Global Exponential Stability of
Generalized Recurrent Neural Networks

with Discrete and Distributed Delays

Yurong Liu, Zidong Wang* and Xiaohui Liu

This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant
GR/S27658/01, the Nuffield Foundation of the U.K. under Grant NAL/00630/G, and the Alexander von Humboldt Foundation

of Germany.
Y. Liu is with the Department of Mathematics, Yangzhou University, Yangzhou 225002, P. R. China.
Z. Wang and X. Liu are with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex,

UBS8 3PH, United Kingdom.
*Corresponding author (Tel.: 0044 1895 266021; Fax: 0044 1895 251686; Email: Zidong.Wang@brunel.ac.uk)



Abstract

This paper is concerned with analysis problem for the global exponential stability of a class of recurrent neural
networks (RNNs) with mixed discrete and distributed delays. We first prove the existence and uniqueness of the
equilibrium point under mild conditions, assuming neither differentiability nor strict monotonicity for the activation
function. Then, by employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is
developed to establish sufficient conditions for the RNNs to be globally exponentially stable. Therefore, the global
exponential stability of the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI
toolbox, and no tuning of parameters is required. A simulation example is exploited to show the usefulness of the

derived LMI-based stability conditions.

Keywords

Generalized recurrent neural networks; Discrete and distributed delays; Lyapunov-Krasovskii functional; Global

exponential stability; Global asymptotic stability; Linear matrix inequality.



I. INTRODUCTION

Recurrent neural networks (RNNs), especially Hopfield neural networks and cellular neural networks, have
found successful applications in many areas, such as image processing, pattern recognition, associative memory,
and optimization problems. Hence, there has been a rapidly growing research interest on the mathematical
properties of RNNs, including the stability, the attractivity and the oscillation, and a great number of results
have been available in the literature. For example, in [8], by using the comparison principle, the theory
of monotone flow and monotone operator, some sufficient criteria have been given to ensure the existence,
uniqueness and global exponential stability of the periodic solution of a class of RNNs. In [12], the absolute
exponential stability has been studied for a class of continuous-time recurrent neural networks with locally
Lipschitz continuous and monotone nondecreasing activation functions. Recently, in [25], a linear matrix
inequality (LMI) approach has been developed to deal with the analysis problem of robust global exponential
stability for interval RNNs.

It has been recognized that the time delay, which is an inherent feature of signal transmission between
neurons, is one of the main sources for causing instability and poor performances of neural networks [1],
[2], [4], [16], [22]. Therefore, stability analysis for RNNs with constant or time-varying delays has been an
attractive subject of research in the past few years. Various sufficient conditions, either delay-dependent or
delay-independent, have been proposed to guarantee the global asymptotic or exponential stability for the
RNNs, see e.g. [5], [7], [13], [14], [26] for some recent publications, where only the discrete time-delays have
been handled.

Since a neural network usually has a spatial nature due to the presence of an amount of parallel pathways of
a variety of axon sizes and lengths, it is desired to model them by introducing continuously distributed delays
over a certain duration of time, such that the distant past has less influence compared to the recent behavior
of the state [19], [21]. For example, in [21], a neural circuit has been designed with distributed delays, which
solves a general problem of recognizing patterns in a time-dependent signal. Therefore, when modeling neural
networks, both the discrete and distributed time delays should be taken into account [20]. Very recently,
many results have been reported on the stability analysis issue for various neural networks with distributed
time-delays, such as generalized neural networks [6], [17], bi-directional associative memory networks [15],
Hopfield neural networks [27], [29], cellular neural networks [30]. However, despite its significance in modeling
neural networks, so far, the global exponential stability analysis problem for general RNNs with both discrete
and distributed delays has received little research attention, mainly due to the mathematical difficulties in
dealing with discrete and distributed delays simultaneously. Hence, it is our intention in this paper to tackle
such an important yet challenging problem.

In this paper, we are concerned with the analysis issue for the global exponential stability of RNNs with

mixed discrete and distributed delays. Different from most of the existing results, we develop a unified



framework to cope with the discrete and distributed time-delays by using the numerically efficient linear
matrix inequality (LMI) approach, under more general assumptions on the activation functions. Therefore,
the global exponential stability of the delayed RNNs can be easily checked by utilizing the numerically efficient
Matlab LMI toolbox, and no tuning of parameters is required [3], [25]. A simulation example is exploited to
show the usefulness of the derived LMI-based stability conditions.

Notations: The notations are quite standard. Throughout this paper, R” and R"*" denote, respectively,
the n-dimensional Euclidean space and the set of all n x m real matrices. The superscript “I"” denotes matrix
transposition. The notation X >Y (respectively, X > Y') means that X and Y are symmetric matrices, and
that X — Y is positive semidefinite (respectively, positive definite). |- | is the Euclidean norm in R”. If A is
a matrix, denote by ||A|| its operator norm, i.c., [|A|| = sup{|Az| : |z| = 1} = v/ Amax(ATA) where Apax(-)
(respectively, Apin(-)) means the largest (respectively, smallest) eigenvalue of A. Sometimes, the arguments

of a function or a matrix will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION

Consider the following recurrent network with discrete and distributed time-delays:

du;(t - ¢ -
c;t( ) = —d;u(t) + Zaijfj(uj‘(t)) + sz’jgj(uj(t / Zczg Nds+ 1L, i=1,.,n, (1)
=1 j=1 t T2 g

where 7 is the number of the neurons in the neural network, u;(t) denotes the state of the ith neural neuron
at time ¢, fj(u;(t)), 9j(u;(t)) and hj(u;(t)) are the activation functions of jth neuron at time ¢. The constants
aij, bjj and c¢;; denote, respectively, the connection weights, the discretely delayed connection weights, and
the distributively delayed connection weights, of the jth neuron on the ¢ neuron. I; is the external bias on
the ith neuron, d; denotes the rate with which the ith neuron will reset its potential to the resting state in
isolation when disconnected from the network and external inputs. 7y is the constant discrete time delay,
while 75 describes the distributed time delay.
The neural network (1) can be rewritten in the following matrix-vector form:

dfz(f) — Dult) + AF(u(t) + BG(u(t 1))+ C [ Hluls))ds + 1. @)

t—T72

where u(t) = [u1(t),us(t), - ,u,(t)]Y, D = diag(dy,...,d,), A = (aij)nxn, B = (bij)nxn: C = (¢ij)nxn,
I = [l I,)", and F(u(t)) = (fi(ui(t)), - fa(un(?))), Glut —71)) = (g1(ur(t = 71)), s g (un(t — 7)),
H{(u(s)) = (h1(u1(s)), ..., hn (un(s))).

Traditionally, the activation functions are assumed to be continuous, differentiable, monotonically increas-

ing and bounded, such as the sigmoid-type of function. However, as discussed in [16], in many electronic
circuits, the input-output functions of amplifiers may be neither monotonically increasing nor continuously

differentiable, hence nonmonotonic functions can be more appropriate to describe the neuron activation in



designing and implementing an artificial neural network. In this paper, we make following assumptions for
the neuron activation functions.

Assumption 1: For i € {1,2,...,n}, the neuron activation functions in (2) satisfy

I~ < fi(s1) — fi(s2) < 3)
¢ S1 — 89 v’
0_; < gi(sl) _91(52) < 0_;1—7 (4)
S1 — S92
vy < hals1) = halsz) <wjf (5)
¢ S1 — 82 v’

-+ =+ +
where [, ", 0, , 0", v; , v;” are some constants.

Assumption 2: The neuron activation functions in (2) are bounded.

_I._

70

l+

_I._
i v

Remark 1: The constants [, o, ,0;,v;, v in Assumption 1 are allowed to be positive, negative or
zero. Hence, the resulting activation functions could be non-monotonic, and more general than the usual
sigmoid functions.

Remark 2: Usually, various fixed point theorems such as Brouwer’s fixed point theorem, Schauder fixed
point theorem and contraction mapping principle can be exploited to prove the existence of equilibrium
points of neural networks. For example, under Assumption 2, it is not difficult to ensure the existence of
equilibrium point of the system (2) by using Brouwer’s fixed point theorem. In the sequel we shall analyze the
global exponential stability of the equilibrium point, which in turn implies the uniqueness of the equilibrium
point.

We are now in a position to introduce the notion of the global exponential stability for the system (2).

Now, let the initial conditions associated with (2) be of the form
U(S) = ¢(S)7 s € [_T*a 0]7 " = maX{Tla 7—2}a (6)

where ¢ is a continuous real-valued function defined on its domain. Then, under Assumption 1, the solution
of (2) exists for all £ > 0 and is unique (see [11]).
Definition 1: The equilibrium point u* of (2) associated with a given I is said to be globally exponentially

stable, if there exist positive constants £ > 0 and g > 0 such that every solution u(t) of (2) satisfies

u(t) — | < pe M sup |g(s) —u'], VE> 0.
—7%<5<0

The main purpose of this paper is to establish LMI-based sufficient conditions under which the global
exponential stability is guaranteed for the neural network (2) with both discrete and distributed time delays.
ITI. MAIN RESULTS AND PROOFS

The following lemmas are essential in establishing our main results.



Lemma 1: Let X, Y be any n-dimensional real column vectors, and let P be an n X n symmetric positive

definite matrix. Then, the following matrix inequality holds:

2XTpPy < XTPXx + YT PY.

Proof: The proof follows from the matrix inequality
(P1/2X - P1/2Y)T(P1/2X o P1/2Y) >0

directly. |
Lemma 2: [10] For any symmetric positive definite matrix M > 0, scalar y > 0, vector function w : [0,7] —

R™ such that the integrations concerned are well defined, the following inequality holds:

(/va(s)ds)TM </07w(s)ds> <7 (/07 wT(s)Mw(s)ds) (7)

For presentation convenience, in the following, we denote

e
Ly = diag(I 1, .., ;T1;), Ly = diag(-: ‘; L., ;” ), (8)
+ oy + 4o
%1 = diag(of o7 -0 07), B = diag(TL L, Tt In) (9)
+ 4 +
T, = diag(vfvp, oy oivr),  To = diag(] ;r”l sy ;”’n ). (10)

The main results of this paper are given in the following theorem.

Theorem 1: Let u* be the equilibrium point of the system (2). Suppose that 7 is the discrete time delay,
79 describes the distributed delay, and ey (0 < €y < 1) is a fixed constant. Then, under Assumption 1, the
equilibrium point is globally exponentially stable if there exist three symmetric positive definite matrices P,
Py, P3, three diagonal matrices A = diag(Aq, ..., \p) > 0, I' = diag(y1, ..., ) > 0 and A = diag(dy,...,0,) >0
such that the following LMI holds:

[ 11 P A+ ALy Iy, PLB AT, PC ]
ATP, + AL, —A 0 0 0 0
ry 0 l+en)P—T 0 0 0
v : A+ cm) By <o, (11)
BTPp 0 0 —P, 0 0
ATQ 0 0 0 TQP3 — A 0
| CTh 0 0 0 0 —Lap
where
I=—-P,D—DP, — AL, — T3, — AYy, (12)

and all the matrices here are constant.



Proof: To simplify the exponential stability analysis of (2), we shift the equilibrium point u* of (2) to

the origin by letting z(¢) = u(t) — u*, and then the system (2) can be transformed into:

dz(t) . A Lt
e —Dz(t) + AF(z(t)) + BG(z(t — 7))+ C H(x(s))ds, (13)

t—72

where z(t) = [z1(t),z2(t),- -+ ,z,(t)]7 is the state vector of the transformed system, and the transformed

neuron activation functions are

A ~

F((t)) = (fi(@1(2); s fo(2a (1)) = F(u(t)) = F(u*), (14)
G(t)) = (G1(21(8)), s Gu (2a(£))) = Glu(t) — Glu?), (15)
H(a(t) = (ha(@1())soos Frn (2a(2)) = H (u(t)) — H(u). (16)

According to (3)-(5), it can be easily checked that the transformed neuron activation functions satisfy

I < fils1) = filsa) _ Iy (i=1,0m) (17)
S1 — 89

or < Bl Z9is2) gy (18)
S1 — 82

v < hi(s1) — hi(s2) <uvf. (i=1,..,n) (19)
S1 — 89

In order to establish the stability conditions, we introduce the following Lyapunov-Krasovskii functional

B(t) i= 2V (1) := 24: Vi), (20)
im1
where
Vi(t) = 21 (t) Pa(t), (21)
Vo(t) = ttﬁ GT (x(s)) PG (x(s))ds, (22)
i =co [ [ & )R (23
n ot

Vi) = [ [ i) Pt el (24)
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To facilitate the exponential stability analysis, we first calculate the time derivative of V;(¢) along a given

trajectory of the system (13) as follows:

%@)=Qfﬁﬂ%<—Ddﬂ+AF@@D+BG@@—¢ﬂy+Cti ﬁ@@»@), (25)
Vao(t) = GT(2(t)) PG(x(t) — GT(x(t — 1)) PG (x(t — 7)), (26)
1Mn:qméﬂﬂmgé@myfgprGﬂmmgéu@m& (27)
t

Vi(t) = moH" (x(t)) Ps H (2(t)) — . H" ((s))P3H (x(s))ds

=@ﬁﬂﬂm&ﬁ@myqyfwbﬂﬁﬂﬂm&ﬁ@@myfoF‘ﬁﬂﬂm&ﬁ@@ms

A A — € t A~ T t A~
< mHT (x(t))PsH (x(t)) — ! = 0 < - H(x(s))ds) Py < - H(x(s))ds)
— € - HT (2(s))PsH(x(s))ds. (28)

Note that Lemma 2 has been used in deriving (28).
With Lemma 1, the relations (25)-(28) lead to

V() = Va(t) + Va(t) + V() + Va(t)
< 22T (t) Py <—Dx(t) + AF(z(t)) + BG(z(t — 1)) + C . ﬁ(x(s))ds)

+ (14 eom)GT (2(1)) PG (2(t) — GF(x(t — 1)) PGzt — 71))

+mﬁﬂam&ﬁ@@yﬁ_“<t ﬁ@@mﬁT&<t ﬁ@@mﬁ

T2 t—To t—To
t t
—mp_éﬂam&éu@waop H" (z(s))PsH(z(s))ds
t t
=#ﬁme—mt7Gﬂmm&@dmw—mtﬁﬁﬂdw&ﬁ@@wa (29)

where

t

T
n@)Z[fWﬂ Fl(z(t)) G"(z(t) GM(z(t—m)) H'(2(1) .ﬁﬂxw»@], (30)

t—72
[ _PD-DP, PA 0 PB 0 P,C
AT P, 0 0 0 0 0
¥ = 0 0 (I+em)P, O 0 0 (31)
BT p, 0 0 -P, 0 0
0 0 0 0 mP; 0
c’ph 0 0 0 0 -Lop




By (17)—(19), we have

fim@®) 2\ (filew) L
< x;i(t) li ) ( (1) lz’ > <0, =1,...,n,
(t

t i
hi(x(t)) _ ot hi(a (1)) — U i= n
( (1) )( () Z)SO' b

Hence we get

which are equivalent to

T ¢ L _
x(t) I eel _k —QHZ' eel x(t)
R e g " <0 i=1.,m,
P | | e el Fla(t)
T - o - -
x(t) oo el  —Iieel x(t) _
R ot to T T R < Oa 1= ]-7 5 T,
Gew) | | —ETed wd || G
g +o—0 T oftor ] [
x(t) v U ee; ——5ee; x(t) ,
) oo p " ) <0, 2=1,...,n
Aa@) | | ~Sed wd || H@0)

where e; denotes the unit column vector having “1” element on its +th row and zeros elsewhere.

Consequently, we have

T
_ G
TY O SPY I Whae e || o)
t - +4
= | F(z(t) L T F(a(t))
n [ 1771 o+ - 7 oftoy 1]
—Z’Y‘ z(t) ooy ee;  ——o-ee; z(t)
1 N +, - ~
i | Ge®) | | -l eef | | Glx(1)
no [ 1771 4 - ofto; [
_251 a(t) U1+Uz' G T TGl a(t)
i | H=) | | S eld ael || H=()

_ T _
T - A:z:(t) ] [ “AL, AL, ] A:z:(t) ]
| F(a(t)) AL, —A

[ .T(t) 1" [ —le FEQ ]
1 .
G(z(t) | rs, -T

0 +[ (1)
G (1)) |




[ 1 PiA+ ALy 'Y, PB AT, PC ]
ATP, + AL —A 0 0 0 0
I'>, 0 (1 +607’1)P2 -T 0 0 0
= 7' (t) n(t)
BTP 0 0 -P, 0 0
AYo 0 0 0 oP; — A 0
| C™p 0 0 0 0 —epy |
= 0" (t)Tn(t)
< Amax (¥)1(8)]%,
where Amax(¥) < 0 by (11), and ¥, TT and ¥y are defined in (11), (12) and (31), respectively.
It follows from (35)-(38) that
n" (@) Tin) < 0" (E)Tn(t) < Amax()|n(2)]>.
Therefore, from (29) and (39), we obtain
. t A A t A A
Vi) < )\max(\ll)|n(t)|2 — € GT(m(s))PQG(x(s))ds — € HT(m(s))PgH(x(s))ds
t—11 t—1o
t t
< )\max(\ll)|ac(t)|2 — € GT(a:(s))PgG(x(s))ds — € HT({L‘(S))PgH({L‘(S))dS.
t—T1 t—7o

Also, from the definitions of V;(t), it is not difficult to obtain the following inequalities

IA

W(t) )\max(Pl)|x(t)|2a

B < e[ [ G PG an)dds
t
€0T1 GT (2(s))PaG(z(s))ds,

t—T1

Vilt) < / AT @) P ) s

t—1o

= 7 HT (2(s))PsH(x(s))ds.

t—To

10

(38)

(39)

(41)

(43)
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We are now ready to deal with the exponential stability of (2). Consider the Lyapunov-Krasovskii functional

E(t) in (20), where k is a constant to be determined. Using (20), (22) and (40)-(43), we have

d

(1) = 2k V(1) + 2V (1)
< 2ke?kt [AmaX(P1)|a:(t)|2—i—(l—i—eoﬁ) tt G (x(s)) PG (x(s))ds

i fIT(x(s))ngI(x(s))ds] e [Amax<m|w<t)|2

. ’
—eo | GT(x(s)) P2 G (z(s))ds — € a ﬁT(x(s))Pgﬁ(x(s))ds]
< ert[(Qk)\max(Pl)+)\max(\I/))|x(t)|2+(2k(1+6071)—60) ti G (2(s)) PG (x(s))ds
+ (2kTy — €g) tt fIT(m(s))ngI(x(s))ds]. (44)

Set

ko = min {— Amax () €0 6—0} .

2)\max(P1)7 2(1-1—607’1)7 279

From now on, we take k£ to be a constant satisfying
k < kUa (45)

and then obtain from (44) that
d
M) <o, (16)

which, together with (22) and (40)-(43), imply that

kY (1) < V(0)

= Vi(0) + V2(0) + V3(0) + Va(0)
0
< Amax(P1)]z(0)]? + (1 + 6(]7’1)/_ Gt (2(s)) PG (x(s))ds
0
+ 7 H" (x(s)) P3H (2(s))ds

—To

0
< Amax(POI2(O)2 + (1 + €071) Ama (P2) / G (s))|2ds
0 ) 1
—i—Tg)\maX(Pg)/ |H(x(s))|2ds. (47)
Let
_ — st _ —1 et
0= fg%xnﬂai |a |Ui |}a V= 121%)%{“}1 |a |Uz' |}a (48)

110 = Amax (P1) + (1 + €071) 710* Amax (P2) + 750% Amax (P3). (49)
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Then, it is indicated from (47) that

e2ktV(t) < )\mM(Pl)|3t:(0)|2 +(1+ 6071)7102)\max(P2) sup |az:(s)|2 +T22’u2)\maX(P3) sup |az:(s)|2

—711<5<0 —12<5<0
< (Amax(P1) + (1 + €071)T10* Amax (P2) + 7'221)2)\max(P3)) swip<0 |lz(s)|?
—7*<s<
= Mo Sup |317(5)|2
—7*<s<0
= po sup [¢(s) —u’|?, (50)
—7%<s<0

and therefore

V(1) < poe *|g(s) — . (51)

Noticing V (t) > Vi(t) > Amax(P1)|z(t)|?, we obtain

Mo —2kt *(2

z(t))? < ———e su s)—u |%. 52
o € 5o ™ s [6(s) —u (52)

Letting p = | /)\mali(%Pl)’ we can rewrite (52) as
()] < pe™ sup |¢(s) — '], (53)

—7*<5<0
or
ut) — | < e sup |(s) — ] (54)
—7*<s<0

Hence, the equilibrium point u* of (2) is globally exponentially stable. The proof of this theorem is now
complete. [ ]

Remark 3: In Theorem 1, sufficient conditions are provided for the system (2) to be globally asymptotically
stable. Such conditions are expressed in the form of LMIs, which could be easily checked by utilizing the LMI
Matlab toolbox [9], and no turning of parameters will be needed. It should be pointed out that, in the past
few years, linear matrix inequalities (LMIs) have gained much attention for their computational tractability
and usefulness in system engineering (see e.g. [3]) as the so-called interior point method (see [18]) has been
proved to be numerically very efficient for solving the LMIs. The number of analysis and design problems
that can be formulated as LMI problems is large and continues to grow.

Remark 4: The LMI Control Toolbox implements state-of-the-art interior-point LMI solvers. While these
solvers are significantly faster than classical convex optimization algorithms, it should be kept in mind that the
complexity of LMI computations remains higher than that of solving, say, a Riccati equation. For instance,
problems with a thousand design variables typically take over an hour on today’s workstations [9]. However,
research on LMI optimization is a very active area in the applied math, optimization and the operations
research community, and substantial speed-ups can be expected in the future.

If we are only interested in the global asymptotic stability of the RNN (2), the following theorem is easily

accessible.
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Theorem 2: Let u* be the equilibrium point of the system (2). Suppose that 71 is the discrete time delay, and
T9 describes the distributed delay. Then, under Assumption 1, the equilibrium point is globally asymptotically
stable if there exist three symmetric positive definite matrices Py, P, P3, three diagonal matrices A =

diag(A1, ..., A\p) > 0, T' = diag(y1, ..., ) > 0 and A = diag(dy, ..., 0,) > 0 such that the following LMI holds:

[ I PLA+AL, TY, PB AY, PC |
ATP, + AL, —A 0 0 0 0
o 'S, 0 P,—T 0 0 0 0. (55)
BTP 0 0 —Py 0 0
AT, 0 0 0 mP3—A 0
| d'h 0 0 0 0 ——P3 |
where
IIl=—PD—DP, — AL —I'Y; — AT;. (56)

Proof: To avoid unnecessary duplication, here we only give the sketch of the proof, and omit the details.
As in the proof of Theorem 1, we shift the equilibrium point u* of (2) to the origin by letting z(t) = u(t) — u*,
and then transform the system (2) into the system (13).
Construct the following Lyapunov-Krasovskii functional:
t T pt
Wﬂ=ﬂwﬂdﬂ+tﬁénﬂmEmﬂm%+%;tsﬁqﬂW%ﬁ@WMM& (57)

Then, following the similar line in calculating V (¢) ( from (20) to (40) ), we can have

V() < 0T ()@n(t) < Amax(®)[n(8)* < Amax(®) ()], (58)
which implies that the equilibrium point of (2) is globally asymptotically stable. [ |

IV. NUMERICAL EXAMPLE

In this section, we present a simulation example so as to illustrate the usefulness of our main results. Our

aim is to examine the global exponential stability of the delayed RNN (2) with network parameters given as

follows:
(6 0 0 12 —08 0.6 14 09 05
D=|05 0|, A=| 05 —-15 07 |, B=| -06 12 08 |,
0 0 7 —0.8 —1.2 —14 0.5 —0.7 1.1
[ 18 0.7 —08 0
C=1| 06 14 1 , I=10|, m=01 =02
| 04 —0.6 1.2 0
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Fix ¢y = 0.01 and take the activation function as follows:

fi(z) = g1(z) = hi(z) = tanh(—1.2z),

h
fa(z) = ga(x) = ha(z) = tanh(1.4z),
h

From the facts that

%tanh(x) = %, 0< %tanh(z) <1,
one has
0 00 -06 0 0
Li=%1=T1=[0 0 0], Le=22=Ty= 0 07 0
0 00 0 0 -—-12

With the parameters given above, it is obvious that u* = [0, 0, 0]” is an equilibrium point of (2). By using

the Matlab LMI toolbox, we solve the LMI (11) and obtain

[ 33622 0.0540  0.6000 9.1332  —0.6157 0.7295
Py =1 00540 49174 —0.4745 |, P2=| —0.6157 8.8077 —0.4198 |,
| 0.6000 —0.4745  5.5093 0.7295 —0.4198  2.5549
[ 5.8857  1.8836  —0.2181 18.6721 0 0
Py=| 1.8836 6.4192 —0.6144 |, A= 0 19.4351 0 ;
| —0.2181 —0.6144  3.0254 0 0 6.8673
19.4997 0 0 9.3159 0 0
['= 0 19.3297 0 , A= 0 75492 0
0 0 5.3101 0 0  1.4863

Therefore, it follows from Theorem 1 that the RNN (2) with given parameters is globally exponentially stable,

which is further verified by the simulation result given in Fig. 1.

V. CONCLUSIONS

In this paper, we have dealt with the problem of global exponential stability analysis for a class of general
recurrent neural networks, which involve both the discrete and distributed time delays. We have removed the
traditional monotonicity and smoothness assumptions on the activation function. A linear matrix inequality
(LMI) approach has been developed to solve the problem addressed. The conditions for the global exponential
stability have been derived in terms of the symmetric positive definite solution to the LMIs, and a simulation

example has been used to demonstrate the usefulness of the main results.
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Fig. 1. State trajectory of the RNN in the example.
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