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Abstract

This paper is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural

networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed

to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general

than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the

equilibrium point. Then, by employing a Lyapnuov-Krasovskii functional, a unified linear matrix inequality (LMI)

approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown

that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an

LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented

to show the usefulness of the derived LMI-based stability condition.
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I. Introduction

The last few decades have seen successful applications of recurrent neural networks (RNNs) to a variety

of information processing systems such as signal processing, pattern recognition, optimization, model iden-

tification and associative memories, where the rich dynamical behaviors of RNNs have played a key role. It

has recently been revealed that signal transmission delays may cause oscillation and instability of the neural

networks (see e.g. [1]). Therefore, various analysis aspects for RNNs with delays have drawn much attention,

and many results have been reported in the literature. In particular, the existence of equilibrium point, global

asymptotic stability, global exponential stability, and the existence of periodic solutions have been intensively

investigated, see [2, 3, 16,20–24] for some recent publications.

Note that, up to now, most recurrent neural networks have been assumed to act in a continuous-time manner.

However, when it comes to the implementation of continuous-time networks for the sake of computer-based

simulation, experimentation or computation, it is usual to discretize the continuous-time networks. In fact,

discrete-time neural networks have already been applied in a wide range of areas, such as image processing [4],

time series analysis [10], quadratic optimization problems [18], and system identification [27], etc. In an ideal

case, the discrete-time analogues should be produced in a way to reflect the dynamics of their continuous-

time counterparts. Specifically, the discrete-time analogue should inherit the dynamical characteristics of
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the continuous-time networks under mild or no restriction on the discretization step-size, and also maintain

functional similarity to the continuous-time system and any physical or biological reality that the continuous-

time network has [14,17]. Unfortunately, as pointed out in [15], the discretization cannot preserve the dynamics

of the continuous-time counterpart even for a small sampling period. Therefore, there is a crucial need to

study the dynamics of discrete-time neural networks.

Recently, the stability analysis problems for discrete-time neural networks have received considerable re-

search interests, and various stability criteria have been proposed in the literature, see e.g. [11, 19, 26, 28–30]

and the references therein. In particular, in [11], the global robust stability problem has been investigated for

a general class of discrete-time interval neural networks which contain time-invariant uncertain parameters

with their values being unknown but bounded in given compact sets. In [19], by means of the uncovered

conditions, a set of sufficient and necessary conditions have been presented for global exponential stability of

a class of generic discrete-time recurrent neural networks. Some sufficient criteria have been derived in [26,29]

in order to ensure the asymptotic stability of the equilibrium point for a discrete-time Cohen-Grossberg neural

network model. In [30], the existence of periodic solutions has been proved for a non-autonomous discrete-time

neural network by using the topological degree theory.

On the other hand, due to the fact that time-delays can change the dynamical behaviors of neural networks

dramatically, discrete-time neural networks with time-delays have started to gain increasing research attention.

For example, in [12], some global exponential stability criteria for the equilibrium point of discrete-time

recurrent neural networks with variable delay have been presented with specific performances such as decay

rate and trajectory bounds. Based on the linear matrix inequality (LMI), in [13], the uniqueness and global

exponential stability of the equilibrium point have been investigated for discrete-time bi-directional associative

memory (BAM) neural networks with variable delays. In [25], by using coincidence degree theory as well as

a priori estimates and Lyapunov functional, the existence and global stability of periodic solution have been

studied for discrete delayed high-order Hopfield-type neural networks. Very recently, in [5], a class of discrete-

time neural networks involving variable delays have been dealt with, and sufficient conditions on existence,

uniqueness and globally exponential stability of the equilibrium point have been derived by applying M-matrix

theory and some analysis techniques.

It should be pointed out that, in all the papers concerning discrete-time neural networks with time-delay

mentioned above, the activation functions are assumed to satisfy the Lipschitz conditions, and the derived

stability criteria are mostly delay-independent which tend to be conservative. There is still room for improve-

ment, for example, reducing the conservatism under milder constraints. It is, therefore, our main purpose

of this paper to investigate the stability analysis problem of the exponential stability for a class of delayed

discrete-time recurrent neural networks under more general description on the activation functions, and ob-

tain less conservative stability criteria by using a unified linear matrix inequality (LMI) approach. It is shown

that the delayed discrete-time recurrent neural networks are globally exponentially stable if a certain LMI is

solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab

LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability

condition.

Notations: The notations are quite standard. Throughout this paper, R
n and R

n×m denote, respectively,

the n-dimensional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix

transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means

that X − Y is positive semidefinite (respectively, positive definite). For vector or matrix z, z � 0 means that

each entry of z is nonnegative. In is the n × n identity matrix. | · | is the Euclidean norm in R
n. If A is a

matrix, denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup{|Ax| : |x| = 1} =
√

λmax(AT A) where λmax(·)

(respectively, λmin(·)) means the largest (respectively, smallest) eigenvalue of A. Matrices, if not explicitly

specified, are assumed to have compatible dimensions. Sometimes, the arguments of a function will be omitted
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in the analysis when no confusion can arise.

II. Problem Formulation

Consider the following n-neuron discrete-time recurrent neural network (DRNN) with time delays:

ui(k + 1) = aiui(k) +
n

∑

j=1

bij f̂j(uj(k)) +
n

∑

j=1

dij ĝj(uj(k − τ(k))) + Ji, (1)

i = 1, 2, ..., n; which can be equivalently written in a vector form

u(k + 1) = Au(k) + BF̂ (u(k)) + DĜ(u(k − τ(k))) + J, (2)

where u(k) = (u1(k), u2(k), ..., un(k))T is the neural state vector; A = diag(a1, a2, ..., an) with |ai| < 1 is

the state feedback coefficient matrix; the n × n matrices B = [bij ]n×n and D = [dij ]n×n are the connection

weight matrix and the delayed connection weight matrix, respectively. The positive integer τ(k) denotes the

time-varying delay satisfying

τm ≤ τ(k) ≤ τM , k ∈ N, (3)

where τm ≥ 0 and τM ≥ 0 are known integers. In (2), F̂ (u(k)) = [f̂1(u1(k)), f̂2(u2(k)), ..., f̂n(un(k))]T

and Ĝ(u(k)) = [ĝ1(u1(k)), ĝ2(u2(k)), ..., ĝn(un(k))]T denote the neuron activation functions, and the constant

vector J = [J1, J2, ..., Jn]T is the exogenous input.

It is usually assumed that the activation functions are continuous, differentiable, monotonically increasing

and bounded, such as the sigmoid-type of function. However, in many electronic circuits, the input-output

functions of amplifiers may be neither monotonically increasing nor continuously differentiable, hence non-

monotonic functions can be more appropriate to describe the neuron activation in designing and implementing

an artificial neural network. In this paper, we make following assumptions for the neuron activation functions.

Assumption 1: For i ∈ {1, 2, ..., n}, the neuron activation functions f̂i(·) and ĝi(·) in (1) or (2) are continuous

and bounded.

Assumption 2: For i ∈ {1, 2, ..., n}, the neuron activation functions in (1) or (2) satisfies

l−i ≤
f̂i(s1) − f̂i(s2)

s1 − s2
≤ l+i , ∀s1, s2 ∈ R, (4)

v−i ≤
ĝi(s1) − ĝi(s2)

s1 − s2
≤ v+

i , ∀s1, s2 ∈ R, (5)

where l−i , l+i , v−i , v+
i are some constants.

Remark 1: The constants l−i , l+i , v−i , v+
i in Assumption 2 are allowed to be positive, negative, or zero.

Hence, the resulting activation functions could be non-monotonic, and are more general than the usual sigmoid

functions and the recently commonly used Lipschitz conditions. Note that with such a milder assumption,

the analysis methods developed in [5, 12, 13, 25] cannot be applied directly, and a new approach will have to

be developed.

Remark 2: The discrete-time recurrent neural network (1) is a discrete analog of the well-known continuous-

time recurrent neural network of the form:

ẋi(t) = −aixi(t) +
n

∑

j=1

bijfj(xj(t)) +
n

∑

j=1

dijgj(xj(t − τ(t))) + Ji, i = 1, 2, ..., n, (6)

which has been investigated intensively in recent years, see [2, 3, 16,20–24] and the references therein.

According to Assumption 1, we have the following result:
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Proposition 1: Under Assumption 1, there exists an equilibrium point for the DRNN (2).

Proof: Since the activation functions are bounded, there exists a constant M0 > 0 such that |F̂ (u)| ≤

M0 and |Ĝ(u)| ≤ M0, ∀u ∈ R
n. It follows from |ai| < 1 that I − A is invertible. Now, denote B(r) =

{u ∈ R
n | |u| ≤ r } with r = ‖(I − A)−1‖(‖B‖M0 + ‖D‖M0 + |J |), and define the map T : B → R

n by

T (u) = (I − A)−1
(

BF̂ (u) + DĜ(u) + J
)

. Obviously, T is continuous map, and it follows readily that

|T (u)| ≤ ‖(I − A)−1‖(‖B‖|F̂ (u)| + ‖D‖|Ĝ(u)| + |J |)

≤ ‖(I − A)−1‖(‖B‖M0 + ‖D‖M0 + |J |).

Hence, T maps B(r) into itself, i.e., T : B(r) → B(r). By Brower’ Fixed Point theorem, one can infer that

there exists a fixed point u∗ of T. Namely,

(I − A)−1
(

BF̂ (u∗) + DĜ(u∗) + J
)

= u∗,

or equivalently,

u∗ = Au∗ + BF̂ (u∗) + DĜ(u∗) + J.

Therefore, there exists an equilibrium point of DRNN (2).

Obviously, if we could prove the global stability of the neural network, then the equilibrium point is unique

as well. For this purpose, we need the following definition.

Definition 1: Let u∗ = [u∗
1, u

∗
2, ..., u

∗
n]T be a equilibrium point of the DRNN (2). Then, the DRNN (2) is

said to be globally exponentially stable if there exist constants µ > 0 and 0 < α < 1 such that every solution

of the DRNN (2) satisfies

|u(k) − u∗| ≤ µαk max
−τM≤j≤0

|u(j) − u∗|, k ≥ 0.

In the rest of this paper, we will focus on the stability analysis of the DRNN (2). By utilizing Lyapunov-

Krasoviskii functional, we aim to develop an LMI approach for deriving easy-to-test sufficient conditions under

which the DRNN (2) is globally exponentially stable.

III. Main Results

In this section, we shall establish our stability criteria based on the LMI approach.

For presentation convenience, in the following, we denote

L1 = diag(l+1 l−1
1 , l+2 l−1

2 , ..., l+n l−1
n ), L2 = diag(−

l+1 + l−1
1

2
,−

l+2 + l−1
2

2
, ...,−

l+n + l−1
n

2
), (7)

Υ1 = diag(v+
1 v−1

1 , v+
2 v−1

2 , ..., v+
n v−1

n ), Υ2 = diag(−
v+
1 + v−1

1

2
,−

v+
2 + v−1

2

2
, ...,−

v+
n + v−1

n

2
). (8)

Our main results are given in the following theorem.

Theorem 1: Under Assumptions 1 and 2, the DRNN (2) is globally exponentially stable if there exist two

diagonal matrices Λ = diag(λ1, λ2, ..., λn) > 0, Γ = diag(γ1, γ2, ..., γn) > 0, and two positive definite matrices

P and Q such that the following LMI holds:

Φ =











Π 0 AT PB − ΛL2 AT PD

0 −Q − ΓΥ1 0 −ΓΥ2

BTPA − ΛL2 0 BTPB − Λ BT PD

DT PA −ΓΥ2 DT PB DT PD − Γ











< 0 (9)

with

Π = AT PA − P + (τM − τm + 1)Q − ΛL1.
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Proof: First, by Proposition 1, the DRNN (2) has an equilibrium point u∗. For convenience, we shift the

equilibrium u∗ to the origin by letting x(k) = u(k) − u∗, and then the DRNN (2) can be transformed into

x(k + 1) = Ax(k) + BF (x(k)) + DG(x(k − τ(k))), (10)

where x(k) = [x1(k), x2(k), ..., xn(k)]T ∈ R
n is the state vector of the transformed system, and the transformed

neuron activation functions are

F (x(k)) := (f1(x1(k)), f2(x2(k)), ..., fn(xn(k)))T = F̂ (u(k)) − F̂ (u∗).

By Assumption 2, it can be verified readily that the transformed neuron activation functions satisfy

l−i ≤
fi(s1) − fi(s2)

s1 − s2
≤ l+i , (11)

v−i ≤
gi(s1) − gi(s2)

s1 − s2
≤ v+

i , (12)

In order to show the stability of the DRNN (2), we just need to deal with the stability of the DRNN (10).

To this end, we introduce the following Lyapunov-Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k), (13)

where

V1(k) = xT (k)Px(k), (14)

V2(k) =

k−1
∑

i=k−τ(k)

xT (i)Qx(i), (15)

V3(k) =
k−τm
∑

j=k−τM+1

k−1
∑

i=j

xT (i)Qx(i). (16)

Calculating the difference of V (k) along the DRNN (10), we have

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k), (17)

where

∆V1(k) = V1(k + 1) − V1(k)

= [Ax(k) + BF (x(k)) + DG(x(k − τ(k)))]T P

×[Ax(k) + BF (x(k)) + DG(x(k − τ(k)))] − xT (k)Px(k)

= xT (k)AT PAx(k) + F T (x(k))BT PBF (x(k))

+GT (x(k − τ(k))))DT PDG(x(k − τ(k))))

+2xT (k)AT PBF (x(k)) + 2xT (k)AT PDG(x(k − τ(k)))

+2F T (x(k))BT PDG(x(k − τ(k))) − xT (k)Px(k), (18)
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∆V2(k) = V2(k + 1) − V2(k)

=
k

∑

i=k+1−τ(k+1)

xT (i)Qx(i) −
k−1
∑

i=k−τ(k)

xT (i)Qx(i)

= xT (k)Qx(k) − xT (k − τ(k))Qx(k − τ(k)) +

k−1
∑

i=k−τ(k+1)+1

xT (i)Qx(i) −

k−1
∑

i=k−τ(k)+1

xT (i)Qx(i)

= xT (k)Qx(k) − xT (k − τ(k))Qx(k − τ(k)) +

k−1
∑

i=k−τm+1

xT (i)Qx(i)

+

k−τm
∑

i=k−τ(k+1)+1

xT (i)Qx(i) −

k−1
∑

i=k−τ(k)+1

xT (i)Qx(i)

≤ xT (k)Qx(k) − xT (k − τ(k))Qx(k − τ(k)) +

k−τm
∑

i=k−τM+1

xT (i)Qx(i), (19)

and

∆V3(k) = V3(k + 1) − V3(k)

=

k−τm+1
∑

j=k−τM+2

k
∑

i=j

xT (i)Qx(i) −

k−τm
∑

j=k−τM+1

k−1
∑

i=j

xT (i)Qx(i)

=

k−τm
∑

j=k−τM+1

k
∑

i=j+1

xT (i)Qx(i) −

k−τm
∑

j=k−τM+1

k−1
∑

i=j

xT (i)Qx(i) (20)

=

k−τm
∑

j=k−τM+1

(

xT (k)Qx(k) − xT (j)Qx(j)
)

= (τM − τm)xT (k)Qx(k) −

k−τm
∑

i=k−τM+1

xT (i)Qx(i). (21)

Substituting (18)-(21) into (17) results in

∆V (k) = xT (k)AT PAx(k) + F T (x(k))BT PBF (x(k)) + GT (x(k − τ(k))))DT PDG(x(k − τ(k))))

+ 2xT (k)AT PBF (x(k)) + 2xT (k)AT PDG(x(k − τ(k))) + 2F T (x(k))BT PDG(x(k − τ(k)))

−xT (k)Px(k) + (dM − dm + 1)xT (k)Qx(k) − xT (k − τ(k))Qx(k − τ(k))

= ξT (k)Φ1ξ(k), (22)

where

ξ(k) = [xT (k) xT (k − d(k)) F T (x(k)) GT (x(k − τ(k)))]T ,

Φ1 =











Π1 0 AT PB AT PD

0 −Q 0 0

BT PA 0 BT PB BT PD

DT PA 0 DT PB DT PD











,

with Π1 = AT PA − P + (dM − dm + 1)Q.

From (11)-(12), we have

(fi(xi(k)) − l+i xi(k))(fi(xi(k)) − l−i xi(k)) ≤ 0, i = 1, 2, ..., n, (23)

(gi(xi(k − τ(k))) − v+
i xi(k − τ(k)))(gi(xi(k − τ(k))) − v−i xi(x − τ(k))) ≤ 0, i = 1, 2, ..., n, (24)
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which are equivalent to
[

x(k)

F (x(k))

]T [

l+i l−i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l+
i

+l−
i

2 eie
T
i eie

T
i

] [

x(k)

F (x(k))

]

≤ 0, k = 1, 2, ..., n, (25)

[

x(k − τ(k))

G(x(k − τ(k)))

]T [

v+
i v−i eie

T
i −

v
+

i
+v

−

i

2 eie
T
i

−
v
+

i
+v

−

i

2 eie
T
i eie

T
i

] [

x(k − τ(k))

G(x(k − τ(k)))

]

≤ 0, k = 1, 2, ..., n, (26)

where ek denotes the unit column vector having “1” element on its kth row and zeros elsewhere.

Then, from (22), (25)-(26), one has

∆V (k) ≤ ξT (k)Φ1ξ(k) −
n

∑

i=1

λi

[

x(k)

F (x(k))

]T [

l+i l−i eie
T
i −

l
+

i
+l

−

i

2 eie
T
i

−
l
+

i
+l

−

i

2 eie
T
i eie

T
i

][

x(k)

F (x(k))

]

−
n

∑

i=1

γi

[

x(k − τ(k))

G(x(k − τ(k)))

]T [

v+
i v−i eie

T
i −

v
+

i
+v

−

i

2 eie
T
i

−
v
+

i
+v

−

i

2 eie
T
i eie

T
i

][

x(k − τ(k))

G(x(k − τ(k)))

]

= ξT (k)Φ1ξ(k) −

[

x(k)

F (x(k))

]T [

ΛL1 ΛL2

ΛL2 Λ

][

x(k)

F (x(k))

]

−

[

x(k − τ(k))

G(x(k − τ(k)))

]T [

ΓΥ1 ΓΥ2

ΓΥ2 Γ

][

x(k − τ(k))

G(x(k − τ(k)))

]

= ξT (k)Φξ(k). (27)

Let λ∗ = λmax(Φ). Then, from the inequality (9) and (27), it is clear that λ∗ < 0, and

∆V (k) ≤ λ∗|x(k)|2. (28)

Now, we are in a position to establish the exponential stability of the DRNN (10).

First, by the definition of V (k), it is readily verified that

V (k) ≤ ρ1|x(k)|2 + ρ2

k−1
∑

i=k−τM

|x(i)|2, (29)

where

ρ1 = λmax(P ), ρ2 = (τM − τm + 1)λmax(Q). (30)

For any scalar µ > 1, the inequality (29), together with (28), implies that

µk+1V (k + 1) − µkV (k)

= µk+1∆V (k) + µk(µ − 1)V (k)

≤ ω1(µ)µk|x(k)|2 + ω2(µ)

k−1
∑

i=k−dM

µk|x(i)|2, (31)

where

ω1(µ) = µλ∗ + (µ − 1)ρ1, ω2(µ) = (µ − 1)ρ2.

Furthermore, for any integer N ≥ τM + 1, summing up both sides of (31) from 0 to N − 1 with respect to k,

we have

µNV (N) − V (0) ≤ ω1(µ)
N−1
∑

k=0

µk|x(k)|2 + ω2(µ)
N−1
∑

k=0

k−1
∑

i=k−dM

µk|x(i)|2. (32)
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Note that for τM ≥ 1,

N−1
∑

k=0

k−1
∑

i=k−τM

µk|x(i)|2 ≤





−1
∑

i=−τM

i+τM
∑

k=0

+

N−1−τM
∑

i=0

i+τM
∑

k=i+1

+

N−1
∑

i=N−τM

N−1
∑

k=i+1



µk|x(i)|2

≤ τM

−1
∑

i=−τM

µi+τM |x(i)|2 + τM

N−1−τM
∑

i=0

µi+τM |x(i)|2 + τM

N−1
∑

i=N−1−τM

µi+τM |x(i)|2

≤ τMµτM max
−τM≤i≤0

|x(i)|2 + τMµτM

N−1
∑

i=0

µi|x(i)|2 (33)

Then, from (32) and (33), one has

µNV (N) ≤ V (0) +
[

ω1(µ) + dMµdM ω2(µ)
]

N−1
∑

k=0

µk|x(k)|2 + τMµτM ω2(µ) max
−τM≤i≤0

|x(i)|2. (34)

Let ρ0 = λmin(P ), and ρ = max{ρ1, ρ2}. It is obvious that

V (N) ≥ ρ0|x(N)|2. (35)

It also follows easily from (29) that

V (0) ≤ ρ max
−dM≤i≤0

|x(i)|2. (36)

In addition, it can be verified that there exists a scalar µ0 > 1 such that

ω1(µ0) + τMµτM

0 ω2(µ0) = 0. (37)

Substituting (35)-(37) into (34), we obtain

|x(N)|2 ≤
1

ρ0
(ρ + τMµτM

0 ω2(µ0))

(

1

µ0

)N

max
−dM≤i≤0

|x(i)|2,

which indicates that the DRNN (10) is exponentially stable. This completes the proof of the theorem.

The following corollary is an easy consequence of Theorem 1.

Corollary 1: Suppose that τ(k) ≡ τ0 where τ0 > 0 is a constant scalar. Then, under Assumptions 1 and 2,

the DRNN (2) is globally exponentially stable if there exist two diagonal matrices Λ = diag(λ1, λ2, ..., λn) > 0

and Γ = diag(γ1, γ2, ..., γn) > 0, and two positive definite matrices P and Q such that the following LMI

holds:

Φ̂ =











Π̂ 0 AT PB − ΛL2 AT PD

0 −Q − ΓΥ1 0 −ΓΥ2

BTPA − ΛL2 0 BTPB − Λ BT PD

DT PA −ΓΥ2 DT PB DT PD − Γ











< 0 (38)

with

Π̂ = AT PA − P + Q − ΛL1.

Remark 3: In our main results, the stability analysis problems are dealt with for a general class of discrete-

time neural networks with time-varying delays. An LMI-based sufficient condition is derived for the stability

of the neural networks addressed. The exponential stability can be readily checked by the solvability of a set of

LMIs, which can be done by resorting to the Matlab LMI toolbox. Note that the LMI (9) is delay-dependent,
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hence less conservative than the traditional delay-independent conditions. In the next section, an illustrative

example will be provided to show the potential of the proposed criteria.

Remark 4: It is noticed that the main results of Theorem 1 are actually dependent of the delay interval. It

is known from [6–8] that such conditions might be conservative in some cases. One interesting topic for future

research would be how to incorporate the idea embedded in [6–8] to obtain an improved delay-dependent

result for the problem considered in this paper.

Remark 5: We would like to point out that it is possible to generalize our main results to more complex

neural networks, such as neural networks with parameter uncertainties (norm-bounded uncertainties [22] and

polytopic uncertainties [9]), stochastic perturbations [21–23], and Markovian jumping parameters [24]. The

corresponding results will appear in the near future.

IV. Numerical Example

In this section, a numerical example is presented to demonstrate the usefulness of the developed method

on the exponential stability of the DRNN (2) with time-varying delays.

Consider the DRNN (2) with the following parameters:

A =







0.4 0 0

0 0.3 0

0 0 0.3






, B =







0.2 −0.2 0.1

0 −.3 0.2

−0.2 −0.1 −0.2






, D =







−0.2 0.1 0

−0.2 0.3 0.1

0.1 −0.2 0.3






,

J =
[

−0.3 0.2 −0.1
]T

, τ(k) = 4 + sin(kπ/2).

Take the activation functions as follows:

f̂1(s) = tanh(0.6s), f̂2(s) = tanh(−0.4s), f̂3(s) = tanh(−0.2s),

ĝ1(s) = tanh(−0.4s), ĝ2(s) = tanh(0.2s), ĝ3(s) = tanh(0.4s).

Form the above parameters, it can be verified that τm = 3, τM = 5, and

L1 = Υ1 =







0 0 0

0 0 0

0 0 0






, L2 =







−0.3 0 0

0 0.2 0

0 0 0.1






, Υ2 =







0.2 0 0

0 −0.1 0

0 0 −0.2






.

By using the Matlab LMI Toolbox, we solve LMI (9) and obtain the feasible solutions as follows:

P =







1.7068 −0.1435 0.1041

−0.1435 1.6765 0.0583

0.1041 0.0583 1.7458






, Q =







0.2711 −0.0344 0.0250

−0.0344 0.2962 0.0145

0.0250 0.0145 0.3134






,

Λ =







1.2343 0 0

0 1.3497 0

0 0 1.3652






, Γ =







1.3331 0 0

0 1.4138 0

0 0 1.3535







There, it follows from Theorem 1 the DRNN (2) with given parameters is globally exponentially stable, which

is further verified by the simulation result given in Fig. 1.

V. Conclusions

In this paper, we have considered the analysis problem of exponential stability for a class of discrete-time

recurrent neural networks (DRNNs) with time delays. The activation functions have been assumed to be

neither differentiable nor strict monotonic. Furthermore, the description of the activation functions has been
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Fig. 1. State trajectory of the DRNN in the example.

more general than the recently commonly used Lipschitz conditions. We have first proved the existence of

the equilibrium point, and then by employing an Lyapnuov-Krasovskii functional, a unified linear matrix

inequality (LMI) approach has been developed to establish sufficient conditions for the DRNNs to be globally

exponentially stable. It has been shown that the delayed DRNNs are globally exponentially stable if a certain

LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient

Matlab LMI Toolbox. A simulation example has been presented to show the usefulness of the derived LMI-

based stability condition.
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