Group Project Work from the Outset: An In-depth Teaching Experience Report

Martin Shepperd
Dept. of Information Systems & Computing
Brunel University, UK
martin.shepperd @brunel.ac.uk

Abstract

CONTEXT - we redesigned our undergraduate computing
programmes to address problems of motivation and out-
dated content.

METHOD - the primary vehicle for the new curriculum was
the group project which formed a central spine for the en-
tire degree right from the first year.

RESULTS - so far this programme has been successfully
run once. Failures, drop outs and students required to re-
take modules have been halved (from an average of 21.6%
from the previous 4 years to 9.5%) and students obtaining
the top two grades have increased from 25.2% to 38.9%.
CONCLUSIONS - whilst we cannot be certain that all
improvement is due to the group projects informally the
change has been well received, however, we are looking for
areas to improve including the possibility of more structured
support for student metacognitive awareness.

Keywords: software engineering, student projects, group-
work.

1. Introduction

This paper' is not intended as a scientifically rigorous study
but rather an informal account of our experiences that we
hope may (i) have some motivational value and (ii) offer
some useful ideas and techniques for others involved in
group project work in universities. Although this study is
based in a computing department — which brings particu-
lar challenges and opportunities — many of the pedagogic
principles are relevant to other disciplines such as engineer-
ing, design, business studies, psychology and architecture.
These ideas and experiences derive from a thorough re-
development of the undergraduate curriculum for two un-
dergraduate computing degree programmes (BSc Computer
Science and BSc Information Systems) during 2008-2010

!This is an extended version of a paper presented at the 24th IEEE
Conference on software Engineering Education & Training, May 22-24,
2011

at Brunel University, London. The academic year 2009-
2010 represents our first experience of the new scheme. At
its heart lies a substantially increased level of project work
(approximately a third of each year) acting as a spine to the
entire programme.

Clearly the idea of students working as a group to carry
out a software project is not new. Indeed group work is
commonplace to computing and computer-related under-
graduate programmes. The novelty lies in the extent to
which group projects are used and the fact that they are seen
as an integrating vehicle for all course themes from the out-
set i.e. Level One. In addition, we have deployed a number
of specific implementation tactics that are not widespread
but, we believe, effective.

The remainder of the paper is organised as follows. Sec-
tion 2 briefly reviews previous innovative ideas on group
projects for computing students. The following section pro-
vides the context in which Brunel decided to re-design its
undergraduate computing curriculum. Section 4 describes
in some detail the mechanics of our group projects and con-
centrates upon the Level 1 projects. Next, Section 5 presents
our experiences from running the Level 1 group projects in
2009-10 and lastly, Section 6 concludes the paper with a re-
view of what aspects of the group project seemed to work
and where we might make improvements.

2. Related Work

The problems that undergraduate computing students have
in learning to become competent software developers ap-
pear to be longstanding and endemic [9]. Even when this
is not so there is often criticism from potential employers
that students do not have good team skills and the ability to
cooperate effectively [11].

A pioneering paper by Freeman, Wasserman, and Fair-
ley [5] highlighted the need for computing students to not
only have strong technical skills, but also problem solving
and communication skills. They also pointed out the sub-
stantial differences between academic and industrial envi-
ronments for software developers. For these reasons they

argued strongly for the introduction of group projects into
the computing syllabus. A particular innovation that they
promoted is the software hut (the name suggests a small
software house) where students are expected to ’sell’ their
software or solution to others and that some proportion of
the marks are derived from this exercise. The idea is to
introduce elements of marketing and competition, of nego-
tiation and management and perhaps some sense of fun.

Another more recent example of work that has cham-
pioned the use of undergraduate group projects is to be
found at the University of Sheffield in the UK [6]. Here
they take the idea of the software hut to its logical conclu-
sion and actually have student groups working for external
clients (though no money is involved). A detailed proto-
col is agreed but essentially the client gets to choose and
keep the best software from 4 or 5 teams. This requires a
good deal of maturity from the students so such projects are
placed in the final year of their undergraduate programmes.

These approaches to student group projects can be char-
acterised as founded upon the philosophy of a practicum
[12]. In other words, by offering students experiences that
mimic the “real world”, the students will learn. We revisit
this in the Discussion.

3. Background to Course Development

In 2008 the computing department at Brunel University de-
cided to conduct a major review of their undergraduate pro-
grammes. This was prompted by:

e The limitations and frustrations of teaching large
classes where even seminar groups could exceed 20
students

e Inconvenient timetabling due to a lack of large lecture
theatres

e Uninteresting or dated modules® not reflecting current
software development practices

e Lack of opportunities for students to display original-
ity and creativity

e Students poorly prepared for their individual final year
project

e Lack of connectedness or a sense of community, for
example, even coursework is submitted and feedback
received electronically via the university virtual learn-
ing environment (VLE)

2A module is a named unit of content e.g. Introductory Programming
and typically 5 or 6 modules combine to make a level (or year) comprising
120 credits.

This last factor was seen as especially serious, leading to
demotivation and a lack of engagement on the part of the
student body and also, (dare I say it) on occasions from the
academic staff employed by a university that perceives it-
self as “research intensive”. A consequence of this is that
there are considerable pressures upon academics to generate
significant research outputs and this is seen as the primary
basis for promotion.

In addition, we had to consider what “sort of student” we
wished to graduate. This was addressed from two perspec-
tives. The first perspective considers the student’s long-term
aspirations and the role of the degree in supporting their ca-
reer. The second comes from our perspective and reflects
what we consider to be core components of computing as a
discipline.

The reality is that the majority of our graduates see them-
selves as heading for a commercial career rather than an
academic one. This should not, however, be interpreted as
a dumbing down of the degrees to meet the needs of imme-
diate employability. First, jobs are only a stepping-stone to
where our graduates belong. Within 5 to 10 years of grad-
uation they should have risen to leadership positions where
they will carry significant responsibilities. This relates to
SFIA? Level 5. These levels indicate degrees of autonomy
and influence exercised by such staff within the organisa-
tion and in the Draft Version 4 of the framework they are
defined as:

Autonomy: Works under broad direction. Full account-
ability for own technical work or project / supervisory
responsibilities. Receives assignments in the form of
objectives. Establishes own milestones, team objec-
tives and delegates assignments. Work is often self-
initiated.

Influence: Influences organisation, customers, suppliers
and peers within industry on contribution of speciali-
sation. Significant responsibility for the work of others
and for the allocation of resources. Decisions impact
on success of assigned projects i.e. results, deadlines
and budget. Develops business relationships with cus-
tomers.

Achieving these levels of autonomy and influence de-
pends, not just on the degree, but also on gaining experience
and maturity in more junior roles. Perhaps the most telling
element of the SFIA level 5 definition, in terms of the prepa-
ration that comes from our degree, is its description of the
ability to handle complexity:

3The Skills Framework for the Information Age (SFIA) provides a
common reference model for the identification of the skills needed to de-
velop effective Information Systems (IS) making use of Information &
Communications Technology (ICT). See URL: http://www.sfia.org.uk/

Complexity: Challenging range and variety of complex
technical or professional work activities. Work re-
quires application of fundamental principles in a wide
and often unpredictable range of contexts. Under-
stands relationship between specialism and wider cus-
tomer / organisational requirements.

From a discipline perspective, the core that anchors and
distinguishes computing (or at least our Department’s par-
ticular viewpoint) is:

a focus on software artefacts that exploit the ca-
pabilities of networked computers for the benefit
of some human activity or purpose.

This leads to two families of degrees: those that are
driven by a primary interest in the creation of software arte-
facts (computer science) and those driven by a primary in-
terest in their beneficial impact on human activity (infor-
mation systems). Each includes the other perspective as an
essential secondary element anchoring them in the ethos of
the Department and distinguishing them from the related
disciplines.

The Group Projects provide a spine for Levels 1 and 2.
The groups comprise 3-5* students and involve a task that
integrates much of the other material in the year. The group
project for Levels 1 and 2 comprises 40 out of a total of 120
credits for the year and thereby gives the student the oppor-
tunity to engage with a task of significant complexity. Each
year is a different project. Typically this will include soft-
ware development, context, communication, team work-
ing, project management and the application of different re-
search methods (e.g. market research, usability assessment,
etc.). Each team is supervised by a member of academic
staff (faculty) with regular contact (normally weekly), thus,
we see the projects as the vehicle for traditional style tuto-
rials.

The project spine is completed by a more traditional in-
dividual final year project (FYP). These are projects where
the student tackles some problem working closely with an
academic member of staff. Students have a good deal of
freedom to choose a problem of mutual interest. As per
Levels 1 and 2, the FYP comprises 40 out of 120 credits.

The Level 1 group project seeks to integrate skills cov-
ered by the concurrently running modules into a non-trivial,
practical group task including a significant degree of pro-
gramming and technical engagement. It is also intended
to help the student gain confidence in their technical abili-
ties. Although the overall course structure was designed to

4We avoided larger groups since this made it easier to ensure students
could not evade tasks about which they did not feel confident e.g. pro-
gramming. In addition independent studies [10] have reported small team
sizes of 3 to 6 are more satisfactory than larger groups (better bonding, less
competition).

make the running of group projects easier, e.g. students have
no choices for modules in Level 1 and restricted choice in
Level 2, the concurrent scheduling of much material does
present some difficulties. For instance, students do not en-
counter Java until several months into Level 1 yet ideally
they would be capable programmers from the outset. We
countered this type of problem by (i) by carefully ordering
the group project tasks e.g. by commencing with html and
css before moving onto Java (ii) providing very detailed tu-
torial materials and technical support in Lab sessions and
(iii) by postponing some technical aspects e.g. relational
databases until the Level 2 project.

The projects also served as spine in two other respects.
It provided the possibility of assessing learning outcomes
from other modules, for instance aspects of programming,
report writing and communication. Second it provided
some experience for students of the whole picture rather
than a piece meal approach that can arise when material is
allocated to individual modules. They were involved in the
development and evolution of a software system over an en-
tire academic year. This contrasts with seeing requirements
capture, design, testing, etc. as standalone tasks.

4. Mechanics

In this section we describe in more detail the operation of
the Level 1 group project. The students were informed that
the aim of this 40 credit module (i.e. one third of the first
year) was to:

integrate skills covered by the other Level 1 mod-
ules into a non-trivial, practical group task includ-
ing a significant degree of programming and tech-
nical engagement. It is also intended to help the
student gain confidence in their technical abili-
ties.

The learning outcomes (LOs) for the module are as fol-
lows. Students should be able to:

1. plan, manage and track a non-trivial group activity.

2. take an open-ended problem and define and refine the
requirements.

3. design, develop and test a modest piece of software
(order of a few hundred LOC).

4. independently (i.e. individually) understand, modify
and test a given piece of software

5. effectively present, communicate and market ideas and
solutions to their peers.

6. create and use technical documentation.

7. understand and apply the principles of professional
and ethical behaviour in a group context.

8. reflect and learn from their group project experiences.

A number of aspects of the Group Project are intention-
ally open-ended to encourage student creativity and develop
open-ended problem solving skills. Typically the course-
work includes some requirements analysis and understand-
ing of the problem context, software design and develop-
ment, communication, team working, project management.

This module is intended to be primarily practical in its
nature; in other words students learn by doing and, most
importantly, reflect after-the-event. We try to reassure stu-
dents that on occasions they will be asked to do something
new and that this might seem daunting. However, it is by
actually engaging with a problem that they have the best
opportunity to learn and it is interesting to note that many
of them commented favourably upon this aspect of the mod-
ule. We appreciate the challenges students face and so don’t
expect perfection and try to create an environment where
they feel it is safe to experiment. This is reinforced by mark-
ing scheme that isn’t punitive.

Level 1 students were allocated to groups of four with the
goal of creating teams of mixed ability and experience (this
process is described in the next section). Groups were then
provided with a description of the problem. Teams then
spent half the academic year researching into the problem
domain and developing a proof of concept website to un-
derpin the subsequent detailed development. An important
textbook that we recommended to the students to provide
guidance on surviving as a team is Levin [7].

Teams then endeavoured to sell their partial solution to
other teams and to ‘purchase’ software from another team
upon which subsequent development was required to be
based. Marks for the first stage were related to the number
of ‘sales’. Students quickly appreciated that documentation
and a good design gave them a competitive advantage. The
more innovative offered additional blandishments such as
support contracts. In addition, we awarded prizes to the best
teams. Next more detailed requirements were provided and
the second part of the development based on the ‘bought’
but incomplete code. The marking scheme was weighted
such that students could recover from zero sales from the
first stage but be challenged if they made an unwise ‘pur-
chase’ (see Table 1).

Thus, the students had an opportunity to learn about team
working, planning and monitoring, requirements, market-
ing, procurement, documentation, testing, maintenance and
changing requirements in addition to the chance to develop
a non-trivial piece of software.

4.1 Team Formation

Early on in the academic year, the students were placed in
a team of approximately four students and assigned a Tutor
(who is an academic member of staff). Initially we formed
as many 4 person teams as possible, however where bound-
ary problems occurred we created 5 person teams. Two stu-
dents left or transferred course very early on resulting in two
3 person teams.

The teams were chosen by us. Our intention was to form
teams of mixed experiences and abilities, e.g. we mixed
BSc Computer Science and Information Systems students.
The reasons for this were twofold. First, to provide more
opportunities for students to learn from their peers and sec-
ond, to better represents ‘real’ software development teams.
A particular problem for a Level 1 group project is that the
abilities of students may not be known in advance. We han-
dled this by delaying team formation until Week 4 and also
by asking the students to complete an on-line diagnostic
test. A few students failed to do the test and this (rather
than the actual score) turned out to be a very good predictor
of future problems.

We also informed the students that a special pool of
students would be created from non-attenders and non-
participants (without valid reason) and used to form teams.
This meant that if they were lazy and expected to be carried
by their fellow students then they would be placed in a team
with like-minded students. Our advice was therefore to en-
gage in this important module right from the start. This was
probably the single most important decision we made and
turned out to be fully vindicated. Students who commenced
with a laissez faire approach did not substantially change
their behaviour. It also meant that to a large extent we were
able to ring fence problems into a very small number of
groups rather than experience widespread impact due to the
difficulties of a few students. I should stress, however, such
students were given, equal if not more support than others.

As far as possible team membership was stable through-
out the year but if circumstances dictated (e.g. serious ill-
ness) we retained the option to make modifications. In this
eventuality students could be compensated by the marking
process. In practice we moved students between 4 teams
(out of a total of 47) during Week 10. This was due to
low levels of participation and external problems for six stu-
dents.

To reiterate careful team formation was one of the most
important decisions for this module and therefore we tried
to use as many sources of intelligence as possible.

4.2 Group Project Tasks

Next we describe the coursework the students were ex-
pected to undertake during this module. As far as possible

we took an incremental approach rather than giving students
a series of seemingly random and disconnected activities.

Table 1. Group Project Task Components

Task | Description Group / % of

Individual | Total

Marks
T1 Initial software prototype Group 10%
T2 Integration of components | Group 10%
and documentation
T3 Implementation of Group 50%

additional functionality
and documentation

T4 Individual implementation | Individual | Pass/
of an unseen change to fail
group system

TS Post-mortem style group Group 30%
review

T6 Assessment of ethical Individual | Pass/
and professional behaviour fail

A difficulty we had was choosing something that was
challenging for those who already had a strong background
in programming but not impossible for those without prior
knowledge. In the end we decided upon the development
of a website suitable for new students at Brunel University.
This commenced with some simple static html and css files
(Task 1), integration of other websites into a single portal
(Task 2) and the addition of dynamically generated web-
pages using Java and jsp (Task 3). More details may be
found in Table 1 and the Appendix which contains excerpts
from the student instructions. These tasks are representa-
tive of much modern software development and use a mix
of typical technology. This was emphasised to the students
as a motivator when some struggled with Task 3.

Note the intentional increase of mark weightings so that
teams taking a while to ”bed down” were not doomed to
certain failure and retained the possibility of a good score.
Note also the significant weighting (30%) attached to the
post project review. Here the intention was to give substan-
tial credit for the ability to learn from failure as well as from
success.

We also decided to implement a version of the software
hut [5] described in the Introduction as part of Task 1. The
idea was to encourage an element of competition, to al-
low a degree of creativity since the task was relatively un-
constrained and finally to help students view software both
from the perspective of a developer and from that of a con-
sumer. Each team developed a website, all of which we then
hosted and each team could choose three others to incorpo-
rate into their Task 2 portal. Choices might be influenced by

the quality of the content, implementation, etc. The teams
were then ranked according to the number of times they
were chosen and marks for Task 1 awarded according (see
Figure 1).

Task 4 was designed to prevent weaker students hiding
within a team and not developing their own technical skills.
They were asked to make two small, unseen modifications
to the system under exam conditions. The task was simply
marked on a pass / fail basis and was not intended to be
overly difficult, rather to set some minimum threshold.

Post project reflection is widely advocated (if not always
effectively conducted) as a part of good software develop-
ment practice [4]. In addition reflection is stressed as an
extremely important part of experiential learning [2], so we
incorporated a significant opportunity for groups to explic-
itly reflect upon their experiences. This is revisited and pos-
sible enhancements are discussed in Section 6.

Finally, the Task 6 assessment of professional and ethi-
cal behaviour was intended as a sanction in the event that a
student completely undermined their team through lack of
commitment or other unacceptable behaviour.

5. Results

To give some idea of scale and the running of the module
Table 2 provides some basic logistics. As can be seen a
significant number of staff were associated and this meant a
substantial amount of effort was required to brief everyone
and deal with ad hoc queries. With hindsight it would have
been useful to prepare an information pack for each member
of staff.

Table 2. Group Project Logistics

Students 191
Teams 47
Tutors 28
Graduate teaching assistants (GTAs) 10
No. of teams making all submissions 45

1 hr lecture +
1 hr tutorial +
3 hr lab session

Weekly formal schedule

We now consider the outcome of running the Group
Project in more detail, particularly the themes of engage-
ment and performance. We then review the results of a stu-
dent feedback survey.

5.1 Student performance

In order to assess whether the new UG programmes have
led to better performance by our students, we looked at the

results from this years Level 1 (2009-10) compared to the
previous four years. The comparison is broken down into
the two degree cohorts (IS and CS). The grades are over-
all year grade (120 credits) derived from five constituent
modules. The group project when introduced represents 40
out of the 120 credits. The results indicate a promising im-
provement across all studies, in other words it is suggestive
that the impact of the group project is not merely local. We
do not yet have data to see the impact upon subsequent years
i.e. Levels 2 and 3.

A summary of the results by year and by degree pro-
gramme is given in Figures 1 and 2. Note that grades A to
D represent passes, an E grade indicates a narrow miss with
the opportunity of condonement or a retake. F is a serious
fail. However, a threat to validity, is that a number of si-
multaneous changes were made so it is not possible to be
certain that the improvement in performance is solely due
to the introduction of group projects.

B Groups
O No groups

all]

A B C D E Fail

Figure 1. Level 1 Results - Comparing Group
Projects With Previous Years

To summarise:

e Just in excess of 50% of CS students obtained an over-
all grade A or B average (cf 21-42% previously)

e 27% of IS students obtained an overall grade A or B
average (cf 9-23% previously)

e 6.3% of CS students obtained a D grade or lower in
2009-0 compared to 17-24% in the earlier years

e 12.7% of IS students obtained a D grade or lower in
2009-0 compared to 16-28% in the earlier years

Note also the consistent superior performance of com-
puter science students over information systems students
(see Fig. 2).

40
35
30
25

20

Bcs
1s ois
10

HE I
0
E

Fail

Figure 2. Level 1 Results - Comparing CS and
IS Students for All Years

5.2 Engagement

Here we consider first student and then staff engagement.

Table 3. Coursework submission rates

Task On time | Late | Missed
1: Team website 47 0 0

2: Integrated website 47 0 0

3: Dynamic website 45 1 1

5: Team review and 45 0 2
presentation

As Table 3 indicates the module has a remarkable level
of participation in terms of submitting coursework on time.
Recall that this is a Level 1 module and typically a num-
ber (10% or more) of students struggle, drop out or change
course without informing us. It is possible that the sense of
not letting down one’s team mates and the close relationship
with a tutor has led to this much increased level of engage-
ment.

Staff engagement is more complex to comment upon,
since there is no assessment or formal feedback mechanism.
However an immediate benefit is that all staff get to know at
least 4 or 8 undergraduate students personally. This is in the
context of many academics not knowing any undergraduate
students either due to other teaching commitments or be-
ing involved lecturing large groups (150-200 students) with
very limited opportunities for personal interaction. There
were also many examples of staff providing a role beyond
that of project tutor e.g. giving advice on future choices of
modules.

Some problems inevitably arose. The tight integration
with other modules did not always go exactly to plan, e.g.
there were some synchronisation issues with the Introduc-

tory Programming module. This might be avoided in the fu-
ture by more careful planning with all lecturers associated
with Level 1 prior to the start of the academic year.

We also had group tutors with varying technical exper-
tise due to the fact that the department embraces both com-
puter science and information systems experts. This led
to some apprehension, however, we encouraged students to
use the lab sessions as their primary source of technical in-
put. These were supported by our team of GTAs. A side
effect of acting as tutor was learning by osmosis and it does
seem, at least anecdotally, that some staff have gained in
expertise and confidence over the duration of this project.

5.3 Student Feedback

It is customary to solicit student feedback for every module
at Brunel University by means of a standard student feed-
back form that is distributed towards the end of the aca-
demic year. Many of the questions elicit a quantitative re-
sponse in the form of a Likert scale, e.g. how would you
classify the standard of your lectures 1 - - - 5?7 Since they are
not specific to group projects and need to be interpreted rel-
ative to other modules, we focus instead on two open-ended
questions:

5.3.1 What do you like most about the module?

We obtained 44 responses out of an original 191 students
meaning a 23% response rate. This low rate was largely the
consequence of the module finishing in advance of the rest
of the course and therefore students being more difficult
to locate. It is possible that those students who struggled
the most or who were disaffected were under-represented,
however, we take the view that we still have some useful
and interesting qualitative feedback.

(i) Working in a team (15 responses)
”Good to experience working in a team”

One respondent illustrated the dilemma of team work by
stating “Working in a team” as the best thing but also “the
group members” as the thing he or she liked least.

“I was very lucky and had a great team”

The interesting thing here is that the student saw this as
entirely externally determined and therefore nothing to do
with his or her contributions to team building. This con-
trasts with another respondent:

“working in a team to be able to develop this
skill”

It’s easy to lose sight of the idea that education can be fun:

“I really enjoyed working in a team ”
and as a means of learning:

“...because I think I learn a lot more rather than
working individually”

“Exploring coding in more details (sic) with a
group get help and learn at same time”

and finally as a cooperative and team exercise:
“Working in the team, share different tasks.”

(ii) Task oriented aspects of the module (13 responses)
A total of 13 students (i.e. about 30%) mentioned some
technical aspect or experiential learning of technical skills.

“Designing a website from scratch using different
programming methods”

was a common response, also:
“Practical programming. Planning. Deadlines”

Here we see an appreciation of the experiential aspects of
learning (this was a common theme) but also of the value of
a project management and self-management skills.

Despite our efforts to achieve a high degree of integration
with other modules this was either not recognised or not
seen as important, so the following was quite unusual:

“This module has motivated me to cope with all
the other modules.”

5.3.2 What do you like least about the module?

As previously indicated we had 10 blank responses both for
positive and negative features. There were 9 with a positive
responses without a negative (c.f. 5 with a negative response
but no positive). Again we grouped the types of response.
(i) Disliked aspects of their team (8 students)

These respondents expressed some variant of the other team
members didn’t contribute appropriately.

(ii) Disliked aspects of the task (15 students)

The fact that more students had strong negative feelings
about aspects of the task, than had about being placed arbi-
trarily in a team we found slightly surprising. Most remarks
seem to relate to Task 3 (the overall task was split into a se-
ries of sub-tasks each with their own delivery date). Task 3
represented a substantial step up in difficulty.

“Task 3 was a big step up and was quite a strug-
gle”

Some commented upon specific activities they didn’t enjoy
such as “Creating the documentation” or specific technolo-
gies such as the web-server Tomcat. It is likely the latter
stem from frustrating experiences rather than deep prob-
lems.

Two students commented specifically commented on
what they saw as excessive task difficulty, e.g.,

“Quite a lot of expectations of understanding ev-
erything.”

Finally, there were comments on the provision of task infor-
mation. Breaking the student project into sub-tasks added
a considerable degree of complexity and some students re-
ported they found this hard to understand. For instance one
student responded:

“Lack of information on time.”

It’s not exactly clear what is intended by this comment,
however, it was a design decision to release task informa-
tion as and when it was needed and it may be the student
was meaning he or she would have liked more of a big pic-
ture at the start.

6. Discussion

As we indicated at the outset, this paper is not a rigorous sci-
entific study. We have not conducted randomised controlled
trials. We not only introduced group projects but also made
other substantial changes to the curriculum. We cannot be
certain that our observations can be solely attributed to the
group work. Moreover, there is a lack of objectivity, since
the author was intimately involved in the design and deliv-
ery of the group project module. Nevertheless, we are suf-
ficiently encouraged by the changes that seem to have been
wrought, to add our experiences to those of other educators
before us.

First, we consider whether there are local circumstances
that have facilitated this ambitious scheme of group project
working. One feature is that the projects were designed in
from the outset as opposed to being a modification of an
existing scheme. We made the conscious decision to keep
the structure as simple as possible consequently the students
follow a quite rigid year-based plan which means that stu-
dent cohorts are fairly similar. We also made a decision that
students should all address the same problem for each year
and resisted the temptation to allow students to tackle more
business or computer science related problems depending
upon their choice of final degree. Apart from ease of man-
agement, this enabled greater communication between the
different ‘flavours’ of computing especially as we intention-
ally created heterogeneous teams. Where there is a high
level of student choice (in timing or module selections) the

managerial challenges certainly increase. I believe the key
lies in creating heterogeneous teams such that the group
contains the necessary expertise even if it is not fully lo-
cated in each individual student.

Another obvious question is to what extent have the stu-
dents actually achieved the intended learning outcomes. In
a narrow sense the LOs are all assessed and so achieve-
ment, or otherwise, is measured by the considering the co-
hort grades. In a broader, and ultimately far more impor-
tant, sense we don’t yet know what the long term impact of
the Group Projects are, but this something we will monitor
carefully through such indicators as overall course grades
and future employability.

A potential opportunity is for research projects based
upon the data arising from our having almost 50 indepen-
dent implementations of the same system. For example, we
are now in the position to study the impact of different ar-
chitectural design decisions upon such qualities as defect-
proneness and understandability.

What are areas for improvement? One substantial is-
sue to consider is that we have not considered how stu-
dents learn and how they learn about learning, that is their
metacognitive abilities. As mentioned previously, our im-
plicit approach has been one of the practicum, i.e. try-
ing to create an authentic situation within which experi-
ential learning may occur [12]. This shows that we were
not concerned with just programming ability but also other
skills such as negotiation, planning, self management and
so forth. Nevertheless, we do not articulate precisely what
learning we expect to occur nor do we provide any means
for checking whether it has been achieved.

There has, however, been a good deal of research by cog-
nitive and educational psychologists exploring the role of
metacognition (that is thinking about thinking) upon learn-
ing [3]. In particular it provides an explicit mechanism to
review progress by means of reflection. Our group project
contained an opportunity for group reflection via a presenta-
tion (as Task 5). However, this suffered from two problems.
First it may have been distorted due to it being assessed, a
problem noted by Boud and Walker [1]. Second, the exer-
cise was informal with little guidance being provided (other
than the prohibition of personal and defamatory comments).
An interesting empirical study of students in Higher Educa-
tion by Mair [8] looks explicitly at reflection as part of the
learning process. An important feature of Mair’s work is the
provision of scaffolding or spreadsheet templates to assist
students in organising their reflections. This is a mechanism
that we might profitably adopt for future implementations of
our group project.

In summary, there are three main findings. Group
projects can be powerful agents for change. We have seen
much improved levels of engagement by the students and,
in our experience, unprecedented levels of coursework sub-

mission and submissions by the deadline. Second, the devil
really does lie in the detail. Communicating effectively with
the large numbers of people is important. Designing an ap-
propriate task (particularly in terms of getting the balance
between the challenge and the manageableness of it) is im-
portant. And most important of all, careful allocation of stu-
dents to teams. Third, our understanding of what students
perceive and how they learn has not sufficiently central to
the design and delivery of group projects. This offers scope
for further improvement and refinement in future years.

Acknowledgments

I would like to thank my colleagues and all the students
for their enthusiastic support and tolerance of the inevitable
teething problems. I’'m also indebted to Tony Elliman for
relating the curriculum development to the SFIA, to Carol
Elliott for providing the data on student performance and
to Carolyn Mair for careful proof reading and much good
advice on the organisation of this article.

References

[1] D.Boud and D. Walker. Promoting reflection in professional
courses: the challenge of context. Studies in Higher Educa-
tion, 23(2):191-206, 1998.

E. Boyd and A. Fales. Reflective learning: Key to learn-

ing from experience. Journal of Humanistic Psychology,

23(2):99-117, 1983.

S. Coutinho. The relationship between goals, metacognition,

and academic success. Educate, 7(1):39-47, 2007.

T. Dingsgyr. Postmortem reviews: purpose and approaches

in software engineering. Information and Software Technol-

ogy, 47(5):293, 2005.

[5] P. Freeman, A. Wasserman, and R. Fairley. Essential ele-
ments of software engineering education. pages 116-122,
San Francisco, CA, 1976.

[6] M. Holcombe, M. Gheorghe, and F. Macias. Teaching XP

for real: Some Initial observations and plans. In Extreme

Programming Perspectives. Addison-Wesley, 2003.

P. Levin. Successful teamwork. Open University Press,

Maidenhead, Berks, 2005.

[8] C. Mair. Using technology for enhancing reflective writing,
metacognition and learning. Journal of Further and Higher
Education, In Press, 2011.

[9] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Ha-
gan, Y. Kolikant, C. Laxer, L. Thomas, I. Utting, and
T. Wilusz. A multi-national, multi-institutional study of
assessment of programming skills of first-year cs students.
ACM SIGCSE Bulletin, 33(4), 2001.

[10] M. Shaw and B. Harkey. Some effects on the congruency
of members characteristics and group structure upon group
behaviour. Journal of Personality and Social Psychology,
83:150-163, 1976.

2

—

3

—

4

—_

[7

—

[11] W. Waite, M. Jackson, A. Diwan, and P. Leonardi. Student
culture vs group work in computer science. ACM SIGCSE
Bulletin, 36(1), 2004.

[12] L. Williams and R. Upchurch. Extreme programming for
software engineering education? In 31st ASEE/IEEE Fron-
tiers in Education Conference, Reno, NV, 2001. IEEE Com-
puter Society.

Appendix: Level 1 Group Project Task De-
scription

Overall Description of the Assessment

During week 4 you will be placed in a group of approxi-
mately four students and assigned a Tutor (who is an aca-
demic member of staff). The groups will be chosen by us.
Our intention is to form teams of mixed experiences and
abilities. The reasons for this are twofold. First, it will
provide an opportunity for you to learn from your peers
and second, it better represents ‘real’ software development
teams.

If you are a good, hard working student you can expect
to do very well in this module, however, a special pool
of students will be formed from non-attenders and non-
participants (without valid reason) and used to form sepa-
rate groups. This means that if you are lazy and expect to
be carried by your fellow students you will be placed in a
group with like-minded students. Our advice is to engage
in this important module right from the start.

As far as possible groups will be stable throughout the
year but if circumstances dictate (e.g. serious illness) we
may have to make modifications. In this eventuality you
will be compensated (as appropriate) by the marking pro-
cess.

You will be expected to participate in each major class of
activity, so for example, avoiding programming will not be
permitted. This is achieved by making Learning Outcome 4
mandatory. So each group member will be required to carry
out a small, unseen maintenance task (T4) to their system in
a controlled environment. It will be assessed on a pass/fail
basis as it carries zero credits.

The entire group is expected to meet with their Tutor reg-
ularly (usually weekly but refer to the Module Calendar).
Your Tutor is there to provide advice, guidance and encour-
agement but not resolve detailed technical questions which
should be dealt with during the Lab Sessions. Your Tutor
will be the best person to ask questions about the running of
the Group Project.

The Group Project comprises six sub-tasks. Detailed in-
formation for each task will be released according to the
calendar below. Note that some tasks are to be performed
and assessed as a group whilst others are individual.

Task 1

You are required to design and develop a website that would
be useful for new computing undergraduates at Brunel Uni-
versity. You are not restricted to academic aspects of uni-
versity life, indeed we encourage you to think more broadly.

You have one month to develop the website. Then you
must submit your website files (for details see below). We
will then host them on our server such that they are visi-
ble to all the other teams. Each team will then select three
other websites and for Task 2 incorporate all four (the three
selected sites plus the self-developed site) into single site.
Most marks for Task 1 derive from ‘sales’ so Teams are ad-
vised to consider what would be distinctive and attractive
to other teams. We suggest you choose a relatively focused
topic so that you can make a coherent website and market it
more effectively to your colleagues.

You are asked to provide static html at this stage. Use
an ASCII html editor such as gedit which is open source
and available for windows, linux and many other platforms.
Do not use the save-as-html facility in any of the Office
products. This generates extremely verbose and difficult to
maintain html that will cause you a great deal of difficulty
in subsequent tasks. Likewise do not use Dreamweaver or
similar editors that focus on the aesthetics of the page rather
than the underlying html. If you can’t view and understand
the html you are writing don’t use the editor.

You are strongly advised to use css to manage your for-
matting and to make it easier to integrate other websites
in Task 2 and accommodate changes in Task 3. Avoid
Javascript or other complicating technologies at this stage.
Remember simple, robust and easy to modify is best.

Task 2

You have developed your own static html website for Task
1. The aim, now, of this task is to select three other websites
developed by your peers and integrate them into a single
site. Although the initial development for the “bought in”
sites will have been accomplished by the other groups you
will be entirely responsible for the final integrated website
so choose carefully.

The first step is to evaluate the websites produced by the
other teams during Task 1. We will host these on a single
web server so that you can make systematic comparisons.
You can also talk to other teams to help make an informed
decision as to which three other websites you wish to incor-
porate into your site. It is likely you will wish to choose
sites that address different topics to the one addressed by
your own website. We also advise you to consider technical
aspects. For example, is the html documented? How easy
would the site be to modify? Have the developers made
systematic use of css?

10

Task 3

The aim of this third group task is to extend the website you
developed in Term 1 (Tasks 1 and 2). You will now have the
opportunity to incorporate your knowledge of programming
by adding Java and Java Server Page technology to your
system so that it can generate dynamic html.

Your website should now be extended to provide infor-
mation on the various modules available to students. The
information will be accessed from a text data file that we
provide on our server. This means you need to access this
file, find the relevant information and then generate suitable
html to be rendered by the web browser.

NB not all versions of web-based software are fully com-
patible, so we mandate the use of Firefox 3.5, the server
Tomcat 6 and JDK 1.6. All testing and marking will be
based on this environment. You are strongly advised to use
Eclipse as your development environment.

Your programme should discover what modules are
available (remember that this will be dynamic) and present
the choices (code and name) to the user of the website
allowing them to select a particular module in order to
find more information (i.e. the remaining data) about their
choice. You may choose how you accomplish this although
you must generate html which will be rendered by the web
browser.

Remember it is good practice to make your code as ro-
bust as possible. This is sometimes known as defensive pro-
gramming. Please make sure you follow these requirements
and resist the temptation to embellish your solution. You
will not receive any credit for additional functionality e.g.
deciding that your website would be improved by adding a
horoscope facility or whatever! Moreover you run the real
risk of reducing reliability, understandability and flexibility.

Finally you are warned that we will make some addi-
tional small changes to the system specification during the
course of Task 3. For this reason good quality architecture,
use of css and a general approach of designing for change
are recommended.

Task 4

You are required to make the following two changes to your
software system [the changes are unseen and are carried out
under exam conditions].

1. Change the paragraph text size to an absolute size of
24 px for all pages in the site.

2. The “module information™ link displays the module
code and name of the modules. Please remove the
functionality that displays the start time and descrip-
tion. Use comments rather than deleting source state-
ments.

