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Abstract 

Using high-frequency transaction data for the three largest European markets (France, Germany and Italy), this 

paper documents the existence of an asymmetric relationship between market liquidity and trading imbalances: 

when quoted spreads rise (fall) and liquidity falls (increases) buy (sell) orders tend to prevail. Risk-averse 

market-makers, with inventory-depletion risk being their main concern, tend to quote wider (narrower) spreads 

when they think bond appreciation is more (less) likely to occur. It is also found that the probability of being in a 

specific regime is related to observable bond market characteristics, stock market volatility, macroeconomic 

releases and liquidity management operations of the monetary authorities. 

 

Keywords: Liquidity, trading activity, Treasury bond market, Europe, commonality 

JEL Classification: G1, G15, C32, C33 

 

Corresponding author: Professor Guglielmo Maria Caporale, Centre for Empirical Finance, Brunel University, 

West London, UB8 3PH, UK. Tel.: +44 (0)1895 266713. Fax: +44 (0)1895 269770. E-mail: Guglielmo-

Maria.Caporale@brunel.ac.uk



 

 [2] 

1 – Introduction 

Over the past few years a growing body of research has been devoted to analysing the market 

for government securities in Europe focusing on the dynamic relationship between trading 

activity and price movements (Cheung et al., 2005) and between yield dynamics and order 

flow (Menkveld et al., 2004), on the determination of the benchmark status among securities 

of similar maturity (Dunne et al., 2007), on the analysis of yield differentials between 

sovereign bonds (Beber et al., 2009), and on the process of price discovery in cash and future 

markets (Upper and Werner 2002) or in multiple cash markets (Caporale and Girardi, 2010).  

With the aim of contributing to this literature, the present study focuses on the 

relationship between quoted spreads and trading imbalances and on its financial and 

macroeconomic determinants. While these issues have been extensively discussed in the case 

of the US stock market, no comparable analysis has been conducted to date in the case of 

European markets for government securities.  

Our analysis is related to the strand of financial literature investigating the interaction 

between liquidity and trading activity. This interaction affects the process of price discovery 

(Brandt and Kavajecz, 2004), depends on the degree of financial integration (Hasbrouck and 

Seppi, 2001; Korajczyk and Sadka, 2008) and matters for regulatory purposes. From a 

practical point of view, as liquidity affects the cost and feasibility of dynamic trading 

strategies (Johnson, 2008), understanding what factors influence quoted spreads and trading 

imbalances is relevant for trading-strategy formulation purposes.  

Working on a dataset containing high-frequency transaction data for nine benchmark 

medium-long term Treasury bonds over the period July 3 2006 - June 29 2007 (taken as 

representative of general market dynamics), we obtain the following main results. First, by 

estimating bivariate Markov-switching Vector Auto-Regressions (MS-VAR) for each bond in 

the sample, we find that dealers pay attention to the information revealed by order flows. In 
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particular, we document the existence of an asymmetric relationship between quoted spreads 

and trading imbalances such that when liquidity is high (low) and quoted spreads narrow 

(wide), sell (buy) orders tend to prevail. For most bonds in the sample, we also find an 

intermediate state when orders tend to be balanced.  

Second, after daily averaging intra-day probabilities extracted from the estimated MS-

VAR models, we investigate common potential determinants for the switches across states by 

random effect probit-estimation for longitudinal data. We find that the relationship between 

liquidity and trading imbalances is affected by financial and macroeconomic factors 

including: refinancing costs, bond and stock market volatility, changing business and 

macroeconomic climate and changing monetary policy stance. 

The rest of the paper is organised as follows. Section 2 presents the data and some 

descriptive statistics. In Section 3 we investigate the dynamic interaction between quoted 

spreads and order flow imbalances at the individual bond level. Section 4 explores the role of 

common factors in explaining co-movements between these two market characteristics at an 

aggregate level. Section 5 offers some concluding remarks. 

2 – Data and measurement 

We use transaction-based data for benchmark Treasury bonds with maturities of 5, 10 and 32 

years. The data are extracted from the MTS (Mercato Telematico dei Titoli di Stato) 

database.1 The MTS system is an example of quote-driven electronic order book markets for 

Government securities. Proposals are firm, immediately executable and aggregated in a limit 

order book.2 As in Dunne et al. (2007), we analyse the three largest European markets (Italy, 
                                                 
1 For a detailed discussion of the MTS system, see Scalia and Vacca (1999) and Cheung et al. (2005), among 

others. 

2 Using Italian Government bond data, Coluzzi and Ginebri (2008) test several theoretical hypotheses about limit 

orders. In this paper, the focus is on commonalities driving the relationship between trading activity and quoted 

spreads for the European government bond market as a whole. 
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France and Germany), which account for over 70 percent of the European secondary bond 

market.3 The dataset consists of tick-by-tick transaction data (prices and traded nominal 

volumes) matched with the bid-ask spread prevailing at the moment each transaction took 

place. The sample covers the period from 3 July 2006 to 29 June 2007. In terms of both its 

cross-sectional dimension and time span it is broadly comparable to that used by Cheung et al. 

(2005), D’Souza et al. (2007) and Dunne et al. (2007), among others. Based on data from 

opening hours of the MTS system (from 8:15 to 17:30 Central European Time, CET), Table 1 

provides the list of bond codes along with information on issue dates, maturity dates and 

summary statistics on trading activity.4  

[Table 1] 

Following Goldreich et al. (2005) and Pasquariello and Vega (2009), our preferred 

indicator of liquidity is the quoted bid-ask spreads ( qspr ), defined as the difference between 

the best bid and best ask divided by mid-quote prices (equally weighted) averaged during 

half-hour time intervals. The trading imbalances indicator ( oflw ) is constructed as the 

aggregate volume of buyer- minus seller-initiated orders during half-hour intervals.5 Excess 

buy-side or sell-side order flows are closely related to trading costs as they represent 

aggregate pressure on the inventories of market makers (Chordia et al. 2002) and are likely to 

capture the arrival of new information (Brandt and Kavajecz, 2004). 6 

                                                 
3 According to Dunne et al. (2008), with an outstanding aggregate value of around 4,396 billion Euros in 2006, 

the European sovereign bond market is the world’s largest market for debt securities and it exceeds the size of 

the US one by roughly 3 billion euros. 

4 While a government fixed income instrument becomes a benchmark security de jure once auctioned in the 

primary market, it becomes a benchmark bond de facto once its trading volume exceeds the one for the old 

benchmark. 
5 Using data with higher frequency (namely variables recorded at 5-minute intervals), the estimates of MS-VAR 

models failed to converge. This is due to the huge number of observations (up to 25,000 datapoints) when using 

5-minute intervals. 
6 Unlike equity market studies, where the calculation of order flows is commonly based on classification 



 

 [5] 

Table 2 provides some descriptive statistics for qspr  and oflw . Although the sample 

means of average order flows vary considerably across bonds, the ratio /M SDoflw oflw  is 

bounded within tight intervals (less than 0.3), suggesting that market makers control their 

inventories so as to avoid excessive imbalances. The sample means of quoted spreads are very 

similar for 5-year (around 2 cents) and 10-years (around 3 cents) fixed income instruments, 

while longer-dated securities exhibit higher average spreads, ranging from 9 cents for 

Germany and Italy to 11 cents for France. In all cases, quoted spreads have lower serial 

correlation than order flow imbalances at all lags. As pointed out by D’Souza et al. (2007), 

this may arise from continuous quoting obligations, which may induce market makers to 

adjust quote quickly and, thus, to reduce serial correlations for quoted spreads. 

[Table 2] 

We remove possible seasonal patterns from our variables (due to deterministic time-

series variations or institutional features) using the two-step procedure proposed by Gallant et 

al. (1992), which is detailed in Appendix A.1.7 We check for the presence of a unit root in 

each seasonally adjusted series by means of the DF-GLS test (Elliott et al., 1996), allowing 

for an intercept as the deterministic component. As reported in Table 3, the unit-root null can 

be rejected at conventional significance levels in all cases. KPSS stationarity tests 

(Kwiatkowski et al., 1992) confirm this result. 

[Table 3] 

3 – Dynamic interactions between quoted spreads and order imbalances 

Standard market microstructure theory posits that: 1) market-makers’ survival depends on 

balanced inventories to be achieved through a continuous and strategic revision of quotes; 2) 

                                                                                                                                                         
algorithms, we are able to identify the initiator of the trade explicitly. 
7 Estimation details are not reported to save space, but are available on request. 



 

 [6] 

order flow imbalances contain relevant information for market-makers and influence their 

quoting activity and market liquidity; 3) by quoting wider spreads market-makers can hedge 

against the risks posed by informed traders (Kyle, 1985) and random shocks (Stoll, 1978). 

Accordingly, it is reasonable to expect past trading imbalances to affect the current width of 

spreads and vice versa.  

In view of this, we choose a dynamic modelling approach as in D’Souza et al. (2007), 

controlling for changing market liquidity conditions as suggested by Pagano (1989), Eisfeldt 

(2004) and Brandt and Kavajecz (2004). Our econometric framework belongs to the class of 

Markov Switching VAR (MS-VAR, Krolzig, 1997) models, where a bivariate VAR process 

for oflw  and qspr  is modelled as time-invariant, conditional on an unobservable regime 

variable (see Appendix A.2). 

After considerable experimentation, we selected a specification of the MS-VAR model 

that allows for regime shifts in the deterministic component, keeping constant the 

autoregressive part of the system and the covariance matrix of residuals across states:  

1
( ) [ ( )]k

t t i t i t i ti
y s A y s u− −=
−μ = −μ +∑  , 1,...,t T=      (1) 

where ty  is the vector collecting adjusted order flows and quoted spreads series, ( )sμ  is the 

vector of regime-dependent mean values, ts  indicates the regime prevailing at time t , A ’s 

are matrices of autoregressive parameters, k  is the truncation order of the autoregression, tu  

is a vector of residuals and T  is the effective number of observations used in the estimation. 

Adopting a “bottom up” procedure (Krolzig, 1997) to identify the models: a) the order 

of autoregression k  turns out to be one in six out of nine models and two in the remaining 

three cases (those relative to the Italian market); b) all models are subject to (at least) two 

different regimes and a three-regime model is appropriate in seven out of nine cases.8 The 

                                                 
8 Diagnostics of the standardised residuals (available on request) provide strong evidence of no serial correlation. 
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main properties of the estimated regimes are reported in Table 4. The average duration of 

each regime j , 1/(1 )j jjdur p= − , where jjp  is the estimated probabilities of transition from 

regime j  to regime j , indicates that these are meaningful regime switching findings, with an 

average value of 5.24 (that is roughly three hours). Finally, the last numerical column reports 

the upper bound of the LR tests (Davies, 1977), which shows that the null hypothesis of 

linearity is rejected, giving support to a MS-VAR specification rather than a linear 

framework. 

[Table 4] 

Having identified (at most) three regimes, we define them as follows: 1) high liquidity if 

( )qspr
tsμ1  is lower than qspr  whole-sample mean (state 1); 2) low liquidity if ( )qspr

tsμ3  is 

higher than qspr  whole-sample mean (state 3); 3) intermediate liquidity  when 

( )qspr
tsμ1 < ( )qspr

tsμ2 < ( )qspr
tsμ3  (state 2).  

Panel-A of Table 5 collects the estimated regime dependent mean values j
iμ  ( , ,i = 1 2 3 ; 

j = oflw , qspr ). Panel-B presents the results from testing the symmetry between statistically 

positive and negative order flow imbalances and the equivalence of regime dependent mean 

values for quoted spreads. For each equation of the bivariate dynamic systems we also report 

the results of Granger-causality tests, with p -values in square brackets. 

[Table 5] 

The main findings can be summarised as follows. First, sell orders exceed buy orders 

when quoted spreads are low (except for FR0010288357 and IT0004026297) and the opposite 

is true when quoted spreads are high (except for DE0001141489 and IT0004026297). In the 

presence of heterogeneous private information (or heterogeneous interpretation of public 

                                                                                                                                                         
The measure of goodness of fit, adjusted as suggested by Krolzig (1997) gives satisfactory results: the average 

explanatory power for the oflw  and the qspr  equations is 35 and 18 percent, respectively.  
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information) trades occur on the basis of the market-makers’ subjective valuations, which are 

updated monitoring the aggregate level of order flows (Brandt and Kavajecz, 2004).9 

Inventory balance concerns induce market-makers to shift the spread upwards (downwards) 

when excess buy (sell)-orders occur. If excess buy (sell)-orders are interpreted as indicating 

that the quoted ask (bid) price is too low (high) with respect to the fundamental value, the 

upward (downward) shift is likely to be accompanied by a widening (narrowing) of the spread 

to better hedge against mis-pricing risk. This is also consistent with the presence of some 

dealers behaving like informed investors (Fleming and Remolona, 1999) with their trading 

based on superior inventory and order flow information (Huang et al., 2002) and reacting to 

the risk of inventory depletion (over-accumulation) in a situation where most of the market is 

on the demand (supply) side. According to this line of reasoning, our results reveal that when 

liquidity is in an intermediate state market participants give less importance to order flows, 

consistently with the findings in Chordia et al. (2002) for the aggregate US equity market. 

Second, each regime is characterised by a statistically different level of liquidity as the 

null of mean equality across regimes for qspr  is rejected in eight out of nine cases.10 Third, 

according to our classification, not all government bonds exhibit an intermediate liquidity 

regime: in the two-regime models (IT004026297 and IT0004019581), the states are 

associated to high and low liquidity conditions.11 Fourth, Granger-causality tests document bi-

directional causality at the 5 percent significance level in six models. For two 5-year bonds 

(FR0108354806 and IT004019581), causality runs from trading activity to quoted spreads, as 

predicted by standard paradigms of price formation. By contrast, there is evidence of reverse 
                                                 
9 Thus, when an excess of buy-side orders occurs dealers with a lower (higher) subjective valuation tend to 

revise them upward (downward). The opposite holds when aggregate order flows are negative.  
10 In the remaining case (FR0010070060), however, the regime-dependent mean values are quite close to the 

estimates for the other two very-long term bonds in our sample.  
11 Notice that in the present framework liquidity regimes are endogenously determined by the maximum 

likelihood estimation procedure rather than ex-ante imposed as in Brandt and Kavajecz (2004).  
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causality (from liquidity conditions to trading activity) only for FR0010070060. 

4 – Explaining shifts between liquidity regimes 

Because most of the data on the explanatory variables are not available at an intra-day 

frequency, we follow Clarida et al. (2006) and convert the intra-day smoothed probabilities 

from the estimated MS-VAR models into daily averages. For this purpose, we define a 

variable, r , which is equal to 2, 1 and 0 when the average daily probability of being in the 

high, intermediate and low liquidity regime, respectively, is the highest among the 

probabilities associated with the various states.  

4.1 – Explanatory variables 

Building on Chordia et al. (2005), Hasbrouck and Seppi (2001), Eisfeldt (2004), Beber et al. 

(2009) and Korajczyk and Sadka (2008), we supplement the MTS dataset with information on 

interest rates ( repo ), bond market returns and volatility ( mktr  and mktv , respectively), stock 

market volatility ( stkv ), macroeconomic announcements on inflation ( infl ), industrial 

production ( indp ), cyclical conditions of the real economy (unem ),12 and an indicator of ECB 

liquidity provision ( malf ). Appendix B below provides details on each of these variables.  

As further (time-invariant) regressors we introduce three market dummies ( demm  for 

Germany, frfm  for France and mtsm  for Italy) to capture possible country-specific patterns 

and, following Dunne et al. (2007), three maturity dummies to control for maturity effects 

( smty , lmty , vlmy  for bonds with residual maturity of less than 6.5 years, higher than 6.6 

and less than 13.5 years, and more than 13.5 years, respectively).  

 

                                                 
12 Since most aggregate euro area data releases are published after the euro area countries have published their 

macro announcements, the informational value of euro area macro news is small (Andersson et al., 2006). 

Accordingly, in the empirical model presented in this Section we use country-specific macroeconomic releases.  
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4.2 – Commonality across government bonds in Europe 

We model the ordinal measure of the market liquidity stance, r , for each bond 1,...,i N=  

over a number of trading days, indexed by 1,...,t T= , estimating a regression of the following 

form: 

( , , , , , , , )it it it it it it it it itr f repo mktr mktv stkv indp infl unem malf=     (2) 

Ordered Regression Models (ORMs) are presented in Table 6.13 Positive (negative) 

coefficients indicate a move toward a more (less) liquid state given an increase in the 

predictor.14 

[Table 7] 

Estimation results from the pooled-ORM (A) show that liquidity in European bond 

markets increases when the bond market grows and decreases with increased inventory 

concerns due to soaring market volatility and to increased costs of financing inventories, in a 

way consistent with standard microstructure models. As for macroeconomic announcements, 

only unemployment news turns out to have a statistically significant and positive role in 

explaining switches across liquidity regimes. Finally, an increase in malf  has a positive 

effect on the response variable, suggesting that policy interventions by monetary authorities 

may foster liquidity by making margin loan requirements less costly and by enhancing the 

ability of dealers to finance their positions (Garcia, 1989). 

Controlling for unobserved time-invariant heterogeneity [Column (B)] gives 

qualitatively similar results, with a sizeable increase of the likelihood function. Random 
                                                 
13 See Appendix A.3 for technical details. In order to control for possible endogeneity problems between the 

response variable and the explanatory variables we use in model (2) lagged values for all regressors but for 

macroeconomic announcements, because macro releases in general become public at the very beginning of 

trading hours.  
14 The fixed thresholds (not reported in Table 6) in the pooled-ORM and in the RE-ORM specifications are 

statistically significant at the 5 percent level and at least one is different from 1, implying that the 2J =  ordinal 

categories are not equally spaced. 
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effects (RE-ORM) estimates, however, indicate that a number of important covariates play a 

very limited role. A possible explanation of these findings may be a specification error in the 

empirical framework due to the parallel regression assumption (PRA), according to which the 

effects of the predictors on the response variable are identical across categories.15 We assess 

empirically such a conjecture by relaxing the PRA for those covariates that turned out to be 

weakly significant or statistically insignificant in the RE-ORM specification. Testing for PRA 

produces a LR test statistics (29.27) above the critical values of a 2χ  distribution with 6 

degrees of freedom at any significance level. 

Column (C) presents the estimation results of the generalized RE-ORM model, where 

Equation 1 (Equation 2) refers to the probability that the response variable moves from low to 

medium (from medium to high) liquidity conditions. While the impact of mktr  and mktv  

remains unchanged with respect to previous specifications, the split reveals some interesting 

asymmetric effects for the remaining predictors. Refinancing costs, stock market volatility 

and industrial production news have a significant negative impact on liquidity in Equation 1 

only. In Equation 2, instead, refinancing costs have no significant impact, while the impact of 

stock market volatility, unemployment news and ECB liquidity support is positive.  

We use this model to measure how the probabilities of the three liquidity states change 

in response to different market and macroeconomic conditions. This is done by re-calculating 

Pr( 0)itr = , Pr( 1)itr =  and Pr( 2)itr = , moving one regressor at the time from its sample 

minimum to its maximum while keeping the other predictors constant at their sample 

averages. This exercise is performed only for time-varying, statistically significant regressors. 

In each graph of Figure 1, the vertical axis indicates the probability associated to a specific 

state of liquidity. The horizontal axis reports these probabilities, computed at the minimum as 

                                                 
15 It may be the case, indeed it is likely, that covariates have distinctive effects within different categories, 

implying that the analysis based on the PRA may reveal no net effect. 
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well as at the first quartile, at the median, at the third quartile and at the maximum values of 

the distribution of each predictor, ceteris paribus. 

[Figure 1] 

When refinancing costs rise, the probability of low liquidity states increases whilst that 

of the intermediate state decreases. At very high levels of repo  there is a higher probability of 

extreme liquidity conditions and, thus, of inventory concerns. Moving from very low to very 

high levels of mktr  induces a monotonic decline in the probability of low liquidity along with 

an increase in the probability of high liquidity conditions, in a way consistent with momentum 

strategies. Higher bond market volatility is associated with lower liquidity as Pr( 0)itr =  rises 

and Pr( 2)itr =  falls. As stock market volatility increases the probability associated with the 

intermediate liquidity state disappears, with trade-order imbalances prevailing. The ECB’s 

marginal lending provides an effective hedge against liquidity evaporation only in extreme 

cases, i.e. when malf is above a certain threshold (the third quartile of its sample 

distribution). Finally, the relationship between macro announcements and the response 

variable is consistent with bond market liquidity being counter-cyclical. In particular 

extremely favourable industrial production and unemployment news lead to a significant 

increase in Pr( 0)itr = . Given the pro-cyclicality of stock market liquidity (see Eisfeldt, 2004), 

our results suggest that bond and stock market liquidity should be seen as substitutes rather 

than as complements over the business cycle.  

5 – Conclusions 

This paper analyses transaction-based data for Treasury bonds with maturities of 5, 10 and 32 

years for the three largest European markets, namely Italy, France and Germany, with the aim 

of shedding light on the  secondary market for Treasury securities in Europe. 

The MS-VAR estimation results suggest that in abnormal (i.e. very high or very low) 
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market liquidity conditions dealers pay attention to the information revealed by order flows; 

less so when liquidity is in an intermediate state. Furthermore, the causality nexus between 

quoted spreads and trading imbalances is a complex one: for a vast majority of bonds, we find 

bi-directional feedback effects between market characteristics. Ordered probit estimates for 

longitudinal data indicate that extreme liquidity conditions are likely to occur when 

refinancing costs are low, according to standard portfolio rebalancing arguments. By 

exacerbating inventory risk, bond market volatility has a detrimental effect on aggregate 

liquidity, while bond market returns induce changes in the composition of portfolios. 

Furthermore, we find that liquidity states evolve counter-cyclically with respect to the 

sentiment among analysts about the business climate. Higher stock market volatility increases 

the probability of extreme liquidity conditions and trade-order imbalances. Finally, bond 

market liquidity reacts positively to an increase in the volume of the marginal lending facility 

only if the size of the liquidity provision offered by the ECB is above a certain threshold. 

It is noteworthy that our sample ends a few weeks before the outbreak in 2007 of the 

current financial turmoil. Although the stochastic properties of financial series during periods 

of stress are likely to differ substantially from those in normal times, we interpret our findings 

as indicating that European monetary authorities can provide effective insurance against 

liquidity evaporation in the euro-denominated government bond market only to the extent that 

they are willing to increase the monetary base sharply through standard and ad hoc lending 

facilities. Further work based on an updated sample could shed light on the most recent 

effects of the financial turmoil on the European Treasury securities market. Another possible 

extension could also model shifts across liquidity regimes for individual bonds. In this 

respect, endogenising the MS-VAR estimated transition probabilities (making them 

dependent on market characteristics as well as on institutional factors) could be useful to 

increase market participants’ knowledge of the market microstructure properties of the MTS 
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platform. Finally, depth and price dynamics could be introduced as dependent variables in the 

MS-VAR estimation in order to test hypotheses based on the limit order market literature (see 

Rosu, 2009 and Foucault et al., 2005) and to assess whether price dynamics react differently 

to liquidity in different regimes as in Brandt and Kavajecz (2004). These issues are left for 

future research. 
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Appendix A. Econometric tools 

A.1 – Seasonal adjustment procedure 

The procedure proposed by Gallant et al. (1992) consists of two steps. The first stage is to 

regress raw measures of trading imbalances, *
toflw , and quoted spreads, *

tqspr , on a series of 

j  adjustment variables, iγ , 1,...,i j= : *
1

j
t i i ti

z d
=

= γ + ε∑  (mean equation), where 

* * *,t t tz oflw qspr= , alternatively, and t  indexes time. In order to remove heteroscedasticity, the 

residuals tε  are used in the following regression 2
1

ln( ) j
t i i ti

f
=

ε = γ + ξ∑  (variance equation). 

The adjusted series, tz , are then calculated as:  

1
ˆ[ / exp( / 2)]j

t t i ii
z f

=
= α + βε γ∑  

where ˆ tε  are the estimated residuals and the parameters α  and β  are chosen so that the 

sample means and variances of the adjusted and the unadjusted series are the same.16 The 

following adjustment variables are used: i) 11 monthly dummies, one for each month from 

February to December; ii) 4 daily dummies, one for each day from Monday to Thursday, iii) 

17 half-hourly dummies, one for each hour from 9:00 (CET) and 17:30 (CET), iv) 3 dummies, 

taking value 1, if the bond has the benchmark or the first off-the-run or the second off-the-run 

status, alternatively, and 0, otherwise; v) a dummy taking value 1, if trades take place on the 

domestic MTS platform, and 0, otherwise, as in Cheung et al. (2005), vi) a dummy taking 

value 1, if trades are initiated by a market maker, and 0, otherwise. 

A.2 – Modelling quoted spreads and trading imbalance dynamics 

For expositional purposes, we outline below the MS-VAR framework for the case of regime 

shifts in the mean alone, although shifts may be allowed for elsewhere. Adopting the same 

                                                 
16 Results based on the seasonally adjusted series are available on request. 
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notation as above, the MSM( m )-VAR( p ) model, following Krolzig (1997), can be written 

as: 

11, 12,

1 21, 22,

( ) ( )
( ) ( )

qspr qspr qsprk
i it t it t i t

oflw oflw oflw
i i it t it t i t

a aqspr qsprs s u
a aoflw oflws s u

− −

= − −

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤μ μ⎡ ⎤ ⎡ ⎤
− = − +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟μ μ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑   (A1) 

The regime ts  is assumed to be governed by a discrete time irreducible ergodic m -state 

stochastic Markov process with transition probabilities 1Pr( | )ij t tp s j s i+= = = , 
1

1m
ijj

p
=

=∑ , 

, {1,..., }i j m∈ , collected in the transition matrix { }ij m mP p ×= . Following a regime shift in the 

mean ( )tsμ  of model (A1), the observed time series jumps immediately to its new level. Such 

a feature appears to be adequate for our purposes since we are dealing with financial variables 

and therefore sudden jumps across states are more plausible than gradual swings. 

In order to find detect an adequate characterisation of an m -regime k -th order VAR, 

we apply the “bottom-up” procedure (Krolzig, 1997). This approach allows to select both the 

number of regimes and the autoregressive order using the approximation provided by its 

VARMA representation (Poskitt and Chung, 1996), starting with a simple but statistically 

reliable MS-VAR model by restricting the effects of regime shifts on a limited number of 

parameters and checking the model against alternatives. 

Parameter estimation is carried out through the implementation of the expectation-

maximisation algorithm for maximum likelihood estimation (Dempster et al., 1977). To test 

for a dynamic link between quoted spreads and trading imbalances, Granger causality tests are 

conducted. For instance, to test for Granger causality from order flow imbalances to quoted 

spreads, the null hypothesis of non-causality is:  

iH a =0 12,: 0 , i k∀ = 1, ...,         (A2) 

To test the null, we impose the restrictions in (A2) on the values of the autoregressive 

parameters so as to obtain the log likelihood value of the constrained MS-VAR model ( conL ). 
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By comparing conL  to the value of the log likelihood of the unrestricted model ( unrL ) from 

(A1), a standard 2χ -distributed (with k  degrees of freedom) likelihood ratio (LR) test statistic 

is calculated using the formula unr conLR L L= −2( ) . Furthermore, in terms of inference, we 

follow Nelson et al. (2001) who conclude that unit root tests remain robust in detecting 

stationarity in Markov switching regressions. 

A.3 – Analysing the determinants of market liquidity states 

Considering pooling data, the basic notion underlying ORMs is the existence of a latent (or 

unobserved) continuous variable, *
itr , ranging from -∞ to +∞, which is related to a set of 

explanatory variables through the standard linear relationship: 

* '
it it i itr x z u′= β + γ +          (A3) 

where itx  is a vector of time-varying regressors, iz  is a vector of time-invariant covariates, β  

and γ  are the associated parameter vectors and itu  is a random error term. 

Although *
itr  is unobserved, it is related to the integer index itr  through the relationship: 

0itr =  iff  *
1itr < λ , itr j=  iff  *

1j it jr−λ < < λ , 2,..., 1j J= − , itr J=  iff  * 1itr J> − , 

where jλ  are the unobserved thresholds defining the boundaries between different levels of 

itr . Given the relationship between itr  and *
itr , we can express the conditional cell 

probabilities (that is, the probability of observing an individual as having a j  value of itr ) as: 

' '
1Pr( | , ) ( ) ( )−′ ′= = λ −β − γ − λ −β − γit it i j it i j it ir j x z F x z F x z     (A4) 

where (.)F  indicates the cumulative distribution function, with 1−> jj λλ , 1,...,j J∀ ∈ . The 

set of equations (A4) can be used to compute the cumulative probabilites: 

'Pr( | , ) ( )′≤ = λ −β − γit it i j it ir j x z F x z        (A5) 

Assuming a standard normal distribution yields the ordered probit model. 
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In order to fully capture the effect of individual heterogeneity, the random effects 

approach (RE-ORM) assumes that both time-invariant, iν , and time-varying, itε , unobserved 

factors may contribute to determine liquidity conditions. If we express the random error term 

as it i itu = ν + ε , model (A3) can be written as * '
it it i i itr x z′= β + γ + ν + ε , where both error 

components are normally distributed and orthogonal to the set of predictors. Since the 

underlying variance of the composite error, ν εσ = σ +σ2 2 2
u , is not identified, we normalise 

εσ =2 1 , so that 2 2 2 1 2 2 1
, ( ) ( 1)

it isu u
− −

ν ν ε ν νρ = σ σ +σ = σ σ + , and, thus, 1/ 2[ /(1 )]νσ = ρ −ρ . 

Notice that both the standard pooled-ORM and the RE-ORM frameworks rely on the 

critical parallel regression assumption (PRA), according to which the effects of the covariates 

on the dependent variable are identical across the J  categories of the response variable. In a 

generalised RE-ORM framework (Boes and Winkelmann, 2006), time-invariant individual 

effects may vary across categories, with threshold parameters dependent on the predictors. 

The conditional probability model (A4) for the case of a generalised RE-ORM changes 

into the following one: 

1 1 1Pr( | , ; , ) ( ) ( )it it i j j ij j it j i ij j it j ir j x z x z x z− − −′ ′ ′ ′= β γ = Φ −ν −β − γ −Φ −ν −β − γ   (A6) 

which makes it possible to write down the corresponding cumulative model as:  

Pr( | , ; , ) ( )it it i j j ij j it j ir j x z x z′ ′≤ β γ = Φ −ν −β − γ      (A7) 

where (.)Φ  denotes the normal cumulative distribution function. 

Under the hypothesis of equal slope parameters for both time-varying and time-

invariant regressors, the standard RE-ORM is nested into the generalised threshold RE-ORM. 

The (implicit) restrictions embedded in the former can be tested against the latter by 

performing a 2χ -distributed LR test.  

The computation of the marginal probability effects ( mpe ), that is the shift of the 

predicted discrete ordered distribution of the outcome variable as one (or more) of the 
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predictors’ changes, in the case of a generalised RE-ORM is performed under the hypothesis 

of normally distributed ijν ’s, so that the β ’s and the γ ’s parameters are rescaled in the 

population-averaged coefficient vectors 2 1/ 2/(1 )νβ = β + σ  and 2 1/ 2/(1 )νγ = γ + σ , respectively 

(Boes and Winkelmann (2006). Accordingly, the mpe  exerted by the k -th element in itx , 

( )k
itx , on the j -th ordered category of the response variable can be expressed as: 

( )

( ) ( )
1 1 1 1

[( Pr( | ; ) / )]

( ) ( )

kk
it it itj

k k
ij j it j i j ij j it j i j

r j x xmpe

x z x z− − − −

= ∂ = β ∂ =

′ ′ ′ ′= φ −ν −β − γ β −φ −ν −β − γ β
   (A8) 

where ( )kβ  indicates the k -th element in vector β  and ( ) ( ) /z d z dzφ ≡ Φ . 

Simulated probabilities are obtained by using the cumulative model, by moving a 

predictor from its minimum to maximum. Since simulated probabilities depend on the 

individual elements of itx  and iz , we evaluate them at the sample average of the predictors. 
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Appendix B. Construction of time-varying drivers of liquidity states 

In order to control for possible trend patterns in the covariates over the sample span, we 

define relative quantities with respect to European averages values. All variables are 

constructed by using daily data. 

repo  is the difference between bond specific spot next repo rates and the Euro short 

term repo (middle rate) by the ECB. Repo rates are from MTS database and Datastream. 

mktr  is the difference between HP-filtered log-prices of the country-specific EuroMTS index 

and of the European aggregate EuroMTS index (with the same maturity of the bond). mktv  is 

the absolute value of the difference between the first differences of the log-prices of the 

country-specific EuroMTS index and of the European aggregate EuroMTS index (with the 

same maturity of the bond). Data for mktr  and mktv  are extracted from the EuroMTS 

website (http://www.euromtsindex.com/). stkv  is the absolute value of the difference between 

the first differences of the log-prices of the country-specific stock index and of the DJ Euro 

600 index. The data source is Datastream. 

For each announcement, we construct the standardised scheduled news, given by the 

difference between the value announced and the median of survey expectation of 

announcement divided by the sample standard deviation of that difference. We set the 

standardised scheduled news equal to zero on days without macroeconomic announcements. 

Country-specific announcement data as well as the survey expectation of the announcements 

on year-on-year changes of inflation ( infl ), industrial production ( indp ) and unemployment 

(unem ) are taken from Bloomberg. Finally, malf  is the standardised value (i.e. the difference 

between actual values and the sample average divided by the sample standard deviation) of 

the amount (in EUR millions) of volumes for marginal lending facility published on the ECB 

website (http://www.ecb.eu/stats/monetary/res/html/index.en.html#data). 
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Tables 

Table 1 – Bond codes 

Market code Bond code Issue date Maturity date Maturity (years) Trades on domestic 
MTS (%) 

Trades by market 
makers (%) 

 DE0001141489 3/22/2006 4/8/2011 5.05 84.31 98.04 

Germany DE0001135291 11/23/2005 1/4/2016 10.12 56.31 89.08 

  DE0001135275 1/4/2005 1/4/2037 32.02 73.81 97.81 

 FR0108354806 1/19/2006 1/12/2011 4.98 79.49 99.36 

France FR0010288357 2/2/2006 4/25/2016 10.23 47.21 98.83 

  FR0010070060 4/25/2003 4/25/2035 32.02 81.64 100.00 

 IT0004026297 3/13/2006 3/15/2011 5.01 91.59 99.70 

Italy IT0004019581 2/27/2006 8/1/2016 10.43 86.60 97.73 

  IT0003934657 8/1/2005 2/1/2037 31.53 90.61 98.06 

 

Note. For each market, the first, the second, and the third code refers to the 5, 10 and 30-year bond, respectively. 
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Table 2 – Summary statistics for liquidity and trading activity measures 

 Quoted Spreads Trade Imbalances 

Bond code xM xMe xSD ρ1  ρ2  ρ3  xM xMe xSD ρ1  ρ2  ρ3  

DE0001141489 0.025 0.025 0.007 0.264 0.180 0.136 -5.944 -7.500 21.650 0.710 0.513 0.396

DE0001135291 0.032 0.031 0.011 0.412 0.241 0.181 -4.824 -2.500 25.089 0.814 0.669 0.539

DE0001135275 0.092 0.087 0.033 0.610 0.414 0.311 -0.069 0.000 16.990 0.850 0.713 0.590

FR0108354806 0.027 0.028 0.007 0.384 0.184 0.054 2.679 -10.000 32.531 0.890 0.786 0.694

FR0010288357 0.035 0.032 0.019 0.594 0.288 0.038 -11.050 -5.000 39.302 0.886 0.780 0.683

FR0010070060 0.112 0.113 0.032 0.179 0.136 0.069 3.551 5.000 12.937 0.837 0.718 0.620

IT0004026297 0.019 0.020 0.006 0.572 0.394 0.263 -13.059 -5.000 63.370 0.955 0.913 0.875

IT0004019581 0.026 0.025 0.008 0.792 0.659 0.554 3.850 5.000 80.238 0.957 0.914 0.871

IT0003934657 0.093 0.093 0.031 0.664 0.517 0.426 4.812 2.500 38.994 0.958 0.915 0.873

 

Note. For each bond, we report the mean (xM), the median (xMe) and the standard deviation (xSD) of quoted 
spreads and order flows along with their serial correlations up to the third lag ( iρ i, , ,i = 1 2 3 ). Values in bold 
indicate statistically significant autocorrelation coefficients at the 5 percent level. Market codes for German, 
French and Italian bonds are DE…, FR.. and IT…, respectively. For each market, the first, the second, and the 
third code refers to the 5, 10 and 30-year bond, respectively. 
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Table 3 – Unit root test results 

 Quoted Spreads Trade Imbalances 

Bond code Lags DF-GLS KPSS Lags DF-GLS KPSS 

DE0001141489 1 -6.537 0.120 1 -7.608 0.100 

DE0001135291 2 -2.733 0.152 1 -9.680 0.161 

DE0001135275 2 -14.655 0.158 1 -13.553 0.458 

FR0108354806 1 -2.432 0.050 1 -5.045 0.120 

FR0010288357 3 -3.634 0.169 1 -8.058 0.251 

FR0010070060 2 -3.343 0.070 1 -5.866 0.179 

IT0004026297 1 -24.054 0.121 2 -9.099 0.291 

IT0004019581 3 -26.817 0.080 1 -19.089 0.340 

IT0003934657 3 -17.117 0.052 1 -10.641 0.632 

 

Note. Critical values at the 10, 5 and 1 percent significance levels for the DF-GLS test (Elliot et al., 1996) for the 
unit root null, in the case of a constant as the deterministic component of the regression, are -2.62, -2.03 and -
1.73, respectively. The order of autoregression (“Lags”) is chosen according to the modified Akaike Information 
Criterion. Critical values at the 10, 5 and 1 percent significance levels for the KPSS test (Kwiatkowski et al., 
1992) for the null of stationarity, in the case of a constant as the deterministic component of the regression, are 
0.35, 0.46 and 0.74, respectively. The order of autoregression (“Lags”) is chosen according to the rule provided 
by Schwert (1989). Market codes for German, French and Italian bonds are DE…, FR.. and IT…, respectively. 
For each market, the first, the second, and the third code refers to the 5, 10 and 30-year bond, respectively. 
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Table 4 – Properties of Markov switching regimes 

 Lags p11 p22 p33 dur1 dur2 dur3 Davies 

DE0001141489 1 0.185 0.400 0.841 1.227 1.667 6.281 [0.000] 

DE0001135291 1 0.413 0.782 0.599 1.703 4.585 2.491 [0.000] 

DE0001135275 1 0.792 0.832 0.691 4.803 5.942 3.234 [0.000] 

FR0108354806 1 0.804 0.882 0.475 5.112 8.460 1.905 [0.003] 

FR0010288357 1 0.662 0.731 0.589 2.962 3.713 2.435 [0.000] 

FR0010070060 1 0.525 0.735 0.786 2.103 3.771 4.675 [0.010] 

IT0004026297 2 0.929 . 0.883 13.986 . 8.525 [0.000] 

IT0004019581 2 0.927 . 0.900 13.624 . 9.950 [0.000] 

IT0003934657 2 0.837 0.853 0.797 6.139 6.803 4.931 [0.000] 

 

Note. The order of autoregression is reported in the column “Lags”. pjj’s (j = 1,2,3) are the estimated 
probabilities of transition from regime j to regime j. The average duration of each regime j, durj, is calculated as 
durj = 1/(1- pjj). Davies  is the upper bound of the LR tests for the null of a linear VAR. p-values are in squared 
brackets. Market codes for German, French and Italian bonds are DE…, FR.. and IT…, respectively. For each 
market, the first, the second, and the third code refers to the 5, 10 and 30-year bond, respectively. 
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Table 5 - MS-VAR estimation results 

  
Equation: Quoted Spreads Equation: Order Flow Imbalances 

Panel A μ1  μ2  μ3  μ1  μ2  μ3  

DE0001141489 0.015 0.025 0.026 6.811 78.875 -11.418 
(0.004) (0.004) (0.002) (4.478) (5.763) (2.067) 

DE0001135291 0.015 0.035 0.038 -0.081 -3.439 7.588 
(0.003) (0.003) (0.003) (1.817) (1.657) (1.899) 

DE0001135275 0.086 0.090 0.119 -15.101 5.516 24.682 
(0.005) (0.005) (0.006) (3.855) (3.835) (3.907) 

FR0108354806 0.025 0.028 0.030 -8.051 0.281 13.774 
(0.003) (0.003) (0.004) (2.497) (2.626) (4.089) 

FR0010288357 0.027 0.031 0.061 20.645 -48.450 7.914 
(0.003) (0.003) (0.003) (6.839) (7.020) (8.328) 

FR0010070060 0.086 0.109 0.129 -10.554 3.478 10.724 
(0.008) (0.008) (0.009) (3.582) (3.626) (3.7169) 

IT0004026297 0.019 . 0.021 23.641 . -72.316 
(0.001) (0.001) (7.263) (7.515) 

IT0004019581 0.021 . 0.032 -17.575 . 32.987 
(0.001) (0.001) (9.769) (9.344) 

IT0003934657 0.065 0.091 0.127 -23.961 9.398 29.213 
(0.003) (0.004) (0.004) (9.193) (9.224) (9.146) 

Panel B Restriction on the mean Granger 
Causality Restriction on the mean Granger 

Causality 

DE0001141489 μ = μ = μ1 2 3 3 [0.007] [0.039] μ = −μ1 3  [0.000] [0.000] 

DE0001135291 μ = μ = μ1 2 3  [0.000] [0.000] μ = −μ1 3  [0.212] [0.036] 

DE0001135275 μ = μ = μ1 2 3  [0.000] [0.046] μ = −μ1 3  [0.211] [0.000] 

FR0108354806 μ = μ = μ1 2 3  [0.199] [0.044] μ = −μ1 3  [0.334] [0.256] 

FR0010288357 μ = μ = μ1 2 3  [0.000] [0.000] μ = −μ1 3  [0.000] [0.000] 

FR0010070060 μ = μ = μ1 2 3  [0.000] [0.848] μ = −μ1 3  [0.980] [0.011] 

IT0004026297 μ = μ1 3  [0.000] [0.009] μ = −μ1 3  [0.000] [0.246] 

IT0004019581 μ = μ1 3  [0.000] [0.000] μ = −μ1 3  [0.000] [0.000] 

IT0003934657 μ = μ = μ1 2 3  [0.000] [0.000] μ = −μ1 3  [0.000] [0.000] 

 

Note. In Panel A, regime-dependent mean values ( jμ , , ,j = 1 2 3 ) statistically significant at the 5 percent 
significance level (or better) are reported in bold. Estimated standard errors are in parentheses. In Panel B, 
restriction on the mean in the quoted spread (trading imbalances) equation tests the null of equal mean (in 
absolute values) across regimes. Granger Causality in the quoted spread (trading imbalances) equation tests the 
null that past values of trading imbalances (quoted spreads) do not affect current values of the dependent 
variable. p-values are in squared brackets. Market codes for German, French and Italian bonds are DE…, FR.. 
and IT…, respectively. For each market, the first, the second, and the third code refers to the 5, 10 and 30-year 
bond, respectively. 



 

 [29]

Table 6 – Ordered probit estimation results 
 

Pooled-ORM (A) RE-ORM (B) 
Generalized RE-ORM (C) 

  Equation 1 Equation 2 

repo -0.376 -0.432 -0.731* -0.128 
(0.369) (0.375) (0.428) (0.429) 

mktr 0.245** 0.302** 0.297** 
(0.118) (0.119) (0.120) 

mktv -0.987** -1.006** -1.013** 
(0.417) (0.419) (0.419) 

stkv 0.131 0.147 -0.356* 0.523*** 
(0.166) (0.170) (0.196) (0.187) 

indp -0.181 -0.164 -0.312* 0.006 
(0.135) (0.135) (0.164) (0.174) 

infl -0.070 -0.044 -0.084 -0.018 
(0.147) (0.153) (0.200) (0.166) 

unem 0.074* 0.073* 0.050 0.115* 
(0.044) (0.044) (0.048) (0.069) 

malf 
0.071** 0.062* 0.045 0.073* 
(0.036) (0.036) (0.044) (0.040) 

ρ � . 0.430*** 0.434*** 
(0.044) (0.044) 

Observations 1417 1417 1417 
LL -1525.2 -1465.2  -1450.6 

χ2  38.47 (12) 42.65 (12) 102.53 (18) 
[0.000] [0.000] [0.000] 

AIC 3078.4 2960.5  2943.2  

χ2 -PRA . . 29.27 (6) 
[0.000] 

 

Note. The dependent variable is equal to 2, 1 and 0 when the average daily probability of being in the high, 
intermediate and low liquidity regime, respectively, is the highest among the probabilities associated with the 
various states. Country and maturity dummies, albeit included among the regressors, are omitted for ease of 
exposition. Single, double and triple stars indicate significance at the 10, 5 and 1 percent levels, respectively. 
Standard errors are in parentheses. LL and AIC indicate the value of the log-likelihood function and the Akaike 
Information Criteria, respectively. χ2 is the test statistics for the joint impact of the covariates on the dependent 
variable. χ2-PRA is the test statistics for symmetric impact of the covariates on the dependent variable across 
categories. Degrees of freedom are in parentheses, while p-values in square brackets. repo  is the difference 
between bond specific spot next repo rates and the Euro short term repo (middle rate) by the ECB. mktr  is the 
difference between HP-filtered log-prices of the country-specific EuroMTS index and of the European aggregate 
EuroMTS index (with the same maturity of the bond). mktv  is the absolute value of the difference between the 
first differences of the log-prices of the country-specific EuroMTS index and of the European aggregate 
EuroMTS index (with the same maturity of the bond). stkv  is the absolute value of the difference between the 
first differences of the log-prices of the country-specific stock index and of the DJ Euro 600 index. infl , indp  
and unem  are standardised scheduled news, given by the difference between the value announced and the 
median of survey expectation of announcement divided by the sample standard deviation of that difference, on 
year-on-year changes of inflation, industrial production and unemployment, respectively. malf  is the 
standardised value (i.e. the difference between actual values and the sample average divided by the sample 
standard deviation) of the amount (in EUR millions) of volumes for marginal lending facility. See Appendix B 
for details on data sources. 
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Figures 

Figure 1 – Simulated probabilities: baseline generalised RE-ORM 

 

Note. In each graph, the vertical axis indicates the probability associated to a certain state of liquidity. Black, 
grey and white bars refer to Pr(rit = 0), Pr(rit = 1) and Pr(rit = 2), respectively. The horizontal axis reports these 
probabilities, computed at the minimum as well as at the first quartile, at the median, at the third quartile and at 
the maximum value of the distribution of each predictor, ceteris paribus. See notes in Table 6 for details on the 
predictors. 
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