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Stochastic Stability of Uncertain Hopfield Neural
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Abstract

This paper is concerned with the global asymptotic stability analysis problem for a class of uncertain stochastic

Hopfield neural networks with discrete and distributed time-delays. By utilizing a Lyapunov-Krasovskii functional,

using the well-known S-procedure and conducting stochastic analysis, we show that the addressed neural networks

are robustly, globally, asymptotically stable if a convex optimization problem is feasible. Then, the stability criteria

are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved by some standard numerical

packages. The main results are also extended to the multiple time-delay case. Two numerical examples are given to

demonstrate the usefulness of the proposed global stability condition.
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I. INTRODUCTION

In the past two decades, since its initiation in [12], the well-known Hopfield neural network has been extensively

studied, and successfully applied in many areas such as combinatorial optimization, signal processing and pattern

recognition, see e.g. [12], [13], [16], [17], [28]. In particular, the stability problem of Hopfield neural networks

has received much research attention since, when applied, the neural network is sometimes assumed to have only

one equilibrium that is globally stable. On the other hand, axonal signal transmission delays often occur in various

neural networks, and may cause undesirable dynamic network behaviors such as oscillation and instability. Therefore,

there has been a growing research interest on the stability analysis problems for delayed neural networks, and a large

amount of literature has been available. Sufficient conditions, either delay-dependent or delay-independent, have been

proposed to guarantee the asymptotic or exponential stability for neural networks, see [1], [6], [7], [15] for some recent

results. It is noticed that, so far, most works on delayed neural networks have dealt with the stability analysis problems

for neural networks with discrete time-delays.

Traditionally, discrete time-delays in the models of delayed feedback systems serve as a good approximation in

simple circuits having a small number of cells. Nevertheless, a neural network usually has a special nature due to
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the presence of an amount of parallel pathways with a variety of axon sizes and lengths. Such an inherent nature can

be suitably modeled by distributed delays [19], [21], because the signal propagation is distributed during a certain

time period. For example, in [21], a neural circuit has been designed with distributed delays, which solves a general

problem of recognizing patterns in a time-dependent signal. Hence, both discrete and distributed delays should be

taken into account when modeling neural networks [20]. Recently, there have been some initial studies on the stability

analysis issue for various neural networks with distributed time-delays, see [18], [29], [30]. In [29], criteria ensuring

the existence, uniqueness, and global asymptotic stability have been derived for Hopfield neural networks involving

distributed delays. It should be mentioned that, most recently, the global asymptotic stability analysis problem has

been investigated in [24] for a general class of neural networks with both discrete and distributed time-delays, where a

linear matrix inequality (LMI) approach has been developed to establish the sufficient stability conditions.

In recent years, the stability analysis issues for neural networks in the presence of parameter uncertainties and/or

stochastic perturbations have stirred some initial research attention. The reason is twofold: 1) the connection weights

of the neurons depend on certain resistance and capacitance values that include uncertainties (modeling errors), and

2) in real nervous systems the synaptic transmission is a noisy process brought on by random fluctuations from the

release of neurotransmitters, and other probabilistic causes. Therefore, the stability properties have been investigated

for delayed neural networks with parameter uncertainties (see e.g. [2], [27]) or external stochastic perturbations (see

e.g. [3], [14]). However, to the best of the authors’ knowledge, the robust stability analysis problem for stochastic

Hopfield neural networks with discrete and distributed delays has not been properly addressed, which still remains

important and challenging.

In this paper, we deal with the global robust stability analysis problem for a class of stochastic Hopfield neural

networks with discrete and distributed time-delays. By utilizing a Lyapunov-Krasovskii functional and using the well-

known S-procedure, we recast the addressed stability analysis problem into a convex optimization problem. Different

from the commonly used matrix norm theories (such as the M -matrix method), a unified linear matrix inequality (LMI)

approach is developed to establish sufficient conditions for the neural networks to be robustly, globally, asymptotically

stable. Note that LMIs can be easily solved by using the Matlab LMI toolbox, and no tuning of parameters is required

[4]. Two numerical examples are provided to show the usefulness of the proposed global stability condition.

Notations: The notations are quite standard. Throughout this paper, R
n and R

n×m denote, respectively, the n-

dimensional Euclidean space and the set of all n × m real matrices. The superscript “T ” denotes matrix transposition

and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means that X − Y is positive

semidefinite (respectively, positive definite). In is the n × n identity matrix. | · | is the Euclidean norm in R
n. If A

is a matrix, denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup{|Ax| : |x| = 1} =
√

λmax(AT A) where λmax(·)

(respectively, λmin(·)) means the largest (respectively, smallest) eigenvalue of A. l2[0,∞] is the space of square

integrable vector. Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions (i.e., the filtration contains all P -null sets and is right continuous). Denote by L
p
F0

([−h, 0]; Rn)

the family of all F0-measurable C([−h, 0]; Rn)-valued random variables ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that

sup−h≤θ≤0 E|ξ(θ)|p < ∞ where E{·} stands for the mathematical expectation operator with respect to the given

probability measure P . The shorthand diag{M1,M2, · · · ,MN} denotes a block diagonal matrix with diagonal blocks

being the matrices M1, M2, · · · , MN . Sometimes, the arguments of a function or a matrix will be omitted in the

analysis when no confusion can arise.
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II. PROBLEM FORMULATION

Recently, Hopfield neural networks with time delays, either discrete or distributed, have been widely investigated,

and many stability criteria have been established, see e.g. [2], [6], [7], [18], [24], [29] for some recent results. As in

[24], the Hopfield neural network with both discrete and distributed delays can be described by the following model:

u̇(t) = −Au(t) + W0g0(u(t)) + W1g1(u(t − h)) + W2

∫ t

t−τ
g2(u(s))ds + V (1)

where u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ R
n is the state vector associated with the n neurons, the diagonal matrix

A = diag(a1, a2, · · · , an) has positive entries ai > 0. The matrices W0 = (w0
ij)n×n, W1 = (w1

ij)n×n and W2 =

(w2
ij)n×n are, respectively, the connection weight matrix, the discretely delayed connection weight matrix, and the

distributively delayed connection weight matrix. gi(u(t)) = [gi1(u1), gi2(u2), · · · , gin(un)]T (i = 0, 1, 2) denotes the

neuron activation function with gi(0) = 0, and V = [V1, V2, · · · , Vn]T is a constant external input vector. The scalar

h > 0, which may be unknown, denotes the discrete time delay, whereas the scalar τ > 0 is the known distributed

time-delay.

In this paper, we make the following assumption for the neuron activation functions.

Assumption 1: The neuron activation functions in (1), gi(·), satisfy the following Lipschitz condition

|gi(x) − gi(y)| ≤ |Gi(x − y)|, ∀x, y ∈ R (i = 0, 1, 2) (2)

where Gi ∈ R
n×n are known constant matrices.

It is traditionally assumed that the activation functions are continuous, differentiable, monotonically increasing and

bounded, such as the functions of sigmoid type. In this paper, these restrictions are removed, and only Lipschitz

conditions are imposed in Assumption 1. Note that the type of activation functions in (2) have already been used in

numerous papers, see [7] and references therein.

Let u∗ be the equilibrium point of (1). For the purpose of simplicity, we can shift the intended equilibrium u∗ to the

origin by letting x = u − u∗, and then the system (1) can be transformed into:

ẋ(t) = −Ax(t) + W0l0(x(t)) + W1l1(x(t − h)) + W2

∫ t

t−τ
l2(x(s))ds, (3)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ R
n is the state vector of the transformed system. It follows from (2) that

the transformed neuron activation functions li(x) = gi(x + u∗) − gi(u
∗) (i = 0, 1, 2) satisfy

|li(x)| ≤ |Gix|, (4)

where Gi ∈ R
n×n (i = 0, 1, 2) are specified in (2).

As discussed in Section I, in reality, it is often the case that the connection weights of the neurons include uncer-

tainties, and the neural network is disturbed by environmental noises that affect the stability of the equilibrium. In this

paper, as in [2], [3], [14], the Hopfield neural network with parameter uncertainties and stochastic perturbations can be

described as follows:

dx(t) =

[

−Āx(t) + W̄0l0(x(t)) + W̄1l1(x(t − h)) + W̄2

∫ t

t−τ
l2(x(s))ds

]

dt

+σ(t, x(t), x(t − h))dw(t) (5)
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where w(t) = [w1(t), w2(t), · · · , xm(t)]T ∈ R
m is a Brownian motion defined on (Ω,F , {Ft}t≥0, P ), the matrices

Ā = A + ∆A, W̄0 = W0 + ∆W0, W̄1 = W1 + ∆W1, W̄2 = W2 + ∆W2, (6)

and

∆A = MAFNA, ∆Wi = MiFNi, (i = 0, 1, 2) (7)

where ∆A is a diagonal matrx, and MA, NA, Mi, Ni (i = 0, 1, 2) are known real constant matrices with appropriate

dimensions, which characterize how the deterministic uncertain parameter in F enters the nominal matrices A and W i

(i = 0, 1, 2). The matrix F , which may be time-varying, is unknown and satisfies

F T F ≤ I. (8)

Assume that σ : R
+ × R

n × R
n is locally Lipschitz continuous and satisfies the linear growth condition ([5], [11]).

Moreover, σ satisfies

trace
[

σT (t, x(t), x(t − h))σ(t, x(t), x(t − h))
]

≤ |Σ1x(t)|2 + |Σ2x(t − h)|2 (9)

where Σ1 and Σ2 are known constant matrices with appropriate dimensions. Let x(t; ξ) denote the state trajectory of

the neural network (5) from the initial data x(θ) = ξ(θ) on −h ≤ θ ≤ 0 in L2
F0

([−h, 0]; Rn). It can be easily seen that

the system (5) admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0, see [5], [11].

Remark 1: The parameter uncertainty structure as in (7)-(8) has been widely exploited in the problems of robust

control and robust filtering of uncertain systems (see, e.g., [23], [25] and the references therein). Many practical

systems possess parameter uncertainties which can be either exactly modeled or overbounded by (8). Observe that the

unknown matrix F in (7) can even be allowed to be state-dependent, i.e., F (t) = F (t, x(t)), as long as (8) is satisfied.

Remark 2: The assumption (9) on the stochastic disturbance term, σT (t, x(t), x(t − h)), has been used in recent

papers dealing with stochastic neural networks, see [14] and references therein.

We are now in a position to introduce the notion of robust global asymptotic stability for the stochastic neural

network (5) with parameter uncertainties and time-delays.

Definition 1: For the neural network (5) and every ξ ∈ L2
F0

([−h, 0]; Rn), the trivial solution (equilibrium point)

is robustly, globally, asymptotically stable in the mean square if, for all admissible uncertainties satisfying (8), the

following holds:

lim
t→∞

E|x(t; ξ)|2 = 0. (10)

The main purpose of the rest of this paper is to establish LMI-based stability criteria, which can be readily checked

by using the Matlab LMI toolbox, such that the global asymptotic stability is guaranteed for the neural network (5)

with both discrete and distributed time delays.

III. MAIN RESULTS AND PROOFS

We first give the following lemmas that are useful in deriving our LMI-based stability criteria.

Lemma 1: Let x ∈ R
n, y ∈ R

n and ε > 0. Then we have xT y + yT x ≤ εxT x + ε−1yT y.

Proof: The proof follows from the inequality (ε1/2x − ε−1/2y)T (ε1/2x − ε−1/2y) ≥ 0 immediately.
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Lemma 2: (S-procedure) [25] Let M = M T , H and E be real matrices of appropriate dimensions, with F satisfying

(8), then

M + HFE + ET F T HT < 0,

if and only if there exists a positive scalar ε > 0 such that

M +
1

ε
HHT + εET E < 0,

or equivalently








M H εET

HT −εI 0

εE 0 −εI









< 0.

Lemma 3: [4] Given constant matrices Ω1, Ω2, Ω3 where Ω1 = ΩT
1 and 0 < Ω2 = ΩT

2 , then

Ω1 + ΩT
3 Ω−1

2
Ω3 < 0

if and only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0, or

[

−Ω2 Ω3

ΩT
3 Ω1

]

< 0.

Lemma 4: [10] For any positive definite matrix M > 0, scalar γ > 0, vector function ω : [0, γ] → R
n such that the

integrations concerned are well defined, the following inequality holds:
(

∫ γ

0

ω(s)ds

)T

M

(
∫ γ

0

ω(s)ds

)

≤ γ

(
∫ γ

0

ωT (s)Mω(s)ds

)

For the sake of presentation simplicity, we denote:

M̂ :=





























−AP − PA + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) PW0 ε1G
T
0 PW1 ε2G

T
1 PW2 ε3τGT

2

W T
0 P −ε1I 0 0 0 0 0

ε1G0 0 −ε1I 0 0 0 0

W T
1 P 0 0 −ε2I 0 0 0

ε2G1 0 0 0 −ε2I 0 0

W T
2 P 0 0 0 0 −ε3I 0

ε3τG2 0 0 0 0 0 −ε3I





























, (11)

Ĥ :=















−PMA PM0 0 PM1 0 PM2 0

0 0 0 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0















, (12)

F̂ := diag{F, F, · · · , F}, (13)

Ê := diag{NA, N0, 0, N1, 0, N2, 0}, (14)

where Ĥ ,F̂ and Ê have the same block structure as M̂ .

We are now ready to derive the conditions under which the network dynamics of (5) is robustly, globally, asymptot-

ically stable in the mean square. The main theorem given below shows that the stability criteria can be expressed in

terms of the feasibility of two linear matrix inequalities.
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Theorem 1: If there exist positive scalars ρ > 0, εi > 0 (i = 1, 2, 3, 4) and a positive definite matrix P > 0 such

that the following two linear matrix inequalities

P < ρI, (15)








M̂ Ĥ ε4Ê
T

ĤT −ε4I 0

ε4Ê 0 −ε4I









< 0 (16)

hold, where M̂ , Ĥ , Ê are defined in (11), (12), and (14), respectively, then the dynamics of the neural network (5) is

robustly, globally, asymptotically stable in the mean square.

Proof: First of all, we know from the S-procedure (Lemma 2) that, there exists a positive scalar ε4 > 0 such that

(16) holds if and only if there exists a positive scalar ε4 > 0 such that

M̂ + ε−1
4

ĤĤT + ε4Ê
T Ê < 0. (17)

Since F̂ T F̂ ≤ I where F̂ is defined in (13), it follows from

(ε
−1/2

4
ĤF̂ − ε

1/2

4
ÊT )(ε

−1/2

4
ĤF̂ − ε

1/2

4
ÊT )T ≥ 0

that

ĤF̂ Ê + ÊT F̂ T ĤT ≤ ε−1
4

ĤĤT + ε4Ê
T Ê,

and therefore (17) implies

M̂ + ĤF̂ Ê + ÊT F̂ T ĤT < 0. (18)

In terms of (11)-(14), after tedious algebraic manipulations, (18) can be rewritten as




























−ĀP − PĀ + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) PW̄0 ε1G
T
0 PW̄1 ε2G

T
1 PW̄2 ε3τGT

2

W̄ T
0 P −ε1I 0 0 0 0 0

ε1G0 0 −ε1I 0 0 0 0

W̄ T
1 P 0 0 −ε2I 0 0 0

ε2G1 0 0 0 −ε2I 0 0

W̄ T
2 P 0 0 0 0 −ε3I 0

ε3τG2 0 0 0 0 0 −ε3I





























, (19)

and Ā, W̄0, W̄1 and W̄2 are defined in (6)-(7).

Pre- and post-multiplying the inequality (19) by the block-diagonal matrix

diag{I, ε
−1/2

1
I, ε

−1/2

1
I, ε

−1/2

2
I, ε

−1/2

2
I, ε

−1/2

3
I, ε

−1/2

3
I}

yield
























−ĀP − PĀ + ρ(ΣT
1
Σ1 + ΣT

2
Σ2) ε

−1/2

1
PW̄0 ε

1/2

1
GT

0
ε
−1/2

2
PW̄1 ε

1/2

2
GT

1
ε
−1/2

3
PW̄2 ε

1/2

3
τGT

2

ε
−1/2

1
W̄ T

0
P −I 0 0 0 0 0

ε
1/2

1
G0 0 −I 0 0 0 0

ε
−1/2

2
W̄ T

1
P 0 0 −I 0 0 0

ε
1/2

2
G1 0 0 0 −I 0 0

ε
1/2

3
W̄2P 0 0 0 0 −I 0

ε
−1/2

3
τG2 0 0 0 0 0 −I

























< 0, (20)
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or
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0, (21)

where

Ω1 := −ĀP − PĀ + ρ(ΣT
1 Σ1 + ΣT

2 Σ2),

Ω2 := I,

Ω3 :=
[

ε
−1/2

1
PW̄0 ε

1/2

1
GT

0 ε
−1/2

2
PW̄1 ε

1/2

2
GT

1 ε
−1/2

3
PW̄2 ε

1/2

3
τGT

2

]T
.

It follows from the Schur Complement Lemma (Lemma 3) that (21) holds if and only if

Ω1 + ΩT
3 Ω−1

2
Ω3 < 0,

or

−ĀP − PĀ + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) + ε−1
1

PW̄0W̄
T
0 P + ε1G

T
0 G0 + ε−1

2
PW̄1W̄

T
1 P

+ε2G
T
1 G1 + ε−1

3
PW̄2W̄

T
2 P + ε3τ

2GT
2 G2 < 0. (22)

In other words, from the condition of Theorem 1, we arrive at the conclusion that there exist positive scalars ρ > 0,

εi > 0 (i = 1, 2, 3) and a positive definite matrix P > 0 such that (22) is true. Also, it follows immediately from (4)

that

lTi (x)li(x) ≤ |Gix|
2 = xT GT

i Gix. (23)

Define a Lyapunov-Krasovskii functional candidate V (t, x(t)) ∈ C2,1(R+ × R
n; R+) by

V (t, x(t)) = xT (t)Px(t) +

∫ t

t−h
xT (s)Q1x(s)ds +

∫

0

−τ

∫ t

t+s
xT (η)Q2x

T (η)dηds, (24)

where P is the positive definite solution to the inequality (22), and Q1 ≥ 0 and Q2 ≥ 0 are defined by

Q1 := ε2G
T
1 G1 + ρΣT

2 Σ2, Q2 := ε3τGT
2 G2. (25)

By Itô’s differential formula (see, e.g., [8]), the stochastic derivative of V (t, x(t)) along (5) can be obtained as

follows:

dV (t, x(t)) =

{

xT (t)(−ĀP − PĀ + Q1 + τQ2)x(t) + xT (t)PW̄0l0(x(t)) + lT0 (x(t))W̄ T
0 Px(t)

+ trace
[

σT (t, x(t), x(t − h))Pσ(t, x(t), x(t − h))
]

+ xT (t)PW̄1l1(x(t − h)) + lT1 (x(t − h))W̄ T
1 Px(t)

− xT (t − h)Q1x(t − h) + xT (t)PW̄2

∫ t

t−τ
l2(x(s))ds

+

(
∫ t

t−τ
l2(x(s))ds

)T

W̄ T
2 Px(t) −

∫ t

t−τ
xT (s)Q2x(s)ds

}

dt

+
[

xT (t)Pσ(t, x(t), x(t − h)) + σT (t, x(t), x(t − h))Px(t)
]

dw(t). (26)
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Next, it follows from the conditions (9) and (15) that

trace
[

σT (t, x(t), x(t − h))Pσ(t, x(t), x(t − h))
]

≤ λmax(P )trace
[

σT (t, x(t), x(t − h))σ(t, x(t), x(t − h))
]

≤ ρ
[

xT (t)ΣT
1 Σ1x(t) + xT (t − h)ΣT

2 Σ2x(t − h)
]

(27)

For the positive scalars ε1 > 0, ε2 > 0, ε3 > 0, it follows from Lemma 1 and (4) that

xT (t)PW̄0l0(x(t)) + lT0 (x(t))W̄ T
0 Px(t)

≤ ε1l
T
0 (x(t))l0(x(t)) + ε−1

1
xT (t)PW̄0W̄

T
0 Px(t)

≤ xT (t)
(

ε1G
T
0 G0 + ε−1

1
PW̄0W

T
0 P

)

x(t), (28)

xT (t)PW̄1l1(x(t − h)) + lT1 (x(t − h))W̄ T
1 Px(t)

≤ ε2l
T
1 (x(t − h))l1(x(t − h)) + ε−1

2
xT (t)PW̄1W̄

T
1 Px(t)

≤ ε2x
T (t − h)GT

1 G1x(t − h) + ε−1
2

xT (t)PW̄1W̄
T
1 Px(t), (29)

and

xT (t)PW̄2

∫ t

t−τ
l2(x(s))ds +

(
∫ t

t−τ
l2(x(s))ds

)T

W̄ T
2 Px(t)

≤ ε3

(
∫ t

t−τ
l2(x(s))ds

)T ∫ t

t−τ
l2(x(s))ds + ε−1

3
xT (t)PW̄2W̄

T
2 Px(t). (30)

Furthermore, it can be seen from (4), (25) and Lemma 4 that

ε3

(
∫ t

t−τ
l2(x(s))ds

)T ∫ t

t−τ
l2(x(s))ds ≤ ε3τ

∫ t

t−τ
lT2 (x(s))l2(x(s))ds

≤ ε3τ

∫ t

t−τ
xT (s)GT

2 G2x(s)ds =

∫ t

t−τ
xT (s)Q2x(s)ds. (31)

Using (25) and (27)-(31), we obtain from (26) that

dV (t, x(t)) ≤

{

xT (t)

[

− ĀP − PĀ + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) + ε−1

1
PW̄0W̄

T
0 P + ε1G

T
0 G0

+ε−1

2
PW̄1W̄

T
1 P + ε2G

T
1 G1 + ε−1

3
PW̄2W̄

T
2 P + ε3τ

2GT
2 G2

]

x(t)

}

dt

+
[

xT (t)Pσ(t, x(t), x(t − h)) + σT (t, x(t), x(t − h))Px(t)
]

dw(t)

= xT (t)Πx(t)dt +
[

xT (t)Pσ(t, x(t), x(t − h)) + σT (t, x(t), x(t − h))Px(t)
]

dw(t). (32)

where Π is defined as

Π := −ĀP − PĀ + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) + ε−1
1

PW̄0W̄
T
0 P + ε1G

T
0 G0

+ε−1

2
PW̄1W̄

T
1 P + ε2G

T
1 G1 + ε−1

3
PW̄2W̄

T
2 P + ε3τ

2GT
2 G2. (33)

From (22), we know that Π < 0. Taking the mathematical expectation of both sides of (32), we have

dEV (t, x(t))

dt
≤ E

(

xT (t)Πx(t)
)

≤ −λmin(−Π)E|x(t)|2. (34)
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It can now be concluded from Lyapunov stability theory that the dynamics of the neural network (5) is robustly,

globally, asymptotically stable in the mean square. This completes the proof of Theorem 1.

Remark 3: In Theorem 1, the matrix inequalities (15)(16) are linear on the parameters ρ > 0, εi > 0 (i = 1, 2, 3, 4)

and P > 0. Therefore, by using the Matlab LMI toolbox, it is straightforward to check the feasibility of (15)(16)

without tuning any parameters. Different from the existing results based on matrix norm computation, such as those

given in [1], the LMI approach developed in this paper is numerically more efficient [4]. The LMI Control Toolbox

implements state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than classical convex

optimization algorithms, it should be kept in mind that the complexity of LMI computations remains higher than that

of solving, say, a Riccati equation. For instance, problems with a thousand design variables typically take over an

hour on today’s workstations [4]. However, research on LMI optimization is a very active area in the applied math,

optimization and the operations research community, and substantial speed-ups can be expected in the future.

Remark 4: Note that Lemma 1 is used in the proof of Theorem 1 to tackle the parameter uncertainties, hence

certain conservatism might be introduced. Such conservatism can be significantly reduced by selecting proper scalar

parameters ε, see [26] for more details. It is worth pointing out that, following the similar line of [22], it is not difficult

to prove the exponential stability (in the mean square) of the neural network (5) under same conditions in Theorem 1.

In the sequel, in order to demonstrate the usefulness of our main results, we consider three special cases as well

as a more general case. The proofs of all the subsequent corollaries follow easily from Theorem 1, and are therefore

omitted.

Case 1: We first consider the uncertainty-free case. That is, there are no parameter uncertainties, and the neural

network is described by

dx(t) =

[

−Ax(t) + W0l0(x(t)) + W1l1(x(t − h)) + W2

∫ t

t−τ
l2(x(s))ds

]

dt

+σ(t, x(t), x(t − h))dw(t). (35)

In this case, we have the following corollary.

Corollary 1: If there exist positive scalars ρ > 0, εi > 0 (i = 1, 2, 3) and a positive definite matrix P > 0 such that

the LMIs P < ρI and




























−AP − PA + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) PW0 ε1G
T
0 PW1 ε2G

T
1 PW2 ε3τGT

2

W T
0 P −ε1I 0 0 0 0 0

ε1G0 0 −ε1I 0 0 0 0

W T
1 P 0 0 −ε2I 0 0 0

ε2G1 0 0 0 −ε2I 0 0

W T
2 P 0 0 0 0 −ε3I 0

ε3τG2 0 0 0 0 0 −ε3I





























< 0 (36)

hold, then the neural network (35) is globally asymptotically stable in the mean square.

Corollary 1 is still believed to be new since there are few results on the stability analysis for stochastic systems with

both discrete and distributed delays.

Case 2. We now consider the case where there is neither parameter uncertainty nor the distributed delay, and the

neural network can be further reduced to

dx(t) = [−Ax(t) + W0l0(x(t)) + W1l1(x(t − h))]dt + σ(t, x(t), x(t − h))dw(t). (37)
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This case has been studied by several authors, for example, in [3], [14], where different assumptions on the function

σ(t, x(t), x(t−h)) have been made. The following corollary offers an alternative criterion for testing the mean square

stability of the delayed neural network (37).

Corollary 2: If there exist positive scalars ρ > 0, εi > 0 (i = 1, 2) and a positive definite matrix P > 0 such that

the LMIs P < ρI and


















−AP − PA + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) PW0 ε1G
T
0 PW1 ε2G

T
1

W T
0 P −ε1I 0 0 0

ε1G0 0 −ε1I 0 0

W T
1 P 0 0 −ε2I 0

ε2G1 0 0 0 −ε2I



















< 0 (38)

hold, then the neural network (37) is globally asymptotically stable in the mean square.

Case 3. Assume that there is no parameter uncertainty, and there is only the distributed delay. In this case, the neural

network can be simplified as

dx(t) =

[

−Ax(t) + W0l0(x(t)) + W2

∫ t

t−τ
l2(x(s))ds

]

dt + σ(t, x(t), x(t − h))dw(t), (39)

If we do not consider the stochastic effects, i.e., σ(t, x(t), x(t − h)) = 0, the neural network (39) has been extensively

studied, see e.g. [18], [29], [30]. Hence, the following corollary still stands as a significant result.

Corollary 3: If there exist positive scalars ρ > 0, εi > 0 (i = 1, 2) and a positive definite matrix P > 0 such that

the LMIs P < ρI and


















−AP − PA + ρ(ΣT
1 Σ1 + ΣT

2 Σ2) PW0 ε1G
T
0 PW2 ε2τGT

2

W T
0 P −ε1I 0 0 0

ε1G0 0 −ε1I 0 0

W T
2 P 0 0 −ε2I 0

ε2τG2 0 0 0 −ε2I



















< 0 (40)

hold, then the neural network (39) is globally asymptotically stable in the mean square.

Case 4. Finally, we like to show that our results can also be extended to the multiple-delay case without major

difficulties. Consider now the following uncertain neural network with multiple delays and stochastic perturbations:

dx(t) =



−Āx(t) + W̄0l0(x(t)) +

m
∑

i=1

W̄1l1(x(t − hi)) +

m
∑

j=1

W̄2

∫ t

t−τj

l2(x(s))ds



 dt

+σ(t, x(t), x(t − h1), · · · , x(t − hm))dw(t), (41)

where the meanings of the network parameters are similar to those in (5), except that the function σ(t, x(t), x(t −

h1), · · · , x(t − hm)) is required to satisfy

trace
[

σT
(

t, x(t), x(t − h1), · · · , x(t − hm)
)

σ
(

t, x(t), x(t − h1), · · · , x(t − hm)
)]

≤

m
∑

i=0

|Σix(t − hi)|
2.

In order to study the mean square stability of the neural network (41), we can modify the Lyapunov-Krasovskii

functional candidate in (24) as follows

V (t, x(t)) = xT (t)Px(t) +

m
∑

i=1

∫ t

t−hi

xT (s)Q1ix(s)ds +

m
∑

j=1

∫

0

−τj

∫ t

t+s
xT (η)Q2jx

T (η)dηds, (42)
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and then along the same line of the proof of Theorem 1, it is not difficult to obtain similar results.

IV. NUMERICAL EXAMPLES

Two simple examples are presented here in order to illustrate the usefulness of our main results. Our aim is to

examine the global asymptotic stability of a given delayed stochastic neural network.

Example 1. In this example, we consider a two-neuron stochastic neural network (35) with both discrete and dis-

tributed delays but without parameter uncertainties, where

A =

[

0.9 0

0 0.9

]

, W0 =

[

1.2 −1.5

−1.7 1.2

]

, W1 =

[

1.1 0.5

0.5 0.8

]

, W2 =

[

0.6 0.1

0.1 0.2

]

,

G0 =

[

0.1 0

0 0.2

]

, G1 =

[

0.2 0

0 0.2

]

, G2 =

[

0.1 0

0 0.1

]

,

Σ1 =

[

0.08 0

0 0.08

]

, Σ2 =

[

0.09 0

0 0.09

]

, τ = 0.12.

By using the Matlab LMI toolbox, we solve the LMIs P < ρI and (36) for ρ > 0, ε1 > 0, ε2 > 0, ε3 > 0, P > 0

and obtain

ρ = 1.1814, ε1 = 1.2365, ε2 = 0.9586, ε3 = 0.8806, P =

[

0.2294 0.0896

0.0896 0.2495

]

.

Therefore, it follows from Corollary 1 that the two-neuron neural network (35) is globally asymptotically stable in the

mean square.

Example 2. Now, let us consider a third-order delayed stochastic neural network (5) with parameter uncertainties.

The network data are given as follows:

A =









1.1 0 0

0 1.2 0

0 0 1.3









, W0 =









0.3 −1.8 0.5

−1.1 1.6 1.1

0.6 0.4 −0.3









,

W1 =









0.8 0.2 0.1

0.2 0.6 0.6

−0.8 1.1 −1.2









, W2 =









0.5 0.2 0.1

0.3 0.7 −0.3

1.2 −1.1 −0.5









,

G0 = G1 = G2 = 0.2I3, Σ1 = Σ2 = 0.08I3, τ = 0.1,

MA = NA = Mi = Ni = 0.1I3 (i = 0, 1, 1)

Again, by solving the LMIs (15)-(16) for ρ > 0, εi > 0 (i = 1, 2, 3, 4) and P > 0, we obtain

ρ = 1.5648, ε1 = 1.2806, ε2 = 0.9575, ε3 = 0.9954, ε4 = 0.99868,

P =









0.3017 0.0644 0.0304

0.0644 0.2465 0.0240

0.0304 0.0240 0.2294









,

which indicates that the delayed stochastic neural network (5) is robustly, globally, asymptotically stable in the mean

square.
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V. CONCLUSIONS

In this paper, we have dealt with the problem of global asymptotic stability analysis for a class of uncertain stochastic

delayed neural networks, which involve both discrete and distributed time delays. We have removed the traditional

monotonicity and smoothness assumptions on the activation function. A linear matrix inequality (LMI) approach

has been developed to solve the problem addressed. The stability criteria have been derived in terms of the positive

definite solution to an LMI involving several scalar parameters, and simple examples have been used to demonstrate

the usefulness of the main results. One of the future research topics would be extend the present results to more general

cases, for example, the case that the delays are time-varying, including both discrete and distributed delays, the case

when the stability criteria are delay-dependent, and the case that exponential stability is investigated. The results will

appear in the near future.
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