
Appendix A- Manufacturer Given Information and Rotor Drawings 

Appendix A Manufacturer Given Information and Rotor Drawings 

The first part of this section includes some given information from manufacturers, mainly 

for meters A, B and C. The second part collates each rotor drawing that was produced by 

Solidworks. 

A. 1 Manufacturer Given Information 

A. 1.1 Meter A 

A drawing is given by the manufacturer, Euromatic, and the image is shown below. 

BLADE ANGLE 25. DEOREES 
MATERIAL : 416 MAGNETIC 8.8 
OR EQUIVALENT 

DRAWNG TITLE EUROMATIC 
or, " ý IPT oil= V4'3 BLADED s= i cMY W GARY w /0v9 

ROTOR DRG tRA F02510 

Figure A. 1 Meter A- Image of the given drawing (note: the "SCALE" is not a true 

representation due to changed image size) 
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Though the meter (rotor casing) nominal diameter is 6 mm, the pipe fitting is actually for 

12 mm, therefore the effective pipe diameter is truncated from 12 mm to 6 mm at both 

ends of the meter body. A photographic view of the front of meter A is presented below 

showing this feature. 

Figure A. 2 Photographic view of the front of meter A 

A. 1.2 Meter B 

A drawing is given by Euromatic and is shown below. 

p 

ýý 

ö0 

(LAc* MOLE 40 DEG MAT: - 416 MAG, ¬T)C S. S 
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ROTOR DRG NUM F050(0 

Figure A. 3 Meter B- Image of the given drawing 
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The manufacturer also provides some details of this meter, such as the materials and 

bearing type, and they are tabulated in the table below. 

1. Meter type TB/'/2/GB 

2. Connection/Size '/x" BSP Threaded 

3. Maximum body pressure 350 bar 

4. Body material Stainless steel 316 

5. Flange material N/A 

6. Internal support material Stainless steel 316 

7. Shaft material Tungsten carbide 

8. Bearing type Ball race 

9. Rotor type 17/4 PH 

10. Flow range 0.11-1.1 m3/hr 

11. Calibration units m3 

12. Electrical connection M25 

13. Pick-up type Magnet and coil 

14. Temperature range -40°C to +100°C 

Table A. 1 Meter B- Given details 

Some calibration information was also given and it is as shown below: 

Run 
No. 

Flow 
rate 
(M3/hr) 

Frequency 
(Hz) 

Voltage 
(mV) 

Pulse per 
m3 

Percentage difference of 
"Pulse per m3" as compared 
to the average value 

1 6.00 870 306 522070 -0.53% 

2 4.36 632 222 521980 -0.52% 

3 2.72 394 138 520700 -0.27% 

4 1.09 156 55 516402 +0.56% 

5 0.52 75 26 522209 -0.56% 
Average 519305.5 
pulse per 
m3: 

Table A. 2 Meter B- Given calibration information 
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A. 1.3 Meter C 

A drawing is given by Bestobell and an image of this is shown below. 
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Figure A. 4 Meter C- Image of the given drawing (note: the "SCALE" is not a true 

representation due to changed image size) 

Note: No meter information was given by manufacturers for meters D and E. 

A. 2 Rotor Drawings 

For the purpose of evaluating rotor inertia and estimating fluid inertia (assuming solid body 

rotation within the rotor envelope), geometrical information of all rotors in this study are 

input into Solidworks to allow for this computation and the resulting drawings are collated 

in this section. 
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A. 2.1 Rotor A 
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A. 2.2 Rotor 13 
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A. 2.3 Rotor C 
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A. 2.4 Rotor D 
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A. 2.5 Rotor E 
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Appendix B Step Response Test Method 

The step response test results (described in Chapter 7.2.1) were obtained by using the 

method described by Cheesewright and Clark (1997). As extracted from their paper 

(Section 3 "Apparatus for step test experiments"), this section describes the test method 

which is of particular relevance to this study. 

"The values of the time constant required that for changes in flow to be considered as step 

changes would take place over a period of the order of 1 ms. Since the mean velocity of 

flow through a typical small turbine meter is several meters per second, it was apparent that 

the dynamic pressure forces could be very large. It was therefore decided that any 

mechanism controlling the flow would have to be immediately downstream of the meter 

and that the supply to the meter would have to be via a pipe having a diameter significantly 

greater than that of the meter. The flow was provided by a blow-down system, driven by 

compressed air, and the available pressure vessel limited the maximum pressure to 3.5 bar. " 

"Figure B. 1 shows a schematic representation of the apparatus and Fig B. 2 shows details of 

the variable-area orifice that controlled the flow. The rapid change of flow was achieved 

by driving the variable width slot across the circular orifice with a spring-loaded plunger 

device. Some control of the speed of change could be achieved by varying the energy with 

which the plunger impacted the slot (by varying the amount of compression imposed on 

the plunger spring). The linear movement of the slot which was necessary to go from one 

effective flow area to the other was approximately 10mm and overshoot was prevented by 

the use of a stop which was made magnetic to avoid the possibility of rebound. " 

cm 

Figure B. 1 Schematic representation of the apparatus for step tests 
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l"Stop 
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b wiglh Mot 

Plunger 

Figure B. 2 Details of the variable-area orifice used to produced changes in the flow 

"Estimates of the velocity with which the variable width slot moved across the orifice 

suggested that the change of flow area could be achieved in less than 1ms. Estimates of 

the dynamic pressure forces available in the flow confirmed that the required changes in 

flowrate (positive and negative) could be produced within this period. Some confirmation 

of these estimates was obtained from the fact that when the velocity of the slot was 

reduced by a factor of approximately 2, no significant change could be detected in the 

small step response of a given meter. " 

"It is known that the details of a flow, more than five orifice diameters upstream of an 

orifice, are not affected by details of the orifice and in all cases the turbine was further than 

this away from the variable orifice (note that Fig. B. 2 is schematic and is not to scale). It is 

therefore believed that there was no significant upstream influence on the turbine during 

the `small step' response tests. " 

The same data acquisition programs built in Labview, as described in Chapter 6.1.3, were 

used here for obtaining turbine meter raw data; and the same data processing technique 

(described in Chapter 6.3) was used to process the subsequent meter data. 
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Appendix C The Flow Model 

CFX provides a solution module that solves the discretised representation of the problem. 

A detailed description of the software is given in the Manual. This section is intended to 

describe the fundamental mathematical formulations and methods used to depict the flow 

behaviour, rather than as a full text. Where appropriate, the equations and their underlying 

assumptions are presented in full. In cases where the full equations have been omitted, 

references are presented where the analysis and derivations can be found. 

C. 1 Governing Equations 

The foundation of computational fluid dynamics (CFD) is the fundamental governing 

equations of fluid dynamics - the continuity, momentum and energy equations. Since the 

fluid flow modelled in this study is assumed to be isothermal, the energy equation is 

therefore not considered. 

C. 1.1 Continuity equation 

The CFX flow solver provides numerical solutions to the Reynolds' averaged Navier 

Stokes equations. For an elemental control volume, there is a balance between the mass 
flow rates entering and leaving per unit time and the rate of change in density. This may be 

expressed in symbolic notation form as (Fox and McDonald 1994): 

a! ° + V"(pu) =0 Eq. C. 1 at ý-"ý-- 
~J 

convective derivative 
local derivative 

Where: pis density; 

t is time; 

Uis velocity; and 
V" (pU) is called the divergence of the velocity, it is physically the time rate of 

change of the volume of a moving fluid element, per unit volume (Anderson, Jr. 

1992). 
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Eq. C. 1 suggests that an elemental control volume in a flow field may undergo change in 

mass flow rate for either of two reasons. It may be changed because it is "convected" into 

a region of higher (or lower) mass flow rate. If the fluid is compressible, the elemental 

control volume will undergo an additional "local" change in mass, and it is a function of 

time (Fox and McDonald 1994). For a flow of constant density, i. e. incompressible, this 

equation reduces to: 

v"U=o 

C. 1.2 Navier-Stokes Equations 

Eq. C. 2 

Both laminar and turbulent flow may be described by the Navier-Stokes equations, which 

were developed by considering the forces acting on an elemental parallelepiped in the fluid. 

The conservation of momentum equation describes the equilibrium between surface 

forces, body forces and inertia forces for an element of fluid in the flow. Surface forces are 

a combination of pressure forces, which act normal to the principal axes, and viscous 
forces, which act as shear forces on the faces of the fluid element. Body forces are forces 

developed without physical contact, and distributed over the volume of fluid (Fox and Mc 

Donald 1994). Gravitational force, centrifugal force, Coriolis force and electromagnetic 

force are examples of body forces. Inertia forces are the products of the mass and 

acceleration of the fluid element. The change in velocity of this element is brought about 

both by the movement of position and by the progress of time (Nakayama and Boucher 

1999). 

The equations can be written symbolically in the format as (Stanley Middleman 1998): 

DU 
_B 

pC DV 
body force 

inertia term term 

- vp +Ao2U 
pressure term viscous term 

Eq. C. 3 

Where: Bis body force; 

p is pressure; 

,u 
is dynamic viscosity. 

All other symbols are as before. 
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The Navier-Stokes equations can also be represented in coordinates form. In cylindrical 

coordinates for constant density and viscosity, they are: 

aux 
+ 

ue aux au lu- 

at + u' ar raO+ ux ax 
ap 1a au")+ 1 a2ux a2ux 

ýx 
ax 

+ 
rar \r ar r2 ä9Z 

+ 
äx2 Eq. C. 3a 

aflr all,. Ug ally U2 auy 

0( + Ur 

_22 
aue a2Ur fr - 

ap +, Uý a( 1a 1 lour _ är ar tar 
kr l 

J+ rZ a02 r'2 ae + axZ 
Eq. C. 3b 

auo +1 aue + ue aua + U" U0 + ux tx, 9 pl at r[ ar raBr_ 

1a pa ý1 a11 ague 
_2 

au, a2u8 
ýB 

ra8+p--[n 
B, )+r2 ao2 rZ ae+axe 

Eq. C. 3c 

Where: x, r, 0 are the three unit directions along the principal axes; 

u, u� ue are the three components of velocity along the principal axes; and 

gx, g� go are the three components of body force term along the principal axes. 

All other symbols are as before. 
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C. 2 Turbulence Models 

The continuity equation and the Navier-Stokes equations described in section C. 1 provide 

a full description of the isothermal and incompressible Newtonian flow behaviour of a 

fluid element in laminar flow. However, turbulent flows are extremely complex and time- 

dependent; since the Navier-Stokes equations are non-linear, coupled and contains partial 

differential, it is difficult to solve them to the required accuracy analytically, therefore 

turbulence models are used, which solve transport equations for the Reynolds-averaged 

quantities. 

Variables in the flow equations are split into mean and fluctuating parts. The transport 

equations are then solved for the mean quantities, and turbulence models are used to 

approximate the fluctuating parts. For example, under unsteady flow condition, the 

velocity is written as the sum of the phase mean velocity and the fluctuating velocity: 

U=U+ýýÜý-Uý+Ul=(U)+ul Eq. C. 4 

Where: U is mean velocity; 

(U) is phase mean velocity (only exists under unsteady flow condition); 

U' is fluctuating velocity. 

Taking the average of each term, except for the cross-products of the fluctuating velocities, 

the phase mean Reynolds averaged Navier-Stokes equation in symbolic form is given by: 

D(U) [v(p)] +, U[V2(U)]-pII UUJ Eq. C. 5 
Dt 

The extra term, p[V(UV)I, is due to the velocity fluctuations, is called the Reynolds 

stresses. These terms arise from the non-linear convective term in the unaveraged 

equations. These components can be regarded as expressions for the transport of a 

fluctuating momentum by turbulent velocity fluctuations (Abbott and Basco 1994). 

Turbulence models close the continuity and Reynolds averaged Navier-Stokes equations by 

providing models for the computation of the Reynolds stresses. The models that the 
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solver provides can be put into two broad classes: eddy viscosity models and second order 

closure models. 

Eddy viscosity models solve the Reynolds stresses and fluxes algebraically in terms of 

known mean quantities. The eddy viscosity hypothesis is that the Reynolds stresses can be 

linearly related to the mean velocity gradients in a manner analogous to the relationship 

between the stress and strain tensors in laminar Newtonian flow. These models are 

distinguished by the manner in which they prescribe the eddy viscosity and eddy diffusivity. 

Examples are k-E model, low Reynolds number k-C model and RNG k-E model. The low 

Reynolds number model is the modification of the standard models to allow calculation of 

turbulent flows at low Reynolds number, typically in the range 5,000 to 30,000. Since we 

aim to solve to the laminar boundary layer of blade surfaces in which the local Reynolds 

number is around 20,000 (see section C. 3.3), therefore low Reynolds number k-E model 

was chosen to be the prime model for this research case. 

Second order closure models solve differential transport models for the turbulent fluxes, 

which have to be modelled in terms of known lower order ones. These types of models 

are often called Reynolds stress models. The advantage of doing this over the methods 

mentioned previously is that those methods give a single additional viscosity, whereas the 

direct modelling of the stress terms allows the effects of turbulence to vary in the three 

coordinate directions. Eddy viscosity models are said to give isotropic turbulence, in which 

turbulence is assumed to be constant in all directions, whereas in the real situation the 

turbulence is said to be anisotropic (Shaw 1992). However, low Reynolds number versions 

of these models were not available within the solver. Therefore, no further description of 

these models will be presented here. 

C. 2.1 Eddy viscosity models 

The Reynolds stresses are assumed directly proportional to the mean velocity gradients, 

with the constant of proportionality being the turbulent viscosity, for example, in 

cylindrical coordinates: 

UrUO 'u` rB+ 
1äu, 

q 
auEC. 

6 
p ar rr aO 
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Where: p, is the turbulent viscosity; 

r, 9 are the unit directions along the principal axes; 

ur, ue are the components of velocity along the principal axes; 

ü,, ue are the components of fluctuating velocity. 

All other symbols are as before. 

The turbulent viscosity is not a value of a physical property dependent on the temperature 

or such, but a quantity fluctuating according to the flow condition (Nakayama and Boucher 

1999): 

Z 
ýr = Cup 

k Eq. C. 7 

where: C,, is a constant; 

k is the turbulent kinetic energy (note it has units of velocity squared); 

E is the rate of dissipation of turbulent kinetic energy 

Turbulent transport will have a substantial effect on boundary layer development within a 

turbine flowmeter. CFX 4.3 incorporates a range of models for turbulent transport 

suitable for use in engineering calculations. A brief summary of three of the available 

turbulence models, which were considered in preliminary investigations, is presented 

below. 

C. 2.1.1 k-E model 

The standard k-E model (Launder and Spalding 1974) uses an eddy-viscosity hypothesis for 

the turbulence. In addition to the mean flow equations, it solves separate transport 

equations for both turbulent kinetic energy, k, and the rate of dissipation of turbulent 

kinetic energy, e for use in Eq. C. 7 to determine A. At any point in the flow this same A 

is used in all flow directions, i. e. for all Reynolds stress components. This usage is 

equivalent to the assumption of a local isotropy in the turbulence (Abbott and Basco 1994). 

Both equations have the same form; the rate of change of k or e is related to the convective 

and diffusive transport and the production and dissipation. Resorting to vector notation, 

the equations are written as: 
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päk+0"(pUk)=P+B-pE+V" , u+E` Vk Eq. C. 8 

, oae+V. (JOUE)=c, F(P+c3B)-C210IF +v" /J+ý ve at kkQ1 Eq. C. 9 

Where: C,, C2, O rk, O. are model constants, 

Pis the shear production, defined below 

All other symbols are as before. 

P=(fU +p, )OU. (VU+(VU)T)-2VU((fu 
+Fu , 

)OU+pk) Eq. C. 1O 

The constants in these equations have been developed following studies of a wide range of 

turbulent flows. 

This model is not suitable for solution in the near wall region of a boundary layer. Where 

such a solution is required the model may be used in combination with a wall function to 

bridge the near wall region calculation. 

C. 2.1.2 Low Reynolds number k-E model 

CFX Flow Solver provides this particular turbulent model developed by Launder and 

Sharma (1974), it is a modification of the standard k-e model to allow calculation of 

turbulent flows at low Reynolds number, typically in the range 5000 to 30000. The model 

involves a damping of the turbulent viscosity when the local turbulent Reynolds number is 

low, a modified definition of E so that it goes to zero at walls and modifications of the 

source terms in the 6 equation. The equations are integrated to the wall through the 

laminar sublayer. 

Practically all incompressible turbulence models invoke the large Reynolds number (Re) 

assumption, thus allowing the effects of viscosity to be neglected as a first approximation. 

This assumption has its drawback as the flow Re decreases or as a wall is approached. In 
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both cases, the effective Re of the flow becomes smaller. However, there is a distinct 

difference between the two situations even though the effective flow Re is the same. For 

flows in an infinite medium, there are no walls and decreasing Re introduces viscous effects 

only. On the other hand, the local Re decreases as a wall is approached and, in addition, 

the wall reflects the fluctuating pressure and thus contributes to an increased anisotropy of 

the turbulence field near the wall. This effect is commonly known as wall blocking. 

Therefore, near-wall turbulence includes both viscous and blocking effects while low-Re 

turbulence consists of viscous effects alone (Speziale and So 1998). 

The equations describing the turbulence model: Eq. C. 7, Eq. C. 8 and Eq. C. 9 become: 

ýf = CIlf-p 
kZ 

Eq. C. 11 

päk+V-(pUk)=P+B-pe+V. u+E` Vk -D Eq. C. 12 
k 

ae +v ve-c e (P+c B)-c f ýZ +v- +ý`ý VE +E Eq. C. 13 P ýt (P )- k3z', k 
E 

Here the definition of Pis changed slightly from Eq. C. 10 to use A only instead of (y+, u). 

The functions fý, fý, D and E are defined by: 

ex 
-3.4 Eq. C. 14 f" p 

1+(R,. /50)2 

f2= 1-0.3 exp( RT2) Eq. C. 15 

D=2p(Vkyy Eq. C. 16 

E=2'uß` (VV U)2 Eq. C. 17 

where the local turbulent Reynolds number is defined by: 

_pkz RT - 
jue 

Eq. C. 18 
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C. 2.1.3 RNG k-E model 

RNG k-e model is an alternative to the standard k-E model for high Reynolds number 

flows. It derives from a renormalization group analysis of the Navier-Stokes equations and 

differs from the standard model only through a modification to the equation for e, except 

for using a different set of model constants. 

The RNG model has not been as widely validated as the k-E model. However, it has been 

shown to give better results for many flow regimes, particularly the highly turbulent flows 

common in wind engineering applications. According to Caffrey et al (1997), the RNG 

model can give superior results for swirling flows. 

Summary: 

In the present study, negligible swirling flow is assumed due to the effect of upstream and 

downstream flow straighteners. And the interest only lies on solving the hydrodynamic 

forces acting on the localised region of the rotor blading when the meter is subjected to 

pulsating flow conditions. This implies that the blade wall boundary layer flow simulation 

is of most importance. In view of this, as the local Reynolds number of the blade, Re, is 

around 20000 within the flow regime (See C. 3.3), Low Re number k-e model was chosen 

to be the turbulent model for this particular flow problem. 
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C. 3 Mathematical Details on Boundary Conditions 

C. 3.1 Inlet Boundary 

Assuming that the whole volume flow goes through the annular flow passage, the inlet 

velocity (freestream) can simply be inferred from the following formula: 

Inlet Velocity = Volume Flowrate + Annular Cross - section Area 

U� =V +A Eq. C. 19 

The value of inlet velocity is calculated based on the experimental flow condition, in which 

the mean flowrate is 0.292x10"3 m3/s for this meter (See Chapter 6). Knowing the values 

of the casing radius (r) and hub radius (r), the annular area is calculated by using the 

following equation: 

A =, r(rr2 - rr2 
) 

=''(1.293x10-2 )2 
- 5.04x10-3)2j 

=1.113X10-'m2 

Now, by using Eq. C. 19, the inlet freestream mean velocity is: 

U- =0.292x10-'m'/s+1.113x1O m2 

= 2.629 m/s 

Eq. C. 20 

For steady flow condition, the above value is input into the solver. For unsteady flow 

condition, pure sinusoidal pulsating flow is assumed. With ap being the relative pulsation 

amplitude and fy being the pulsation frequency, the velocity will be time dependent 

periodically as follows: 

Um (t) = U-, (i +ap sin 2ýf t) Eq. C. 21 

The above equation is then input into Fortran subroutine, USRBCS, for the calculation of 
boundary condition at the inlet for unsteady flow runs. 
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The values of the inlet turbulence quantities are based upon the characteristic of a fully 

developed pipe flow. The equations for the inlet values of turbulent kinetic energy, k, is: 

k 2u, 2 Eq. C. 22 

where u, is the shear stress velocity, 
(= r ,p), in which Z, is the wall shear stress. 

Introducing a dimensionless skin-friction coefficient, C1: 

Cf= 
Z" 

Eq. C. 23 
pU-, 2 

uT = Cl /2 }II� Eq. C. 24 

According to Blausius' approximate solution for laminar flow over flat plate using 

sinusoidal velocity profile, the skin-friction coefficient, Cf= 0.664(Re)"2 (Massey 1992). 

Taking the local Reynolds number. to be equivalent to the pipe Reynolds number, for this 

flow condition, Re, = Red = 3.11x10`, hence Cf = 3.765x10"3. By substituting this value 

into Eq. C. 24, u, is equal to 0.115 and hence k is approximated to be 0.026 m2/s2. 

The rate of dissipation of turbulent kinetic energy, e, are 

k 1.5 

0.3D 
Eq. C. 25 

D is the hydraulic diameter of the domain, which is approximated to 0.0125m. 

C. 3.2 Outlet Boundary 

According to Wisler 1998, in order to determine radial variations in vector diagrams and 

flow properties, it is critical that the pressure gradients, momentum changes, and blade 

forces on the fluid be balanced in the radial direction. The radial equilibrium equation is 

formulated from the momentum equation (Eq. C. 3b) for the r component of velocity as 

shown below. The assumption of axial symmetry has eliminated terms containing 

variations in the tangential direction 0 
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lap U01 au,. au, 

par r 
-uX- ax - ur-+ Tr Jr 

Eq. C. 26 
radial blade 

pressure centrifugal streamline linear accel. force on fluid 
gradient 

force curvature in radial dir. 

By assuming that this term can be expressed as a function of radius, and if the streamline 

curvature term, the linear acceleration term and the blade force term are all equal to zero at 

the outlet, then a simplified form of the radial equilibrium equation can be written as: 

1 öp 
_ 

ue2 
Eq. C. 27 

p ör r 

In the circumferential direction, the velocity in the absolute frame is: 

lublabs. 
_ 

[ue 1", + rw Eq. C. 28 

Since ue only varies with radius, the mean velocity for each radius is then calculated by the 
following formula: 

_ 

([u9 
Jabs. 

x dv_ 

Eq. C. 29 

r 

where dv is the elemental volume. 

Assuming that the datum is on the hub surface, in which the pressure, pld, is: 

Ybub - 
plus 

fbs" Eq. C. 30 

Then the pressure can be found for each radial position as follows: 

Yr 
= Yr-t 

+ 
P[ cabs. X dr 

Eq. C. 31 

r 

This equation is then input into Fortran subroutine, USRBCS, for the calculation of 
boundary condition at the outlet. 
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C. 3.3 Wall Boundaries 

As an illustration, this section shows the procedure in establishing the value of d, distance 

between the wall and centre of the first grid, of the blade wall surrounding grid. 

Firstly, the boundary layer characteristic has to be known. The local Reynolds number, 

Re,, of the blade is: 

Re, = 
PU°°c 

=1.761x104 Eq. C. 32 
I" 

Where the blade chord, cis 6.740X1 0"3m, all other values are as before. 

According to Blasius, for a flat plate, if Re, <5x 105, it represents a laminar boundary layer 

on a flat plate with zero pressure gradient. 

In the region very close to the wall where viscous shear is dominant, the mean velocity 

profile follows the below linear viscous relation: 

pusd Eq. C. 33 
9 

where d is distance measured from the wall. 
All other notations are as before. 

By substituting Eq. C 24 into Eq. C. 33; 

Y+= __ 
Cfl2 

Eq. C. 34 
I" 

According to Blausius' approximate solution for laminar flow over flat plate using 

sinusoidal velocity profile, the skin-friction coefficient, Cf= 0.664(Re)"'/2 (Massey 1992). 

Subsequent to computing Re/, Cf = 5.004x10"3. Rearranging the above equation, if y+ = 0.3, 

d has a value of: 

d= y+'u 
= 2.294x10-6m 

pU� Cf /2 

The same calculation was done to define the distance of first node centre from hub and 

casing surfaces by using ay+ value of 30. 
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C. 4 Discretisation Schemes 

This section describes the transformations necessary to convert the flow equations 

described above into a form that may be solved using an orthogonal grid in computational 

space. A full mathematical description of the transformation is not presented, but the 

principle is explained. The full mathematics may be found in the CFX Solver Manual. 

The basis of the CFX computational code is a conservative finite-difference method, also 
known as a finite-volume method. All flow variables are defined at the centre of control 

volumes, which fill the physical domain being considered. Each equation describing the 

flow is integrated over each control volume to obtain a discrete equation which connects 

the variable at the centre of the control volume to its values in neighbouring control 

volumes (CFX Solver Manual 13.3.1). 

In principle, if the number of computational cells is large enough, the numerical solution 

will be indistinguishable from the exact solution of the transport equation. In practice, due 

to computational constraints, the number of cells may be much smaller than this ideal. 

The choice of the method used to relate the flow properties at one control volume to its 

neighbours is crucial in determining the accuracy of the solution. 

Various discretisation methods are available in the software ranging from the robust but 

relatively inaccurate hybrid and first order upwind schemes to the more accurate but less 

robust higher order schemes. The numerical accuracy of the modelled equations will to a 

large extent depend upon the method of discretisation chosen for the advection terms. In 

the course of preliminary investigations a number of different treatments were considered. 

These are listed below: 

f Hybrid differencing (HDS): 1°`/2"a order accurate. This is a scheme using Central 

differencing (2"d order accurate) and switch to Upwind differencing (1" order accurate) 

at Peclet no. (Shaw 1992) greater than 2. 

f Higher-order upwind differencing (HUW): 2 "d order accurate. 

f Quadratic upwind differencing (QUICK): 3`d order accurate for the advection terms, 

other terms such as diffusion remain only 2 °d order. 
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f CCCT: 3`d order accurate. In particular, the higher order upwinded schemes can suffer 

from non-physical overshoots in their solutions. For example, turbulent kinetic energy 

can become negative. CCCT is a modification of the QUICK scheme which is 

bounded, eliminating these overshoots. 

The more accurate the schemes tend to be less robust and slower (CFX Solver Manual). In 

view of this, CCCT was chosen to be the main discretisation scheme used in the flow 

modelling for an optimal accurate solution. Whilst, if a solution is difficult to achieve (or 

the solver tends to fail in a particular case), Hybrid differencing scheme was used instead 

for the k and 6 equations. 
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C. 5 Solution Algorithms 

The underlying assumption behind all the previous sections has been that the transport 

equations for a particular flow property are solved for a particular flow field. For the 

simulations in this study, the velocity field is not known in advance; it emerges as part of 

the overall solution as the simulation progresses. This section describes the algorithms 

used to compute the flow field and generate the transport equations as the simulations 

progress. 

C. 5.1 Pressure Correction Method 

In most flows of engineering importance, the flow is driven by pressure differences, so that 

the pressure gradient is the most significant term in the velocity transport equations. For 

an incompressible flow the pressure and velocity equations are coupled, so that if the 

correct pressure field has been determined, the velocity field should obey continuity. 

In view of the complexity of the governing equations, and because of the linkage between 

the three-dimensional velocity and pressure fields, an iterative scheme is necessary to 

determine the flow field for a given set of conditions. 

For a given pressure field, it is possible to write discretised momentum equations for each 

control volume in the flow-field. These equations may be solved to generate the velocity 
field. 

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm of Patankar 

and Spalding (1972) is the most basic scheme offered within CFX. The method starts 

from an initial guess of the pressure field, which is then used to determine the velocity field 

by solving the momentum equations. SIMPLEC is a modification of SIMPLE which 
differs in its derivation of a simplified momentum equation. A trivial extra amount of 

work is required for SIMPLEC as compared with SIMPLE, so the cost may be regarded as 

nearly identical. For a number of model problems, SIMPLEC has proved less sensitive to 

selection of under-relaxation factors and has required less under-relaxation, so this 

algorithm is preferred. (CFX Solver Manual 6.2.3) 
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Once the pressure field has been corrected by the determined amount, the velocity field is 

recalculated. This flow-field is used to determine the other transport properties. If the 

solution has converged adequately, the process is stopped. Otherwise, the newly 

determined properties are used as the first guess for the next iteration. 

C. 5.2 Under-relaxation factors 

Under-relaxation has several interlinked purposes in the solution process. At every 

iteration, the corrections to the pressure and velocity fields used as input for the transport 

equations are modified by applying under-relaxation factors (URFs). These factors are 

used to improve the stability of the solution, particularly if the guessed flow field is far 

from the true final solution. Pressure is treated differently from the other variables in that 

the coefficients of the pressure-correction equation are not modified in the way already 
described. Instead under-relaxation is implemented by adding only a proportion of the 

pressure-correction onto the pressure: 

p. +, = pn + UKFF p' Eq. C. 35 

Where: p� is pressure at the n'h iteration, 

p' is the pressure correction, 
URFp is the pressure under-relaxation factor. 

Under-relaxation is applied to all flow properties. If the values are too high, the solutions 

will oscillate or diverge, if the values are too small, the solution will converge extremely 

slowly. The optimum values of URF for each flow variable depend on the flow, and may 

need to be found heuristically. 

For most runs, as recommended by the solver, URF values of 0.65 were used for the 

variables u, v and w, and 1.0 was used for p. Whilst the optimal URF values of k and e were 

both found to be 0.2. If a particular solution was hard to achieve, URF values of u, v and w 

would be reduced to 0.5; and 0.1 for k and C. 
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Appendix D Fortran Routines 

To facilitate the simulation, a set of programs must be written to comply with the geometry 

mesh, and they are included in this section. (1) Command file, which is a file that contains 

some high-level commands such as the number of steps and iterations to facilitate the 

simulation; (2) "USRBCS" which allows the calculations and iterative updates of boundary 

conditions; and the calculations of the various angular momemtum flux terms within the 

designated boundaries; (3) "USRBF" which allows the calculations of body forces within 

the domain; (4) "USRGRD" which allows the grid coordinates and calculations to be 

transformed from Cartesian frame to Cylindrical frame; and, (5) "USRTRN" which allows 

the calculations of weighted mean flow angles at different axial positions along the domain 

(for the purpose of evaluating time-varying flow incidence pattern between the rotor inlet- 

outlet zone). 

D. 1 Command File 

/* TURBULENT (LOW RE K-Epsilon, 000T) 
/* TRANSIENT FLOW - refernce frame - Line graph data 

»CFX4 
»SET LIMITS 

MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 40 
>>OPTIONS 

THREE DIMENSIONS 
BODY FITTED GRID 
CYLINDRICAL COORDINATES 

/*AXIS INCLUDED*/ 
TURBULENT FLOW 
ISOTHERMAL FLOW 
INCOMPRESSIBLE FLOW 
TRANSIENT FLOW 
USE DATABASE 
USER SCALAR EQUATIONS 8 

>>USER FORTRAN 
USRBCS 
USRBF 
USRGRD 
USRTRN 

»VARIABLE NAMES 
USER SCALAR1 Z SHEAR STRESS' 
USER SCALAR2 X MASS FLUX' 
USER SCALAR3 Y MASS FLUX' 
USER SCALAR4 Z MASS FLUX' 
USER SCALAR5 ZX NODAL SHEAR STRESS' 
USER SCALAR6 YZ NODAL SHEAR STRESS' 
USER SCALAR7 XY NODAL SHEAR STRESS' 
USER SCALARS REAL PRESSURE' 
END 

»MODEL TOPOLOGY 
»INPUT TOPOLOGY 

READ GEOMETRY FILE 

>>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
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PATCH NAME TOP7' 
BLOCK NAME 'BLOCK-NUMBER-7' 
PATCH LOCATION 1 15 1 14 15 15 
HIGH K 

>>CREATE PATCH 

PATCH TYPE 'INTER BLOCK BOUNDARY 
PATCH NAME 'TOP1' 
BLOCK NAME BLOCK-NUMBER-1' 
PATCH LOCATION 1 16 1 14 15 15 
HIGH K 

>>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY 
PATCH NAME TOP2' 

BLOCK NAME BLOCK-NUMBER-2' 
PATCH LOCATION 1 16 1 14 15 15 
HIGH K 

>>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
PATCH NAME TOP3' 
BLOCK NAME BLOCK-NUMBER-3' 
PATCH LOCATION 1 16 1 14 15 15 
HIGH K 

>>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
PATCH NAME 'TOP11' 
BLOCK NAME 'BLOCK-NUMBER-11' 
PATCH LOCATION 1 15 1 14 15 15 
HIGH K 

>>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
PATCH NAME 'BOTTOM7' 

BLOCK NAME 'BLOCK-NUMBER-7' 
PATCH LOCATION 1 15 1 14 11 
LOW K 

>>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
PATCH NAME 'BOTTOM8' 
BLOCK NAME 'BLOCK-NUMBER-8' 
PATCH LOCATION 1 16 1 14 11 
LOW K 

>CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
PATCH NAME BOTTOM9' 

BLOCK NAME 'BLOCK-NUMBER-9' 
PATCH LOCATION 1 16 1 14 11 
LOW K 

>>CREATE PATCH 
PATCH TYPE INTER BLOCK BOUNDARY' 
PATCH NAME BOTTOM10' 

BLOCK NAME 'BLOCK-NUMBER-10' 
PATCH LOCATION 1 16 1 14 11 
LOW K 

> CREATE PATCH 
PATCH TYPE 'INTER BLOCK BOUNDARY' 
PATCH NAME 'BOTTOMII' 
BLOCK NAME 'BLOCK-NUMBER-11' 
PATCH LOCATION 1 15 1 14 11 
LOW K 

>>GLUE PATCHES 
FIRST PATCH NAME 'TOP7' 

SECOND PATCH NAME 'BOTTOM7' 
> GLUE PATCHES 

FIRST PATCH NAME 'TOP1' 
SECOND PATCH NAME 'BOTTOMS' 

>>GLUE PATCHES 
FIRST PATCH NAME 'TOP2' 

SECOND PATCH NAME 'BOTTOM9' 

>>GLUE PATCHES 

FIRST PATCH NAME 'TOP3' 
SECOND PATCH NAME 'BOTTOMIO' 

> GLUE PATCHES 
FIRST PATCH NAME 'TOP11' 
SECOND PATCH NAME 'BOTTOMII' 

END 
>MODEL DATA 

»SET INITIAL GUESS 
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»INPUT FROM FILE 
READ DUMP FILE 
UNFORMATTED 
LAST DATA GROUP 

END 

>>SELECT VARIABLES FROM FILE 
U VELOCITY 
V VELOCITY 
W VELOCITY 
PRESSURE 
VOLUME FRACTION 
DENSITY 
VISCOSITY 
K 

EPSILON 
BFX FORCE 
BFY FORCE 
BFZ FORCE 
BPX FORCE 
BPY FORCE 
BPZ FORCE 
Z SHEAR STRESS 
X MASS FLUX 
Y MASS FLUX 
Z MASS FLUX 
ZX NODAL SHEAR STRESS 
YZ NODAL SHEAR STRESS 
XY NODAL SHEAR STRESS 
END 

»DIFFERENCING SCHEME 
K 'HYBRID' 

EPSILON 'HYBRID' 
U VELOCITY CCCT' 
V VELOCITY CCCT' 
W VELOCITY CCCT' 
END 

»MATERIALS DATABASE 
>>SOURCE OF DATA 

PCP 
>>FLUID DATA 

FLUID 'WATER' 
MATERIAL TEMPERATURE 2.9400E+02 
MATERIAL PHASE 'LIQUID' 

>>PHYSICAL PROPERTIES 

>>TRANSIENT PARAMETERS 

>>FIXED TIME STEPPING 

TIME STEPS 760*1.3888888889E-4 
BACKWARD DIFFERENCE 
INITIAL TIME 0.1000001132 

»TURBULENCE PARAMETERS 
>>TURBULENCE MODEL 

TURBULENCE MODEL 'LOW REYNOLDS NUMBER K-EPSILON' 
»WALL TREATMENTS 

WALL PROFILE 'LINEAR' 
»TITLE 

PROBLEM TITLE 'TRANSIENT FLOW WITH PERIODIC BOUNDARY LOW' 
>>SOLVER DATA 

>>PROGRAM CONTROL 
MAXIMUM NUMBER OF ITERATIONS 9 
OUTPUT MONITOR BLOCK 'BLOCK-NUMBER-1' 
OUTPUT MONITOR POINT 333 
MASS SOURCE TOLERANCE 1.0E-7 

ITERATIONS OF VELOCITY AND PRESSURE EQUATIONS 
ITERATIONS OF TURBULENCE EQUATIONS 1 
END 

> UNDER RELAXATION FACTORS 
U VELOCITY 0.5 
V VELOCITY 0.5 
W VELOCITY 0.5 
PRESSURE 1.0 
TE 0.1 
ED 0.1 

/*VISCOSITY 0.6 

BFY 0.6 
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BFZ 0.6 
Z SHEAR STRESS 0.6*/ 
END 

>>EQUATION SOLVERS 
ALL PHASES 'AMG' 

>>ALGEBRAIC MULTIGRID PARAMETERS 
CONNECTIVITY TOLERANCE 1.0E-12 
VECTORISED 

/* >>SWEEPS INFORMATION 
»MINIMUM NUMBER 

K3 
EPSILON 3 

PRESSURE 30 
U VELOCITY 3 
V VELOCITY 3 
W VELOCITY 3 

»MAXIMUM NUMBER 
K 10 
EPSILON 10 
PRESSURE 60 
U VELOCITY 15 
V VELOCITY 15 
W VELOCITY 15 

>>REDUCTION FACTORS 
K 0.01 
EPSILON 0.01 
PRESSURE 0.01 
U VELOCITY 0.01 
V VELOCITY 0.01 
W VELOCITY 0.01*/ 

END 
»MODEL BOUNDARY CONDITIONS 

/*»SET VARIABLES 
#CALC 

UINL=0.2629547666E+01; 
TEINL=2*0.115*0.115; 
CH=0.012446; 
EPSINL=TEINL**1.5/(0.3*CH); 

#ENDCALC 
PATCH NAME INLET' 
U VELOCITY #UINL 
V VELOCITY 0.00 
W VELOCITY 0.00 
K #TEINL 
EPSILON #EPSINL 
END 

»SET VARIABLES 
PATCH NAME OUTLET' 
PRESSURE 2.0E5*/ 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'HUB1' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME HUB2' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME HUBS' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME HUB4' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'HUBS' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME HUB6' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME HUB7' 
TAUE 0.0 

»WALL BOUNDARY CONDITIONS 

PATCH NAME HUBS' 

TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME HUB9' 
TAUX 0.0 
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»WALL BOUNDARY CONDITIONS 
PATCH NAME 'HUB10' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'HUB11' 

TAUX 0.0 
»WALL BOUNDARY CONDITIONS 

PATCH NAME 'CASEl' 

TAUX 0.0 
»WALL BOUNDARY CONDITIONS 

PATCH NAME CASE2' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME CASE3' 

TAUX 0.0 
»WALL BOUNDARY CONDITIONS 

PATCH NAME CASE4' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'CASE5' 

TAUX 0.0 
»WALL BOUNDARY CONDITIONS 

PATCH NAME CASE6' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME CASE7' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'CASE8' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'CASE9' 
TAUX 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'CASE10' 
TAUE 0.0 

»WALL BOUNDARY CONDITIONS 
PATCH NAME 'CASE11' 
TAUE 0.0 

»OUTPUT OPTIONS 
>>LINE GRAPH DATA 

FILE NAME 'RESIDUALS' 
RESIDUAL 

EACH ITERATION 
ALL VARIABLES 

>>PRINT OPTIONS 
>>WHAT 

NO WALL PRINTING 

>>WHEN 
FINAL SOLUTION 
END 

>>WHERE 
J PLANES 8 

»STOP 
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D. 2 USRBCS 

SUBROUTINE USRBCS(VARBCS, VARAMB, A, B, C, ACND, BCND, CCND 
+ IWGVEL, NDVWAL 
+ , FLOUT, NLABEL, NSTART, NEND, NCST, NCEN 

+ , U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL 

+ , XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, IPT 

+ , IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB 

+ , WORK, IWORK, CWORK) 

C 

C 
C USER ROUTINE TO SET REALS AT BOUNDARIES. 

C 

C »> IMPORTANT <<< 
C »> <<< 
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<< 
C »> THE DESIGNATED USER AREAS <<< 
C 
C*********************************************************************** 
C 
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINE 
C CUSR SRLIST 
C 
C*********************************************************************** 
C CREATED 
C 30/11/88 ADB 
C MODIFIED 
C 08/09/90 ADB RESTRUCTURED FOR USER-FRIENDLINESS. 
C 10/08/91 IRH FURTHER RESTRUCTURING ADD ACND BCND CCND 
C 22/09/91 IRH CHANGE ICALL TO IUCALL + ADD /SPARM/ 
C 10/03/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C 30/06/92 NSW INCLUDE FLAG FOR CALLING BY ITERATION 
C INSERT EXTRA COMMENTS 
C 03/08/92 NSW MODIFY DIMENSION STATEMENTS FOR VAX 
C 21/12/92 CSH INCREASE IVERS TO 4 
C 02/08/93 NSW INCORRECT AND MISLEADING COMMENT REMOVED 
C 05/11/93 NSW INDICATE USE OF FLOUT IN MULTIPHASE FLOWS 

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC. 
C 01/02/94 NSW SET VARIABLE POINTERS IN WALL EXAMPLE. 
C CHANGE FLOW3D TO CFDS-FLOW3D. 
C MODIFY MULTIPHASE MASS FLOW BOUNDARY TREATMENT. 

C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE 

C 02/07/94 BAS SLIDING GRIDS - ADD NEW ARGUMENT IWGVEL 
C TO ALLOW VARIANTS OF TRANSIENT-GRID WALL BC 
C CHANGE VERSION NUMBER TO 5 
C 09/08/94 NSW CORRECT SPELLING 
C MOVE 'IF(IUSED. EQ. 0) RETURN' OUT OF USER AREA 
C 19/12/94 NSW CHANGE FOR CFX-F3D 
C 02/02/95 NSW CHANGE COMMON /IMFBMP/ 
C 02/06/97 NSW MAKE EXAMPLE MORE LOGICAL 
C 02/07/97 NSW UPDATE FOR CFX-4 
C 
C++. **. +rar*****************, t******«*********rr***********w*ºw*«******k" 

C 
C SUBROUTINE ARGUMENTS 

C 

C VARBCS - REAL BOUNDARY CONDITIONS 
C VARAMB - AMBIENT VALUE OF VARIABLES 
CA- COEFFICIENT IN WALL BOUNDARY CONDITION 
CB- COEFFICIENT IN WALL BOUNDARY CONDITION 
CC- COEFFICIENT IN WALL BOUNDARY CONDITION 
C ACND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C BCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C CCND - COEFFICIENT IN CONDUCTING WALL BOUNDARY CONDITION 
C IWGVEL - USAGE OF INPUT VELOCITIES (0 = AS IS, 1 = ADD GRID MOTION) 
C NDVWAL - FIRST DIMENSION OF ARRAY IWGVEL 
C FLOUT - MASS FLOW/FRACTIONAL MASS FLOW 
C NLABEL - NUMBER OF DISTINCT OUTLETS 
C NSTART - ARRAY POINTER 

C NEND - ARRAY POINTER 
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C NCST - ARRAY POINTER 
C NCEN - ARRAY POINTER 
CU-U COMPONENT OF VELOCITY 

CV-V COMPONENT OF VELOCITY 

CW-W COMPONENT OF VELOCITY 

CP- PRESSURE 

C VFRAC - VOLUME FRACTION 
C DEN - DENSITY OF FLUID 
C VIS - VISCOSITY OF FLUID 
C TE - TURBULENT KINETIC ENERGY 
C ED - EPSILON 
C RS - REYNOLD STRESSES 

CT- TEMPERATURE 

CH- ENTHALPY 
C RF - REYNOLD FLUXES 

C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 

C XP -X COORDINATES OF CELL CENTRES 
C YP -Y COORDINATES OF CELL CENTRES 
C ZP -Z COORDINATES OF CELL CENTRES 
C VOL - VOLUME OF CELLS 
C AREA - AREA OF CELLS 
C VPOR - POROUS VOLUME 

C ARPOR - POROUS AREA 
C WFACT - WEIGHT FACTORS 
C 
C IPT - 1D POINTER ARRAY 
C IBLK - BLOCK SIZE INFORMATION 

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 

C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 

C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 

C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 

C IPFACB - POINTER TO NODES FROM BOUNDARY FACES 

C 
C WORK - REAL WORKSPACE ARRAY 

C IWORK - INTEGER WORKSPACE ARRAY 

C CWORK - CHARACTER WORKSPACE ARRAY 
C 
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 

C BE SET BY THE USER IN THIS ROUTINE. 
C 
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 

C USER MANUAL. 
C 

LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS 

C 
CHARACTER*(*) CWORK 

C 
C+++++++++++++++++ USER AREA 1+++++++++++++++++++++++++++++++++++++++++ 

C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 

C 
REAL TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS, 

+ WVSUM, VSUM, DELTAR, TNET, 

+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE, 

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD, 

+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP, 

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO, 

+ THETAXO, RTHETAO, XRO, XTHETAO, 
+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, 

+ THETAXD, RTHETAD, XRD, XTHETAD, 

+ THETAXP, RTHETAP, XRP, XTHETAP, UA 

INTEGER ITXT, ISEQF, BLADEN, DOMAINN, IUSRITER, IUSRSTEP 

C 
C+++++++++++++++++ END OF USER AREA 1++++++++++++++++++++++++++++++++++ 

C 
COMMON 

+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM 

+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE 

+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP 

+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL 

+ /BCSOUT/ IFLOUT 

+ /CHKUSR/ IVERS, IUCALL, IUSED 

+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK 
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/IDUM/ ILEN, JLEN 
/IMFBMP/ IMFBMP, JMFBMP 
/LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 

, LRECT, LCYN, LAXIS, LPOROS, LTRANS 

/MLTGRD/ MLEVEL, NLEVEL, ILEVEL 

/SGLDBL/ IFLGPR, ICHKPR 
/SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON 

/TRANSI/ NSTEP, KSTEP, MF, INCORE 

/TIMUSR/ DTUSR 
/TRANSR/ TIME, DT, DTINVF, TPARM 
/UBCSFL/ IUBCSF 

C 
C+++++++++++++++++ USER AREA 2+++++++++++++++++++++++++++++++++++++++++ 

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 

C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C NO CONFLICT WITH NON-USER COMMON BLOCKS 

COMMON 
+ /UC1/ TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS, 

+ WVSUM, VSUM, DELTAR, TNET, 
+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE, 

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD, 
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP, 

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO, 

+ THETAXO, RTHETAO, XRO, XTHETAO, 
+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, 

+ THETAXD, RTHETAD, XRD, XTHETAD, 
+ THETAXP, RTHETAP, XRP, XTHETAP, UA 

C 
C+++++++++++++++++ END OF USER AREA 2++++++++++++++++++++++++++++++++++ 
C 

DIMENSION 
+ VARBCS(NVAR, NPHASE, NCELL+I: NNODE), VARAMB(NVAR, NPHASE) 

+, A(4+NSCAL, NPHASE, NSTART: *) 

+, B(4+NSCAL, NPHASE, NSTART: *), C(4+NSCAL, NPHASE, NSTART: *) 

+, FLOUT(*), ACND(NCST: *), BCND(NCST: *), CCND(NCST: *) 

+, IWGVEL(NDVWAL, NPHASE) 

DIMENSION 

+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE) 

+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE) 

+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, 6) 

+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4) 

+, SCAL(NNODE, NPHASE, NSCAL) 

DIMENSION 

+ XP(NNODE), YP(NNODE), ZP(NNODE) 

+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3), WFACT(NFACE) 

+, IPT(*), IBLK(5, NBLOCK) 

+, IPVERT(NCELL, 8), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4) 

+, IPNODB(NBDRY, 4), IPFACB(NBDRY) 

+, IWORK(*), WORK(*), CWORK(*) 
C 
C+++++++++++++++++ USER AREA 3+++++++++++++++++++++++++++++++++++++++++ 

C____ AREA FOR USERS TO DIMENSION THEIR ARRAYS 

C 
CHARACTER *15 USRBLADE, USRDOM 
DIMENSION USRBLADE(0: 50), USRDOM(0: 11) 
REAL USRPRESS(10,20,30), USRMEAN(20), 

+ USRRAD(20,30) 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 

C 
C+++++++++++++++++ END OF USER AREA 3++++++++++++++++++++++++++++++++++ 

C 
C---- STATEMENT FUNCTION FOR ADDRESSING 

IP(I, J, K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I) 
C 
C__--VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 

C 
IVERS=5 
ICHKPR =1 

C 
C+++++++++++++++++ USER AREA 4+++++++++++++++++++++++++++++++++++++++++ 

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=l 
IUSED=1 

C AND SET IUBCSF FLAG: 

C BOUNDARY CONDITIONS NOT CHANGING 
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C IUBCSF=0 
C BOUNDARY CONDITIONS CHANGING WITH ITERATION 
C IUBCSF=1 

C BOUNDARY CONDITIONS CHANGING WITH TIME 
C IUBCSF=2 
C BOUNDARY CONDITIONS CHANGING WITH TIME AND ITERATION 

IUBCSF=3 
C+++++++++++++++++ END OF USER AREA 4++++++++++++++++++++++++++++++++++ 
C 

IF (IUSED. EQ. O) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 

IF (IUCALL. EQ. O) RETURN 
C 
C+++++++++++++++++ USER AREA 5+++++++++++++++++++++++++++++++++++++++++ 

IPHASE=1 
C 
C IF (KSTEP. EQ. 0) THEN 
C ISEQF=O 
C CALL FILCON('USRBCS', 'tsum. txt', 'OPEN', 'FORMATTED', 
C+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 
C IF (IERR. NE. O) THEN 

C CALL FILERR('USRBCS', 'tsum. txt', 'OPEN', 'NEW', 
C+ ITXT, ISEQF, IOST, IERR) 
C END IF 
C ENDIF 
C 
C----INITIAL CONDITIONS FOR RESTART 
C 

IUSRITER=9 
IUSRSTEP=760 

C 
IF (NITER. LE. 1) THEN 

C 
IF (KSTEP. EQ. 0) THEN 

UNEW=0.2629547596E+01 
WNEW=-0.3998958130E+03 
WOLD=-0.3998956604E+03 

FIAOLD=-1.754262513E-07 
FIANEW=-1.754303014E-07 
FIBOLD=1.516304837E-05 
FIBNEW=1.516306384E-05 
FIAOLDP=-1.020277622E-07 
FIANEWP=-1.020272293E-07 
FIBOLDP=3.917623417E-06 
FIBNEWP=3.917619324E-06 

DT=0.0005 
UOLD=UNEW 

AMP=0.4198 
FREQ=20 

PERIOD=1/FREQ 
OMEGA=2*3.14159265359/PERIOD 

ELSE 
C 
C---- SET WOLD EQUALS TO THE ANGULAR VELOCITY AT THE TIME STEP 
C 

WOLD=WNEW 
FIAOLD=FIANEW 
FIBOLD=FIBNEW 
FIAOLDP=FIANEWP 
FIBOLDP=FIBNEWP 
ENDIF 

ENDIF 
C 
C---- TO FIND THE ANGULAR ACCELERATION OF THE BLADE AT EACH TIME STEP 
C 

AREAM=0.0 
TSUM=0.0 
TNET=0.0 
WABS=0.0 
WVSUM=0.0 

VSUM=0.0 
MOINA=0.0 
MOINB=0.0 
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MOINC=0.0 
MOIND=0.0 
MOOUTA=0.0 
MOOUTB=0.0 
MOOUTC=0.0 
MOOUTD=0.0 

MASSIA=0.0 
MASSIC=0.0 
MASSO=0.0 
THETAXO=0.0 
RTHETAO=0.0 

XRO=0.0 
XTHETAO=0.0 
THETAXJ=0.0 
RTHETAJ=0.0 

XRJ=0.0 
XTHETAJ=0.0 
THETAXD=0.0 
RTHETAD=0.0 

XRD=0.0 
XTHETAD=0.0 
THETAXP=0.0 
RTHETAP=0.0 

XRP=0.0 
XTHETAP=0.0 

IF (NITER. EQ. IUSRITER) THEN 
FIANEW=0.0 
FIBNEW=0.0 
FIANEWP=0.0 
FIBNEWP=0.0 

ENDIF 

INERTIA=3.24885667E-09 
C 
C 
C---- SET BLADEN TO BE BLADE1 TO BLADE6 

USRBLADE(1)='BLADEI' 
USRBLADE(2)='BLADE2' 
USRBLADE(3)='BLADE3' 
USRBLADE(4)='BLADE4' 
USRBLADE(5)='BLADE5' 
USRBLADE(6)='BLADE6' 

C 
DO 134 BLADEN=1,6 

CALL IPREC(USRBLADE(BLADEN), 'PATCH', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C---- GET SCALAR NUMBER CORRESPONDING TO THETA(Z) SHEAR STRESS 
C 

CALL GETSCA ('Z SHEAR STRESS', ICS1, CWORK) 
C 
C---- LOOP OVER ALL WALL CELL CENTRES LOCATION IN WALLS 
C 
C234567891123456759212345678931234567894123456789512345678961233456789712 
C LOOP OVER PATCH 
C 

DO 133 K=1, KLEN 
DO 132 J=1, JLEN 

DO 131 I=1, ILEN 
C 
C USE STATEMENT FUNCTION IP TO GET ADDRESSES 

INODE=IP(I, J, K) 
IBDRY=INODE-NCELL 
IFACE=IPFACB(IBDRY) 
AREAM=SQRT(AREA(IFACE, 1)**2+ 

+ AREA(IFACE, 2)**2+ 

+ AREA(IFACE, 3)**2) 

C 
TSUM=TSUM-P(INODE, 1)*YP(INODE)*AREA(IFACE, 3)- 

+ YP(INODE)*SCAL(INODE, 1, ICS1)*AREAM 
C 

IF ((NITER. EQ. IUSRITER). AND. (KSTEP. EQ. IUSRSTEP)) THEN 
WRITE(ITXT, 900)I, J, K, P(INODE, 1), SCAL(INODE, 1, ICS1), XP(INODE), 

+ YP(INODE), ZP(INODE), AREA(IFACE, 1), AREA(IFACE, 2), AREA(IFACE, 3), 
+ AREAM, TSUM 

900 FORMAT(I5, I5, I5,10(2X, E17.10)) 
ENDIF 
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C 
131 CONTINUE 
132 CONTINUE 
133 CONTINUE 
134 CONTINUE 

C 
C 
C 

IF (KSTEP. EQ. 0) THEN 

ACCE=-3.349977136E-01 
ELSE 

TFRIC=0.0 
TNET=TSUM+TFRIC 

ACCE=TNET/INERTIA 

ENDIF 

C 
C 
C---- TO UPDATE THE INLET FLOW VELOCITY USING 1ST ORDER 
C---- BACKWARD DIFFERENCING 
C 
C---- OPEN THE FILE CONTAINING DATA ABOUT ANGULAR VELOCITY(WNEW) 
C234567891123456789212345678931234567894123456789512345678961233456789712 

IF (KSTEP. EQ. O) THEN 
ISEQF=O 

CALL FILCON('USRBCS', 'angular. txt',, OPEN', 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRBCS', 'angular. txt', 'OPEN', 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
END IF 

ENDIF 
C 
C 
C 

IF (KSTEP. EQ. 40) THEN 
REMAIN=TIME/PERIOD-INT(TIME/PERIOD) 
PHASE=PERIOD*REMAIN 
ENDIF 

C 
IF ((NITER. EQ. 1). AND. (KSTEP. GE. 41)) THEN 

RADIAN=OMEGA*(TIME-PHASE) 
PULSE=AMP*SIN(RADIAN) 

UNEW=UOLD*(1+PULSE) 
ENDIF 

C 
C---- SET WNEW TO THE VELOCITY AT THE NEXT TIME STEP 
C 

WNEW = WOLD+ACCE*DT 
C 

IF (KSTEP. GE. 1) THEN 
CALL GETSCA ('X MASS FLUX', ICS2, CWORK) 
CALL GETSCA ('Y MASS FLUX', ICS3, CWORK) 
CALL GETSCA ('Z MASS FLUX', ICS4, CWORK) 
CALL GETSCA ('ZX NODAL SHEAR STRESS', ICS5, CWORK) 
CALL GETSCA ('YZ NODAL SHEAR STRESS', ICS6, CWORK) 
CALL GETSCA ('XY NODAL SHEAR STRESS', ICS7, CWORK) 
ENDIF 

C 
C234567891123456789212345678931234567894123456789512345678961233456789712 

CALL IPREC('INLET', 'PATCH', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C INTERROGATE GETVAR FOR VARIABLE NUMBERS 
C 

CALL GETVAR('USRBCS', 'W ', IW) 
CALL GETVAR('USRBCS', 'U ', IU) 

C 

C LOOP OVER PATCH 
DO 103 K=1, KLEN 

DO 102 J=1, JLEN 
DO 101 I=1, ILEN 

C 
C USE STATEMENT FUNCTION IP TO GET ADDRESSES 

INODE=IP(I, J, K) 
C 
C SET VARBCS 
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VARBCS(IW, IPHASE, INODE) _ -YP(INODE)*WNEW 
IF (KSTEP. LE. 40) THEN 

VARBCS(IU, IPHASE, INODE) = 0.2629547596E+01 
ELSE 

VARBCS(IU, IPHASE, INODE) = UNEW 
ENDIF 

c 
c 

IF (NITER. EQ. IUSRITER) THEN 
IBDRY=INODE-NCELL 

IFACE=IPFACB(IBDRY) 
WABS = W(INODE, 1)+YP(INODE)*WNEW 

C234567891123456789212345678931234567894123456789512345678961233456789712 
MOINA =MOINA+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*WABS*AREA(IFACE, 1) 
MOINB =MOINB+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*W(INODE, 1) 

+ *AREA(IFACE, 1) 
C 

MASSIA=MASSIA+SCAL(INODE, 1, ICS2)*AREA(IFACE, 1)+SCAL(INODE, 1, ICS3) 
+ *AREA(IFACE, 2)+SCAL(INODE, 1, ICS4)*AREA(IFACE, 3) 

C 
IF (KSTEP. EQ. IUSRSTEP) THEN 

WRITE(ITXT, 901)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, U(INODE, 1), 
+ V(INODE, 1), W(INODE, 1), YP(INODE), 
+ AREA(IFACE, 1), AREA(IFACE, 2), AREA(IFACE, 3) 

901 FORMAT(I5, I5, I5,11(2X, E17.10)) 
ENDIF 

C 
ENDIF 

101 CONTINUE 

102 CONTINUE 

103 CONTINUE 

C 

C 
C---- TO LOCATE JUST UPSTREAM FINDING ANG. MOMENTUM 
C 

IF (NITER. EQ. IUSRITER) THEN 
CALL IPREC('BLOCK-NUMBER-7', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C INTERROGATE GETVAR FOR VARIABLE NUMBERS 
C 
C LOOP OVER PATCH 

I=14 
DO 161 J=1, JLEN 

DO 162 K=1, KLEN 
C 
C USE STATEMENT FUNCTION IP TO GET ADDRESSES 

INODE=IP(I, J, K) 
WAGS = W(INODE, 1)+YP(INODE)*WNEW 
UA=U(INODE, 1)*AREA(INODE, 1)+V(INODE, 1)*AREA(INODE, 2)+ 

+ W(INODE, 1)*AREA(INODE, 3) 
c 
C234567891123456789212345678931234567894123456789512345678961233456789712 

MOINC =MOINC+DEN(INODE, 1)*YP(INODE)*WABS*UA 
MOIND =MOIND+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*UA 

C 
MASSIC=MASSIC+SCAL(INODE, 1, ICS2)*AREA(INODE, 1)+SCAL(INODE, 1, ICS3) 

+ *AREA(INODE, 2)+SCAL(INODE, 1, ICS4)*AREA(INODE, 3) 
C 

IF (KSTEP. EQ. IUSRSTEP) THEN 
C234567891123456789212345678931234567894123456789512345678961233456789712 

WRITE(ITXT, 902)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, 
+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE), 
+ AREA(INODE, 1), AREA(INODE, 2), AREA(INODE, 3) 

902 FORMAT(I5, I5, I5,11(2X, E17.10)) 
ENDIF 

C 
C 

162 CONTINUE 
161 CONTINUE 

ENDIF 
C 
C 
C---- SET RADIAL EQUILIBRIUM FOR PRESSURE AT OUTLET 

C 
C---- TO FIND WABSMEAN=USRMEAN(J) FOR EACH J 

CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', 'CENTRES', IPT, 
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+ ILEN, JLEN, KLEN, CWORK, IWORK) 
INTERROGATE GETVAR FOR VARIABLE NUMBERS 

LOOP OVER PATCH 

I=ILEN 
DO 141 J=1, JLEN 

WVSUM=0.0 
VSUM=0.0 
DO 140 K=1, KLEN 

USE STATEMENT FUNCTION IP TO GET ADDRESSES 
INODE=IP(I, J, K) 

USRRAD(J, K)=YP(INODE) 
WABS = W(INODE, 1)+YP(INODE)*WNEW 

WVSUM = WVSUM + WABS*VOL(INODE) 

VSUM = VSUM +VOL(INODE) 

IF (K. EQ. KLEN) THEN 
USRMEAN(J) = WVSUM/VSUM 

ENDIF 

IF (NITER. EQ. IUSRITER) THEN 
C234567891123456789212345678931234567894123456789512345678961233456789712 

MOOUTA=MOOUTA+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*WABS 
+ *AREA(INODE, 1) 

MOOUTB=MOOUTB+DEN(INODE, 1)*YP(INODE)*U(INODE, 1)*W(INODE, 1) 
+ *AREA(INODE, 1) 

MASSO=MASSO+SCAL(INODE, 1, ICS2)*AREA(INODE, 1)+SCAL(INODE, 1, ICS3)* 

+ AREA(INODE, 2)+SCAL(INODE, 1, ICS4)*AREA(INODE, 3) 

THETAXO=THETAXO+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3) 
RTHETAO=RTHETAO+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2) 

XRO=XRO+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1) 
XTHETAO=XTHETAO+YP(INODE)*SCAL(INODE, I, ICS5)*AREA(INODE, 1) 

IF (KSTEP. EQ. IUSRSTEP) THEN 

C234567891123456789212345678931234567894123456789512345678961233456789712 
WRITE(ITXT, 903)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, WVSUM, VSUM, 

+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE), USRMEAN(J), 
+ USRRAD(J, K), AREA(INODE, 1), AREA(INODE, 2), AREA(INODE, 3) 

903 FORMAT(I5, I5, I5,15(2X, E17.10)) 
ENDIF 

C 
C 

ENDIF 

140 CONTINUE 
141 CONTINUE 

C 
CALL IPREC('OUTLET', 'PATCH', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C INTERROGATE GETVAR FOR VARIABLE NUMBERS 

CALL GETVAR('USRBCS', 'P ', IPRES) 

LOOP OVER PATCH 
DO 142 I=1, ILEN 

DO 143 J=1, JLEN 
WVSUM=0.0 
VSUM=0.0 

DO 144 K=1, KLEN 

USE STATEMENT FUNCTION IP TO GET ADDRESSES 
INODE=IP(I, J, K) 

IF (J. EQ. 1) THEN 

USRPRESS(I, J, K) = 0.0 

ENDIF 

IF (J. GT. 1) THEN 
DELTAR=YP(INODE)-USRRAD(J-1, K) 
USRPRESS(I, J, K) = USRPRESS(I, J-1, K)+DEN(INODE, 1)*USRMEAN(J) 

**2.0*DELTAR/YP(INODE) 
ENDIF 

C 
C SET VARBCS 
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VARBCS(IPRES, IPHASE, INODE) = USRPRESS(I, J, K) 

IF ((NITER. EQ. IUSRITER). AND. (KSTEP. EQ. IUSRSTEP)) THEN 
IBDRY=INODE-NCELL 
IFACE=IPFACB(IBDRY) 

WABS = W(INODE, 1)+YP(INODE)*WNEW 
WVSUM = WVSUM + WABS*VOL(INODE) 

VSUM = VSUN +VOL(INODE) 
WRITE(ITXT, 904)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, WVSUM, VSUM, 

+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE), USRMEAN(J), 
+ USRRAD(J-1, K), AREA(IFACE, 1), AREA(IFACE, 2), AREA(IFACE, 3), 

+ USRPRESS(I, J, K) 

904 FORMAT(I5, I5, I5,16(2X, E17.10)) 
ENDIF 

C 
144 CONTINUE 
143 CONTINUE 
142 CONTINUE 

C 
C 
C 
C---- TO FIND ANGULAR MOMENTUM AT JUST DOWNSTREAM 

IF (NITER. EQ. IUSRITER) THEN 
CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C INTERROGATE GETVAR FOR VARIABLE NUMBERS 

LOOP OVER PATCH 
I=2 

DO 121 J=1, JLEN 
DO 120 K=1, KLEN 

C 
C USE STATEMENT FUNCTION IP TO GET ADDRESSES 

INODE=IP(I, J, K) 
WAGS = W(INODE, 1)+YP(INODE)*WNEW 

UA=U(INODE, 1)*AREA(INODE, 1)+V(INODE, 1)*AREA(INODE, 2)+ 
+ W(INODE, 1)*AREA(INODE, 3) 

C 
C234567891123456789212345678931234567894123456789512345678961233456789712 

MOOUTC =MOOUTC+DEN(INODE, 1)*YP(INODE)*WABS*UA 

MOOUTD =MOOUTD+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*UA 

THETAXJ=THETAXJ+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3) 
RTHETAJ=RTHETAJ+Yp(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2) 

XRJ=XRJ+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1) 
XTHETAJ=XTHETAJ+Yp(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1) 

IF (KSTEP. EQ. IUSRSTEP) THEN 
C234567891123456789212345678931234567894123456789512345678961233456789712 

WRITE(ITXT, 905)I, J, K, P(INODE, 1), VOL(INODE), WNEW, WABS, 

+ U(INODE, 1), V(INODE, 1), W(INODE, 1), YP(INODE), 

+ AREA(INODE, 1), AREA(INODE, 2), AREA(INODE, 3), 
+ AREA(INODE, 4), AREA(INODE, 5), AREA(INODE, 6), UA 

905 FORMAT(I5, I5, I5,15(2X, E17.10)) 
ENDIF 

C 
120 CONTINUE 
121 CONTINUE 

ENDIF 

IF (NITER. EQ. IUSRITER) THEN 
C------- TO FIND OUT THE FLUID MOMENTUM FLUX ACROSS THE DOMAIN 

CALL IPALL('*', '*', 'BLOCK', 'CENTRES', IPT, NPT, CWORK, IWORK) 
C 

DO 150 I=1, NPT 
INODE=IPT(I) 

C 
WABS = W(INODE, 1)+Yp(INODE)*WNEW 
FIANEW = FIANEW+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE) 
FIBNEW = FIBNEW+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE) 

THETAXD=THETAXD+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3) 
RTHETAD=RTHETAD+YP(INODE)*SCAL(INODE, I, ICS6)*AREA(INODE, 2) 

XRD=XRD+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1) 
XTHETAD=XTHETAD+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1) 
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C 
150 CONTINUE 

C 
TROTOR=TNET 
TFIA=(FIANEW-FIAOLD)/DT 
TFIB=(FIBNEW-FIBOLD)/DT 

C 

C 
C 

ENDIF 

IF (NITER. EQ. IUSRITER) THEN 
C-------TO FIND OUT THE FLUID MOMENTUM FLUX ACROSS THE PART OF THE DOMAIN 
C 
C---- SET BLOCKN TO BE BLOCK1 TO BLOCK11 

USRDOM(1)='BLOCK-NUMBER-1' 
USRDOM(2)='BLOCK-NUMBER-2' 
USRDOM(3)='BLOCK-NUMBER-3' 
USRDOM(4)='BLOCK-NUMBER-4' 
USRDOM(5)='BLOCK-NUMBER-5' 
USRDOM(6)='BLOCK-NUMBER-6' 
USRDOM(7)='BLOCK-NUMBER-8' 
USRDOM(8)='BLOCK-NUMBER-9' 
USRDOM(9)='BLOCK-NUMBER-10' 

C 
DO 151 DOMAINN=1,9 
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C 
C LOOP OVER PATCH 

DO 152 I=1, ILEN 
DO 153 J=1, JLEN 

DO 154 K=1, KLEN 

INODE=IP(I, J, K) 

C 

C 

WABS = W(INODE, 1)+YP(INODE)*WNEW 
FIANEWP = FIANEWP+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE) 
FIBNEWP = FIBNEWP+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE) 

THETAXP=THETAXP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3) 
RTHETAP=RTHETAP+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2) 

XRP=XRP+YP(INODE)*SCAL(INODE, I, ICS7)*AREA(INODE, 1) 
XTHETAP=XTHETAP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1) 

C 
154 CONTINUE 

153 CONTINUE 

152 CONTINUE 

151 CONTINUE 

C 
CALL IPREC('BLOCK-NUMBER-7', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C 
C LOOP OVER PATCH 

DO 155 I=14, ILEN 
DO 156 J=1, JLEN 

DO 157 K=1, KLEN 
INODE=IP(I, J, K) 

C 

C 

WABS = W(INODE, 1)+Yp(INODE)*WNEW 
FIANEWP = FIANEWP+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE) 
FIBNEWP = FIBNEWP+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE) 

THETAXP=THETAXP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3) 
RTHETAP=RTHETAP+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2) 

XRP=XRP+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1) 
XTHETAP=XTHETAP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 1) 

C 
157 CONTINUE 
156 CONTINUE 
155 CONTINUE 

C 
CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

DO 158 I=1,2 
DO 159 J=1, JLEN 
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DO 160 K=1, KLEN 
INODE=IP(I, J, K) 

WABS = W(INODE, 1)+YP(INODE)*WNEW 
FIANEWP = FIANEWP+DEN(INODE, 1)*YP(INODE)*WABS*VOL(INODE) 
FIBNEWP = FIBNEWP+DEN(INODE, 1)*YP(INODE)*W(INODE, 1)*VOL(INODE) 

THETAXP=THETAXP+YP(INODE)*SCAL(INODE, 1, ICS5)*AREA(INODE, 3) 
RTHETAP=RTHETAP+YP(INODE)*SCAL(INODE, 1, ICS6)*AREA(INODE, 2) 

XRP=XRP+YP(INODE)*SCAL(INODE, 1, ICS7)*AREA(INODE, 1) 
XTHETAP=XTHETAP+YP(INODE)*SCAL(INODE, I, ICS5)*AREA(INODE, 1) 

C 
160 CONTINUE 

159 CONTINUE 

158 CONTINUE 

C 
TFIAP=(FIANEWP-FIAOLDP)/DT 
TFIBP=(FIBNEWP-FIBOLDP)/DT 

C 
C------TO FIND THE RESIDUALS OF THE ANGULAR MOMENTUM EQUATION 

C 
C234567891123456789212345678931234567894123456789512345678961233456789712 

WRITE(ITXT, 906)KSTEP, NITER, WNEW, ACCE, WOLD, DT, UNEW, UOLD, TIME, 

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, 

+ FIANEW, FIAOLD, FIBNEW, FIBOLD, 
+ TROTOR, TFIA, TFIB, TFRIC, MASSIA, MASSIC, MASSO, 

+ THETAXO, RTHETAO, XRO, XTHETAO, 

+ THETAXD, RTHETAD, XRD, XTHETAD, TSUM, 
+ MOOUTC, MOOUTD, FIANEWP, FIAOLDP, FIBNEWP, FIBOLDP, TFIAP, TFIBP, 

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, THETAXP, RTHETAP, XRP, XTHETAP 

906 FORMAT(I4,2X, I2,49(2X, E17.10)) 
ENDIF 

C 
C 
C 

RETURN 
END 
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D. 3 USRBF 

SUBROUTINE USRBF (IPHASE, BX, BY, BZ, BPX, BPY, BPZ 

+ , U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL 

+ , XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, IPT 

+ , IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB 

+ WORK, IWORK, CWORK) 
C 

C 
C UTILITY SUBROUTINE FOR USER-SUPPLIED BODY FORCES 
C 
C »> IMPORTANT <<< 
C »> <<< 
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN «< 
C »> THE DESIGNATED USER AREAS <<< 
C 

C 
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 

C BFCAL 
C 
C*********************************************************************** 
C CREATED 
C 24/01/92 ADB 
C MODIFIED 
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 2 

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC. 

C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D 

C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE 

C 23/03/94 FHW EXAMPLES COMMENTED OUT 

C 09/08/94 NSW CORRECT SPELLING 

C MOVE 'IF(IUSED. EQ. O) RETURN' OUT OF USER AREA 

C 19/12/94 NSW CHANGE FOR CFX-F3D 

C 31/01/97 NSW EXPLAIN USAGE IN MULTIPHASE FLOWS 

C 02/07/97 NSW UPDATE FOR CFX-4 

C 

C 

C SUBROUTINE ARGUMENTS 
C 
C IPHASE - PHASE NUMBER 

C 

C* BX - X-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 

C* BY - Y-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 

C* BZ - Z-COMPONENT OF VELOCITY-INDEPENDENT BODY FORCE 

C* BPX - 
C* BPY - COMPONENTS OF LINEARISABLE BODY FORCES. 

C* BPZ - 
C 
C N. B. TOTAL BODY-FORCE IS GIVEN BY: 

C 
C X-COMPONENT = BX + BPX*U 

C Y-COMPONENT = BY + BPY*V 

C Z-COMPONENT = BZ + BPZ*W 

C 
CU-U COMPONENT OF VELOCITY 

CV-V COMPONENT OF VELOCITY 

CW-W COMPONENT OF VELOCITY 

CP- PRESSURE 
C VFRAC - VOLUME FRACTION 

C DEN - DENSITY OF FLUID 

C VIS - VISCOSITY OF FLUID 

C TE - TURBULENT KINETIC ENERGY 

C ED - EPSILON 

C RS - REYNOLD STRESSES 

CT- TEMPERATURE 

CH- ENTHALPY 

C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 

C XP -X COORDINATES OF CELL CENTRES 

C YP -Y COORDINATES OF CELL CENTRES 

C Zp -Z COORDINATES OF CELL CENTRES 

-D17- 



Appendix D- Fortran Routines 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

VOL - VOLUME OF CELLS 

AREA - AREA OF CELLS 

VPOR - POROUS VOLUME 
ARPOR - POROUS AREA 

WFACT - WEIGHT FACTORS 

IPT - 1D POINTER ARRAY 
IBLK - BLOCK SIZE INFORMATION 
IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 

WORK - REAL WORKSPACE ARRAY 
IWORK - INTEGER WORKSPACE ARRAY 
CWORK - CHARACTER WORKSPACE ARRAY 

SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
BE SET BY THE USER IN THIS ROUTINE. 

C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 

C USER MANUAL. 
C 

C 
LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 

+ LRECT, LCYN, LAXIS, LPOROS, LTRANS 

C 
CHARACTER*(*) CWORK 

C 
C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 

REAL TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS, 

+ WVSUM, VSUM, DELTAR, TNET, 

+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE, 

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, M000TC, MOOUTD, 
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP, 

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO, 

+ THETAXO, RTHETAO, XRO, XTHETAO, 

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, 

+ THETAXD, RTHETAD, XRD, XTHETAD, 

+ THETAXP, RTHETAP, XRP, XTHETAP 
INTEGER ITXT, ISEQF 

C 
C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 

C 
COMMON 

+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM 

+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE 

+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP 

+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL 

+ /CHKUSR/ IVERS, IUCALL, IUSED 

+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK 

+ /IDUM/ ILEN, JLEN 

+ /LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS 

+ /MLTGRD/ MLEVEL, NLEVEL, ILEVEL 

+ /SGLDBL/ IFLGPR, ICHKPR 

+ /SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON 

+ /TIMUSR/ DTUSR 
+ /TRANSI/ NSTEP, KSTEP, MF, INCORE 

+ /TRANSR/ TIME, DT, DTINVF, TPARM 

C 
C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 

C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 

C NO CONFLICT WITH NON-USER COMMON BLOCKS 
COMMON 

+ /UC1/ TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS, 

+ WVSUM, VSUM, DELTAR, TNET, 

+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE, 

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD, 
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+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP, 

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO, 

+ THETAXO, RTHETAO, XRO, XTHETAO, 

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, 

+ THETAXD, RTHETAD, XRD, XTHETAD, 

+ THETAXP, RTHETAP, XRP, XTHETAP 

C 
C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 

C 
DIMENSION BX(NCELL), BY(NCELL), BZ(NCELL) 

+, BPX(NCELL), BPY(NCELL), BPZ(NCELL) 
C 

DIMENSION 

+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE) 

+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE) 

+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, *) 

+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4) 

+, SCAL(NNODE, NPHASE, NSCAL) 

C 
DIMENSION 

+ XP(NNODE), YP(NNODE), ZP(NNODE) 

+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3) 

+, WFACT(NFACE) 

+, IPT(*), IBLK(5, NBLOCK) 
+, IPVERT(NCELL, 8), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4) 

+, IPNODB(NBDRY, 4), IPFACB(NBDRY) 
+, IWORK(*), WORK(*), CWORK(*) 

C 
C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 

IP(I, J, K) = IPT( (K-1)*ILEN*JLEN + (J-1)*ILEN +Iº 
C 
C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 

C 
IVERS=2 
ICHKPR =1 

C 

C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 

C 
IUSED=1 

C 

C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++ 
C 

IF (IUSED. EQ. O) RETURN 

C 
C---- FRONTEND CHECKING OF USER ROUTINE 

IF (IUCALL. EQ. O) RETURN 

C 
C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 
C THIS ROUTINE IS ENTERED REPEATEDLY FOR EACH PHASE IN A MULTIPHASE 

C CALCULATION. BODY FORCES CAN BE SET FOR A PARTICULAR PHASE USING 

C THE VARIABLE IPHASE. EG. IF (IPHASE. EQ. 2) WOULD ALLOW BODY FORCES 
C FOR THE SECOND PHASE. 

IPHASE=1 
C 

IF ((NITER. EQ. 9). AND. (KSTEP. EQ. 1)) THEN 

OPEN (UNIT=49, FILE='bf. txt', STATUS='NEW') 

ISEQF=O 
ITXT=49 
CALL FILCON('USRBF', 'bf. txt', 'OPEN', 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRBF', 'bf. txt', 'OPEN', 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
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C 
C---- ADD USER-DEFINED BODY FORCES. 

C---- USE IPALL TO FIND 1D ADDRESS OF ALL CELL CENTRES 
C 

CALL IPALL('*', '*', 'BLOCK', ' CENTRES', IPT, NPT, CWORK, IWORK) 
C 

DO 104 I=1, NPT 
INODE=IPT(I) 

C 
BY(INODE) = BY(INODE)+(DEN(INODE, 1)*2*WNEW*W(INODE, 1))+ 

+ (YP(INODE)*WNEW*WNEW*DEN(INODE, 1)) 
C 

BZ(INODE) = BZ(INODE)-(DEN(INODE, 1)*2*WNEW*V(INODE, 1))- 
+ (YP(INODE)*ACCE*DEN(INODE, 1)) 

104 CONTINUE 
C234567891123456789212345678931234567894123456789512345678961233456789712 
C 

IF (NITER. EQ. 9) THEN 
WRITE(49,907)KSTEP, NITER, BY(INODE), BZ(INODE) 

907 FORMAT(14,2X, I2,2(2X, E17.10)) 
ENDIF 

C 
C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++ 
C 

RETURN 
END 
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D. 4 USRGRD 
SUBROUTINE USRGRD(U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL, 

+ XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, 

+ XCOLD, YCOLD, ZCOLD, XC, YC, ZC, IPT, 

+ IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB, 

+ WORK, IWORK, CWORK) 

C 

C 
C USER SUBROUTINE TO ALLOW USERS TO GENERATE A GRID FOR CFX-F3D 
C 
C »> IMPORTANT <<< 
C »> <<< 
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<< 
C »> THE DESIGNATED USER AREAS <<< 
C 

C 
C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 

C CREATE CUSR 

C 
C*##**************************************************#*****#****###*** 
C CREATED 

C 27/04/90 ADB 
C MODIFIED 
C 05/08/91 IRH NEW STRUCTURE 
C 09/09/91 IRH CORRECT EXAMPLE 
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER 72 COLUMNS. 
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C 03/07/92 DSC CORRECT COMMON MLTGRD. 
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC. 
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D 
C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE 
C 22/08/94 NSW MOVE 'IF(IUSED. EQ. O) RETURN' OUT OF USER AREA 
C 19/12/94 NSW CHANGE FOR CFX-F3D 
C 

C 
C SUBROUTINE ARGUMENTS 
C 
CU-U COMPONENT OF VELOCITY 

CV-V COMPONENT OF VELOCITY 

CW-W COMPONENT OF VELOCITY 

CP- PRESSURE 

C VFRAC - VOLUME FRACTION 

C DEN - DENSITY OF FLUID 

C VIS - VISCOSITY OF FLUID 

C TE - TURBULENT KINETIC ENERGY 
C ED - EPSILON 
C RS - REYNOLD STRESSES 
CT- TEMPERATURE 
CH- ENTHALPY 
C RF - REYNOLD FLUXES 

C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C XP -X COORDINATES OF CELL CENTRES 
C YP -Y COORDINATES OF CELL CENTRES 
C ZP -Z COORDINATES OF CELL CENTRES 
C VOL - VOLUME OF CELLS 

C AREA - AREA OF CELLS 

C VPOR - POROUS VOLUME 
C ARPOR - POROUS AREA 
C WFACT - WEIGHT FACTORS 
C* XC -X COORDINATES OF CELL VERTICES 

C* YC -Y COORDINATES OF CELL VERTICES 

C* ZC -Z COORDINATES OF CELL VERTICES 

C XCOLD -X COORDINATES OF CELL VERTICES AT START OF TIME STEP 
C YCOLD -Y COORDINATES OF CELL VERTICES AT START OF TIME STEP 
C ZCOLD -Z COORDINATES OF CELL VERTICES AT START OF TIME STEP 
C 
C IPT - 1D POINTER ARRAY 
C IBLK - BLOCK SIZE INFORMATION 
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C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 

C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 
C 
C WORK - REAL WORKSPACE ARRAY 
C IWORK - INTEGER WORKSPACE ARRAY 
C CWORK - CHARACTER WORKSPACE ARRAY 

C 
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C BE SET BY THE USER IN THIS ROUTINE. 

C 
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-F3D USING THE 
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C USER MANUAL. 
C 

C 
LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS 

CHARACTER*(*) CWORK 
C 
C+++++++++++++++++ USER AREA 1 ++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 

C 
C+++++++++++++++++ END OF USER AREA 1 +++++++++++++++++++++++++++++++++ 
C 

COMMON 
+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM 
+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE 
+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP 
+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL 
+ /CHKUSR/ IVERS, IUCALL, IUSED 
+ /CONC/ NCONC 
+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK 

+ /IDUM/ ILEN, JLEN 

+ /LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 

+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS 

+ /MLTGRD/ MLEVEL, NLEVEL, ILEVEL 

+ /SGLDBL/ IFLGPR, ICHKPR 

+ /SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON 
+ /TIMUSR/ DTUSR 
+ /TRANSI/ NSTEP, KSTEP, MF, INCORE 
+ /TRANSR/ TIME, DT, DTINVF, TPARM 

C 
C+++++++++++++++++ USER AREA 2 ++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 

C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C NO CONFLICT WITH NON-USER COMMON BLOCKS 
C 
C+++++++++++++++++ END OF USER AREA 2 +++++++++++++++++++++++++++++++++ 
C 

DIMENSION 
+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE) 
+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE) 
+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, 6) 
+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4) 
+, SCAL(NNODE, NPHASE, NSCAL) 

DIMENSION 
+ XP(NNODE), YP(NNODE), ZP(NNODE), XC(NVERT), YC(NVERT), ZC(NVERT) 
+, XCOLD(NVERT), YCOLD(NVERT), ZCOLD(NVERT) 
+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3) 
+, WFACT(NFACE) 
+, IPT(*), IBLK(5, NBLOCK) 

+, IPVERT(NCELL, S), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4) 
+, IPNODB(NBDRY, 4), IPFACB(NBDRY) 
+, IWORK(*), WORK(*), CWORK(*) 

C 

C+++++++++++++++++ USER AREA 3 ++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 
C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 

C 

-D22- 



Appendix D- Fortran Routines 

C+++++++++++++++++ END OF USER AREA 3 +++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 

IP(I, J, K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I) 

C 

C---- VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 

IVERS=3 
ICHKPR =1 

C 
C+++++++++++++++++ USER AREA 4 ++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 

IUSED=1 
C 
C+++++++++++++++++ END OF USER AREA 4 +++++++++++++++++++++++++++++++++ 
C 

IF (IUSED. EQ. 0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 

IF (IUCALL. EQ. 0) RETURN 
C 
C+++++++++++++++++ USER AREA 5 ++++++++++++++++++++++++++++++++++++++++ 
C 

IF (KSTEP. EQ. 0) THEN 
C 
C---- SPECIAL VERSION TO CONVERT A CARTESIAN GRID INTO 
CA CYLINDRICAL GRID 

C 
C CARTESIAN CYLINDRICAL 

CXX 

CY 
CR AND THETA 
CZ/ 
C 
C NOTE 
C 
C IF R=0.0 ONLY ON THE EDGE OF A BLOCK 

C YOU SHOULD NOT USE THE KEYWORDS 'AXIS INCLUDED' 
C --- 
C 
C DEFINE A SMALL RADIUS LARGER THAN 1.0E-6 
C 

SMALLR=1. OE-4 
C 
C---- INITIAL CONVERSION 
C 

DO 10 I=1, NVERT 
R=SQRT(YC(I)**2+ZC(I)**2) 
IF (R. LE. SMALLR) THEN 

IF (. NOT. LAXIS) THEN 
R=SMALLR 

ENDIF 
THETA=0.0 

ELSE 
THETA=ATAN2(-ZC(I), YC(I)) 

ENDIF 
YC(I)=R 
ZC(I)=THETA 

10 CONTINUE 
C 
C---- CORRECTION OF THETA AT R=0.0 
C 

DO 100 IBLOCK=1, NBLOCK 

NI1=IBLK(1, IBLOCK)+1 

NJ1=IBLK(2, IBLOCK)+1 

NK1=IBLK(3, IBLOCK)+1 

IPVBLK=IBLK(5, IBLOCK) 

DO 110 K=2, NK1-1 

DO 120 J=2, NJ1-1 
DO 130 I=2, NI1-1 
IVERT=IPVBLK-1+(K-1)*NI1*NJ1+(J-1)*NI1+I 
R=YC(IVERT) 
IF (R. LE. SMALLR*1.0001) THEN 

IF (LAXIS) THEN 
C AS AXIS MUST LIE ON LOW J FACE TAKE THETA FROM 
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ANGLE OF NEXT VERTEX AWAY FROM AXIS 
THETA=ZC(IVERT+NI1) 

ELSE 
TAKE THETA TO BE THE AVERAGE VALUE OF THE NEIGHBOURING 
INTERIOR VERTICES WHICH HAVE R>1.0E-6 

I1=IVERT+1 
12=IVERT+NI1 
I3=IVERT+NI1*NJ1 
14=IVERT-1 
15=IVERT-NI1 
I6=IVERT-NI1*NJ1 
Al=1.0 

A2=1.0 
A3=1.0 
A4=1.0 
A5=1.0 
A6=1.0 
IF (I. EQ. NI1-1) A1=0.0 
IF (J. EQ. NJ1-1) A2=0.0 
IF (K. EQ. NK1-1) A3=0.0 
IF (I. EQ. 2) A4=0.0 
IF (J. EQ. 2) A5=0.0 
IF (K. EQ. 2) A6=0.0 
IF (YC(I1). LE. SMALLR*1.0001) A1=0.0 
IF (YC(I2). LE. SMALLR*1.0001) A2=0.0 
IF (YC(I3). LE. SMALLR*1.0001) A3=0.0 
IF (YC(14). LE. SMALLR*1.0001) A4=0.0 
IF (YC(I5). LE. SMALLR*1.0001) A5=0.0 
IF (YC(I6). LE. SMALLR*1.0001) A6=0.0 
ASUM=AI+A2+A3+A4+A5+A6 

THETA=(A1*ZC(I1)+A2*ZC(I2)+A3*ZC(I3)+ 
A4*ZC(I4)+A5*ZC(I5)+A6*ZC(I6))/ASU14 

ENDIF 
ZC(IVERT)=THETA 

FNDIF 
130 CONTINUE 
120 CONTINUE 
110 CONTINUE 
100 CONTINUE 

C 
END IF 

C 
C+++++++++++++++++ END OF USER AREA 5 +++++++++++++++++++++++++++++++++ 
C 

RETURN 
END 
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D. 5 USRTRN 
SUBROUTINE USRTRN(U, V, W, P, VFRAC, DEN, VIS, TE, ED, RS, T, H, RF, SCAL, 

+ XP, YP, ZP, VOL, AREA, VPOR, ARPOR, WFACT, CONV, IPT, 

+ IBLK, IPVERT, IPNODN, IPFACN, IPNODF, IPNODB, IPFACB, 

+ WORK, IWORK, CWORK) 

C 

C 
C USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT 
C THE END OF EACH TIME STEP 

C THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT 
C THE END OF EACH TIME STEP 
C 
C »> IMPORTANT <<< 
C »> <<< 
C »> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN «< 
C »> THE DESIGNATED USER AREAS <<< 
C 
C«+, «r«+«««, t: *«wr«r*****+«««««*««, t««w«««w«*«*««««*«t««*r««awº««««««««««« 

C 

C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES 
C CUSR TRNMOD 
C 
C«««r«++««*+, «++., r«w, t«ww««*+, r+«w«««w«*«««w«, t««««««««x«««r«*«+, ««*«rwr«. «««* 

C CREATED 

C 27/04/90 ADB 
C MODIFIED 
C 05/08/91 IRH NEW STRUCTURE 
C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER COLUMN 72. 
C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT, 
C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2 
C 05/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3 
C 03/07/92 DSC CORRECT COMMON MLTGRD. 
C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC. 
C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D 
C 22/08/94 NSW MOVE 'IF(IUSED. EQ. O) RETURN' OUT OF USER AREA 

C 19/12/94 NSW CHANGE FOR CFX-F3D 

C 02/07/97 NSW UPDATE FOR CFX-4 
C 

C 
C SUBROUTINE ARGUMENTS 
C 
CU-U COMPONENT OF VELOCITY 
CV-V COMPONENT OF VELOCITY 
CW-W COMPONENT OF VELOCITY 
CP- PRESSURE 
C VFRAC - VOLUME FRACTION 
C DEN - DENSITY OF FLUID 
C VIS - VISCOSITY OF FLUID 
C TE - TURBULENT KINETIC ENERGY 
C ED - EPSILON 
C RS - REYNOLD STRESSES 

CT- TEMPERATURE 
CH- ENTHALPY 
C RF - REYNOLD FLUXES 
C SCAL - SCALARS (THE FIRST 'NCONC' OF THESE ARE MASS FRACTIONS) 
C XP -X COORDINATES OF CELL CENTRES 
C Yp -Y COORDINATES OF CELL CENTRES 
C ZP -Z COORDINATES OF CELL CENTRES 
C VOL - VOLUME OF CELLS 

C AREA - AREA OF CELLS 

C VPOR - POROUS VOLUME 

C ARPOR - POROUS AREA 
C WFACT - WEIGHT FACTORS 

C CONV - CONVECTION COEFFICIENTS 

C 
C IPT - 1D POINTER ARRAY 

C IBLK - BLOCK SIZE INFORMATION 

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES 
C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS 
C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES 
C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS 
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C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS 
C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS 

C 

C WORK - REAL WORKSPACE ARRAY 
C IWORK - INTEGER WORKSPACE ARRAY 

C CWORK - CHARACTER WORKSPACE ARRAY 
C 
C SUBROUTINE ARGUMENTS PRECEDED WITH A '*' ARE ARGUMENTS THAT MUST 
C BE SET BY THE USER IN THIS ROUTINE. 
C 
C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE 
C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4 
C USER MANUAL. 
C 

C 
C 

LOGICAL LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 
+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS 

C 
CHARACTER*(*) CWORK 

C 
C++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES 
C 

REAL TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS, 
+ WVSUM, VSUM, DELTAR, TNET, 
+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE, 
+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD, 
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP, 

+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO, 

+ THETAXO, RTHETAO, XRO, XTHETAO, 

+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, 
+ THETAXD, RTHETAD, XRD, XTHETAD, 
+ THETAXP, RTHETAP, XRP, XTHETAP, UA, 
+ RELANG, ABSANG, MAF, 
+ SUMMF, SUMXP, SUMU, SUMW, SUMWABS, SUMRANG, SUMAANG, 
+ PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, AANGM, PLNRELM, PLNABSM 

INTEGER ITXT, ISEQF, DOMAINN 
C 
C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++ 
C 

COMMON 
+ /ALL/ NBLOCK, NCELL, NBDRY, NNODE, NFACE, NVERT, NDIM 
+ /ALLWRK/ NRWS, NIWS, NCWS, IWRFRE, IWIFRE, IWCFRE 
+ /ADDIMS/ NPHASE, NSCAL, NVAR, NPROP 
+ , NDVAR, NDPROP, NDXNN, NDGEOM, NDCOEF, NILIST, NRLIST, NTOPOL 
+ /CHKUSR/ IVERS, IUCALL, IUSED 
+ /CONC/ NCONC 
+ /DEVICE/ NREAD, NWRITE, NRDISK, NWDISK 
+ /IDUM/ ILEN, JLEN 
+ /LOGIC/ LDEN, LVIS, LTURB, LTEMP, LBUOY, LSCAL, LCOMP 
+ , LRECT, LCYN, LAXIS, LPOROS, LTRANS 
+ /MLTGRD/ MLEVEL, NLEVEL, ILEVEL 
+ /SGLDBL/ IFLGPR, ICHKPR 
+ /SPARM/ SMALL, SORMAX, NITER, INDPRI, MAXIT, NODREF, NODMON 
+ /TIMUSR/ DTUSR 
+ /TRANSI/ NSTEP, KSTEP, MF, INCORE 
+ /TRANSR/ TIME, DT, DTINVF, TPARM 

C 
C++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS 
C THESE SHOULD START WITH THE CHARACTERS 'UC' TO ENSURE 
C NO CONFLICT WITH NON-USER COMMON BLOCKS 

COMMON 
+ /UC1/ TSUM, INERTIA, ACCE, AREAM, WOLD, WTEMP, WNEW, UOLD, UNEW, WABS, 
+ WVSUM, VSUM, DELTAR, TNET, 
+ AMP, FREQ, PERIOD, OMEGA, REMAIN, PHASE, RADIAN, PULSE, 

+ MOINA, MOINB, MOINC, MOIND, MOOUTA, MOOUTB, MOOUTC, MOOUTD, 
+ FIAOLD, FIANEW, FIBOLD, FIBNEW, FIAOLDP, FIANEWP, FIBOLDP, FIBNEWP, 
+ TROTOR, TFIA, TFIB, TFIAP, TFIBP, TFRIC, MASSIA, MASSIC, MASSO, 
+ THETAXO, RTHETAO, XRO, XTHETAO, 
+ THETAXJ, RTHETAJ, XRJ, XTHETAJ, 
+ THETAXD, RTHETAD, XRD, XTHETAD, 
+ THETAXP, RTHETAP, XRP, XTHETAP, UA, 
+ RELANG, ABSANG, MAF, 
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+ SUMMF, SUMXP, SUMU, SUMW, SUMWABS, SUMRANG, SUMAANG, 
+ PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, AANGM, PLNRELM, PLNABSM 

C 

C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++ 
C 

DIMENSION 
+ U(NNODE, NPHASE), V(NNODE, NPHASE), W(NNODE, NPHASE), P(NNODE, NPHASE) 
+, VFRAC(NNODE, NPHASE), DEN(NNODE, NPHASE), VIS(NNODE, NPHASE) 
+, TE(NNODE, NPHASE), ED(NNODE, NPHASE), RS(NNODE, NPHASE, 6) 
+, T(NNODE, NPHASE), H(NNODE, NPHASE), RF(NNODE, NPHASE, 4) 
+, SCAL(NNODE, NPHASE, NSCAL) 

DIMENSION 
+ XP(NNODE), YP(NNODE), ZP(NNODE) 
+, VOL(NCELL), AREA(NFACE, 3), VPOR(NCELL), ARPOR(NFACE, 3) 
+, WFACT(NFACE), CONV(NFACE, NPHASE) 
+, IPT(*), IBLK(5, NBLOCK) 
+, IPVERT(NCELL, B), IPNODN(NCELL, 6), IPFACN(NCELL, 6), IPNODF(NFACE, 4) 
+, IPNODB(NBDRY, 4), IPFACB(NBDRY) 
+, IWORK(*), WORK(*), CWORK(*) 

C 
C++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++ 
C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS 
C 

CHARACTER *15 USRDOM 
DIMENSION USRDOM(0: 11) 

C---- AREA FOR USERS TO DEFINE DATA STATEMENTS 
C 
C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++ 
C 
C---- STATEMENT FUNCTION FOR ADDRESSING 

IP(I, J, K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I) 

C 

C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG 
C 

IVERS=3 
ICHKPR =1 

C 
C++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++ 
C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1 
C 

IUSED=1 

C 
C++++++++++++++++ END OF USER AREA 4 +++++++++++++++++++++++++++++. ++++ 
C 

IF (IUSED. EQ. 0) RETURN 
C 
C---- FRONTEND CHECKING OF USER ROUTINE 

IF (IUCALL. EQ. 0) RETURN 

C 
C++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++ 
C 

IPHASE=1 
C----(SET TIME INCREMENT FOR NEXT TIME STEP) 
C IF (KSTEP. GE. 0) THEN 
C DTUSR = 0.0000002 
C ENDIF 
C 
C IF (KSTEP. GE. 150) THEN 
C DTUSR = DT*1.035953352 
C ENDIF 
C IF (KSTEP. GE. 300) THEN 
C DTUSR=0.00004 
C ENDIF 
C 
C TO PRINT THE VARIABLES ON PLANES 

IF (KSTEP. EQ. 40) THEN 
ITXT=69 
ISEQF=O 

CALL FILCON('USRTRN', 'data40. txt', 'OPEN', 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. 0) THEN 
CALL FILERR('USRTRN', 'data40. txt', 'OPEN', 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
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IF (KSTEP. EQ. 400) THEN 
ITXT=50 
ISEQF=O 

CALL FILCON('USRTRN', 'data400. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data400. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 420) THEN 
ITXT=51 
ISEQF=O 
CALL FILCON('USRTRN', 'data420. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data420. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 440) THEN 
ITXT=52 
ISEQF=O 

CALL FILCON('USRTRN', 'data440. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data440. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 460) THEN 
ITXT=53 
ISEQF=O 
CALL FILCON('USRTRN', 'data460. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 

CALL FILERR('USRTRN', 'data460. txt', 'OPEN' , 'NEW', 
+ ITXT, ISEQF, IOST, IERR) 

ENDIF 

ENDIF 
IF (KSTEP. EQ. 480) THEN 
ITXT=54 

ISEQF=O 
CALL FILCON('USRTRN', 'data480. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data480. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 500) THEN 
ITXT=55 
ISEQF=O 
CALL FILCON('USRTRN', 'data500. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data500. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 520) THEN 
ITXT=56 

ISEQF=O 
CALL FILCON('USRTRN', 'data520. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data520. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 
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ENDIF 
IF (KSTEP. EQ. 540) THEN 
ITXT=57 

ISEQF=O 
CALL FILCON('USRTRN', 'data540. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 

CALL FILERR('USRTRN', 'data540. txt', 'OPEN' , 'NEW', 
+ ITXT, ISEQF, IOST, IERR) 

ENDIF 
ENDIF 

IF (KSTEP. EQ. 560) THEN 

ITXT=58 
ISEQF=O 

CALL FILCON('USRTRN', 'data560. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data560. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 

IF (KSTEP. EQ. 580) THEN 
ITXT=59 
ISEQF=O 
CALL FILCON('USRTRN', 'data580. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 
C 

IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data580. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 600) THEN 
ITXT=60 
ISEQF=O 

CALL FILCON('USRTRN', 'data6OO. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 

CALL FILERR('USRTRN', 'data600. txt', 'OPEN' , 'NEW', 
+ ITXT, ISEQF, IOST, IERR) 

ENDIF 
ENDIF 

IF (KSTEP. EQ. 620) THEN 

ITXT=61 
ISEQF=O 

CALL FILCON('USRTRN', 'data620. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data620. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 640) THEN 
ITXT=62 
ISEQF=O 

CALL FILCON('USRTRN', 'data640. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

C 
IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data640. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 660) THEN 
ITXT=63 

ISEQF=O 
CALL FILCON('USRTRN', 'data660. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 

IF (IERR. NE. O) THEN 
CALL FILERR('USRTRN', 'data660. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
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ENDIF 
ENDIF 

IF (KSTEP. EQ. 680) THEN 

ITXT=64 
ISEQF=O 

CALL FILCON('USRTRN', 'data680. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

IF (IERR. NE. 0) THEN 
CALL FILERR('USRTRN', 'data680. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 

C 
IF (KSTEP. EQ. 700) THEN 

ITXT=65 
ISEQF=O 

CALL FILCON('USRTRN', 'data700. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

IF (IERR. NE. 0) THEN 
CALL FILERR('USRTRN', 'data700. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 720) THEN 
ITXT=66 
ISEQF=O 

CALL FILCON('USRTRN', 'data720. txt', 'OPEN' , 'FORMATTED', 
+ 'NEW', ITXT, ISEQF, IOST, IERR) 

IF (IERR. NE. 0) THEN 
CALL FILERR('USRTRN', 'data720. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
IF (KSTEP. EQ. 740) THEN 
ITXT=67 

ISEQF=O 
CALL FILCON('USRTRN', 'data740. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 

IF (IERR. NE. 0) THEN 

CALL FILERR('USRTRN', 'data740. txt', 'OPEN' , 'NEW', 
+ ITXT, ISEQF, IOST, IERR) 

ENDIF 
ENDIF 

IF (KSTEP. EQ. 760) THEN 
ITXT=68 
ISEQF=O 
CALL FILCON('USRTRN', 'data760. txt', 'OPEN' , 'FORMATTED', 

+ 'NEW', ITXT, ISEQF, IOST, IERR) 

IF (IERR. NE. 0) THEN 
CALL FILERR('USRTRN', 'data760. txt', 'OPEN' , 'NEW', 

+ ITXT, ISEQF, IOST, IERR) 
ENDIF 

ENDIF 
C 
C-- -- entrancel 

PI=3.14159265359 
IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=0.0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

C 
CALL IPREC('BLOCK-NUMBER-7', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C 
C LOOP OVER PATCH 

I=14 
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DO 198 J=1, JLEN 
DO 199 K=1, KLEN 

INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
199 CONTINUE 
198 CONTINUE 

PLNXM= SUMXP/SUMMF 
UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG / SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

C 
WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 

+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF ENTRANCE1 DATA' 
903 FORMAT(I4,9(2X, E17.10)) 

C 
ENDIF 

ENDIF 

c 
c---- entrance2 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. O) THEN 

SUMMF=0.0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

CALL IPREC('BLOCK-NUMBER-1', 'BLOCK', 'CENTRES', IPT, 
ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

DO 132 J=1, JLEN 
DO 133 I=1,7 
K=KLEN 

INODE=IP(I, J, K) 

WABS=W(INODE, 1)+Yp(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
133 CONTINUE 
132 CONTINUE 

CALL IPREC('BLOCK-NUMBER-6', 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
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DO 134 J=1, JLEN 
DO 135 I=10, ILEN 
K=KLEN 

INODE=IP(I, J, K) 
C 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 

SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
135 CONTINUE 
134 CONTINUE 

CALL IPREC('BLOCK-NUMBER-8', 'BLOCK', ' CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

I=7 
DO 136 J=1, JLEN 

DO 137 K=1, KLEN 
INODE=IP(I, J, K) 

C 
WABS=W(INODE, 1)+YP(INODE)*WNEW 

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +NAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+NAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ASSANG 

C 
137 CONTINUE 
136 CONTINUE 

PLNXM= SUMXP/SUMMF 
UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SAMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

C 

C 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF ENTRANCE2 DATA' 

ENDIF 
ENDIF 

C 
C---- entrance3 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 

IF (MOD(KSTEP, 20). EQ. 0) THEN 
C 

SUMMF=0.0 
SUMXP=0.0 
SUNK=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=O. 0 
SUMAANG=0.0 

C 
USRDOM(1)='BLOCK-NUMBER-1' 
USRDOM(2)='BLOCK-NUMBER-8' 
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DO 100 DOMAINN=1,2 
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 
C 

C LOOP OVER PATCH 
I=13 
DO 101 J=1, JLEN 

DO 102 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+Yp(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUNMF +MAF 
SUNXP=SUMXP +MAF*XP(INODE) 
SUNU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
102 CONTINUE 
101 CONTINUE 
100 CONTINUE 

CALL IPREC('BLOCK-NUMBER-6', 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=4 
DO 103 J=1, JLEN 

DO 104 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+yp(INODE)*WNEW 

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMME +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUNW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
104 CONTINUE 

103 CONTINUE 

PLNXM= SUMXP/SUMMF 
UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WASSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF ENTRANCE3 DATA' 

ENDIF 
ENDIF 

C 
C--------- middlel 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=0.0 
SUMXP=0.0 
SUMU=O. 0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
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SUMAANG=0.0 

USRDOM(3)='BLOCK-NUMBER-2' 
USRDOM(4)='BLOCK-NUMBER-9' 
DO 105 DOMAINN=3,4 

CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=2 
DO 106 J=1, JLEN 

DO 107 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
107 CONTINUE 
106 CONTINUE 

105 CONTINUE 

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=15 
DO 108 J=1, JLEN 

DO 109 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUNMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ASSANG 

C 
109 CONTINUE 
108 CONTINUE 

PLNXM= SUMXP/SUMMF 
UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUNMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WAHSMEANM, RAIVGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF MID1 DATA' 

ENDIF 
ENDIF 

C 
C--------- middle2 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=0.0 
SUMXP= 0.0 
SUMU= 0.0 
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SUMw=O. 
SUMWABS=O. 

SUMRANG=0.0 
SUMAANG=0.0 

USRDOM(3)='BLOCK-NUMBER-2' 
USRDOM(4)='BLOCK-NUMBER-9' 
DO 139 DOMAINN=3,4 
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
1=5 
DO 140 J=1, JLEN 

DO 141 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUNU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
141 CONTINUE 
140 CONTINUE 
139 CONTINUE 

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

1=12 
DO 142 J=1, JLEN 

DO 143 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAP 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUNU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
143 CONTINUE 
142 CONTINUE 

PLNXM= SUMXP/SUMMF 
UMEANM= SUMA/SUMMF 
WMEANM= SIIMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 

+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF MID2 DATA' 

C ENDIF 
ENDIF 

C 
C--------- middle3 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. O) THEN 
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SUMMF=0.0 
SUMXP=0.0 
SUMtJ= 0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

USRDOM(3)='BLOCK-NUMBER-2' 
USRDOM(4)='BLOCK-NUMBER-9' 
DO 110 DOMAINN=3,4 
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=8 
DO 111 J=1, JLEN 

DO 112 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWASS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
112 CONTINUE 
111 CONTINUE 
110 CONTINUE 

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

1=9 
DO 113 J=1, JLEN 

DO 114 K=1, KLEN 

INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 

ABSANG=ATAN2(WABS, U(INODE, 1))*180/pI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
114 CONTINUE 
113 CONTINUE 

PLNXM= SUMXP/SIJNMF 
UMEANM= SUMt/StTh F 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 

RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF MID3 DATA' 

ENDIF 
ENDIF 
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C--------- middle4 
IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SLTMMF= 0.0 

SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

USRDOM(3)='BLOCK-NUMBER-2' 
USRDOM(4)='BLOCK-NUMBER-9' 
DO 180 DOMAINN=3,4 

CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 
ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=11 
DO 181 J=1, JLEN 

DO 182 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
182 CONTINUE 
181 CONTINUE 
180 CONTINUE 

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

1=6 
DO 183 J=1, JLEN 

DO 184 K=1, KLEN 
INODE=IP(I, J, K) 

C 
WABS=W(INODE, 1)+YP(INODE)*WNEW 

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUNMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUNU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+NAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
184 CONTINUE 

183 CONTINUE 
PLNXM= SUMXP/SUMMF 

UMEANM= SUMU/SUNMF 

WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 

AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 

PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 
C 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF MID4 DATA' 
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ENDIF 
ENDIF 

C 
C--------- middle5 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=0.0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

USRDOM(3)='BLOCK-NUMBER-2' 
USRDOM(4)='BLOCK-NUMBER-9' 
DO 115 DOMAINN=3,4 
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=15 
DO 116 J=1, JLEN 

DO 117 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SIJ14MF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUNU=SUMU +PIAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
117 CONTINUE 
116 CONTINUE 
115 CONTINUE 

CALL IPREC('BLOCK-NUMBER-5', 'BLOCK', ' CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=2 
DO 118 J=1, JLEN 

DO 119 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUNMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
119 CONTINUE 
118 CONTINUE 

PLNXM= SUMXP/SUMMF 

UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 
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WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF MID5 DATA' 

ENDIF 
ENDIF 

C 
C--------- exitl 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=0.0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

USRDOM(5)='BLOCK-NUMBER-3' 
USRDOM(6)='BLOCK-NUMBER-10' 

DO 120 DOMAINN=5,6 
CALL IPREC(USRDOM(DOMAINN), 'BLOCK', 'CENTRES', IPT, 

ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=4 
DO 121 J=1, JLEN 

DO 122 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUHLT +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
122 CONTINUE 

121 CONTINUE 
120 CONTINUE 

CALL IPREC('BLOCK-NUMBER-4', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=13 
DO 123 J=1, JLEN 

DO 124 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
BELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
124 CONTINUE 
123 CONTINUE 

PLNXM= SUMXP/SUMMF 

UMEAMM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
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RANGM= SUMRANG/SUNMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 

PLNABSM=ATAN2(WABSMEANM, ÜMEANM)*180/PI 
C 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF EXIT1 DATA' 
C 

ENDIF 
ENDIF 

C 
C---- exit2 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

C 
SUMMF=0.0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUNRANG=0.0 

C 
SUMAANG=0.0 

CALL IPREC('BLOCK-NUMBER-3', 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

K=13 
DO 170 J=1, JLEN 

DO 171 I=12, ILEN 
INODE=IP(I, J, K) 

C 
WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 

+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 
SUMMF=SUMNF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
171 CONTINUE 
170 CONTINUE 

CALL IPREC('BLOCK-NUMBER-4', 'BLOCK', ' CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 

K=13 
DO 172 J=1, JLEN 

DO 173 1=1,7 
INODE=IP(I, J, K) 

C 
WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
+ (V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
173 CONTINUE 
172 CONTINUE 

CALL IPREC('BLOCK-NUMBER-101, 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
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LOOP OVER PATCH 
I=8 
DO 174 J=1, JLEN 

DO 175 K=1, KLEN 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAP 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUND +MAF*U(INODE, 1) 

SUMW=SUMW +MAP*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
175 CONTINUE 
174 CONTINUE 

PLNXM= SUMXP/SUMKF 
UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUNIlKF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 

AANGM= SUMAANG/SUMMF 
PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF EXIT2 DATA' 

ENDIF 
ENDIF 

C 
C--------- exit3 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=O. 0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

C 
CALL IPREC('BLOCK-NUMBER-3', 'BLOCK', 'CENTRES', IPT, 

ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
DO 176 J=1, JLEN 
DO 177 I=14, ILEN 
K=KLEN 

INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUNRANG=SUNRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
177 CONTINUE 
176 CONTINUE 

CALL IPREC('BLOCK-NUMBER-4', 'BLOCK', 'CENTRES', IPT, 

+ ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
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C 

LOOP OVER PATCH 
K=KLEN 
DO 178 J=1, JLEN 

DO 179 I=1,3 
INODE=IP(I, J, K) 

WABS=W(INODE, 1)+yP(INODE)*WNEW 

RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 
SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUNAANG=SUMAANG+MAF*ABSANG 

C 
179 CONTINUE 
178 CONTINUE 

CALL IPREC('BLOCK-NUMBER-10', 'BLOCK', 'CENTRES', IPT, 
+ ILEN, JLEN, KLEN, CWORK, IWORK) 

LOOP OVER PATCH 
I=13 
DO 190 J=1, JLEN 

DO 191 K=1, KLEN 
INODE=IP(I, J, K) 

WAGS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

NAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUNU=SUMU +NAF*U(INODE, 1) 

SUMW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
191 CONTINUE 
190 CONTINUE 

PLNXM= SUMXP/SIJMMF 
UMEANM= SUMU/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, OMEANM)*180/PI 

C 

C 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEAMM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF EXIT3 DATA' 

ENDIF 
ENDIF 

C 
C--------- exit4 

IF ((KSTEP. EQ. 40). OR. (KSTEP. GE. 400)) THEN 
IF (MOD(KSTEP, 20). EQ. 0) THEN 

SUMMF=0.0 
SUMXP=0.0 
SUMU=0.0 

SUMW=0.0 
SUMWABS=0.0 

SUMRANG=0.0 
SUMAANG=0.0 

CALL IPREC('BLOCK-NUMBER-11', 'BLOCK', ' CENTRES', IPT, 
ILEN, JLEN, KLEN, CWORK, IWORK) 

C 
C LOOP OVER PATCH 
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I=2 
DO 130 J=1, JLEN 

DO 131 K=1, KLEN 

INODE=IP(I, J, K) 

WABS=W(INODE, 1)+YP(INODE)*WNEW 
RELANG=ATAN2(W(INODE, 1), U(INODE, 1))*180/PI 
ABSANG=ATAN2(WABS, U(INODE, 1))*180/PI 

MAF=DEN(INODE, 1)*((U(INODE, 1)*AREA(INODE, 1))+ 
(V(INODE, 1)*AREA(INODE, 2))+(W(INODE, 1)*AREA(INODE, 3))) 

SUMMF=SUMMF +MAF 
SUMXP=SUMXP +MAF*XP(INODE) 
SUMU=SUMU +MAF*U(INODE, 1) 

SUNW=SUMW +MAF*W(INODE, 1) 
SUMWABS=SUMWABS+MAF*WABS 

SUMRANG=SUMRANG+MAF*RELANG 
SUMAANG=SUMAANG+MAF*ABSANG 

C 
131 CONTINUE 
130 CONTINUE 

PLNXM= SUMXP/SUMMF 
UMEANM= SUMü/SUMMF 
WMEANM= SUMW/SUMMF 

WABSMEANM= SUMWABS/SUMMF 
RANGM= SUMRANG/SUMMF 
AANGM= SUMAANG/SUMMF 

PLNRELM=ATAN2(WMEANM, UMEANM)*180/PI 
PLNABSM=ATAN2(WABSMEANM, UMEANM)*180/PI 

WRITE(ITXT, 903)KSTEP, TIME, PLNXM, UMEANM, WMEANM, WABSMEANM, RANGM, 
+ AANGM, PLNRELM, PLNABSM 

WRITE(ITXT, *)'END OF EXIT4 DATA' 

ENDIF 
ENDIF 

c 
C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++ 
C 

RETURN 
END 
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THE DYNAMIC RESPONSE OF TURBINE FLOWMETERS IN 

B. LEE 
LIQUID FLOWS 

R. CHEESEWRIGHT C. CLARK 

Systems Engineering Department, Brunel University, Uxbridge, Middlesex, UK 

ABSTRACT 

The dynamic response of turbine flowmeters in 
low pressure gas flows (i. e. where the rotational 
inertia of the fluid is negligible) is well understood 
and methods for correcting meter signals for a lack 

of response are available. For liquid flows there 
has been a limited amount of experimental work 
on the response of meters to step changes but no 
reports have been found of the response of meters 
to sinusoidally pulsating flows. 

A range of different sizes of meter from V inch 

up to 1 inch have been subjected to sinusoidally 
pulsating flows at pulsation frequencies up to 300 
Hz. Results are presented which show that 
although the mean flow rates indicated by the 
meters do not show the large levels of 'over- 

registration' associated with gas flows, there is 

significant attenuation of the amplitudes of 
pulsations. An attempt is made to show the 
dependence of the attenuation on the flow 

pulsation amplitude and the pulsation frequency. 
The attenuation is also compared to the predictions 
of an Atkinson type of model of the response, 
using values of the meter response parameter 
scaled to the appropriate fluid density. 

Key words: turbine meters, dynamic response, 
liquid flow 

INTRODUCTION 

Turbine flowmeters have been used extensively 
in fluid measurement and the ability of this 
flowmeter to respond rapidly to transient flow 

conditions is an important characteristic. In 

sinusoidally pulsating flows, the meter accuracy 
deteriorates with increases in the amplitude and 
with increases in the frequency of pulsation. If the 

meter does not rapidly follow the flow rate, then 

erroneous mean flow measurements as well as 
erroneous time varying flow measurements can 
occur. 

Within a pulsation cycle, the increasing flow 

creates higher incidence angles on the turbine 
blades giving the rotor relatively rapid 
acceleration; when the flow decreases the 

incidence angles on the blades are lower and the 
rotor may stall with low lift and hence experience 
low deceleration [1]. A combination of these 
effects causes two common, known problems in 
turbine flowmetering. Firstly there is a difference 
between the pulsation amplitude indicated by the 
meter and the true pulsation amplitude; secondly 
the mean blade passing frequency is higher than 
that which would occur with the corresponding 
steady flow. These two effects are commonly 
termed "amplitude attenuation" and "over- 
registration" respectively. 

The occurrence of these errors has been known 
for nearly 70 years, and a number of workers [2,3, 
4] have published suggestions of possible 
procedures for the estimation of correction factors 
for meters operating in gas flows. However, in 
pulsating liquid flows, there is a lack of 
experimental data on the meter dynamic response. 
Therefore it is of interest to investigate, both 
theoretically and experimentally, the dynamic 
response of small turbine flowmeters under 
pulsating liquid flows, so that the undesirable 
effects of pulsation on accuracy of flow 
measurement can be understood and appropriate 
action can be taken to avoid, or correct for, 
metering errors. 

The published theories of transient meter 
response in gas flow are all very similar [5,6.7] 
and these treatments assume, either implicitly or 
explicitly, that the rotational inertia of the fluid 
contained within the turbine rotor is negligible 
compared to that of the rotor itself. In some cases 
[8,9], there are no friction effects; and the flow is 
assumed to follow the blades. This approach can 
be generalised in the form of the equation shown 
below. 

bdd _V 2_ý/�, i/a (1) 

where V. is the volume flow rate indicated by 
the meter (= k fb , where k is a meter constant and 
fb is the blade passing frequency); V. is the true 
volume flow rate and t is time. The response 
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parameter, b, determines how quickly the meter 
responds to changes in the flow rate; it depends on: 
the inertia of the rotor IR 

, the hydrodynamic 

properties of the fluid and the aerodynamic 
characteristics of the blades. A simple 
representation of b is given by 

b=1- (2) 
pr 

where r is mean radius of rotor and p is fluid 
density. 

Atkinson [10] developed a software tool to 
calculate the over-registration error of a turbine 
meter in a pulsating gas flow. The tool is based on 
a normalised form of equation (1), assuming 
sinusoidal pulsations. 

The only published attempt at a general 
representation of the response of a turbine meter in 

a liquid (or high density gas) flow is that by 
Dijstelbergen [11]. His equation effectively 
redefines the parameter b as : 

11. + 
b=Z (3) 

pr 

where If is the rotational inertia of the fluid 

contained within the envelope of the turbine rotor. 
However, he also includes a term involving the 

product of If and the time rate of change of the 

true flow through the meter. The significance of 
this second term is not clear and the inclusion of it 
in any attempt to correct for over-registration 
and/or attenuation errors presents problems 
because the rate of change of the true flow is not a 
known quantity; also because it implies that b and 
1j need to be known separately. Cheesewright 

and Clark [12] have reported that an attempt to 
correlate the results of (small) step response tests 
using the Dijstelbergen equation was not very 
satisfactory. 

Other published reports of work on the 
response of turbine meters to liquid flows include 
the experimental work of Higson [13], and the 
theoretical work of Jepson [14]. However these 
both deal with the response to a flow which starts 
(instantaneously) from zero and it is doubtful 
whether the exact mechanism of the response to 
such a change will be the same as that for either 
small step changes or sinusoidal flow pulsations. 
The step response tests reported by Cheesewright 
and Clark [12] did not included start-up from zero 
but they did include steps to zero and in that case it 
was demonstrated that the whole mechanism of the 
response was different because the forces on the 
turbine rotor are dominated by disk friction effects 
rather than by fluid dynamic forces on the blades. 

In experiments which are described below, the 
details of the responses of a number of small 
turbine flowmeters to (sinusoidally) pulsating flow 
have been measured. The initial attempt to 
correlate these measurements, which is reported in 
the present paper, involved an approach similar to 
that used by Atkinson for gas flows, but with the 
meter response parameter modified to include the 
rotational inertia of the fluid contained within the 
turbine rotor, as outlined above. 

piston A 
PWQP electromagnetic by pass 

flowfneter lines 

test 
P meter weigh 

pump 
pressure 

'9w - 

transducer 

-ol 

sump 

reference 
flowmeter 

Figure 1A schematic diagram of the test rig 
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FLOW TEST FACILITY AND TEST 
PROCEDURE 

A schematic diagram of the flow test rig, 
designed to allow testing of meters in the size 
range 1/a in. to 1 in., is shown in Figure 1. Steady 
flow was produced by a positive displacement 

pump with a helical rotor (Monopump model 
CE064MS1R3/H421) driven at a fixed speed. The 

pump intake was fed from a sump holding in 

excess of 30 m3 of water. The required flow rate 
through the test meter was attained by adjusting 
the fraction of pump outflow diverted through two 
bypass lines. This provided the nominal meter 
flow rates, required for the present tests, of 
0.095 kg/s to 1.75 kg/s. Continuously timed 
gravimetric collection using a weigh tank provided 
a primary flow rate standard with a measurement 
uncertainty of ±0.1%. An electromagnetic 
flowmeter provided a secondary flow rate 
reference. The positive displacement pump 
produced a steady flow condition except for very 
small fluctuations at approximately 11.5 Hz and 
23 Hz due to the two driving rotors each with two 
lobes. However, the magnitude of these pulsations 
was very small compared with the sinusoidal 
pulsations produced by the purpose built piston 
pump. 

The piston pump was driven by an 
electromagnetic actuator, over a frequency range 
of 5 Hz to 300 Hz. The amplitude of the pulsations 
was varied within the limit imposed by the 
maximum actuator force of 600 N and the need to 
avoid cavitation. The piston pump was connected 
to the main flow line through a T-piece, a short 
distance upstream of a second electromagnetic 
flowmeter. In order to ensure that a very high 
fraction of the flow pulsation was added to the 
downstream flow (through the test meter), the 
mean flow component was supplied at an upstream 
pressure of 20 bar. An appropriate length of a 
relatively small-bore tube dropped the pressure to 
2 bar at the location of the piston pump. Pulsation 

amplitudes were restricted to ensure that the 

minimum pressure within the pulsation cycle 
remained above atmospheric pressure. 

The pulsation flow waveform was obtained 
from a commercially available electromagnetic 
(EM) flowmeter, 1" Krohne (model 
IFM401OK/D/6), located between the pulsator and 
the turbine flowmeter. The EM meter was 
energised (unconventionally) from a 12V d. c. 
source. In order to avoid effects of shifting d. c. 
levels (due to electrolytic action at the meter 
electrodes), the meter signal was a. c. coupled to a 
high gain (10 000 to 150 000) amplifier to produce 
signal amplitudes suitable for data logging. 

This procedure allowed pulsations to be 
recorded over a frequency range of 5 Hz to 300 Hz 
and thus avoided the frequency limitation that 
would have arisen from the conventional a. c. 
excitation of the meter. The EM signal was 
calibrated with the aid of the signal from an 
accelerometer, which sensed the motion of the 
pulsator piston rod. The accelerometer signal was 
integrated to give the velocity of the piston 
motion; the instantaneous volume flow rate during 
the pulsation cycle could be found by multiplying 
the velocity by the cross sectional area of the 
piston. The repeatability of this calibration was 
better than 5% over a period of three days. 

The turbine meter under test was placed 
downstream of the electromagnetic flowmeter and 
the outlet from the meter was fed to a weigh tank. 
An electromagnetic pick-up on the meter generates 
a signal each time a turbine blade passes and this 
signal was amplified and digitised. The resulting 
digital time history of the meter signal was 
analysed using the LABVIEW (V. 5.1) graphical 
programming language. Not all of the test meters 
produced a signal from the electro-magnetic pick- 
up which was absolutely sinusoidal. Figure 2a 
shows an example of the digitised meter output 
signal for a pulsation flow test, from which it can 
be seen that the signal has the features of a 
sawtooth waveform. 

The conventional method of processing turbine 
meter signals is to convert the quasi sinusoidal 
signal to a pulse signal with a pulse generated at 
either the + to - zero crossing or the - to + zero 
crossing. The reciprocal of the time between 
successive pulses is then the blade passing 
frequency. However, in the present work it was 
desired to test meters at the highest possible flow 
pulsation frequencies, and since one of the features 
of interest was the pulsation amplitude attenuation, 
this required some 8 to 10 data points per pulsation 
wave which would have restricted the pulsation 
frequency to 1/8s' of the blade passing frequency. 
It is clearly possible to generate pulses at both of 
the zero crossings in a given cycle of the signal 
from the pick-up but consideration of the 
waveform displayed in Figure 2a shows that the 
intervals between such pulses cannot be used to 
give two independent estimates of the blade 
passing frequency per signal cycle. The best that it 
is possible to do is to take the period between two 
successive + to - zero crossings and to associate 
that with the average blade passing frequency over 
that period and then to take the period between the 
two - to + zero crossings and to associate that with 
the average over that period. Thus it is possible to 
get twice as many data points per signal cycle, but 
successive data points are averages over (partially) 
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Figure 2a Turbine meter output signal reconstructed from digital data 
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Figure 2b Turbine flow waveform processed by using four points per cycle technique for waveform in Figure 2a 

overlapping periods. It is even possible to extend 
this process by identifying successive maxima and 
successive minima, thus giving 4 data points per 
signal cycle but each of the data points will be an 
average over a period of one signal cycle, with a 
75% overlap between successive periods. 

Figure 2b shows an example of a pulsation 
waveform constructed from 4 data points per 
signal cycle and with this approach it is potentially 
possible to examine the meter response to flow 

pulsations at frequencies as high as 1/3rd of the 
blade passing frequency. However, it must be 

noted that the identification of maxima and 
minima will be inherently less accurate than the 
identification of zero crossings. For some tests it 

was found that the data points thus generated were 
too inaccurate to be of value so that it was 
necessary to revert to only 2 data points per signal 
cycle. It must be noted, from Figure 2b, that the 
data points are not equally spaced in time; there is 

a greater concentration of data points during times 

of high flow rate than during times of low flow 

rate. Thus a simple average of all the estimates of 
the flow rate does not give a true mean flow rate; it 
is necessary, either to integrate the flow rate/time 
history or, as was done in the present work, to 
digitally re-sample the flow rate/time history at 
equal intervals of time. 

Five meters were tested and their 

characteristics and testing conditions are given in 
Table 1. The meters were tested with pulsation 
frequencies ranging from 5 Hz up to a maximum 
frequency which varied from meter to meter and 

which was dictated by the blade passing frequency 
produced by the mean flow rate. Three different 
pulsation amplitudes were applied at each 
frequency. 

Mete Blade 
No. 

Experimental 
K factor 
/(pulsellitre) 

Operatin 
g 
flowrate 
/(litres) 

Maximum 
pulsation 
frequency 
/ Ilz 

A 3 1608 0.0% 20 

B 3 517 0.290 120 

C 5 9017 0.096 80 

D 6 2614 0.290 300 
E 5 187 1.700 120 

Table I Brief characteristics and test conditions of each 

meter 

RESULTS 

The results for each meter were qualitatively 
very similar. At the largest pulsation amplitudes 
they all experienced significant over-registration 
for pulsation frequencies above 20 Hz and 
significant pulsation amplitude attenuation, for 
pulsation frequencies above 5 Hz. The maximum 
over-registration observed was 5%. The tests 
showed that both the over-registration error and 
the amplitude attenuation increased significantly 
with increasing pulsation frequency but they only 
increased slowly with increasing pulsation 
amplitude. 
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In the following quantitative discussion of the 
meter behaviour, the `relative pulsation amplitude' 
is defined by half of the peak to peak variation of 
the flow rate as a percentage of the mean flow rate; 
the `over-registration' is defined by the indicated 

mean flow rate minus the true mean flow rate as a 
percentage of the true mean flow rate and the 
`amplitude attenuation' is defined by the peak to 
peak variation of the true flow rate minus the peak 
to peak variation of the indicated flow rate as a 
percentage of the peak to peak variation of the true 
flow rate. 

As an example of the effects, for one particular 
meter (meter B), at 20 Hz pulsation frequency, the 
imposed relative pulsation amplitude ranged from 
17% to 40%, the observed over-registration errors 
were 0.27% to 1.58% with amplitude attenuation 
between 32% to 33%. For the same meter, at 
40 Hz pulsation frequency and the same range of 
imposed pulsations, the over-registration errors 
were between 0.53% and 3.40% with amplitude 
attenuation between 43% and 44%. Figure 3 shows 
the true flow waveform as compared to the meter 
indicated flow waveform when 40% relative 
pulsation amplitude is applied at 20 Hz. The 

waveform of the true flow was obtained from the 
EM flowmeter and this was off-set to give a mean 
flow rate which agreed with that obtained from the 
weigh tank. Individual data points are not shown in 
Figure 3 (and 4) because they would overlap one 
another. 

In assessing the significance of the above 
values of the over-registration error, it must be 

noted that the uncertainties quoted by the 
manufacturers for the meters used in these tests 

ranged from ±0.5% of full scale to ±1.0% of full 

scale (over the linear range of the meters). Thus, 
for all the meters, there are ranges of frequency 

and amplitude over which the errors due to over- 
registration are smaller than the meter uncertainty 
but there are only very limited ranges of conditions 
where the error due to amplitude attenuation are 
not significant. 

Timet(s) 

Figure 3 Comparison of true flow and meter indicated flow 
at 20Hz imposed pulsation with 40% relative 
pulsation amplitude 

SIMULATION OF METER 
BEHAVIOUR 

As indicated in the Introduction, an initial 
attempt to correlate the data was made using an 
Atkinson type model in which the meter response 
parameter was modified in the manner indicated 
by equation (3). When the modified equation (1) 
is normalised in the form used by Atkinson, it can 
be written, for a sinusoidally pulsating flow 
(V, = V, 

o (I +a sin T)) , as 

B' +F(1+asin T)=(1+asin T)2 (4) 

where F=V. /Vao, B'= 2irb' fo /V, 0. 
T= 2mf,, and fp is the frequency of the 

pulsation. 

Before equation (4) can be solved for F as a 
function of T, values for B' and a are required. For 
any given test fp is known and a and V. 

0 can be 
determined from the EM flowmeter data and 
weigh tank data, respectively, but a value of b' is 
required. In all the work on the response of 
turbine meters in gas flows, b has been determined 
experimentally from step response tests, but such 
tests are much more difficult in water because the 
step must be much faster and the dynamic 
pressures involved are much larger. The only 
published reports of step tests in water are those by 
Cheesewright and Clark [12), which include data 
for two of the meters used in the current tests. For 
one of these meters Cheesewright and Clark also 
report values of b obtained by calculation from 
step tests with the meter in air flow and values of b 
obtained by calculation from engineering drawings 
of the meter rotor. These data suggest that 

- True flow 
Actual meter Simulaled meter 

indicated flow ---" indicated flow 

a_ 

3 

I 

0 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

'lime/(S) 
Figure 4 Meter B- Comparison of true, actual meter 
indicated and simulated meter indicated flow at 40Hz imposed 
pulsation with 40% relative pulsation amplitude 
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adequate estimates of the value of b' can be 

obtained from drawings of a meter rotor if it is 

assumed that only the fluid contained within the 
envelope of the meter rotor contributes to If. This 

approach was used to obtain values of b' for those 
meters which had not been subjected to step 
response tests. 

Equation (4) was solved numerically (using 
Mathematica (V. 4.0.1)) and from the resulting 
F(T) a simulated meter output can be obtained. 
Figure 4 shows a comparison of the simulated 
meter output with the actual meter output and the 
true flow rate (as given by a combination of the 
pulsation waveform from the EM flowmeter and 
the mean flow rate from the weigh tank) for meter 
B when subjected to a 40% relative amplitude 
pulsation at 40 Hz. Table 2 shows one example of 
the results of the simulations for each of the 
meters, expressed in terms of the over-registration 
and amplitude attenuation as given by the actual 
meter output and by the simulated meter output. 

DISCUSSION 

The experiments have shown that all the meters 
suffer from significant pulsation amplitude errors 
over a range of pulsation amplitudes and 
frequencies. The over-registration error is 

proportionately much smaller than the pulsation 
amplitude error, but is greater than the 
measurement uncertainty quoted by the meter 
manufacturers over some ranges of conditions. As 

might be expected, both the amplitude attenuation 
and the over-registration increase with increasing 

pulsation frequency and (slowly) with increasing 

pulsation amplitude. 

A comparison has been made between the flow 

rate indicated by the observed meter output signal 
and that suggested by an Atkinson type simulation, 
based on the true (pulsating) flow rate. Figure 4 

shows that the general form of the simulation 
appears to be correct although the simulation 
produces too large an amplitude attenuation and 
also too large an over-registration. However, the 
brief selection of results for different meters, 
reproduced in Table 2, shows some inconsistency 
in the accuracy of the simulation. It is not readily 
apparent whether this inconsistency arises from 

uncertainties in the values of the response 

parameter for the different meters or whether it 
indicates a need to include an additional term in 
the meter response equation as suggested by 
Dijstelbergen [11]. In a program of continuing 
work on the dynamic response of small turbine 
meters in liquid flows it is intended to attempt to 
determine the appropriate values of the response 
parameters by means of step response tests. 

The results presented in this paper also serve to 
emphasise another feature of performance of small 
liquid flow turbine meters, which does not appear 
to have been discussed by previously. 
Conventionally these meters generate a signal by 
virtue of the turbine blades passing an 
electromagnetic pick-up so that the rate at which 
information is obtained about the rotational speed 
of the turbine is equal to the blade passing 
frequency (or slightly more than this as indicated 
in this paper). It is clear from the data that, 
physically, the meters can respond to flow 
pulsations with frequencies higher than the blade 
passing frequency (albeit, with significant 
amplitude attenuation), but that the normal 
operation of the meters does not allow information 
about this response to be extracted from the meter. 
If it was desired to exploit the response of these 
meters to the highest frequencies, assuming that it 
proves to be possible to correct for the inertia of 
the meter, it would be necessary to devise an 
alternative method for obtaining an output signal 
proportional to the rotational speed of the meter. 

CONCLUSIONS 
New data have been obtained, which 

demonstrate the occurrence of over-registration 
and amplitude attenuation when a small turbine 
flowmeter is subjected to a pulsating liquid flow 

. Although the over-registration errors are 
within the limits of specified meter accuracy for 
low frequency pulsations they may be significant 
for higher frequencies and larger pulsation 
amplitudes. The amplitude attenuation error is 
likely to be significant over a considerable range 
of amplitudes and frequencies and can be as large 
as 50%. An Atkinson type model of the meter 
response has been investigated as a basis for a 
possible correction procedure and currently work 
is being undertaken to investigate this, and other 
correction procedures, further. 

Test Condition Ex tsl Result Simulation Result 

NEMR Pulsation 
Frequency 

Relative Pulsation 
Amplitude 

Actual Mean 
Flowrate/(Vs) 

Over- 
registration 

Amplitude 
Attenuation 

Over- 
registration 

Amplitude 
Attenuation 

A 20Hz 54% 0.095 0.74% 44% 8.68% 40% 
B 40Hz 40% 0.291 3.39% 44% 6.65% 57% 
C 20Hz 50% 0.096 1.66% 52% 8.38% 45% 
D 80Hz 33% 0.290 1.81% 46% 3.63% 45% 
E 70Hz 6.36% 1.745 0.1% 38% 0.18% 63% 

Table 2 Comparison of Experimental and Simulation Results 
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