.1 0.2

−0.15 0.1

]

, B =

[

−0.25 0.1

0.02 0.08

]

,

f1(y) =
1

2
(|y + 1| + |y − 1|), f2(y) = |y + 1| + |y − 1|, I1 = −0.91, I2 = 1.75, τ(k) = 3 − sin(

kπ

2
).

It can be verified that assumption (H2) is satisfied with F−

1 = −1, F+
1 = 1, F−

2 = −2, F+
2 = 2, τ = 2,

τ = 4. Thus,

F1 =

[

−1 0

0 −4

]

, F2 =

[

0 0

0 0

]

.

By the Matlab LMI Control Toolbox, we find a solution to the LMI in (5) as follows:

P =

[

422.9 −15.4

−15.4 1366.8

]

, Q =

[

69.8245 −2.7674

−2.7674 251.9583

]

, R =

[

19.0205 −1.1514

−1.1514 28.1610

]

,

Z1 =

[

19.6348 −0.6881

−0.6881 23.5347

]

, Z2 =

[

13.2610 −1.0395

−1.0395 19.6730

]

,

D =

[

74.6901 0

0 100.0409

]

,H =

[

67.5113 0

0 56.7165

]

,
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,

Therefore, by Corollary 1, we know that model (2) with above given parameters has one unique equilibrium

point, which is globally exponentially stable. In fact, we can verify that (1, 3)T is a unique equilibrium point

of the model. The global exponential stability of equilibrium point (1, 3)T is further verified by the simulation

given in Figure 2.

It should be pointed out that the theorem in [14] are not applicable to judge the stability of this model

since the activation functions are not bounded.
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Fig. 2. State responses of the discrete-time recurrent neural network with initial conditions (x1(s), x2(s))
T = (0.2,−0.6)T ,

s ∈ N [−4, 0].

V. Conclusions

In this Letter, the existence and stability of periodic solution have been investigated for discrete-time recur-

rent neural network with time-varying delays. The description of the activation functions was more general

than the recently commonly used Lipschitz conditions. By employing appropriate Lyapunov-Krasovskii func-
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tional and the free-weighting matrix method, a new LMI criterion is established to ensure the existence,

uniqueness, and global exponential stability of periodic solution for the addressed neural network. The pro-

posed results are less conservative than some recently known ones in the literature, which are demonstrated

via two simulation examples.

We would like to point out that it is possible to generalize our main results to more complex neural networks,

such as neural networks with parameter uncertainties (e.g. norm-bounded uncertainties [23, 25]), stochastic

perturbations [23, 25, 26], and Markovian jumping parameters [24]. The corresponding results will appear in

the near future.
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