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Abstract 

In this paper we use fractional integration techniques to examine the degree of integration of 
four US stock market indices, namely the Standard and Poor, Dow Jones, Nasdaq and 
NYSE, at a daily frequency from January 2005 till December 2009. We analyse the weekly 
structure of the series and investigate their characteristics depending on the specific day of 
the week. The results indicate that the four series are highly persistent; a small degree of 
mean reversion (i.e., orders of integration strictly smaller than 1) is found in some cases for 
S&P and the Dow Jones indices. The most interesting findings are the differences in the 
degree of dependence for different days of the week. Specifically, lower orders of 
integration are systematically observed for Mondays and Fridays, consistently with the “day 
of the week” effect frequently found in financial data. 
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1. Introduction  

Determining the correct order of integration of stock prices is still an unresolved issue. 

While the efficiency market hypothesis suggests that they should follow a random walk (see 

Fama, 1970; Summers, 1986), other studies have found evidence of mean reversion in their 

behaviour (see, e.g., Poterba and Summers, 1988 and Fama and French, 1988). Most authors 

assume that (log-)prices are I(1), i.e. that stock returns are stationary I(0). The key question 

is then whether shocks are autocorrelated, with would imply that markets are not efficient, 

as pointed out by Caporale and Gil-Alana (2002). That study also stresses that the unit root 

tests normally employed impose very restrictive assumptions on the behaviour of the series 

of interest, in addition to having low power. It is suggested instead that tests which allow for 

fractional alternatives should be used. This is important in order to determine if stock prices 

are mean-reverting or not even in non-stationary contexts, which is in fact a hotly debated 

topic in empirical finance. Lo and MacKinlay (1988) and Poterba and Summers (1988) used 

variance-ratio tests and found evidence of mean reversion in stock prices. On the contrary, 

Lo (1991) used a generalised form of rescaled range (R/S) statistic and found no evidence 

against the random walk hypothesis for the stock indices.  

Long-memory specifications have been used for financial data by Crato (1994), 

Cheung and Lai (1995), Barkoulas and Baum (1996), Barkoulas, Baum, and Travlos (2000), 

Sadique and Silvapulle (2001), Henry (2002), Tolvi (2003) and Gil-Alana (2006) among 

others. Caporale and Gil-Alana (2007) decompose the stochastic process followed by US 

stock prices into a long-run component described by the fractional differencing parameter 

(d) and a short-run (ARMA) structure. Empirical support for non-linear asset pricing models 

(such as the one by Dittmar, 2002) has also been found (see, inter alia, Hossein and Sonnie, 

2008).  
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 In this paper we first use fractional integration techniques to estimate the degree of 

integration of the following four stock market indices: Standard and Poor, Dow Jones, 

Nasdaq and NYSE, at a daily frequency, over the sample period January 3rd, 2005 – 

December 3rd, 2009. We also examine their weekly structure and characteristics depending 

on the specific day of the week. 

Calendar effects (such as the weekend effect, the day of the week effect, and the 

January effect) in financial series, both in the US and in other developed markets, have been 

reported in many studies starting with Osborne (1962). Negative Monday returns were 

found, inter alia, by Cross (1973), French (1980), and Gibbons and Hess (1981), the former 

two analysing the S&P 500 index, the latter the Dow Jones Industrial Index. Similar findings 

have been reported for other US financial markets, such as the futures, bond and Treasury 

bill markets (Cornell, 1985, Dyl and Maberly, 1986), foreign exchange markets (Hsieh, 

1988), and for Australian, Canadian, Japanese and UK financial markets (e.g., Jaffe and 

Westerfield, 1985, Jaffe, Westerfield and Ma, 1989, Agrawal and Tandon, 1994). Effects on 

stock market volatility have also been documented (Kiymaz and Berument, 2003). 

Various explanations have been offered for the observed patterns. Some focus on 

delays between trading and settlement in stocks (Gibbons and Hess, 1981): buying on 

Fridays creates a two-day interest-free loan until settlement; hence, there are higher 

transaction volumes on Fridays, resulting in higher prices, which decline over the weekend 

as this incentive disappears. Others emphasise a shift in the broker-investor balance in 

buying-selling decisions which occurs at weekends, when investors have more time to study 

the market themselves (rather than rely on brokers); this typically results in net sales on 

Mondays, when liquidity is low in the absence of institutional trading (Miller, 1988). It has 

also been suggested that the Monday effect largely reflects the fact that, when daily returns 

are calculated, the clustering of dividend payments around Mondays is normally ignored; 
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alternatively, it could be a consequence of positive news typically being released during the 

week, and negative ones over the weekend (Fortune, 1998). Additional factors which could 

be relevant are serial correlation, with Monday prices being affected by Friday ones, and a 

negative stock performance on Fridays being given more weight (Abraham and Ikenberry, 

1994); measurement errors (Keim and Stambaugh, 1984); size (Fama and French, 1992); 

volume (Lakonishok and Maberly, 1990).  

 The present study is structured as follows: Section 2 briefly outlines the 

methodology employed. Section 3 describes the data. Section 4 reports the empirical results, 

while Section 5 contains some concluding comments. 

 

2. Methodology 

Given a zero-mean covariance stationary process { tx , ,...1,0 ±=t } with autocovariance 

function )( uttu xxE +=γ , the time domain definition of short memory or I(0) states that:  

∞<∑
∞

−∞=u
uγ . 

Now, assuming that xt has an absolutely continuous spectral distribution, so that it has 
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according to the frequency domain definition of short memory the spectral density function 

should be bounded and positive at all frequencies in the spectrum. These definitions include 

a wide variety of model specifications, such as white noise, stationary autoregression (AR), 

moving average (MA), stationary ARMA, etc. 

In the above context, one can say that a process is integrated of order d, and denoted 

by I(d), if after taking d differences the process becomes I(0). In other words, xt is I(d) if: 
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with d > 0, where L  is the lag-operator ( 1−= tt xLx ) and tu  is ( )0I . Clearly, if ut is 

ARMA(p, q), then xt is said to be ARFIMA(p, d, q). In this context, if d = 0, xt is stationary 

I(0) and is commonly characterised as “short memory”; on the contrary, if d > 0, xt is said to 

be “long memory”, so-named because of the strong degree of association between 

observations far distant in time;  if d belongs to the interval (0, 0.5) the series is still 

covariance stationary but the autocorrelations take a longer time to disappear than in the I(0) 

case.1 If d is in the interval [0.5, 1) the series is no longer stationary; however, it is still 

mean-reverting in the sense that shocks affecting the series disappear in the long run. 

Finally, if d ≥  1 the series is non-stationary and non-mean-reverting. The I(d) processes 

(with d > 0) were introduced by Granger and Joyeux (1980), Granger (1980, 1981)) and 

Hosking (1981) and were justified in terms of aggregation by Robinson (1978) and Granger 

(1980). These authors showed that fractionally integration could arise as a result of 

aggregation.2 In the last fifteen years I(d) models have been widely employed to describe the 

behaviour of many macroeconomic and financial time series data (see, e.g., Diebold and 

Rudebusch, 1989; Sowell, 1992; Gil-Alana and Robinson, 1997; etc.). 

The method employed in this paper is based on the Whittle function in the frequency 

domain (Dahlhaus, 1989) along with a testing procedure developed by Robinson (1994). 

The latter is a very general method that allows to test the null Ho: d = do in (1) for any real 

value of do, thus including stationary (do < 0.5) and non-stationary (do ≥  0.5) hypotheses.  

 

 

                                                 
1 More precisely, the autocorrelations decay at a hyperbolical rate (slowly), unlike in the I(0) (AR) case where 
the rate of decay is exponential (rapid). 
2 They showed that fractional integration could result from aggregation across heterogeneous autoregressive 
(AR) processes. 
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3. The dataset 

The series used for the analysis are the following four indices: S&P Composite 1500; the 

NASDAQ Composite IXIC; the New York Stock Exchange (NYSE) Composite Index; and 

the Dow Jones Composite Average (DJA) index. The samples begin on January 3rd, 2005 

and end on December 31st, 2009. In all cases, if there is no value for a given day, the 

arithmetic mean using the previous and the following observation was computed.  

[Insert Figure 1 about here] 

The four log-prices series and their corresponding returns are displayed in Figure 1. 

It can be seen that the four indices move in a very similar way, with a sharp decrease at the 

beginning of the sample and an increase from around 2006, with values decreasing slowly 

from mid-2007 till the end of the sample. Panel (b) in Figure 1 displays the return series, 

obtained as the first differences of the log prices. One can see that volatility has sharply 

increased in the last part of the sample in all cases.3 

 

4. Empirical results 

We consider first the following model, 

...,2,1,)1(, ==−+= tuxLxy tt
d

tt α   (1) 

where yt is the observed time series, xt is assumed to be I(d) and ut is the error term. We 

consider the cases of white noise, AR(1) and Bloomfield-type disturbances. The latter is a 

non-parametric specification, due to Bloomfield (1973), that produces autocorrelations 

decaying exponentially as in the AR(MA) case.4 

[Insert Table 1 about here] 

 Table 1 reports the estimates of d from model (1), as well as the 95% confidence 

bands corresponding to the non-rejection values of d using Robinson’s (1994) parametric 
                                                 
3 Note, however, that the present paper does not focus on volatility. Also, the analysis is based on methods that 
are robust to the presence of conditional heteroscedastic errors. 
4 See Gil-Alana (2004) for a study with Bloomfield disturbances in the context of Robinson’s (1994) tests. 
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approach. With white-noise disturbances, the estimated values of d are strictly smaller than 

1 for the four series, implying mean-reverting behaviour. If ut is AR, the values of d are still 

smaller than 1, but the unit root null hypothesis cannot be rejected in the cases of the Nasdaq 

and the NYSE indices. When using the more general Bloomfield specification, the unit root 

cannot be rejected for any of the series. Thus, the results change substantially depending on 

the specification of the error term. For this reason, we also employ a semi-parametric 

method suggested by Robinson (1995). This is based on the Whittle function in the 

frequency domain using a band of frequencies that degenerates to zero. The estimate of d is 

implicitly defined by: 

,log12)(logminargˆ
1
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where m is a bandwidth number, and I(λs) is the periodogram of the raw time series, xt,  
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and d ∈ (-0.5, 0.5). 

 Given the non-stationary nature of the series the analysis is conducted on the first 

differenced data, then adding 1 to the estimated value of d. The results for the whole range 

of values of the bandwidth parameter (displayed on the horizontal axis) are shown in Figure 

2.5 

[Insert Figure 2 about here] 

                                                 
5 Some methods to calculate the optimal bandwidth parameters in semiparametric contexts have been 
examined in Delgado and Robinson (1996) and Robinson and Henry (1996). However, in the case of the 
Whittle estimator of Robinson (1995), the use of optimal values has not been theoretically justified. Other 
authors, such as Lobato and Savin (1998), use values for m within a short interval, whilst here we report the 
results for a wide range of values of m. 
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 It can be seen that, when the bandwidth parameter is low, most estimates are within 

the I(1) interval. However, increasing m leads to estimated values of d strictly below this 

interval. Note that the choice of m is crucial in terms of the trade-off between bias and 

variance. The asymptotic variance of this estimator is decreasing with m while the bias is 

growing with m. However, the optimal choice of the bandwidth parameter in the context of 

the Whittle function has yet to be theoretically established. When using m = (T)1/2 the 

estimates are 1.071 for the Dow Jones; 1.135 for the Nasdaq; 1.163 for NYSE and 1.145 for 

S&P, and the unit root null cannot be rejected in any of the four series. 

 In what follows we focus on individual days of the week for each stock index.  

Tables 2 – 5 report the estimates of d (and the 95% confidence bands) for each day of the 

week and each series, using again the three types of disturbances as in Table 1. 

[Insert Tables 2 – 5 about here] 

 Table 2 concerns the S&P index. Here the unit root null hypothesis cannot be 

rejected in any case. All the values are slightly above 1, with the exception of Monday and 

Friday in the case of white noise errors. Very similar results are obtained for the other three 

indices: the I(1) case cannot be rejected in any case; the estimated values of d are above 1 in 

all cases with autocorrelated errors; if the error term is white noise,  the estimated values are 

below 1 for all days except Wednesday for the Dow Jones (Table 3), and Monday in the 

case of the Nasdaq (Table 4) and the NYSE (Table 5). The result based on white noise errors 

is one of the interesting features observed in the data, since the lowest degrees of integration 

seem to occur at the beginning and end of the week (Mondays and Fridays) for the four 

indices (see Figure 3). When using the semi-parametric method of Robinson (1995) most of 

the estimates are within the I(1) interval, though again the lowest values of d correspond to 

Mondays and Fridays (Figure 4). 

[Insert Figures 3 and 4 about here] 
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 Given these weekly features in the data we finally consider a model that incorporates 

them in a long-memory framework. Thus, we consider the model, 

...,2,1,)1(, 5 ==−+= tuxLxy tt
d

tt α   (4) 

with white noise, AR and Bloomfield ut disturbances. The results based on the estimates of d 

are reported in Table 6. It can be seen that the results are very similar for all series and 

regardless of the types of disturbances considered. All values are slightly below 1 and the 

unit root null cannot be rejected in any case. 

[Insert Table 6 about here] 

 

5. Conclusions 

In this paper we have investigated the degree of integration in four US stock market indices, 

namely the Standard and Poor, Dow Jones, Nasdaq and NYSE, using long range dependence 

techniques. We used daily data from January 3, 2005 till December 31, 2009. The results 

indicate that the four series are highly persistent; a small degree of mean reversion (i.e., 

orders of integration strictly smaller than 1) is found in some cases for the S&P and the Dow 

Jones indices. The most interesting findings are the differences in the degree of dependence 

for different days of the week. Specifically, lower orders of integration are systematically 

observed for Mondays and Fridays, consistently with the “day of the week” effect frequently 

found in financial data (Cross, 1973; French, 1980; Gibbons and Hess, 1981; etc.). Even 

when using a long-memory model that incorporates such weekly effects, the unit root null 

hypothesis cannot be rejected, and therefore there is no evidence of mean reversion in the 

behaviour of stock prices. 
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Figure 1: Log-prices series and their corresponding returns 

a) Log prices series 
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The returns were calculated as the first differences of the log-prices series. 
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Table 1: Estimates of the differencing parameter in the logged time series 

 White noise AR (1) Bloomfield (1) 

S & P 
0.858 

(0.837,  0.884) 
0.955 

(0.921,  0.995) 
0.983 

(0.943,  1.033) 

Dow Jones 
0.867 

(0.844,  0.893) 
0.951 

(0.915,  0.992) 
0.973 

(0.933,  1.030) 

Nasdaq 
0.877 

(0.855,  0.904) 
0.971 

(0.935,  1.012) 
0.995 

(0.950,  1.046) 

NYSE 
0.878 

(0.856,  0.904) 
0.964 

(0’.928,  1.003) 
0.982 

(0.943,  1.031) 
The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 95% 
confidence intervals for the non-rejection values of d using Robinson’s (1994) tests. 
 

 

Figure 1: Estimates of d based on the semiparametric Whittle method (Robinson, 1995) 
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Table 2 Estimates of the fractional differencing parameter in the logged time series 

S & P White noise AR (1) Bloomfield (1) 

Monday 
0.969 

(0.912,  1.052) 
1.069 

(0.975,  1.188) 
1.098 

(0.980,  1.248) 

Tuesday 
1.014 

(0.956,  1.090) 
1.077 

(0.987,  1.189) 
1.092 

(0.990,  1.233) 

Wednesday 
1.024 

(0.961,  1.108) 
1.021 

(0.932,  1.130) 
1.018 

(0.921,  1.153) 

Thursday 
1.011 

(0.946,  1.096) 
1.059 

(0.939,  1.124) 
1.050 

(0.947,  1.197) 

Friday 
0.992 

(0.928,  1.076) 
1.039 

(0.927,  1.191) 
1.037 

(0.930,  1.176) 
The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 95% 
confidence intervals for the non-rejection values of d using Robinson’s (1994) tests. 
 

 

Table 3: Estimates of the fractional differencing parameter in the logged time series 

Dow Jones White noise AR (1) Bloomfield (1) 

Monday 
0.940 

(0.884,  1.012) 
1.035 

(0.943,  1.155) 
1.049 

(0.951,  1.196) 

Tuesday 
0.996 

(0.937,  1.074) 
1.037 

(0.947,  1.151) 
1.044 

(0.949,  1.177) 

Wednesday 
1.007 

(0.943,  1.092) 
0.997 

(0.909,  1.106) 
0.995 

(0.904,  1.117) 

Thursday 
0.989 

(0.925,  1.073) 
1.036 

(0.921,  1.200) 
1.035 

(0.927,  1.175) 

Friday 
0.986 

(0.919,  1.075) 
0.982 

(0.873,  1.130) 
0.986 

(0.881,  1.121) 
The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 95% 
confidence intervals for the non-rejection values of d using Robinson’s (1994) tests. 
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Table 4: Estimates of the fractional differencing parameter in the logged time series 

Nasdaq White noise AR (1) Bloomfield (1) 

Monday 
0.968 

(0.909,  1.043) 
1.064 

(0.966,  1.181) 
1.100 

(0.974,  1.256) 

Tuesday 
1.031 

(0.968,  1.112) 
1.078 

(0.974,  1.201) 
1.087 

(0.970,  1.239) 

Wednesday 
1.037 

(0.972,  1.122) 
1.047 

(0.942,  1.168) 
1.049 

(0.940,  1.198) 

Thursday 
1.027 

(0.960,  1.114) 
1.091 

(0.950,  1.273) 
1.082 

(0.955,  1.234) 

Friday 
1.017 

(0.950,  1.103) 
1.056 

(0.932,  1.209) 
1.056 

(0.940,  1.209) 
The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 95% 
confidence intervals for the non-rejection values of d using Robinson’s (1994) tests. 
 

 

 

Table 5: Estimates of the fractional differencing parameter in the logged time series 

NYSE White noise AR (1) Bloomfield (1) 

Monday 
0.967 

(0.912,  1.036) 
1.068 

(0.982,  1.176) 
1.104 

(0.989,  1.256) 

Tuesday 
1.014 

(0.958,  1.087) 
1.084 

(0.999,  1.189) 
1.108 

(1.002,  1.255) 

Wednesday 
1.024 

(0.963,  1.105) 
1.030 

(0.947,  1.133) 
1.035 

(0.939,  1.162) 

Thursday 
1.027 

(0.963,  1.112) 
1.060 

(0.949,  1.212) 
1.052 

(0.958,  1.195) 

Friday 
1.000 

(0.939,  1.080) 
1.060 

(0.955,  1.200) 
1.057 

(0.951,  1.198) 
The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 95% 
confidence intervals for the non-rejection values of d using Robinson’s (1994) tests. 
 

 

 

 

 



 18

 

 

 

Figure 3: Estimates of the differencing parameter for each day of the week 
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Figure 4: Estimates of d based on the semiparametric Whittle method (Robinson, 1995) for  
the S & P 
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  The horizontal axis refers to the bandwidth parameter, while the vertical one reports the estimated value of d.  
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Table 6: Estimates of the (1-L5)d differencing parameter in the log time series 

 White noise AR (1) Bloomfield (1) 

S & P 
0.983 

(0.944,   1.027) 
0.987 

(0.955,   1.023) 
0.983 

(0.948,   1.028) 

Dow Jones 
0.983 

(0.945,   1.027) 
0.986 

(0.954,   1.022) 
0.980 

(0.948,   1.029) 

Nasdaq 
0.983 

(0.944,   1.027) 
0.987 

(0.955,   1.023) 
0.983 

(0.946,   1.027) 

NYSE 
0.983 

(0.945,   1.027) 
0.987 

(0.955,   1.023) 
0.983 

(0.947,   1.027) 
The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 95% 
confidence intervals for the non-rejection values of d using Robinson’s (1994) tests. 
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