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Abstract 

The dynamic response of turbine flowmeters in low pressure gas flows (i. e. where the 

rotational inertia of the fluid is negligible) is well understood and methods for correcting 

meter signals for a lack of response are available. For liquid flows there has been a limited 

amount of experimental work on the response of meters to step changes but no reports 

have been found of the response of meters to sinusoidally pulsating flows. 

"Small" turbine meters are expected to behave differently from "large" meters for a 

number of reasons: a smaller meter would generally have: (1) a larger percentage of tip 

clearance leakage flow; (2) less fluid momentum between the meter blading; and, (3) less 

fluid friction forces on the effective surface area. In this research, arbitrarily, meters up to 

size 25 mm were defined as small; and within this study, meters of size 6 mm to 25 mm 

were investigated. 

The aim of the research was to investigate and to understand the response of small turbine 

meters to pulsating liquid flows and to provide methods for correction. Three approaches 

were used: (1) application of an existing theoretical model of turbine meter behaviour; (2) 

an experimental investigation of meter performance in pulsating flows; and (3) simulation 

of flow behaviour through one selected meter using CFD and extending the simulation to 

predict the rotor dynamics and, hence, the response of this meter to specified cases of 

pulsating flow. 

A theoretical model developed by Dijstelbergen (1966) assumes frictionless behaviour and 

that flow is perfectly guided by meter blading through the rotor and that fluid within the 

rotor envelope rotates as a "solid body". Results from this theoretical model applied for 

pulsating flows showed that there was likely to be positive error in predicted mean flow 

rate (over-registration) and negative error for predicted values of the amplitude of the 

pulsations (amplitude attenuation). This behaviour is due to the fundamental asymmetry 

between flows with increasing and decreasing angle of attack relative to the meter blades, 

throughout a pulsation cycle. 

This qualitative behaviour was confirmed by experimental work with meters up to size 
25mm working with pulsation frequencies up to 300 Hz. For low frequency pulsations 
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(below 10 Hz), the over-registration errors were within the limits of specified meter 

accuracy. At higher frequencies and larger pulsation amplitudes, the largest over- 

registration observed was 5.5 % and amplitude attenuation could be as large as 90 %. The 

dependence of these errors on both the flow pulsation amplitude and frequency were 

investigated. The theoretical model was also used as a basis for generating correction 

procedures, to be applied to both the mean flow and the pulsation amplitude 

measurements. 

The results from the CFD simulation showed qualitative good agreement with the 

experimental data. The same kind of meter error trends were observed and it was shown 

to provide a better correlation with the experimental trends than the theoretical model 

derived from Dijstelbergen. From the CFD simulation, the causes of over-registration and 

amplitude attenuation in turbine flowmetering were understood through the investigation 

of rotor dynamics coupled with fluid behaviour around meter blading within the pulsation 

cycle. The CFD results were used to evaluate fluid angular momentum flux and to review 

the validity of the assumption that fluid within the rotor "envelope" rotated as a solid 

body. 

For the case investigated, whilst the assumption that flow is perfectly guided is not 

inappropriate, the volume of fluid assumed to rotate as a "solid body" was found to be 

significantly less than the rotor envelope volume. 
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simulated flow and predicted meter flow; at f= 20 Hz, C= 41.98 %. 

Fig 8.19 P4 - Comparison of actual flow, meter indicated flow, CFD 159 

simulated flow and predicted meter flow; at f= 40 Hz, ap= 16.57 %. 

Fig 8.20 P5 - Comparison of actual flow, meter indicated flow, CFD 159 

simulated flow and predicted meter flow; at f= 40 Hz, G= 26.16 %. 

Fig 8.21 P6 - Comparison of actual flow, meter indicated flow, CFD 159 

simulated flow and predicted meter flow; at f= 40 Hz, ay= 40.63 %. 

Fig 8.22 P7 - Comparison of actual flow, meter indicated flow, CFD 160 

simulated flow and predicted meter flow; at f= 60 Hz, (3 16.65 %. 

Fig 8.23 P8 - Comparison of actual flow, meter indicated flow, CFD 160 

simulated flow and predicted meter flow; at f= 60 Hz, %= 28.13 %. 

Fig 8.24 P9 - Comparison of actual flow, meter indicated flow, CFD 160 

simulated flow and predicted meter flow; at f= 60 Hz, ap 36.69 %. 

Fig 8.25 Meter B- Comparisons of over-registration errors with a selection of 162 

pulsation amplitudes and pulsation frequencies from: (a) experimental 

results, (b) simulations by CFD modelling, and (c) normalised 

"frictionless" theoretical model predictions. 

Fig 8.26 Meter B- Comparisons of amplitude attenuations with a selection of 163 

pulsation amplitudes and pulsation frequencies from: (a) experimental 

results, (b) simulations by CFD modelling, and (c) normalised 

"frictionless" theoretical model predictions. 

Fig 8.27 Meter B-A summary of amplitude attenuation (re-plotted for results 164 

shown in Figure 8.26) 

Fig 8.28 P9 - Comparison of input volume flow and CFD simulated meter 165 

flow; V=0.292 x 10-3 m3/s, f= 60 Hz, a, = 36.69 %. 
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Fig 8.29 (a)P9 (Step 360) -Velocity plotted on rms radius surface; 166 

V, = 0.292 X 10"3 m3/s, 4 = 60 Hz, a= 36.69 %. 

(b) P9 (Step 440) - Velocity plotted on rms radius surface; 167 

V=0.292 X 10"3 m3/s, f= 60 Hz, a, = 36.69 %. 

(c) P9 (Step 540) - Velocity plotted on rms radius surface; 168 

V=0.292 x 10-3 m3/s, f= 60 Hz, ap= 36.69 %. 

(d) P9 (Step 620) - Velocity plotted on rms radius surface; 169 

V, = 0.292 X 10"3 m3/s, fy= 60 Hz, %= 36.69 %. 

Fig 8.30 (a)P9 (Step 360) - Vorticity plotted on rms radius surface; 170 

V, = 0.292 X 10"3 m3/s, f= 60 Hz, %= 36.69 %. 

(b)P9 (Step 440) -Vorticity plotted on rms radius surface; 171 

V=0.292 x 10"3 m3/s, 4= 60 Hz, %= 36.69 %. 

(c)P9 (Step 540) - Vorticity plotted on rms radius surface; 172 

V, =0.292 x 10"3 m3/s, f=60Hz, c 36.69 %. 

(d)P9 (Step 620) - Vorticity plotted on rms radius surface; 173 

V, = 0.292 x 10-3 m3/s, f= 60 Hz, %= 36.69 %. 

Fig 8.31 P9 - Time varying weighted mean flow angles along the axial 174 

position in the relative frame 

Fig 8.32 Schematic Diagram of meter response to step flow 175 

Fig 8.33 P9 - Quasi-steady flow acceleration and CFD simulated meter flow 176 

acceleration plotted against quasi-steady flow; V, = 0.292 X 10"3 m3/s, 

fy= 60 Hz, ap= 36.69 %. 

Fig 8.34 P9 (6=60 Hz, 3=36.69%) - Comparisons of various angular 179 

momentum flux terms resulted from CFD modelling. 
Fig 8.35 P9 =60 Hz, ay=36.69%) - Comparisons of the fluid inertia terms 180 

from CFD Simulation and the Prediction using Dijstelbergen 

equation. 

Fig 8.36 P9 =60 Hz, %=36-69%) - Comparisons of the momentum flux 181 

terms from CFD Simulation and the Prediction using Dijstelbergen 

equation. 
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Fig 8.37 Meter B- Over-registration errors for a selection of pulsation 181 

amplitudes and pulsation frequencies from the normalised 

"frictionless" theoretical model predictions using a modified value of 

If (from CFD evaluation). [For original results using estimated value 

of If (from meter geometry) shown in Fig. 8.25c] 

Fig 8.38 Meter B- Comparisons of amplitude attenuations for a selection of 182 

pulsation amplitudes and pulsation frequencies from the normalised 

"frictionless" theoretical model predictions using a modified value of 

If(from CFD evaluation). [For original results using estimated value 

of If (from meter geometry) are shown in Fig. 8.26c] 

Fig 8.39 Meter B-A summary of amplitude attenuation from using the 182 

modified value of If 

Fig 8.40 Meter A- Comparisons of over-registration errors at 20 Hz from the 183 

normalised "frictionless" theoretical model predictions using a value 

of If equals to half the value used to obtain `P' results. 

Fig 8.41 Meter B- Comparisons of over-registration errors at 40 Hz from the 184 

normalised "frictionless" theoretical model predictions using a value 

of If equals to half the value used to obtain `P' results. (Notation `S' 

represents simulation data from CFD) 

Fig 8.42 Meter C- Comparisons of over-registration errors at 40 Hz from the 184 

normalised "frictionless" theoretical model predictions using a value 

of If equals to half the value used to obtain `P' results. 
Fig 8.43 Meter D- Comparisons of over-registration errors at 40 Hz from the 185 

normalised "frictionless" theoretical model predictions using a value 

of Il equals to half the value used to obtain `P' results. 
Fig 8.44 Meter E- Comparisons of over-registration errors at 70 Hz from the 185 

normalised "frictionless" theoretical model predictions using a value 

of If equals to half the value used to obtain `P' results. 

Fig 8.45 Meter A- Comparisons of amplitude attenuation from the 186 

normalised "frictionless" theoretical model predictions using a value 

of If equals to half the value used to obtain `P' results. 
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Fig 8.46 Meter B- Comparisons of amplitude attenuation from the normalised 186 

"frictionless" theoretical model predictions using a value of If equals 

to half the value used to obtain `P' results. (Notation `S' represents 

simulation data from CFD) 

Fig 8.47 Meter C- Comparisons of amplitude attenuation from the normalised 187 

"frictionless" theoretical model predictions using a value of If equals 
to half the value used to obtain `P' results. 

Fig 8.48 Meter D- Comparisons of amplitude attenuation from the 187 

normalised "frictionless" theoretical model predictions using a value 

of If equals to half the value used to obtain `P' results. 
Fig 8.49 Meter E- Comparisons of amplitude attenuation from the normalised 188 

"frictionless" theoretical model predictions using a value of Il equals 

to half the value used to obtain `P' results. 
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Chapter 1- Introduction 

Chapter 1 Introduction 

In this chapter the historical background to flow measurement will be introduced. The 

occurrence of pulsating flows will be discussed and a definition of the particular pulsating 

flow condition in this research will be reviewed. Finally, a qualitative description of a 

turbine flowmeter will be given and a number of representative industrial applications will 

be outlined. 

1.1 Flow Measurement -An Historical Perspective 

1.1.1 From the Egyptian Period until now 

From the construction of the Egyptian water irrigation systems for agriculture purposes, 

and reservoirs and massive canal systems designed to prevent floods in China in 1500 B. C., 

to the rationing of water by the Romans for fiscal benefits, evidence of flow measurement 

can be found in the engineering feats achieved by civilisations through different eras of 

human history. (Bean 1966) 

The first recorded understanding of fluid dynamics occurred in ancient Greece. Aristotle 

(384-322 B. C. ) established the basic concept of "fluid dynamic drag"; Archimedes (287-212 

B. C. ) recognised the elementary principles of "buoyancy" and "pressure gradient" over a 

length of fluid in motion (Rouse 1963). A later era of fluid mechanics started in the 

Renaissance period, Leonardo Da Vinci (1452 - 1519) being the first to show any 

quantitative understanding of fluid dynamics. He gave the first mathematical description 

of "continuity"; observed and sketched many basic flow phenomena, and suggested 

designs for a hydraulic pump (Anderson 1998). 

The beginning of the eighteenth century is marked by the "Age of enlightenment", during 

which scientists made huge advances in scientific knowledge. Isaac Newton (1642-1727) 

having already proven the existence of gravitational force and stated the three laws of 

motion, introduced new approaches to scientific enquiry which encouraged many scientists 

to follow. Daniel Bernoulli (1700-1782) unleashed the ideas of "hydrodynamics" on the 

world. Euler (1707 - 1783) and Venturi (1746 - 1822), further developed these ideas into 
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Chapter 1- Introduction 

what is now known as Hydrodynamics. During the same period, the discovery of a force 

associated with linear motion in a rotating reference frame was made by Gaspard Gustave 

de Coriolis (1792-1843). 

These provided the fundamental basis for many flowmeters developments. There were 

first the positive displacement meters, propeller type meters, and then the differential 

pressure meters represented by venturi tubes or thin-plate orifices, etc. More recent 

developments are the Magnetic flowmeter (1950's) (Baker 2000); the Ultrasonic Doppler 

flowmeter and Ultrasonic "transit time" flowmeter (1950's to 1960's) (Baker 2000), and the 

Coriolis mass flowmeter (1953) (Wilson 1991). 

During the last twenty years, flowmeter accuracies have been improved incrementally, 

including the use of microprocessors and sensors, and for some meters (e. g. Coriolis mass 

flowmeter), there has been a move towards using digital signal processing. 

1.1.2 Pulsating flow measurement and the occurrence of pulsating flows 

The history of pulsating flow measurement research is as old as the history of industrial 

flow measurement (Mottram 1992). There are papers reporting the difficulties of making 

accurate flow measurement in the presence of pulsation dating back to the 1920s 

(Oppenheim and Chilton 1955), when reciprocating steam engines and compressors were 

producing low frequency, high amplitude flow pulsations. 

In the same period, pressures have grown significantly towards achieving ever higher 

standards of flow measurement accuracy. Thus the interest in understanding pulsation 

effects on flowmeters and reducing metering errors due to pulsation has increased. 

However, the characteristic of typical industrial pulsating flow behaviour has changed 

progressively, apart from applications using low frequency diaphragm and reciprocating 

pump, mostly it consists of a high frequency and low amplitude pattern. This is mainly due 

to the advent of rotary positive displacement machines. Also, the proliferation of 

automatic flow control systems which include components (e. g. valves and regulators), 

which may be driven into oscillations, thus producing flow pulsations which can affect the 

associated flowmeter. 
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According to BS ISO TR 3313 (1998), pulsations may be induced in the following 

machines, pipeline fittings, and operations: 

(i) Rotary or reciprocating positive displacement engines, compressors, blowers and 

pumps. 

(ü) Vibrations, particularly at resonance, of pipe runs and flow control equipment. 

(iii) Periodic actions of flow controllers, e. g. valve `hunting' and governor oscillations. 

(iv) Flow separation within pipe fittings, valves, or rotary machines (e. g. compressor 

surge). 

(v) Hydrodynamic oscillations generated by geometrical features of the flow system and 

multiphase flows (e. g. slugging). Vortex shedding from bluff bodies such as 

thermometer wells, trash grids, or vortex-shedding flowmeters fall into the former 

category. 

(vi) Flow-metering calibration systems, e. g. rotodynamic pump blade passing effects 

and the effects of rotary positive-displacement flowmeters. 

Whenever factors such as those indicated above are present, there is the possibility of flow 

pulsation occurring. It should also be appreciated that pulsation can travel upstream as 

well as downstream and thus possible pulsation sources could be on either side of the 

flowmeter installation. However, amplitudes may be small and, depending on the distance 

from pulsation source to flowmeter, may be attenuated by compressibility effects, in both 

liquids (and associated pipework) and gases, to undetectable levels at the flowmeter 

location. Pulsation frequencies range from fractions of a Hertz to a few hundred Hertz; 

pulsation amplitudes relative to mean flow vary from a few percent to 100% or larger. At 

low percentage amplitudes the question arises of discrimination between pulsations and 

turbulence effects. 
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Chapter 1- Introduction 

1.2 Definition of Pulsating Flow in this Research 

The particular flow condition considered in this study is sinusoidal pulsating flow. 

Pulsating flow is a type of unsteady flow in which there is regular cyclic variation in volume 

flow rate superimposed on a constant time average flowrate (Mottram 1992). 

For example, a piston pump operates on the basis of transporting volumes of fluid in a 

pulsating manner, as shown in Figure 1.1. In this example, the piston pump consists of 

two valves and one piston chamber box. The reciprocating piston is driven back and forth 

by a rotating mechanism, this discharges the fluid when it is driven forward (A) and raises 

the fluid into the chamber when it is driven backward (B). Hence, in any period of time, 

the flow output from the pump would be varying cyclically against the time average mean 

flowrate as shown in Figure 1.1. 

Piston Pump 1, low Output 

1 

v Mean flow 

v E 

cB 

Time 

Figure 1.1 Internal view of a typical piston pump in motion and its flow output (picture is 

extracted from The Animated Software Company web page (2001), and has been edited to enhance 

visibility) 
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1.3 The Turbine Flowmeter and its Industrial Applications 

1.3.1 Description of operation 

, 'ý. 

ý ý"ý 

I 

Figure 1.2 A photographic internal view of a turbine flowmeter (extracted from Daniel 

International Ltd. web page (2001), and has been edited to enhance visibility of the 

rotor blades) 
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Figure 1.3 A diagrammatic internal view of a turbine flowmeter (extracted from Daniel 

International Ltd web page (2001)) 

Some time prior to 1790 Reinhard Woltman invented the first propeller-type current meter 

which after centuries of utilisation, has been developed into the turbine flowmeter, as 

-5- 



Chapter 1- Introduction 

shown in Figure 1.2. An internal view of a typical turbine meter is shown in Figure 1.3, it 

generally consists of multi-bladed rotor running between bearings. The forward and rear 

suspensions act as flow straighteners so that fluid motion through the meter is parallel to 

the meter centre line. Flowing fluid enters the turbine through the forward suspension, as 

shown at (1). When it encounters the cone at (2), the stream is deflected outward, causing 

the velocity to increase and a slight static pressure drop at (3). Fluid flow impinges upon 

the turbine blades which are free to rotate about an axis along the centre line of the turbine 

housing. The angle of the blade to the stream governs the angular velocity, at a given flow 

rate. As the fluid leaves the rotor area, flow has redistributed as shown at (4). Velocity is 

reduced slightly and the static pressure has increased proportionally. 

Permanent 
Magnet (1) 

Cone (3) 

C oil (2) 

ti4' eaar 

ONE ONE 

ll 
PULSE UNIT 

VOLUME 
A 

0 

C 

Figure 1.4 A schematic diagram showing pulse generation by the passing of each blade 

(extracted from Daniel International Ltd. web page (2001)) 

As shown in Figure 1.4, a magnetic pick-up coil is located in the wall of the pipe, the 

stainless steel meter body is non-magnetic and the rotor blades are typically made of a 

paramagnetic material (a material which will be attracted by a magnet). The permanent 

magnet (1) produces a magnetic field which passes through the coil (2) and is concentrated 

to a small point by the cone (3). The magnetic field is deflected when a turbine blade 

(shown at A) is moving into close proximity to the cone point, thus causing a voltage to be 

generated in the coil. This voltage decays as the blade passes under the cone point (B), but 

gradually builds back up in the opposite polarity as the blade moves towards point (C), 
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which causes the magnetic field to deflect in the opposite direction. Thus as each blade 

passes the cone, it produces a separate and distinct voltage waveform. The frequency of 

these waves is linearly proportional to the angular (rotational) velocity of the rotor, which is 

directly proportional to the fluid velocity and, thus, to the volume flowrate. The amplitude 

of the waves will vary in proportion to blade velocity but is not considered in the 

measurement process. Each wave is counted as a discrete event (pulse) and signal 

processing may be used to generate a pulse train output from the meter. Turbine meter 

output is rated in pulses per gallon, pulses per litre, or other standard engineering units. 

Though magnetic pickups are common, optical fibres and microwave techniques are used 

as well (Baker 1989). 

1.3.2 Industrial applications of turbine flowmeter 

With the development of jet engines and liquid propellant rockets in the 1950's, a need 

arose for an accurate, quick response meter that could be used on fuels and oxidizers at 

extreme temperatures (Ovodov et al. 1989). The turbine flowmeter met this need 

(Madison 1995) and it was soon applied to many industrial flow measuring applications. 

With the different objectives for fluid flow measurements, and the range of conditions 

under which the fluids are measured, the degree of accuracy varies with different 

applications. This section addresses a few typical applications of turbine flowmeters in 

industry and the accuracies needed, respectively. 

1.3.2.1 Gas and oil industry 

The dominant metering device used in the natural gas and oil industry is the turbine 

flowmeter (Birkhead 1985), (Bronnen and McKee 1991), (Tiemstra et al 1991), (McKee 

1992), (Mullen 1994), (Minemura et al. 1996), (Rowell 1996). In many applications such as 

in nuclear reactor systems, fossil-fuel power plants, oil refineries, and natural gas 

production fields and compressor stations, the flow may contain pulsations (Lee et al. 

1975). For fiscal measurements such as meters used in services to the public, especially 

those for fuel gas and oil, governments lay strict regulations for their use and correctness, 

for tax purposes. When consideration is given to the value of liquid flowing through a 

custody transfer meter, it becomes apparent that seemingly microscopic improvements in 

accuracy amount to significant money amounts. For instance, a 10-inch turbine meter is 

metering at about 1000 m3 per hour of crude oil, that is equivalent to approximately 
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, 103000 per hour at current price (Unit Conversion web page 2001), (BBC News Online 

web page 2001), (Universal Currency Converter web page 2001), a +0.5% shift in accuracy 

represents a financial leak of over 510 per hour. These applications have resulted in 

efforts to reduce the magnitudes of metering uncertainties down to ±0.1% (Berto 1997). 

In large scale power generation, it is general practice to carry out calibration tests of 

operating units and these tests involve the metering of water, steam, air, oil and fuel gas. 

Along with the steady increase in the size of power stations are the demands for increasing 

efficiency (Bean 1966), and hence the need to determine and then reduce the magnitudes 

of metering uncertainty, usually a minimum requirement of ±5% (Osha Federal Register 

web page 1994). This need arises from both the increasing cost of fuel and minimising 

environmental impact. 

1.3.2.2 Processing industry 

In the pharmaceutical industry, the production of drugs relies on mixing or dosing the right 

amount of chemicals accurately. High accuracy of the amounts delivered is always required 

in quality control of the products. Therefore for batch-flow applications, the flowmeter is 

required to have a short response time. In some applications, the batch time can be as 

short as of the order of 100 ms. Some small liquid turbine meters are known to have 

response time in the order of milliseconds (Cheesewright and Clark 1997), hence turbine 

meters might be suitable for this application. 

In the processed food industry, EEC regulations require that the amount of a product sold 

has to be printed on the packaging. If one hundred grams of product is intended to be 

sold to the customers, then the customers will expect 100 grams or more of the products 

but nothing below 100 grams. Since the delivery of liquid products is usually driven by 

pumps and measured by flowmeters for the batch flow amount required, and then 

controlled by valves, the pulsation effects from pumps may cause uncertainties in metering 

the product. Therefore manufacturer(s)* always include a small amount of surplus in order 

to ensure every product sold complies with the law. Obviously, this is not a very cost 

" Personal communication with Seaby, R. Group Technical Services Manager, Northern Foods 

Corporation, UK. (1998) March. 
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effective method for mass-production; however, if the accuracy in metering of pulsating 

flows can be improved, it will benefit the manufacturing company by saving on the cost of 

product. 

1.3.2.3 Aerospace application 

McCoy (1994) suggested that the comparatively faster response time of turbine flowmeters 

in liquid flows is of particular benefit in aerospace applications where it is essential to 

obtain rapid feedback on fuel flow rates for the control of engine performance. For 

instance, an aerospace manufacturer prototyping a new helicopter may need to test the 

performance of an orifice or pump, or to monitor engine heating under various flight 

conditions (McCoy 1994). In addition, turbine meters can withstand the extreme g forces 

encountered during the flight of military or other high-performance aircraft (Gannon 

1994). Therefore, it is of interest to study the dynamic response of small turbine 

flowmeters to pulsating liquid flows for which it would be desirable for the meter to have a 

response time of 10 ms (corresponding to 100 Hz) or less. 

1.3.2.4 Cryogenic industry 

DeFeo J. W. (1992) reported that turbine meters are very widely used for flow 

measurements of cryogenic fluids. Applications of these measurements include cryogenic 

propellant loading for launching satellite and rockets (NASDA web page 1999), (The 

National Space Society web page 1997), and liquid nitrogen custody transfer as a 

commodity in both bio-medical and food preservation (Gruskos 1985). In a NASA 

sponsored flowmeter evaluation program (Alspach et al 1966), the performance results of 

some cryogenic turbine flowmeters were determined. The program found that several 

cryogenic turbine flowmeters were capable of an accuracy up to ±0.5% in steady flow. 

However, the work of Ovodov et al's (1989) on liquid nitrogen indicated problems of 

predicting transient behaviour without knowing the dynamic characteristics of the meter. 
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Chapter 2 Responsiveness of Differing Flowmeter Techniques to 

Pulsating Flow Conditions, Problem Definition, Aims and 
Objectives of this Study 

Some meters are known to produce inaccuracies as a result of flow pulsations (e. g. pressure 

differential flowmeters), for some meter types the levels of pulsation induced errors are not 

fully known, namely the turbine flowmeters. This chapter gives a review on the dynamic 

response of some of these meters, this will be followed by a brief description of the 

problems encountered when the turbine flowmeter is subjected to pulsating flows. Finally 

the aims and objectives of this study will be detailed at the end. 

2.1 Review of the Responsiveness of different types of Flowmeter to Pulsating 

Flow Conditions 

2.1.1 Pressure differential flowmeters 

Pressure differential flowmeters are volume flowrate devices in which the differential 

pressure produced by flow passing through a localised geometric constriction is sensed by a 

secondary device. By application of the Bernoulli equation, an idealised non-linear 

relationship is developed as shown in the equation below: 

zip = Constant xV2 Eq. 2.1 

where 4p is the differential pressure and V is the volume flow rate. The main types are 

Orifice Plate, Venturi Meters and Nozzles. These devices were established in the early 20' 

century and numerous investigators have characterized aspects of their behaviour in 

pulsating flow (beschere 1952), (Hall 1952), (Zarek 1966), (Gajan et al. 1992). 

There are three main problem areas in using these devices for pulsating flow measurement: 

firstly, the non-linearity of the flowrate/differential pressure relationship - commonly 
known as the square root error; secondly, the accurate measurement of the dynamic 
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differential pressure (Clark 1992); thirdly, the temporal inertia effect. The first problem 

affects the indicated mean flow reading as the square root of the averaged differential 

pressure was used to infer the mean flowrate. The influence of the inertia of the fluid 

appears in the relation between the pulsation amplitude and differential pressure. This 

effect is due to the fact that a component of the differential pressure is required to 

accelerate the fluid with respect to time in addition to that required for the convective 

acceleration through the orifice, (Mottram 1992), (Gajan 1992). 

2.1.2 Vortex flowmeter 

The vortex meter is a volumetric flowmeter and the device consists of a bluff body within a 

circular pipe. Above a certain Reynolds number, vortices are shed alternately from each 

side of the bluff body, the frequency of shedding being proportional to flow velocity. The 

optimum width of the bluff body is about 25-30 percent of the pipe diameter, and the 

vortex shedding behind the body is greatly stabilised by two plates attached to the pipe wall 

(Baker 1989). The meter employs a natural fluid oscillation in its mode of operation (Baker 

and Deacon 1984) and the shedding frequency is detected by a sensor. If the approaching 

flow itself contains a flow pulsation, some interference between the two types of fluid 

oscillation takes place, particularly if their frequencies are similar. Mottram (1992) has 

described that, under some conditions, the vortex shedding process is liable to "lock-on" 

to the pulsation frequency, and when this happens the flow meter ceases to respond to 

changes in mean flow velocity and very significant metering errors may result. 

2.1.3 Electromagnetic flowmeter 

When a fluid carrying ions flows through a transverse magnetic field in a non-magnetic 

tube, voltages and currents are generated in the fluid due to the motion. Measurement of 

the potential difference between two electrodes mounted in the meter wall will provide an 
indication of mean velocity over the pipe cross-section, but may be subjected to the 

influence of some velocity profile effects in the pipe. The correct design of the pipe and 

magnetic coils is essential to achieve a flowmeter which is little affected by upstream 
disturbance (Ginesi 1991). 
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Electromagnetic flowmeters can respond to pulsating flow, (e. g. as used for medical 

applications) (Ross 1971). The measurement frequency bandwidth depends upon the 

frequency of meter excitation and upon the subsequent signal processing. 

2.1.4 Ultrasonic flowmeter 

The `time of flight' flowmeter makes use of the difference in the time required for sound to 

travel a given distance in the flow. The difference in the time of transit between 

transducers of upstream and downstream pulses of ultrasound is used to obtain the flow 

velocity in the tube. This flowmeter is an inertia-less device having no moving parts and 

offering no obstruction to flow. This kind of meter has been successfully used for the 

measurement of pulsations in blood flow (Peronneau et al 1971). 

In order to determine flow rate accurately, it is necessary to know the true average velocity 

over the pipe cross-section. Velocity distribution is a function of the Reynolds number 

(Re); as velocity distribution varies in a pipe due to pulsation effects, the relationship 

between measured velocity at a localised region and overall average velocity varies 

(McShane 1974), (Hakansson and Delsing 1994). 

2.1.5 Coriolis flowmeter 

The Coriolis flowmeter is essentially an oscillating pipe segment(s) conveying fluid and the 

measuring principle is based on the Coriolis force resulting from the linear velocity of fluid 

passing through an oscillating system. Operation of this meter is largely independent of 

pressure, temperature and viscosity (Baker 1994). 

Vetter and Notzon (1994) showed that small U-tube Coriolis meters were disrupted by 

pulsations at the Coriolis mode frequency, with the potential for very large errors. In other 

words, pulsations cause forced oscillations of the measuring tube. If the pulsation 

frequency coincides with the basic resonant frequency (drive frequency) or with other 

resonant frequencies of the measuring tube, then the tube may oscillate with relatively large 

amplitudes, and measurement errors may then occur. 

The relatively short time constants, from O. Ols to 0.1s, given by most of the meter 

manufacturers, suggest that most meters might be expected to correctly measure the time 
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histories of flows with pulsations at frequencies up to 20 to 30 Hz. However, 

Cheesewright and Clark (2000) showed that when some meters were subjected to low 

frequency pulsations (at 2 Hz to 40 Hz), though meter indicated mean flow readings were 

unaffected, significant pulsation amplitude attenuations, in the region of 50 % to 90 %, 

were experienced. 

2.1.6 Turbine flowmeter 

Turbine flowmeters are essentially instruments for metering steady flows, but it is often 

argued that their responsiveness makes them suitable for metering flows in which a degree 

of unsteadiness is present (Atkinson 1992). A comprehensive review of the dynamic 

response of the meter will be detailed in Chapter 4, whilst a brief description is given in this 

section. 

Generally, the responsiveness of a turbine flowmeter is dependent on the design of the 

meter, particularly the inertia of the rotor, and upon the inertia of the fluid inside the rotor 

envelope which in turn depends upon the density of the fluid. The influence of density is 

such that in general, a meter is better able to follow any unsteadiness in liquid flows than in 

gas flows, because the density of the fluid is closer to that of the rotor (Baker 2000), and 

this has an effect on the value of time constant for different fluid medium turbine 

flowmeters. For example, if a meter is capable of running either in gas or liquid, since the 

density of water is around 1000 times higher than the density of air at 1 bar, then for a 

small meter, a typical value of the time constant might be in the order of 1 ms for water 

and 1s for air. For natural gas, in the national grid at 300 bar pressure, then the meter 

response would be closer to that with a liquid passing through it, than to a low-pressure 

gas. This is explained in more detail in Chapter 4. 
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2.2 Problem Definition 

Some of the situations leading to flow pulsation, which are described in Section 1.1.2, will 

cause approximately sinusoidal pulsation. Hence, assuming pure sinusoidal pulsation exists 

in a flow system, then the time dependent volume flowrate, V� (as shown in Figure 2.1), 

can be expressed algebraically in the following form: 

Lä =Vo(7+a. sin27frt) 

Where f, is the mean flowrate, 

Eq. 2.2 

Cri is the relative pulsation amplitude, (= (pa 
/2V ), (p, is the peak-to-peak flow 

pulsation, and 

f is the pulsation frequency, (=1 /T), T is the period of pulsation. 

v cm 

0 

-Actual volume flow (j)') 
-, 11ctcr Indik%at 1 rýý1um flu' Wm 

i! idicateci 
lik Ilk 

((Pm ) 

Figure 2.1 Consequence of pulsating flow in turbine meter indicated reading 

According to BS ISO TR 3313 (1998), when a turbine flowmeter is operating within a 

pulsation cycle, the inertia of the rotor (and possibly of the fluid contained within the rotor 

envelope) can cause the rotor speed to lag behind the steady state condition in an 

accelerating flow and to exceed it in a decelerating flow. When the flow is accelerating, the 

rotor takes time to respond to it; when the flow is decelerating, the fluid contained within 

the rotor envelope and the rotor might still be rotating at a comparatively faster rate, hence 

the influence of a decelerating flow is greater than that of an accelerating one so that the 

mean speed of a flowmeter subjected to pulsation can be greater than that corresponding 

to the mean flowrate. 
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A combination of these effects causes two commonly known problems in turbine 

flowmetering, which are illustrated in Figure 2.1. Firstly the mean flow indicated, V. 
, 

is 

higher than that which would occur with the corresponding actual mean flow, V. ; 

secondly there is a difference between the peak-to-peak pulsation amplitude indicated by 

the meter, q)., and the actual peak-to-peak pulsation amplitude, Opa . 
These two effects are 

commonly termed "over-registration", OR, and "amplitude attenuation", AA, respectively. 

"Over-registration", OR, is defined by the indicated mean flow rate minus the actual mean 

flow rate as a percentage of the actual mean flow rate; and "amplitude attenuation", AA, is 

defined by the peak to peak variation of the actual flow rate minus the peak to peak 

variation of the indicated flow rate as a percentage of the peak to peak variation of the 

actual flow rate. In extreme cases over-registration error can be as high as 60% for gas 

flow meter (Cheesewright et al. 1996). These effects are expressed algebraically as follows: 

OR = 
V. -V. X100% Eq. 2.3 

V. 

AA = 
(0. -(0. X100% Eq. 2.4 

co. 

In industrial flows, there may be no obvious indication of the presence of pulsation, and 

the associated errors, because of the slow-response times and heavy damping of the 

pressure and flow instrumentation commonly used. Equipment such as filters or surge 

tanks may be installed at existing meter pipeline to suppress pulsations, however the 

implementation cost of this equipment is often rather expensive (Dowdell 1953), (Sparks 

1966). 

If the meter does not rapidly follow the flow rate, and the metering time is short, then 

erroneous mean flow measurements as well as time varying flow measurements could 

occur (Liu 1962). Thus the ability of a turbine flowmeter to respond rapidly to transient 

flow conditions is an important characteristic. Over the last thirty years, many 

investigators have studied the performance characteristics of turbine flowmeters in liquid 

and gas flows (Dijstelbergen 1966), (McKee 1992), (Atkinson 1992), (Cheesewright et al. 

1996), (Cheesewright and Clark 1997). However, there is not a great deal of experimental 

evidence on the dynamic response of small turbine flowmeters in pulsating liquid flows. 
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2.3 The Aims and Objectives of this Study 

The research aims are to investigate the effects of pulsating liquid flows upon the accuracy 

of small turbine meters and to make a contribution to the problem of reducing the errors 

introduced by pulsating flow conditions. The objectives for this research can be divided 

into 5 main parts; 

(i) To review published literature, investigating conditions which are known to 

produce errors both in gas and liquid flow measurements and to identify 

techniques, mathematically and experimentally, which can either predict or remove 

the influence of pulsating effects in liquid flow measurements. 

(ii) To predict any flow measurement errors in both mean and pulsating components 

when a turbine flowmeter is subjected to pulsating liquid flow, by using the 

knowledge gained from the review of published literature. 

(iii) To perform a series of tests on a range of flowmeters, of sizes from 6 mm to 25 

mm. 

(iv) To develop and apply signal processing techniques capable of quantifying the 

errors, and then correcting for the errors by applying the knowledge gained from 

the review of published literature, such as published models for meter reading 

correction. 

(v) To develop a Computational Fluid Dynamics (CFD) model to investigate the 

coupling between the flow and the rotor dynamics during unsteady flow, through 

integration of pressure (from skin friction) over the blade surfaces, the 

instantaneous resulting torque acting on the blades can then be determined and, 

hence, the corresponding motion of the rotor can be predicted. In addition to 

visualising flow behaviour around the blades, the simulation will allow independent 

evaluation of the assumptions underlying the techniques used to correct meter 

errors. 
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Chapter 3 Turbine Flowmeter in Steady Flow 

Though the aim of this research is to investigate the performance of turbine flowmeter in 

pulsating liquid flow, some fundamental issues of meter accuracy in steady flow must be 

recognized first. Theories leading to the equation of motion of turbine flowmeter in steady 

flow are presented. Finally, a summary of the variables affecting the turbine flowmeter 

performance characteristics is detailed. 

3.1 Turbine Flowmeter Performance Characteristics 

To represent the performance of a turbine flowmeter, a few characteristic terms (Gannon 

1994a) are commonly used and are outlined in this section. A typical performance curve is 

shown in Figure 3.1: 

UNEARITY BAND 
FOR METER"X% REPEATABILITY 

. BAND 

MAX MM 
FLOW 

NON L 
RANGE 

MINIMIX REPEATABLE 

TCROUE OVERCOMES aiM 

Figure 3.1 A typical performance curve 
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3.1.1 K-factor 

The factor, K, is the number of output pulses the flowmeter produces per unit of volume 

throughput. Hence, K is also the pulse frequency per unit of volume flow rate, expressed 

algebraically as shown in the equation shown below: 

K= fb/V Eq. 3.1 

Where f is the blade passing frequency of the flowmeter operating at a given volume flow 

rate, TV . 

3.1.2 Linearity and linear range 

The turbine flowmeter is a nominally linear device over a specified flow range. Variations 

in linearity are stated as the maximum percentage deviation from the average K-factor. 

Linear range is the minimum to maximum flow range (typically 1 to 10) over which the K- 

factor is constant within specified limits. 

3.1.3 Repeatability 

Repeatability is the allowable percentage deviation from the stated K-factor in repeated 

tests. It is a measure of the output constancy under a given set of flow conditions. 

Repeatability errors of turbine flowmeters are many times smaller than the linearity errors 

(Gannon 1994b). 
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3.2 Theory: Equation of Motion of the Rotor in Steady Flow 

3.2.1 Simple (ideal) model 

According to Baker (2000), a well-designed turbine rotor will generally have helical blades 

to match the axial and tangential velocity of the rotor at each radial position. Ideally these 

will cut smoothly through the flow in a perfect helix, i. e. the fluid entering and leaving the 

blade at the blade angle. In the diagram below, U,, is the ideal (uniform) inlet axial velocity; 

Ub is the ideal blade velocity at the point considered, at radius r, and the blade angle at the 

point considered is 1,.. U, 
T, 

is the ideal relative velocity of the fluid passing over the blade 

at this point. Clearly, Ub and U�d both vary with the radius of the blade. 

Ub Ux 
U=ý 

r -Ub URS 

Figure 3.2 Simple (ideal) vector diagram 

Using the basic velocity diagram shown in Figure 3.2, the inlet velocity can be derived as: 

Ux = Ub / tan A Eq. 3.2 

Where Ub = CO r, CO is the angular velocity of the turbine rotor. If N is the total number of 

blades of that rotor, andfb is the measured frequency of blade passing, then Co = 2)r f, IN 

Upon substitution of Ua, the value off can be inferred from U,. as shown in the following 

equation: 

fb =N tan A Üx / 27rr Eq. 3.3 

As can be seen from Eq. 3.3, with no variation in axial velocity across the annulus, the 

value of ß changes with radius to accommodate the profile across the pipe. Therefore, the 

correct blade angle distribution will be, 

tan fl,. /r= constant Eq. 3.4 

In general, the blade angle is held between 20° and 50° to the flow. 
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However, friction must exist and the whole equation of motion of rotor would become 

quite complex in a realistic situation, whether friction is due to fluid motion or mechanical 

influence. The next section reviews the various friction parameters that would exist in a 

turbine meter "system. 

3.2.2 Zero net torque condition in steady flow 

For a turbine flowmeter in steady motion, the net torque, TN, acting on the rotor must be 

zero, that is: 

TN =Td -T, =0 
Eq. 3.5 

Where Td is the driving torque and T, is the resistance drag torque. The resistance drag 

torque is a sum of fluid drags (see Figure 3.3) and non-fluid (mechanical) drags which the 

rotor encounters when rotating 

V 

Figure 3.3 Various torque terms in a turbine flowmeter when in motion 

(rsukamoto and Hutton 1985) 

Tsukamoto and Hutton (1985) and Cheesewright and Clark (1996) gave components of the 

resistance drag torque and these are listed below; 

T, - blade tip clearance drag torque (Tsukamoto and Hutton 1985); 

TB - bearing retarding torque (Tsukamoto and Hutton 1985); 

T,, - hub disc friction torque (Fsukamoto and Hutton 1985); 

Tb - rotor hub fluid drag torque (Tsukamoto and Hutton 1985); and, 

T, - magnetic pickup retarding torque (Cheesewright and Clark 1996). 

Hence T, is mathematically expressed as: 

Tr=T, +TB+T,, +Tb+T,, Eq. 3.6 
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According to Baker (1993), torque could be obtained from a mathematical representation 

as shown below: 

Torque = ShearStress x areax radiusx f(Re) Eq. 3.7 

At sufficiently high speed, Tsukamoto and Hutton (1985) gave the first three terms on the 

right of Eq. 3.6 to be approximately proportional to ol. For instance, the equation for 

bearing drag was: 

TB =yr(rýw)ZXri2XBXf(Reb) Eq. 3.8 

Where p is the fluid density; rj is the radius of journal bearing; B is the hub height; and Reb 

is the local Reynolds number based on the radial clearance of the bearing. From the work 

of Tsukamoto and Hutton (1985), the dependence on angular velocity, w, ranges from Ta 

w to Ta uß-8. At low speeds the dependence was in the range co to &15, whilst at high 

speeds the dependence was from a1'S to o1-8. 

For the hub fluid drag, Tsukamoto and Hutton (1985) expressed it as: 

Tb =A, x rb x sin ßb x (P / 2)w, Xf (Reb ) Eq. 3.9 

Where Ab is the total surface area of the hub (excluding the parts which are attached to the 

blades); rh is its radius; fib is blade angle at the hub and W. is the relative velocity at the hub. 

Cheesewright and Clark (1996) stated that the magnetic pick-up drag, Tom� would be more 

significant in gas flows, where the rotational inertia of the fluid passing through the meter 

was negligible. They investigated the effect of T. on a range of small turbine meters (6mm 

to 15mm) in gas flow. From the same calibration tests done on the same meter with and 

without the presence of pick-up, it was found that the magnitude of T. was most 

significant at meter starting up from rest, and it would decrease as the flowrate increased. 

Hence, they gave the simplest model of T. as shown below: 

Tý = T_, o sin(NB) Eq. 3.10 

Where T,, 0 is the torque that the rotor has to overcome to start rotating from rest, N is the 

number of blades, and 6 is the measure of the angular position of the blade relative to the 

pick-up (note that [o = dO/dt ). Though the effect would vary from different design and 
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material, it was also concluded that Tm� generally increased as the meter size decreased, 

within the products of any particular manufacturer. 

It is worth noting that, depending upon the effect the researcher is trying to demonstrate, 

the derivation of the net torque condition (as described in Eq. 3.5) can vary. For instance, 

some researchers ignored the blade fluid drag component (e. g. Jepson and Bean 1969) and 

some ignored the magnetic pick-up drag component (e. g. Xu 1992b). 

For the evaluation of the driving torque, T, researchers have used either the momentum 

approach or the application of airfoil theory. In the momentum approach, the driving 

torque is expressed in terms of a change in the angular momentum of the fluid passing 

through the blade row in a cascade of blades. In the airfoil approach, lift and drag 

coefficients are used to determine the fluid forces acting on a differential-area element of 

the blade, and then integration from blade root to tip is performed to obtain the driving 

torque. The following sections review these approaches in detail. 

3.2.3 Rotor driving torque evaluation - "Momentum" model (based on Cascade theory) 
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Cascade theory (eg. Lee and Karlby (1960), Lee et al. (1975) and Minemura et al. (1996)) is 

a model to solve the motion of rotor in a 2-dimensional aspect. Since the rotor of the 

turbine flowmeter is an axial flow type, a cascade is developed on a cylindrical stream 

surface with an infinitesimally small thickness dr at some radius, r, of the blade. This 

produces an infinite array of blades, as shown in Figure 3.4, with A being the blade angle 

at r. 

Consider the turbine being steadily rotated in a synchronous condition by the fluid having 

the velocity diagrams for blade elements at radius r shown in Figure 3.4. The inlet fluid 

velocity U, is assumed to be uniformly distributed due to the inlet flow straightener and 

neglecting the presence of a boundary layer. The inlet velocity angle, 4;,,, is not the same as 

the blade angle ßT; this hypothesis is based upon the numerical work results obtained by 

Thompson and Grey (1970) on a 50mm meter, that the zero net torque situation happens 

when the blade incidence angle, f =A, -Oi,, incidence direction assumed, Baker 

2000), is at around 0.08°. 

The outlet flow angle, o, 
,, 

is assumed to be aligned with the blade angle ß, at the 

measurement point, and hence, it has a difference in tangential velocity at outlet from that 

at entry, JUe. From the angular momentum law, the elemental driving torque d[Tý],, 
OII, ,,, ý 

induced on the blade elements of the rotor by the fluid within the annular stream tube of 

width dr between inlet and outlet at radius r is: 

d (Teý, 
ýýý = Pr? UedV Eq. 3.11 

Where dV is the volume flow through the stream tube. The above equation is only true 

for the blade elements of radial length dr, in which AUe varies with radius. It is apparent 

that for any practical meter with a reasonable blade height, conditions must vary 

considerably from the root to the tip of the blade; as a result, the performance of the meter 

will depend upon some average conditions. Therefore it is assumed that the average 

condition exists at the root mean square radius (Lee and Karlby 1960), 7, of the hub and 

tip radius; (rb and r, respectively), i. e., 

rbZ + r, 1 
E9" 3.12 r= 

2 
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With the further assumption that the blade-tip clearance is small in comparison with the 

length of the blade, now summing over the entire cross-section, resultant driving torque, 

[TýJ , ,,, _becomes 

PJ[t U9 ]p Eq. 3.13 

where [DUB ]; is the difference in outlet tangential velocity at mean radius F. 

From the vector triangle shown at outlet in Figure 3.4, since 0., = fi, at the measurement 

point, let r be r and we have 

[AUB ]7 = (U, tan ß; ) - (Fw) Eq. 3.14 

Now Eq. 3.13 becomes: 

P ((Ux tan ß, )-(rw)] Eq. 3.15 

Since U,; = VIA, A being the actual mean cross-sectional area of the effective annular 

flow passage at the rotor blades: 

LTdlnrarexA, 
-0 

V ZrZCC%A 

This type of model has two assumptions: 

(i) The outlet flow angle is the same as the blade angle 

(ii) Mean geometric parameters of rotor are used for evaluation. 

Eq. 3.16 

Hence, from the momentum approach, the zero net torque condition for steady flow 

would be: 

TN =I1'dL_eH , -Tr 
{P>22[(tanßA, 

J-(w)]} 
T` =0 Eq. 3.17 
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3.2.4 Rotor driving torque evaluation - "Airfoil Theory" model 

Blows (1980) used an alternative approach to solve for the driving torque; he used lift and 

drag coefficients to characterise the cascade behaviour as shown in Figure 3.5: 

! )r 
. 

U 
dFr A 

dD 
Cdr 

UmI2 dUe 

Figure 3.5 Hydrodynamic forces of blade for a general radius, r (steady flow model) 

A blade element of length dr, at radius r, experiences aerodynamic forces when the fluid 

goes through. The lift force, L, is a component of the total aerodynamic force on the 

blade, which is perpendicular to the direction of the oncoming fluid seen from a reference 

frame moving with the blade. The drag force, D, is another component of the total 

aerodynamic force on the blade, which is parallel to the direction of the oncoming fluid 

(Massey 1988). 

The lift and drag forces are given per unit length of the blade by 

Lift Force, 
dL = d'yy cos yn + dF, sin y. Eq. 3.18 

Drag Force, dD = dF cosy,,,, - dFy, sin ym Eq. 3.19 

And the lift and drag coefficients, C1 and C� respectively are as follows: 

L 
Eq. 3.20 Cl, = 

pcl (U,. /cosy,,, 

CD =D )2 X pc(u, cos7n 
Eq. 3.21 
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where c is the chord, � 
is the mean flow angle, CL is the lift coefficient, CD is the drag 

coefficient and P is the factor which allows for the change in CL between an isolated 

aerofoil and a cascade. Full derivation of the terms (PCI) can be found in Baker (1993), 

and the values of CL and CD can be obtained from available numerical modelling data such 

as the work presented by Xu (1992a) and Wallis (1961). According to Blows (1980), the 

driving torque is derived from the lift component less the induced drag component. If N 

is the total number of blades, the total driving torque of the rotor is 

1 iUx2 

--(PCL - CD tan y, � )dr Eq. 3.22 [Ta J 
ar =2 PNc J 

cos Y. 

However, there is no experimental evidence included for comparison with Blows' model. 
Also, Jepson and Bean (1969) and Thompson and Grey (1970), both published papers 

which show a very similar equation with a slightly different constant (P). For instance, 

Jepson and Bean's equation (1969) neglected the component of drag forces, based on the 

assumption that the rotor space/chord ratio is greater than unity where the cascade effect 

could be ignored. 

This type of model has two assumptions: 

(i) The outlet flow angle is the same as the blade angle 

(ii) Increasing the blade number should give a proportional increase in torque, but 

increasing the blade number will eventually result in changes in the lift and drag 

coefficients used in the numerical integration, in which the coefficient values are 

usually based on empirical data. Also, Xu's (1992a) theoretical results showed that 

both the lift and drag coefficients vary significantly from the blade hub to tip. In 

the hub section, the cascade space is small, so both lift and drag forces are very 

much lower than those at the tip section (Xu 1992a). 

Hence, from the airfoil approach, the zero net torque condition for steady flow would be: 

2 

TN=[T4]1 -Tr =1 pNcry rU"-(PCL 
-CD tan ym)dr -Tr =0 Eq. 3.23 2 

Th cosy. 
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3.3 Factors affecting the Accuracy of Turbine Flowmeter in Steady Liquid Flow 

Accurate flow measurement using a turbine flowmeter requires knowledge and control 

over every parameter which may influence its performance (Nicholl 1977). A number of 

researchers have published reviews on the different variables affecting the driving torque, 

such as the effects of velocity profile, retarding torques, blade interference and meter 

geometry. This section reports some of these well known parameters and outlines their 

effects on the various drag terms listed in Section 3.2.2. The parameters reviewed here can 

be divided into three main categories: "design and manufacturing"; "fluid" and 

"installation". 

3.3.1 Design and manufacturing variables 

3.3.1.1 Blade - edge effects 

Figure 3.6 A two dimensional representation of a rotor blade 

Most turbine blades are manufactured as the sharp edge type as shown in Figure 3.6, and 

this has a direct influence on the meter calibration, as it alters the effective blade angle and 

hence the angle of attack. Also, if burrs exist on the blade surface, it may change the 

effective blade area. Nicholl (1977) indicated that a chamfered blade edge meter would 

drop the K factor by about 0.6% as compared to a normal sharp edge meter. He also 

reported that a maximum of 7% increase in the K factor could be recorded if "sufficiently 

large burrs" were present on the blade edges (both leading and trailing). "Note that the 

burrs were artificially produced for this test and that it is unlikely that burrs of such a size 

would be present on a final rotor assembly" (Nicholl (1977)). The actual size of the burrs, 

or the relative size of burrs to blade size, was not stated in his paper. The linearity error 

could deteriorate to ± 0.6% as opposed to ±0.2% for the normal blade without burrs. 
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3.3.1.2 Surface finish of the rotor blades 

One of the several resisting torques that the turbine meter has to overcome is the fluid 

drag through the blades. For large meters, the fluid drag is more significant than the 

mechanical drag effects of the bearings. Blade fluid drag consists of pressure and skin 

friction drags where the latter depends on both the Reynolds number and surface finish. 

Nicholl (1977) showed that a polished blade surface would drop the K factor curve by 

0.5%, with linearity unaffected. 

3.3.1.3 Tip clearance 
Tan and Hutton (1971) highlighted the importance of leakage flows in the tip clearance. 

They indicated that the change in velocity profile was most significant near the wall. A 

meter with a small tip clearance showed a drop in meter factor with decreasing flowrate 

since there was an increase in the negative angle of attack towards the tips of the blades, 

with a resulting rise in drag. Conversely a large tip clearance meter responded to the 

relatively higher velocity at the blade tip and hence comparatively raised the driving torque, 

resulting in a higher meter factor. Their findings agreed with the investigation on the radial 

distribution of incidence angle by Salami (1984), where he found that the blade tip sections 

in the fully developed upstream flow acted as a pump. "This pumping action gives big 

torque and energy losses which must be overcome by the inner part of the blade acting as a 

turbine. An increase in tip clearance leads to a decrease in the pumping action region near 

the blade tip section, and hence results in a rise in meter factor. " (Tsukamoto and Hutton 

1985) 

3.3.2 Fluid variables 

3.3.2.1 Viscosity 
Variation in the viscosity of the passing fluid will not only affect the upstream velocity 

profile, but also the various drag losses through the meter (Nicholl 1977). As viscosity 

increases the boundary layer tends to remain laminar from the leading edge. Hence, to 

maintain equilibrium due to varying viscous effect on the blade, the angle of attack changes 

which in turn affects the K-factor. The usual effect of viscosity on the performance 

characteristics is to decrease the linear range (Watson 1977). 
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3.3.2.2 Effect of temperature on the density of the fluid 
Altering the temperature of the passing fluid will alter its viscosity, and for gases, density 

will also change. Changes in fluid density will change the meter K-factor since the available 

torque for the rotor of a turbine meter is directly proportional to the fluid density (Nicholl 

1977), as can be seen in Eqs. 3.16 and 3.22. 

3.3.3 The effect of installation variables 

3.3.3.1 Upstream flow condition and swirl 
According to Shafer (1962), turbine meters can be influenced to a varying extent by the 

upstream flow pattern. Jepson and Bean (1969) produced data indicating a shift in meter 

K-factor of about +2% for a change in velocity profile from turbulent to flat. However, 

this was for a meter with a small hub-to-tip ratio. Tan and Hutton (1971) observed that 

meters with a larger hub-to-tip ratio are less sensitive to profile. Salami (1984) confirmed 

that a commercial meter with a hub-to-tip ratio of about 0.5 and a tip clearance of 10% was 

almost insensitive to changes from uniform to turbulent profile. The particular upstream 

disturbance which has the greatest influence on meter accuracy, is rotational flow or swirl. 

It will change the angle of attack between the fluid and the turbine blades with a resultant 

effect upon turbine speed at a constant flow rate. Salami (1985) showed that a typical 

change of K factor value due to swirl would be about 2.5% per degree of swirl. One 

common practice to minimise swirl is to install a flow straightening section in the upstream 

pipework or within the meter, upstream of the rotor. 

3.3.3.2 Cavitation 
Cavitation is the phenomenon of a liquid boiling due to locally low pressure. With the 

onset of cavitation, the K -factor of the turbine meter begins to rise (Kalivoda 1998). The 

curve will rise because the vapour is usually moving at a high velocity and keeps the rotor 

moving as if the entire flow was the process liquid. The release of vapour can be 

minimised by maintaining sufficient back pressure immediately downstream (approximately 

four pipe diameters) of the meter. For low vapour pressure liquids, a recommended 

formula for calculating this required back pressure is(BS 6169: Part2: 1984): 

Pm, = 2zP+1.25P, Eq. 3.24 

where P; 
� 

is the minimum allowable back pressure downstream of the meter, AP is the 

pressure drop across the meter at maximum flow rate, and P,, is the absolute vapour 

pressure of the liquid at maximum operating temperature. 
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Chapter 4 Turbine Flowmeter in Unsteady Flow 

This chapter will start by reviewing existing theoretical models which characterise the 

motion of the meter rotor in unsteady gas and liquid flows; the factors which influence the 

performance of the meter in unsteady flow will be then identified. 

When the behaviour of the meter under unsteady conditions is considered, two different 

aspects need attention. First, the transient response of the instrument to "step" changes is 

important when it is to be used in control loops (e. g. in batch flow operation), and 

secondly the behaviour in response to large-amplitude pulsations should be evaluated. 

Hence the latter part of this chapter covers these two aspects based on the previous work 

published on the rotor behaviour: for the step response in liquid flows; and the response to 

pulsating flow, for both gas, and liquid flows. 

4.1 Theory: Equation of Motion of the Rotor in Unsteady Flow 

Following on from the steady flow equation reviewed in Section 3.2, if the flow is pulsating 

sinusoidally in time with relative pulsation amplitude of a,,, the time dependent actual 

volume flow rate, V, (t) 
, 

is given by V, (t) = Va (1 +ap sin 27f 
pt) and ap= rpa 

! 217, (as 

stated in Section 2.2). When the meter is subjected to V, (t), the rotor responds and 

rotates with angular velocity 4t), and the meter indicated volume flow rate, V. (t), can 

then be evaluated. It is of interest to investigate this time dependent response of the meter 

to the driving flow rate, i. e., what is the relationship between the true flow V, (t) and the 

meter indicated flow V,,, (t) 
. 

To investigate the motion of the rotor in unsteady flow, researchers have used various 

methods such as aerofoil theory (Ower 1937), (Grey 1956), and the change in angular 

momentum of the fluid upon entering and leaving the rotor zone (Dijstelbergen 1966), 

(Atkinson 1992), (Cheesewright et a! 1994). (See Section 3.2 for details) 
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In the following theoretical description of dynamic response, the momentum approach is 

used. 

Clarification; 

The following theory assumes that the meter has zero resisting torque and hence there will 

be zero driving torque under steady flow conditions, i. e. Eq. 3.16 now becomes: 

[TAý, 
Rapntumýr<<uýy> 

= PU, AF(U, tan fl, 
-w 

) =0 Eq. 4.1 

This implies that U, tan, Qý = 69F, i. e. the relative velocities at both the entrance and exit 

are aligned with the blade angle in steady flow condition. 

Figure 4.1 Velocity vector diagram for the mean radius, i (unsteady flow model) 

For a typical meter rotor, since the angle of the blade varies with radius to accommodate 

the velocity profile across the pipe, it is therefore assumed that the average flow condition 

around the blade exists at the root mean square radius, 1 (as mentioned in Section 3.2.3). 

The same assumption applies here and the cascade diagram shown in Figure 4.1 is for the 

root mean square radius F, with the helix blade angle Qr at this radius. From the velocity 
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vector diagrams shown, the incidence angle of the fluid entering the rotor zone changes 

periodically due to the pulsating axial velocity, i. e. U,. (t), which is assumed to be uniformly 

distributed due to the inlet flow straightener and neglecting the presence of a boundary 

layer. Note that this incidence angle is assumed to be zero if the meter is operating under 

steady flow condition. The fluid leaving the rotor is assumed to have become aligned with 

the blade angle, and hence, has a difference in tangential velocity at outlet from that at 

entry, [, &Ue ]; (t) 
. 

Assuming the average condition exists on the mean radius, 

[DUB]r(t) would be given by: 

[1U9]; (t) = [Ux(t) tan ß. -]- [ruß(t)] Eq. 4.2 

In the following sections, we replace the notation for V' 
, 
(t) 

, 
V,,, (t), 4t), U,, (t) and 

[DUe ]; (t) by V, ,VW, U, r and [AUe ]; respectively, for convenience. 

4.1.1 Low-density gas flows 

Assuming the inertia of the fluid to be negligible for low-density gas flows, the rate of 

change of angular momentum flux of the fluid is considered to be equal to the torque, Td 
, 

and then the equation of motion for the rotor is: 

Td =IR 
dt 

_ DUX Ar(U,, tan ß; - 69F) Eq. 4.3 

Where A is the annular area of the meter. 

By substituting (i) actual volume flow rate; 

Va = U. 
xA Eq. 4.4 

(ii) meter indicated volume flow rate (inferred from the frictionless 

rotor assumption made under steady flow condition); 

V= ACdr / tan , 
8, Eq. 4.5 

(iii) the response parameter; 

b =IR Pr 2 Eq. 4.6 
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The equation of motion for the rotor (Ower 1937), (Grey 1956) can now be presented as: 

dv 
dt 

Eq. 4.7 

In the absence of any geometrical information for determining the value of the response 

parameter, b, we can obtain the value of b from a step response test of the meter. 
Rearranging Eq. 4.7: 

Zb 
dT'=dt Eq. 4.8 

Integrating to find the response time, tR, required for the rotor to accelerate from a speed 

corresponding to the initial flow V, - AV ; to that of the final flow TV ; where AV, is the 

size of the step change: 

fZb 
dv =` dt 

-V4V_ o -AL; 
V. 

Eq. 4.9 

It is obvious that the integration cannot be carried out to its upper limit, since it would take 

a mathematically infinite time to reach this limit. In order to avoid this difficulty, it is 

customary to compute the time required to reach a fraction [1- (1/e)] of the imposed step, 

where e is the base of natural logarithms. This required time is called the time constant, t, . 
The upper limit may thus be rewritten (Grey 1956): 

Eq. 4.10 
, 

ZT, ý -f j dt T 
L : -dV, u- V 

VViar 0 

For a step increase, the analytical solution is (Atkinson 1992): 

V. =T; '. -AV. exp[-t / t, ] Eq. 4.11 

The time constant I. is given by 

b 
tý -- Eq. 4.12 

Plotting 1n[(T V-V,, ) / dV ] against t produces a straight line (Atkinson 1992) whose 

gradient is equal to -11t, . 
Measurement of the gradient then yields a value for b as the 

steady flow after the step, TV 
, 
is known. 
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4.1.2 High-density gas flows and liquid flows 

Dijstelbergen (1966) argued that Eq. 4.7 was only valid for low-density gas flows because 

the inertia of the fluid in the rotor envelope was not included; his analysis was based on 

investigating the time constant when the flow was reduced to zero. If the flow was 

reduced by a step to zero, then, from the definition of t, in Eq. 4.12, the rotor would 

theoretically behave as having an infinite time constant and thus continue to rotate at its 

initial speed. In practice secondary effects such as bearing friction and viscosity would 

damp out the speed of the rotor. 

Indeed, Cheesewright and Clark (1997) showed that, when a step to zero flow was applied, 

the time constant was very large compared with the one for step to non-zero flow; this will 

be explained later in Section 4.3.2. When the turbine flowmeter is subjected to a step to 

zero flow in high-density fluid, the time constant generally appears to be considerably less 

than that which occurs in gas flow (Dijstelbergen 1966). For these reasons, Dijstelbergen 

attempted to distinguish the rotor response in low-density and high-density time-varying 

flows. 

For the derivation of the equation of motion, consider the rate of change in angular 

momentum between a radial plane at the entrance of the rotor and a corresponding plane 

at the rotor exit. The resulting torque, however, acts not only on the rotor but on the fluid 

between these two planes as well. In other words, the "gas equation" is only valid when 

the moment of inertia of the medium between the rotor blades is negligibly small 

compared with the inertia of the rotor. 

When the turbine meter is subjected to a step change to zero flow, the rotor is running 

down under its own inertia; there will be a body of fluid rotating with the turbine blades 

and the predominant resistance will be due to a "disc friction" between this fluid and the 

surrounding fluid (Cheesewright et al. 1996). Hence, for the case of high-density fluid 

flow, Dijstelbergen (1966) suggests that the total angular momentum will be the sum of 

that of the rotor and the liquid that it carries round. The torque required to accelerate both 

the rotor and the fluid surrounding it can be expressed as: 

dcrw r d(w-U, rtanß, /r)1 
Td -IR dt 

+ lI if 
dt J Eq. 4.13 
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Since Td is also equated to the change of angular momentum flux (Eq. 4.3), the "high- 

density fluid equation" now becomes: 

doi d(C) -Ux tan f3, Ir) 
IR 

dt 
+iIf 

dt 

]= 
pU,,. AF(U. tan fi; - 09F) Eq. 4.14 

Through substitutions of Eq(s). 4.4,4.5 and 4.6 into Eq. 4.14, Dijstelbergen (1966) 

revised the equation of motion of the rotor for the liquid flowmeter as follows: 

b(1+I )ý 'ý +V V =V Z+blj ° 
IR dt "` ° IR dt 

Eq. 4.15 

If the ratio of inertias I fl, R is termed as A, then the above equation can be written as 

follows: 

b(1+A) 
V" 

+1V, =Vol +bA 
T/ 

Eq. 4.16 

According to Cheesewright and Clark (1997), the above equation explains the prediction of 

that, for t: 5 0, when V'. = V, the fluid passes straight through the turbine without ever 

having any component of angular velocity, whereas any condition involving T/. # TV, 

implies that if the fluid leaving the turbine is aligned with the exit angle of the blades, then 

it must have a component of angular velocity. Since there are no external torques, 

conservation of angular momentum can only be satisfied by an exchange of angular 

momentum between the rotor and the fluid. 

As mentioned before, the value of b (response parameter) in Eq. 4.16, can be obtained 

from geometry by using Eq. 4.6, (b 
=IR/ pr2); and if it is assumed that only the fluid 

within the rotor envelope contributes to If, then, by treating this part of fluid as a solid 

body, the value of A can also be obtained from geometry. 

However, if a better estimation of 2 (= If /IR )is needed, the value of b(1 + A) could be 

obtained from a step response test of the meter. Subsequent to the work published by 

Dijstelbergen, Cheesewright and Clark (1997) modified Dijstelbergen's approach to 

produce a formal mathematical solution to Eq. 4.16, for a flow subjected to a step change 
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from V, to V, -AV,. According to Cheesewright and Clark (1997), the flow indicated 

by the meter, J' 
,, will then be as shown below (assuming the leaving fluid is aligned with 

the exit blade angle): 

-DV A V, = VQ - H(t)OV, 1- ex - Eq. 4.17 
b 1+ý 

where H(t) is a unit step function at t=0. Rearranging: 

V' -vQ _ 
vQ -ev i 

AV, -exp -b 
(1+Al1 

Eq. 4.18 

Thus the empirical representation assumes that when a `step' change in flow is applied to a 

turbine, the whole response to the `step' is exponential with the time constant given by the 

meter characteristics and the true flow rate after the `step': 

[t' = b(1 + A)/(VQ -Aria )] Eq. 4.18a 

By using the above equation, a numerical value of the time constant can be obtained by 

plotting in[(V,, -V, 
)/ AV, ] 

against t. The quantity b(1 + A) could then be obtained from 

the slope since V. -AV, (the steady flow after the step) is known. With the value of b 

obtained from geometry, a better estimation of A could then be made from the step test. 

According to Cheesewright and Clark (1997), in practical situations true step changes are 

impossible and Eq. 4.17 can only be considered as a mathematical solution rather than a 

practical solution, as the flow must separate off the blade. The following paragraph 

explains this flow separation phenomenon, taken from Cheesewright and Clark (1997). 

"The maximum rate at which the volume flowrate imposed on the meter can be changed 

depends only weakly on the characteristics of the meter, being primarily dependent on the 

forces and pressures in the external device that produces the change. The exchange of 

angular momentum between the rotor and the fluid is controlled by the forces of 

interaction between the turbine blades and the fluid, and for fast, externally imposed, 

changes in flowrate, the rate at which the exchange proceeds will not be dependent on the 
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rate of change of flow. This conclusion implies that there is likely to be a short period 

immediately following a "step change" in the flowrate when Eq. 4.16 is not strictly 

applicable. In physical terms, this is likely to correspond to the fluid leaving the turbine at 

an angle other than the exit angle of the blades. Equally, it seems probable that this 

corresponds to stall and flow separation when the problem is looked at in terms of blade 

dynamics, as in the work of Jepson (1964). " (Cheesewright and Clark 1997). 

Both of the above models, ("low-density gas" and "high-density fluid"), are based upon a 

number of assumptions: (1) the fluid is perfectly guided between the blades, (2) the fluid is 

aligned with the blade angle when it leaves the rotor zone; and (3) the rotor is frictionless, 

i. e. other resistance torques mentioned in Section 3.2.4 are negligible. The first two cases 

will be reviewed in Chapter 8 to determine the details of fluid behaviour around the blade 

in pulsating flow. 

4.1.3 Resistance torques included in the "Gas Equation" 

In previously stated theories, regardless of whether the flow was steady or unsteady, the 
flow was always assumed to be aligned with the blade angle at the rotor exit. In 

Section 3.2.3., when resistance torques are not negligible, the flow was assumed to enter 

the rotor zone at a different angle to the blade angle, but it becomes aligned with the blade 

angle when it leaves. An alternative assumption that could be used is that the relative flow 

enters the rotor zone at the blade angle, but leaving at a different angle to the blade angle. 

This would be based on the argument of some fluid deflection at outlet, due to the limited 

fluid guidance ability of the rotor blading (Lee and Evans 1970). 

Hence, even if a steady flow is assumed to be entering at the blade angle, there would now 

be a difference in tangential velocity at the outlet if the flow is deflected. This hypothesis 

leads back to the existence of resistance torques in the steady flow condition. The driving 

torque Td is slightly modified into the following form to account for the fluid deflection 

due to resistance torques (Lee et al. 1975): 

Te=pUxAr(U" tanfij 
1+n Eq. 4.19 

Where jj is the blade deviation factor. It represents the percentage loss of fluid deflection 

at outlet due to the limited fluid guidance capacity of the rotor blading (Lee and Evans 
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1970). For perfectly guided flow, i. e. if the relative flow leaves at the blade angle, 77 would 

be zero. Lee and Evans (1965) gave 11= 0.2 (cf. Lee and Evans 1970) as used in the above 

equation, based on the comparison of theoretical analysis with experimental data on meter 

accuracy. 

To account for resistance torques for unsteady flow conditions, the transient equation (Lee 

et al. 1975) is 

IR 
ddt_ 

Td -T , 
Eq. 4.20 

Lee et al. (1975) gave an equation for T,: 

T, =Tf +T� Eq. 4.21 

Where Tf is the fluid drag and T. is the non-fluid drag, assumed constant. Lee et al 

assumed that Tj could be replaced by a corresponding total fluid force, Ff , acting at the 

root mean square radius of the rotor, i. e. 

TJ = Fj Eq. 4.22 

Introducing a dimensionless fluid drag coefficient Cf for Ff using rotor tangential velocity 

rl) at the blade section at radius, r: 

Ff 
Cf 

(P/2)A(Fw)2 Eq. 4.23 

If T. is assumed to be constant, through substitutions of Eq(s). 4.21,4.22 and 4.23 into 

Eq. 4.20, Lee et al (1975) then obtained: 

IR 
dw 

= pUxA-(Ux tan, B; -oiF) 
- 

(pAr3C 
fw2) T. 

dt 1+77 2 Eq. 4.24 

Then, through substitutions of Eq(s). 4.4,4.5 and 4.6 into the above equation, Lee et al's 

equation is now modified into the following form: 

dy"_Z (1 + ? j)C f tan ß, 
2_ (1 + ij)AT� b(1 + rJ) dt - VQ -VV-2 

tan (/J) 
Eq. 4.25 

f 
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4.1.4 Resistance torques included in the "High-Density Fluid Equation" 

The same procedure could be taken here to include resistance torques for Eq. 4.14: 

IR 
dt 

+ 
[II d(w-U ß /F)] 

- 

_ pUxAr 
U" tan fiF -WF 

(PAF3CIwz) 
-T� 

Eq. 4.26 

1 +ii 2 

Using the same substitutions as before, the above equation becomes: 

b(1+'»(1+A) 
w'" 

-b(1+j7)ß a 

=V -VV -(1+rl)Cfmaß. 2_ (1+n)ATT Eq. 4.27 
a2 a nr 2 

tan, B. p 

All notations are as previously stated. 

Now Eq. 4.27 more closely represents the real rotor behaviour when the meter is 

subjected to pulsating liquid flow. However, there has been no experimental evidence to 

validate this equation and most of the published work from previous researchers (reviewed 

in the next section) were usually based on the frictionless equations stated in Section 4.1.1 

and 4.1.2. 

Therefore, it was considered that a Computational Fluid Dynamics (CFD) model would 

allow the investigation of the coupling between the flow and the rotor dynamics during 

unsteady flow. If the CFD model could correlate with experimental results, subsequently, 

an evaluation could be made to show the difference between Eqs. 4.16 (without friction) 

and 4.27 (with friction). As a result of the lack of correlation between experimental 

results, to be reviewed in Chapter 8, the inclusion of resistance torques in the "High- 

Density Fluid Equation" was not fully evaluated analytically. 
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4.2 Performance Characteristics in Unsteady Flow 

4.2.1 Response parameter, b 

The response parameter (b) of a turbine flowmeter determines how quickly the meter 

responds to changes in the flow rate and it depends upon: the inertia of the rotor (Is), the 

density of the fluid and the geometry (F - the root mean square radius between the blade 

hub and blade tip) of the rotor. The mathematical expression is as given in Eq. 4.6: 

b= IR/ pr 2, 
usually expressed in the unit of m3. 

4.2.2 The influence of fluid density 

As mentioned in Section 2.1.6, the dynamic response of the meter depends upon the 

density of the fluid. The most common distinctive features for gas turbine meters are the 

large hub and small blades designed to create a high flow velocity and a high torque on the 

rotor (Baker 1993). As explained in Section 4.1, in low-density gas flows, the angular 

momentum of the gas is treated as negligible compared with that of the rotor. If high 

frequency pulsations are present, particularly in gas flows, then the meter's lack of 

responsiveness will cause it to over-register the mean flow rate as described in Section 2.2. 

Because liquids have a higher dynamic viscosity than gases, the shear stress applied to the 

blades by liquid flow is also more significant than gas flow. 

4.2.3 Ratio of inertias 

The ratio of the fluid inertia enclosed within the rotor envelope, I., to the rotor inertia, IR, is 

represented by A=IJ /I 
R. This is another parameter which contributes to the response 

characteristics, as described in Section 4.1.2, it is particularly important to the meter 

operating in pulsating liquid flow. The term 1f is calculated by assuming the fluid is 

perfectly guided between the rotor blades, and, hence, that it can be treated as a solid body 

within the rotor envelope. 
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4.2.4 Time constant 

The transient response of turbine flowmeters may be loosely characterised by the time 

constant of the meter (including the rotor and the coupled fluid) when a step change is 

applied to the fluid flow. If an instantaneous increase were to occur in the flow rate, the 

rotor will accelerate from a speed corresponding to the original flow rate, to a speed 

corresponding to the new flow rate. The time required to accelerate the rotor to 

approximately 63% of the change in speed is regarded as the time constant, t, The smaller 

the time constant, the faster the rotor response to change in flow. Typical values vary with: 

the size of the meter; the associated inertia of the rotor and inertia of the fluid; and the 

blade angle employed (Watson 1977). In addition, time constant is flow rate dependent, 

with V being the steady flow rate after the step: 
[t, 

= b/V ] for low density gas flows; or 

[t, = b(1 + 2)1V ] for high density fluid flows. 

According to BS ISO TR 3313 (1998): 

(i) For flowmeters in the range of 2.54 cm (1 in) to 10.16 cm (4 in) in diameter, for 

measuring gases flowing at near atmospheric pressure, typical time constants are of 

the order of 1 s. 

(ii) For flowmeters in the range from 1.91cm (3/4 in) to 5.08 cm (2 in) in diameter, for 

measuring water, typical time constants are of the order of 1 ms. 

It is thus apparent that errors due to pulsation are much more likely to be significant with 
flowmeters measuring low pressure gases than with flowmeters measuring liquids. 
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4.3 Step Change in High-Density Fluid Flows 

This section reports the different phenomena observed in experiments to investigate: "step 

from zero flow", "step to zero flow" and "step change in flow". For applications in batch 

flow measurement, the process involves the start up and shut down of valves or pumps, 

hence the combinational effect of "step from zero flow" and "step to zero flow" on 

turbine flowmetering is of particular importance. On the other hand, in other applications 

such as aerospace, the dynamic response of small liquid turbine meters is of particular 

importance when the meter is to be used in the fuel flow control loops. Cheesewright and 

Clark (1997) quoted that the latest specification in control systems for aircraft gas turbine 

engines required a guaranteed frequency response up to two hundred Hertz. 

4.3.1 Step from zero flow 

Grey (1956) used potential flow theory to estimate the lift forces acting on a single blade 

during a speeding up process (drag forces were assumed to be negligible). He gave 

numerical values of the time constant (tt) for a range of meter sizes for liquid flows and 

showed that in the range of meter diameters, 12-150mm, for the flow range of 5 to 

50 gal/min (approximately 0.38 X 10-3 m3/s to 3.8 X 10-3 m3/s), the values was in the range 

of 1-9ms; he also showed that the time constant decreased with increasing flow rate. 

Further, Grey suggested that an increase in blade angle would lead to an increase in the 

time constant. 

Higson (1964) reported an investigation on the transient response of a single 20 mm liquid 

flowmeter designed for use in metering aircraft fuel in the flow range 8 gal/hr to 80 gal/hr 

(approximately 0.01 X 10"3 m3/s to 0.1 x 10"3 m3/s). Using water as the test liquid, within 

the specified flow range, his experiments showed that for a step change from zero, t, is 

between 6-110 ms. He also observed that the time constant decreased with increasing flow 

rate. For the rotor to return to equilibrium, it took approximately 4t, . However, Higson 

neglected friction effects such as the bearing friction for this evaluation of t, 

Jepson (1964) commented that Grey's theoretical approach was inappropriate: firstly, it 

neglected the reductions in lift and drag coefficients due to the finite spacing of the blades; 

secondly it neglected the effect of stall and flow separation, due to the high values of 
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incidence over the initial part of the speeding-up process. Hence, Jepson (1964) formed an 

equation to calculate the change in rotor speed for a step increase in the flow rate starting 

from zero, in which the torque was calculated from lift and drag coefficients. His 

theoretical results for response time agreed closely with those obtained by Higson. 

Similarly, Jepson also assumed that: bearing and other non-aerodynamic drags could be 

neglected, and that the exit angle was the same as the blade angle. 

However, later, Jepson (1967) questioned the accuracy of the experimental results obtained 

by Higson. Higson used the peak voltages generated as each rotor blade passed an 

inductive pick-up coil to measure the transient speed. The meter tested by Higson had 

only three blades, so that for the flow rates investigated, the probe could record a 

maximum of only two peak-to-peak voltages before the 63% rise time was reached. 

Therefore, inaccuracies would have occurred in estimating the time constant due to the 

small number of data points. 

As a result, Jepson (1967) developed a new experimental system to overcome the difficulty 

of low-bladed rotors, by fixing a small, ancillary, perforated drum to the rotor, a miniature 

photoelectric cell being used to indicate the meter's position after applying the step-input 

in flow. The perforated drum had 12 holes, so in one revolution, 12 pulses would be 

emitted from the photocell. His investigations were based on 2 open-channel water 

meters, one had two blades, and the other had three blades. His experimental results 

showed that the measurement of time constants, in both air and water, were to an accuracy 

of better than ±3% compared with method of using the rotor alone. 

4.3.2 Step to zero flow 

In a step change to zero flow, as Baker (1993) suggested, the fluid between the blades will 

be subject to some re-circulation, but will essentially be carried around by the rotor, and so 

will exact much lower retarding forces (due to viscous friction from the surrounding 

stationary fluid) than those which Jepson (1967) showed for the accelerating rotor. 

The step response tests reported by Cheesewright and Clark (1997) did not include start-up 

from zero but they did include steps to zero, and in that case, it was demonstrated that the 
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whole mechanism of the response was different because the forces on the turbine rotor are 

dominated by disk friction effects rather than by fluid dynamic forces on the blades. 

4.3.3 Step change in flow 

Shafer (1962) obtained a range of time constant values (2-5 ms) by imposing large steps 

(around 40% to 80% of the meter flow range) for 3 different designs of 12mm liquid 

meters, the liquid that he used in the investigation had a density of 760 kg/m3. 

Cheesewright and Clark (1997) carried out step tests on small (6-12.5mm) turbine 

flowmeters using water, and all the tests showed a generally exponential response to the 

step. Under small step changes, the time constants were of the order of a few milliseconds, 

which agreed well with the work by Higson and Jepson, respectively. Also, Cheesewright 

and Clark implemented the mathematical equation (Eq. 4.17) described in Section 4.1.2. 

into their experimental data, and by using the value of b estimated from rotor geometry 

(which compared well to the value obtained from air step tests on the same meter), the 

experimental results then allowed an estimation of A, which was approximately 1 for one of 

the meters investigated. 
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4.4 Pulsation Effects 

Flow pulsations may be induced in many machines, pipeline fittings and control operations 

used in industries, and these cause a tendency to over-registration of mean flow, OF, and 

amplitude attenuation, AA, in turbine flowmetering. The response of a turbine flowmeter 

to flow pulsation is discussed here. It can range from the ability to follow the pulsation 

almost perfectly (medium to large flowmeters in liquid flows) to an almost total inability to 

follow the pulsation (small to medium flowmeters in gas flows with moderate to high 

frequencies of pulsation). This latter condition is the worst case for a turbine flowmeter 

installation because not only does the flowmeter output not show significant pulsation but 

if the flow pulsation is of significant magnitude, the apparently steady flowmeter output 

will not be a correct representation of the mean flow. 

4.4.1 Low-density gas flows 

Lee et al. (1975) obtained the effect of sinusoidal pulsations by using a normalised form of 

Eq. 4.25. They validated their theoretical results on a single 100-mm turbine meter of 

pulsation frequency not higher than 18 Hz and pulsation amplitude of 10 % to 100 %. The 

theoretical values of over-registration error agreed well with the experimental values at the 

lower range of pulsation amplitudes. However, at pulsation amplitudes of 75% or higher, 

the theoretical values tend to under-estimate the experimental values (by as high as a 

discrepancy of 20% of the experimental over-registration error). Lee et al explained that 

this was due to the appearance of non-uniform inlet velocity profile as pulsation amplitude 

increased, whereas a uniform velocity profile was assumed in the theoretical approach. 

They also reported an experimental error of mean flow reading as high as 60% for 

pulsation amplitude of 75 % or higher. 

McKee (1992) investigated the over-registration errors of both a single- and a two rotor 

100 mm turbine meters of pulsation frequencies ranging from 1 to 75 Hz at pressure 

pulsation amplitudes not higher than 20%. A maximum of 1.5% of error was observed 

from his experiment. 
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Atkinson (1992) developed a software tool to predict the over-registration error of a 

turbine meter in pulsating gas flow. The tool is based on the equation of motion of the gas 

flowmeters b(dJ 
, 
/dt) = V, 1 - J; T J; / (Eq. 4.7). 

Assuming that any pulsations in the flow are regular and approximately sinusoidal, use of 

the software tool involves recording the turbine meter output signal and then calculating a 

correction factor. If the flow VQ = TV (1 +ap sin 27rfßt) in which pulsations are periodic 

with period T and the mean flow rate is VQ 
, then the following dimensionless variables are 

defined: 

T= 2if t Eq. 4.28 

F=V. /V, Eq. 4.29 

B= 22rbf 
p/ 

TV Eq. 4.30 

Eq. 4.7 is now normalised into the following form 

BdF+F(1+a, sinT)=(1+apsin T)2 Eq. 4.31 

Since the pulsation was assumed to be a pure sinusoidal waveform, Atkinson found F as a 

function of T. Integrating F(T) numerically over the interval At = T, a dimensionless mean 

meter reading F was obtained and the over-registration error, OR, given by: 

OR=F(T)-2x Eq. 4.32 

Atkinson produced a look-up table relating the amplitude and frequency of the pulsations 

in the meter output signal to the amplitude of the pulsations in the actual flow and hence 

to the meter error. However the look-up table provided was limited (Cheesewright et al. 

1996) in its range of amplitudes of the actual flow, because solutions to Eq. 4.7 for V as 
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a function of V. were double valued at high amplitudes, which for some conditions is a 

quadratic with two positive, real, roots. 

As a summary of Atkinson's findings, factors governing the magnitude of the error are the 

flow rate, frequency and waveform of the pulsations, as well as the time constant of the 

rotor. Correction factors obtained by this method were checked experimentally by 

Cheesewright et al (1996), and it was found that Atkinson's tool was effective with 

pulsating-induced errors as high as 50%, with correction possible to an accuracy of better 

than ±2%. 

4.4.2 High-density gas flows and liquid flows 

A literature survey revealed the only experimental study on liquid flow effects was 

published by Dowdell and Liddle (1953) and their results did not show any significant 

over-registration error. They tested three water meters in the size range of 6-in to 8-in with 

pulsation frequency not higher than 132.5 cycles per minute (around 2 Hz), in which trivial 

errors under this kind of pulsating conditions would be expected for larger size meters. 

Moreover, they did not measure the actual flow pulsations to which the meter was 

subjected; hence, the results were not conclusive. 

According to BS ISO TR 3313 (1998), there has not been any experimental validation of 

the Dijstelbergen's equation for liquid flows. Dijstelbergen (1966) has published data, 

using Eq. 4.16, for the theoretical pulsation error for square wave flow pulsation of 

different amplitude, frequency and mark/space ratio, but it is difficult to generalize his 

results and there has been no experimental confirmation of them. 

Hence, this research will investigate further the applicability of Eq. 4.16 (frictionless rotor 

approach) and Eq. 4.27 (with friction included), either theoretically (by the use of 

computer simulation) or experimentally, for sinusoidal pulsating flow in small turbine 

flowmeters. The next chapter will outline the methodologies undertaken during the course 

of this research program. 
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Chapter 5 Research Methodology and Preliminary Theoretical Work 

Having reviewed the existing theoretical models for the motion of the rotor, the following 

chapters cover the three main avenues that have been used to investigate the behaviour of 

small turbine flowmeters under pulsating liquid flows: theoretical, experimental, and 

numerical modelling using Computational Fluid Dynamics (CFD) simulation. It is 

anticipated that the undesirable effects of pulsation on accuracy of mean flow 

measurement can be understood and appropriate action can be taken to correct for 

metering errors. 

5.1 Research Methodology 

5.1.1 Theoretical method 

A theoretical approach for prediction of the meter behaviour when it is under pure 

sinusoidal pulsating flow is presented in Section 5.2. Similar to the method used by 

Atkinson in pulsating gas flows, but including fluid inertia, by using the equations reviewed 

in Section 4.1.2, this approach is based on the assumptions that the outlet flow angle is 

aligned with the blade angle; and there are negligible resistance torques such as bearing drag 

and electromagnetic pick-up torque. 

One of the advantages of conducting such work is that a preliminary indication of the 

range of errors and pulsation amplitude attenuations can be predicted. Identification of the 

relevant parameters and their effects would facilitate understanding of experimental results. 

5.1.2 Experimental method 

There appears to be no experimental work of significance relating to meter response to 

pulsating liquid flows in the open literature. 

The experimental program is described in Chapter 6, the responses of a number of small 

turbine flowmeters to (sinusoidally) pulsating flow have been evaluated. These results are 
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then compared with the prediction from the theoretical model (in Chapter 7) and these 

comparisons also allow insight into possible procedures for the correction of metering 

errors (Chapter 7). 

5.1.3 Numerical method 

Numerical modelling of physical blade (and associated rotor) dynamics is of importance, 

mainly because it allows modelling of effects of velocity misalignment with blade angles 

and the resulting flow separation. Chapter 8 presents the work undertaken towards the 

development of a Computational Fluid Dynamic (CFD) model of unsteady turbine 

flowmeter response. 

The numerical solutions obtained through CFD represent the values of the physical 

variables of the fluid field. An advantage of carrying out such work is that the flow around 

the blade area can be visualized and understood at different time steps within a pulsating 

cycle. By integration of pressure over the blade surfaces, the instantaneous resulting torque 

acting on the blades can then be determined and, hence, the corresponding motion of the 

rotor (by use of Eq. 4.16) can be predicted . 
Another objective of this work is to 

investigate the relationship between the values of rotational inertia of fluid, I, the pulsation 

frequencies, f and relative pulsation amplitude, a. The dynamic performance from the 

simulation model will then be compared with the results of experimental meter tests. 
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5.2 Turbine Flowmeter Dynamic Response Prediction by using Theoretical 

Model 

The theories of dynamic meter response reviewed in the last Chapter gave a background to 

this theoretical model. Atkinson used the normalised frictionless "gas equation" 

(Eq. 4.31) to predict meter errors for gas turbine meters when subjected to sinusoidal (in 

time) pulsations. As reviewed in Section 4.4.1., Atkinson normalised the frictionless "gas 

equation" into the form shown in Eq. 4.31. Atkinson produced a look-up table relating 

the amplitude and frequency of the pulsations in the meter output signal to the amplitude 

of the pulsations in the actual flow and hence to the meter error. The same approach is 

taken here to attempt prediction of metering errors for liquid turbine meters using the 

Dijstelbergen's frictionless "high-density fluid equation" (Eq. 4.16). The following 

sections review the procedures taken to accomplish this. 

5.2.1 Normalisation of the frictionless "high-density fluid equation" 

As stated in Section 4.1.2, the frictionless "high-density fluid equation" (Eq. 4.16) is: 

b(1+A) 
ý" 

+1 j) Vt +býi 
dt 

Assuming the pulsation is a pure sinusoid, with crp and f being the imposed relative 

pulsation amplitude and pulsation frequency respectively, and if the mean flow rate is TV, 
, 

then the actual time dependent flow V, is equal to Vp (1 +ap sin 2)zf t) . 
Similar to the 

normalisation parameters that Atkinson used (See Section 4.4.1. ), the following 

dimensionless variables are defined as: T= 2); 
pt 

(Eq. 4.28), F V, (Eq. 4.29) and 

B= 22rbf 
p/1, 

(Eq. 4.30) respectively. Through substitution of these variables, the 

frictionless "high-density fluid equation" is now normalised into the following form: 

B(1 + A) dF 
+ F(1 + ap sin T) = (1 + ap sin T)2 + B2ap cos T Eq. 5.1 
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The above equation can be solved numerically by using Mathematica (Version 4.0.1) and 

from the resulting F(T), a simulated meter output can be obtained. Hence for any relative 

pulsation amplitude and pulsation frequency, if the values of the actual mean flow rate 

(V, ), b and A are known, the meter over-registration error (OR), and amplitude attenuation 

(AA) can be predicted, and this is explained in the following paragraphs. 

Over-registration error 
Having obtained the solution of F(T), an integration of the solution could be carried out 

over the interval AT=27r, and the dimensionless mean meter reading F can be expressed as 

shown below: 

rx+27s 

F= 
V'" 

=j F(T ). dT 2ir 
V. Eq. 5.2 

Therefore the over-registration error (Eq. 2.3) can be evaluated as, 

OR 
V. 

-1X100%=(-1)x100% Eq. 5.3 
V. 

Amplitude attenuation 

By finding the maximum and minimum value of F(7), the dimensionless meter indicated 

amplitude is: 

Fý�X-Fmin=V. 
V. Eq. 5.4 

Where (Q. is the peak to peak amplitude of the meter reading. Since the peak to peak 

amplitude of the actual pulsation, rp� is known as 2a l (See Section 2.2), the amplitude 

attenuation (Eq. 2.4) can then be evaluated as, 

AA = 
(1- 

X100 0=(, - 
(Fn. - F""") 

x 100% Eq. 5.5 ýOa) 2ap 
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5.2.2 Estimation of b(=I R/ pre) and A(=I f/I R) 

In all the work on the response of turbine meters in gas flows (Grey 1956, Atkinson 1992), 

the response parameter, b, has been determined experimentally from step response tests. 

However, such tests are much more difficult in water because the step must be much faster 

and the dynamic pressures involved are much larger. The only published reports of step 

tests in water were those by Cheesewright and Clark (1997), which included data for two of 

the meters used in this research program. For one of these meters Cheesewright and Clark 

also reported values of b obtained by calculation from step tests with the meter in air flow 

and values of b obtained by calculation from engineering drawings of the meter rotor by 

using Eq. 4.6, b =1R/ pre . 
The data suggested that adequate estimates of the value of b 

can be obtained from drawings of a meter rotor, as the geometrical estimate of one meter 

compared well to the value obtained from air step tests on the same meter. If only the 

fluid contained within the envelope of the meter rotor is assumed to contribute to I,, the 

value of ratio of inertias, A, can also be obtained from the geometry. This approach was 

used here to obtain estimates of b and A for those meters which had not been subjected to 

step response tests. 

Of the five meters that were available for testing in this research program (Section 6.1). 

Meter B (12 mm 3-bladed) and meter D (12 mm 6-bladed) were selected for this theoretical 

modelling. This is because both meters are nominally of the same size and both can be 

operated on the same fiowrate (within their linear ranges). However, due to geometrical 

differences, the values of b, IR 
, 

If and A are not the same for both meters, therefore a 

comparison could be made from the prediction to see the resulted effects of using these 

different values under the same flow condition. 

Furthermore, meter D has double the number of blades of meter B. This condition can 

also provide some insight into how reliable the model is, since it is based on the 

assumption that flow is fully guided between blades, the flow is expected to be less guided 

in a lower-bladed rotor, therefore the predictions made for meter B (3-bladed) may be less 

accurate then the ones made for meter D (6-bladed). The effect of this condition from the 

theoretical prediction can be compared with experimental data obtained later on. 
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A solid modelling program called Solidworks (Version 98plus) allows for the calculation of 

the mass properties of any created geometry within the program, hence, drawings of rotor 

and casing were created by using Solidworks and then both the inertia of rotor, IR, and 
inertia of fluid (assumed as solid contained with the rotor envelope), If, were obtained from 

this program. Note that except for meter C (detailed drawing available, see Appendix A), 

all of the rotor geometries were measured using a computer controlled contact co-ordinate 

measuring machine (Mitutoyo model FN005); resolution was quoted to 0.001 mm. The 

following table shows the parameters obtained from Solidworks for all five meters: 

Meter 
(Nominal size mm/ 

blade number) 

Linear 
Flowrange 
10 ml/s) 

IR 

(x 10-9 kg m) (x 10-9kg m2) 
=IR/ pF bx 

10"' m2 (_ 
A- If /I b(1 

(X 107 mý 
A (6 mm / 3) 0.025-0.4 2.185 4.068 2.850 1.862 8.16 

B (12 mm / 3) 0.14 -1.67 8.894 30.542 5.123 3.434 22.71 

C (12 mm / 5) 0.015 - 0.092 4.528 5.887 4.474 1.300 10.29 

D (12 mm / 6) 0.04-0.4 6.900 4.851 4.855 0.703 8.27 

E (25 mm / 5) 0.44 - 4.4 206.6 411.0 34.18 1.989 67.98 

Table 5.1 Various parameters obtained from Solidworks 

In the above table, F represents the root mean square radius and all other notations are as 

before. For each meter, with the knowledge of b, ranges of dimensionless B values could 

be found for various pulsation frequencies () and mean flow rates (V, ), by using 

Eq. 4.30: B= 27rbf p/V, . Take meter B for example, if f is 10 Hz and V, is 0.292x 10"3 

m3/s, the value of B would be equal to: 22rbf 
p 

/V, = 0.4893. 

With a fixed value of V, equals to 0.292x10"3 m3/s, values of A and B for meter B and 

meter D, respectively, were input into Eq. 5.1, and the equation was then solved for a 

range of a and f , using Mathematica. This yielded values of F(7) from which predicted 

values of over-registration error and amplitude attenuation were determined. The 

following two sections review the prediction results from this model for both meters, for a 

range off below maximum possible pulsation frequency (see Section 6.2) and a range of 

GYM up to 50% (this is a value chosen arbitrarily aiming to predict the effects); according to 

BS ISO TR 3313 (1998), as mentioned in Section 1.1.2, pulsation amplitudes relative to 

mean flow can vary from a few percent to 100% or larger. 

-53- 



Chapter 5- Research Methodology and Preliminary Theoretical Work 

5.2.3 Prediction of over-registration error 

3 

ö 2.5 

2 

ä 1.5 

V° 
1 

0.5 

0 

30Hz 

20Hz 

10Hz 

Figure 5.1 Meter B (3-bladed): Prediction of over-registration errors with differing 

pulsation amplitudes and pulsation frequencies 
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Figure 5.2 Meter D (6-bladed): Prediction of over-registration errors with differing 

pulsation amplitudes and pulsation frequencies 
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5.2.4 Prediction of amplitude attenuation 

Meter B 
Mean flow rate = 0.292x10-3 m3/s 
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Figure 5.3 Meter B (3-bladed): Prediction of amplitude attenuations with differing 

pulsation amplitudes and pulsation frequencies 
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Figure 5.4 Meter D (6-bladed): Prediction of amplitude attenuations with differing 

pulsation amplitudes and pulsation frequencies 
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Since the amplitude attenuation mainly varies with pulsation frequencies, by taking the 

average of amplitude attenuation at each frequency, Figures 5.3 and 5.4 can be re-plotted as 

shown below: 

Theoretical Amplitude Attenuation for meters B&D 

Operating flowrate under steady flow condition = 0.292X 10,3 m3/s 
60 

Meter D 

50 

o 40 

30 
L 

0 
20 Meter B 

n. 
E 

10 

0r 

0 50 100 150 200 250 300 

Pulsation Frequency 

Figure 5.5 Meters B&D: Prediction of amplitude attenuations with differing pulsation 

frequencies 

For both meters the predictions are qualitatively similar, the over-registration errors 

increase with both the imposed pulsation frequencies and pulsation amplitudes; and the 

amplitude attenuations increase with pulsation frequencies but only slightly with 

amplitudes. This phenomenon can be explained by using Eq. 5.1 in which the main 

contributor to the evaluation of the peak-to-peak amplitude of F(7) is when the term 

dF/aThO, this condition happens at the time interval T=x+7t/2 and x+37t/2 within a 

sinusoidal pulsation cycle. Hence the maximum and minimum values of F(T) is: 

F,,,, = C1 ap sin x+ 
91 

+ 
apBAcos(x+(7i/2)) 

+-JJ Eq. 5.6 
21 +ar sin (x +()r/2)) 

C F,,,,,, 
-1+ ap sin X+ 

37r11 
+ 

apB2 cos (x + (3Ir/2)) 
-JJ Eq. 5.7 

2l+ al, sin (x + (37/2)) 
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Therefore, the dimensionless meter peak-to-peak amplitude is given by, 

Fina - 
Fmin = 

+ ap sin x+ 
apB2 cos(x + (71/2) 

-1- ap sin x+ 
37r apBA cos(x + (31rl2)) 

1-1 +- 
2J 1+apsin(x+(yr/2)) 2 1+apsin(x+(3)r/2)) 

ap 
Esjn'( 

x+ 
ý1 

+ 
BA cos(x + (2r/2)) 

-sin 
I 

x+ 
391- BA cos(x + (3ir/2)) 

=-J 2 1/ap + sin(x + (r/2)) -2 J 1/ap + sin(x + (37 /2)) 

Through substitution of the above equation into Eq. 5.5, amplitude attenuation, AA, can 

then be expressed as: 

AA= 1-(E 
F"'°') 

X100% 
2ap 

C ill 
BA cos(x + (ý/2)) 

sin x+- 
2 

J+ 

- 1- 
1/ap + sin(x + (7r/2)) 

X100% Eq. 5.8 

-sin x+ 
31r BA, cos(x + (391/2)) 

C2 1/ap + sin(x + (3; c/2)) 

It can be seen from the above equation that as pulsation amplitude gets larger, the term 

(1 / ap) in the denominators tends to become comparatively insignificant and the amplitude 

attenuation is then predominantly dependent upon B2 = 
(22rbf 

p/V, 
k. The term 

2, (=If/IR) is assumed to be constant; the value of b is rotor geometrical dependent and fluid 

density dependent (Eq. 4.6), therefore for any pulsating flow about a mean of V, 
, the 

. amplitude attenuation is predominantly dependent on pulsation frequency f 

5.2.5 Summary of the prediction results 

Under steady flow condition, the uncertainty quoted by manufacturers for these two 

meters used here is ±0.5% of full scale (over the linear range of the meters). For the largest 

pulsation amplitude of 50%, both meters are predicted to have over-registrations in the 

mean flow above pulsation frequency of 10 Hz (meter B) and 20 Hz (meter D), and 

significant amplitude attenuations are also predicted for both meters above these 

frequencies. 
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In addition, from the above figures, it can be seen that the errors predicted for meter B are 

less than the ones for meter D for pulsation frequency of 40Hz upwards. For example, at 

60 Hz and 50% imposed relative pulsation amplitude, the over-registration errors predicted 

for meter B and meter D are 2.5% and 4% respectively; and at the same imposed pulsation, 

the amplitude attenuations predicted for meter B and meter D are 20% and 28% 

respectively. This occurrence contradicts to theory by considering the time constant 

equation 
[t, 

= b(1 + A)I (V, 
- AV, )] (Eq. 4.18 a) and it is detailed in the following 

paragraph. 

As shown in Table 5.1, since the response parameters (b) estimated by Solidworks for both 

meters are of very close value (ratio of b for meter B to meter D is 5.123: 4.855 = 1.05 1), 

therefore, for the same pulsation frequency and same volume mean flow rate (Va 

the values of the dimensionless parameter B (= 27rbfD /V, ) calculated for both meters are 

almost the same. The only significant difference of input to Eq. 5.1 would be A. As can 

be seen from Eq. 4.18 a, when A increases, the response of the meter would become 

slower. Since A for meter B is approximately five times greater than the one for meter D, 

(ratio of A for meter B to meter D is 3.434: 0.703 = 4.89: 1), it would be expected that the 

dynamic response of meter B to be worse than meter D. 

However, the model used here is based on the assumptions that the rotor is frictionless, 

the flow is perfectly guided, the fluid inside the rotor envelope is rotating as a solid body 

(for the evaluation of A =IIIO; and, there is a purely sinusoidal pulsation. Hence, these 

predictions can only give a guideline of what ranges of over-registration errors and 

amplitude attenuations may be expected for meters B and D if operated under those 

pulsation frequencies and amplitudes. 

The next chapter, Chapter 6, reviews the experimental results of the dynamic response for 

all of the meters. Then in Chapter 7, a comparison of the theoretical data with 

experimental data will be made for meters B and D, and hence the applicability of this 

model will be evaluated. 
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Chapter 6 Experimental Investigation into the Dynamic Response of 

Turbine Flowmeter 

This chapter covers a key aspect of the research project. Before any analysis of flowmeter 

signals under pulsating conditions could be performed, a test rig capable of inducing these 

conditions, and data acquisition systems capable of recording all relevant information were 

required. A detailed test program was undertaken to identify which flow conditions are 

likely to produce meter errors within experimental limitation. Finally the results will be 

reviewed. 

6.1 Experimental Equipment 

6.1.1 Test meters 

Five meters were selected for this research program, their characteristics are given in the 

table below; 

Meter Manufacturer Nominal 
Size 

mm 

rb/r, 
Ratio 

Blade 
Number 

Experimental 
K-factor 

/10-3 m 

Linear 
Flowrange 
10"3 m3/s 

A Euromatic 6 0.4 3 1608 0.025-0.4 
B Euromatic 12 0.4 3 520.3 0.14-1.67 
C Bestobell 12 0.67 5 9016.9 0.015 - 0.092 
D Bestobell 12 0.5 6 2614 0.04-0.4 
E ATS 25 0.33 5 186.6 0.44-4.4 

Table 6.1 Characteristics of Meters 

(r, tip radius, r,: hub radius) 

Photographic views of rotors of meter A, B, D and E are shown in Figure 6.1. Rotor A 

and B were given as spares by the manufacturer, the given drawings are presented in 

Appendix A. Drawings of meter D and E were unobtainable; hence it was necessary to 

dismantle the meter housing so that measurements of the meter geometry could be taken. 

This information was required for the evaluation of the meter response parameter value, b 

(see Section 5.2). A detailed drawing of meter C (see Appendix A) was available; hence it 

has not been dismantled. Rotor A, C and E are mounted onto the shaft by ball race 
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bearings fitted inside the hub, whereas rotor D has a solid hub which uses journal bearings. 

The bearings are made from stainless steel allowing use for corrosive liquid applications. 

The races are open, with no lubricant, the process fluid is used to lubricate the bearings. 

E 

ball bearings 

A typical meter assembly is shown in Figure 6.2, it can be seen that the rotor is held in 

position in the flowmeter body (1) by two spirolox rings (3 and 7) located upstream and 

downstream. 

1 Meter body 

Pick-up housing 

Upstream spirolox ring 

Upstream flow straightener 

Rotor 

Downstream flow straightener 

Downstream spirolox ring 

Figure 6.2 Photographic view of Meter D Assembly 

All of the meter bodies have screw threads at both ends for piping fixtures. The screw 

threads of meters A, B, C and D are suitable for 12 mm diameter pipe fixtures; meter E 

screw threads are suitable for 25mm diameter pipe fixtures. However, the diameter of the 

internal casing of meter A is nominally 6 mm, hence, the screw threads of this particular 

meter are truncated from 12 mm to 6 mm, thus having an exceptionally larger thickness 

(approx. 3mm thick) compare to other meters (See Appendix A). 
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6.1.2 The flow rig 
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Figure 6.3 A schematic diagram of the flow rig 

A schematic diagram of the water flow test rig is shown in Figure 6.3, this flow rig was 

initially designed for the investigation of vibration and pulsation effects upon Coriolis 

flowmeters of sizes 25 mm and 76 mm. It was modified to allow pulsation testing of 

turbine flowmeters in the size range 6 mm to 25 mm. The following paragraphs describe 

how the flow was generated within the rig, and a description of the function of each 

component used is given. 

Steady flow was produced by a positive displacement pump with a helical rotor 

(Monopump model CE064MS1R3/H421) driven at a fixed speed of 700 rpm. The pump 

intake was fed from a sump holding in excess of 30 m3 of water. The required flow rate 

through the test meter was attained by adjusting the fraction of pump outflow diverted 

through two bypass lines. This provided the nominal meter flow rates, required for the 

present tests, of 0.095x10"3 m3/s to 1.75X10-3 m3/s. 

An electromagnetic flowmeter (Endress & Hauser model PROMAGF) provided a 

secondary flow rate reference, the flow rate was monitored visually, but not logged. The 

positive displacement pump produced a steady flow condition except for very small 
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fluctuations at approximately 11.5 Hz and 23 Hz due to the driving rotor having two lobes. 

However, the magnitude of these pulsations was very small compared with the sinusoidal 

pulsations produced by the purpose built piston pump. 

A piston pump, developed by modifying an existing diaphragm pump, was situated 

approximately 10 pipe diameters upstream of the test meter. The piston chamber diameter 

was 25.4 mm. An accelerometer was mounted onto the piston rod to sense the piston 

motion. The pump was driven by a Gearing and Watson electromagnetic actuator (model 

GW100B) and power amplifier (model SS600PA) to produce sinusoidal flow pulsations 

over a frequency range of 5 Hz to 300 Hz. The amplitude of the pulsations was varied 

within the limit imposed by the maximum actuator force of 600 N and the need to avoid 

cavitation. A Hewlett Packard model 3325A signal generator with a high-precision quartz 

clock, accurate to within ±5 µHz, was used as an external frequency source for the power 

amplifier, enabling flow pulsation frequencies to be controlled with high resolution and 

high stability. The waveform output from the signal generator generally had a low level of 

harmonic distortion so that the meter was usually not subjected to pulsations with more 

than one frequency component. However, it was observed that there was some harmonic 

distortion produced in the flow output waveform at low pulsation frequencies of 5 Hz and 

10 Hz (See Figure 6.6 and Figure 6.10). 

In order to ensure that a very high fraction of the flow pulsation was added to the 

downstream flow (through the test meter), it was necessary that there was much higher 

impedance upstream of the pulsator than downstream of it. For this reason, the mean flow 

component was supplied at an upstream pressure of 20 bar. Accordingly, the positive 

displacement pump required a drive of 30 kW; the rate of fluid temperature increase was 

limited to less than 1°C/hour by the sump volume being greater than 30 m3. 
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Figure 6.4 Part of the Flow Rig 

A photographic view of the following parts of the rig is given in Figure 6.4. An 

appropriate length of a relatively small-bore tube (1) dropped the pressure from 20 bar to 

2 bar at the location of the piston pump (2), a pressure gauge (3) was used to monitor this 

back pressure. Pulsation amplitudes were restricted to ensure that the minimum pressure 

within the pulsation cycle remained above atmospheric pressure. 

The piston pump was connected to the main flow line through a T-piece, a short distance 

upstream of a second electromagnetic flowmeter (4). The pulsation flow waveform was 

obtained from this commercially available electromagnetic (EM) 1" flowmeter, (Krohne 

model IFM401OK/D/6). Usage of other devices to give independent measurement of the 

pulsation flow waveform were attempted as well, such as a Coriolis meter (5) and a hot- 

film anemometer; results of the usage of these devices will be reviewed in Section 6.1.4. 

The turbine meter (6) under test was placed downstream of the electromagnetic flowmeter 

and the outlet from the meter was fed to a weigh tank (7). Continuously timed gravimetric 

collection using the weigh tank mounted on an Avery-Berkel L105 load-cell provided a 

primary flow rate standard with a measurement uncertainty of ±0.1%. An electromagnetic 

pick-up on the meter generated a signal each time a turbine blade passes and this signal was 

amplified and digitised. 
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6.1.3 Data acquisition system 

The data acquisition system was based on a system produced by D. Bisset, and the 

following description is taken from Bisset (2001): 

"The data acquisition system was based upon two Pentium PCs, the first fitted with a 

National Instruments AT-2150C data acquisition card and the second fitted with a 

National Instruments AT-MIO-16E-10 data acquisition card. The AT-2150C card 

consisted of four 16-bit, simultaneously sampled A/D input channels with input limits of 

±2.828 volts and various sampling rates available between 4 kHz and 51.2 kHz. The AT- 

2150C card provides adequate anti-aliasing protection. The AT-MIO-16E-10 card 

consisted of eight 12-bit A/D input channels with software-selectable input limits and 

sampling rates up to 100 kHz. " 

"A 16-bit A/D process contains 65536 discrete voltage levels. Each time a measurement 

occurs, the nearest of these values to the input signal is taken as the measurement, the 

difference being known as the quantisation error. If a signal was very much smaller than 

the input limits, then it would cover a very small number of the discrete voltage levels. As 

a result, quantisation error would be much greater and the overall quality of digitisation 

would be very poor. Alternatively, if a signal was larger than the input limits, then any 

portion of the signal outside these limits would be clipped. To prevent these problems 

from occurring when using the AT-2150C card, Fylde instrumentation amplifiers (model 

351UA) and potential divider circuits were used to scale input signals to the card input 

limits. The software-selectable input limits of the AT-MIO-16E-10 card removed the need 

for use of these procedures on that card. " 

Typically the signals from the turbine flowmeter were recorded on both cards: the AT- 

2150C card was used to record signals with a high sampling rate over a shorter period of 

time (for example 32 kHz for 5 seconds); and the AT-MIO-16E-10 card was used to 

record signals with a low sampling rate over a longer period of time (for example 4 kHz for 

30 seconds). Other signals, such as the accelerometer, Krohne EM meter and pressure 

signals were recorded using the AT-MIO-16E-10 card. 

LABVIEW (V. 5.1) graphical programming software was used for data acquisition. There 

were some programs readily available, (originally written by D. Bisset who worked on 
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turbine flowmeters previously), to use for data acquisition. These programs were written 

around the data acquisition subroutines provided so that continuous records of A/D data 

could be stored. LABVIEW software was again used for subsequent data analysis. 

6.1.4 Independent measurement of flow pulsation amplitude 

There are various techniques available to determine the flow pulsation characteristics. A 

few techniques have been attempted during experimentation, thermal anemometry, a 

Coriolis mass flowmeter, and an electromagnetic flowmeter. A final decision of using the 

electromagnetic flowmeter as a reference source was made, and this section explains why 

this device is superior to others for the purpose of this research. 

6.1.4.1 Thermal anemometry 

A hot-film anemometer was considered to be a potential device to indicate the flow 

pulsation waveform of the flow. It is a point velocity technique, in which flow pulsation 

amplitude and waveform can only be estimated. The r. m. s. value of the fluctuating velocity 

component can be determined by using a true r. m. s. flowmeter to measure the fluctuating 

component of the linearized anemometer output voltage. The general relationship 

between the response of a hot-film anemometer and the point velocity at the pipe is: 

[(e2 
-eo2)/z R] =Constant xU *" Eq. 6.1 

Where e is the voltage response of the hot-wire anemometer at the time of measurement, eo 

is the voltage response at zero flow; AR is the difference between the probe resistance at 

fluid temperature and the set probe resistance (chosen to allow for an nominal 10% 

overheat); U is the velocity at the probe and n is the exponent associated with the forced 

convective heat transfer. Assuming uniform velocity profile along the pipe, Eq. 6.1 

becomes: 

[(e2 
-eo2)/AR] =Constant xi»'" Eq. 6.2 

Where V is the volume flow rate which could be indicated by a turbine meter operating 

under steady flow condition. The value of n can be determined by plotting 
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In[( e2 -eo2)/AR] against ln[V], which should produce a straight line whose gradient is 

equal to 1/n. 

Figure 6.5 shows the hot-film anemometer experimental response, calibrated by using 

Meter B operating under steady flow conditions. It can be seen that the data points are 

widely scattered and it is difficult to find a line of best fit across the points. This may well 

be due to the fact that hot-film anemometer was very sensitive to the cleanliness of the 

fluid in the rig. According to BS ISO TR 3313 (1998), cleanliness of flow is very 

important; even nominally clean flows can result in rapid fouling of probes with a 

consequent dramatic loss of response. Hence the attempt of using this device to indicate 

the pulsation waveform was unsuccessful. 
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Figure 6.5 Response from hot-film anemometer plotted against indicated volumetric 
flowrate from Meter B 
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6.1.4.2 Coriolis mass flowmeter 

Two commercial Coriolis mass flowmeters (A and B) were available for use during the 

course of experimentation. Hence an attempt was made to use a Coriolis meter to measure 

the amplitude of the pulsations. Pulsation frequencies from 5 Hz to 40 Hz were 

investigated; it was immediately observed that, even at frequencies of 5 to 10 Hz, the 

amplitudes of pulsation which were indicated by the Coriolis meter were significantly 

smaller than those indicated by the turbine meters. Since any inertial effects on a turbine 

meter will always tend to cause it to under-indicate the pulsation amplitude, this implied 

that the dynamic response of the Coriolis meter was comparatively inferior to the turbine 

meter in this case. 

Figure 6.6 shows a comparison of (i) the flow rate indicated by Coriolis meter A, (ii) the 

flow rate indicated by turbine meter B and (iii) the true flow rate (as given by a 

combination of the integrated accelerometer signal and the weigh tank). Note that at these 

low frequencies, although driven by a sinusoidal input signal, the test rig produced some 

harmonic distortions in the output waveform. Similar results to those in Figure 6.6 were 

obtained by using Coriolis meter B (Cheesewright and Clark 2000). 
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Figure 6.6 Comparison of the flow rate time histories given by, (i) Coriolis meter A, (ii) 
turbine meter B, and (iii) piston pump motion + mean flow, pulsation frequency 10 Hz. (Extracted 
from Cheesewright and Clark 2000) 
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6.1.4.3 Electromagnetic flowmeter 

According to BS ISO TR 3313 (1998), when the electromagnetic flowmeter is of the pulsed 

d. c. field type (likely maximum d. c. pulse frequency a few hundred hertz), there is the 

capability to resolve flow pulsation up to frequencies approximately five times below the 

excitation frequency. This technique is only suitable for liquids with an adequate electrical 

conductivity. It provides a measure of bulk flow pulsation, although there is some 

dependence upon velocity profile shape. 

Figure 6.7 Photographic view of the 1" Krohne EM meter and electronic equipment 

As mentioned in Section 6.1.2, the EM meter (1) shown in Figure 6.7 is a standard, 

commercially available meter (1" Krohne), but because the usual AC magnetic excitation 

would not permit the resolving of pulsatile flows above approximately 3 Hz, that excitation 

was replaced with a DC excitation from a 12 V source (2). The penalty for using DC 

excitation is the occurrence of shifting DC levels due to electrolytic action at the meter 

electrodes. To overcome this problem, the output from the meter was AC coupled to a 

high gain (10,000 to 150,000) amplifier (3), so that the final output from the modified 

meter represented only the pulsatile component of the time dependent flow rate. A typical 

EM signal is shown in Figure 6.8. This procedure allowed pulsations to be recorded over 

a frequency range of 5 Hz to 300 Hz and thus avoided the frequency limitation that would 

have arisen from the conventional AC excitation of the meter. It can be seen that the 
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waveform produced by the EM flowmeter contained some relatively high-frequency noise 

components, so it was necessary to filter the signal at three times the pulsation frequency 

by using a digital low-pass filter (a virtual instrument available in LABVIEV). 
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Figure 6.8 EM meter output signal reconstructed from digital data, pulsation frequency 
40 Hz 

The modifications to the EM flowmeter meant that the normal meter calibration was no 

longer applicable. The pulsatile output from the modified meter was calibrated with 

reference to the flow from the piston pump (1) as shown in Figure 6.9. An accelerometer 

(2) was attached to the piston rod to sense the motion of this pump. The accelerometer 

output signal was amplified by a high-frequency response amplifier, in which the selectable 

gains were: 0.316g, 1.00g, 3.16g and 10. Og (to 3 significant figures), g being the standard 

gravitational acceleration constant, 9.807 m/s2. Again, this signal contained some relatively 
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high-frequency noise components; hence the same low-pass filtering procedure (as was 

carried out in the processing of EM signal waveform) was conducted here. Integration of 

the filtered accelerometer signal gave the piston speed, and the multiplication of this by the 

piston cross-sectioned area gave the pulsatile component of time dependent volume flow 

rate produced by the pump. The product of any multiplication must not contain more 

significant figures than the term used in the operation with the lowest number of 

significant figures, in this case it was the amplifier gain that had the lowest number of 

significant figures, hence the calculated pulsatile component of the time dependent volume 

flow rate produced by the pump could only be quoted to 3 significant figures. 

For a low frequency (5 Hz) and a low relative (to the mean) amplitude pulsation, the 

pulsation amplitude obtained from the accelerometer signal could be compared against that 

indicated by the turbine meter, assuming that inertia effects on the turbine meter were 

negligible, as shown in Figure 6.10. This comparison confirmed the validity of the use of 

the accelerometer signal. 
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Figure 6.10 Comparison of the flow rate time histories given by, (i) piston pump motion 
(obtained from low-pass filtered and integrated accelerometer signal) + mean flow, (ii) turbine 

meter B, pulsation frequency 5 Hz. 
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When the calibrated EM flow pulsation waveform is coupled with the mean flowrate value 

obtained from the weigh tank measurement, this will give an independent measurement of 

the pulsation flow as shown in Figure 6.11. The repeatability of this pulsation calibration 

was better than 5% over a period of three days; further details are given in Section 6.2. 

Hence the electromagnetic flowmeter was chosen as the device to determine the flow 

pulsation characteristics. 
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Figure 6.11 Calibrated EM (+ mean flow) waveform processed for low-pass filtered waveform in 

Figure 6.8 
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6.2 Planning and Preparation 

6.2.1 Range of possible test conditions to be investigated 

Meters 'near Flow Operating Corresponding Maximum 
P l i 

Corresponding Pipe Re. no. 
under steady flow situation 

(nominal 

size/mm) 
range 

(10-3 m3/s) 

Flow rate 
(10"3 m3/s) 

Blade Passing 
Frequency (Hz) 

u sat on 
Frequency 

(Hz) 
At 

upstream 

Immediately after 
meter inlet 

A (6) 0.025-0.4 0.095 154 60 1.01 x 104 1.87x 104 
B (12) 0.14-1.67 0.292 152 60 3.11 x 104 3.11 x 104 
C (12) . 015-0.092 0.095 866 300 1.01 x 104 1.01 x 104 
D (12) 0.04-0.4 0.292 758 300 3.11 x 104 3.11 x 104 
E (25) 0.44-4.4 1.740 317 120 1 9.07X 104 9.07X 104 

Table 6.2 Test conditions for each meter to be investigated 

Five meters were tested and their characteristics and possible testing conditions are given in 

Table 6.2. Each meter has its individual K-factor (see Table 6.1), and with the specific 
linear operating flow rate chosen for experimentation, each meter rotates with a 

corresponding blade passing frequency. All of the meters were tested with pulsation 

frequencies ranging from 5 Hz up to a maximum frequency which varied from meter to 

meter, and which was dictated by the blade passing frequency produced by the mean flow 

rate. The reason for this limitation will be explained in detail in Chapter 6.3. 

It can also be seen that the steady flow conditions for all meters at the specific operating 
flow rates are within the turbulent flow regime. However, it is worth noting that, since 

meter A has truncated screw threads (diameter changes from 12mm to 6mm) at both ends 

of the meter body, hence the abrupt contraction of flow will cause an increase of Reynolds 

no. from 1.01X104 at upstream to 1.87x 104 immediately after the meter inlet. It is 

therefore of interest to see whether this sudden change in Reynolds no. would result in any 

variations in the meter error trends when comparing with the results from other meters. 

For one meter, meter D, three different flowrates within its linear operating flow range 

(0.143x 10"3 m3/s, 0.191 X 10"3 m3/s and 0.291 X10-3 m3/s) were investigated with the same 

imposed pulsation frequencies. The aim of this was to investigate any variations in the 

resulting meter errors corresponding to the change in mean flowrates. 
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6.2.2 Experimental procedure 

After identification of the imposed maximum pulsation frequency of each meter for 

experimentation, the following general experimental procedure was undertaken: 

1. Ensure that all equipment is switched on and is connected to the A/D input for 

data logging. This includes: back pressure transducer, test meter, Krohne EM 

meter, accelerometer and weigh tank load-cell. 

2. Start the pump and ensure that the upstream supply pressure is set at 20 bar (this is 

monitored regularly throughout the experiment). 

3. Check the input signals to the computer are of suitable amplitude (volts). 

4. Record a set of data at zero flow, and then follow by a set of data under steady 

flow. 

5. Weigh tank measurement should be taken at least every 5 minutes to monitor any 

changes in the set mean flowrate during the course of experiment. 

6. Adjust the signal generator to give a fixed pulsation frequency of 5 Hz. 

7. Vary the amplitude of the pulsations within the limit imposed by the maximum 

actuator force of 600 N and check the back pressure waveform to decide on the 

maximum allowed imposed force to avoid cavitation. 

8. Start with the highest amplitude pulsation, and record the data. This step is to be 

repeated for medium amplitude pulsation and lowest amplitude pulsation. In the 

meantime, check the signals from both the accelerometer and EM flowmeter, 

switch the amplifier gain if necessary, to avoid the occurrence of signal clipping. 

Then record a set of data at steady flow. 

9. Check the logged data after the first run. Repeat Steps 5-8 for another pulsation 

frequency. 

10. Finish off with a set of data at zero flow. 
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6.2.3 EM signal calibration 
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Figure 6.12 Filtered EM meter signal, pulsation frequency 40 Hz 

As mentioned in Chapter 6.1.4.3, it was decided to use the modified Krohne EM meter 

signal to give independent measurement of the operating pulsation amplitude for each flow 

test, in which this signal (as shown in Figure 6.12) was calibrated against the accelerometer 

signal attached to the piston rod. Since the penalty for using the DC excitation is the 

occurrence of shifting DC levels due to electrolytic action at the meter electrodes, pulsation 

calibrations between the EM meter signal and accelerometer signal were carried out over a 

period of time to investigate the repeatability of the EM meter signal. 

The output of the EM meter and accelerometer were measured over a range of pulsation 

frequencies from 5 Hz to 100 Hz. Figure 6.13 shows the calibration results from tests 

over a period of three days. 
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Figure 6.13 Calibration results of the EM meter p-p pulsation amplitude plotted against the 

flow p-p pulsation amplitude from the piston pump 
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It can be seen that Figure 6.13 shows that the calibration is repeatable to better than 5%, a 

line of least-squares fit for both days is drawn as shown (R-squared value = 0.94) and the 

calibration factor is obtained: 1 Volt of EM meter signal equals to 0.0153 lit/s of volume 

flowrate (to 3 sig. fig., as explained in Chapter 6.1.4.3). This pulsation calibration factor 

for the EM meter signal was used to give independent measurement of the flow pulsation 

characteristics for succeeding tests. 
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6.3 Turbine Data Processing 

The digitised time history of the meter signal was analysed using virtual instruments within 

LABVIEW. This section describes how the meter output signal (Volts) produced from the 

electro-magnetic pick-up was processed to represent the meter indicated flow (in lit/s). 

When the meter is subjected to pulsating flow, the output signal shows some modulation 

of both amplitude and frequency at the pulsation frequency. Figure 6.14 shows an 

example of the digitised meter output signal for a pulsation flow test at pulsation frequency 

of 40 Hz; individual data points are not shown here due to the high resolution. This 

modulation characteristic at the pulsation frequency was observed for all other turbine 

flowmeters during testing, for example, as shown in Figure 6.15. It can also be seen that 

not all of the test meters produced a signal that was sinusoidal, and the features of a 

sawtooth waveform was observed in this case. 

frequency 40 Hz, sampled at 22 kHz. 

It should be noted that only the frequency, but not the amplitude, of the meter output 

waveform is of interest for extracting the meter indicated volume flow rate. The 

conventional method of processing turbine meter signals is to convert the quasi-sinusoidal 

signal to a pulse signal with a pulse generated at either the + to - zero crossing or the - to 

+ zero crossing. The reciprocal of the time between successive pulses is then the blade 

passing frequency. However, in the present work it was desired to test meters at the 

highest possible flow pulsation frequencies, and since one of the features of interest was 

the pulsation amplitude attenuation, this required a minimum of some 8 to 10 data points 
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per pulsation wave. This would have restricted the pulsation frequency to 1/8`h of the 

blade passing frequency. 

It is clearly possible to generate pulses at both of the zero crossings in a given cycle of the 

signal from the pick-up, but consideration of the waveform displayed in Figure 6.15 shows 

that the intervals between such pulses cannot be used to give two independent estimates of 

the blade passing frequency per signal cycle. The best that it is possible to do is to take the 

period between two successive - to + zero crossings and to associate that with the average 

blade passing frequency over that period, which can then be converted to volume flow rate 

(marked as "o" in Figure 6.16); and then to take the period between the two + to - zero 

crossings and to associate that with the average over that period (marked as " . 
'D. Thus it 

is possible to get twice as many data points per signal cycle, but successive data points are 

averages over (partially) overlapping periods. It is even possible to extend this process by 

identifying successive maxima (marked as "X") and successive minima (marked as "+'ý. 

Thus giving 4 data points per signal cycle, but each of the data points will be an average 

over a period of one signal cycle, with a 75% overlap between successive periods. 

Figure 6.16 shows the flow waveform graph resulting from processing by using this 

technique for meter B (3-bladed) output signal in Figure 6.15. 

With this approach it is potentially possible to examine the meter response to flow 

pulsations at frequencies as high as 1/3' of the blade passing frequency. However, it must 

be noted that the identification of maxima and minima will be inherently less accurate than 

the identification of zero crossings. For some tests it was found that the data points thus 

generated were too inaccurate to be of value, so that it was necessary to revert to only 2 

data points per signal cycle. 

In the work of Cheesewright and Clark (1997) and Cheesewright et al (1998), it was shown 

that blade spacing unevenness would affect the meter output waveform and an algorithm 

was developed to correct meter signals due to this effect. The algorithm requires that a 
long data record is available, and that when the data record is truncated to a multiple of the 

number of blades, conditional averages for each of the physical inter-blade spaces should 
be identical. Difference between the conditional averages are used to estimate the 

unevenness of the blade spacing and then these estimates can be used to correct the data to 

an equivalent time history for evenly spaced blades. 
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frequency 10 Hz, sampled at 8 kHz. 

Figure 6.16 Flow waveform from processing by using four points per cycle technique for meter 
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Figure 6.18 Flow waveform re-sampled for equal time intervals for waveform in Figure 6.17. 
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As can be seen in Figure 6.16, the occurrence of the irregularity of data points agrees well 

with the findings from Cheesewright et al (1998) in which it is clear that if there are small 

imperfections in the uniformity of spacing of the spacing of the turbine blades then this 

could produce fluctuations in the apparent flow rate. Therefore, the same correction 

algorithm is used here to improve for all meter signals due to unevenness of blade spacing. 

Figure 6.17 shows an example of the flow waveform graph after the correction of uneven 

blade spacing for the flow waveform in Figure 6.16. 

It must also be noted, from Figure 6.17, that the data points are not equally spaced in time; 

there is a greater concentration of data points during periods of high flow rate than during 

periods of low flow rate. Thus a simple average of all the estimates of the flow rate does 

not give a true mean flow rate; it is necessary, either to integrate the flow rate/time history 

or, as was done in the present work, to digitally re-sample the flow rate/time history at 

equal intervals of time. The resulting flow waveform is shown in Figure 6.18. 

From Figure 6.18, information such as meter indicated mean flow value, V. ; and the 

indicated peak-to-peak pulsation amplitude, V., can then be extracted. The following 

section will present results of all five meters tested as compared to the reference 

information extracted from the weigh tank (actual mean flowrate, V, ); and the EM meter 

signal (actual peak-to-peak pulsation amplitude, V, ). 
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6.4 Experimental Results 

This section presents a range of test results for each meter, showing the behaviour of meter 

output signal when it is subjected to pulsating flow. For each meter, the output flow after 

correction for blade-spacing unevenness under nominal steady flow condition will be 

shown first. Then a selection of meter output flow waveforms will be compared to the 

reference information given by the weigh tank (mean flow) and the EM meter signal 

(pulsating component). In the following description, the "actual flow" (-) is inferred 

from the calibrated EM meter signal superimposed onto the mean flow as given by the 

weigh tank; and the "meter indicated flow" () is inferred from the turbine meter output 

signal either by the 2 points or 4 points per cycle technique. Individual data points are not 

shown as they may overlap each other. 

It must be noted that the meter signals (after correction of blade-spacing unevenness) show 

small amplitude fluctuations even in steady flow situation. Hence a threshold value is 

required to distinguish the difference between steady and pulsating flow. 

As stated in BS ISO TR 3313 (1998), the threshold value is calculated by the velocity 

amplitude of sinusoidal pulsation, U,., JIU Hence, in terms of volume flow rate, this 

would be: 

Vý�J V Eq. 6.3 

BS ISO TR 3313 (1998) stated that the threshold value for sinusoidal pulsation which will 

produce a systematic error of 0.1% in a turbine flowmeter is 3.5%, i. e. Vý,, I V=0.035. It 

can be seen that in the steady flow waveform graphs that are presented in the following 

sections, the evaluation of V,;,, / for each meter is less than 0.035. Therefore, 

considering the manufacturers' quoted linearity for all meters is ±0.5%, the small amplitude 
fluctuations would not significantly increase the measurement uncertainty. 
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6.4.1 Meter A 
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Figure 6.19 Meter A- Flow inferred from meter output signal after correction for blade- 

spacing unevenness under steady flow condition, volume flow rate = 0.095 X 10-3 m3/s, 
V,,, I 

=0.000023. 
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Figure 6.20 Meter A- Comparison of actual flow and meter indicated flow at 20 Hz 
imposed pulsation with 90% relative pulsation amplitude, mean volume flow rate = 0.095 x 10-3 

m3/s. 
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6.4.2 Meter B 
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Figure 6.21 Meter B- Flow inferred from meter output signal after correction for blade- 

spacing unevenness under steady flow condition, volume flow rate = 0.292 x 10.3 m3/s, 
V .1/ =0.000005. 
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Figure 6.22 Meter B- Comparison of actual flow and meter indicated flow at 20 Hz 
imposed pulsation with 40% relative pulsation amplitude, mean volume flow rate = 0.292 x 10-3 

m3/s. 
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Figure 6.23 Meter B- Comparison of actual flow and meter indicated flow at 40 Hz 
imposed pulsation with 40% relative pulsation amplitude, mean volume flow rate = 0.292 x 10-3 

m3/s. 
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6.4.3 Meter C 
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Figure 6.24 Meter C- Flow inferred from meter output signal after correction for blade- 
spacing unevenness under steady flow condition, volume flow rate = 0.095 X 10-3 m3/s, 
V, ý, F 

=0.00001. 
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Figure 6.25 Meter C- Comparison of actual flow and meter indicated flow at 20 Hz 
imposed pulsation with 65% relative pulsation amplitude, mean volume flow rate = 0.095 x 10-3 
m3/s. 
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6.4.4 Meter D 
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Figure 6.27 Meter D- Flow inferred from meter output signal after correction for blade- 

spacing unevenness under steady flow condition, volume flow rate = 0.292 x 10.3 m3/s, 

=0.000015. 
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Figure 6.28 Meter D- Comparison of actual flow and meter indicated flow at 20 Hz 
imposed pulsation with 23% relative pulsation amplitude, mean volume flow rate = 0.292 x 10-3 

m3/s. 
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Figure 6.29 Meter D- Comparison of actual flow and meter indicated flow at 299 Hz 
imposed pulsation with 22% relative pulsation amplitude, mean volume now rate = 0.292 x 10-3 

m3/s. 
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6.4.5 Meter E 
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Figure 6.30 Meter E- Flow waveform inferred from meter output signal after correction for 
blade-spacing unevenness under steady flow condition, volume flow rate = 1.740 X 10-3 m3/s, 

T% ;, I 
=0.000006. 
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Figure 6.31 Meter E- Comparison of actual flow and meter indicated flow at 70 Hz 
imposed pulsation with 5% relative pulsation amplitude, mean volume flow rate = 1.740 X 10-3 m3/s. 

It can be seen that all of the above selected pulsation tests show significant amplitude 

attenuation. And apart from meters D and E, significant over-registration in the indicated 

mean flow value can also be observed for the cases shown. The next section gives a 

summary of the whole series of tests for each meter. 
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6.5 Discussions of Experimental Results 

This section presents the discussion of pulsation flow test results for each meter. The 

levels of over registration error, OR, and amplitude attenuation, AA, against the imposed 

pulsation frequencies and amplitudes will be analysed. As mentioned in Section 2.2, for the 

quantitative discussion of the meter behaviour, the parameters are defined as follows: 

`Relative pulsation amplitude' (s, ) is defined by half of the peak to peak variation of the 

flow rate (gyp, /Z) as a percentage of the mean flow rate (V, ); 

L. 
X100% 

2 V, 

`Over-registration' (OR) is defined by the indicated mean flow rate (TVA, ) minus the true 

mean flow rate (V, ) as a percentage of the true mean flow rate, Eq. 2.3: 

OR = 
V'"V' 

X100% 
V. 

`Amplitude attenuation' (AA) is defined by the peak to peak variation of the true flow rate 

(rp) minus the peak to peak variation of the indicated flow rate (p. ) as a percentage of the 

peak to peak variation of the true flow rate, Eq. 2.4: 

AA = //º 

q'm 
X100% 

O. 

6.5.1 Over-registration errors 

The results are presented from Figures 6.32 to 6.39. In assessing the significance of the 

values of the over-registration error, it must be noted that the uncertainty quoted by 

manufacturers for meters used in these tests is ±0.5% of full scale (over the linear range of 

the meters). The measured mean flow is obtained by a continuously timed gravimetric 

collection using a weigh tank mounted on an Avery-Berkel L105 load-cell giving an overall 

measurement uncertainty of ±0.1%. Hence, the error bars in over-registration graphs 

represent an error of. ±(0.5+0.1)=±0.6% (Morris 1991), associated with the measurement 
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of mean flow rate by the meter as compared to the weightank mean flow rate 

measurement. 
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Figure 6.32 Meter A- Over-registration errors with differing pulsation amplitudes and 

pulsation frequencies 

Meter B 

Mean flow rate = 0.292x10,3 m3/s 

4.5 
-10 Hz 

4 

3.5 
-O- 20 Hz 

3 

u1 2.5 X 30 Hz 
2 

1.5 -*-40 Hz 

1 

0.5 - 60 Hz 

0 

-0.5 
10 20 40 50 a 70 Hz 

Rel. Puls. Amp. (%) 

Figure 6.33 Meter B- Over-registration errors with differing pulsation amplitudes and 

pulsation frequencies 
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Mcter C 

Mean flow rate = 0.095x10-3 m3/s 

6 
5.5 

--o-- 5 Hz 
5 

4.5 

3.5 -0--10 Hz 
0 

3 
2.5 

0 2 -6 20 Hz 
1.5 

v1 
0.5 --- 40 Hz 

0 

-0.5 10 0 30 40 50 60 70 
-1 --0- 80 Hz 

-1.5 
2 - 

Rel. Puls. Amp. (%) 

Figure 6.34 Meter C- Over-registration errors with differing pulsation amplitudes and 

pulsation frequencies 
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Figure 6.35 Meter D- Over-registration errors with differing pulsation amplitudes and 

pulsation frequencies 
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Meter E 
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Figure 6.36 Meter E- Over registration errors with differing pulsation amplitudes and 

pulsation frequencies 

It can be seen from Figures 6.32,6.33,6.34 and 6.35 that the over-registration errors for 

meters A, B, C and D are qualitatively very similar - the over-registration error increased 

significantly with increasing pulsation frequency and increasing relative pulsation 

amplitude. As an example of the effects, for meter B, at 20 Hz pulsation frequency, the 

imposed relative pulsation amplitude ranged from 17% to 40%, the observed over- 

registration errors were 0.27% to 1.58%. For the same meter, at 40 Hz pulsation frequency 

and the same range of imposed pulsations, the over-registration errors were 0.53% to 

3.40%. Graphical representations of these effects of 20 Hz and 40 Hz pulsation at 40% 

imposed pulsation amplitude are shown in Figure 6.22 and 6.23 respectively. 

Furthermore, at the largest pulsation amplitudes, it can be observed that meters A, B, C, 

and D all experienced significant over-registration for pulsation frequencies above 20 Hz. 

The maximum over-registration observed was 5.5% (as shown in Figure 6.34 and the 

graphical representation of this is shown in Figure 6.26). Whilst at lower pulsation 

frequencies of 5 and 10 Hz, the pulsation induced errors depicted are negligible (as the 

results are in close proximity to the manufacturers' quoted uncertainty of ±0.5%). 

However, it must be noted that there was some harmonic distortion produced in the flow 

output waveform at these low pulsation frequencies (See Figure 6.6 and Figure 6.10), 
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therefore the negligible errors could be due to the deficiency of the flow rig in producing a 

true pulsation flow waveform. 

For meter E, the results from investigated cases (as shown in Figure 6.36) suggested that 

pulsation induced errors were insignificant considering the majority were close to the 

manufacturer's quoted uncertainty of ±0.5%. However, it should be noted that the 

imposed relative pulsation amplitudes which were examined for this meter were 

comparatively smaller than the other test cases for other meters. 

For meter C, the negative errors resulted from the 5 Hz pulsation (Figure 6.34) suggested 

that the meter under-registered the flow rate by about 1.5% at around 40% imposed 

pulsation amplitude. A possible physical explanation would be - during the pulsating 

cycle, there is a gradual reduction in flow, for instance at 5 Hz with 40% relative amplitude, 

40% reduction in the volume flow rate would result in 40% reduction in the pipe flow 

velocity, (since volume flow rate=pipe cross-section area*velocity), therefore the pipe 

Reynolds number (calculated using steady flow condition) would also be reduced by 

around 40% (Re =ud/ v) at the same rate, i. e. from around 10000 reduced to 6000, in which 

this value suggested that the meter is operating close to the transitional flow regime 

(<4000), Massey 1988. And when the flow is gradually increasing to the upper limit of 

40%, the meter may be experiencing difficulty in responding to the change. When this 

intermittent turbulence phenomenon is repeated cyclically, the meter may therefore be 

"under-registering" the mean flow. 

For one particular meter (D), the effects of flow pulsations were examined at three 

different operating flow rates within its linear range (which was determined under steady 

flow conditions): 0.143x 10"3 m3/s, 0.191X10-3 m3/s and 0.291 x 10"3 m3/s. Figures 6.37, 

6.38 and 6.39 show the over-registration errors of these tests at pulsation frequencies of 

10 Hz, 20 Hz and 40 Hz respectively. The results suggested that the varying of the 

operating flow rates induced little effect on the over-registration errors, as each flow rate 

plot in each figure displayed similar trends. The maximum differentiation in these over- 

registration errors observed was 1.5% at 40 Hz pulsation frequency, with 40% imposed 

relative pulsation amplitude. 
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Figure 6.37 Meter D- Over-registration errors with differing pulsation amplitudes and flow 

rates at 10 Hz pulsation frequency 
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Figure 6.38 Meter D- Over-registration errors with differing pulsation amplitudes and flow 

rates at 20 Hz pulsation frequency 
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Meter D 
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Figure 6.39 Meter D- Over-registration errors with differing pulsation amplitudes and flow 

rates at 40 Hz pulsation frequency 

6.5.1.1 Comparisons of over-registration between meters at "standard" pulsation cases 

Since there was a 20 Hz pulsation frequency test for every meter, therefore a comparison 

of over-registration errors can be made on all the meters at 20 Hz. A summary of all the 

20 Hz test results are given in Figure 6.40. The error bars are not included as they may 

overlap each other. 

At 20 Hz pulsation, it can be seen from Figure 6.40, that there are different levels of over- 

registration error experienced by different meters. Apart from meter E, it can also be seen 

that there are no other meters which have been tested under the conditions below 7% of 

relative pulsation amplitude, therefore meter E will be excluded from any comparison 
being made from Figure 6.40. 

At 20 Hz with 40% imposed relative pulsation amplitude, meter A exhibits the best 

response; for the particular cases investigated, the ascending order of over-registration 

errors ranks from meters A, D, C and B. There are many factors affecting this order, such 
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as the meter size, mean flow rates and blade number, etc. A table summarising these 

factors is given below: 

Figure 6.40 A comparison of over-registration error for all meters at 20 Hz pulsation frequency 

Mean 
Nominal IR b(1 +A, ) Ratio of lowest 

Rank lade r /r bt b= flow rate 
Meter Size PF A= (X 10.7 3 

linear flow rate* to 
(20Hz) no. ratio (x 10- Ifllx x 10 

(mm) 
M) m) 3 mean flow rate 

m /s) 

Good A 6 3 0.4 2.850 1.862 8.16 0.095 1: 3.8 

D 12 6 0.5 4.855 0.703 8.27 0.292 1: 7.3 

C 12 5 0.67 4.474 1.300 10.29 0.095 1: 6.3 

Bad B 12 3 0.4 5.123 3.434 22.72 0.292 1: 2.1 

Table 6.3 A summary of factors affecting meter indication of mean flow rate when subjected 
to 40% imposed relative pulsation amplitude at 20 Hz (based on comparison made in Figure 6.40) 

On the other hand, if excluding meter A, by comparing results at 40 Hz, another order can 

be observed. Figure 6.41 shows the results obtained for meters B, C, D and E. Again, 

since no other meters, except for meter E, were tested under the conditions below 7% of 

' The lowest linear flow rate value is given by manufacturers. (as stated in Table 6.1). 
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imposed relative pulsation amplitude, therefore meter E will be excluded from any 

comparison being made from Figure 6.41. 

It can be seen that now meter C exhibits a better response than meter D to pulsation at 

40 Hz with 40% imposed relative pulsation amplitude. The ascending order of over- 

registration errors ranks from meters C, D and B for the particular cases investigated. 

Similar to Table 6.3, a table summarising the factors is given in Table 6.4. 

Figure 6.41 A comparison of over-registration error for meters B, C, D and E at 40 Hz pulsation 
frequency 

Mean 
Nominal IR b(1+A) Ratio of lowest 

Rank lade rb/rt b=- flow rate 
Meter Size Pr A= (x 10-1 linear flow rate to 

(40Hz) no. ratio x 10-7 ( I /I 
fR (x 10'3 

(mm) 
m m3) 3 mean flow rate 

m /s) 

Good C 12 5 0.67 4.474 1.300 10.29 0.095 1: 6.3 

D 12 6 0.5 4.855 0.703 8.27 0.292 1: 7.3 

Bad B Fý 12 3 0.4 5.123 3.434 22.72 

I 
0.292 1: 2.1 I 

Table 6.4 A summary of factors affecting meter indication of mean flow rate when subjected 
to 40% imposed relative pulsation amplitude at 40 Hz (based on comparison made in Figure 6.41) 
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6.5.2 Amplitude attenuations 

In assessing the significance of the values of the amplitude attenuation, it must be noted 

that the uncertainty quoted by manufacturers for meters used in these tests is ±0.5% of full 

scale (over the linear range of the meters). Since the peak to peak variation of the true flow 

rate is obtained from the EM flow waveform in which it was calibrated by reference to the 

flow from the piston pump with an estimated accuracy of ±5%. Hence, the error bars in 

amplitude attenuation graphs represent an error of ±(0.5+5)=±5.5% (Morris 1991), 

associated with the measurement of pulsation amplitude by the turbine meter as compared 

to the value obtained from the EM flow waveform. 

6.5.2.1 Against various relative pulsation amplitudes 
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Figure 6.42 Meter A- Amplitude attenuations with differing pulsation amplitudes and 

pulsation frequencies 
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Figure 6.43 Meter B- Amplitude attenuations with differing pulsation amplitudes and 

pulsation frequencies 
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Figure 6.44 Meter C- Amplitude attenuations with differing pulsation amplitudes and 

pulsation frequencies 
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Meter D 
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Figure 6.45 Meter D- Amplitude attenuations with differing pulsation amplitudes and 

pulsation frequencies 
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Figure 6.46 Meter E- Amplitude attenuations with differing pulsation amplitudes and 

pulsation frequencies 

It can be seen from the above figures that the errors in pulsation amplitude are generally 

much larger than over-registration errors. Except for meter A, the majority of amplitude 
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attenuations for all meters, are qualitatively very similar - the amplitude attenuation 

increased significantly with increasing pulsation frequency but attenuation was nominally 

independent of relative pulsation amplitude. As an example of the effects, for meter B, at 

20 Hz pulsation frequency, the imposed relative pulsation amplitude ranged from 17% to 

40%, the observed amplitude attenuations were between 22% and 23%. For the same 

meter, at 40 Hz pulsation frequency and the same range of imposed pulsations, the 

amplitude attenuations were between 43% and 44%. Graphical representations of these 

effects on meter B at 20 Hz and 40 Hz pulsation with 40% imposed pulsation amplitude 

are shown in Figures 6.22 and 6.23 respectively. 

It is not apparent why there is a different trend observed for meter A (Figure 6.42), this 

may be due to the abrupt contraction of flow at the meter inlet (as mentioned in Ch. 6.2.1). 

In which eddies generated between the vena contracta and the wall of the meter body 

immediately after the inlet (Massey 1998) may have disturbed the inlet flow profile, and 

when the flow characteristic is pulsatile, this may affect the meter response. 

The majority of amplitude attenuations observed in each meter were higher than 10% for 

pulsation frequency above 10 Hz, and the maximum amplitude attenuation observed was 

90% (as shown in Figures 6.29 and 6.45). 

Again for meter D, the amplitude attenuations were examined at three different operating 

flow rates within its linear range (which was determined under steady flow conditions): 

0.143X 10-3 m3/s, 0.191 x 10"3 m3/s and 0.291 x 10"3 m3/s. Figures 6 47,6.48 and 6.49 show 

the amplitude attenuations of these tests at pulsation frequencies of 10 Hz, 20 Hz and 

40 Hz respectively. At three different flow rates, the typical amplitude attenuation trend 

was observed for all pulsation frequencies. However, it can be seen that the amplitude 

attenuations at the tested frequencies are generally higher at the lowest flow rate, for 

example, in Figure 6.49, at 40 Hz with 40% imposed relative pulsation amplitude, the 

amplitude attenuations were from 22% at the highest flow rate to 46% at the lowest flow 

rate. 
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Meter D 
Pulsation Frequency at 10 Hz 

60 

50 0.143E-03 m^3/s 
; is 

oo 40 

30 S0.191E-03 m^3/s 

20 

10 - 0.291E-03 MA 3/s 

0- ---r----7 

r-- rI 

#F, 

05 10 15 20 25 30 35 40 45 50 55 60 65 
Rel. Puls. Amp. (%) 

Figure 6.47 Meter D- Amplitude attenuations with differing pulsation amplitudes and flow 

rates at 10 Hz pulsation frequency 
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Figure 6.48 Meter D- Amplitude attenuations with differing pulsation amplitudes and flow 

rates at 20 Hz pulsation frequency 

-99- 



Chapter 6- Experimental Investigation into the Dynamic Response of Turbine Flowmeter 

Meter D 
Pulsation Frequency at 40 Hz 
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Figure 6.49 Meter D- Amplitude attenuations with differing pulsation amplitudes and flow 

rates at 40 Hz pulsation frequency 

6.5.2.2 Against various pulsation frequency 

From the previous section, it is observed that the amplitude attenuations for all tested 

meters, except for meter A, have strong dependency on pulsation frequencies, but not on 

relative pulsation amplitudes. 

Therefore it is useful to re-plot the results in a different manner; instead of plotting 

amplitude attenuation against relative pulsation amplitude, this section shows the results of 

amplitude attenuation against pulsation frequency. The error bars are excluded as they may 

overlap each other. 
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Meter A 

Mean flow rate = 0.095x10-3 m3/s 

70 

0 015.32 % 
60 

+ 
(326.27% 

0 
50 

40 0 
x 

031.35% 

30 X50.37% 
I 

20 073.73% 
O 

10 
+92.21% 

0 

0 5 10 15 20 

Pulsation Frequency (Hz) 

Figure 6.50 Meter A- Amplitude attenuations with differing pulsation frequencies and 

pulsation amplitudes (re-plotted for results shown in Figure 6.42) 

Meter B 

Mean flow rate = 0.292x 10-3 m3/s 
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Figure 6.51 Meter B- Amplitude attenuations with differing pulsation frequencies and 

pulsation amplitudes (re-plotted for results shown in Figure 6.43) 
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Meter C 

Mean flow rate = 0.095x10,3m3/s 
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Figure 6.52 Meter C- Amplitude attenuations with differing pulsation frequencies and 

pulsation amplitudes (re-plotted for results shown in Figure 6.44) 
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Figure 6.53 Meter D- Amplitude attenuations with differing pulsation frequencies and 

pulsation amplitudes (re-plotted for results shown in Figure 6.45) 
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Meter E 
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Figure 6.54 Meter E- Amplitude attenuations with differing pulsation frequencies and 

pulsation amplitudes (re-plotted for results shown in Figure 6.46) 

6.5.2.3 Comparison of amplitude attenuation between meters at "standard" pulsation 

cases 

Apart from meter A, all amplitude attenuation trends are qualitatively similar; it can be seen 

more clearly now that the increase of amplitude attenuation is strongly dependent on the 

increase of pulsation frequency, but not significantly dependent on the increase of relative 

pulsation amplitude, as predicted in Ch. 5.2.5. However, there are different scopes of 

dependency observed when the trends are compared with each other. To make this 

comparison more apparent, the trends of all meters have to be plotted on the same scale. 

Consequently, individual meter error plot has to be represented by using the arithmetic 

average meter error value for all pulsation amplitudes at each frequency. Figure 6.55 

shows the various meter error trends achieved by using this method. 

It can be seen that there are some meters which can give better indication of pulsation 

amplitude than others, such as at 20 Hz, meter E is better able to follow the actual 

pulsation amplitude than others, and the ascending order of amplitude attenuation can be 

ranked from E, D, B, A and C. 
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Summary of Amplitude Attenuation (All Meters) 
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Figure 6.55 A comparison of amplitude attenuation for all meters 

Again, a summary of factors considered to be influential on meter results is given below: 

Mean 
Nominal IR b(1 +A. ) Ratio of lowest 

Rank lade rb/ r, b= flow rate 
Meter Size Pr 2_ (x 10"' linear flow rate to 

(20Hz) no. ratio (x 10-7 IJ/IR (x 10-1 
(mm) 

M) 
m3) 3 

mean flow rate 

m /s) 

Good E 25 5 0.33 34.18 1.989 102.16 1.740 1: 4.0 

D 12 6 0.5 4.855 0.703 8.27 0.292 1: 7.3 

B 12 3 0.4 5.123 3.434 22.72 0.292 1: 2.1 

A 6 3 0.4 2.850 1.862 8.16 0.095 1: 3.8 

Bad c 12 5 0.67 4.474 1.300 10.29 0.095 1: 6.3 

Table 6.5 A summary of factors affecting meter indication of pulsation amplitude for 

pulsation frequency at 20 Hz (based on comparison made in Figure 6.55) 
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6.5.3 Summary of discussion 

" In Tables 6.3 and 6.4, meter B is found to be the most affected meter on 

indicating the true mean flow when it is subjected to pulsating flow from the 

investigated cases (with 40% imposed relative pulsation amplitude at 20 and 

40 Hz). However, in terms of amplitude attenuation, meter C is most affected for 

pulsation frequency below 20Hz (Table 6.5). 

If the meters are rated in groups by different mean flow rate, for pulsation tests at 

20 Hz with 40% relative pulsation amplitude, Figures 6.40 and 6.55 show that 

meter D is more responsive than meter B, similarly, meter A is better than meter C. 

Then the only factor that correlates with this observation is the value of [b(1+A)]Xt, 

in which [b(1+2)]p < [b(1+2, )]B and [b(1+A)]A < [b(1+2)]c (see Table 6.3). Hence 

under the same flow condition, according to experimental observation, a meter with 

smaller value of b(1 +A, ) gives better indication of the true flow than one with a larger 

value. This observation reflects what is expected from theory, as shown in 

Eq. 4.18a, [t, = b(1 + 2)/(T!, -A "a )], for the same value of T% - AV, 
, and since 

[b(1+A)]D < [b(1 +2)]B, the time constant of meter D would be smaller than meter B, 

hence rotor D takes less time than rotor B to response to change in flow. Similarly, 

the time constant of meter A would be smaller than meter C, since [b(1+A)]A < 

[b(1 +2)]c. 

" However, theoretical model predicted that meter B would be more responsive than 

meter D, contradicting the observation made from experimental results. As stated in 

Ch. 5.2.5, the theoretical model is based on the assumptions that the flow is perfectly 

guided between blades where no separation of flow is allowed, the rotor is 

frictionless and there is a purely sinusoidal pulsation. All of these assumptions 

would not exist in a real situation; hence this could be the reason that the results 
from theoretical predictions did not correlate with experimental results. More 

comparisons between these two results will be made in Section 7.1. 

t [b(1 +A)]x is the specific value of b(1 +A) for meter X. 
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6.5.4 Conclusions 

New data have been obtained, which demonstrate the occurrence of over-registration and 

amplitude attenuation when a small turbine flowmeter is subjected to a pulsation liquid 

flow. Although the over-registration errors are within the limits of specified meter 

accuracy for low frequency pulsations, they may be significant for higher frequencies and 

larger pulsation amplitudes. The amplitude attenuation error is likely to be significant over 

a considerable range of amplitudes and frequencies and can be as large as 90%. Also the 

typical trends in over-registrations and amplitude attenuations remain unchanged with 

varying operating flow rates within the linear range. 

For the pulsation cases investigated, the experimental data also demonstrate that a meter 

with a smaller value of [b(1 +A)] would be more responsive to pulsating flow condition 

under the same mean flow rate. 

The next chapter reviews the possible correction procedures investigated in order to rectify 

metering errors under pulsating liquid flow. 
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Chapter 7 Comparison of Experimental Results with Theoretical 

Results and Correction of Meter Reading 

In this chapter, a comparison will be made for the meter dynamic response resulting from 

experimentation and from theoretical modelling (Section 5.2). Then, a technique for 

dealing with the correction of turbine meter readings will be given. This work resulted in 

the development of a correction model, and the resulting corrected data are then compared 

with experimental measurements. 

7.1 Comparison of Experimental Results with Theoretical Results 

Results based upon the theoretical model given by Eq. 5.1 were used to predict the 

dynamic response for Meter B and Meter D (Section 5.2). A comparison of the 

experimental data with those produced from this model will allow evaluation of the 

applicability of this model. 

7.1.1 Comparison of over-registration error 

For Meter B, the correlation between theoretical results and experimental data is quite 

poor; apart from the 10 Hz pulsation case, the theoretical data tend to under-estimate the 

over-registration errors. For example, as shown in Figure 6.33, the largest over- 

registration observed from experimental results is around 4% at a pulsation frequency of 

60 Hz, 37% imposed relative pulsation amplitude. However from Figure 5.1, it can be 

seen that the over-registration predicted under the same pulsating condition is less than 

1.5%, this represents a discrepancy of 63% as compared to the experimental OR of 4%. 

For all of the cases compared, with the exception of the 10 Hz pulsation, the largest 

discrepancy between theoretical and experimental data is 71%. Graphical comparison of 

these errors are presented in Section 8.4.3., Figs 8.25 a and 8.25 c. 

For Meter D, however, there is a better correlation between the theoretical data and 

experimental data except for pulsations at 10 Hz and 299 Hz. As shown in Figure 6.35, 
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the largest over-registration observed from experimental results is around 2.2% at pulsation 

frequency of 120 Hz, with a 27% imposed relative pulsation amplitude. From Figure 5.2, 

it can be seen that theoretically the over-registration predicted under the same pulsating 

condition is approximately 1.8%, hence the discrepancy is around 20%. The majority of 

the discrepancies between the two sets of data are around 20%. 

7.1.2 Comparison of amplitude attenuation 

For Meter B, at 70 Hz pulsation frequency, experimental data (in Figure 6.41) show that 

,,,, 
theoretical data the amplitude attenuations are around 68%; however, for the same f 

(in Figure 5.3) show that the attenuations are around 21%. The majority of the 

discrepancies are in the range of 50% to 70% between these data. Graphical comparison 

of these errors are presented in Section 8.4.3., Figs 8.26 a and 8.26 c. 

Better correlation between experimental and theoretical data is found for Meter D. For 

instance, at 299 Hz pulsation frequency, the experimental amplitude attenuations 

(Figure 6.43) observed are around 90%, whilst the theoretical ones are around 55% for the 

same fy. Except for the 10 Hz pulsation frequency, the majority of the discrepancies 

between these data are in the range of 10% to 40%. 

7.1.3 Summary of the comparisons 

As mentioned in Section 5.2.1, the model used was based on the assumptions that the 

rotor is "frictionless", and the flow is perfectly guided between rotor blades. Then, due to 

the lower number of blades for Meter B, the predictions made for this meter would be 

expected to be less accurate than the results predicted for Meter D (6-bladed). This 

hypothesis is supported by the poorer correlation between experimental and theoretical 

data for Meter B than for Meter D. 

Furthermore, as stated in Section 5.2.5, it was assumed that only the fluid contained within 

the envelope of the meter rotor contributes to If, hence the ratio of inertias (A) calculated 

for Meter B was five times higher than for Meter D. This is because Meter B has a 

substantially larger annular space between the rotor body and casing than for Meter D (as 
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shown in Figure 6.1). Hence, for this reason, Meter B was predicted to have a better 

response than Meter D for the same pulsating condition. However, experimental data 

showed that Meter D actually has a better response than Meter B. For example, the 60 Hz 

pulsation frequency, at around 35% imposed relative pulsation amplitude, predictions of 

over-registration error for Meter B and Meter D were 4% and 2% respectively; at the same 

imposed pulsation, the amplitude attenuations predicted for Meter B and Meter D are 60% 

and 30% respectively. 

The above two observations implied that the values of A or B that were used for Meter B 

were possibly too large in the theoretical model and hence the treatment of fluid contained 

within the rotor envelope as a "solid body" (see Section 5.2.2. ) for Meter B was incorrect. 

For a real meter, flow must separate off the blade surfaces due to boundary layer effects 

associated with misalignment with the blade angle, hence, there is a need to determine the 

appropriate values of b and A for Meter B by an independent and experimental means 

based on step response tests. 

The following section gives a brief description of the step response tests for Meter B and 

the results from these tests will be discussed. 
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7.2 Step Response Tests for Meter B 

In Section 4.1.2, it was noted that following the work published by Dijstelbergen (1966), 

Cheesewright and Clark (1997) modified the "frictionless" liquid equation to produce a 

formal mathematical solution (Eq. 4.17): 

Vý =V, -H(t)dV, 1-exp -V, 
-dT% IR 
b IR + If 

where H(t) is a unit step function at t=0. By using the above equation, a numerical value 

of the time constant can be obtained by plotting ln[(V-V 
p 
)/ AV, ] 

against t. The 

quantity b(1 +Ij/I R) could then be obtained from the slope since TVQ -AV, (the steady 

velocity after the step) is known. Since instantaneous changes cannot occur, the above 

equation can only be considered to be a mathematical solution rather than a practical 

solution, as in a real device, the flow must separate off the blade (as mentioned in Section 

4.1.2). 

However, despite the uncertainty in the possible solution, it was decided to perform a step 

response test to attempt to find a better estimate of b(1 + If / IR ) for Meter B. The step 

response test method described in Cheesewright and Clark (1997) was used in this study 

and a description of the method, which was extracted from Cheesewright and Clark (1997), 

is shown in Appendix B. The same data acquisition programs built in Labview, as 

described in Section 6.1.3, were used here for obtaining turbine meter raw data; and the 

same data processing technique (described in Section 6.3) was used to process the 

subsequent meter data. 

7.2.1 Step response test results 
A total of 15 step tests were carried out on this meter. All the tests showed a qualitatively 

similar response to the step and Figure 7.2 shows the variation of flow with time obtained 

from the meter output signal (in Figure 7.1) for a typical step change in flow. It can be 

seen that the scarceness of the data points presented some difficulties in characterising the 

time-course of the change in the flow. This is mainly due to the fact that the significant 

changes in turbine speed, following a step change in the flow, took place within only two 

to three blade passings of the turbine rotor, as depicted from Figure 7.2 that the time scale 

of step change was between 5.815 s to 5.83 s, it showed that the step took place just within 
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one revolution (Figure 7.1) since the rotor of Meter B is 3-bladed . 
It is also noted that the 

initial part of the step shows a rather different feature to the exponential one predicted by 

theory. The probable physical explanation of this effect is that at the moment after the 

initial "step change", the turbine rotor and a body of fluid enclosed within the rotor 

envelope may still be rotating in the speed just before the step, with the associated "disc 

friction" effect (Cheesewright and Clark 1997). Despite these limitations, an attempt to 

match the second part of the experimental step response curve to an exponential feature 

was made and the best-fit exponential curve was drawn as shown in Figure 7.3. 
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Figure 7.1 Digitised turbine meter output signal during a step 
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Figure 7.2 Flow waveform showing the meter response to the step, processed from meter 

output signal shown in Figure 7.1 
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Figure 7.3 Experimental response to a step change compared to a "best-fit" exponential 

change for meter flow waveform shown in Figure 7.2 
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From the best-fit curve shown in Figure 7.3, the quantity of b(1 + If / IR ) was found by 

using Eq. 4.17. As shown in Table 7.1, repeat tests under similar conditions suggested 

that the average value of the quantity b(1 + If /IR), was 2.64X 10-6 m3 with an uncertainty 

of ±15 % (99 % confidence limits). Within this uncertainty, the tests did not show any 
difference between a step up and step down, neither did they show any change with flow 

rate (over a 2: 1 range). (Note that all the above discussion is in terms of the response 

parameter b(1 +If/IR), rather than the time constant, because the former is a function of 

the meter geometry and the fluid, while the latter also depends on the flow rate). 

Test Test Condition b (l+ If /I R 
No. Flow rate before Step 

X10-3 m3/s 
Flow rate after Step 

X10-3 m3/s 
(X 10"6 m) 

1 0.325 0.390 1.96 

2 0.325 0.390 2.87 

3 0.325 0.390 2.70 

4 0.440 0.490 2.93 

5 0.420 0.480 2.46 

6 0.420 0.480 2.09 

7 0.410 0.350 3.44 

8 0.400 0.350 2.35 

9 0.395 0.340 2.99 

10 0.495 0.440 2.70 

11 0.490 0.430 2.04 

12 0.490 0.440 2.63 

13 0.485 0.250 3.64 

14 0.485 0.250 1.90 

15 0.485 0.250 2.94 

Average b(1 +I f/ IR= 77 

Table 7.1 Results of step response tests 

- 112 - 



Chapter 7- Comparison of Experimental Results with Theoretical Results and Correction of Meter Reading 

Having obtained an average value of b(1 + I. /I R) from experimental results, if the value 

of b is known, than a better estimation of A (= I/IR) could be obtained. To a first 

approximation, an estimate for b(=I R/ pre) from the rotor geometry by using Solidworks 

(as shown in Table 5.1 Section 5.2.1) is 5.123X 10"' m3. An alternative way to find for the 

true value of b would be running step flow tests on this meter with air, however, the 

accuracy of the result would be substantially reduced by the forces on the turbine, due to 

the electromagnetic pick-up (Cheesewright and Clark 1996). In view of the level of 

uncertainties already implicated from the water flow step tests, air flow step tests were not 

considered for this meter. Hence, within the limitation of this work, the best estimate for b 

is the value obtained from the rotor geometry (5.123X10-7 m). 

Using this value, the experimental value of A was then found to be around 4.16. This value 

is comparable to the one obtained from Solidworks (=3.434), as shown in Table 5.1 

(Section 5.2.1). 

7.2.2 Step response test summary 

Comparisons made between the experimental and theoretical results in Section 7.1.3 

concluded that geometrical values of b and A obtained from Solidworks for this meter 

might be too large. It was expected therefore that the results of the step response tests 

would give a smaller value of A; however, the experimental value of A was approximately 

20% larger than the one obtained from the geometry. The sparseness of the data points 

was the main limitation in providing a better determination of the true values of b and A. 

Therefore, it was decided to continue with the "Solidworks" values of b and A for this 

meter, for the subsequent modelling work. 
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7.3 Correction of Meter Reading 

In the theoretical modelling presented in Section 5.2, the meter indicated flow (V,, ) was 

predicted from the time dependent true flow (TV, ) by using the "frictionless" liquid 

equation" (Eq. 4.16); 

b(1+A) '+I) T) = >2+bA 

In spite of the poor theoretical predictions for Meter B, the theoretical prediction for 

Meter D was reasonably acceptable; hence Cheesewright devised a method of attempting 

to correct the turbine meter reading using Eq. 4.16. The alternative viewpoint was to try 

to predict the true flow (V, ) (using the same equation) from the meter indicated flow 

(Vý ); hence the term "correction of meter reading". The following two sections review 

the procedures (Cheesewright 2001) required for these corrections. 

7.3.1 Correcting the effect of averaging At 

Before applying Eq. 4.16 for the correction to allow prediction of the true flow, it is 

relevant to recall (from Section 6.2) that the "4 points per signal cycle" turbine meter 

output signal was not equally spaced in time and the signal needed to be re-sampled in 

order to obtain equal time intervals between each data point; this involved the averaging of 

At for each signal cycle of Within this procedure, the slope of V,, would be 

disrupted, hence a correction of this effect has to be made before V, can be estimated 

from the logged data, time series of TVA,. 

If the time series of L2 is written as, 

V. (t) = V. (1 +a sin 2 ); 'pt) = V. + Výa sin 2 pt 
Eq. 7.1 
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And the averaged value of V (t) over a data sampling interval A as: 

t+- 

ýVý f V. (1 +a sin 2)f 
pt). 

dt 

f-- 
z 

- r+- 
V2 

_. 
f (1+asin2 

)t). 
dt 

ýt & 
2 

&Z 
r+- 

=V" [t] &+af sin 2nf pt. 
dt 

2& Z 

ý+ Z Vm 
=öt+aj sin 2 t. dt 

& 
r- 2 

=Vm1+a 
t- 

Hence, Eq. 7.2 can be written as: 

- 
1 

cos 279Pt 

r+ 2 

2P 
r-& 2 

ýV, 
ýý . 

(t)=V, 
ý 

1-2 aýt[cos2)fPtT+2 

Pr2 

The cosine function term on the R. H. S in the above equation can be expressed as: 

t+& cos t_ 52 
22]2 [cos Z ýtr _ {cos[2, ( 

8t1 
_ -2(sin21pt). 

(sin 
21; 

p 2 

_[ 
(sin27rfpt)"(sin7rfp&)] 

Substitute Eq. 7.4 into Eq. 7.3: 

ýV, 
ýýQ 

(t)=V 1+ 
p& 

(sin2 'pt)"(sinnfp& 

=V. +ýt(sin27tfpt)"(sin1Lfpýt) 

Eq. 7.2 

Eq. 7.3 

Eq. 7.4 

Eq. 7.5 
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Hence a ratio can be found for 
V (t)-V 

- , and this value can be used to correct for LVm Jaus. 
(t) 

- 
V. 

the averaging effect of each meter indicated data point, which yields the following 

correction factor: 

Ve(t)-V, 
ý - 

1'., (asin27rfpt) 

[V 1 (t)-Vý 
Vý 

a (sin 2); r t)"(sin 2f st) 

pit 
a(sin 2't)"(; fpit) 

a (sin 2t" sin; zf pöt 

_ yot 
sin2f (St 

7.3.2 Estimation of V, from V 

In Eq. 4.16, in order to make the notation simpler, replace the following. 

1. x+, (i =1-4 n) as the time series of values of V,; 

2. y; , 
(i =1-4 n) as the time series of values of ', 

H ; and 

dt% x. -x _ 3. approximate ° by c' 'ý 
dt dt 

Now Eq. 4.16 becomes: 

Eq. 7.6 

x; 2-yix; -b(1+2)d'y' +b2(xi-x; -1)_0 Eq. 7.7 
dt dt 

Where y; and can can be obtained from the logged data. Therefore if a first value of xi 

can be obtained, a forward time marching method can be used to solve for x, at each step. 
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In order to obtain the first value of x;, ideally the last term on the L. H. S. in Eq. 7.7, 

xi - x(, ->) 
dt , should be equal to zero; yet the logged data does not contain this information 

xi -x due to the pulsating flow condition. However, it is known that 0 occurs just 
dt 

before 
dy' 

= 0. Hence 1 or 2 time steps just before 
dy' 

=0 can be chosen to start the 
dt dt 

1+ 
46(1 

2 y; 

Zý) dy; 
time marching step, taking the first value of x; = 

y' 1+ 
dt 

Eq. 7.7 can now be written as 

X; 2-x; (. Y; -b, -b(1+)dy; -bý, x! _I - 
Eq. 7.8 

dt dt dt 

The solution for x; is then given by 

z 

x' 2i 
1 

bA 
dt + 1- 

b 
dt 

+ 
4b 1(1+A) ddtr 

dt 
Jj 

Eq. 7.9 
yi y; Yi 

Where y; (the time series of values of V,,, ) is the logged meter output data; and b and A are 

obtained from the Solidworks program using individual meter geometrical values (as 

shown in Table 5.1). The above equation can then be programmed as a Labview sub- 

program and the time series of J' can be obtained. 

The following sections review the results of the correction of meter readings for all five 

meters. Comparisons will then be made with the experimental results which were 
presented in Section 6.4 and 6.5. 

- 117- 



Chapter 7- Comparison of Experimental Results with Theoretical Results and Correction of Meter Reading 

7.4 Correction Results 

This section presents a number of results showing the effects of individual meter 

corrections which are compared to the corresponding experimental data. Each diagram 

consists of. the "actual flow" (-) inferred from the calibrated EM meter signal 

superimposed onto the mean flow as given by the weigh tank; the "meter indicated 

flow" (-) inferred from turbine meter output signal; and the "corrected meter flow" () 

inferred from the corrected meter signal, using the methods described in the previous 

section. Individual data points are not shown as they may overlap each other. 

It should be noted that with the exception of Meter D at low frequency, whilst the 

correction produces changes in the right direction, there are very significant difference 

between corrected and actual flows. 

7.4.1 Meter A 
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Figure 7.4 Meter A- Comparison of actual flow, meter indicated flow, corrected meter flow 

at 20 Hz imposed pulsation with 90% relative pulsation amplitude. 
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7.4.2 Meter B 
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Figure 7.5 Meter B- Comparison of actual flow, meter indicated flow, corrected meter flow 

at 20 Hz imposed pulsation with 40% relative pulsation amplitude. 

7.4.3 Meter C 
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Figure 7.7 Meter C- Comparison of actual flow, meter indicated flow, corrected meter flow 
at 20 Hz imposed pulsation with 65% relative pulsation amplitude. 
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7.4.4 Meter D 
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Figure 7.9 Meter D- Comparison of actual flow, meter indicated flow, corrected meter flow 

at 299 Hz imposed pulsation with 22% relative pulsation amplitude. 

7.4.5 Meter E 
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Figure 7.8 Meter D- Comparison of actual flow, meter indicated flow, corrected meter flow 

at 20 Hz imposed pulsation with 23% relative pulsation amplitude. 

Figure 7.10 Meter t- Comparison of actual flow, meter indicated flow, corrected meter flow 
at 70 Hz imposed pulsation with 5% relative pulsation amplitude. 
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7.5 Review of Meter Reading Corrections 

From the previous section, it can be seen that the extent of meter correction varies 

between meters. In general, the uncorrected meter indicated flow is able to follow the 

actual flow better at lower frequencies rather than at higher frequencies, hence the relative 

effect of corrections, especially in the increase in pulsation amplitude, is greater at higher 

pulsation frequencies. For example, the relative correction made for Meter D at 299 Hz 

(Figure 7.9) is more effective than the one made at 20 Hz (Figure 7.8). 

This section reviews the whole series of meter correction results for each meter (Figures 

7.11 to 7.20). In each figure, the prefixes "E" represents experimental data and "C" 

represents corrected data. 

It is stated in Section(s) 6.5.1 and 6.5.2 that the experimental uncertainties in over- 

registration error and amplitude attenuation are ±0.6% and ±5.5% respectively. However, 

it is difficult to determine the uncertainties in the corrected data due to the complicated 

correction methods implemented; given that the corrected data are derived from the 

experimental data, therefore the uncertainties in the corrected over-registration error and 

corrected amplitude attenuation must be at least ±0.6% and ±5.5% respectively. For the 

following figures, individual error bars are not included as data may overlap each other. 
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7.5.1 Correction of over-registration errors 

Meter A 

Mean flow rate = 0.095X 10,3 m3/s 
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"o oE.. -p- C 0 

-0.5 
20 80 100 

-1 
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Figure 7.11 Meter A- Correction of over-registration errors with differing pulsation amplitudes 

and two pulsation frequencies (for the experimental results shown in Figure 6.32) 
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Figure 7.12 Meter B- Correction of over-registration errors with differing pulsation amplitudes 

and pulsation frequencies (for experimental results shown in Figure 6.33) 
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Meter C 

Mean flow rate = 0.095x10-3 m3/s 
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Figure 7.13 Meter C- Correction of over-registration errors with differing pulsation 

amplitudes and pulsation frequencies (for experimental results shown in Figure 6.34) 
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Figure 7.14 Meter D- Correction of over-registration errors with differing pulsation 

amplitudes and pulsation frequencies (for experimental results shown in Figure 6.35) 
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Meter E 
Mean flow rate = 1.740X10-3 m3/s 
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Figure 7.15 Meter E- Correction of over-registration errors with differing pulsation 

amplitudes and pulsation frequencies (for experimental results shown in Figure 6.36) 

7.5.1.1 Comparisons of effectiveness of correction procedure on over-registration for 

"standard" pulsation cases 

Similar to the presentation in Section 6.5.1.1, since there was a 20 Hz pulsation test for 

every meter, a comparison of reduction in over-registration errors can be made on all the 

meters at 20 Hz and it is shown in Figure 7.16. 

At 20 Hz pulsation, it can be seen from Figure 7.16, depending upon the meter, that there 

are different levels of reduction in over-registration errors. Since the reductions achieved 

for meter E are negligible, meter E will be excluded from any comparison being made 

from Figure 7.16. The average relative reduction of individual meter over-registration 

errors is tabulated in Table 7.2. It can be seen from Table 7.2 that whilst meters A and C 

gained around 100% relative correction of over-registration errors, relative correction of 

meter D errors is 76%, but meter B resulted the least reduction of over-registration errors 

of 26%. 
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Summary of Meter Correuion on Over-registration Error (All Meters) 
Pulsation Frequency at 20 Hz 
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Figure 7.16 A comparison of over-registration error for all meters at 20 Hz pulsation frequency 

with corrections (for experimental results shown in Figure 6.40) 

Meter Average relative reduction of over-registration error (%) at 20 Hz 

A 106 

B 26 

C 103 

D 79 

E negligible reduction 

Table 7.2 Average relative reduction of over-registration error for meters at 20 Hz 

On the other hand, by comparing the correction results at 40 Hz, another rank order can 

be observed (excluding meter A, not tested at 40 Hz). Figure 7.17 shows the results 

obtained for meters B, C, D and E. Again, since there are negligible errors resulted for 

meter E, this meter will be excluded from any comparison being made from Figure 7.17. 

The average relative reduction of individual meter over-registration errors at 40 Hz is 

tabulated in Table 7.3. It can be seen that the relative reductions for meters B and C are 

almost half the values observed for 20 Hz (Table 7.2). However, the relative reduction for 

meter D error remains consistent with the one observed for 20 Hz. 
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S ummary of Meter Correction on Over-registration Error (Meters B , C, D& E) 
Pulsation Frequency at 40 Hz 
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Figure 7.17 A comparison of over-registration error for meters B, C, D and E at 40 Hz pulsation 

frequency with corrections (for experimental results shown in Figure 6.41) 

Meter Average relative reduction of over-registration error (%) at 40 Hz 

B 13 

C 40 

D 81 

E negligible reduction 

Table 7.3 Average relative reduction of over-registration error for meters at 40 Hz 
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7.5.2 Correction of amplitude attenuation 

7.5.2.1 Against various relative pulsation amplitudes 
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Figure 7.18 Meter A- Correction of amplitude attenuations with differing pulsation amplitudes 

and pulsation frequencies (for experimental results shown in Figure 6.42) 

Meter B 

Mean flow rate = 0.292X 10-3 m3/ s 

80 

70 

60 
0 

50 

40 

30 

I20 

10 

0 
0 

---------- ---------- + 

0. ... . p. .......... p 

10 20 30 40 50 

Rel. Puls. Amp. (%) 

1%H? 
0"" ----0 C 

20 Hz 
- O- E ... o. C 

30 Hz 
-ý -- E"- D" C 

40 Hz 
)( E"" X" C 

60 Hz 

70 Hz 
+-E .. ý.. C 

Figure 7.19 Meter B- Correction of amplitude attenuations with differing pulsation amplitudes 

and pulsation frequencies (for experimental results shown in Figure 6.43) 
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Meter C 
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Figure 7.20 Meter C- Correction of amplitude attenuations with differing pulsation 

amplitudes and pulsation frequencies (for experimental results shown in Figure 6.44) 
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Figure 7.21 Meter D- Correction of amplitude attenuations with differing pulsation 

amplitudes and pulsation frequencies (for experimental results shown in Figure 6.45) 
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Meter E 
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Figure 7.22 Meter E- Correction of amplitude attenuations with differing pulsation 
amplitudes and pulsation frequencies (for experimental results shown in Figure 6.46) 

7.5.2.2 Comparison of effectiveness of correction procedure on amplitude attenuation 
for "standard" pulsation cases 

The amplitude attenuation is strongly dependent on pulsation frequency as shown 

previously in Section 6.5.2.3, Figure 6.55; this allows an alternative view of the reductions 

for amplitude errors using the experimental results shown in Figure 7.23. 
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Figure 7.23 A comparison of amplitude attenuation vs pulsation frequency for all meters 
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It can be seen from Figure 7.23, that the degree of reduction of amplitude error varies 

between meters. For each meter, the average relative reduction in pulsation amplitude 

error is shown in Table 7.4. 

Meter Average relative reduction of amplitude attenuation (%) 

A 17 

B 26 

C 24 

D 47 

E 63 (disregarding the negative amplitude attenuations) 

Table 7.4 Average relative reduction of amplitude attenuation for all meters 

7.5.3 General observations 

It can be observed that the over-registration errors are reduced by the correction 

procedure. However, for the majority of cases, especially for meter B, the corrected values 

are still above the manufacturer's stated linearity of ±0.5%. It can also be observed that 

the errors in pulsation amplitude are reduced; however, following use of the correction 

procedure, the errors still remain relatively large. 

For all of the meters in this study, since the manufacturers' stated linearity is ±0.5%, an 

acceptable level of error for mean flow indication and pulsation amplitude indication 

would be within the limit of ±0.5%. The following review on the effectiveness of meter 

indicated reading corrections only applies to errors which are out of this band. 

Subsequently, only those errors which have been corrected to the level of ±0.5% are 

considered to be "effective corrections". 

Meter A 

It can be seen from Figure 7.11 that, for the cases investigated, all of the over-registration 

corrections are considered to be satisfactory. The largest correction of over-registration 

error achieved is the test at 20 Hz pulsation, with pulsation amplitude of 90%, corrected 

from 1.99% down to 0.08%. However, for real time flow measurement, the corrections of 
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amplitude attenuation are not that significantly effective. As seen from Table 7.4, the 

relative reduction of amplitude attenuation is only 17%. 

Meter B 

It is observed from Figure 7.12 that the majority of corrected mean flow values are above 

0.5%, therefore the correction method applied on this meter is considered to be not 

effective. It can also be seen that the higher the frequency, the less relative correction is 

resulted. For example, as shown in Tables 7.2 and 7.3, at 20 Hz the relative correction is 

26%, and at 40 Hz the relative correction is halved to 13%. 

For real time flow measurement, as shown in Table 7.4, the relative reduction of 

amplitude attenuation is only 26% and that the corrections applied to pulsation amplitude 

are inefficient. However, from Figure 7.19, it is observed that the higher the pulsation 

frequency, the more the relative correction can be resulted. For instance, the amplitude 

attenuations at 60 Hz have been improved from 60% to 45% generally, that is equivalent 

to a relative increase of pulsation amplitude of 25%; whilst at 10 Hz, the amplitude 

attenuations have been improved from 13% to 11% generally, and this represents to a 

relative increase of pulsation amplitude of 15%. 

Meter C 

It can be seen from Figure 7.13 that satisfactory corrections in over-registration errors are 

achievable for cases up to 40 Hz when the imposed relative pulsation amplitudes are below 

50%. As shown in Tables 7.2 and 7.3, the relative reduction of over-registration error 

decreases with increasing frequency, and for pulsation frequency at 80 Hz, the corrected 

over-registration errors remain almost unchanged. As shown in Figure 7.23, the 

corrections for pulsation amplitude attenuation are not adequate enough; as seen from 

Table 7.4, the relative reduction of amplitude attenuation is only 24%. 

Meter D 

Overall, corrections were acceptable (Figure 7.14); the majority of the over-registration 

errors are reduced within the region of ±0.5% apart from the 120 Hz cases above 20% 

pulsation amplitude and the relative corrections seem to be consistent with increasing 

pulsation frequency. 
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For real time flow measurement, it is observed from Figure 7.23 that the corrections 

applied to pulsation amplitude are inefficient. However, disregard the comparison with 

meter E due to the relative low imposed pulsation amplitude applied during 

experimentation, meter D has the most relative reduction in amplitude error amongst 

meters A, B, C and D (as shown in Table 7.4). 

Meter E 

Since all of the mean flow errors are within the limit of ±0.5% for the cases investigated, 

the review on corrections of mean flow reading is not necessary. For amplitude 

attenuation, it is observed from Table 7.4 that meter E has the most relative reduction 

amongst other meters. 
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