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Abstract

In this paper, we address the filtering problem for a general class of nonlinear time-
delay stochastic systems. The purpose of this problem is to design a full-order filter
such that the dynamics of the estimation error is guaranteed to be stochastically ex-
ponentially ultimately bounded in the mean square. Both filter analysis and synthesis
problems are considered. Sufficient conditions are proposed for the existence of desired
exponential filters, which are expressed in terms of the solutions to algebraic Riccati
inequalities involving scalar parameters. The explicit characterization of the desired
filters is also derived. A simulation example is given to illustrate the design procedures
and performances of the proposed method.

Key Words - Nonlinear filtering; Nonlinear systems; Stochastic exponential ultimate
boundedness; Time-delay systems; Algebraic Riccati inequalities

1 Introduction

Nonlinear filtering for stochastic systems has been an active area of research over the
past three decades. Since the time evolution of the probability density of the state vector
conditional on the measurements cannot be directly calculated in most cases [1], var-
ious approximations have been developed in the literature, such as extended Kalman
filters [5], and statistically linearized filters [10], see [2] for a survey. Other techniques
include the bound-optimal filters [14], exponentially bounded filters [15, 21], approxima-
tions by Markov chains [19], minimum variance filters [20], approximation of the Kushner
equation [6], to name just a few. It should be pointed out that, unlike the linear case, in
most literature mentioned above, the solution to the nonlinear filtering problem has been
given as a nonexplicit representation.

On the other hand, it has now been well known that the delayed state is very often the
cause for instability and poor performance of systems. Compared to the robust Hy, con-
trol problems for linear systems with certain types of time-delays (see [12]), the “dual”
filter /observer design problems have received much less attention although they are impor-
tant in control design and signal processing applications. In [16, 17], the robust observer
design problem has been considered for linear deterministic time-delay systems. In the
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stochastic framework, the Kalman filter design problem has been tackled in [3, 11] for
linear continuous- and discrete-time cases, respectively. So far, to the best of the authors’
knowledge, the issue of filtering on general nonlinear time-delay systems has not been fully
investigated and remains to be important and challenging.

In this paper, we consider the filtering problem for a general class of nonlinear time-
delay stochastic systems, where the nonlinearities are assumed to have the similar form as
in [21]. We aim at deriving the conditions for a full-order filter such that the dynamics of
the estimation error is guaranteed to be stochastically exponentially ultimately bounded
in the mean square. Both filter analysis and synthesis issues are addressed. It is shown
that the existence of desired exponential filters can be guaranteed if some algebraic Riccati
inequalities have positive definite solutions. In particular, the explicit expression of the
desired filters is given in terms of some free parameters.

Notation. R" and R"*™ denote, respectively, the n dimensional Euclidean space and the
set of all n X m real matrices. The superscript “T” denotes the transpose and the notation
X >Y (respectively, X >Y) where X and Y are symmetric matrices, means that X —Y
is positive semi-definite (respectively, positive definite). We let 7 > 0 and C([—7,0]; R")
denote the family of continuous functions ¢ from [—7,0] to R” with the norm |p| =
Sup_,<g<o |¢(0)|, where | - | is the Euclidean norm in R™. If A is a matrix, denote by ||A||
its operator norm. Amax(+) (respectively, Amin(+)) means the largest (respectively, smallest)
eigenvalue of A. tr(A) is the trace of the matrix A. Moreover, let (2, F, {F;}i>0, P) be a
complete probability space with a filtration {F; };>¢ satisfying the usual conditions (i.e., the
filtration contains all P-null sets and is right continuous). Denote by L’}O([—T, 0]; R™) the
family of all Fy-measurable C([—, 0]; R")-valued random variables £ = {£(0) : —7 <0 <
0} such that sup_,«p<o E|£(0)|P < oo where E{-} stands for the mathematical expectation
operator with respect to the given probability measure P.

2 Problem formulation and assumptions

Consider the following nonlinear continuous-time state delayed stochastic system in a fixed
complete probability space (2, F,{F;}i>0, P):

o(t) = flz(t),u®) +g(z(t — 7)) + BErw(?), (2.1)
x(t) = (p(t)’ le [_7—7 O]a

together with the measurement equation
y(t) = h(z(t)) + Eaw(t) (2.3)

where z(t) € R" is the state, u(t) € R™ is the deterministic input, y(t) € RP is the
measurement output, and f(-,-) € R”, g(-) € R", h(:) € RP are nonlinear vector functions.
7 denotes the known state delay, () is a continuous vector valued initial function. Here,
w(t) is a zero mean Gaussian white noise process with covariance I > 0. The initial state
z(0) has the mean Z(0) and covariance P(0), and is uncorrelated with w(t). Ey, Ey are
known constant matrices with appropriate dimensions.

Assumption 2.1 The nonlinear vector functions f(-,-), g(-), h(-) are assumed to satisfy



£(0,0) =0, g(0) =0, h(0) =0 and

alt) +oult)+0) - ey - [ 4 B[ G |[<an|[F]] @0
9(a(t —7) +0) — gla(t 7)) — Ago| < anlo]. (2.5
|h(z(t) + o) — h(z(t)) — Co| < ass|o| (2.6)

where A € R*™*", B € R"*™ A ; € R"*" C € RP*™ are known constant matrices, o € R”,
6 € R™ are vectors, aq1, ago, and agz are known positive constants.

Remark 2.1 Similar to [21], the nonlinear descriptions (2.4)-(2.6) quantify the maxi-
mum possible derivations from a linear model with (A4, B, A4, C) as its system parameter
matrices, and are more general than those of [14, 15].

In this paper, the full-order filter under consideration is of the form

(1) = f(@(1), u(t)) + g(#(t — 7)) + K[y(t) — h(#(1))] (2.7)
where Z is the state estimate and the constant matrix K is the filter gain to be designed.

Let the error state be e(t) = z(t) — Z(¢), then it follows from (2.1)-(2.3) and (2.7) that

et) = [fla() u®) = f(2@),u(t)) +9(z(t — 7)) —g(2(t —7))
— K[n(z(t)) — h(&())] + (Br — K Ea)w(t). (2.8)

For notational convenience, we give the following definitions:

I(t) = f(z(t),ul®) — f(2@1),u(?)) — Ae(?), (2.9)
mt—71) = glx(t—71)) —g(z(t—1)) — Age(t — 1), (2.10)
n(t) = h(z(t)) — h(z(t)) — Ce(t), (2.11)

and then obtain from (2.8) that

e(t) = (A—KO)e(t)+ Age(t —7) +1(t) +m(t — 7)
— Kn(t) + (B, — KEy)w(t). (2.12)

Now, let e(t; ) denote the state trajectory from the initial data e(9) = £(0) on —7 < 0 <0
in L%_—O([—T, 0]; R™). We introduce the following concept.

Definition 2.1 [21, 22] For every ¢ € Lgfo([—T, 0]; R™), the dynamics of the estimation
error (i.e., the solution of the system (2.12)) is exponentially ultimately bounded in the
mean square if there exist constants a« > 0, § > 0, v > 0 such that
Ele(t; )P < ae® sup EEB) +1. (2.13)
—7<6<0
Moreover, the filter (2.7) is said to be exponential if, for every £ € LQfO([—T, 0]; R™), the
system (2.12) is exponentially ultimately bounded in the mean square.

The objective of this paper is to design an exponential filter for the nonlinear time-delay
system (2.1)-(2.3). More specifically, we are interested in designing the filter parameter K
such that the dynamics of the estimation error (i.e., the solution of the system (2.12)) is
guaranteed to be stochastically exponentially ultimately bounded in the mean square.



3 Main results and proofs

In this section, the filter analysis problem will be considered firstly. For a given filter
structure, we shall establish the conditions under which the estimation error is stochasti-
cally exponentially ultimately bounded in the mean square. The filter design problem will
then be taken into account. We shall derive the ezplicit expression of the expected filter
parameter in terms of the positive definite solution to a Riccati-like matrix inequality.

3.1 Filter analysis

Theorem 3.1 Let the filter parameter K be given. If there exist positive scalars €1, €9,€3, €4
such that the following matrixz inequality

(A— KC)T'P+ P(A— KC) + Pl(e1 + &2 + e3)] + 4 KKT|P
+(ey 'aty +erag) [ +Q <0 (3.1)
where
Q:=e; "AV Ay +e5tadT (3.2)
has a positive definite solution P > 0, then the system (2.12) is exponentially ultimately

bounded in the mean square.

Proof: Fix ¢ € L% ([-7,0;;R") arbitrarily and write e(t;€) = e(t). For (e(t),t) €
R™ x R, we define the Lyapunov function candidate

t
V(e(t),t) = e (t)Pe(t) + /t— el (s)Qe(s)ds (3.3)

where P > 0 is the solution to the matrix inequality (3.1) and @ > 0 is defined in (3.2).

By It6’s formula (see, e.g., [9]), the stochastic derivative of V along a given trajectory
(2.12) is obtained as

d

gV (e(0).1) = " ()[(A— KC)"'P+ P(A~KC)+ Qle(t)

eT(t)PAde(t —7)+e(t— )TATPe(t)

el () Pli(t) +m(t — 1) — Kn(t)] + [1(t) + m(t — 7) — Kn(t)]" Pe(t)
el (t — 7)Qe(t — 7) + tr[(Ey — KEy)(Ey — KEy)" P]

+ 26TP(E1 — KEy)w(t). (3.4)

Let €1, €9, €3, €4 be positive scalars. Then the matrix inequality
el 2eT ()P — ey 2T (t — 1) A [e1 2T ()P — &, 2T (t — 1) AT]" >0

yields

e’ (t)PAge(t — 7) + e” (t — 7) A} Pe(t)
< erel (t)PPe(t) + ey el (t — 1) AL Age(t — 7). (3.5)



Noticing the Assumption 2.1 and (2.9)-(2.11), we have
T@OUE) = [ f (1), ult) — f(@(1),u(t) — Ae(t)]” < afyle(t)|? = afye’ (t)e(t),  (3.6)
m?(t —7)m(t — ) = |g(z(t — 7)) = g(&(t — 7)) — Age(t — 7)|*
< aole(t — 7))|* = agye’ (t — T)e(t — 1), (3.7)
n® (t)n(t) = |h(x(1)) — h(E (1) — Ce(t)* < adsle(t)]* = ajze” (t)e(?). (3.8)

Then, it follows from (3.6) and ¥, := e;/QeT(t)P - EQI/QZT(t), U0 > 0 that
e" (t)PI(t) + 17 (t) Pe(t) < €T (t)(e2P? + €5 *a? 1 D)e(t). (3.9)

1/2

Next, it results from (3.7) and ¥y := eé/QeT(t)P —ey "mT(t — 1), UaUT > 0 that

eT(t)Pm(t — 1) +mT (t — 7)Pe(t) < ezel (t)P2e(t) + 3 adpe” (t — T)e(t — 7). (3.10)

Similarly, from (3.8) and V3 := 6}1/2€T(t)PK + 521/2nT(t), U3UT >0, we have
—el () PKn(t) — n" (t) K" Pe(t) < eqe” () (PKK" P)e(t) + &, 'a3ze” (t)e(t).  (3.11)

For simplicity, we denote
Il:= (A~ KC)TP+ P(A— KC) + P[(e1 + €2 + e3)] + 4 KKT|P
+(extad) + ey a3 + e AT Ag + 5 a3, T (3.12)
and then (3.1)(3.2) indicate that IT < 0.
Denote
¢:=tr[(E) — KEy)(E, — KEy)" P]. (3.13)
Substituting (3.2), (3.5) and (3.9)-(3.11) into (3.4) results in

%V(e(t),t) < TWTe(t) + ¢ + 287 (1) P(Er — K B)w(t)

< “Amin(ID[e(®)2dt + ¢ + 2T (1) P(By — KE)w(t).  (3.14)

To show the expected exponential ultimate boundedness (in the mean square) of solution
to the system (2.12), we shall make some standard manipulations on the relation (3.14)
by utilizing the technique developed in [8, 9].

Let 8 > 0 be the unique root of the equation
Amin(—1I1) = BAmax(P) = BT Amax (Q)e’™ = 0 (3.15)

where II and @ are defined, respectively, in (3.12) and (3.2), P is the positive definite
solution to (3.1), and 7 is the time-delay.

We can obtain from (3.14) that
d[eﬁtV(e(t),t)] = [BV (e(t), t)dt + dV (e(t), )]
t
< (= Dhuin T = Bha(PY] (O + Bhunc(@) [ Je(s) )

+ ¢ePldt + 2Pt (t) P(Ey — K Eo)w(t)dt.



Then, integrating both sides from 0 to 7' > 0 and taking the expectation result in

PTEV (e(T),T) < [Amax(P) + TAmax(Q)] _535<01EI£(9)I2

T
— Dnin(=I0) = BAman (P)] E / el (t)|2dt

Amas( /ﬂ/ $)Pdsdt + A (T — 1),

T min(s+7,T")
/ ﬂt/ |2dsdt</ (/ et le(s) P
t—7 —T max(s,0)

0

T
g/ TreBs+T) le(s)|?ds < TeﬁT/ eﬂt|€(t)|2dt+TeBT/ ROIKCE
—r 0

—T

Note that

Then, considering the definition of £ in (3.15), we have

TRV (e(T), T) < [Amax(P) + TAmax(Q)] sup E|E(0)?

—7<6<0
+ BAmax (@777 sup ElE(O) +¢p7 (7 - 1),
—7<6<0
and
Be(T)? < Anh(P)(Pmax(P) + TAnax(Q)] sup EIEO)]?
—7<6<0

+ Brmax( @727 sup BIEO) )e T + (BN (P) (T — 1) T

—7<0<0
Notice that (e’7 —1)e™#" < 1 and let

Q= >\m11n( )P‘max(P) + TAmaX(Q)(]- + IBTGBT)], vi=(B" 1>\m11n( )

Since T' > 0 is arbitrary, the definition of exponential ultimate boundedness in (2.13) is

then satisfied, and this completes the proof of Theorem 3.1.

3.2 Filter design

In this subsection we shall focus on deriving the ezplicit expression of expected filter
gains by using the algebraic matrix inequalities. As indicated in the introduction, in most
literature concerning nonlinear filtering, the solution to the nonlinear filtering problem has

not been given as an explicit representation.

Based on Theorem 3.1, our design problem is converted into the following equivalent

“assignment problem”:

e For the matrix inequality (3.1), find the necessary and sufficient conditions for the
positive definite matrix P under which there exists a filter gain K satisfying (3.1).

o If the filter gain K exists, give the characterization of all expected filter gains in

terms of the positive definite matrix P and some other free parameters.



Prior to introducing our main results, we first give the following important lemma.

Lemma 3.1 [4] Let X € R™*™ gpd Y € R™*P1 (my < p1). There ezists a matriz U €
R™ XP1 which simultaneously satisfies Y = XU and UUT = I if and only if XXT =YY,

For presentation convenience, we define

D(e1,e9,€3,64,P) := ATP+PA+ (g1 + e + e3) P2

+ (g3 'afy +e5 a3s) I + Q, (3.16)
E(e1,€9,3,64,P) = ATP 4+ PA+ (61 +eo+e3)P? +e7'AT A,

+ (52_1a%1 + 63?1@%2 + 521a§3)1 - 6ZICTC, (3.17)

where (@ is defined in (3.2).

The following theorem solves the aforementioned assignment problem.

Theorem 3.2 There exist positive scalars €1, €3, €3, €4 and a positive definite matriz P
such that the matriz inequality (3.1) has a solution K if and only if the following quadratic
matriz inequality

E(e1,€9,63,64, P) = ATP + PA+ (g1 + e +e3) P2+ 67 AN Ay
+(extad, +e3tady +ertai) I —e;'CTC <0 (3.18)

holds. Furthermore, if (3.18) is true, all matrices K meeting the matriz inequality (3.1)
can be parameterized by

K=¢;'P1cT +¢,'*P AU (3.19)

where A € R"™ P is any matriz satisfying
AAT < —5(61,62,63,64,]3) (3.20)

and U € RP*P s arbitrary orthogonal matriz (i.e., UUT =1).

Proof: It is easy to rewrite the matrix inequality (3.1) as

—CTK"P — PKC + e4PKK"P + AP + PA
+(e1 +eg +e3)P? + (g5 'ad, + e, ad) I+ Q <0, (3.21)

or by the definition (3.16),

—CTK"P — PKC 4 ¢4PKK"P +T(e1,€9,€3,64, P) < 0. (3.22)

We continue to rearrange (3.22) as
ey *PK — &7 ?CT)ley*PK — e '*C™IT

< 6ZICTC —T(ey,e9,€3,€4, P). (3.23)

Obviously, there exists a filter gain matrix K such that the inequality (3.1) (or equivalently
(3.23)) holds for some positive scalars 1, €9, €3, €4 and positive definite matrix P if and



only if the right-hand side of (3.23) is positive definite, i.e., —E(e1,e9,€3,64, P) > 0 or
(3.18) holds. This proves the first part of this theorem.

We now assume that (3.18) is true. Note that the dimension of the filter gain K is n X p
and p < n. From (3.23) and the definition of A € R"*? in (3.20), we have

)2 PK — e, /2CT)[e? PR — e 2CT]T = AAT. (3.24)
It then follows from Lemma 3.1 that (3.24) holds if and only if
ei?PK — ¢, '*CcT = AU (3.25)

where U € RP*P is an arbitrary orthogonal matrix. Therefore, the expression (3.19) follows
immediately. This completes the proof of the theorem. O

Finally, we sum up our results in the following theorem that is easily accessible from
Theorem 3.1 and Theorem 3.2.

Theorem 3.3 Consider the nonlinear continuous-time state delayed stochastic system
(2.1)-(2.3) and the associated nonlinear filter (2.7). If there exist positive scalars €1,¢€9, €3, €4
and a positive definite matriz P such that the matriz inequality (3.18) holds, then the filter
(2.7) with its parameter given in (3.19) will be such that the dynamics of the estimation
error (i.e., the solution of the error-state system (2.12)) is stochastically exponentially
ultimately bounded in the mean square.

Remark 3.1 Theorem 3.3 gives the solution to the addressed filter design problem for
nonlinear time-delay stochastic systems in this paper. In practical applications, it is very
desirable to directly solve the quadratic matrix inequality (3.18), and then obtain the
expected filter parameters from (3.19) easily. Thus, necessary discussion on the numerical
algorithm is in order now. Firstly, based on the algorithms provided in [18], we may select
appropriate positive scalar parameters £1, €2, 3,4 so as to minimize (or reduce) the con-
servativeness resulting from the utilization of the inequalities (3.5) and (3.9)-(3.11). Then,
(3.18) will be a standard quadratic matrix inequality (QMI) for P. For details concerning
the general QMIs and relevant algorithms, we refer the reader to [13]. Specifically, we now
briefly discuss the conditions for the existence of a positive definite solution to the QMI
(3.18). Assume that

Dy i=e ' AV Ag + (65 a?) + 5 ady + e ads) — 70T C > 0.
It is easily accessible from [7] that, there exists a positive definite solution P to the QMI

(3.18) if and only if
ITY2(sT = A) ey + £2 + e3) 20 < 1

where ||H(5)||co = SUp,er Omaz[H (jw)] and op,qq[-] is the largest singular value of [].

Remark 3.2 It is clear that, if the set of desired filter gains is not empty, it must be very
large. We may utilize the freedom (such as the choices of matrices A and U) in the filter
design to improve other system properties. An interesting problem for future research is
how to exploit such freedom to achieve the reliable constraint on the filtering process.



4 Some extensions

4.1 Casel

Let us first deal with the multiple state delay case. Consider the following nonlinear
continuous-time multi—delay stochastic system

i(t) = —i—Zgz (t— 7))+ Erw(t), z(t) =), tel[-7,0, (41

together with same measurement equation as (2.3). The nonlinear vector functions f(-,-)
and h(-) satisfy the same constraints as in (2.4) and (2.6) respectively, while the nonlinear
vector functions g;(-) (1 =1,2,--- ,r) meet g;(0) = 0 and

19i(z(t — 75) + 031) — gi(x(t — 7)) — Agioi| < agailoil (4.2)
where Ay € R™™ ™ is a known constant matrix, o; € R" is a vector and ago; is a known

positive constant (1 <i <r).

We adopt the following filter structure
a(t) = +Zgz (t — 7)) + K[y(t) — h(2(t))] (4.3)

and we may obtain an error-state system which is similar to (2.12). Then, instead of (3.3),
we define the Lyapunov functional V (e(t),t) = eI (t) Pe(t) + >i_, ftt_n el'(s)Qse(s)ds. By
using the same idea exploited in the proof of Theorem 3.1 and Theorem 3.2, we can easily
obtain the parallel results for the multi-delay case.

4.2 Case 2

We now cope with the case where there are bounded nonlinearities and uncertain distur-
bances. In this case, the system under consideration is the same as (2.1)-(2.3). However,
the constraints (2.4)-(2.6) are replaced by (see [21]):

F((t) + oy u(t) +8) — Fla(t), ult)) — [ A B][g] < an [‘;H+bu (4.4
9(a(t — )+ 0) — g(a(t — 7)) — Ago] < azlo] + b (45)
Ih(a(t) + o) — ha(t)) — Col < asso] + bsy (46)

where the extra constants b1, bog and bsz are used to reflect the possible bounded nonlin-
earities and disturbances of the uncertain forms.

Consider the system (2.1)-(2.3) with the constraints (4.4)-(4.6). We now follow the same
line of the proof of Theorem 3.1. In the light of the simple algebraic inequality (z +v)?
222 + 292 where z and y are real scalars, we can replace the inequalities (3.6)-(3.8) by the
followings:

T@01() = [ f(2(t),u(t) — f(@(), u(t) — Ae(t)|* < 2a;e” (t)e(t) + 267, (4.7)
m!(t = r)m(t — 1) = |g(a(t — 7)) — g(&(t — 7)) — Age(t — 7)|?

< 2a3.e (t — T)e(t — T) + 203, (4.8)

n"(t)n(t) = |h(z(t) — h(&(t)) — Ce(t)]” < 2a33e” (t)e(t) + 2b3;. (4.9)



Then, similar to the proof of Theorem 3.1, the stochastic derivative of V' (see (3.3)) along
a given trajectory satisfies

d
—V(et),t) < —Amin(=II1)|e(t)]?dt + ¢ + (267, + 2b3, + 2b35)

" + 2¢T P(Ey — K Eo)w(t) (4.10)
where
M, ;= (A—KC)"P+ P(A—KC) + Pl(e1 + e2 + e3)] + 4, KK"|P
+(2e5 ad) 4+ 265 adg) T + 7 P AL Ag 4+ 265 a3, 1 (4.11)

Now, along the line of the proof of Theorem 3.1 in the previous section, we arrive at the
following result easily.

Theorem 4.1 Consider the system (2.1)-(2.3) with the constraints (4.4)-(4.6). Let the
filter parameter K be given. If there exist positive scalars €1, €9, €3, €4 such that the
matriz inequality Iy < 0 has a positive definite solution P > 0, then the estimation error
(the solution to the system (2.12)) is stochastically exponentially ultimately bounded in the
mean square.

Subsequently, we can obtain analogous results for the filter design as in Theorem 3.2 and
Theorem 3.3. The reason why we discuss the system (2.1)-(2.3) associated with (2.4)-

(2.6) is to make our theory more understandable and to avoid unnecessarily complicated
notations.

5 Numerical simulation

Let the nonlinear stochastic state delayed system be described by

Z1(t) = —3.5z1(t) + 0.1z2(t) — 0.4z3(¢) + 0.1sin(z1(t) + z2(t))
+0.04z7 (£ — 0.1) — 0.01zo (£ — 0.1) — 0.01z5(t — 0.1) + 0.2w(?),
Zo(t) = —0.5z1(t) — 2z2(t) + 0.623(t) + 0.2z2(t) sin zo(t)
+0.01zy (£ — 0.1) — 0.03z2( — 0.1) + 0.02z5(t — 0.1) + 0.2w(?),
Z3(t) = —0.5z1(t) + 0.8z2(t) — 4z3(t) + 0.1sin(z2(t) — z3(1))
+0.01zy (£ — 0.1) — 0.01za (£ — 0.1) + 0.05z5(t — 0.1) + 0.2w(?),
y1(t) = x1(t) +0.28inzo(t) + 0.1w(t);
ya(t) = x9(t) +0.1sinz(t) + 0.1w(t);
y3(t) = x3(t) +0.3sinzs(t) + 0.1w(t).

Considering the system (2.1)-(2.3) with the constraints (2.4)-(2.6), we can obtain that

~35 0.1 —04 0.04 —0.01 —0.01
A=| -05 -2 06 |, Ag=] 001 —0.03 002 |, B=0,
—05 0.8 —4 0.0l —0.01 0.05

Ei=[02 02 02]", BE;=[001 001 001]", C=1I,
T = 0.1, ail = 0.4899, a9 = 0, assz = 0.7483.
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We want to design an exponential filter for the nonlinear time-delay system (2.1)-(2.3),
such that the dynamics of the estimation error is stochastically exponentially ultimately
bounded in the mean square. Firstly, the parameters ¢; (i = 1,2,3,4) are chosen as:
€1 =0.2, g9 =2.1, €3 = 0.6, ¢4 = 0.5. Then, a positive definite solution to (3.18) and the
matrix = are calculated respectively as follows:

2.4183 0.0655  0.2911 —0.8232 —0.0436 0.0325
P =] 00655 1.4131 —0.5095 |, == | —0.0436 —0.6585 0.0145
0.2911 -0.5095 2.7390 0.0325  0.0145 —0.7524

To show the design freedom, we now discuss two cases.

Case 1: We set A = 0.813, U = I3, and obtain from (3.19) the desired filter gain as

1.3176  —0.1196 —0.1623
K= —0.1196 2.3860  0.4565
—0.1623  0.4565 1.2454

Denote the error states e; = x; —&; (i = 1,2,3). The responses of error dynamics to initial
conditions are shown in Fig. 1 (All the figures are displayed at the end of this paper),
and the real state x; (respectively, z9, x3) and its estimate Z; (respectively, &9, Z3) are
displayed in Fig. 2 (respectively, Fig. 3, Fig. 4). The simulation results imply that the
desired goal is well achieved.

Case 2: In this case we select A = 0.813, U = diag{—1, —1,1}, and get

0.36556 —0.0332 —0.1623
K= | —-0.0332 0.6619 0.4565
—0.0450  0.1266 1.2454

The simulation results for Case 2, which again show that our expected performance is
well guaranteed, are omitted to save the space. We can see from the simulation that, the
mean square exponential rate of convergence for the estimation error, which reflects the
steady-state performance of the designed filter, is ensured. On the other hand, it would
be more practical to improve the transient behavior for a nonlinear process. This gives us
one of the future research topics.

6 Conclusions

In this paper we have considered the filter design problem for a class of nonlinear stochas-
tic time-delay systems. Both the filter analysis and design issues have been discussed in
detail by means of quadratic matrix inequalities. We have derived the existence condi-
tions as well as the analytical parameterization of desired filters. The method relies not
on the optimization theory but on Lyapunov type stochastic stability results which can
guarantee a mean square exponential rate of convergence for the estimation error. It has
been emphasized that, the desired exponential filters for this class of nonlinear time-delay
systems, when they exist, are usually a large set, and the remaining freedom can be used
to meet other expected performance requirements. The results of this paper have been
demonstrated by a numerical simulation example.
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Casel: Responses of Error Dynamics to Initial Conditions

Casel: the Real state x1 and its Estimate
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