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Abstract 

In this thesis, the problem of partitioning a network into inter­

connected sub-networks is addressed. The goal is to achieve a partitioning 

which satisfies a set of specific engineering constraints, imposed in this case, 

by the requirements of the decomposed state-estimation (DSE) in electrical 

power systems. The network-partitioning problem is classified as NP-hard 

problem. Although many heuristic algorithms have been proposed for its 

solution, these often lack directness and computational simplicity. 

In this thesis, three new partitioning techniques are described which 

(i) satisfy the DSE constraints, and (ii) simplify the NP-hard problem by 

using the natural graph properties of a network. 

The first technique is based on partitioning a spanning tree optimally using 

the natural property of the spanning tree branches. As with existing heuristic 

techniques, information on the partitioning is obtained only at the end of the 

partitioning process. The study of the DSE constraints leads to define 

conditions of an ideal balanced partitioning. This enables data on the 

balanced partitioning to be obtained, including the numbers of boundary 

nodes and cut-edges. The second partitioning technique is designed to obtain 

these data for a given network, by finding the minimum covering set of nodes 

with maximum nodal degree. Further simplification is then possible if 

additional graph-theoretical properties are used. A new natural property 

entitled the 'edge state phenomenon' is defined. The edge state phenomenon 

may be exploited to generate new network properties. In the third 

partitioning technique, two of these, the 'network external closed path' and 

the 'open internal paths', are used to identify the balanced partitioning, and 

hence to partition the network. 

Examples of the application of all three methods to network 

parti tioning are provided. 
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Chapter 1 

Introduction 

1.lGeneral 

A network is a graphical representation of a system, which is a 

physical or abstract object exhibiting complexity. A network comprises a 

set of vertices or nodes, together with a set of edges, which define 

interconnections between pairs of nodes. A set of nodes and a set of 

interconnected node-pairs provide a complete and unique characterisation 

of the configuration for a related network. 

In studies of system performance, it is often required to perform 

computations based on a model description of a network, together with a 

set of measurement data obtained from simulations and/or 

instrumentation. Such computations typically utilise a database indexed 

on each node, and covering all nodes in the network. The volume of 

computation clearly increases with network size. In an n-node network, 

computations of O(n P ) may be required where the exponent p depends on 

the functional nature of a performance index. Often p>l, perhaps 

significantly so. If the network is sufficiently large, it may become 

unattractive to carry out the computational task in a single processor, for 

reasons of computing time or numerical accuracy. 

One approach to overcoming the dimensionality problem in large 

networks is to partition the network into a number of interconnected sub­

networks of reduced size. This provides the opportunity for distribution of 

the original computational task within a multi-processor configuration, 

where individual processors handle sub-network tasks of reduced-order, 

together with a further task of sub-network co-ordination which arises 
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directly as a result of partitioning. In principle, the multi-processor 

solution offers an improvement in overall computational performance; the 

original single serial computation on the overall network may be replaced 

by reduced-dimension sub-network computations performed in parallel, 

plus a further serial co-ordination computation. 

Network partitioning may be achieved by drawing cut-lines through 

the original network. Cut-lines intersect edges of the original network but 

do not pass through its nodes; a cut-line may approach another cut-line, 

but cut-lines do not intersect. The sub-networks so-formed are defined by 

the cut-lines, and each will contain a countable number of sub-networks. 

The interconnections between the sub-networks are identifiable as 

original network edges, which are intersected by the cut-lines, and termed 

cut-edges. Neighbouring sub-networks are therefore inter-connected by 

countable number of cut-edges. 

As the number of partitions k increases, the average number of 

nodes in a sub-network will decrease, leading generally to a lighter 

computational load in each of the parallel sub-network processors. 

However, a greater number of smaller sub-networks will lead to an 

increase in sub-network interconnections, and hence an increased number 

of cut-edges in the partitioned network. This will increase the 

computational load associated with sub-network co-ordination. A trade-off 

is therefore necessary between the number of sub-networks to be created 

as a result of partitioning, and the resulting volume of computation 

necessary for sub-network co-ordination. Intuitively, it may seem that a 

useful objective in partitioning is to devise a set of cuts, which produce 

sub-networks which are balanced (i.e. of equal or near-equal size), whilst 

generating cut-edges with total number as small as possible, and certainly 

not significant greater than the average number of sub-system nodes. This 

statement is seen to be reasonable in the sense that, for a network with a 

fixed number k of partitions, as the number of cut-edges decreases, the 
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sub-network interconnection load decreases, and the overall multi­

processor computational load becomes increasingly dominated by the k­

parallel sub-network computations. In the limit as the number of cut­

edges tends to zero, the overall load tends to the parallel computations 

only; this is expected, since the overall network would then consist of k 

isolated subsystems. 

The problem of partitioning a network according to such a 

specification may be relatively straightforward when the network is small 

and the number of partitions is low (e.g. n = 4 or n = 5 and k = 2), since the 

number of possibilities is not great, and the problem may be investigated 

by hand. The amount of work required to bring about a solution increases 

dramatically, however, with even a modest increase in network size. It 

then becomes essential to devise a systematic computer procedure for 

obtaining the desired result. 

These observations on computations in interconnected networks 

have provided the motivation for investigating computer-assisted methods 

for network partitioning. 

1.2 Applications and early developments of partitioning 

The network-partitioning problem has long been recognized as 

being of far more than theoretical importance. Extensive application in 

many areas has been recorded, including: scientific computing [56, 61, 

63]; VLSI design [53, 42, 73]; geographical information systems [57]; 

electrical power systems [44, 67]; operation research [59]; and task 

scheduling [16]. Other applications include circuit partitioning [53], and 

computer-aided design [74]. The partitioning of a network into smaller 

sub-networks is sometimes termed the "minimum-cut". The problem of 

determining the connectivity of a network arises frequently in issues of 

network design and reliability [10]. In a network subject to random edge 
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failure, the network is most likely to be partitioned at the minimum cuts 

[40]. Many other problems, which are physically non-graphical, may be 

expressed as a graph- or a network-partitioning problem. For example, 

graph partitioning plays a fundamental role in parallel computing by 

identifying concurrency in a given problem when the computation process 

may be modelled by a graph. A partitioning of a graph into sub-graphs 

leads to a decomposition of data and/or computing tasks, and the sub­

graphs can be mapped to individual processors of a multi-processor 

configuration. A useful survey of applications is given in [54]. 

The development of systematic algorithms for partitioning has been 

considerable; one of the earliest techniques, used in algorithmic problem 

solving, is the so-called divide-and-conquer approach [38], which entails 

dividing a given problem into a number of smaller sub-problems, finding 

solutions to each part, and combining these into a solution for the overall 

problem. If required, a further reduction in sub-problem size may be 

obtained by extending the technique to a lower level. Graph partitioning 

also has an important role to play in the design of many serial algorithms 

using a divide-and-conquer paradigm. Two important examples of this 

technique are in the solution of partial differential equations (PDEs) by 

domain decomposition [14], and in the computation of nested dissection 

ordering for solving systems of sparse linear equations [14]. 

In most cases, the objectives for solution of the network-partitioning 

problem are: 

partition a given network or graph into a specific number of 

smaller sub-graphs having approximately equal numbers 

of nodes, such that the cut-edges between the sub-graphs 

are as few in number as possible. 

In the context of parallel computation, the SIze of a sub graph 

determines the computational task that a processor in the parallel set has 

to perform, and the number of cut-edges is a measure of (i) the 
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commuincation volume in the algorithm, and (ii) the work involoved in co­

ordinating the results of the parallel computations. The weaker the inter­

actions between the sub-graphs, the lower will be the communication 

volume and co-ordination computation. 

In the field of information retrieval, minimum cuts have been used to 

identify clusters of topically related documents in hypertext systems [7, 8, 

15]. If the links in a hypertext collection are treated as edges in a graph, 

then a lower number of cuts correspond to groups of documents that have 

few links between them, and the clusters are thus likely to be weakly 

related. In this case, the computational load is dominated by parallel 

processing of the cluster problems, which enables significant savings in 

computational time to be achieved compared with a single-processor 

solution. 

1.3 The partitioning problem 

The network-partitioning problem as described generally in the 

previous sections is not amenable to a direct solution. To be practically 

useful, any technique for solution should be applicable to most, if not all, 

arrangements of nodes and edges. The minimum information available on 

the network is expected to be a set of indices for the network nodes, plus a 

set of indices for node-pairs representing the edges, i.e. the network 

configuration is known precisely. It is well-known, however, that the 

network-partitioning problem is one of Gary and Johnson's six basis NP­

complete problems which lie at the heart of the theory of NP-completeness 

[13, 25]. This implies that the information of the network configuration is 

insufficient to facilitate a mathematical solution to the problem. At best, 

any attempt at devising a procedure which will result in an algorithmic 

solution, if one exists, must be based on heuristic principles. However, 

improvements in algorithmic design should be possible if the information 

base influencing the principles of design is enhanced. Such enhancements 

may come from graph-theoretic and other properties, which may be 
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deduced for a given network. Information such as degree of each node, the 

n umber of cycles in the network, and properties of a spanning tree for the 

network are examples of possible properties for consideration. 

1.4 Classification of partitioning algorithms 

Regardless that the graph-partitioning problem is NP-hard, 

methods for solution have undergone considerable development since the 

divide-and-conquer approaches discussed in section 1.2. Some interesting 

heuristic algorithms have been proposed in the literature, [22, 41, 73, 74]. 

A good partitioning technique can significantly reduce the complexity of 

the problem and improve both the timing performance and the reliability 

of the system. 

In general, the proposed partitioning algorithms can be classified 

in three ways [13, 26]. First, partitioning algorithms can also be classified 

based on the nature of the algorithms. There are two types under such 

criteria; deterministic and probabilistic algorithms. Deterministic 

algorithms produce repeatable or deterministic solutions. For example, an 

algorithm that makes use of deterministic functions will always generate 

the same solution for a given problem. On the other hand, the probabilistic 

algorithms are capable of producing a different solution for the same 

problem each time they are performed, as they depend on some random 

functions. 

Second, partitioning algorithms can also be classified into 

constructive and iterative algorithms. The input to the constructive 

algorithms is the circuit netlist. The output is the set of partitions along 

with new netlist. Constructive algorithms are typically used to form some 

initial partitions using construction methods such as breadth first search, 

network flow, or eigenvector decomposition methods, which then can be 

improved by iterative algorithms. In that sense, constructive algorithms 

are used as preprocessing algorithms for partitioning. They are usually 

fast, but the partitions generated by these algorithms may be far from 
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optimal. Iterative algorithms, on the other hand, accept a set of partitions 

and the netlist as input and generate an improved set of partitions along 

with the corresponding netlist. Iterative improvement algorithms are 

based on the greedy strategy: They start with some feasible solution and 

iteratively move to the best (improving) neighboring solution. The process 

terminates when the algorithm reaches a local minimum, i.e., a solution 

for which all neighbors have greater cost. Greedy improvement methods 

apply simple pair-swap or single-move neighborhood operators, and tend 

quickly to reach local minimal corresponding to poor solutions. Thus, 

many approaches rely on extended neighbourhood structures, which effec­

tively allow hill-climbing out of local minimal. 

Third, partitioning algorithms can also be classified based on the 

process used for partitioning. We have the following categories under such 

criteria; group migration, stochastic hill-climbing, clustering, and multi­

level algorithms. The group migration algorithms start with some 

partitions, usually generated randomly, and then move cells among 

partitions to improve the partitioning. In practice, group migration 

algorithms have been used extensively due to its flexibility in handling 

various constraints and controlling runtime vs solution quality trade-off. 

The stochastic hill-climbing algorithms such as simulated annealing, tabu 

search, and genetic algorithms can move to higher-cost neighboring 

solutions in order to escape local minimal during the search based on local 

perturbation of the solution. 

The clustering algorithms are commonly used to deal with 

increasing problem sizes. The netlist modules are divided into many small 

clusters and these clusters form the new nodes of a smaller, coarser , 

netlist. Then, the subsequent partitioning performs on top of the coarser 

netlist. The multilevel algorithms apply clustering repeatedly to build 

multilevel clustering hierarchy. Partitioning can then be performed on 

each level of the hierarchy from top to bottom while projecting partitioning 

information. 
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1.5 Conditional partitioning 

Partitioning may be restricted and it might be without restrictions. 

If no restrictions have been put on partitioning, then partitioning is a 

simple division operation and is termed unconditional or unrestricted 

partitioning. If restrictions are put on partitioning, then the restricted 

partitioning is a conditional division operation and is termed a 

conditional or restricted partitioning. 

Restrictions may be achievable and they might be unachievable. 

The achievable restrictions are termed possible restrictions, and the 

unachievable restrictions are termed impossible restrictions. For 

example, partitioning a set of five elements into two subsets such that the 

two subsets have the same number of elements is an impossible 

restriction. 

In Section 1.3, partitioning has been discussed subject to the basic 

restrictions that sub-networks will be balanced and inter-sub-network 

connections (i.e. cut-edges) are minimized. In practice, other conditions 

may arise which affect the outcome of partitioning. In many practical 

applications, where a graph is used as a descriptor of a physical system, a 

graphical object such as a node may possess attributes other than an 

identifying index. An example of this is in the case of an electrical 

network, where power or current flows around the network may be 

described (using Kirchhoff's laws) in terms of the voltage level, which is 

presen tat each node of the network. Nodal voltage is therefore such an 

attribute in this case. The set of nodal voltages are present in 

mathematical expressions, which form the basis for computations, which 

in turn are the subject of partitioning. This has the effect of placing 

constraints on the balance sought between groups of sub-network nodes. 

This situation is examined in more detail for a particular application, in 

chapter two. 
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1.6 The thesis organization 

This thesis contains a description of some new procedures for the 

simplification of computational solutions to a conditional network­

partitioning (NP-hard) problem. Throughout the investigation, the 

conditions on partitioning are drawn from an application in the 

monitoring and control of electric power systems, known as Power 

Systems State Estimation (PSSE). 

PSSE enables a validated database of electrical network 

information to be constructed from a model of the network and a set of 

measurements taken from it. The work described in this thesis has not 

been concerned with the development of PSSE algorithms. One existing 

PSSE technique, however, has features which are particularly attractive 

for partitioning. This is achieved through a particular decomposition of the 

set of algebraic equations defining PSSE for a global network. In order 

that the conditions which then apply to the partitioning procedure may be 

clearly understood, this particular method for PSSE is reviewed in 

Chapter 2. Following the establishment of conditions, Chapter 2 

concludes with some basic network definitions and properties. 

Given the constraints applicable to the partitioning problem to be 

investigated, it is useful to examine the characteristics of existing 

heuristic procedures for partitioning. Three recent contributions are 

examined and reviewed in Chapter 3. 

Following definition of the conditions for partitioning and a review 

of some partitioning approaches, it is sensible to seek properties of a 

candidate network which may be utilised to bring about some 

improvement in a computational partitioning procedure. The field of graph 

theory was selected as a starting point. The result of searching graph 

theory for exploitable equations or properties is presented in Chapter 4. 

The relationship between a network and an associated spanning tree is of 
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particular interest; the properties of a spanning tree are introduced 

followed by introduction of the cut concept. A procedure for partitioning 

based on a spanning tree and its cut-set is developed, and the effect on the 

solution of selection of an initial spanning tree is examined. 

The restrictions imposed by the special conditions of PSSE, and 

their effect on the partitioning procedure are examined in more detail in 

Chapter 5. A theoretical foundation to find the number of internal nodes of 

the k subsystems and the number of boundary nodes in the network in the 

balanced case without partitioning the network is described. 

The limitations of the partitioning technique of Chapter 4 may be 

reduced with the use of a network property termed the covering set of 

nodes, in order to partition every spanning tree of the network, and then 

to partition the network. The network has many different covering sets. To 

minimise the search, the technique is designed to use a special covering 

set termed the set with higher degree. The covering set concept and a new 

faster technique is described in Chapter 6. To test the speed and validity 

of the covering set approach, the technique has been applied over all 

spanning trees of the standard IEEE 14-bus network. Some simulation 

results are presented. 

Chapter 7 opens with a description of a new property known as the 

edge phenomenon in the plane. The edge phenomenon is then used to 

explore with proofs many new different network properties. Ifn and mare 

given, then edges can be connected in many different ways. Identifying all 

possible connections presents severe practical difficulties, particularly for 

large networks. Under the paradigm of the edge phenomenon, the 

difficulties are reduced significantly. The parameters of the network 

properties are used to define uniquely the network entity. Each connection 

can be defined uniquely. 
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Even the thesis target was not only to find a partitioning technique 

to satisfy the DSE restrictions, but also to simply the network partitioning 

problem 

Finally, some of the properties introduced in Chapter 7 are applied 

to a further heuristic partitioning technique in Chapter 8. The technique 

defines the cut line concept and then presents a special cut line termed the 

I-I cut-line. The I-I cut-line is used to partition the network by partitioning 

the external closed path into equal parts. 

Concluding remarks and recommendations for extensions of this 

research are given in chapter 9. 

The network basic definitions and notations are introduced in 

AppendixA. 
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Chapter 2 

Review of PSSE algorithms 

2.1 General 

In modern computer-based operation of an electric power system CPS), 

it is essential to provide a validated database, updated at regular intervals, 

which describes with acceptable accuracy the current state of the PS network. 

This is the function of the PSSE. The output of the algorithm is a set of 

estimates of the state-variables for the system, together with a measure of 

the accuracy of these estimates. The computations are based on input data 

which typically comprise a model of the network in suitable form, together 

with a set of measurements received from the PS network via a telemetry 

system. These measurements usually consist of a mix of nodal voltage 

magnitudes, line power flow and/or power injections. 

Since the PS model is non-linear algebraic, the solution is iterative. 

The PSSE algorithm must have the qualities of good numerical accuracy in 

computation with respect to the data supplied and reliable and rapid 

convergence. Also, since regular updates are required, all computations plus 

any data communication operations must be completed within a defined 

sampling time-period. 

There are numerous approaches to the design of state estimators, the 

most commonly encountered of which is the weighted least squares (WLS) 

technique [3]. When applied to a given PS network and implemented in a 

single processor at a control centre, the WLS algorithm is termed 'integrated 

state-estimator' (ISE). 

The ISE requires all measured data to be communicated to a single 

location, which can lead to heavy information transfer from many sites to the 
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control centre. The performance of the ISE has been tested against the 

system size [3]; it is shown that the computing requirements and numerical 

errors of ISE increase super-linearly with the system size. It follows that, for 

power systems of large size, it may not be possible to meet the required 

execution time for ISE due to the high amount of computation involved. 

This disadvantage of a single-processor solution to PSSE has led to the 

development of alternative techniques, [3, 47, 49] which utilize partitioning of 

the PS network model followed by decomposition of the PSSE algorithm and 

implementation in a two-level hierarchical processor configuration. 

These different techniques are based on splitting the state estimation 

problem into a number of smaller sub-problems. A topologically partitioned 

solution is proposed in [75], which used the output of an observability 

algorithm to rearrange the measurement vector into non-critical and critical 

sub-vectors. This method needs high proportion of critical measurements, and 

involves heavy exchanges of information during its iterative procedure. 

The original system was divided into a number of subsystems which 

overlapped at boundary nodes [44a], or tie-lines. [44b]. In these approaches, 

the overall model for the whole system is generally related to subsystems 

using a diakoptical representation. The estimation is obtained by using two­

level structure of hierarchical solution [44a], or by an alternating sequential 

parallel computer system [44b]. These approaches have common 

disadvantages of heavy data transfers at each iteration and the relatively 

high numbers of iterations could lead to time delays which may be 

unacceptable in a real-time environment. 

It was clear from the outset that the design of a practically useful 

partitioning method would be influenced by the decomposed SE scheme with 

which it is to be used. A decision was therefore taken to select, somewhat 

arbitrarily, one method, which would provide a set of constraints for the 

study. 

The approach described in [49] has features which lead to a simple and 

particularly well-defined set of constraints, and was therefore chosen as the 
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application on which design of a partitioning procedure would be. 

The approach described in [49] has particular practical advantages. 

Termed the 'decomposed state-estimator (DSE), the algorithm is iterative 

between two computational levels. The lower level task is shared by k 

processors operating in parallel, each one estimating the states of a single 

subsystem. The upper-level task is to co-ordinate the lower-level results, and 

is performed in a single processor. Per iteration, computation therefore 

consists of the parallel lower-order task in series with the single upper level 

task; this combination is iterated to convergence. The advantage in overall 

computational performance is derived from the reduced order of each of the 

parallel computations at lower level, together with an upper-level 

computation which is of low order if the subsystems can be created by 

partitioning so that the number of inter-subsystem connections is low. 

This leads to a broad objective for partitioning: the network is to be 

divided into k non-overlapping, balanced subsystems, so that the number of 

inter-connections between these subsystems is minimum. The minimum 

number of inter-connections is identical with the minimum number of cutting 

edges. 

The ISE and DSE methods are considered in further detail in the following 

two sections. 

2.2 The integrated state estimation algorithm 

The objective of ISE is to determine the best estimate, in the WLS 

sense, of an overall state vector .?f from an available measurement vector z 

which is subjected to uncertainty~. The measurement vector z is considered 

to be related to the state variable x by 

z = hex) + e - - - (2.1) 

where: 
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and 

~ is a vector ofn state variables, defined as the voltage magnitude at 

each node, together with the phase angle at each node except the slack 

node; 

z is a vector of m measured quantities comprising active and reactive 

nodal power injections, and nodal voltage magnitudes; 

e is a random m vector representing measurement uncertainty, in the 

form of random bias or noise; 

h is an m vector of the non-linear observation functions based on the 

application of Ohm's and Kirchoffs laws to the power system network. 

e is considered to be a random process with statistics: 

mean: E~] = 0; 

and covarIance: E ~ g T] = R > 0 

A performance index for the overall system is given by: 

J = ~ II~ -h(x)II~, . (2.2) 

A 

The weighted least square (WLS) estimator x for the system states is then 

given by a convergence of: 

Q (i). ~~(i) = HT (i) R -1 • ~!(i); (2.3) 

in which: 

~x (i)=x (i + 1)-x (i); 

Q(i) = HT (i) R -1 H(i) where Q is the gain matrix; 

~~ (i) = ~ - h (x) with h (x) evaluated at x = x (i) ; 

H= -hi-x, a Jacobian matrix; 
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and i is the iteration index. 

A A 

Let Hand Q denote Hand Q respectively at convergence. With e so 
A 

defined as a random process, x may be interpreted as a linear-

unbiased minimum-variance (LUMV) estimator for ~ with covariance 

of estimation error given by 

__ T A -1 

E[x x ]=Q , where x=x-x. 

The condition: Rank {H(i)} = n; at each iteration of equation (2.3) is sufficient 

to ensure convergence of xCi) to give a local minimum for J; the iteration then 

has quadratic convergence properties. 

2.3 The decomposed state estimation algorithm 

An overall network of n nodes is decomposed into k non-overlapping 

subsystems interconnected by ties, which are physically either lines or 

transformers. The k subsystems are defined uniquely by cuts through the 

ties. Ties are terminated within adjacent subsystems at nodes termed 

"boundary nodes". Subsystem i contains n i nodes, nib of which are 

boundary nodes. The remaining nir = ni - nib nodes are termed "internal 

nodes". One slack node, at which the voltage phase angle is assigned to be 

zero reference, is selected for the entire network. By convention only, the 

slack node is assigned to an internal node in subsystem l. 

A mathematical model for subsystem i may then be based upon: 

internal states ~ ir E R nir ; 

boundary sta tes ~ ib E R nib ; 

and the boundary states of adjacent subsystems. 

A key features of this decomposition is that the internal states x jr for other 
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subsystems (j "* i ) will not appear in the measurement model for subsystem i. 

The overall set of measurements ~ is distributed exclusively and exhaustively 

amongst the k subsystems; a measurement taken on an inter-subsystem tie 

may be assigned to either of the adjacent subsystems. The measurement 

model for subsystem i will then be expressible in general form as: 

where 

~ T = ~; ~ ~ ___ ~ ~] wi th ~ i E R ffii ; 

and 

T _ r -.r T T T]' th R nib 
~ b - L.1f 1 b ~ 2b - - - X kb WI X ib E . 

At lower level, each of the k parallel processors is assigned to a subsystem. 

All computation at this level is carried out simultaneously for all k 

subsystems but independently of each other. 

A model of DSE as reported in [49] can be represented by the master 

and slave configuration shown in Figure 2.1. 

Figure 2.1 Two level state estimator 

CP: Co-ordination Processor 

SSP i: Subsystem Processor i 

The DSE algorithm is iterative between the two computation levels. The 

scheme does not require communication between processors at lower-level. 
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The two-level iterative procedure for the DSE is summarised in Table 2.1. 

At lower level (k-parallel processors), At the upper level (single 

processor) , 

1. Initialise with ~i' Xir (0), Xb (0) . 

setj=O. 

2. Compute: 3. Compute 

hi (Xir (j), Xb (j)); ~~i (j); Hir (j); Hib (j); [G g] = ±JG i (j) g.]; 
-I 

H~ (j) R~l; Q ir (j) ; Q~l (j) ; i=l 

W ir (j) ; W ir (j) Hib (j) ; and 
and ~Xb(j) 

lG i (j) . g. (j)J. 
-I 

from G(j).~Xb (j) = g(j). 

2= Send lG i (j) g. (j) J to upper level; 
-I 3= Send ~Xb (j) in k-parallel to 

llb (llb + 1) elements in k-parallel. lower level; llb elements. 

4. Compute: 

~Lb (j) = ~~i - Hib .~Xb (j) ; 

and ~X ir (j) from 

Q ir(j).~xir (j) = H~ (j) R~l . ~Lb (j) 

5.Set j j+1. 

Compute: Xir (j); Xb (j) . 

If convergence not reached, go to 2; 

" " 
else Xir (j) = ~ ir; and Xb (j) = ~ b . 

End of algorithm. 

Table 2.1 The two-level iterative procedure for the SE 
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2.4 The DSE constraints 

The hierarchical decomposition of the integrated state estimation 

problem into two levels introduces new definitions and constraints which 

have a direct influence on the specification of the network-partitioning 

problem. Without these constraints, the problem would be to partition the 

network such that (i) the k subsystems are equal or balanced and (ii) to 

minimize the number of connections between the k subsystems. 

Under the new hierarchical decomposition of the state estimation 

paradigm, however, the cuts which bring about partitioning define: each 

subsystem; the internal nodes of each subsystem; and the boundary nodes of 

each subsystem which together form the set of global boundary nodes. The 

amount of computation at each level and the volume of communication 

between the two levels have been determined by the DSE. Thus partitioning 

has a direct consequence on DSE performance. To meet the computational 

performance requirements of the DSE, partitioning must consider the size of 

the global interconnected area and the size of internal areas of each 

subsystem produced by partitioning (measured by the number of nodes) as 

well as its impact on performance (measured by the amount of computation 

and communication). Reduction in subsystem size clearly produces a 

reduction in the computation at lower level. At the same time, reducing 

subsystem size by partitioning generally leads to an increase in the number of 

interconnections between subsystems, which in turn leads to an increase in 

volume of communication and a corresponding increase in the amount of 

computation at upper level. In addition, balancing the sizes of the k 

subsystems has the effect of approximately equalizing the amounts of parallel 

computation at lower level, so that there is no time delay or waiting in the 

parallel operation. The computational tasks at both lower- and upper-level 

are basically the solution of respective sets of linear algebraic equations. The 

size of computation at the upper level of the DSE is therefore O(n~). The 

amount of computation of each independent process at the lower level could 

similarly be considered, in terms of dimension only, as O(n!). It should be 
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stressed, however, that the lower-level problems are relatively sparse, and 

hence sparsity programming [60] techniques would in practice be employed, 

for computational advantage. In this case, the amount of computation at 

lower level would be more realistically represented as O(n~). 

2.4.1 The computation constraints in the lower level 

In the lower level, k parallel processors are use to estimate the internal 

nodes of k subsystems; each processor estimates the internal nodes of one 

subsystem. The i th processor has nir internal nodes. The DSE algorithm 

determines the amount of computation at each process at the lower level to be 

O(n~) or O(n~) if sparsity programming is employed. If the values of nir are 

different for i = 1, 2, ... , k, this will cause a delay in computation at lower level. 

The processor with maximum nir will require more time to complete its 

computation than the other subsystem processors which are dealing with 

lower order problems. Communication from lower to upper level cannot 

proceed until the lower level task has been completed. The upper level 

processor does not start computing until it receives the data from all k 

processors. Communication delays arise from the time taken to transfer data 

between levels; this clearly increases as the volume of data increases. Since 

the volume of data in either direction is a function of the number of boundary 

nodes, this means that the number of interconnections between subsystems 

needs to be kept low if the communications delay is to be kept low. 

It is therefore clear that the constraints imposed by the DSE problem 

produce the requirement that the balance to be sought at lower level is not 

between numbers of subsystem nodes, but between subsystem internal 

nodes. 

2.4.2 The computation constraints at the upper level 

Mter computation of the lower level tasks, the data from the k 

processors at the lower level are sent to the single processor at the upper 
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level, in order to compute updates of the nb boundary nodes. The computation 

size is O(n~) . If nb > n ir , then n~» n;r , i.e. overall computational 

performance will be dominated by that of upper level processing, which is 

undesirable. For example, if nb = 5 > nir = 3, then n~ = 125 » n! = 27. The 

computation time at the upper level processor is about 5 times that of the i th 

processor at the lower level. 

To avoid such a situation, the size of nb needs to be not greater than 

the largest value of n ir ; overall performance is improved if nb can be made as 

small as possible. In probability, a decrease in nb will be obtained if k, the 

number of subsystems, is decreased. 

Many proposed partitioning techniques do not consider delays which 

result from computation or communication, while others do not classify the 

network nodes into internal and boundary nodes nor do they consider 

subsystem size. As a result, there is a strong need for method which gives a 

balanced partitioning, considering both the number of boundary nodes, fast 

computation and communication delay, in providing an equal or balanced 

parti tioning. 

Thus, the partitioning problem can be defined as partitioning the DSE 

network into k sub-networks such that the number of the k sub-networks 

internal nodes are equal or balanced with each other, and the number of the 

total boundary nodes are less than, equal or balanced with the number of 

internal nodes of the i th subsystem. These new definitions and specifications 

are of great significance for any partitioning techniques for the DSE to 

perform efficiently. 
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Chapter 3 

Review of recent partitioning techniques 

3.1 General 

In this chapter, three recent partitioning techniques are presented. 

Each technique introduces a different approach to solve the network­

partitioning problem. The first approach has been introduced by [33]. It 

presents a development of some heuristic algorithms to partition a PS 

network into two or more sub-networks. The proposed heuristic algorithm 

partitions a spanning tree of a PS network. These partitioning algorithms are 

based on using an integer linear programming (ILP) eigenvector based 

approach to have a good initial partition, and then on using an interchange 

method to obtain the optimal partition. 

The second approach has been introduced by [39]. The new approach is 

based on the observation that the edges of a graph's minimum cut form a very 

small fraction of the graph's edges so that a randomly selected edge is 

unlikely to be in the minimum cut. Therefore, if an edge is chosen at random 

and its end-points are contracted into a single vertex, the probability is high 

that the minimum cut will be unaffected. Therefore, the minimum cut are 

found by repeatedly choosing and contracting random edges until the 

minimum cut is apparent. 

The third approach has been developed by [32], to partition a PS 

network for the purpose of the decomposed state estimator. The technique is 

based on markov chains process. It partitions a spanning tree into k sub­

spanning trees and then finds from the network the minimum cuts. 

The three approaches do not classify the network nodes into internal 

and boundary nodes, but they can be modified to satisfy the DSE restrictions. 
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3.2 The Integer-linear-programming approach 

3.2.1 General 

This approach has been introduced by [33]. It presents a development 

of some heuristic algorithms to partition an observable PSSE network into 

two or more observable sub-networks. The proposed heuristic algorithm 

partitions a spanning tree of an observable PSSE network. These partitioning 

algorithms are based on using an integer linear programming (ILP) 

eigenvector based approach to have a good initial partition, and then on using 

an interchange method to obtain the optimal partition. 

3.2.2 Interchange methods for partitioning 

Iterative improvement algorithms start with a random partition and 

try to optimise it by making small local changes such as successively shifting 

(or moving) of modules from one block to another. Kernighan and Lin [41] 

described a heuristic procedure for netlets (hypergraphs) partitioning, which 

became the basis for most of the iterative improvement partitioning 

algorithms. 

The Kernighan and Lin algorithm, which starts with a given random 

partition, consists of a series of passes. In each pass, two modules are 

interchanged in turn until all nodes are moved. Each pass consists of a series 

of interactions. At each iteration the modules to be moved are chosen from 

among the ones that have not yet been moved during the pass. The modules 

to be interchanged or moved are chosen so that the maximum decrease in cut­

set size (i.e. minimum number of nets cut by a partition) may be obtained (or 

minimum increase ifno decrease is feasible). At the end of each pass, since all 

modules must have been interchanged, the cut-set size of the partitioned 

blocks should be exactly the same as it was at the beginning of the pass. The 

partitions produced during a pass are examined and the one with the 

smallest cut-set size is chosen as the starting (initial) partition for the next 

pass. Passes are performed until no improvement in cut-set size can be 

obtained. 
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Fiduccia and Mattheyeses [22] introduced modifications to the 

Kernighan and Lin algorithm. One of the significant modifications suggested 

by them is to move one module at a time instead of switching pairs. This 

modification allows for more flexibility in the size of the partitioned blocks. 

Partitioning simple netlist example: 

This example gives a general idea of how the interchange method works in 

partitioning a netlist, using Fiduccia and Mattheyses approach. Consider the 

partitioning of the following five-modules, three-net netlist example shown in 

figure 3.2.1 into two blocks. Let the upper bound of any block be four (i.e. the 

maximum number of modules inside any block at any iteration and during 

any pass is four). 

block 1 block 2 

1 _I 1 J 
1 2 3 4 5 

1 I i I I 

Figure 3.2.1 Five-module, three-net netlist example 

Define ~.. as the gain in cut-set size when module i moves to block j. Assume 
£j 

the starting random partition given in figure 3.2.1 that places modules 1 and 

2 in block 1, and modules 3, 4 and 5 in block 2. This initial partition, as 

shown in Figure 3.2.1, cuts three nets. Now start with the first pass, as 

explained. 

Pass 1. Iteration 1 

~12 = 0 ~22 = +2 ~31 = + 1 ~41 = 0 ~51 = + 1 

It is obvious from iteration 1 that the maximum decrease in cut-set size that 

can be obtained in this iteration is by moving module 2 to block 2; this 

partition cuts 1 net only, as shown in Figure 3.2.2a Module 2 is locked in 

block 2 and cannot be moved any more in pass 1. Moreover, the number of 

modules in block 2 does not exceed the upper bound limit (i.e. four modules), 
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block 1 block 2 
I 

1 I I I 
1 .:}:::::: 3 4 5 

'. 

I I I I 

Figure 3.2.2a Shifting of module 2 to block 2 

Pass2.Iteration 2 

~12 = violates upper bound of block 2. 

~21 = locked in block 2 

~31 =-1 ~41 = 0 ~51 = -1 . 

It is obvious from iteration 2 that the cut-set size cannot be further reduced. 

Since moving module 4 to block 1 does not affect the cutest size, this is the 

best move in this iteration, as shown in figure 3.2.2B. Module 4 is locked in 

block 1 and cannot be moved any more in this pass. 

Block 1 block2 

I I I I 
.' .. ' 

1 ····4 .... ·····23 .... 3 5 .' 
. ' ,,' .... . .................. '. 

I I I I 

Figure 3.2.2b Shifting of module 4 to block 1 

Proceeding until the end of this pass (i.e. at iteration 5) the final partition will 

look like the one shown in figure 3.2.2c. 

Block 1 block2 
I 

I I I I 
". .' '. .' .' '. .' 
"S ..... .:J.< ..... :: .~<: ~ ... ~<:: . .. '1 ..... . ' 
..... ....... ••••••• n ••••••••• 

.' . ' " . '. . ' " . . ' ' . .' 

I I I I 
I 

Figure 3.2.2c Partition at end pass 
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The number of cuts is exactly same as the starting (initial) partition and this 

is due to the fact that all modules have been moved and got locked; this is the 

end of pass 1. 

Investigation of the smallest cut-set size throughout this pass shows 

that partition of the first three iterations has the smallest number of cuts. 

Therefore, anyone of these three partitions could be chosen as the starting 

partition for the next pass. The procedure continues until a pre-specified 

number of passes is reached. In this example, since the optimal cut-set size is 

one and has been obtained from the first pass, one can terminate at this pass. 

3.2.3 ILP eigenvector-based approach 

In this section an integer-linear-programming eigenvector (ILP) based 

approach is presented. The ILP is to find a good initial partition between the 

busses of an undirected graph. This approach was, first presented by Barnes 

[4]. A brief summary of Barnes approach follows: 

Assume that an undirected graph G of n busses needed to be 

partitioned into k disjoints blocks of size mpm2"·· ,mk . Define the following 

0-1 integer variable: 

x·· = 1J 

1 if bus i is in block j 

l·=I···n·J·=I···k , " " 
o otherwise 

Let a be the number of edges connecting busses sand t, s * t, and let 
st 

a = 0 s t = 1 ... n. Let A denote the n x n matrix that corresponds to the 
ss " " 

adjacency matrix (or connectivity matrix) of the undirected graph G. Let v ij 

be defined as the i th component of the eigenvector corresponding to the 

largest eigenvalue jth largest eigenvalue of the adjacency matrix A of the 

undirected graph. Barnes shows that the solution of the following ILP 

transportation problem gives an approximate solution to the undirected 

graph G partitioning problem: 

26 



max LL ij X
ij {

n k V } 

i=l )=1 ~mj 

subject to 

n 

L X ij = m j , j = 1,. .. , k 
i=l 

k 

~X .. =1 i =1 ... n ,L.J IJ' " 
)=1 

X··>O i=I···n· J·=I···k 
IJ' " , " 

The partitioning given by the solution of the transportation problem (expr.1) 

usually places most of the busses of G in the correct blocks. 

In the two-block case (i.e. k=2), the transportation problem can be 

further simplified by replacing X i2 by 1- XiI [11] . Let Xi = XiI' then the 

transportation problem could be replaced to the following ILP {O,I}-Knapsack 

problem: 

{ 
n [ }} 
~ v' l v'2 max,L.J 1 - 1 i 

i=l ~m1 ~m2 
(3.1) 

Subject to 

(3.2) 

i =1 ... n , , 

The solution to the knapsack problem (expr.2) can be obtained (without 

solving the knapsack problem [63]) by sorting the objective coefficients in 

non-increasing order and setting Xi = 1 for the first m 1 variables in the sorted 

list (all other variables are set to zero). An interchange technique, whose 

initial partitioning is one obtained from the solution of the problem expr.2, 

can be applied afterwards to obtain a good final partition. 
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The ILP eigenvector-based approach is used to obtain a good initial partition 

for a spanning tree of an observable PSSE network. An interchange method 

can be applied afterwards to obtain the optimal partition of the spanning tree 

(i.e. every spanning tree is full of rank). 

3.2.3.1 Algorithm for equi-partition of a spanning tree 

A heuristic algorithm is proposed to partition a spanning tree of an 

observable PSSE network into two blocks of buses of sizes m
l 

and m
2

. 

Optimality can be achieved when the number of cuts between the two 

partitioned blocks is equal to one (i.e. the existent of two sub-spanning trees 

of full rank). The proposed algorithm involves the following steps: 

Algorithm 3.2.1: 

a- Obtain a spanning tree of an observable PSSE network. 

b- Use the knapsack integer-linear-problem of equation (3.2) to partition 

the spanning tree into two blocks of busses with block size m
l 

and m
2 

. 

If the number of cuts is one, stop, optimality has been reached: 

otherwise, proceed to the next step. 

c- Interchange those busses that are connected between the two 

partitioned blocks (while maintaining the block sizes m l and m 2 fixed) 

until optimality is reached. If so, stop, otherwise continue to the next 

step. 

d- Allow one or more of those buses that are connected between the two 

partitioned blocks to move from one block to the other (i.e. change the 

block size m l and m 2 ) such that the size of the new blocks does not 

violate a pre-specified limit. If optimality is reached, stop, otherwise 

continue to the next step. 

e- The existing spanning tree cannot be partitioned. Optimality (i.e. 

number of cuts between the partitioned blocks cannot be one). Find 

another possible spanning tree and go back to step 2. If there is no 

more possible spanning trees that can be partitioned optimally, stop; 

the system cannot be partitioned into two observable sub-networks. 
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Once the spanning tree is optimally partitioned into sub-spanning trees of 

full rank (i.e. the number of cuts is one), the actual interconnected lines 

between the two partitioned sub-networks can be obtained directly from 

the original network graph. 

3.2.3.2 Equi-partition of IEEE-14 network 

Consider partitioning of the IEEE-14-bus observable PSSE network, shown in 

Figure 3.2.3, into two observable sub-networks each with block size of seven 

(i.e. m 1 = 7 and m 2 = 7 ). 

lQ-----e"--'J... ____ ~4 

2 

Figure 3.2.3 The IEEE-14 network 

12 13 14 

sL:: ~9 
1 

2~-------~3 

Figure 3.2.4 A spanning tree 
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Allow changes in the size of any of the two blocks such that the maximum 

allowable difference between the two blocks be zero (i.e. retaining the size of 

each block to be seven). A possible spanning of this network is shown in 

Figure 3.2.4. 

The largest, the second largest eigenvalues and the corresponding 

eigenvectors have been calculated. 

The solution of the knapsack problem (expr. 2) after sorting its coefficients 

leads to 

and 

This solution cuts two of the spanning tree branches. According to step 3 of 

algorithm 1, if node 8 is interchanged with node 2, the optimal partition can 

be obtained (number of cuts is one). The optimal partitioned buses are shown 

in Figure 3.2.5. 

Block 2 block 1 

)110~~4 
( ........ :._ ... /---Q 

12 

1 

2~------~------~ 

Figure 3.2.5 Optimal equi-partitioning of spanning tree 

This optimal partition cuts 5 lines of the IEEE 14-bus network graph, as 

shown in Figure 3.2.6, and the two partitioned sub-networks are still 

observable (i.e. every sub-network has a sub-spanning tree of full rank). 
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Figure 3.2.6. Partitioning of 

IEEE I4-bus into two 

observable sub-networks. 

block 2 block 1 

::::: ..... ::::~.-..••. -----<1 

"\ 

3.2.3.3 Algorithm for multi-partitioning of spanning tree 

Multi-partitioning of a spanning tree using the transportation problem (expr. 

1) directly is not an easy task; it requires the solution of kn variables with 

k+n constrains. This subsection presents a heuristic multi-partitioning 

algorithm of a spanning tree that avoids the complexity associated with using 

the transportation problem (expr. 1) directly. Optimality can be achieved 

when the number of cuts between the k partitioned sub-spanning trees is 

equal to k -1. The following heuristic steps of the proposed algorithm leads to 

mul ti -parti tioning. 

Algorithm 3.2.2: 

a- Obtain a spanning tree of an observable PSSE network. 

b- Use the knapsack interchange-linear-program problem of expr.2 to 

partition the spanning tree into two blocks of busses with block sizes of 

m· and ~~. m
J
. for i = 1, 2,,,,, k -1. 

I L..JJ=Hl 

c- For every i in step 2 of this algorithm, follow step 2-5 of algorithm 1 to 

obtain the optimal partition between every two blocks. Overall 

optimality can be obtained when the total number of cuts between the 

k-partitioned blocks of buses is equal to k-l. 
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Once the spanning tree is optimally partitioned into k sub-spanning trees (i.e. 

the number of cuts is k-1) the actual interconnected lines between the k sub­

networks can be obtained directly from the original network graph. 

3.2.3.4 Multi-partitioning of IEEE 14-bus network 

Assume the case k=3, i.e. partitioning the IEEE 14-bus network into three 

sub-networks, and the original size of each sub-network (block) be m 1 = 4, 

and m 2 = m3 = 5. Also allow changes in the size of a block such that the 

maximum allowable difference between any two blocks be two. The largest 

and second largest eigenvalues and corresponding eigenvectors have been 

calculated. According to Algorithm 3.2.2, this multi-partitioning has to be 

done in two steps. 

In the first step, the entire spanning tree is to be partitioned into two blocks 

with sizes of m 1 = 4 and m 2 + m3 = 10, and the second step partitioning the 

ten-bus into two other blocks of busses with block sizes of m 2 = 5 and m3 = 5 . 

The partitioned buses are shown in Figure 3.2.7. 

Block 1 blocks 2 and 3 

12IL:13 \ ~14 
~ ................................ ~.~ ..... ...! 11

0 

9 

8 12 

1 4 

2 3 

Figure 3.2.7 First step of multi-partitioning 

the spanning tree. 

The next step, according to Algorithm 3.2.2, is to partition the ten buses sub­

spanning tree of Figure 3.2.7 into two further blocks, with five buses in each 

block. 
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Whatever a pair of buses are interchanged between the two blocks 2 and 3, 

the minimum number of cuts that can be obtained would still be two. 

Therefore, this is the only way to partition the ten-bus sub-spanning tree of 

Figure 3.2.8 without changing the block sizes m
2 

and m
3

• 

Block 1 Block 3 12/31 14 

6~1O 11~9 
································ ................ i 

8 I 12 
O-;-----(J 

Block 2 

1Q----G 5 4 

2 3 

Figure 3.2.8 Second step of multi-partitioning spanning tree 

According to step 4 of algorithm 1, if bus 8 from block 2 is allowed to move to 

block 3 (this is what the interchange method will do within the allowable 

limit), optimality can be achieved. In this case, only one branch of the ten-bus 

sub-spanning tree will be cut, as shown in Figure 3.2.9. Therefore, the overall 

optimal partition of the spanning tree of the IEEE 14-bus network can be 

obtained. Block 1 Block 3 

Figure 3.2.9 

Optimal multi -parti tioning 

of spanning tree of Fig.3 .2.3 ... ·············· ... ··r:-·····_·· --(J 

Block 2 1 8 
1 ': ..... _! 

4 

2 3 
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3.3 Karger approach to the minimum cut problem 

The minimum cut approach has been introduced by [39]. 

3.3.1 The minimum cut strategy 

Given a network which can be represented by an undirected graph 

with n vertices and m (possibly weighted) edges, it is required to partition the 

vertices into k nonempty sets so as to minimize the number (or weight) of 

edges crossing between them. More formally, a cut (A, B) of a graph G is a 

partition of the vertices of G into two nonempty sets A and B. An edge (v, w) 

crosses cut (A, B) if one of v and w is in A and the other in B. The value of the 

cut is the number of edges that cross the cut or, in a weighted graph, the sum 

of the weights of the edges that cross the cut. The minimum cut problem is to 

find a cut of minimum value. 

Throughout this section, the graph is assumed to be connected, and 

all edge weights is assumed to be nonnegative. 

3.3.2 An abstract formulation of the contraction algorithm 

The algorithm is based on the observation that the edges of a graph's 

minimum cut form a very small fraction of the graph's edges so that a 

randomly selected edge is unlikely to be in the minimum cut. Therefore, if an 

edge is chosen at random and its endpoints are contracted into a single 

vertex, the probability is high that the minimum cut will be unaffected. 

Therefore, the minimum cut is found by repeatedly choosing and contracting 

random edges until the minimum cut is apparent. 

The algorithm is divided into two stages. In the first stage, an efficient 

way to implement the repeated selection and contraction of edges, which form 

a single trial of the contraction algorithm, is introduced. The second stage 

deals with the need for multiple trials of the contraction algorithm. 

34 



3.3.3 The contraction algorithm 

The Contraction algorithm uses one fundamental operation, 

contraction of vertices. To contract two vertices vIand v 2 replace them by a 

vertex v and let the set of edges incident on v be the union of the sets of edges 

incident on vIand v 2 • 

Edges from vIand v 2 that have the same other ends are not merge; 

instead, multiple instances of those edges are created. However, self loops, 

formed by edges originally connecting vIand v 2 , are removed. 
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Figure 3.3.1a A graph and a cut-line 

Figure 3.3.1b selecting an edge in the graph 

Figure 3.3.1c contracting the edge 

Figure 3.3.1d The graph after contracting one edge 

Formally, An edge e(v l' V 2) is deleted, and each e(v l' w) or e(v 2' w) is 

replaced with e(v, w). The rest of the graph remains unchanged. The 
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con tracted gra ph G wi th e( v, w) con tracted is denoted by GI (v, w) , 

(contracting an edge, means contracting the two endpoints of the edge). 

Extending this definition, for an edge set F let G/f denote the graph produced 

by contracting all edges in F. An example of an edge contraction is given in 

figures 3.2.1a, b c and d. 

Assume initially that given a graph G (V, E) with n vertices and m 

edges . The contraction algorithm is based on the idea that SInce the 

minimum cut is small, a randomly chosen edge is unlikely to be in the 

minimum cut. The contraction algorithm, which is described in figures 3.2.1, 

repeatedly chooses an edge at random and contract it. 

When the contraction algorithm terminates, each original vertex has 

been contracted into one of the two remaining "meta-vertices". This defines a 

cut of the original graph: each side correspond to the vertices contained in one 

of the meta -vertices. 

More formally, at any point in the algorithm, sea) can be defined as the 

set of original graph vertices contracted to a current meta-vertex a. Initially, 

s(v)=v for each v in V, and whenever the algorithm contracts (v, w) to create 

vertex x it sets s(a)=s(v) U sew). A cut (A,B) in the contracted graph 

corresponds to a cut (A',B') in G, where A' =Us(a) and B'=Us(b). 

Note that a cut and its corresponding cut will have the same value, 

where the value of a cut is defined to be the sum of the weights of the edges 

crossing the cut. 

Procedure 3.1.1: Contract (G) 

repeat until G has 2 vertices 

choose an edge (v, w) uniformly at random from G 

let G .- G I(v, w) 

return G 
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When the contraction algorithm terminates, yielding a graph with two 

meta-vertices a and b, the corresponding cut (A, B) in the original graph are A 

= sea) and B = s(b). Lemma (3.3.1) has been given its and proof in [39]. 

Lemma 3.3.1: 

A cut (A, B) is output by the Contraction Algorithm if and only if 

no edge crossing (A,B) is contracted by the algorithm. 

Proof: 

The only direction is obvious. For the other direction, consider two vertices on 

opposite sides of the cut (A, B). If they end up in the same meta-vertex, then 

there must be a path between them consisting of edges that were not 

contracted. However, any bath between them crosses (A, B), so an edge 

crossing cut (A, B) would have had to be contracted. This contradicts the 

hypothesis. Theorem (3.3.1) is given and its proof in [39]. 

Theorem (3.3.1) 

A particular minimum cut in G is returned by the 

Contraction Algorithm with probability at least 

Proof: [39]. 

3.3.4 Implementation of the contraction algorithm 

To implement the contraction algorithm an n x n weighted matrix, W is 

used. The entry W(u, v) contains the weight of edge (u, v), which can 

equivalently be viewed as the number of edges connecting u and v. If there is 

no edge connecting u and v then W(u, v)=O. The optimal (weighted) degree 

D( u) of each vertex u is also maintained; thus 

D(u) = Lv W(u, v) ; 
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N ext, is the implementation of the two steps: randomly selecting an edge and 

performing a contraction. 

3.3.4.1 Choosing an edge 

A fundamental operation, that IS needed to be implemented, is the 

selection of an edge with probability proportional to its weight. A natural 

method is the following. First, from edges eI ,"', em with weights WI"'" W m , 

construct cumulative weights WI = L,:l Wi W. Then choose an integer r 

uniformly at random from 0"", W m and use binary search to identify the edge 

ei such that Wi _I < r < W m • This can be done in 0 (log W) time. 

Assume that given a subroutine called RANDOM-SELECT. The input to 

Random-Select is a cumulative weight array of length m. Random select 

returns an integer between 1 and m, with the probability that i is returned 

being proportional to Wi' 

Now, the Random_Select will be used to find an edge to contract it. The 

goal is to choose an edge (u, v) with probability proportional to W (u, v). To do 

so, choose a first endpoint u with probability proportional to D(u) , and then 

once u is fixed choose a second endpoint v with probability proportional to 

W(u, v) W(u, v). Each of these two choices requires O(n) time to construct a 

cumulative weight array plus one O(log n) time call to Random-Select, for a 

total time bound of O(n). The following lemma proves the correctness of this 

procedure. The lemma and its proof is given in [39]. 

Lemma 3.3.2 

If an edge IS chosen as described above, then Pr[(u,v)is chosen] IS 

proportional to W(u,v). 

Proof: [39]. 
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3.3.4.2 Contracting an edge 

Having shown how to choose an edge, next is the implementation of 

contraction. Given Wand D, which represent a graph G, to update Wand D 

to reflect the contraction of a particular edge (u, v). Call the new graph G' and 

compute its representation via the algorithm in Procedure 3.3.2. 

Procedure (3.3.2) Contract an edge 

let D(u) <-- D(u) + D(v) - 2w(u, v) 

let D(v) <-- 0 

let W(u, v) <-- W(u, v) <-- 0 

For each vertex w except u v 

let W(u, v) <-- W(u, v)+W(u, w) 

let W(w, u) <-- W(w, u)+W(w, v) 

let W(v, w) <-- W(W, u) <-- 0 

This algorithm moves all edges incident on v to u. The algorithm 

replaces row u with the sum of row u and row v, and replaces column u with 

the sum of column v. It then clears row v and column v. Wand D now 

represent G', since any edge that was incident to u or v is now incident to u 

and any two edges of the form (u, w) and (v, w) for some w have had there 

weights added. 

Furthermore, the only vertices whose total weighted degrees have 

changed are u and v, and D(u) and D(v) are updated accordingly. This 

procedure can be implemented in O(n) time. Summarizing, an edge can be 

chosen and contracted in O(n) time. This yields the corollary (3.3.1) [39]. 

Corollary: (3.3.1) 

The Contraction Algorism can be implemented to run 

in O(n 2) time. 

Proof: [39]. 
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For the rest of this section we will use the contraction algorithm as a 

subroutine, that accepts a weighted graph G and parameter k and in 

O(n) time , returns a contraction of G to k vertices. With probability at least 

(~){ ~) (Corollary3.3.1), a particular cut of the original graph will be 

preserved in the contracted graph. 

3.3.5 The recursive contraction algorithm 

The Contraction Algorithm can be used by itself as an algorithm for 

finding minimum cuts. The contraction Algorithm has an Q(m) probability of 

success. Therefore repeating the contraction algorithm (en 2In n) times, and 

out put the smallest cut produced by any runs of the contraction algorithm. 

The only way this procedure can fail to find the minimum cut is if all (en 2In n ) 

runs of the contraction algorithm fail to find the minimum cut, but we can 

upper bond the probability that this occurs by: 

( 

1 Jcn2lnn 
1-~ < exp( e In n) < n c 

Thus, the minimum cut will be found with high probability. However, 

the resulting sequential running time of O(n4) is excessive. Lemma (3.3.3) 

and its proof is given in [39]. 

Lemma (3.3.3) 

Algorithm Recursive Contract runs in O(n 2 log n) time. 

Proof: [39]. 
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3.4 The Markov chains partitioning approach 

3.4.1 General 

The partitioning technique, in this section, has been developed by [32], 

for the purpuse of the decomposed state estimator. The technique is based on 

markov chains as explained in Section (3.4.2). It partitions a spanning tree 

into k sub-spanning trees and finds all optimal minimum cuts. Partitioning a 

spanning tree guarantees the observability of all the sub-networks. 

3.4.2 Markov chain model 

In decision-making process, decisions are taken based upon past 

experiences. Not all decisions however prove to be correct, often because of 

certain inconsistencies or uncertainty associated with the phenomena upon 

which the decision was based. 

Markov Chain theory has been used in hypertext, by associating a 

certain probability value to each hypertext link. Such an application helps the 

designer to decide how nodes are to be placed, and to make informed 

hardware configuration decisions based on the projected performance of the 

resul ting system. 

A Markov Chain can be described as a set of states, and transitions 

between those states that occur with a given probability. It is possible that in 

a stochastic process, the future (or next state) of the system depends only on 

the present state, and is independent of past events. This is called the 

Markovian property. A stochastic process is claimed to have the Markovian 

property if it satisfies the following condition: 

\-I"" >0 . vI, J. Pij - , 

N 

Vi, LPij = 1; 
j=O 

(3.4.1) 

(3.4.2) 
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A typical N-states Markov chain and its N-step transition probabilities are 

represented in a matrix. The matrix is called the transition matrix. 

state 0 1 2 3 ... . .. . .. N 

0 Poo POI P02 P03 ... . .. . .. PON 

1 PlO ... . .. . .. . .. . .. . .. . .. 

2 P20 ... . .. . .. . .. . .. . .. . .. 

3 P30 ... . .. . .. . .. . .. . .. . .. 

. . . . .. . .. . .. . .. . .. . .. . .. . .. 

.. . . .. . .. . .. . .. . .. . .. . .. . .. 

.. . . .. . .. . .. . .. . .. . .. . .. . .. 

N PNO ... . .. . .. . .. . .. . .. PNN 

Table 3.4.1 The n -step transition matrix 

3.4.3 Partitioning algorithm 

The following summarizes the steps that are required to obtain all 

optimal possibilities of spanning tree by using Markov chain model. The 

technique guarantees minimum number of cuts to obtain the required of 

observable sub-networks. 

1. Obtain a spanning tree of an observable PSSE network. 

2. For each node in the spanning tree, count the number of branches that are 

connected directly to this node. 

3. Assign to each branch a probability of one over the number of branches 

found in step 2 (i.e. assign equal branch probabilities such that their 

summation is equal to one). 

4. Establish the transition matrix T, whose dimension is equal to the number 

of nodes in the system, in which each entry Pij represents the probability 

val ue that has been assigned in step 3. 
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5. For each row i of the matrix T, search for a probability Pij equal to one. The 

probability equal to one implies that node i in the ith row is connected only to 

node j in the jth column. Store node i as a child of node j, and delete row i and 

col umn i from the matrix T. 

6. Redistribute the probabilities related to node j (which is the parent of the 

deleted child i). 

7. Repeat steps 5 and 6 until the dimension of the matrix T reduces to one. A 

family tree (parent-child relationship) is established with actual connection 

between the nodes. 

Once the family tree is established, it is easier to check all possible 

optimal cuts amongst the family tree. All optimal cuts take place between a 

parent and one of its children. In this case the selected child with its offspring 

are assigned to one cluster (or clusters). 

3.4.4 Comparative performance 

The performance of this technique has been eval ua ted by uSIng 

different IEEE standard networks:24-bus, 30-bus, 118-bus and larger 

networks of 707 -bus and 1084-bus. The 14-bus was used as an example. 

The transition matrix T of the IEEE-14 network, according to the 

proposed algorithm will then be as in Table 3.4.2. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 0.5 0.0 .05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.33 0.0 0.0 0.0 0.33 0.0 0.33 0.0 0.0 0.0 0.0 0.0 

5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.25 0.0 0.25 0.25 0.0 

7 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.0 0.33 

10 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

12 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

13 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

Table 3.4.2 The transition matrix of the IEEE-14 network 

The non-zero entries represent the connection between the nodes and the 

summation of the assigned probabilities of any row equals one. 

In the above example, node 3 is connected to node 2 and 4, and in the 

assigned probabilities to each branch is equal to one half. The next step is to 
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search the transition matrix T for those entries that have a probabilities 

value of one, i.e. looking for the youngest child in the family of this system; or 

according to Markov Chain terminology, we are looking for transition 

probabilities equal to one. The out come of the first search iteration is the 

following children and their respective parents in Table 3.4.3. 

Parent Attached Children 

7 8 

6 10,12,13 

9 11, 14 

Table 3.4.3 First iteration Parent-Child Relationship 

The new transition matrix after removIng the corresponding rows and 

columns of the attached children (after the first iteration) and updating the 

related rows, we have a matrix as shown in Table 3.4.4. 

1 2 3 4 5 6 7 9 

1 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 

2 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 

3 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.3 

5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 

6 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 

Table 3.4.4 Updated transition matrix 
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The summation of the new probabilities in any row in the modified transition 

matrix remains one, and confirms that the modified matrix T still has the 

Markovian property explained in Section 3.4.3. The final result will converge 

after the fifth iteration. The family tree is shown in Figure 3.4.1. 

3 
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Figure 3.4.1 Family tree of spanning tree of IEEE-14 network 

As represented in this family tree, the youngest members are calculated first, 

and then proceed upwards towards the eldest member of the tree. 

In terms of partitioning, this family tree provides all optimal partitioning 

possibilities of the spanning trees. In case of large networks, the computer 

solution will automatically present all possible solutions. 
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Figure 3.4.2. Two equal clusters of spanning tree of IEEE 14-bus 

network 

If the spanning tree needs to be partitioned into two equivalent clusters, the 

only solution would cut child 2 (and its offspring) from its parent 3. Child 2 

with its offspring form a collection of 7 family members, and the rest with 

parent 3 form another cluster. The two partitioned clusters, therefore, are 

shown in Figure 3.4.2. 

If the spanning tree is to be partitioned into two clusters of unequal sizes 

with added constraint that the minimum number of nodes in any of the two 

clusters must be at least six. The family would provide three possible 

solutions. The optimal has already been shown above. The others are: 

• By cutting the branch between child 1 and its parent 2, the clusters are 

shown in figure 3.4.3. 

• Or, by cutting the branch between child 4 and its parent 3, the clusters 

are shown in Figure 3.4.4. 
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Figure 3.4.3 One option of two unequal clusters of spanning tree 
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4"" { 9 

/ /~ 
8 14 11 

Figure 3.4.4 Another option of two unequal clusters of the spanning tree of 

the IEEE 14 -bus. 

3.5 Advantages and disadvantages of these approaches 

Knowing the DSE objective and constraints as introduced in Section 2.4, the 

three approaches can be developed to satisfy the DSE requirements. In the 

present case they share several points against the DSE constraints, such as: 

1. None of the three approaches take into account the DSE constraints 

and they do not classify the network nodes into internal nodes and 

boundary nodes. 

2. Depending on which spannIng tree is used, the partitioning which 

results from the first and the third partitioning approaches may give 

good balanced results, but it may not. 

3. Obtaining the optimal cut edges from a spannIng tree does not 

guarantee obtaining the minimum number of cut-edges from the 

network. 
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4. The three methods are heuristic in their approach. They do not discuss 

the network-partitioning problem itself or its NP-hard nature, nor do 

they provide any mathematical model to simplify the problem. 
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Chapter 4 

Spanning tree partitioning technique 

4.1 General 

Graph theory IS a branch of mathematics that has wide practical 

applications. Many problems arising in such diverse fields as psychology, 

chemistry, electrical network, transportation planning, management, 

marketing, and education can be posed as problems in graph theory [5]. A 

graph of a power system network has n nodes connected by m edges 

representing the actual network. 

Partitioning a network has objectives and constraints. These objectives 

and the constraints are directly related to the addressing problem. Optimal 

partitioning of a network is relative to the partitioning objectives and 

constraints, i.e. if these objectives are met, and these constraints are 

satisfied, then the partitioning solution is classified as optimal, and if these 

objectives are met and the constraints are almost satisfied, then the 

partitioning solution is classified as near optimal. If the solution does not met 

the objectives the partitioning solution is rejected. 

The objective of partitioning a power system network for the purposes 

of the decomposed state estimation problem has been discussed in Section 

(2.4). The idea is to partition the network into k non-overlapping subsystems 

subject to constraints. The constraints are such that (i) the internal nodes of 

the k subsystems are balanced and (ii) the number of total boundary nodes is 

balanced with the number of internal nodes of the i th subsystem. 

The problem associated with partitioning networks is a compound 

problem. Networks have different sizes together with different types of 

connections they can take. In addition, the nodes in a very large network may 

have different type of distribution. They may be concentrated in one or more 

clusters, or they may be distributed equally over the very large network. The 

partitioning problem has proven [13, 25] to be NP-Hard problem; thus most 
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existing partitioning algorithms are heuristically based. 

Searching graph theory [18, 21, 68] for relationships that describe a 

network of any size with any type of connection, very few such relationships 

appear to exist. Examples are: the network degree relationship, i.e. D = 2m, 

which relates the sum of the nodes degrees to twice the number of edges; and 

the cycle relationship i.e. c = m - n + 1. Neither of these direct relationships are 

particularly helpful in providing information for partitioning the network. 

They do not describe the network connection in an appropriate way. 

Alternatively, it may be useful to examine indirect relationships that 

can describe the network connection. An example of this is the spanning tree 

relationship. A spanning tree of a network is a connected sub-graph of the 

network, having n nodes (as has the network) and n-l edges. A spanning tree 

can be obtained by eliminating exactly one edge from each cycle in the 

network [64]. Thus, a spannIng tree of a given network may be used to 

partition the network. 

Partitioning a spanning tree into k partitions is obtained by cutting 

exactly (k-l) edges from the spanning tree. The partitioning technique 

introduced in this chapter is based on partitioning the spanning-tree 

optimally into k sub-spanning trees. The technique first defines the number 

of edges of each sub-spanning tree, and then finds the branches of each sub­

spanning tree such that the number of edges in those branches equals the 

number of edges of the sub-spanning tree. The DSE constraints are to have 

balance between the internal nodes and the boundary nodes. These 

constraints are achieved by balancing the edges of the k sub-spanning trees. 

Balanced k-subsystems that satisfy the requirements of the DSE may 

be obtained by partitioning the given network for different values of k. Thus 

the partitioning technique starts from k=2, and then for k=3, and so on. It 

terminates when k does not give balanced results. 

The chapter is organized as follows: A power system network can be 

represented by a direct graph or undirected graph. The direct representation 

of a network is presented in Section 4.2. The definition and the properties of 

the spanning trees are presented in Section 4.3. A method for obtaining a 
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spannIng tree, using row reduction, is described in Section 4.3.1. The 

resultant matrix, described in Section 4.3.2, is a descendent star matrix 

representing the spanning tree. The partitioning technique utilizes the 

descendent property as the starting point for partitioning. Cutting one edge 

from the spanning tree partitions the spanning tree into two separate parts, 

but it may not partition the network into two separate subsystems. Thus, the 

cut concept is introduced in Section 4.4. Obtaining the cut-edges between the 

k subsystems is described in Section 4.4.5 as a matrix sum operation. 

Balancing the edges of the k sub-spanning trees is derived in Section 4.6. An 

overview of the spanning tree partitioning technique is given in Section 4.7. 

The technique is based on finding the branches of each sub-spanning tree. 

Thus, the spanning tree nodes are classified in Section 4.7.1 into three types. 

The definition and the property of a branch are discussed in Section 4.7.2. 

The steps of finding the sub-spanning tree are described in Section 4.7.3. An 

example and the simulation results are given is Sections 4.9 and 4.10. The 

performance of the technique and its disadvantages are described in Sections 

4.11 and 4.12 respectively. Some conclusions are drawn in Section 4.13. 

Definitions of terms associated with graph theory are provided in Appendix 

A. 

4.2 Graph representation of network 

Directed graphs are adequate for representing many situations [70], 

such as traffic flow networks, where an edge may represent a street and the 

direction to indicate the permissible direction of traffic flow. Also, a power 

system network, consisting of power stations and transmissions lines, 

requires a directed graph, where each node is represented by a vertex in the 

graph, and each line is represented by an edge. The current flow direction is 

represented by an edge direction. 

In this chapter, a directed graph is used to represent a power system. 

An example of a directed network is shown in Figure 4.1: 
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Figure 4.1 A directed graph of a networkO N 

4.2.1 The incidence matrix 

Consider a network represented by a direct graph ON with n nodes and 

m edges and having no self-loops. The all-nodes incidence matrix A = la jj J of 

ON has m rows, one for each edge, and n columns, one for each node. The 

element a ij of A is defined as follows: 

a .. = IJ 

1, if the j th edge is from the i th node 

-1 , if the j th edge is to the i th node 

0, if there is no edge between the i th node and the j th node 

For example the incidence matrix of the network in Figure 4.2 is: 

1 -1 0 0 0 

1 0 -1 0 0 

0 -1 1 0 0 

A= 0 1 0 -1 0 

0 0 1 -1 0 

0 0 1 0 -1 

0 0 0 -1 1 
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Figure 4.2 The incidence matrix of the network of Figure 4.1 

It is noticed from the incidence matrix definition that it has common 

properties [21, 64, 70], namely, 

Properties of the incidence matrix 

• Each column of A contains exactly the degree of the jth node. 

• Each row contains exactly two non-zero entries 1 and -1. 

• Any row of A can be obtained from the remaining n-1 rows. Thus any 

n-1 rows of A contain all information about A. In other words, the rows 

of A are linearly dependent, and the rank of A < n -1. 

• For any connected graph, the rank of A is n-l. 

• The determinant of any incidence matrix of a tree is equal to + 1 or -1. 

• If a network consists of k disconnected components, then the rank of A 

is n-k. 

4.3 Spanning trees 

A spanning tree, T, of a network G N is, by definition, connected and it 

includes all the network nodes [64, 70]. Figure 4.3a shows a spanning tree of 

figure 4.1 network. A co-spanning tree T* of a spanning tree T of a graph G:\ 

is a sub-graph of G
N 

having exactly those edges of GN that are not in the 

spanning tree T. 

v~ 
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Figure 4.3a A spanning tree of Figure 4.1 

Figure 4.3b shows a co-spanning tree T* of figure 4.1. Each spanning tree T 

uniquely determines its co-spanning tree T* . 

Figure 4.3b A co-spanning tree of Figure 4.1 

The following gives full characterization of any tree [70]: 

Trees Properties 

The following statements are equivalent for a tree, T, with n nodes and fit 

edges: 

1. T is a tree. 

2. There exists exactly one path between any two nodes ofT. 

3. T is connected and fit = n -1. (4.2) 

4. T is acyclic and fit = n -1. 

5. T is acyclic, and if any two nonadjacent nodes of 

G are connected by an edge, then the resulting graph 

has exactly one circuit. 

A consequence of the tree properties IS the following [70] spannIng tree 

properties. 

Spanning trees property (4.1) 

Consider a sub-graph T of n nodes of graph G. Let T have n nodes and 

fit edges, then the following statements are equivalent: 

1. T is a spanning tree of G. 
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2. There exists exactly one path between any two nodes ofT. 

3. T is connected and fit = n -1 . 

4. T is acyclic and fit = n -1. 

5. T is acyclic, and, if any two nonadjacent nodes ofT are 

connected by an edge, the resulting graph has exactly 

one circuit. 

4.3.1 The row reduction method 

A network may be represented by A, the associated incidence matrix. 

The incidence matrix has m rows of edges and n columns of nodes. It is 

interesting to consider the operation of row reduction on matrix A. Row 

reduction eliminates a certain type of edge from A, specifically one edge from 

each cycle in the network [64]. When row reduction is performed on A, each 

operation has a meaning in the network, i.e. each operation moves or 

eliminates one or more edges from the network. Since there are m-n+1 cycles 

in the network, then there will be m-n+1 edges eliminated from the network 

in 0 (m-n+1) operations. Once row reduction is complete, the row reduced 

form of A is termed the spanning tree matrix, represented by U. The 

spanning tree matrix has exactly n-1 rows of edges, and it has n columns, 

each column representing a node. 

Example (4.1) Example 4.1 illustrates the row reduction method. 

The network in Figure 4.4 has: 

n = 4 nodes and m = 5 edges. 

Figure 4.4 A network used to 
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illustrate on the row reduction 

The incidence matrix of Figure 4.4 is shown in Figure 4.5. 

1 -1 0 0 

0 1 -1 0 

A= 0 1 0 -1 

0 0 1 -1 

-1 0 0 1 

Figure 4.5 The incidence matrix of Figure 4.4 

Figures 4.6a and 4.6b show the first row reduction operation, in which, when 

row 5 is reduced by row 1, es will move from e (v 4' VI) to e (v 4' v 2 ). 

Figure 4.6a The first row reduction operation 

1 -1 0 0 

0 1 -1 0 

A -1- 0 1 0 -1 

0 0 1 -1 

0 -1 0 1 

Figure 4.6b The resultant matrix of the first row reduction operation 

Figure 4.7 a and 4.7b show the second row reduction operation, in which, 

column 2 (or V 2) has 3 edges, e2 , e3 and es · The second edge, e2 , has the 

leading one, so it will be the reference for the other two edges. The ones of es 
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and e3 will be eliminated by the one of e2 • This results in moving e
3 

to be 

from v 3 to node v 4 , and moving es to be from node v 4 to node v 3 • 

es e 2 

• 
... e3 

V 4 e4 V3 

Figure 4.7a The second row reduction operation 

1 -1 0 0 

0 1 -1 0 

A2 = 0 0 1 -1 
0 0 1 -1 
0 0 -1 1 

Figure 4.7b The resultant matrix 

of the second row reduction operation 

Figure 4.8a and Figure 4.8b show the result of the third row reduction 

operation. Between node 3 and node 4, there are three edges, e3 , e4 and es , 

and those edges are in opposite directions. From those edges e3 has the 

leading one at v3 • Then the ones at e4 and at es will be eliminated. 

Therefore, eliminating the edges e4 and es from the matrix and from the 

graph. The result is a spanning tree of the network as shown in Figure 4.8b. 

The row reduction method is described in Flowchart 4.1. 
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1 2 

Figure 4.8a A spanning tree of Figure 4.4 

1 -1 0 0 

u= 0 1 -1 0 

o 0 1 -1 

Figure 4.8b A spanning tree matrix of Figure 4.4 
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A(ii,:) = A(ii,:) - A(i,: ); 

ii=i+l; 
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A(ii,:) = A(ii,:) + A(i,: ); 

10 

Flowchart (4.1) The row reduc Ion method flowchart 
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4.3.2 The spanning tree matrix 

Provided that the edge numbered one leaves the node numbered one (to 

ensure that the element in the first row and the first column is always non­

zero), the resultant spanning tree matrix U has a descending staircase shape. 

The spanning tree matrix U has exactly n columns of nodes and n -1 rows of 

edges. Each row has two non-zero elements representing an edge in the 

spanning tree. Each column has one or more non-zero elements representing 

a node in the spanning tree. The columns with one nonzero element represent 

a single node, i.e. a node with only one edge. The number of the non-zero 

elements in each column gives the degree of that node in the spanning tree. 

The descending staircase shape of matrix U has been utilized to partition the 

spanning tree, as explained in Sections 4.6 to 4.8. 

4.3.3 Testing connectivity 

The spanning tree is anther way of testing the connectivity of the network 

[70]. Property (4.2) proves that a network is connected if it has a spanning 

tree. 

Spanning trees property (4.2) 

A graph G is connected if and only if it has a spanning tree. 

4.4 The cut concept 

When a network is partitioned into k disjoint subsystems, one or more 

edges from the network must be cut. Those edges are termed cut-edges. In 

this section, the cut concept is introduced. 

4.4.1 Cut-sets 

A cut-set Eb of a connected graph is a minimal set of edges of G such 

that its removal from G disconnects G [70]; that is the graph G - Eb is 

disconnected. For example, consider the subset Eb_1 = {e 2 , e6 , e9 } of edges of 

the graph G in Figure 4.9a. The removal of E b_1 from G results in the graph 
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0 1 = 0 - E b _1 of Figure 4.9b, whereupon 0 1 is disconnected. Furthermore, the 

removal of any proper subset of E b-l 

set ofG. 

cannot disconnect G. Thus E b_1 is a cut-

Consider next the set E { } Th h 0 0 b-2 = el'e 4 ,e6 ,eg • e grap :. = -Eb_:' 

shown in Figure 4.9c is disconnected. However, the set E' { } b-2 = el' e ~, eg , 

which is a proper subset of E b_2 , also disconnects G. The graph 0 3 = 0 - E'b_2 IS 

shown in Figure 4.9d. Thus Eb_2 is not a cut-set of G. 

Figure 4.9a A graph G, Figure 4.9b 0 1 = 0 - E b _1 

to ill ustra te the cut-set concept 

Figure 4.9c O2 = 0 - E b _2 
Figure 4.9d 0 3 = 0 - E'b_2 

4.4.2 Cuts 

Consider a network ON = (V, E) with node set V. Let VI and V2 be two 

mutually disjoint subsets of V such that V = VI EB V2 ; that is, VI and V2 have 

no common nodes and together contain all the nodes ofV. Then the set Eb of 

all those edges of 0 N having one end node in VI' and the other end in V 2 , 

is called a cut of 0 N [70]. This is usually denoted by < VI' V2 > [70]. For 

example, for the network shown in Figure 4.10a, if VI = {v l' v:.' V 3' V ~} and 

V
2 

= {v 5' V 6' V 7}, then the cut < VI' V2 > of 0 N is equal to the set {e6 , e7 , eg } of 
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edges, as shown in Figure 4.10b. 

Figure 4.10a A network to 

illustrate the cut concept 

(//~ 
\ ...... v I V 3 

........• . ........ . 

........ ········.Y..4 ............................ . 

................................. 

(//~ v

7

V
;') 

......................... . ....... . 
.................. ......................... 

Figure 4.10b The cut 

The cut <VI'V2 > of GN is the minimal set of edges of GN whose removal 

disconnects G N into two (induced) sub-graphs Gland G 2' on the node sets VI 

and V2 • Thus, if the number of edges between the two (induced) sub-graphs, 

i.e. the cut < VI' V2 >, is minimum, then the cut < VI' V2 > is Eb , by definition, 

the cut-set of G N • 

Partitioning a spanning tree 

Since every spanning tree T of G is acyclic, then every sub-graph ofT is 

also acyclic [70]. A sub-graph of a spanning tree is termed a sub-spanning 

tree. 

Spanning trees property (4.3) 

A sub-graph T of a connected graph G is a sub-graph of some 

spanning tree of G if and only if T is acyclic . 

If k-1 edges are cut from a spannIng tree of a network then the 

spanning tree is partitioned into k sub-spanning trees. The nodes of each sub-
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spanning tree are the nodes of one subsystem. The k-l cut edges are used to 

find the remaining cut-edges between the k subsystems. 

The partitioning technique partitions the spanning tree into k sub­

spanning trees by cutting k-l edges. Each sub-spanning tree, T, has mit edges 

and (mit + 1) nodes. Determining the edges of each sub-spanning tree is given 

in Section 4.4. 

Spanning trees property (4.4) 

1. A cut < VI' V2 > of a connected graph G is a cut-set of G if the two 

induced sub-graphs of G on node set VI and V2 are disconnected. 

2. If Eb is a cut-set of a connected graph G, and VI and V2 are the 

node sets of two induced sub-graphs of G - E b, then Eb = < VI' V2 >. 

Any cut < VI' V2 > in a connected graph G contains a cut-set of G, since the 

removal of <VI' V2 > from G disconnects G. In fact, a cut in a graph G is the 

union of some edge-disjoint cut-sets of G. This is stated in the following 

property. 

Spanning trees property (4.5) 

A cut in a connected graph G is a cut-set or union of edge-disjoint cut-sets of 

G. 

4.4.3 Fundamental cut-sets 

This section shows how a spanning tree can be used to define a set of 

fundamental cut-sets. Consider a spanning tree T of a connected graph G. Let 

b be an edge ofT. Removal of the edge b from T disconnects T into exactly two 

components TI and T2. Note that TI and T2 are trees of G. Let VI and V2 be 

the nodes of TI and T2 respectively. Then VI and V2 contain all nodes of G. 

Let Gland G 2 be, respectively, the induced sub-graphs of G on the 
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nodes set VI and V2. It can be seen that TI and T2 are, respectively, spanning 

trees of Gland G 2' Hence, by property (4.2) Gland G 2 are connected. This 

in turn, proves property (4.4) that the cut < VI' V2 > is a cut-set of G [70]. This 

cut-set is known as the fundamental cut-set of G with respect to the edge b of 

the spanning tree T of G. The set of all the n -1 fundamental cut-sets with 

respect to the n -1 edges of a spanning tree T of a connected graph G is known 

as the fundamental set of cut-sets of G with respect to the spanning tree T. 

Note that the cut-set < VI' V2 > contains exactly one edge, namely, the edge b 

of T. All other edges of < VI' V 2 > are belong to G T' This follows from the fact 

that < VI' V2 > does not contain any edge of TI and T2 • 

Further, the edge b is not present in any other fundamental cutest 

with respect to T. Because of these properties, the edge set of the 

fundamental cut-set can be expressed as the ring sum of the edge sets of 

some or all of the remaining fundamental cut-sets. A graph G and a set of 

fundamental cut-sets of G are shown in Figures 4.11a to 4.11d. 

Figure 4.11a A network to 

illustrate the fundamental cut-set 
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Figure 4.11c The edge b is removed from the spanning tree 

Figure 4.11d The cut-edges between the two cuts 

4.4.4 The cut matrix 

Define a cut matrix Q of m columns and c rows, where m is number of 

edges of a graph G and c is the number of cutting edges in G. For example, let 

A T given in Figure 4.12a be the transpose of the incidence matrix of the 

graph given in Figure 4.12, and let the graph has three different cuts as 

shown in Figures 4.12b, 4.12c and 4.12d. 

Figure 4.12 A graph G=(5, 7) 
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nodes/edges e1 e2 e3 e4 es e6 e 7 

Vi 1 1 0 0 0 0 0 

AT = 
v 2 -1 0 -1 1 0 0 0 

V3 0 -1 1 0 1 1 0 

v 4 0 0 0 -1 -1 0 -1 

Vs 0 0 0 0 0 -1 1 

Figure 4.12a A transpose of the incidence matrix of figure 4.12 
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Figure 4.12d Cut-3 = { e 2 , e 3 , e5 , e
6

} 

Then, the cut matrix of the three cuts is 

cut/edges e1 e 2 e 3 e4 e5 e 6 e 7 

cut! 1 0 1 0 1 1 0 
Q= 

cut2 1 1 0 0 0 1 1 

cut3 0 1 1 0 1 1 0 

Figure 4.12fThe cut matrix 

Each cut (or row) in Q can be expressed as a linear combination of the rows 

(i.e. the nodes) of A T which represent the nodes of the induced sub-graph, i.e. 

sum of the rows of nodes (in AT) of one sub-graph = (-) sum of the rows of 

nodes (in AT) of the other sub-graph [69]. 

Property of cut matrix 

Each cut (or row) in the cut matrix Q can be expressed in two ways, as 

a linear combination of the nodes (i.e. the rows in AT) of one sub-graph or as 

a linear combination of nodes of the other sub-graph with (-1) sign. 

Example (4.2) Finding the cut-edges 

Considering cut-I, this cut partitions G into two sub-graphs. The nodes of the 

sub-graphs are 
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V2 = {V 2' V 4' V 5} . 

To find the cut-edges between the two sub-graphs, add the rows 

corresponding to the nodes of each sub-graph, i.e. 

v 1 = row 1 = [l 1 0 0 0 0 0]; 

V 3 = row3 = [0 -1 1 0 1 1 0]. 

Adding the two rows gives cutl 

cut! = v 1 + V 3 = [1 0 1 0 1 1 0]. 

Thus the cut edges between Vl and V2 are {e1 ,e3 ,eS 'v6 } as shown in Figure 

4.12b. Considering the nodes of the second sub-graph i e S = {v v v} we , •. 2 2' 4' 5 , 

get the same result. 

v 2 = row2 = [-1 0 -1 1 0 0 0]; 

V 4 = row4 = [0 0 0 -1 -1 0 -1]; 

v 5 = row5 = [0 0 0 0 0 -1 1]; 

cut! = -(v 2 + V 4 + V 5) = [1 0 1 0 1 1 0]. 

4.4.5 The fundamental cut-sets matrix 

Another important sub-matrix of Q is defined, namely Qf' It is known 

that a spanning tree T defines a set of n-l fundamental cut-sets, one 

fundamental cut-set for each branch of T. The sub-matrix of Q corresponding 

to these n-l fundamental cut-sets is known as the fundamental cut-set matrix 

Qf of G with respect to the spanning tree T. Qf has dimensions (n-l) x m; the 

ith row of Qf is a linear combination of the nodes of the partitioned sub­

network. In the matrix Qf , an element +1 (-1) indicates branch direction from 

(to) this sub-network. 

The i th row of Qf carries the information: 

1- the number of cut-edges in the network if the ith branch is cut from T. 

2- the identification of all cutting edges in the network, from which the 

boundary nodes can be obtained. 

70 



Example (4.3): 

The fundamental cut-set matrix Qf of the graph of Figure 4.10 with respect 

to the spanning tree T = {e1 , e2 , e6 , e7 } is given in Figure 4.13 

e1 e2 e3 e4 e5 e6 e7 

e1 1 0 1 -1 0 0 0 

Qf= e2 0 1 -1 1 0 0 0 

e6 0 0 0 1 1 1 0 

e7 0 0 0 1 1 0 1 

Figure 4.13 The fundamental cut-matrix 

It is clear that the rank of Qf is n-1, the rank of Q [70]. Thus every cut-set (or 

cut vector) can be expressed as linear combination of the fundamental cut-set. 

The spanning tree partitioning technique partitions the spanning tree 

into k sub-spanning trees by cutting (k-1) edges from T. It uses the sub­

spanning tree edges to find the nodes of the subsystem. Each cut-edge 

determines one fundamental cut-set. This fundamental cut-set determines 

exactly all connections, which are minimum, between the i th subsystem to all 

other subsystems. The boundary nodes are the end-nodes of the cut-edges. 

4.5 Balancing the edges of the k sub-spanning trees 

The goal of partitioning a spanning tree is to cut the minimum number 

of edges such that the total number of boundary nodes is minimum and to 

have balanced internal nodes for the k sub-spanning trees. Since T, the 

spanning tree has n nodes and exactly n - 1 edges, if T is partitioned into k 

sub-spanning trees, the minimum number of cutting edges is exactly k-1 

edges. Let msbtree-i and nsbtree-i be the number of edges and nodes, respectively, 

in the i th sub-spanning tree. Then, the total number of nodes in the k sub­

spanning trees is: 

n = n sbtree-l + n sbtree-2 + ... + n sbtree-k ; (4.3) 
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the number of edges of each sub-spanning tree is: 

m -n -1' sbtree-i - sbtree-i , (4.4) 

and the total number of edges of the k sub-spanning trees is: 

m ktrees = msbtree-l + msbtree-2 + ... + msbtree-k • (4.5) 

Substituting equation (4.4) into equation (4.5) 

mktrees = (nsbtree-l -1) + (nsbtree-2 -1) + ... + (nsbtree-k -1); 

It follows that 

m ktrees = n - k . (4.6) 

Each sub-spanning tree belongs to a subsystem. It is required by the DSE to 

have balanced subsystems. Therefore, balancing the edges of the k sub­

spanning trees will balance the nodes of the k subsystems. 

In general, when k-l edges are cut from a spanning tree, the resultant k sub­

spanning trees might be balanced, and they might be unbalanced. Since a 

tree consists of nodes connected by edges with no loops, then the smallest 

possible tree has one node without an edge, i.e. when a spanning tree is 

partitioned into k sub-spanning trees, some of the sub-spanning trees might 

have only one node. This case is not desirable. 

It is required by the DSE to balance the internal nodes in the k sub-spanning 

trees and find the minimum boundary nodes that is with respect to equation 

(4.6). Equation (4.6) can be rewritten as: 

(n - k) = msbtree-l + msbtree-2 + ... + msbtree-k (4.7) 

Balancing the subsystems nodes is achieved by balancing the number of 

edges of the k sub-spanning trees. The algorithm of balancing the edges of the 

k sub-spanning trees is described below: 

Since mktrees are the edges of the k parts, then, define mp to be the 

edges of the one part. 

(4.8) 
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where L J indicates rounding down to the nearest integer. 

Let R be the remainder. Then 

R = (n - k) - fip ; 

and the range of R is: 

O<R<k-l 

(4.9) 

(4.10) 

This range of R determines exactly the number of possible balanced solutions, 

by distributing R equally and increasingly, in turns. 

If R=O, then the k sub-spanning trees are equal, i.e. there will be one solution. 

fisbtree-i = fip for i = 1, ... , k; (4.11a) 

and ifR > 0 then there will be R possible balanced solutions, as follows: 

for i = 1, ... , k-R 

fisbtree-i = fip + 1 for i = k-R+1, ... , k. (4.11b) 

After determining the edges of the balanced k sub-spanning trees it is easy to 

determine the nodes of each sub-spanning tree. 

4.6 Classifying the spanning tree nodes 

The partitioning technique classifies the nodes of the spanning tree, 

according to their degrees, into three types, as follows: 

If the degree of the i th node is one then the i th node is termed a bottom­

node. If the degree of the i th node is two then the i th node is termed a 

branch-node. If the degree of the i th node is more than two then the i th node 

is termed a junction-node. For example, Figure 4.14a is the IEEE 14-bus 

network, with a spanning tree shown in Figure 4.14b. 
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Figure 4.14a 

The IEEE-14 network 

In the spannIng tree of Figure 4.14b, the nodes { v 2' V 5' V 7' V 13' V 14 } are 

bottom nodes, the nodes {v l' V 6' V 8' V 9' V 10' V l2} are branch-nodes and the 

nodes {v 3' V 4' V 11} are junction-nodes. 

Figure 4.14b A spanning tree of the IEEE-14 network 
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4.7 The branches of a spanning tree 

A branch B in a spanning tree is an open path, consisting of one or 

more edges. Each branch in the spanning tree has two end-nodes. The two 

end-nodes are either junction-nodes or one of them is a junction-node and the 

other one is a bottom-node. The first end-node is termed VFirst' the first-node 

and the other end-node is termed the v Last' the last-node. 

The branch end-nodes are used to classify the branch. If the two end­

nodes of a branch are junction-nodes then the branch type is classified as BJ . 

If the branch has different end-nodes, i.e. one junction-node and one bottom 

node, then the branch type is classified as BB. 

The length of a branch, L, is the number of edges between its two 

end-nodes. The end-edges of a branch are termed the first-edge eFirst' and 

the last-edge e Last ' The first-edge has the first-node and the last-edge has the 

last-node. If the branch has one edge then the first-edge and the last-edge are 

the same. If the branch has two edges then one edge is the first-edge and the 

other is the last-edge. 

Let B represents a branch with EB be the set of edges of the branch. 

Let L be the length of B, and let v First be the first-node of B and v Last be the 

last-node in B. Similarly let e First be the branch first-edge in B and let e Last be 

the last-edge in B. The data that identifies the i th branch in the spanning tree 

can then be written as follows: 

(4.12) 

For example, the data of the branches of the spanning tree in figure 4.14b are 

shown in Table 4.1. 
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The i th 
V First V Last Branch EB L. 

1 eFirst eLast 

branch Type 

1 V 2 V3 BB {el' e2 } 2 el e2 

2 V3 v4 BJ {e 4 } 1 e4 e4 

3 Vs V 4 BB {e 3 } 1 e3 e3 

4 v4 v7 BB {eS ,e6} 2 es e6 

5 V3 V ll BJ {e lO } 1 elO elO 

6 V ll V13 BB { e9, eg , e7, ell' e12 } 5 e7 e12 

7 V ll v 14 BB {e 13 } 1 e13 e13 

Table 4.1 The data of the branches of a spanning tree of the IEEE-14 network 

Let the total length of a BJ branch be the length of the BJ branch 

plus the lengths of all BB and BJ branches, from the junction-node of the BJ 

branch, to the last bottom-node. 

Let SiBB be the sum of the lengths of the BB branches at the junction-

node of B j • 

Then SjBB = L BB-l + LBB-2 + .... (4.13) 

Let SrBJ be the length of the rth BJ branch to the bottom-node. 

Then SrBJ = L rBJ + SrBB . (4.14) 

The total length of the B j branch may then be defined as: 

(4.15) 

For example, in Table 4.1, B2 is a BJ branch with L2 = 1. The junction-node, 

v 4 , of B 2 has two BB branches B 3 and B 4' The length of B 3 is L3 = 1 and the 

length of B4 is L4 = 2. Applying equation (4.13) gives the sum of lengths of 
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the BB branches at B 2 , i.e. 

S 2BB = L BB-3 + L BB-4 = 1 + 2 = 3 . 

Since there is no BJ branches at the junction-node, v 4' of B 2 , then L2BJ = 0 

and equation (4.14) cannot be used, i.e. 

S2BJ = O. 

Thus the total length of B2 is obtained by using equation (4.15), i.e. 

S 2 = L 2 + S 2BB + S 2BJ = 1 + 3 + 0 = 4 

4.8 Overview of the spanning tree partitioning technique 

The initial goal of the partitioning technique is to partition a spanning 

tree, into k balanced sub-spanning trees. The final goal of the partitioning 

technique is to partition the network into k subsystems such that the number 

of internal nodes of the k subsystems is balanced, and the number of 

boundary nodes in the network is balanced with the number of internal nodes 

of the i th subsystem. 

The technique begins by checking the network connectivity. If the network 

has a spanning tree then the network is connected. The row reduction 

method, as Sectioned 4.2.1, is then used to obtain a spanning tree T from A. 

The number of edges in T is m t = n -1 edges. 

The partitioning technique, instead of searching for the k-1 cut-edges, 

finds one sub-spanning tree at a time and then cuts one edge. It terminates 

when k sub-spanning trees are obtained. Thus, it cuts k-1 cut-edges from the 

spanning tree. 

The partitioning technique finds the sub-spanning trees by finding the 

branches of the sub-spanning tree, such that the total length of the branches 

of the sub-spanning tree is either ffip or ffip +1. Table 4.1 is used to find the 

branches as explained in Section 4.9. 

77 



The partitioning technique is flexible in selecting the starting branch. 

It starts looking for a BB branch with maximum length. If all the BB 

branches have the same lengths, then the partitioning technique starts from 

a BB branch with maximum length and with the first order in the table. 

The parti tioning technique is designed as a general parti tioning 

technique, i.e. to partition every spanning tree into k equal or balanced sub­

spanning trees and to cut only one edge. Thus, if the selected BB branch gives 

a sub-spanning tree so that the technique has to cut more than one edge, then 

the technique will select the next BB branch with maximum length or next in 

order in the table. 

The partitioning technique then proceeds to find the branches of the 

first sub-spanning tree as explained in Section 4.9. After finding the first sub­

spanning tree the partitioning technique cuts only one edge. The end-nodes of 

the cut-edge are boundary nodes, one boundary node belongs to the first sub­

spanning tree and the second boundary node belongs to the new sub-spanning 

tree. 

The technique then rearranges Table 4.1 by deleting the used 

branches. Then it repeats the process of finding a new BB branch with 

maximum length, then finding the branches of the new sub-spanning tree 

and then cutting one edge. 

The process terminates when k sub-spanning trees are obtained, i.e. 

when the modified Table 4.1 is empty. 

4.9 Finding the branches of a sub-spanning tree 

A sub-spanning tree of ffip edges consists of one or more connected 

branches. Finding the branches of a sub-spanning tree is based on finding the 

first branch in each sub-spanning tree, and then by using its last-node, i.e. 

the junction node, to find the BB and/or the BJ branches where their lengths 

pI us the first branch length balance with ffi p . The first branch is a BB branch 

with maximum length. The length of B1 , first branch, is LI edges. Three 

cases are considered. 
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Case 1: 

If ffip > L1 , then this sub-spanning tree has more than one branch. The 

last-node of B1 is a junction-node. It may have BB branches or BJ branches 

or both. If it has BB branches and the length of anyone of them is > ffi p ' then 

this BB branch is a sub-spanning tree. Thus, starting from the bottom node of 

this BB branch cut the (ffip + 1) th edge. If the lengths of the BB branches are < 

ffip then the sum of the lengths of the BB branches is given by equation 

(4.13): 

SBB = L BB-1 + L BB-2 + ... ; 

and the total length of the first branch is given by equation (4.15): 

Sl = L1 + SBB; 

If Sl > ffip then cutting any of those BB branches produces unconnected and 

unbalanced sub-spanning trees, thus this spanning tree is rejected. 

If Sl = ffi p , then B1 and the BB branches form a sub-spanning tree, thus the 

other BJ branches must be cut. 

If Sl < ffi p , then B1 and the BB branches are part of the sub-spanning tree, 

and one or more BJ branches have to be added. Let B2 be a BJ branch that is 

to be added, then: 

Let S2 = Sl + L2, then S2 will be compared with respect to ffip as done with Sl' 

Case 2: 

If ffip < L1 then B1 is the first sub-spanning tree. 

The (L1 +l)th edge is the cut-edge. 

Case 3: 

If ffip = Lp then branches at the junction of B1 may be of BB type or 

BJ type or they may be of both types. There are two possible cases related to 

the suitability of partitioning this spanning tree. 

If the length of each BB branch is less than or equal to ffip then cutting 
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anyone of those BB branches gives unbalanced sub-spanning trees. Thus this 

spanning tree is not suitable and partitioning terminates. 

If the length of any of the BB branches is more than m , then the 
p 

partitioning technique will consider it the starting branch as in case 2. 

If there are only BJ branches, then the Bl branch is the first sub­

spanning tree. 

The first-edge of each BJ branch must be cut. This may and may not 

give equal or balanced results. 

Thus, the partitioning technique finds the branches of each sub­

spanning tree. The junction-node, at the end of each BJ branch, is used to 

find the other branches (or the remaining edges). 

The nodes of the first-edge are of different types. One of them is always 

a bottom node and the other node is either a branch node or a junction node. 

The bottom node is considered as v 1 and the other node is v 2 • 

These steps of finding the branches of a sub-spanning tree are as follows: 

1- Find from equation (4.8) m p , the number of edges of the sub-spanning 

tree 

2- Form the branches table as shown in Table 4.1. 

3- From the branches table find B j with maximum length. 

4- If L j > m p , then 

a. Starting from the first-edge in B j cut the (mp + l)th edge. 

b. Rearrange the table by deleting B j or by deleting (mp + 1) edges 

from B j • 

c. Go to step 3 to find a new sub-spanning tree 

5- Find 

a. n
BB

, the number ofBB branches at the junction of B j • 

b. n
B
l' the number ofBJ branches at the junction of B j • 
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6- If L i < m p , then 

a. Check the BB branches at the junction of Bi 

b. If the length of any of the II BB branches is > m p , then starting 

from the bottom-node of this BB branch cut the (mp + l)th edge. 

Delete the (mp + 1) edges of the BB branch from the table. 

Rearrange the table. 

c. By using equation (4.13) find SBB' the sum of the lengths of the 

remaining BB branches. 

d. By using equation (4.15), find Si = Li + SBB' 

e. If Si = mp and if llBJ = 1 then 

A. Cut the first-edge of the BJ branch. 

B. Delete the BJ, B i and the remaining BB branches from 

the table. 

C. Rearrange the table. 

D. Go to 3. 

f. If Si = mp and if llBJ > 1 then 

A. Find the total lengths of each BJ branch to the bottom­

node, i.e. let S·1,S·2'···'S. be the total lengths of each of 
1 1 IllBJ 

the llBJ branches to its bottom-nodes. 

B. If the total length of any BJ branch is less than mp then 

terminate. 

C. If the total length of every BJ branch is more than fi p , 

then cut the BJ branches from the first edge. 

D. Rearrange the table. 

E. Go to 3 

g. If Si < mp then 

A. Find the total lengths Sil,Si2"",SinBJ of each of llBI BJ 

branches to the bottom-node. 

B. Let S2h = Si + Sih for h = 1,2, ... , llBJ' 

C. If S2h = mp for h = 1,2, ... ,n BP then cut the other BJ 
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branches from the first-edge. 

D. Rearrange the table. 

E. Go to 3. 

7- If L j = mp then 

a. If the length of any of BB branches is > mp , then the 

partitioning technique will consider it Bj' the first branch with 

maximum length equalling L j • 

b. If any of BB branches has length < m p , then cutting any edge 

gives unbalanced sub-spanning trees. Thus this spanning tree is 

rejected. 

c. If there are only BJ branches, then 

A. Find the total lengths Sjl'Si2,···,Sjn BJ of each of n BJ BJ 

branches to the bottom-nodes. 

B. If the length of every BJ branch is > mp then cut the 

first-edge of the BJ branches. 

C. Rearrange the table. 

D. Go to 3. 

Example (4.4): Using the branches to partition the spanning tree 

The IEEE 14-bus network shown in Figure 4.13 is to be partitioned 

using the spanning tree given in Figure 4.14. The spanning tree has m t = 13 

edges. 

Let k = 2. 

The number of cut edges = k-1 = l. 

Each sub-spanning tree has mp = 6 edges. 

The partitioning technique starts by finding the branches with maximum 

length. From Table 4.1, B6 has the maximum length, L6 = 5. Since L6 < mp 

then check the branches at the junction of B 6 • The junction-node of B 6 is v 11 • 
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The junction-node has one BB branch and one BJ branch, i.e. nss = 1 and 

nS] = 1. From Table 4.1, the BB branch is B7 , and the BJ branch is B5 • 

The BB branch is B7 , and L7 = 1 < m p , then Sss = 1. 

which indicates that the first-edge of the B5 branch must be cut. Since B5 

has only one edge then B5 will be deleted from the table. The first sub-

spanning tree consists of the two branches B 6 and B 7 • 

The edges of the second sub-spanning tree = {e7 , e g , e 9, ell' e 12 , e 13 }. 

The nodes of the first sub-spanning tree 

= {v g, V 9' V 10' V 11 ' V 12' V 13' V 14 } • 

Rearranging Table 4.1, after deleting B5 , B6 and B7 , gives Table 4.2. 

Thei th 
v First V Last Branch EB L. 

1 
e First e Last 

branch Type 

1 V 2 V 4 BB {ep e 2,e4 } 3 e l e 4 

3 V 4 V5 BB {e 3 } 1 e 3 e 3 

4 V 4 V 7 BB {e5,e6 } 2 e 5 e 6 

Table 4.2 Modification of Table 4.1; k=2. 

From Table 4.2 BI has the maXImum length, LI = 3. There are two BB 

branches at the junction-node of B1 • Those are B3 and B 4 • Thus 

The edges of the second sub-spanning tree = {el' e 2, e 3, e 4' e 5 , e 6 }. 

The nodes of the first sub-spanning tree = the nodes of the first subsystem = 
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Having found the nodes of each subsystem, the property of the cut matrix as 

given by example (4.2) is used to find the cut-edges between the two 

subsystems. 

VI = { VI' V 2' V 3 ' V 4' V 5 ' V 6' V 7 } • 

V 2 = {V 8' V 9' V 10' VII' V 12' V 13' V 14 } • 

From A, the sum of the nodes columns of VI = {V l' V 2' V 3' V 4' V 5' V 6' V 7} gives the 

following cut-edges= {elO' eI4 ' eI5 } . 

The end nodes of the cut edges are the boundary nodes {v 3' V 4' V 6' V 8' VII} ; 

The number of boundary nodes is nb = 5; 

The internal nodes in each subsystem are obtained by deleting the boundary 

nodes from the subsystem nodes, i.e. the internal nodes of VI = {v l' V 2' V 5' V 7 } ; 

The number of internal nodes in VI is n ir = 4; 

Since the difference between the internal nodes of the k=2 subsystems is 1, 

the internal nodes of the two subsystems are balanced. Since the number of 

boundary nodes equals the number of internal nodes of the second subsystem, 

the boundary nodes are balanced with the internal nodes. 

Example 4.5: Using the spanning tree branches to partition the IEEE-14 

network for k=3: as for Example 4.4, but with k = 3. 

The number of cut edges k = k -1 = 3 -1 = 2 edges; 

f
14 -3l From equation (4.8), ffip = 3 = 3; and R = 2; 

Thus the k sub-spanning tree edges are {3, 4, 4} . 

From Table 4.1, B6 has the maximum length. 
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Since L6 > mp = 3, 

and 

then the first sub-spanning tree has mp_1 = mp + 1 = 4 edges from B 6 . 

SBB = 0 ; 

The edges of the first sub-spanning tree are E SPS-1 = {e8 , e 7 ' ell ' e 12 } . 

The nodes of the first sub-spanning tree are VSPS-1 = { V 8' V 9' V 10' V 12' V 13 } . 

Since (mp_1 + 1) = 5, the 5 th edge of B6 , namely e
9

, is a cut-edge. 

The cut-edges between the first subsystem and the other subsystems are 

obtained by adding the nodes columns in A, i.e. 

The cut-edges = {e lO , e 14 , e 1S ' e 17 , e 18 , e 19 } • 

deleted from Table 4.1. The updated table is shown in Table 4.3. 

The i th 
v First V Last Branch EB L. 

1 qFirst qLast 

branch Type 

1 v 2 V3 BB {el'e2 } 2 e 1 e 2 

2 V3 v 4 BJ {e 4 } 1 e 4 e 4 

3 V 4 Vs BB {e3 } 1 e 3 e 3 

4 v 4 v 7 BB {eS,e6 } 2 e s e 6 

5 V3 V 14 BB {e lO , e 13 } 2 e lO e 13 

Table 4.3 Modification (1) of Table 4.1; k=3. 

From Table 4.3, the first branch is B1 , with L1 = 2. The junction-node, v 3' of 

Bl has one BB branch, B s ' and one BJ branch, B2 • Then, n BB = 1 and TI B] = 1. 

First, the technique considers the BB branch B s : 
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Since SI = mp + 1 = 3 + 1 = 4; and since n BJ = 1 then the branches in Sl' i.e. B1 

and B s ' represent the second sub-spanning tree. 

The edges of the second sub-spanning tree are E SPS-
2 

= {e1' e
2

, e
lO

, e13 } . 

The nodes of the second sub-spanning tree are VSPS-2 = {v l' V 2' V 3' VIP V 14 } . 

Thus B 2 , the BJ branch is cut from the first-edge, i.e. e4 • 

The cut-edges = {e4,eS,e6,e13,e18,e19}. 

From the cut-edges, the boundary nodes are = {v 3' V 4 } . 

Note that B2 has one edge only, the cut-edge e4 • 

Table 4.3 may now be rearranged by deleting B1 , Bs and the cut-edge e4 , 

which is B 2 • The result is shown in Table 4.4. 

Thei th 
v First V Last Branch EB L. 

1 qFirst qLast 

branch Type 

3 V4 Vs BB {e3} 1 e3 e3 

4 V4 V 7 BB {eS,e6} 2 es e6 

Table 4.4 Modification (2) of Table 4.1; k=3. 

The technique proceeds looking for the third sub-spanning tree, starting from 

B4, which has the maximum length, L4 = 2. At the junction node v 4' of B4 

there is only one BB branch, i.e. B3 • 

Thus 

S3 = L3 + S3BB = 2 + 1 = 3; 

Since S3 = mp = 3, then the branches in S3 represent the third sub-spanning 

tree. 

The edges of the third sub-spanning tree are ESPS-3 = {e3, e s ' e6} . 
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The nodes of the third sub-spanning tree are VSPS-3 = {v 4' V 5' V 6' V 7 } . 

The cut-edges = {e4,e5,e6,elO,eI5}' 

This completes the partitioning procedure. 

4.10 Simulation results 

The spanning tree partitioning technique has been applied to partition 

several networks including the standard IEEE-14, IEEE-30 and IEEE-57 

networks given in Appendix C. The source code of the partitioning technique 

was written in Matlab. 

The spanning tree partitioning technique partitions the spanning tree 

of the IEEE 14-bus into equal or balanced k sub-spanning trees, following 

which the sets of boundary nodes and internal nodes in each subsystem are 

identified. The results are checked for satisfaction of the DSE constraints, i.e. 

equal or balanced cases. If the results are satisfied with the DSE constraints, 

then the results are saved, and the method continues with k increased by 1. If 

the results do not satisfy the DSE constraints, the procedure terminates. 

Tables 4.5-4.7 show the results of balanced partitioning spanning trees 

of the IEEE 14-bus, the IEEE 30-bus and the IEEE 57-bus. 

k Number fip Number llb Vb ll· IT 
V. 

IT 

of cut- of cut-

edges In edges In 

T G 

2 1 6 3 5 3,4,6,8,11 llIr = 4; VIr = {1,2,5,7} ; 

ll2r = 5 V 2r = {9,10,12, 

13,14} 

Table 4.5 The results of balanced partitioning the IEEE 14-bus 
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k Number ffip Number nb Vb nir Vir 

of cut- of cut-

edges in edges in 

T G 

2 1 14 4 7 4,6,9,10, n ir = 12 ; VIr = {1,2,3,5,7 ,8, 
, 

12,24,25 n 2r = 11 
11,26,27,28,29,30} 

V 2r = {13,14,15, 

16,17,18,19,20,21, 

22,23} 

Table 4.6 The results of balanced partitioning the IEEE 30-bus 

k Number ffip_i Number nb Vb n· IT Vir 

of cut- of cut-

edges in edges in 

T G 

2 1 27' , 8 14 7,9,19,20, n ir = 21; VIr = {1,2,3,4,5, 

28 29,38,41, n 2r = 22 
6,8,10,11,12,13, 

42,44,45, 
14,15,16,17,18, 

43,46,47,50,51} 
48,49,55, 

56 
V 2r = {21,22,23, 

24,25,26,27,28, 

30,31,32,33,34, 

35,36,37,39,40, 

52,53,54,57} 

Table 4.7 The results of balanced partitioning the IEEE 57-bus 
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4.11 Performance evaluation 

The network partitioning process principally involves a search for the 

minimum number of cut-edges among the network edges. The decision 

making process is used to evaluate whether the number of boundary nodes, 

which are the end-nodes of the cut-edges, is equal or balanced with the 

number of internal subsystem nodes. 

U sing the spanning tree parti tioning technique to parti tion the 

network reduces the search-time and reduces the number of decision-making 

operations drastically. 

The technique starts by constructing the branches table as Table 4.1. 

The number of operations to find the length of the i th branch is O(L j ), and 

since the total length of all branches is fit' then the total number of 

operations to find all branches is O(fi t ) • 

The partitioning technique then uses the data in the table to find the 

starting branch, i.e. a branch with maximum length. One comparison 

operation, to the lengths of the branches, is sufficient to find such a branch. 

In the partitioning technique, the decision-making process is a 

mathematical addition operation and a comparison operation. First, the sum 

of the lengths of branches of one direction is obtained, and compared with fi p , 

the edges of a sub-spanning tree. The decision is taken only at junction-nodes. 

Thus the technique replaces the wide range searching process with a 

few steps of decision-making. The number of the decision-making steps is 

related to number of junction-nodes in the spanning tree. 

The technique evaluates the suitability of the obtained spanning tree. 

If the obtained spanning tree is suitable it terminates when k balanced sub­

spanning trees are obtained, otherwise it terminates without partitioning the 

spanning tree. 

The check of the obtained k subsystems for meeting the DSE 

requirements also involves a matrix addition operation and comparison 
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operation. When the matrix addition operation is performed on the D j nodes 

columns from A, the result is the cut-edges between the i th subsystem and the 

other subsystems. For one subsystem, the matrix addition operation, 

maximally, takes O(E. -1). Thus for the k parallel subsystems it takes the 
k 

same number of operations as for the one subsystem. Then, O(2k) set 

operations are used to obtain the boundary nodes and the internal nodes of 

each subsystem. Balanced partitioning is obtained by comparing the number 

of internal nodes of the k subsystems with the boundary nodes. Thus, the 

total number of operations taken by the partitioning technique is 

D 
0(--1+ 2k). 

k 

4.12 Limitations of the partitioning technique 

Performance of the partitioning technique is limited by a number of factors. 

Limitation 1: 

For k partitions, the technique is designed to cut (k-1) edges in the spanning 

tree. However, not every spanning tree can be partitioned into k balanced 

sub-spanning trees. If more than (k-1) edges are cut from a spanning tree, 

then there are more than k sub-spanning trees. Thus, if the technique is 

directed to cut more than (k -1) edges from the spanning tree, the procedure 

will terminate and the spanning tree will be rejected as unsuitable. 

Limitation 2: 

A network has many spannIng trees. To overcome limitation 1, another 

spanning tree has to be obtained. As described so far, the technique obtains a 

spanning tree by using the row reduction method. To obtain another 

spanning tree the network incidence matrix needs to be permutated. The cost 

of permutation is undesirable. In an attempt to overcome this difficulty, 

alternative methods for obtaining a sequence of spanning trees have been 

investigated. A further difficulty is that there is no guarantee that each of the 

new spanning tree matrices will have the 'descending staircase' shape 
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described in Section (4.3.2). Thus, the partitioning technique needs to be 

modified for use with a new spanning tree matrix. 

Limitation 3: 

The principal steps in the partitioning procedure described in this chapter 

may be summarized as follows: 

Step 1: Partitioning of the obtained spannIng tree into k balanced sub­

spanning trees. 

Step 2: Finding the boundary nodes and the internal nodes of each 

subsystem. 

Step 3: The decision step. It checks whether the partitioned k subsystems 

satisfy the DSE requirements or not. 

Step 3 illustrates a disadvantage of this procedure, shared by other 

partitioning techniques such as those described in Chapter 3, when applied to 

the DSE problem. The constraints which apply due to DSE are not 

incorporated into the partitioning algorithm; the decision on suitability of the 

result for DSE is made only at the very last moment in the procedure. If the 

result is unsuitable, much computational effort has been expended for little 

return. 

These limitations lead to a revised approach of partitioning the 

network, in which the objective is to seek a substantial reduction in the 

computational effort required: (i) to generate new spanning trees; and (ii) to 

obtain a balanced partition of a network whilst meeting the DSE constraints. 

Emphasis is to be placed on identification of the sets of boundary nodes and 

the k-balanced internal nodes much earlier in the overall procedure. This 

aspect is addressed in Chapter 5. Generation of new spanning trees and the 

revised partitioning procedure are investigated in Chapter 6. 

4.13 Chapter review 

In this chapter, a new and computationally efficient technique for 

partitioning a spanning tree has been developed to satisfy the DSE 
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requirements, i.e. to balance the total number of boundary nodes from the k 

subsystems with the number of subsystem internal nodes. 

The partitioning technique described in this chapter is suitable for 

application to networks of general configuration and size. The technique is 

based on using the spanning tree properties rather than a purely heuristic 

procedure. It uses the spanning tree branches to find the connected k sub­

spanning trees by cutting k-1 edges. The partitioning technique is designed to 

obtain balanced sub-spanning trees only, where 'balance' is in the sense of 

equal, or near-equal, numbers of edges in the sub-spanning trees. 

The network has many different spannIng trees. Partitioning a 

spanning tree of a network is sensitive to the obtained spanning tree. Some of 

the partitioned spanning trees may give balanced k sub-spanning trees and 

others may not give balanced sub-spanning trees. Some of the balanced k sub­

spanning trees may satisfy the DSE requirements and others may not satisfy 

the DSE requirements. 

The partitioning technique is fast and flexible in selecting the starting 

branch, i.e. it uses a table such as Table 4.1 to find the i th branch that has the 

maximum length to start every new sub-spanning tree. 

Once the k sub-spanning trees are obtained, the technique uses a fast 

operation to find the boundary nodes between the k subsystems, namely a 

matrix addition operation. Then the internal nodes of the k subsystems are 

obtained. Finally, the technique uses a single comparison operation to test 

the suitability of the k subsystems for DSE. 

The performance of the technique has been tested on several IEEE 

networks. Following the DSE check, if the obtained spanning tree is suitable, 

then the result is accepted; if the obtained spanning tree is not suitable, the 

result is rejected. On successful completion of the procedure, a database 

representation of the partitioned subsystems can then be used by a DSE 

algorithm. 
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Chapter 5 

The conditions of ideal balanced partitioning 

5.1 General 

Network partitioning, as stated in Chapter 1, is a conditional division 

operation. The DSE restrictions defined in Chapter 2 introduce three 

important constraints on the partitioning of a network. In this chapter, the 

DSE restrictions are examined in further detail, formalized in a 

mathematical form, and the conditions of ideal balanced partitioning are 

introduced. 

5.2 The partitioning restrictions of DSE 

The decomposition of state estimation into two levels with parallel 

computation at one level, introduced in chapter (2), introduces three 

important restrictions on partitioning of a network. Firstly, partitioning the 

network into k subsystems requires that: (i) every subsystem is defined by its 

internal nodes and boundary nodes; (ii) no overlapping occurs between the 

sub-system nodes; and (iii) all nodes in the global network are present in the 

partitioned model. Secondly, in order that the k parallel processors compute 

their tasks without unnecessary delay, their load should ideally be balanced 

in size. Balancing the k parallel processors necessitates that the network 

must be partitioned into k subsystems of identical sizes. Thirdly, determining 

k that satisfies the decomposed SE is of great significance. If k=l (the global 

case), all computations will be done in one processor at lower level; if k=n, 

then all computations will be done in the upper level processor, since all 

nodes are then of boundary type. Both cases are attended by the complexity 

associated with the integrated state estimation problem, particularly for large 

networks. The number of subsystems k has a direct relation with the 
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boundary nodes and an indirect relation with the internal nodes. In general, 

as k increases the number of boundary nodes increases and the number of 

internal nodes decreases. The SE requirements necessitate that the size of 

computation at the upper level should be no greater than that at the lower 

level. Accordingly, the best k is defined as that which minimizes the number 

of subsystem internal nodes whilst providing balance between internal nodes 

of all subsystems and the total number of boundary nodes. Thus, the task 

incorporating the DSE restrictions can be summarized as follow: 

1. Define the k subsystems by partitioning with no overlapping. 

2. Balance the internal nodes of the k subsystems. 

3. Balance the global boundary nodes with the internal nodes. 

4. Seek the maximum value ofk such that balance can be maintained. 

5.2.1 Defining the k subsystems 

When the network is partitioned into k non-overlapping subsystems, 

each subsystem is partly characterized by its nodes, nj in number. Whether 

balance is present or not, the sum of nj across all values of i must equal n, 

the total number of nodes in the network. 

Let V be the set of network nodes with n elements. Then 

(5.1) 

Let Sj represent the subset of nodes of the i th subsystem and nj be the 

number of elements of Sj. If k>l, then V is partitioned into k subsets of 

nodes such that: 

and 

V = Sl EB S2 EB ..... EB Sk; 

which implies that 

S. n S. = 0 for i, j = 1 : k and i :;t j . 
1 J 
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Hence 
k 

n=L,ni. 
i=l 

(5.4) 

Let the subset of nodes of the i th subsystem be classified into two subsets, the 

subset of boundary nodes and the subset of internal nodes. Let Vib be the 

subset of boundary nodes of the i th subsystem with nib the number of 

elements of Vib . Let Vir be the subset of internal nodes in the i th subsystem 

with n ir be the number of elements of Vir. 

Then n· = n·b +n. I I Ir • (5.5) 

Let Vb be the set of global boundary nodes in the network with nb be the 

number of elements of Vb' then: 

and 
k 

nb = L,n ib ; 
i=l 

(5.6) 

(5.7) 

Let Vr be the set of global internal nodes in the network with nr the 

number of elements of Vr , then 

and (5.8) 

Thus, from equation (5.3) and equation (5.4), n, the network nodes, equals the 

sum of global boundary nodes and the total number internal nodes in the 

network, i.e. 

(5.9) 

5.2.2 Balancing the internal nodes 

Two or more subsystems have balanced internal nodes if the 

difference between them is no more than one. It is required by the DSE to 
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balance the internal nodes of the k subsystems. Ideal balancing is achieved 

when 

(5.10) 

Let np be the number of internal nodes per partition, i.e. 

(5.11) 

where L J indicates rounding down to the nearest integer. If fk IS the 

remainder, 

(5.12) 

and the range of f k is: 

(5.13) 

Let the allowable difference between the internal nodes of the k subsystems 

to be one node, then 

and 

Then, if fk > 0, then balancing is achieved with 

nir = n pI = np for i=l, ... , k-f k ; 

and 

n· = n = n + 1 for i = k - fk + 1, ... , k . 
IT pu P 

The set R of subsystems then consists of the disjoint subsets 

R L : (k - f k) subsystems of size n pI ; 

And 

R u: f k subsystems of size n pu • 

If fk = 0, then the balancing is achieved with 

nir = n pI = np for i=l, ... , k. 

The set R of subsystems then consists of the disjoint subsets 

R= R L: k subsystems of size n pI = n p . 
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(5.15) 

(5.16a) 

(5.16b) 

(5.17a) 

(5.17b) 

(5.18a) 

(5.18b) 



5.2.3 The balancing number of boundary nodes 

It is required by the DSE to partition the network such that nb IS 

balanced with n ir . The value of nb has a direct relationship with k, whilst the 

value of nir has an indirect relationship with k. When k = 1, nb = 0 and 

nir = n; (i.e. i = 1). As k increases, nb increases and nir decreases. As k 

approaches n, n b approaches nand n ir a pproaches zero. Since, In a 

connected network, each subsystem must contain at least one boundary node, 

then the lower limit of nb is 

(5.19) 

An upper limit on nb is provided by the balancing requirements for the DSE, 

l.e. 

n b < n pI; f k = 0 . 

Hence, the range of nb is given by: 

k < n b < n pu; f k > 0 . 

k < n b < n pI; f k = 0 . 

5.2.4 The possible range of k 

(5.20a) 

(5.20b) 

The lower limit of k is k = 2. Since the relation between nb and k is 

direct, and since the DSE requires nb < nir , then equation (5.19) gives the 

upper limit ofk, which balances nb and nir . Accordingly, equations (5.20) give 

the range of k which balances the k nir's at the lower level, and balances 

between the global boundary nodes at the upper level with nir at the lower 

level. This range is 

(5.21) 

Having introduced the partitioning restrictions of the DSE, applying these 

restrictions on the different connections a network may have is discussed in 

Section (5.3). 
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5.3 The possible range of cut-edges 

Since Vb = {VIb , V 2b ,···, Vkb } is the set of global boundary nodes of the 

partitioned network, then let Eb be only the set of cut-edges between the 

Vb nodes such that the removal of Eb disconnects the network into k 

subsystems, and let mb be the number of elements of Eb • Note that the edges 

between the boundary nodes of the i til subsystem are not cut-edges. For 

example, Figure 5.1 shows the boundary nodes and the set of cut-edges for a 

three subsystems partitioning. The set of cut-edges is Eb = {e2 , e3 , es , e6 , e7 } and 

fib = 5. The edges el and e4 are not cut-edges. 

Figure 5.1 The set of cut-edges between a three subsystems 

A cut-edge is termed an independent cut-edge if its end-nodes are 

not shared by any other cut-edges. For example, es ' in Figure 5.1, is an 

independent cut-edge. Two or more cut-edges are termed dependent cut­

edges if they are shared by one or more boundary node. For example, in 

Figure 5.1, e
2

, e
3

, e
6 

and e7 are dependent cut-edges, they share VI' V 6 and 

There is a relation between the number of cut-edges fib' the number of 
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boundary nodes nb and the number of subsystems k. The set of cut-edges may 

be dependent, independent or combination of dependent and independent cut­

edges. The dependent set of cut-edges may form a cycle and they may not 

form a cycle. The number of boundary nodes may be odd or even accordingly. 

If the cut-edges are independent, then 

(5.22) 

If the cut-edges are dependent and they are not in a cycle, then they form a 

tree, and the number of cut-edges between the nodes of Vb is 

(5.23) 

Let the cycle formed by the cut-edges only be termed the boundary-cycle 

and let C b be the number of boundary cycles in network. If the cut-edges are 

dependent and fib > n b , then the cut-edges are forming one boundary-cycle, 

for which 

(5.24) 

and 

(5.25) 

In this case, the distribution of the cut-edges between the boundary nodes has 

a direct relationship with k the number of subsystems, i.e. 

if nb = k then njb = 1, thus fib = nb = k and Cb = 1; 

if nb > k then njb > 1. If fib > nb then Cb > 1. In this case, the distribution of 

the cut-edges between the set of boundary nodes Vb has a direct relationship 

with the distribution of the Vb nodes between the k subsystems, i.e. the 

number and distribution of the cut-edges depend on k and nib for i =1, 2, ... ,k. 

For example, let nb = 6 , then 

If k = 2 then n'b for i = 1, 2 can be one of the following combinations: 
, 1 

Casel: nIb = 1 and n 2b = 5; 

Case2: nIb = 2 and n 2b = 4 ; 
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Case3: nIb = 3 and n 2b = 3. 

Casel: nIb = 1 and n 2b = 5. The cut-edges are dependent, but they cannot form 

a cycle, then 

fib = nb -1 = 5. 

Case2: nIb = 2 and n 2b = 4. Then from every boundary node in V
ib 

there are 

four cut-edges to the four nodes in V2b , one cut-edge to each node in V2b . Since 

Vib has nIb = 2, then there are (nIb = 2) x (n 2b = 4) = 8 cut-edges, i.e. 

Case3: nIb = 3 and n 2b = 3. Then from every boundary node in Vib there are 

three cut-edges to the n 2b = 3 nodes in V2b , one cut-edge to each node in V2b . 

Then the maximum possible number of cut-edges between the two 

subsystems is: 

Ifk=3, then nib for i = 1, 2 can be one of the following combinations: 

Casel: nIb = 1 and n 2b = 1 n3b = 4 ; 

Case2: nIb = 1 and n 2b = 2 n3b = 3 ; 

Case3: nIb = 2 and n 2b = 2 n3b = 2 ; 

Casel: nIb = 1 and n 2b = 1 n3b = 4. 

Case2: nIb = 1 and n 2b = 2 n3b = 3 . 
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Case3: nIb = 2 and n 2b = 2 n3b = 2. 

Then fib = (n Ib ).(n 2b) + (n Ib ).(n 3b) + (n 2b ).(n 3b) 

= (2).(2) + (2).(2) + (2).(2) = 12; 

Let fib-max be the maximum number of cut edges between the nodes of Vb In 

the k subsystems, then 

fib-max = (n Ib ).(n 2b) + (n Ib ).(n 3b) + ... + (n Ib ).(n kb) 

+ (n 2b ). (n 3b ) + (n 2b ). (n 4b ) + ... + (n 2n ). (n kb ) 
(5.26) 

+ (n (k-I)b ).(n kn ) 

This shows that, for a single value of n b , there may be different numbers of 

cut-edges. 

5.4 The partitioning restrictions and the network different 

connections 

One of the difficulties facing designing a general partitioning technique 

IS that a network of m edges and n nodes has many different possible 

connections. The m edges can be connected in many different ways between 

the n nodes to form the network. When the different connections of a network 

are partitioned into k to satisfy the DSE restrictions, some of the different 

connections can give the balanced partitioning results, and many other 

connections cannot give the balanced partitioning results. 

Figure 5.2a A network 

wi th 14 nodes and 20 edges 
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For example, Figure 5.2a is the IEEE 14-bus with m=20 edges and 

with n=14 nodes. Figure 5.2b is another possible connection with m=20 edges 

and with n=14 nodes. If those two different network connections are 

partitioned into two parts, such that the number of internal nodes in the i th 

part is equal or balanced with the number of the global boundary nodes, then 

they may give the equal or balanced partitioning results and they may give 

different partitioning results. For example the connection of Figure 5.2a gives 

the balanced partitioning results. These results are nb = 5, n lr = 4 and 

n 2r = 5. The connection of Figure 5.2b, however, cannot give balanced 

partitioning results. The partitioning results of Figure 5.2b are nb = 6 and 

nlr = n 2r = 4. It is also possible to obtain balanced partitioning results by 

changing the end nodes of one or more edges. 

There are few possible connections of G = (14, 20) other than Figure 

5.2a that can give balanced partitioning results as Figure 5.2a, and there are 

many other possible connections of G = (14, 20) that cannot give balanced 

partitioning results as Figure 5.2b. 

The possibility to know that a network connection can or cannot give 

balanced partitioning results, prior to use of a partitioning technique, 

remains an unsolvable problem for general network. 

The concern here is on those connections, which can gIve equal or 

balanced partitioning results. Those connections share common properties 

between them. 

The first property is related to the existence of the equal or balanced 

partitioning values between the boundary nodes and the internal nodes in the 

network, i.e. the nb value and the nir values for i=1,2, .. , k. The second 

property is related to the existence of the exact number of cut-edges that 

gives this number of boundary nodes in that network connection. The ideal 

conditions of partitioning a network are discussed in Sections (5.5). 
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5.5 The conditions of ideal balanced partitioning 

An ideal balanced partitioning of a network is a conditional 

partitioning in which the number of global boundary nodes is balanced with 

the number of internal nodes in the i th subsystem fori = 1,2, ... ,k. 

Thus the ideal balanced partitioning conditions can be formulated as follows: 

Condition 1: Let the conditional partitioning be termed equal partitioning 

if 

(1.1) nb = np; 

(1.2) fk = 0, i.e. nir = np for i = 1,2, ... ,k. 

Condition 2: Let the conditional partitioning be termed balanced 

partitioning if the difference is one between nb and np' This has two cases: 

Case 1: 

(2.1) nb = npl ; 

and the internal nodes of the k subsystems have the difference of one, i.e. 

(2.2) fk > 0, i.e. nir = np = npl for i = 1,2, ... , j, 

and n· = n + I = n for i = J' + 1, ... , k . 
IT P pu 

Case 2: 

(3.1) nb =np +1; 

and the internal nodes of the k subsystems are either equal, i.e. 

(3.2) fk >0, i.e. nir =np =n pl for i=I,2, ... ,k 

or they have only a difference of one, i.e. 

(3.2) fk > 0, i.e. nir = np = npl for i = 1,2, ... , j , 

and n· = n + I = n for i = j + 1, ... , k . 
IT P pu 
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In all cases, n is given by equation (5.9), i.e. II = llb + llr . 

Applying these conditions for a global ideal balanced-partitioning gives 

the following: 

From condition (1.2), since llir = IIp for i = 1,2, ... , k, then llr = k.ll p. 

Equation (5.9) can be written as follows: II r = II - llb . 

Substituting condition (1.2) in equation (5.9) gives: k.ll p = II - llb . 

Substituting condition (1.1), i.e. llb = IIp' and solving for llb: 

Therefore the exact value of llb that satisfies condition 1 is given by 

II 
llb = . 

k+l 

The upper and lower limit of llb can be determined by equations (5.20a) and 

(5.20b) according to the value of f k • 

If f k = 0, k < II b < II pi . 

If f k > 0, k < II b < II pu . 

In all cases 

II 
llb <-­

k+l 
(5.28) 

Equation (5.28) gives the upper limit of llb' global boundary nodes in the 

network, which is balanced with np the internal nodes of a partition. In 

practice, llb is preferable to be llb < _ll_ for efficient computation. The global 
k+l 

boundary nodes, llb' is an integer number, and the result of dividing n by 

(k+1) is not always an integer number, hence the division result is rounded 

down to the lower integer l II J and rounded up to r II l the upper integer, 
k+l k+l 

giving the range ofn b , i.e. 

(5.28a) 
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and 

n - . r n l 
bu - k + 1 ' 

And, in all cases, 

(5.28b) 

This theoretical nb will be equal or balanced with np the internal nodes 

of the i th part. The following theorem establishes that the network set of 

nodes possess the global balance property. 

Having introduced the conditions for ideal balanced partitioning and 

the possible range of cut-edges between the boundary nodes that gives this 

ideal balanced partitioning, those conditions and the possible range of 

number of the cut-edges are the bases of Theorem (5.1). 

Theorem (5.1) 

If a network G=(n, m) is partitioned into k parts, k>l, such that 

n 
(1) nb = >k 

k+1 

and 

n-n 
(2)n p = b>k-1, 

k 

then 

(1) nb = np or nb - np . 

Also, if cb = 0, i.e. the cut-edges only do not form a cycle, then the range of the 

number of cut edges is 

(2) r n; 1 < fib < (nb -1) , 

and if Cb > 0, i.e. the cut-edges only form at least one cycle, then the range of 

the number of the cute-edges is 

Proof: 
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Let the network set of nodes be given as described in Section (5.2.1), i.e. 

(5.1) 

Let V be partitioned into k>l subsystems, as described in Section (5.2.1), i.e. 

V = {S1' S2'··· , Sk } , (5.2) 

(5.3) 

Let n, the network nodes be classified and defined as described in section 

(5.2.1), i.e. 

k 

nb = Lnib . 
i=l 

(5.4) 

(5.5) 

(5.7) 

(5.8) 

(5.9) 

Let np be the number of internal nodes per subsystem as defined in Section 

5.2.2, i.e. 

O<fk <k-l. 

Let n p1 and npu are as defined in Section 5.2.2 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

The proof consists of establishing firstly, necessary conditions then sufficient 

conditions. The necessary conditions consists of determining firstly the values 

of nb and n p • Then determining the balance between nb and n p • 

The first necessary condition is to determine the balanced value of nb: 
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if nb = n = k, then each subsystem has exactly one boundary node; 
k+l 

if nb = n > k, then each subsystem has at least one boundary node. 
k+l 

The second necessary condition is to determine the value of np by dividing 

the global internal nodes, nr = n - nb, between the k subsystems such that: 

(1) The number of internal nodes in each subsystem is equal or greater 

than (k-1); and 

(2) The k subsystems internal nodes are equal or balanced. 

Case 1: 

If nb = k, the balanced partitioning is achieved only if np = n pl = l n ~nb J = k -1; 

and the equal partitioning is achieved only if np = npu = l n ~nb J = k. 

Case 2: 

If n > k then the balanced value of n is achieved only if one of the following b , p 

two cases occurs. 

Case 1: fk > 0, then 

n;c = n pl = l n ~nb J> k for i = 1: k - fk; (5.16a) 

and 

n. = n = n + 1 for i = k - fk + 1 : k ; 
IT pu P 

(5.16b) 

Then the set R of subsystems then consists of the disjoint subsets 

R L : (k - f k) subsystems of size n pI ; (5.1 7 a) 

And 

R u: f k subsystems of size n pu • 
(5.17b), 

Case 2: fk = 0, then equal partitioning is achieved with 
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n· = n I = n for i = 1 : k ,. 
If P P 

and 

R= R L: k subsystems of size n I = n . p p (5.18) 

and 

Now, the necessary conditions for global balance between the boundary nodes 

and the internal nodes can be formulated as follows: 

Then by substituting in the network nodes defined by equation (5.9), i.e. 

and solving for n b , 

Then, 

n 
n =--

b k +1 . 

The upper limit on nb is given by equation (5.20) to satisfy the balancing 

requirements for the DSE, i.e. 

n b < n pI; f k = 0 . 

Thus 

< n nb - . 
k+1 

The sufficient conditions: 

The sufficient conditions are combination of two parts: the number of 

cut-edges between the boundary nodes, and the dependent and independent 

relationships between those cut-edges. 

It is suffice to know that: 

if the cut-edges are independent, then Cb = 0, 
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and 
m =r~l' b 2' 

and if the cut-edges are dependent and C b = 0, then the cut-edges form a tree 

and mb = llb -1 . 

If the cut-edges are dependent or mixed of dependent and independent and 

Cb > 0, then 

llb < mb < mb-max ; where mb-max is defined in equation (5.27) 

• 
if the number of cut edges is more than II b then Cb > 1. 

5.6 Theoretical balanced partitioning results 

The theoretical partitioning balanced values, i.e. llb and lllr,ll2r, ... ,n kr 

that satisfy the DSE restrictions for any network can be obtained by applying 

theorem (5.1). For example, the theoretical balanced partitioning values for 

the IEEE-14 network are calculated for k=2 and for k=3. 

5.6.1 Theoretical balanced results for k=2 

The IEEE-14 has n = 14. Let k = 2, then 

1. Calculating the theoretical nb is done by equation (5.28), i.e. 

fib =lk:lJ 
Substituting n=14 and k=2 gives the following result 

II =l~J=4' b 2 + 1 ' 

then 
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2. Calculating the internal nodes is done by equation (5.9), i.e. 

2.1 Case llbl = llb = 4, substituting the values ofn and nb, gives 

the following: 

nr = 14 - 4 = 10, internal nodes. 

The number of internal nodes in each subsystem is given 

by equation (5.11), i.e. 

Substituting the values gives the following: 

np =ll~ J=s; and fk =0. 
Thus 

This theoretical nb = 4 is the minimum value which provides balance between 

the two levels, i.e. the global boundary nodes at the upper level and the equal 

internal nodes of the k subsystem at the lower level as shown in Figure 5.3. 

Figure 5.3 Theoretical results of partitioning the 

IEEE-14 network when k=2 and nb = llbl = 4 

2.2 Case llbu = llb + 1 = 5, 

Substituting the values ofn and llb' gives the following: 

The total internal nodes are nr = II - llbu = 14 - 5 = 9; 

. d . . lllr J 19 J 4' The number of Internal no es per partItIon IIp = k = "2 = , 

fk = 9-2x4=1. 
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Therefore n Ir = 4 and n 2r = 5, as shown in Figure 5.4. 

Figure 5.4 Theoretical results of partitioning the 

IEEE-14 network when k=2 and nb = n bu = 5 

These partitioning values k, nb and nir for i=1,2, satisfy the DSE restrictions. 

5.6.2 Theoretical balanced results for k=3 

Let k = 3, then 

1. The theoretical nb is calculated by equation (5.28) for k=3, gives: 

n b=l3
1
:1J=3; llbl =llb =3; llbu =llbl +1=4. 

Case 1: nb = nbI = 3 

n = n - n = 14 - 3 = 11 . r bI , 

n = l~J = 3· and f = 2· 
p 3 ' k' 

R L : 1 subsystem nIr = np = 3; 

R u:2 subsystems nir = np + 1 = 4 ; for i=2,3 

Figure 5.5 Theoretical results of partitioning the 

IEEE-14 network when nb = nb] = 3 
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These theoretical partitioning values shown in Figure 5.5 satisfy the DSE 

restrictions. 

Case 2· nb = n = 4 . bu 

n =n-n =14-4=10· r bu , 

fl. = ll~ J = 3; and fk = 1 

R L: 1 subsystem nir = np = 3 ; for i=1,2 

Ru: 2 subsystems nir = np + 1 = 4; for i=3. 

Figure 5.6 Theoretical results of partitioning the 

IEEE-14 network when nb = nbu = 4 

These theoretical partitioning values shown in Figure 5.6 satisfy the DSE 

restrictions. 

5.7 Chapter review 

The introduction of Theorem (5.1), the ideal balancing partitioning 

theorem, defines and determines without using a partitioning technique, the 

balanced partitioning values, i.e. nb, nir for i = 1, 2, ... , k and the range of fib. 

The goal of the existing partitioning procedures is to find the balanced 

partitioning values. The existing methods for finding these values are 

heuristic, uncertain and time consuming. 

Knowing the ideal balanced partitioning values, as described by 

Theorem (5.1) changes the direction, i.e. the goal and the methodology, of the 
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partitioning techniques. These values are now known, thus the new goal of 

the partitioning procedure is not to find these values but to check of the 

existence of these values in the given network. 

The goal of the partitioning procedure now is to use these values and to 

decide whether the given network has these values or not and if the network 

has these values which set of edges is the set of cut-edges which need to be 

removed to give these ideal balanced partitioning values. 

The progress towards these goals requires more understanding about 

the natural network properties. Thus identification of the suitable cut-edges 

and how to find them is postponed to Chapter 8 and more network properties 

are introduced in Chapter 7. 

Chapter 6 presents a new fast method for partitioning a network, i.e. to 

obtain the ideal balanced partitioning values. The technique illustrates an 

application of Theorem (5.1). 
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Chapter 6 

A fast maximum degree technique 

6.1 General 

In this chapter, a new and fast partitioning technique is described to 

find the balanced partitioning values, as defined by theorem (5.1), of a 

directed network. The proposed partitioning technique finds first the global 

boundary nodes then the internal nodes of the k subsystems. 

The algorithm of the maximum degree partitioning technique is based 

on finding two minimum covering sets of nodes with higher degree, one 

covering set from the directed network and one covering set from a spanning 

tree of the network. The intersection of the two sets gives a subset of nodes 

termed the common nodes. The common nodes are connected in the network 

and they are not always connected in the spanning tree. The set of common 

nodes represents the minimum global boundary nodes in the network. The 

connected subset of common nodes in the spanning tree represents the 

minimum global boundary nodes in the spanning tree. The sets of edges 

between the sets of common nodes in the network and in the spanning tree 

are termed the set of common edges in the network and the set of common 

edges in the spanning tree. Both sets of common edges contain the cut-edges 

and contain edges that are not cut edges. 

Cutting (k-1) edges from the common edges of the spannIng tree 

partitions the spanning tree into k sub-spanning trees and guarantee that the 

end-nodes of the cut-edges are from the boundary nodes of the spanning tree. 

Each sub-spanning tree represents a subsystem. The nodes of each sub­

spanning tree consist of the internal nodes and the boundary nodes. 

The equal or balanced partitioning is achieved by selecting (k-1) edges 

from the common edges, which gives the most balanced k sub-spanning trees. 
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The range of selecting the set of cut edges is k or less. Mter finding the k sub­

spanning trees, the technique proceeds to find the remaining boundary nodes 

for each subsystem from the eliminated edges, and then starts a new 

spanning tree. 

6.2 An overview of the maximum degree technique 

Following the generation of a spanning tree, the method proceeds, 

firstly with the partitioning of the spanning tree, and then with partitioning 

of the network. The extent to which the result meets the objectives of 

partitioning for DSE is therefore dependent on the choice of spanning tree. 

The bulk of the computation involved lies in the generation of each spanning 

tree. Even moderate sized networks are characterized by very large numbers 

of possible spanning trees. A novel feature of the method to be described lies 

in the very rapid generation of a high proportion of all possible spannIng 

trees. The opportunity is then presented for selection of the resulting 

network decomposition which best meets the objectives of partitioning for 

DSE. In this sense, the method to be described is optimal. 

The maXlmum degree technique is based on obtaining two coverIng 

sets, one covering set from the network and one covering set from the 

spannIng tree, such that the number of nodes in each covering set is 

minimum and the nodal degree of each set is the highest. The nodes of each 

subset contain connected and unconnected nodes. The unconnected nodes, in 

each subset, are deleted from the subset. The remaining nodes in each subset 

are connected and with maximum degree. The intersection of the two 

remaining subsets gives a new subset of nodes with maximum degree. The 

new subset represents the minimum boundary nodes for that spanning tree. 

The set of edges between the minimum boundary nodes is termed common 

edges. A spanning tree is partitioned into k sub-spanning trees by cutting (k-

1) edges from the spanning tree. The set of common edges consists of one or 

more subsets of (k-l) edges. Each subset can partition the spanning tree into 

k sub-spanning trees. The equal or balanced partitioning is achieved by 
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selecting one subset of the cut subsets, which gives the most balanced k sub­

spanning trees. The range of selecting the cut set of edges is k or less. After 

finding the k sub-spanning trees, the technique proceeds to find the 

remaining boundary nodes for each subsystem from the eliminated edges, and 

then starts a new spanning tree. 

The row reduction method, introduced in Section 4.3.1 is used to obtain 

a spanning tree of the given network. Then a new method, described in 

Section 6.4.1 is used to identify the network cycles. Following this, a 

permutation of the edges of each cycle is used to derive all possible spanning 

trees. 

6.3 The number of spanning trees in a network 

If the row reduction method, introduced in Section 4.3.1 is performed on the 

incidence matrix A, then every elimination step has a meaning for the graph, 

and, at the end of the elimination process, a graph without loops is produced. 

This is a spanning tree for the directed network. Its edges span the graph, 

and its rows span the row space of matrix A. 

The number of cycles in a graph is c = m - n + 1 [64]. The value of c is 

also the number of eliminated edges from the graph to obtain one spanning 

tree [64], one edge from each cycle. Adding one of the eliminated edges (or 

rows) to the spanning tree would close a loop. These facts are used to obtain 

the network spanning trees. The standard IEEE-14 network shown in Figure 

6.1 is used to illustrate these facts. 
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Figure 6.1 The IEEE 14 network 

Any spanning tree is obtained by eliminating m-n+1 edges from the 

network. Following elimination, the nodes degree structure is modified. When 

an edge is eliminated, the degree of each of its node will reduce by one. If 

more than one edge is eliminated from a node, then its degree will reduce by 

the number of eliminated edges. Different spanning trees have different nodal 

degree structures. 

Since the rank of the incidence matrix A is (n-1) [64], the removal of 

any column of A will give a (m x (n-1)) matrix B of the same rank [64]. B is 

termed the reduced incidence matrix. The total number of spanning trees of 

the network equals the determinant of matrix BTB [64]. In the case of the 

IEEE 14-node network, this gives a total number of 3909 different possible 

spanning trees. 
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6.4 The edge-edge connectivity matrix 

Gaussian elimination takes 0 (n 3), [64], operations to obtain a 

spanning tree. Different spanning trees may be obtained by permutating the 

incidence matrix, and then by applying the elimination method. 

An alternative, faster way to obtain all possible spanning trees is 

introduced. The new method is based firstly on finding the network cycles 

such that each cycle is defined by its edges. Secondly, deleting one edge from 

each cycle such that no edge is repeated generates a spanning tree. 

Repeatedly, changing one edge from the set of eliminated edges and then 

deleting the set of eliminated edges from A generates a new spanning tree. 

Obtaining the network cycles is described in Section 6.4.1, and generating not 

only one spanning tree but also all possible spanning trees is described in 

Section 6.4.2. 

6.4.1 The network cycles 

The cycle definition is introduced In Appendix A. The number of 

independent cycles in the network is c = m - n + 1 cycles. To obtain one 

spanning tree, c = m - n + 1 edges must be eliminated from the network, one 

edge from each cycle. If, in the other side, the spanning tree of a network is 

given and it is required to obtain the c cycles, then to obtain one cycle, one of 

the eliminated edges must be added to the spanning tree. To obtain the c 

cycles, the c eliminated edges, (i.e. the co-spanning tree edges) must be added 

to the spanning tree. This fact, i.e. adding the c eliminated edges to the 

spanning tree produces the c cycles, is used to obtain the network cycles. 

The number of cycles, c, in a network may be very large, and obtaining 

the edges of the c cycles manually is time consuming and not a practical 

proposition. Thus a fast method to obtain the network cycles, i.e. the edges of 

each cycle is described. 

Let E be the (m x m) edge-edge connectivity matrix defined as follows: 

E =AAT. 

The elements of E may be obtained simply from logical operations. The 
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entries of E are: 

2 if i = j ; 1 if the i th edge has a connection with the jth edge and 

they have the same direction; 

-1 if the ith edge has a connection with the jth edge but with 

different 

direction; 

o if the ith edge has no connection with the jth edge. 

Let S be the eliminated edges matrix of dimension (c x m) such that each row 

is a zero row, apart from two (+1) elements, one at the i th eliminated edge and 

one at the i th start-edge. The start-edge is a spanning tree edge having a 

common node with the i th eliminated edge. For example, the edges e1 or e3 in 

the spanning tree of Figure 6.2 can be a start edge with respect to the 

eliminated 

Figure 6.2 A spanning tree of the IEEE-14 network 

edge e
2

• The network cycles can then be characterized by a matrix C, where 

C=S.E. 

This operation may be efficiently performed with exploitation of sparsity, in 
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which case multiplication takes 0 (4m) operations. For the IEEE 14-node 

network, the network cycles matrix Cis: 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

c= 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

The non-zero elements in each row of C represent one cycle. The cycles are 

given below: 

Cyclel={ e1 ,e 2 ,e3 }; 

Cycle2={e 2 ,e 4 ,e5 }; 

Cycle3={ e 4' e6 , e7 }; 

Cycle4={ eg ,e9 , e15 }; 

6.4.2 Generating all spanning trees 

Selecting one edge from each cycle, such that no edge is repeated, 

generates a co-spanning tree. Deleting the co-spanning tree edges from the 

incidence matrix, A, generates a spanning tree. For example, Figure 6.3 is a 

co-spanning tree of the IEEE-14 network. 
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G 

Figure 6.3. A co-spanning tree 

The set of the eliminated edges is: 

The corresponding spanning tree is shown in Figure 6.2. The set of edges of 

the spanning tree is: 

Changing anyone of the co-spanning tree edges without repetition gives a 

new co-spanning tree; deleting the co-spanning tree edges from A generates a 

new spanning tree. The generation of all possible spanning trees is given in 

Flowchart 6.1. 
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i =i+1 No 

nc=nc+l No 

Read ith edge of cycle 1 

X(i)=e il (cycle 1) 

J=2 

Read ith edge of cycle j 

Y=e i " 
J 

j=j+1 

Co-spanning tree=X 

Deleting the cospanning 
tree edges from A gives 
a new spanning tree 
T=A[X,:]=[ ] 
Counter nsp=nsp+ 1 

Flowchart 6.1 Generating a new spanning tree 
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Initialization 
nc=m-n+1 

i1 =i 2 = ... =i nc =1 
X=[ ]; 

Number of edges in each cycle=nc i 

i=l 



6.5 The maximum nodal degree technique 

A method is now described for automatic partitioning of firstly, a 

spanning tree and secondly, the network from which it has been derived. The 

technique is based on using the covering set principle to find the minimum 

covering set of nodes, with highest degree in the network and in a spanning 

tree of the network. Thus the technique is called the maximum nodal 

technique. Starting from the identification of the node(s) with highest degree, 

the network nodes are listed by degree in descending order. This list is then 

searched to obtain a set of nodes, minimum in number but of highest degree, 

which covers the network. The covering set is then used to partition the 

network. The maximum nodal technique is illustrated in Flowchart 6.2 with 

reference to the IEEE-14 network. 

The covering set principle is introduced in Section 6.5.1. Then, an 

algorithm to find the minimum covering set with highest nodal degree in a 

network such as the IEEE-14 network is described in Section 6.5.2. The 

algorithm of finding the minimum covering set with highest nodal degree in a 

spanning tree of a network is described in Section 6.5.3. Finding the 

minimum global boundary nodes in the network and the set of edges between 

them is described in Sections 6.5.4 and 6.5.5. 

6.5.1 The covering set principle 

The set of nodes connected directly wi th a node v is termed the 

neighbouring nodes of node v. In this case, node v is said to be the covering 

node and the set of neighbouring nodes is termed the covered set of nodes. 

Thus, the network covering set is a subset U of nodes such that all the 

network nodes are covered, i.e. directly connected to the nodes in U. I U I 
denotes the number of elements (i.e. nodes) in U. The network has more than 

one covering set. A covering set is a minimum covering set if I U I ~ I U' I , 
where U'is 
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The incidence matrix A of the network 

-" 

Get U the covering set of the network Get T the spanning tree by using row reduction 

.... .... 

Common nodes = B 1 = U n W 

E={ set of common edges }={ set of 
independent edges, set of dependent edges} 
NE={ not common nodes} 
Boundary nodes=B=B 1 - NE 

An optimal cut set (ocs)=k-l edges; 
Permutate E such that each set has k-l 
independent edges, this gives the optimal 
cut sets={ ocsl, ..... ,ocsr} 

Partitioning 
for i=l:r 

-" 

sub-spanning trees=T[cosi,:] 
subsystems(i)={nl, n2, ... , nbk} 
subsystems boundary nodes (i)=nbl, ... ,nbk} 
subsystems internal nodes(i)=nirl, ... ,nirk} 

k 

Total number of boundary nodes= L n hb 

h=l 

Check the balance of boundary nodes and 
internal subsystem nodes 
nexti 

." 

Balancing: 
Minimum nbs= {nb 1 <nb2< ... <nbr } 
for i=l:r 
select the ith partition with minimum boundary 
nodes and balanced internal nodes 
nexti 

Get W the covering set of T 

Flowchart 6.2 Partitioning and Balancing 
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any coverIng set of G. In this case, 

numberofG. 

Figure 6.4 

A network to illustrate 

the covering set principle 

For example, in Figure 6.4 

Node a covers {b, d, e, f}; 

Node b covers {a, c}; 

Node c covers {b, d, e, f}; 

Node d covers {a, c, e}; 

Node e covers {d, c, a, f}; 

Node f covers {a, c, e}. 

lUI . 
IS termed the node covering 

The set {a, c} covers {b, d, e, f} only, and it does not cover nodes a and c. Thus 

the set {a, c} does not cover all the network nodes. 

The set {a, c, f} covers {a, b, c, d, e, f}. Thus, the set {a, c, f} covers the network. 

The following are different covering sets: set {a, c, e}, {a, c, e, f}, {b, d, e, f}, 

and {a, c, e}. Of these, {a, c, f} and {a, c, e} are the minimum covering sets; 

thus, the node covering number is 3. Of those two sets, the set {a, c, e} has 

maximum degree. Thus, the set {a, c, e} is the minimum covering set with 

maximum degree. 

6.5.2 An algorithm to find the minimum covering set in the 

network 

The maximum node degree technique is based on finding a subset of 
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nodes U with highest possible degree such that this subset U is a covering 

set. Since the number of possible covering sets increases with network size, 

the method used for computation of the minimum covering set is crucial to 

the practical usefulness of such techniques. A new, fast algorithm for 

computation of the minimum covering set is now described with reference to 

the IEEE-14 network. Table (6.1) shows the IEEE-14 network nodes and the 

degree of each node. 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Degree 2 4 4 5 2 3 1 4 2 2 4 2 3 2 

Table 6.1 Node-degrees 

Reorder table (6.1) in a descending order such that the node with maximum 

degree is first and the node with minimum degree is last. Table (6.2) 

represents table (6.1) after reordering. 

Degree 5 4 4 4 4 3 3 2 2 2 2 2 2 1 

v· 1 
4 2 3 8 11 6 13 1 5 9 10 12 14 7 

. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 

Table 6.2 Ordered node-degrees 

Let U. and y. be variable sets indexed by i, with U o=[] and Yo=[] (i.e. empty 
1 1 

sets) respectively. Xi is an i-indexed set of neighboring nodes (i.e. connected 

directly by edges) associated with node Vi' U i and Yi are defined recursively 

by: 

U.=U· 1 UV.,· 
1 1- 1 

(6.1) 

And 

(6.2) 
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It is also necessary to define a test function qi' defined by 

(6.3) 

which is a set of elements in X. ( v· ) which are not in y .. 
1 1 1 

Flowchart 6.3 shows the algorithm of the maximum degree technique. The 

following steps describe how the maximum degree algorithm searches for the 

network minimum covering set, which has maximum degree, from Table 6.2: 

Algorithm (6.1) 

Let i=l, then 

1- The algorithm starts by reading Vi and Xi (Vi)' the neighbouring nodes 

of Vi' from Table 6.2. 

2- Then it uses equation (6.2) to check that qi is not empty, i.e. if any of 

the neighbours of viis not in Yi-1 • 

3- If qi is empty, then the algorithm does not update Yi, and it does not 

insert Vi into Vi. 

4- If qi is not empty, the algorithm uses equation (6.2) to update Yi, and 

it uses equation (6.1) to insert Vi into Vi' the covering set. 

5- After updatingYi' the algorithm check if Yi equals V, the set of 

network nodes. 

6- If Yi = V the algorithm terminates, else the algorithm update, i, i.e. 

i=i+1, and then repeat, the previous steps starting from step 1. At 

termination lUi I = i. 
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Vj={Vl' ... ,Vn } 

~ 
Y O=[] 

u 0 =[]; 

j=l 

• 
Read v 1 and X 1 ( v 1 ) 

q . =setdiff( (X . (v . ) Y . 1 ) 
J J J' J-

Yes 

Y'=Y' 1 U X.(v·) J J- J J 

u ,=U' 1 U v· 
J J- J 

j=j+l 

Minimum covering set = U j 

Flowchart 6.3. The minimum covering set algorithm 
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Table 6.3 shows the result of applying the maximum nodal algorithm 

for the IEEE-14 network. 

1 degree v· X. (v.) qi y. U. y. =V 
1 1 1 1 1 1 

1 5 4 2,3,5,6,8 [ ] 2,3,5,6, 4 No 

8 

2 4 2 1,3,4,5 1,4 1,2,3,4, 4,2 No 

5,6,8 

3 4 3 1,2,4,11 11 1,2,3,4, 4,2,3 No 

5,6,8,11 

4 4 8 4,6,9,12 9,12 1,2,3,4, 4,2,3,8 No 

5,6,8,9, 

11,12 

5 4 11 3,10,13, 10,13, 1,2,3,4, 4,2,3,8,11 No 

14 14 5,6,8,9, 

10,11,12, 

13,14 

6 3 6 4,7,8 7 1,2,3,4, 4,2,3,8,11,6 Yes 

5,6,7,8, 

9,10,11, 

12,13,14 

Table 6.3 Searching sequence for the minimum covering set 

Applying this algorithm to the IEEE-14 network gives the following 

covering subset U={2,3,4,6,8,11}. Finding each node takes three set 
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operations. The maximum number of nodes the covering set may have in a 

network is (nl2) [69]. This method is the first step in reducing the partitioning 

problem size from n nodes to < nl2 It uses set operations to find the minimum 

covering subset therefore it takes 0 (3n12) operations. 

6.5.3 An algorithm to find the minimum covering set in the 

spanning tree 

Let W be the minimum covering set of nodes, with higher degrees, in 

the spanning tree such that all the spanning tree nodes are covered. It is 

possible to find W by using the maximum nodal algorithm given explained in 

Section 6.5.2 and by using Flowchart 6.3. The steps of obtaining the minimum 

covering set of the spanning tree of Figure 6.3 are similar to Algorithm (6.1). 

Nodes with highest degree are selected first. If two nodes have the same 

degree then the nodes order is used, i.e. the node with first order is selected 

first. 

The steps are shown in Table 6.4. For example, W of the spanning tree 

of the IEEE-14 network shown in Figure 6.2, is: 

W={1,3,4,6,8,9,11,14} 
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I degree v· X. (v.) qi y. W. y. =V 1 1 1 1 I 1 

1 3 3 1,4,11 [ ] 1,4,11 3 No 

2 3 4 3,5,6 3,5,6 1,3,4,5, 3,4 No 

6,11 

3 3 11 3,10,14 10,14 1,3,4,5, 3,4,11 No 

6,10,11, 

14 

4 2 1 2,3 2 1,2,3,4,5, 1,3,4,11 

6,10,11, 

14 

5 2 6 4,7 7 1,2,3,4,5, 1,3,4,6,11 No 

6,7,10,11, 

14 

6 2 8 9,12 9,12 1,2,3,4, 1,3,4,6,8,11 No 

5,6,7,9, 

11,12,14 

7 2 9 8,10 7 1,2,3,4, no 

5,6,7,8, 

9,10,11, 

12,14 

8 2 14 11,13 13 1,2,3,4,5, 1,3,4,6,8, Yes 

6,7,8,9, 9,11,14 

10,11,12, 

13,14 

Table 6.4 Finding the minimum covering set in the spanning tree. 
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6.5.4 Finding the boundary nodes and the cut-edges 

The intersection of the two subsets U and W gives a new subset Bl 

termed the common node subset, i.e. 

Bl=U n w. 
For example, from the IEEE-14 network 

U ={2,3,4,6,8, II}; 

and from the spanning tree of Figure 6.2, 

W={1,3,4,6,8,9,11,14} 

Then the intersection of the two sets gives the common nodes: 

B1={3,4,6,8,11} . 

In the network, the nodes of B1 are always connected, and they are not 

always connected in every spanning tree. The set of edges between the 

common nodes in the network is termed EG-common' the set of common-edges. 

The set of EG-common edges contains the cut-edges and it may contain edges or 

branches other than the cut-edges. 

Since cutting any branch or an edge of a branch results in at least one 

new boundary node that is not in B1, then all branches in EG-common are not 

cut-edges, thus they are deleted from EG-common' The following example 

illustrates this step. 

The set of E between the B1 nodes in the IEEE-14 network given in 
G-common 

Figure 6.1 is: 

Thus, the B1 nodes are connected to each other, by an edge or by a branch: 

Between node 3 and node 11 there is one edge, i.e. e14 · 

Between node 3 and node 4 there is one edge, i.e. e5 · 

Between node 4 and node 8 there is one edge, i.e. e15 • 
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Between node 4 and node 6 there is one edge, i.e. es . 

Between node 6 and node 8 there is one edge, i.e. e
9

• 

Between node 8 and node 11 there is one branch, i.e. {en, e12 , e
13 

} • 

Since the branch is not a cut-edge, then deleting the branch from EG-conunon 

reduces EG-common to: 

As a result of eliminating (m-n+1) edges from the network, the B1 

nodes in the spanning tree are not always connected. The unconnected 

nodes are deleted from Bl. The remaining nodes in B1 are connected. Let B 

be the subset of connected nodes in B 1, and let the set of common edges 

between the B nodes, in the spanning tree, is termed ET-common' 

For example, B1={3,4,6,8,11}, 

The following nodes are connected to each other: 

Between node 3 and node 4 there is one edge, i.e. es ; 

Between node 3 and node 11 there is one edge, e14 ; 

Between node 4 and node 6 there is one edge, i.e. e8 • 

Between node 8 and node 11 there is one branch, i.e. {ell' e12 , e13 }. 

Then the nodes ofB1 in the spanning tree of Figure 6.2 are connected. 

Thus, 

B=B1= {3, 4, 6, 8, II}. 

And the edges between the B nodes are 

ET-common ={ e14 ,e5 , es , {en, e12 , e13 }}. 

The nodes of B are the global boundary nodes of the spanning tree of 

Figure 6.2 Vb = B = B1={3,4,6,8,11} . 

. They are connected to each other in the spanning tree, and their number is 
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minimum. The number of nodes of the set B is n b , the minimum number of 

global boundary nodes. The value of nb in this case is Db = 5. 

Deleting the branches from ET-common reduces ET-common to: 

The edges of ET-common may be dependent or independent. For example, from 

the spanning tree in Figure 6.2, the edges e5 and e14 are dependent and 

nodes 3 is the boundary node between them. The edges e5 and es are 

dependent and the boundary node between them is node 4. The edges e14 and 

es are independent. 

The number of cut-edges that partitions the spanning tree into k sub­

spanning trees is (k-l). Thus for k=2, then the number of cut-edges=l, and if 

k=3, the number of cut edges equals 2. The maximum degree technique cuts 

(k-1) edges from ET-common in turn until the balanced partitioning is achieved. 

For example, for k=2, the number of cut-edges = 1. Then each one of the 

ET-common edges will be cut in turn, i.e. e14 , e5 and es . 

The value of n b, obtained by using the maximum degree method, is in 

the acceptable range as defined by equation (5.22). This characteristic is used 

to obtain the range ofk, which balances the k parts. 

Since networks have different SIzes and topology, generating all their 

spanning trees is not a practical solution. Therefore, Procedure 6.1, described 

below, is to narrow the band of selecting the spanning tree, and to determine 

n b and the range of k. The procedure is based on using the intersection of the 

minimum covering set of the network and the minimum covering set of a 

spanning tree as a threshold for the minimum global boundary nodes. 

Procedure (6.1): 
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Initialization: k=2; 

Compute U; The network minimum covering set. 

5 Obtain a new T; A new spanning tree 

Compute W; The spanning tree minimum covering set 

nb=U n W; 

If fk = 0, then compute the equal partitions 

nir = np; for i = 1"" ,k; 

elseif fk> 0, then compute the balanced partition 

n· =n . for i=k-f+l .. · k' lr p' , , , 

end' , 

save (k, nb,nir ; for i =1, .. ·,k;); 

k=k+l' , 

go to 10; 

elseif nb > (np + 1) 

Go to 5; 

End. 

6.5.5 Finding the k subsystems internal nodes 

Cutting one of the cut-edges disconnects the spanning tree into two sub­

spanning trees. 

The cut operation IS performed in the spannIng tree matrix T by 

deleting the set of cut-edges from T (i.e. by setting the rows of the cut-edges 

equal to zero). The resultant k sub-spanning trees are connected. The nodes of 

each sub-spanning tree equal the union of the end-nodes of the edges of the 
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sub-spanning tree. The nodes of each sub-spanning tree represent a 

subsystem. For example, if k=2, then the E - {e e e} WI·II be cut I·n 
T-common - 14' 5' 8 

turn. 

Let Vb = {3,4,6,8,11}. 

If e5 is cut, then 

the end-nodes are 

VI = { VI' V 2' V 3' V S' V 9' V 10' VII' V 12' V 13 ' V 14 } ; 

V 1b = Vb nVI = {v3 ' VS ' Vll }; 

VIr is obtained by deleting V ib from VI' i.e. 

and 

Also V 2r is obtained by deleting V 2b from V 2 , then 

V 2r = {v 5' V 7 }; and n 2r = IV 2r I = 2 

The results of cutting e5 , (i.e. n ir = 7 , n 2r = 2 and nb = 5) are unbalanced 

partitioning values. Thus e5 is not accepted by the maximum degree 

technique as a cut-edge. 

The maximum degree technique cuts the next edge in ET-common. 

If e14 is cut, then 

VI = { VI' V 2' V 3' V 4' V 5' V 6' V 7 } ; 

V ib = Vb n VI = {v 3' V 4' V 6 } ; 

Then VIr is obtained by deleting V ib from VI' then 

and 
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V 2b = Vb n v 2 = {V 8' V 11 } ; 

Also V2r is obtained by deleting V2b from V2, then 

The results of cutting e14 , (i.e. nlr = 4, n 2r = 5 and nb = 5) are balanced 

partitioning values. Thus e14 is accepted by the maximum degree technique 

as a cut-edge. 

After finding the balanced partitioning values, the maXImum partitioning 

technique terminates. 

6.6 Simulation Results 

The maximum degree technique has been applied to partition the 

spanning trees of the IEEE-14 network. The IEEE-14 network has 3909 

different spanning trees. The technique finds the possible range of k and the 

corresponding value of nb that satisfies the DSE restrictions. The technique 

partitions the spanning trees by deleting (k-1) edges from the common edges 

between the B nodes in each spanning tree. Once a spanning tree has been 

partitioned for a given k, then nb the number of boundary nodes and n ir the 

number of internal nodes, for i=1,2, ... ,k, are easily obtained. For each k, the 

simulation results are compared with the theoretical balanced partitioning 

values obtained in section 5.6. 

Simulation results for k=2 

Partitioning all the 3909 different spanning trees for k=2 gIves the 

following results: Out of the 3909 spanning trees, 413 spanning trees gave 

fib =4., 1304 spanning trees gave nb =5 and 1208 spanning trees gave nb =6. 

The remaining spanning trees gave n b »6. 

1. Case nb = 4 

137 



The topology of the IEEE-14 network is such that none of partitioned 

spanning trees give nb = 4 with balanced internal nodes. 

2. Case nb = 5 

The maximum degree partitioning technique gave 1304 spanning trees that 

gave nb = 5. Of the 1304 spanning trees, 514 spanning trees gave balanced 

n ir for i=1,2 as shown in Figure 6.5. 

Figure 6.5 Simulation balanced results 

Comparing the simulation and the theoretical results 

1. The simulation result of nb is nb =4. This simulation value, i.e. nb =4, is in 

the acceptable range ofnb given by (5.17). It equals the theoretical result nbh . 

2. The simulation values of nir for i=1,2 are balanced and they equal the 

theoretical values. 

3. Thus, These simulation results, i.e. nbu and nir for i=1,2, do satisfy the 

DSE restrictions (5.16) and (5.28). Therefore, the balanced partitioning values 

that satisfy the DSE restrictions exit in the IEEE 14-bus network for k=2 and 

nb =5. 

3. Case nb = 6 

The next n b, in the simulation results, equals nb =6. The total number of 

spanning trees, which gave this value, is 1208. 

2. The simulation results, of the balanced and unbalanced subsystems 

internal nodes, are shown in Figures 6.6a and 6.6b. 
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Figure 6.6a Figure 6.6b 

The unbalanced results when nb =6 

Comparing the simulation and the theoretical results 

1. This value of n b = 6 is not in the theoretical range and it does not fulfill the 

DSE restrictions (5.17). 

2. Both internal nodes simulation results do not satisfy restrictions (5.11), 

(5.12) and (5.17) of the DSE restrictions. 

3. This nb does not satisfy the global balance restrictions of the DSE. 

Therefore n b = 6 is not acceptable by the DSE. 

All simulation results of nb > 6 do not satisfy restriction (5.14), therefore they 

are not acceptable by the DSE. 

6.7 Chapter review 

The major conclusion in this chapter is the application of Theorem (5.1). It is 

the forward step to simplify the network-partitioning problem. By using 

Theorem (5.1) it is possible to know, without using any partitioning 

technique, the balanced partitioning values of any given network for a given 

k. It leads to further investigation of the network properties to find the 
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number of cut edges. 

A network has many different covering sets of nodes. The algorithm of the 

maximum degree partitioning technique gives a very fast way of finding the 

minimum covering set in the network and in a spanning tree. The technique 

can avoid the sensitivity of the spanning tree, i.e. the intersection of the 

minimum covering set of the network with the minimum covering set of a 

range of the network spanning trees gives the minimum global boundary 

nodes that satisfy the DSE restrictions and the ideal balanced partitioning 

conditions. 

Using the network cycles and the set operations speeds up the process 

of obtaining and partitioning different spanning trees. 
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Chapter 7 

The edge state phenomenon 

7.1 General 

The concept of partitioning a network into small-sized sub-networks has 

been introduced in Chapter 1. The partitioning techniques introduced in 

Chapters 3 and 4 can be classified as heuristic methods to solve the partitioning 

problem. To date, most of the partitioning techniques presented in the literature 

have heuristic bases [13, 16, 22]. The reason behind using heuristic methods is 

that the existing graph theory is not yet complete. Many of the graph properties 

are not known. 

For example, the traditional definition of a graph G=(V, E) of a network, is 

that it consists of two sets: a finite set V of elements called nodes and a finite set 

E of elements called edges. A pair of nodes terminates each edge. Only a few 

natural relationships between V and E have been derived, for example the sum 

of the degrees of all nodes equals twice the number of edges, and the relationship 

between the number of cycles and the numbers of edges and nodes. Also many 

important relationships have been derived to solve problems other than these 

relating to the graph characteristics and relationships, such as the cut concept, 

Hamiltonian Graphs, connectivity, matching and colouring. 

Naturally, a connected network has n nodes connected by m edges. The 

network may have cycles and it may not. A node, in the connected network, may 

be of one degree or of two degrees or of more degrees. An edge, in the same 

network, may be connected to a node of one degree or to a node of two degrees or 
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to a node of more degrees, and it may form, with other edges, a cycle and it may 

not. This is the natural state of a network with its nodes, edges and cycles. 

Knowing the natural state of the network and its nodes edges and cycles, 

in graph theory, there are no relations that distinguish and specify between the 

edges and the nodes as they exist naturally in the network. The non-availability 

of these precise definitions and relationships are sufficient not only for using 

heuristic methods to solve related problems, such as the network partitioning 

problem, but also to classify it as NP-Hard [25]. 

Having stated that, in this chapter, a natural phenomenon that does exist 

in every graph is introduced. The phenomenon is that if an edge is in a network, 

in the two-dimensional plane, then the edge must belong to a zero cycle or one 

cycle or two cycles. The phenomenon is also valid in the planer graph. 

The phenomenon leads to a new approach of studying a graph of a 

network and classifying its edges, nodes and cycles accordingly, and exploring 

some of the natural laws and relationships which govern the graph. The 

phenomenon will be named "The Edge State Phenomenon". 

In this chapter, the new approach "The edge state phenomenon" is 

introduced. 

7.2 Types of network edges 

When a network is partitioned into k sub-networks certain edges will be cut, the 

remaining edges not being cut. A cut edge may belong to one cycle, or may be a 

common edge between two cycles, or may not belong to a cycle. In this section, a 

classification of the network edges is introduced. 

In graph theory, an edge is defined as a line connecting two nodes. A node 

with no edges is termed an isolated node and its degree equals zero. The degree 

of a node with one edge is one, thus the node is termed a one-degree node. A 

cycle is defined as the shortest closed loop (i.e. the closed-loop contains the least 

number of edges) starting from a node and ending at the same node. Every cycle 

has three edges or more. The network consists of those nodes and edges. 
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Accordingly, some of the network edges are connected to one-degree nodes, some 

belong to one cycle only, some are between two cycles and others do not belong to 

any cycle. This natural phenomenon is used to classify the network edges as 

follows: If an edge is connected to a one-degree node, then it is termed a one­

degree edge. If an edge belongs to only one cycle, then it is termed an external 

edge. If an edge is a common edge between two cycles, then it is termed an 

internal edge. If an edge does not belong to any cycle and not connected to a one­

degree node, then it is termed a bridge edge. 

Let Es be the set of one-degree edges in the network, and let ills be the 

number of one-degree edges in E s ' i.e. 

(7.1) 

Let EI be the set of internal edges in the network, and let ill I be the 

number of internal edges in E I , i.e. 

(7.2) 

Let Ex be the set of external edges in the network, and let illx be the 

number of external edges in Ex , i.e. 

(7.3) 

Let EB be the set of bridge edges in the network, and let illB be the 

number of bridge edges in EB , i.e. 

(7.4) 

The total number of edges in the network, m, can be written as the sum of the 

four types, (7.1) to (7.4): 

ill = ills + m I + mx + m B . 

For example, in the network of Figure 7.1, 

ills = ill! = m B = 1, and 

illx = 8 , so that, for equation (7.5), 
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m=1+1+1+8=11. 

Figure 7.1 A network to illustrate the edge types 

7.3 Types of network nodes 

Based on the classification of network edges, the network nodes can 

similarly be classified into those four types or combinations of them. 

7.3.1 General 

If a node has only one type of edge then the node type is classified 

according to the type. If a node has two types or more, then the node is classified 

as a combination of these types. In Section 7.3.2 the combined nodes types 

precedence in classification is explained. 

A node mayor may not belong to a cycle. Ifit belongs to a cycle then the 

node is either an external node or an internal node. If it does not belong to a 

cycle the node is either a bridge node or a one-degree node. 

If no external nodes exist then no internal nodes exist, but if external 

nodes exist then it is not necessary that internal nodes should exist. Therefore 

the external type has higher precedence than internal type. The same principle 

is true with the bridge edges and the one-degree edges. Therefore, if a node has 

the four types, then the external type always has highest precedence in ordering, 

the bridge type next highest, then the internal type, and lastly the one-degree 

type. 

If the node does not belong to a cycle then the node is either a bridge node 

or a one-degree node. The one-degree node always has one one-degree edge, 

while the bridge node has at least two edges. The other end of the one-degree 
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edge can be connected to a bridge node, an internal node or an external node. 

The other end of the bridge edge is always connected to an external node or a 

bridge node but never to an internal node. Thus, in a network with cycles, the 

external node has higher precedence than the bridge node. Since there is no edge 

between the bridge node and the internal node and since both of them come after 

the external node in the precedence order, then the bridge node and the internal 

node both have the second order in precedence after the external node, then the 

one-degree node. 

The two edges are either two bridge edges, or one bridge edge and one 

one-degree edge. Therefore, the bridge node can have a one-degree edge, but it 

does not take an external edge or an internal edge. Therefore, the bridge type 

precedes the one-degree type. 

7.3.2 Node-type definitions 

The following types of node are defined: 

(i) S node: 

A node is termed S node (or one-degree node) if 

(1) It does not belong to a cycle, 

(2) It has only one edge. 

Let the set of S nodes be denoted Vs ' and let ns = IVsl be the number of elements 

in Vs. In Figure 7.2 Vs = {v 2 , v12 }, and ns = 2. 

Figure 7.2 To A network to illustrate the nodes types 
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(ii) B node: 

A node is termed a B node (or a bridge node) if 

(1) It does not belong to a cycle, 

(2) Its degree is two or more, 

(3) At least one of its edges is of a bridge type. 

Let the set ofB nodes be denoted VB' and let llB = IVBI be the number of 

elements in VB' In Figure 7.2 VB ={v 5 ,v ll },and llB =2. 

(iii) I node: 

A node is termed an I node (or internal node) if 

(1) Its degree is more than one, 

(2) The number of cycles it has equals its degree. 

(3) All its edges are of internal type. 

Let the set of I nodes be denoted VI' and let III = IVII be the number of elements 

in VI' In Figure 7.2 VI = {v 7 }, and III = 1. 

A node is termed an external node if all edges are external. Every external node 

has an even number of external edges. If an external node has two external 

edges, then it belongs to one cycle. If the external node has four edges, then it 

belongs to two cycles; and so on. Therefore, an external node is classified 

according to its degree and the number of cycles it belongs to. This leads to 

definition (iv). 

(iv) Xd node: 

A node is termed an Xd node (or external node of degree d), 

whered = 2,4,.··, if 

(1) It belongs to d/2 cycles, 

(2) Its degree equals d, 
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(3) The d edges are of external type, 

Let the set of Xd nodes, for particular even values of d, be denoted V Xd , and let 

n Xd = IVXdl be the number of elements in V Xd . 

Define a set V XD of nodes as the union of the Xd sets for d = 2,4" ... 

Then, V XD = {VX2 Ee V X4 Ee··· }, and let n XD = IVXDI = n X2 + n X4 + .... 

Figure 7.3 A network to illustrate the Xd nodes 

In Figure 7.3, the Xd sets are: 

V X2 = { VI' V 3' V 7' V 8 }, with n X2 = 4 , 

V X4 = { V 4 } , with n X4 = 1 , 

and set VXD is: 

V XD = {V X2' V X4 } = {v l' V 3' V 4' V 7' V 8 } , with 

n XD =4+1=5. 

Note that the number of cycles at an Xd node equals d/2. 

In addition to Xd nodes, a network may contain nodes that have two or more 

external edges, together with edges of other types. This gives rise to the need for 

the following additional definitions: 

(v) XdI node: 

A node is termed an XdI node (or external-internal node of degree d) 

where d = 2,4,,,,, if 

(1) It belongs to more than one cycle, 
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(2) Its degree is greater than d, 

(3) It has d external edges, 

(4) It has at least one internal edge. 

Let the set of XdI nodes, for particular even values of d, be denoted V XdI' and let 

n XdI = IVXdII be the number of elements in VXdI . 

Define a set V XDI of nodes as the union of the XdI sets for d = 2,4" ... 

Then, V XDI = {V X2I EB V X4I EB··· }, and let n XDI = IV XDI I = n X2I + n X4I + ... + n XdI . In 

Figure 7.3, the XdI sets are: 

V X2I = { V 2' V 5' V 9} with n X2I = 3 , 

and the V XDI is 

VXDI = {VX2I EBVX4I }= {v2, vs' v 6 , v 9 }, with 

n XDI = 4. 

(vi) XdB node: 

A node is termed an XdB node (or external bridge node of degree d) where 

d = 2 4 ... if , , 

(1) It belongs to dJ2 cycles, 

(2) Its degree is greater than d 

(3 ) It has d external edges. 

(4) It has at least one bridge edge. 

Let the set of XdB nodes, for particular value of d, be denoted V XdB' and let 

nXdB = IVXdBl be the number of elements in 

Define the set V XDB of nodes as the union of the XdB sets for d = 2,4,' ... 

Then, VXDB = {VX2B EB VX4B EB···}, and let n XDB =IVXDBI =n X2B +n X4B + .... 

In Figure 7.4 the set ofXdB nodes are: 

V X2B = { V 7} with n X2B = 1 , 
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V X4B = { V 8 } with n X4B = 1. 

The set V XDB is 

V XDB = {V X2B (f) V X4B } = {v 7' V 8} with 

n XDB = 2. 

Figure 7.4 A network to illustrate the XdB nodes 

(vii) XdBI node: 

A node is termed an XdBI if: 

(1) It belongs to more than d/2 cycle, 

(2) Its degree is greater than d, 

(3) It has d external edges. 

(4) It has at least one bridge edge and at least one internal edge 

Let the set ofXdBI nodes, for a particular value of d, be denoted V XdBI ' and let 

n XdBI = IVXdBII be the number of elements in V XdBI • 

Define the set V XDBI of nodes as the union of the XdBI sets for d = 2,4" ... 

Then, V XDBI = {V X2BI (f) V X4BI (f) ... }, and let n XDBI = IV XDBI I = n X2BI + n X4BI + .... 

In Figure 7.4, the set ofXdBI is: 

V X2BI = { V 6} with n X2BI = 1 . 

The set ofXDBI nodes is 

V XDBI = { V X2B1} = {v 6} with 
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n XDBI = 1. 

7.3.3 The network node equation 

Let V x represents the union of all sets of nodes having external nodes, and let 

nx represent the total number of elements in VX • Since any node in Vx is a 

member of one and one only of the sets {V XD ' V XDI' V XDB' V XDBI}' then 

(7.6) 

and nx = n XD + n XDI + n XDB + n XDBI ; (7.7) 

Let V represents the union of all sets of nodes in the network, and let n 

represent the total number of elements in V . Since any such node is a member of 

one and one only of the sets {V x' VI ' VB' Vs}, then 

(7.8) 

and n, the total number of nodes in the network, is given by: 

(7.9) 

7.3.4 The network degree equation 

The network degree equation, given in Appendix A.I, is the sum of the degree of 

the network nodes, i.e. 

n 

Da = 2m = Ldegree(v i ) (A.I) 
i=l 

Since the set V includes all the types as given in equation (7.8), and since the 

elements of each type are not included in any other type then the degree of each 

type can be defined as follows: 

The degree of the external nodes is 
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Dx = 2mx = tdegree(vXi ); 

i=l 

The degree of the internal nodes is 

DI = 2mI = fdegree(v Ii ); 

i=l 

The degree of the bridge nodes is 

DB 

DB = 2mB = Ldegree(vBJ; 
i=! 

The degree of the one-degree nodes is 

DS 

Ds = 2ms = Ldegree(vSi ); 

i=l 

Thus 

7.4 Types of network cycles 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

In this section, the definition and properties of network cycles are 

reviewed. 

7.4.1 A walk, a trail and a path 

A walk, W, in a network ofm edges and n nodes, is a finite sequence of 

nodes and edges VI' e1 ' v 2' e2 ,· .. , V k-l ,ek_1 , v k beginning and ending with a node 

such that Vi and V i+1 are the end nodes of the edge ei , 1 <i < k. Note that in a 

walk, edges and nodes can appear more than once. The length of a walk w, is the 

number of edges in the walk. A walk is closed if VI = V k ; otherwise the walk is 

open. 

is an open walk, whereas the sequence 
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Figure 7.5 A network to illustrate the walk and the path 

A walk is a trail if all its edges are distinct, i.e. each edge appears only 

once in the walk. A walk is a path if all its nodes are distinct, i.e. each node 

appears only once in the walk. A trail is termed Tr and a path is termed P. A 

trail or a path may be open or closed. 

The properties of a closed trail are: 

(1) Its edges are distinct, but nodes are not necessarily distinct, 

(2) A closed trail is a closed path if all its nodes except the end nodes are 

distinct. 

(3) One-degree nodes and edges do not exist in a closed trail, 

(4) If a closed trail consists of only all external edges of a network, then 

the closed trail is termed an external closed trail. 

In Figure 7.5, the sequence vl'el' v2 ,e2 , v3 ,e4 , v6 ,e9 , v5 ,e5 , V3 is an open trail, 

whereas the sequence vl'el' v2 ,e 2 , v3 ,e5 , v5 ,e3 , v2 ,e6 , v4 ,e7 , VI is a closed trail. 

The properties of a closed path: 

(1) All nodes and edges are distinct. 

(2) The minimum length is three edges, 

(3) The number of edges equals the number of nodes 
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(4) Every node has at least two edges, 

(5) e 1e 2 .. ·ek+l and ek+1e k .. ·el denote the same path, 

(6) One-degree nodes and bridge nodes do not exist in the closed path, 

(7) One-degree edges and bridge edges do not exist in the closed path. 

(8) If a closed path consists of all external edges in a network, then the 

closed path is termed an external closed path. 

(9) If a network has nodes of the following types {V Xd ' V Xdl ' V XdB V XdBI } for 

d >2, then the external closed path cannot contain all external edges of 

the network. 

Let Vp be the set of nodes of a path P, and let IIp be the number of elements of 

Vp. Let Ep be the set of edges of a path P, and let fip be the number of elements 

of Ep. 

If a path P is open then P is termed Po 

(7.15) 

and if the path P is closed, then P is termed Pc 

llpc = fi pc · (7.16) 

An example of an open path in Figure 7.5 is Po = {VI ,el , V 2 ,e2, V 3 ,e4 , V 6}· 

The set of nodes of Po is Vpo = {vI' V 2 ' v3 ' V 4} and llpo = 4, and the set of edges of 

Po is Epo = {ep e 2,e4 } and fipo = 3. 

An example of a closed path is Pc = {v pel' V 2 ,e3, V 5 ,eg, V 4,e7 , V d . 

The set of nodes of Pc is Vpc = {v I' V 2' V 4' V 5} and llpc = 4, and the set of edges of Pc 

Remark (7.1): 
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If, in a network, the length of an external closed path equals the length of an 

external closed trail, then EB = {<I>} and V XD = V XDI = {<I>} for d>2. 

7.4.2 A cycle 

The cycle definition is introduced in Appendix A. A cycle, in a network, is a 

closed path with a minimum length. The cycle path starts and ends at the same 

node, so that every edge and every node is counted once only. The length of a 

cycle is defined as the number of edges. In a cycle, the number of edges equals 

the number of nodes. The cycle is usually denoted eIe2 .. ·ek (instead of 

Let V XCi = {v XCI' V XC2" • " V XCo
XCi 

} be the set of external nodes of the i th cycle, and let 

the number of elements of V XCi be: 

n XCi = IVXCil· 
(7.17) 

Let V ICi = {v ICI' V IC2"", V IC0
1Ci 

} be the set of internal nodes of the i th cycle, and let 

the number of elements of V ICi be: 

n ICi = IVICil· 
(7.18) 

Then the set of nodes of the i th cycle is: 

VCi = {V XCi EB V ICi }, 
(7.19) 

and, the number of elements of V Ci is: 

(7.20) 

Let E . = Je e ... e } be the set of external edges of the i th cycle, and let the 
XCI ~ I' 2' 'rnXCi 

number of elements of EXCi be: 

m XCi = IExCi I· 
(7.21) 

154 



Let E1ci = {el'e2,··,em[Ci} be the set of internal edges between the i th cycle and jth 

cycles for j = 1,2, ... ,c and j"# i, and let the number of elements of E1Ci be defined 

as follows: 

c 

ffi lCi = IE1Ci 1= L ffiIC(i,j) ; 
j=l, 
j*i 

Then the set of edges of the i th cycle is: 

ECi = {E XCi E9 EICJ; 

and the total number of elements of ECi is: 

(7.22) 

(7.23) 

(7.24) 

Since the cycle is a closed path, i.e. it starts and ends at the same node, and 

since the nodes of the closed path are distinct, then the edges of the closed path 

are distinct. Each node in the closed path must have at least two distinct edges, 

one out of the node, and one into the node. The out-edge, of the kth node, is an in­

edge of the following node (the first node) in the closed path, and the in-edge of 

the kth node is an out-edge of the previous (k-l) node. 

Therefore P, the closed path must have at least three nodes. Each node has two 

distinct edges, and each edge has two distinct nodes. The three nodes have three 

distinct edges. Thus a closed path with k nodes has k distinct edges. If the length 

of the closed path is minimum, the closed path is a cycle, and thus the number of 

edges of the cycle equals the number of nodes, i.e. 

(7.25) 

Remark (7.2): 

If a network has n nodes and m edges and m = n, then it has one and only one 

cycle. 
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7.4.3 Cycle types 

The edges of a cycle may be: 

(1) all external edges, or 

(2) all internal edges, or 

(3) a mix of external and internal edges. 

If all edges of a cycle are external, then the cycle is termed an external cycle; if 

all edges of a cycle are internal, then the cycle is termed an internal cycle; and 

if the cycle edges consist of both external and internal edges then the cycle is 

termed a mixed-cycle. 

Let Cx be the number of external cycles in the network, 

Let C
I 

be the number of internal cycles in the network, 

Let CXI be the number of mixed cycles in the network, 

Then c the total number of cycles in the network can be written as: 

C = C x + C I + C XI • 

A cycle has the properties: 

(1) Nodes and edges are distinct. 

(2) Every node has at least two edges. 

(3) The number of edges equals the number of nodes. 

(4) The length of the cycle is minimum. 

(5) {e}e2 .. ·ek } and {e2 .. ·eke!} denote the same cycle. 

(7.26) 

(6) Bridge edges and one-degree edges do not exist in a cycle. 
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Define gi' the circumference of the i th cycle as the number of edges of the 

i th cycle. Since the number of edges and the number of nodes in a cycle are equal 

as given in equation (7.25), then: 

(7.27) 

The circumference of an external cycle is: 

gXCi = m XCi = n XCi ' (7.28) 

The circumference of an internal cycle is: 

gICi = m ICi = n ICi . (7.29) 

The circumference of the i th mixed-cycle is: 

gXCi = m XCi + m ICi = n XCi + n ICi ' (7.30) 

Let gc be the sum of the c circumferences of the c cycles in G, then 

C 

gc = Lgi ; (7.31) 
i=l 

7.4.4 The network external closed path 

In Theorem (7.1), conditions are established under which all external 

edges of a network G are in a single closed path. This closed path is termed PGX ' 

the network external path, and the length of PGX is PGX 

Theorem (7.1) 

If, in a network, m>n, Es = {cI>}, EB = {cI>}, V XD = {cI>} for d > 2 , 

VXD1 = {cI>} for d > 2 then 

(1) mx = m-mI (7.32) 

(2) n x = n - n I = n X2 + n X2I , (7.33) 

(3) PGX =mx =nx 
(7.34) 

(4) CX! = n X21 
(7.35) 

(5) c I =C-C X1 
(7.36) 
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Proof: 

Let G be a network with m edges and n nodes, then 

n = n s + n I + n x + n B , and 

V x = {V XD Ef) V XDI Ef) V XDB Ef) V XDBI } 

nX = n XD + n XDI + n XDB + n XDBI · 

Since m>n then c>l. Thus fi l > 0 and n l > o. 

Since each one-degree node has one-degree edge, then n s = fis . 

Since Es = {<t>} then fis = 0 and ns = o. 

Since EB = {<t>} then fiB = 0 and n B = o. 

Thus VXdB = {<t>}, VXdBI = {<t>}, n XDB =0 and n XDBI =0. 

Thus m consists of external and internal edges only 

(1) fix = fi - fi l , 

and n also consists of external nodes and internal nodes only: 

V = {Vx Ef) VI}; 

and n = n x + n I . 

Furthermore, 

Since VXd = {<t>} for d> 2, then VXd = {VX2 } and n XD = n X2 ' 

Since VXdI = {<t>} for d > 2, then VXdI = {VX21 } and n XDI = n X21 · 

Thus the external nodes consist of: 

V x = {V X2 Ef) V X21 }, 

and 
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Each external edge, by definition, belongs to a cycle. This cycle is either an 

external cycle or a mixed-cycle. 

Since mI > 0 

and EB = {<t>}. 

and VXd = {VX2 }' 

and V XdI = {V X2I}, 

Then, there are no external cycles in the network, 

and the external closed trail is the external closed path. 

Thus all external nodes and edges belong to mixed-cycles, 

and they form an external closed path or an external closed trail. 

The length of the external closed trail equals the length of the external 

closed path. 

Hence, 

(3) P GX = m x = II x = m - mI· 

Each external node of VX2 ' has a degree equals to two, and it belongs to only one 

cycle. Each node of V X21 has two external edges and internal edges, and it 

belongs to more than one cycle. Therefore, each external edge between two V X21 

nodes belongs to a different cycle. Thus, llX2P the number of the V X21 nodes gives 

the number of mixed cycles in the network. 

(4) CX! = llX2P 

Thus, the number of internal cycles can be obtain as follows: 

(5) C 1 = C - CX! . 

• 
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7.5 Membership of edge sets 

As introduced in Section 7.2, there are four edge sets, namely the one-degree 

edge set, the bridge edge set, the internal edge set and the external edge set. 

The existence of some of these sets, in a given network, depends on other sets. 

For example, it is not possible to have the internal set without having the 

external set. Also it is not possible to have the one-degree set without having the 

external or bridge set. Furthermore, the set of edges of each type will be 

classified into subsets based on the end-nodes of each edge. 

7.5.1 The number of one-degree edges 

The number of one-degree edges in a network can be determined from the 

incidence matrix of the network. Since every column represents a node, a column 

that contains only one non-zero element represent a one-degree node. The sum of 

such columns gives the number of one-degree edges in the network. 

7.5.2 The number of external and internal edges 

The number of internal edges ffiI in a network depends on the network 

configuration. A network ofm edges and n nodes has m-n+l cycles. lfthe 

network has a ladder shape as shown in Figure 7.6, then between adjacent 

cycles there is one internal edge, and the total number of internal edges between 

all the cycles is ffiI = ffi - n . 

Figure 7.6 A network of ladder shape 

160 



If, however, the network has a configuration such as that shown in Figure 

7.7, then the number of internal edges equals the number of cycles. 

m I =m-n+1 

I 
( 

') 

) 

r 

Figure 7.7 A network in which the number of 

internal edges equal the number of cycles 

Some networks may have no internal edges. For example, the following 

network shown in Figure 7.8 has no internal edges, but has an external node 

with degree four as a common node between the two cycles. 

Figure 7.8 A network with external node of degree four 

The number of internal edges in a class of networks is established in 

Theorem (7.2). 
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Theorem (7.2): 

If a network has Es = {<p}, EB = {<p}, V Xd = {<p} for d>2 and m>n, then 

(1) mx = m-mI 

(2) n I =n-mx 

(3) gc = mx + 2mI 

(4) m I = gc- m 

(5) gc = 2m-nx 

(6) 1 
m I = -(gc -n + n I ) 

2 

Proof: 

Let G be a network with m edges and n nodes, then 

nX = n XD + n XDI + n XDB + n XDBI ; 

Since Es = {<p}, then ms = 0 and ns = O. 

Since EB = {<p}, then m B = 0 and n B = O. 

Also VXd = {<p} and n XdB = 0; 

And VXdBI = {<p} and n XdBI = o. 

Therefore, n XDB = 0 and n XDBI = O. 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

Since V Xd = {<p} for d>2, then n Xd = 0, for d>2, and n XD = n X2 ' 

Therefore, 

and 

and 

nX = n XD + n XDI = n X2 + n XDI , 
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Hence the total number of external edges, or the circumference of the network 

external path is: 

(1) mx = gox = m - m I , 

and 

The total number of internal nodes in the network is then 

(2) n I =n-mx' 

and it also equals: 

Since m > n , then from 1 and 2 

if n = n x , then n I = 0 , 

and if n > n x then n I > 0 . 

Thus n I > o. 

From 1, if m = mx then, 

and there is one and only one closed path in the network, 

thus c = 1. 

If m > mx then, m I > 0 and c > 1. 

Thus c > 1. 

The circumference of the i th mixed-cycle is given in equation (7.28): 

c 

gXCi = m XCi + LmIC(i,j) . 
j=l, 
j;o!oi 

The total circumference of the c cycles is given by equation (7.30): 

C 

gc = Lgi ; 
i=l 
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Since there is at least one internal edge between any two cycles, then each 

internal edge will be counted twice, once in each cycle, and the two end-nodes of 

the internal edge will also be counted twice, while each external edge or node 

will be counted once. Therefore, the sum of edges in the c cycles can be written 

as: 

c c c-l 

gc = (ffi XCl + L ffiIC(l,j)) + (ffi xC2 + L ffi IC(2,j)) + ... + (ffi xcc + L ffiIC(c,j)) , 
j=2 j=l, j=l 

jn 

If there is no internal edge between the i th and jth cycles, then 

ffiIC(i,j) = 0, V1C(i,j) = {<I>} , and n IC(i,j) = 0 , 

and if there is an internal edge between the i th and jth cycles, 

then ffiIC(i,j) = ffiIC(j,i) , 

then, gc can be written in the following form: 

c c c-l 

gc = Lffi xCi + L LffiIC(i,j); 
i=l i=l j=i+l 

Jti 

Since every external edge occurs once and once only in a cycle, then the sum of 

external edges in the c cycles equals ffix the total number of external edges in 

the network, i.e. 

c 

Lffi xCi = ffi x , 

i=l 

Since every internal edge share two and only two cycles, then every internal 

edge will be counted twice, once in each cycle, thus 

then 

c c-l 

L LffiIC(i,j) = 2ffiI 
i=l j=i+l 

Jti 

Since (1) gives ffi = ffix + ffiI , 

Then 
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Therefore, 

and 

The circumference also equals the sum of external nodes and internal nodes of 

i th mixed-cycle as given by equation (7.30), i.e. 

g i = V XCi U VIC(i,j) 
j=I, ... ,c 
j;>!j 

the sum of the c circumferences is 

c 

g C = L, V XCi U VICCi,j) 
i=I j=I, ... ,c 

J;ti 

gc = I{ (V XCI U VIC(l,j»)}1 + I{ (V XC2 U V ICC2,j»)}j + ... + I{ (V XCc U VIC(c,j»}1 ' 
j=I,2, ... ,c-I j=2, ... ,c j=I,2, .. ,c 

j:t:2 

c c 

gc = L,1{VXCi ] + L, UVICCi,j) , 

i=I 

c 

n XC = L,1{VXCi ] 

i=I 

i=I j=I, .. ,c 
J;ti 

The set of external nodes of the i th mixed -cycle consists of V X2I as in V XdI type 

and V as in V type and the union of the c sets includes all the external 
X2 Xd , 

nodes in the network. 
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Every node of the V X2 type has a degree equal two, and it is used by only one 

cycle, i.e. degree (v X2 ) -1. Every node of V X21 type is shared by y cycles, where y 

equals the degree of the i th node from the V X21 type minus one, i.e. 

degree (v X21 ) -1. Thus, the sum of the external nodes of the c cycles equals the 

sum of the cycles they belong to, i.e. 

n XC = tdegree(vXCi)-n X , 
i=1 

In the internal nodes side, 

the number of cycles associated with an internal node equals its degree. 

The sum of internal nodes of the c cycles equals the sum of the internal nodes 

degree, i.e. 

Therefore 

but 

Thus 

c fi, 

L UVIC(i,j) = L degree( v ICi ) ; 
i=1 i=1 j=I, ... ,c 

j*i 

fiX fi, 

gc = L degree(v XCi) - n X + L degree(v ICi) , 
i=1 i=1 

fiX fi, 

2m = L degree(v XCi) + L degree(v ICi) , 
i=l i=1 

(5) g C = 2m - n X , 

Substitute from (3), then 

gc = 2m - (n - n l ) = 2m - n + n l , 

g C = 2( m X + m l ) - n + n I , 

g C = 2( n - n I + m I ) - n + n I , 
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Thus 

(6) 

• 
7.5.3 The number of bridge edges 

Let a network have c > 1 cycles, with no bridge edges between them as 

shown in Figure 7.9a. Then if the c cycles are separated such that a bridge edge 

is inserted between each pair of adjacent cycles, then the maximum number of 

bridge edges between the c cycles is c -1 bridge edges, as shown in Figure 7.9b 

Figure 7.9a A network without bridge edges 

I I ~ 
Figure 7.9b A network with bridge edges 

The following theorem proves that, in any network, if gc = n then the number of 

bridge edges is c - 1 . 
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Theorem 7.3: (The bridge edges) 

In any network, if c > 1, Vs = {<I>}, VI = {<I> }, EI = {<I> } and VB = {<I> } 

then 

and 

m B =(c-l). 

Proof: 

Let G be a network with m edges and n nodes. 

Then 

nX = nXX + n XI + llXB + n XBI + n BX + n BXI ; 

then m = n = o· n = 0 . s s 'I , 

ill! = 0; and n XdI = n XdBI = 0; 

and nB = o. 

Thus 

and the total number of external edges in the c cycles is 

Also n is reduced to n = llx, and llx is reduced to nx = n XD + n XDB · 

(7.42) 

(7.43) 

Thus the total number of external nodes in the c cycles is n x = n XD + n XDB = n . 

Since c>l and n I = 0 then all cycles are of external types. 

The circumference of the i th external cycle is given by equation (7.21), i.e. 
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and 

The total circumference of the c cycles is given by equation (7.24). 

Thus 

c c 

(1) gc = LffixCi = Ln XCi =ffix =nx =n. 
i=l i=l 

Since there are c cycles, and since ffi 1 = 0, then 

since fix = n, then 

ffi =ffi-n' B , 

but c -1 = ffi - n , thus 

(2) ffiB =c-l. 

• 
It can be noted that if one of the c-l bridge edges is to be converted to an internal 

edge, then two edges and two nodes must be deleted from the network. The 

bridge edge and an external edge, with its end-nodes, at one of the end-nodes of 

the bridge edge. For example, in Figure 7.10a, e1 is a bridge edge, it has two 

external edges (e 2 , e 3 ) at one end -node and it has two external edges (e 4 , e 5) at 

the other end-node. When e
1 

is deleted from the network, one of the external 

edges must be deleted with its end-nodes. When one of the external edges is 

deleted the other dependent external edge will be an internal edge, i.e. if e3 is 

deleted, then e
4 

will be an internal edge. And if e2 is deleted then e5 will be an 

internal edge. 

Figure 7.10a A network with n=18,m=22, gc =18 
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Figure 7.10b shows the network after converting a bridge edge to an internal 

edge. 

Figure 7.10b Converting a bridge edge to an internal edge 

Every time a bridge edge is converted into an internal edge, n, the total number 

of nodes in the network, reduces by two nodes, and m, the total number of edges 

in the network, also reduces by two edges. The number of cycles, c, does not 

change, and gc' the sum of the circumferences of the c cycles, also does not 

change. 

When a network has a combination of internals and bridges, this fact can be 

used to find the number of internal edges and bridge edges in the network. 

Theorem (7.4) 

In a network, if fiB > 0 and fiI > 0, then 

(1) 

(2) 

(3) 

Proof: 

PGX = fi xc = fix = llx· 

If fiI = 0 then from Theorem (7.3) gc = II and fiB = (c -1) . 

If fiI > 0 then c>1. 

(7.44) 

(7.45) 

(7.46) 

The circumference of the i th mixed-cycle is given by equation (7.30), i.e. 

gXCi = fi XCi + fi ICi = llXCi + llICi' 

C 

The sum of the c circumferences, i.e. gc = Lgi , is given by equation (7.31). 
i=l 

Applying (7.31) on (7.30) gives the following: 
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c c c c 

gc = 'LmXCi + 'LmICi = 'LnXCi + 'LnICi 
i=l i=l i=l ;=1 

Since mB > 0 then the network has more than one external closed path. Since 

the external edges of the closed path are distinct, then the total number of 

external edges in the closed paths equals the total number of external edges in 

the network, i.e. 

(1) P GX = m xc = m x = n x . 

Every external node has two or more edges. If an external node has two edges 

then the two edges will be in the external closed path, and if the external node 

has more than two edges, then two edges will be in the closed path and the extra 

edges will be either internal edges or bridge edges or both. Those internal and 

bridge edges indicate that the type of their external nodes is either V XdI or V XdBI 

for d = 2,4, .... 

Therefore, the degree of a node of type VXdI minus two gives the number of 

internal edge with respect to that node. Similarly, the degree of a node of 

type V
XdB 

or V
XdB1 

minus two gives the number of bridge edges and internal edges 

at that node. Let mIX be the number of internal edges from the nodes of 

type VXdl ' then: 

~ 
mIX = Ldegree(vX2I ) - n X2I ; 

i=l 

If this is applied over the set of external nodes Vx , then the number of bridge 

edges and mIX internal edges can be obtained as follows: 
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Since Dx, the degree of the external nodes is given by equation (7.10), includes 

all edges connected to the set of external nodes, then 

(2) fiB =Dx -2nx -mxl ' 

Since every internal edge is counted twice, once in each cycle, then 

fi lc = 2ml 

Thus gc can be written as follows: 

(3) gc = mx + 2mI = n xc +n IC 

• 

7.6 The maximum circumference 

In a network with c cycles the minimum circumference a cycle can have is 

three edges. Let gmin = 3 be the minimum circumference of a cycle. The 

circumferences of the c cycles may be equal or different. If the c circumferences 

are different then the cycle with maximum circumference will be termed gmax' 

The following theorem introduces the conditions that the maximum 

circumference in a network is g max = n -1 . 

Theorem (7.5) 

In a network with only V X2' V X2I' n I > 0 and with gi = 3 for i = 1,2, ... ,c -1, 

c > 1, then the maximum circumference is: 

Proof: 

Since V = {V X2 (f) V X2I} 

then n = n x + n I ; 

and nx = n X2 + n X2I ; 

and PGX = n x = mx . 
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If c = 1 then g 1 = m = n . 

If c > 1, and mI > 1 then m > n , 

and gi *- n *- m; otherwise there is a contradiction with gl = m = n. 

Thus gi < n < m . 

Since gmin = 3 then gmax > gmin always. 

The necessary conditions to have one of the c cycles with gmax are: 

Each cycle of the remaining c-l cycles, has a circumference equals g min , 

this condition necessitates that c>2, otherwise if c = 1 the two cycles can 

have gl = g2 = gmin . 

Thusifc>2 and gi =gmin fori=I, ... ,c-l then: 

The external edges of the c-l cycles are mX(e-l) = 2 edges. 

The internal edges between the c cycles is mI = (c - 2) + (c -1) = 2c - 3, 

There are three nodes of type V X2I' One node with degree c, and two nodes 

with degree three. Thus the total number of external nodes in the c-l cycles is 

llXC(e-l) = 3. The total number of internal nodes is n I = c - 2. 

Then, the total circumferences of the c-l cycles is 

e-l 
g(e-l) = Lgmin = gmin X (c -1) = 3(c -1), 

i=l 

Thus the c th cycle has n XCe = nx -1 and nICe = n I = c - 2. 

Thus 
gmax = ge = n XCe + nICe' 

= nx -1+nl' 

gmax = n-l 
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7.6.1 The network and the maximum circumference 

Any network with gmax = n -1 will be termed the basic configuration of G, and it 

has the following properties: 

It has one node with degree = c. 

I t has c nodes with degree = 3. 

It has two nodes of V
X21 

type. 

It has c-2 internal nodes. 

It has n-Cc+l) nodes with degree = 2; 

It has ffiI = C + 1; 

It has gc = 3c + n - 4 ; 

It has one cycle with gmax = n -1, 

It has c-l cycles with g = gmin 

7.7 Sub-classes of membership 

The number of edges of each type can be obtained by using the previous 

equation. An edge of any type has two end-nodes. The two end-nodes may be of 

the same type as the edge type, or one of the end-nodes might be of different 

type. For example, the two end-nodes of an internal edge may be internal nodes, 

or one of them might be an internal node and the other an external node. 

Furthermore, the degrees of the two end-nodes, of the same type or different 

type, may be the same or different. For example, an external edge may have two 

end-nodes of VXd type, and d may have the same value, or it may have different 

values. Also an external edge may have one end-node of VXd type and the other 

end-node of V
XdI 

type. Therefore, the set of edges of each type will be classified 

further based on the type of the end-nodes of that edge, i.e. if the two end-nodes 

have exactly the same type, then the edge will be termed by the same type of the 

end-nodes, and if the two end-nodes have different types, then the edge will be 
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termed by the type of the two end-nodes. If d of the two end-nodes is the same 

value, then the value of d will be used, and if d has two different values, then the 

two values will be used. 

Therefore, the following sub-classes are defined: 

(1) The sub-classes of the one-degree edges are: 

(i) 8X edge 

A one degree edge is termed 8X if: 

(1) One end node is of one-degree type. 

(2) The other end-node is of Vx type. 

(ii) 8B edge 

A one degree edge is termed 8B if: 

(1) One end-node is of one-degree type. 

(2) The other end-node is of VB type. 

(iii) 81 edge 

A one degree edge is termed 81 if: 

(1) One end-node is of one-degree type. 

(2) The other end-node is of VI type. 

(2) The sub-classes of the bridge edges are: 

(i) BB edge 

A bridge edge is termed BB if 

(1) The two end -nodes of the edge are of VB type. 

(ii) BX edge 

A bridge edge is termed BX if: 

(1) One end-node is of V XdB type. 
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(2) The other end-node is of VB type. 

(iii) BXX edge 

A bridge edge is termed BXX if: 

(1) The two end-nodes are of V
XdB 

type. 

(iv) BXI edge 

A bridge edge is termed BXI if: 

(1) One of the end-nodes is of V
XdB 

type. 

(2) The other is of VXdBI type. 

(v) BXXI edge 

A bridge edge is termed BXXI if: 

(1) The two end-nodes are of VXdBI type. 

EB = {EBB' EBx ' EBXI , EIX } 

(3) The sub-classes of the internal edges are: 

(i) IX edge 

An internal edge is termed IX if: 

(1) One end-node is of V x type. 

(2) The other end-node is of VI type. 

(ii) II edge 

An internal edge is termed II if: 

(1) The two end-nodes are of VI type. 

Thus, EI = {Err' EIX } 

(4) The sub-classes of the external edges are: 
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(i) xx edge 

(ii) 

An external edge is termed XX if: 

(1) The two end-nodes are of V Xd type. 

(2) The two end nodes have the same value of d. 

(3) It belongs to only one cycle. 

X .. edge 
1J 

An external edge is termed X.. if: 
1J 

(1) The two end-nodes are of V
Xd 

type. 

(2) The values ofd are i andj and i=tj. 

(iii) XIi edge 

An external edge is termed XIi if: 

(1) One end-node is of VXd type. 

(2) The other is of VXdI type with i internal edges. 

(iv) XIij edge 

An external edge is termed XIij if: 

(1) The two end-nodes are of V XdI type. 

(2) The i and j are the number of internal edges in the first and the second 

end-nodes. 

(v) XB edge 

An external edge is termed XB if: 

(1) One end-node is of VXd type. 

(2) The other end-node is of VXdB type. 
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(vi) XBI j edge 

An external edge is termed XBI j if: 

(1) One end-node is of VXd type or V
XdB 

type. 

(2) The other end-node is of VXdBI or V
XdI 

type. 

(vii) XBIij edge 

An external edge is termed XBIij if: 

(1) One end-node is of V XdI type with i internal edges. 

(2) The other end-node of VXdBI withj internal edges. 

7.7.1 Connections between classes 

The nodes and edges classification and sub-classification have been introduced 

in Section 6.2 and 6.3. An external node of subclass VX2 is always connected, by 

an edge of external type, to an external node of subclass V X2' V XdI or V XdB . 

Similarly, a bridge node of subclass VBB is always connected, by an edge of 

bridge type, to a node of subclass VBB , VXdB or VXdIB • Also an internal node of sub 

class VII is always connected to a node of subclass VII or Vxr . A nodes of a class 

are connected by edges of the same class, and nodes at the boundary, i.e. 

between two classes have a mixed entity of the two classes. Figure 7.11 shows 

the different connections between classes. 
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Internal Nodes 
connected by 
Internal Edges 

External Nodes 
connected by External 
Edges 

One-degree Nodes 
connected by One­
degree Edges 

Bridge Nodes 
Connected by Bridge 
Edges 

I 

Figure 7.11 Connection between classes 

7.7.2 The sub-classes of the mixed-cycles 

A mixed cycle, CX1 ' is defined in Section 7.4.3 as a cycle with mixed external 

edges and internal edges. Furthermore, a mixed-cycle may have zero, one or two 

edges of XI jj type. Accordingly, a mixed-cycle is classified into the following three 

types: 

(i) CXIO mixed-cycle 

A mixed-cycle, cx!' is termed CXIO if: 

(1) It has zero edge of type XIij • 

(2) It has one or more nodes of type VX2 • 

(3) It has exactly two nodes of type VX2I • 
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(ii) C XII mixed -cycle 

A mixed-cycle, cx!' is termed C
XIl 

if: 

(1) It has one edge of XI jj type. 

(2) It has zero node of type V
X2

• 

(3) It has exactly two nodes of type V
X2I

• 

(iii) C XI2 mixed -cycle 

A mixed-cycle, C X!' is termed C
XI2 

if: 

(1) It has two edges of XI jj type. 

(2) It has zero, one or more nodes of type V X2 • 

(3) It has exactly four nodes of type V X2I • 

An adjacent cycle: 

If two cycles have one or more share internal edges, then the two cycles are said 

to be adjacent. 

Classifying the mixed-cycles into these types, introduces another natural 

property, namely "the location property" of a mixed cycle with respect to other 

mixed-cycles in the network external closed path. 

Since a mixed-cycle of classc xI2 has two independent edges of XIjj type, 

then CXI2 have at least two independent internal edges. Therefore, a CXI2 a 

mixed-cycle must lie between at least two independent mixed-cycles. Therefore a 

CXI2 mixed-cycle will be termed C XI2M ' a two sided-middle mixed-cycle. Also a 

mixed-cycle of class C
XI1 

has two internal edges, not necessary dependent, and 

therefore lies between at least two mixed-cycles, not necessarily dependent. A 

CXIl mixed-cycle will be termed CXIlM ' a one-sided middle mixed-cycle. 

180 



A mixed-cycle of class CXIO has one or more dependent internal edges, and it has 

one or more nodes of VX2 type. The VX2 type nodes belong to one and only one 

cycle. Therefore, a mixed-cycle of class CXIO has one or more adjacent mixed­

cycles, and will be termed C XIOT ' a terminal mixed-cycle. 

7.8 The network open paths 

The definition of an open path is given in Section 7.4.1. Since there are different 

types of edges in the network, and since an open path starts and ends at two 

different nodes, then the edges of a path can be used to classify the open path 

type. Thus, if all edges of an open path are external, then the path is termed an 

external open path. If all edges of an open path are internal edges, then the 

open path is termed an open internal path. If the edges of an open path 

consist of external edges and internal edges, then the open path is termed an 

open mixed path. 

7.8.1 The open external paths 

A path will be termed Pox, open external path if: 

(1) All its edges are of external type. 

(2) Its end-nodes are external nodes. 

(3) Its end-nodes belong to PGx • 

(4) Its length is the minimum number of external edges between the two 

external end-nodes. 

7.8.2 The open internal paths 

A path will be termed P OJ , open internal path if: 

(1) Its edges are of internal type. 

(2) Its end-nodes are always external nodes of type VX2I • 

(3) Its end-nodes belong to PGx • 
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(4) Its length is the number of internal edges between the two external 

end-nodes. 

(5) The end-nodes may have more than one internal path. 

The ith POI maybe written with its end-nodes as POI(V
X1

' v
X2

). Let llOl be the 

length of the ith POI' i.e. the number of edges between the external end-nodes. 

Since the end-nodes of POI may have one or more open internal paths, then 

POI_/V Xp VX2 ) for j = 1,2, .... , is used to define and to distinguish each POI between 

the two external end-nodes. For example, in Figure 7.11, between V:2 and v 4 

there is only one open internal path, i.e. 

POI ( V 2' V 4) = { e 5 ' e 6 ' e 7 ' e 8} with II 01 ( V 2' V 4) = 4 . 

While between VI and V2 there are two open internal paths, i.e.: 

POI-I (vI' v 2) = {e9 , e5 }, with llOl_I (vI' v 2) = 2; and 

Since the end-nodes of POI are external nodes of type VX2P then: 

An external node of degree two does not have an internal path. 

An external node of degree three has one internal path. 

An external node of degree four has two internal paths. 

Let n be the total number of different POI in the network, then there is a 
POI 

direct relationship between the external nodes and n
pOI

, i.e. in a network with 

PGX = llx = fix, then: 

np' = (nx -1) + (nx - 2) + ... + 2 + 1 . 
OI 

(7.48) 
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Since the end-nodes are of type VX2I ' then the number of open internal paths is: 

n~-l 

npor = .l./nX21 - i) = (nX21 -1) + (nX21 - 2) + ... + 2 + 1. (7.49) 
i=l 

and let SGOI be the sum of the lengths of the np' paths, then or 

llPOI 

SGOI = LnOI(vXp V X2 ); 

i=l 

Let PGOI be the set of open internal paths in a network, then 

Example (7.1): The open internal paths of Figure 7.12 are derived 

(7.50) 

(7.51) 

Figure 7.12 A network to illustrate the open internal paths 

POI(V l , v3 ) = {<I>}; 
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POl(V 3 , v 4 )={<l>}; 

thus 

n =3· 
POI ' 

3 

llpOl = LnOI-i = 2 + 3 + 4 = 9; 
i=l 

7.S.3 The open mixed paths 

A path will be termed P OXI , open mixed path if: 

(1) Its edges consist of both external edges and internal edges. 

(2) Its end-nodes are external nodes. 

(3) Its end-nodes belong to PGx • 

(4) Its length is the minimum number of edges between the two external 

end-nodes. 

(5) The end-nodes may have more than one mixed open paths. 

7.9 The Network dimensions 

In a connected network, any two nodes have at least one open path 

between them. Define distance to be the length of an open path between the 

two nodes in the connected network. Therefore, an isolated node has a zero 

distance. It has no edges connected to any other nodes. The distance between 

two adjacent nodes is one edge. The minimum distance between two, non­

adjacent, nodes, is then the minimum length of the open path between the two 

nodes, and the longest distance between them is the maximum length of the 

open path between them. 
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7.9.1 The network Diameter 

The network external closed path, PGX ' has been introduced in Section 7.4.4. 

If (n x /2) > n l then the maximum length of an open internal path in the network 

is nl -1. The end-nodes of the open internal path are of external type. Define 

the network diameter to be the maximum value of the minimum distance 

between two nodes on P GX • The following theorem determines the value of the 

network diameter: 

Theorem (7.6) (The network Diameter) 

If a network has an external closed path and (n x /2) > n
l

, 

then the network diameter is: 

Diameter = r ~x 1· 

Proof: 

Let G be a network with m edges and n nodes, and let m>n. 

(7.52) 

Since (nx/2) > n l then the maximum distance of an open internal path in the 

network is n I - 1, and the maximum value of the minimum distance of an open 

external path between any two external nodes is > (nx/2) > n l -1. 

Since PGX = fix = nx , as given by equation (7.34), then if fix is even then the 

diameter, i.e. the maximum value of the minimum distance, between any two 

external nodes, is fix 12. If fix is odd, then the diameter is (fix + 1) I 2 . 

• 

185 



7.10 The range of Pax 

Consider the set of networks having n nodes and m edges but in which the end­

nodes for each edge are not specified. Such a network with unspecified edge 

locations will be termed G u ' 

Since Pax = fix = n x , as given by equation (7.34), then Pax includes all the 

external edges of G u ' Since the minimum length a closed path can have is three 

edges, then the minimum length of Pax is three edges. Let POXmin denote the 

minimum length of Pax' i.e. 

POXmin = 3. 

Remark (7.3): 

Every network with Pax and with n l > 0 can have a POXmin ' 

Let PGXmax denote the maximum value that the Pax can be. 

In G
u

' if n = m, then c = 1 and g = n = fi, i.e. the maximum number of nodes or 

edges a cycle can have is n = m. Thus, if n = m, then c = 1 and the maximum 

length Pax can have is: POXmax = fix = nx = n . 

If m> n then c> 1 and gmax = n -1, i.e. POXmax = fix = nx = n -1. 

The set of many give different networks. They may give a network with 

PGX = PGXmin , or a network with Pax = POXmin + 1 or more up to POXmax = mx = nx = n . 

Thus for each network Pax varies from POXmin to POXmax' i.e. 

POXmin < Pax < POXmax . 
(7.53) 
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7.11 The relation between PGX and gc 

From Theorem (7.2), gc = 2m - n x ; and from theorem (7.1), PGX = fix = n x . 

Substituting PGX instead of nx yields an important relationship between the 

network external path, the circumference of the c cycles and the m, i.e. 

gc +PGX = 2m. (7.54) 

Since the value of 2m is constant for a given network, then 

l.There is an indirect relationship between PGX and gc' i.e. as PGX 

increases gc decreases, and the opposite is true. 

2.For each one value of PGX the network has one and only one value of gc. 

Thus, if PGX = Pm(min = 3, then gc = 2m - 3 . Let gCmax the maximum value gc can 

be, then gCmax = 2m-3. (7.55) 

As PGX is increasing by one edge, gc is decreasing by one edge. Thus, if 

PGX = Pm(max = mx = nx = n , there will be no internal nodes, i.e. nr = 0, then gc 

has the minimum value it can be, i.e. gc = gCmin = 2m - n . Let gCmin be the 

minimum value of gc. 

Then gCmin = 2m-n. (7.56) 

Thus gCmin and gCmax define the range of gc for a given network, i.e. 

gCmax > gc > gCmin· (7.57) 

3. For each value of PGX and gc the network has several possible connections, 

and these connections are countable as given in the next section. 
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7.12 The relation between Pox and gmax 

In a network with mr > 1, the maximum circumference of a cycle is 

gmax = n -1, as given by equation (7.41). The conditions, at which a network has a 

cycle with gmax = n -1, have been introduced in Section (7.6). 

Since POXmax = n and since gmax = n -1 then a network can have only one 

cycle with gmax = n -1. The network has many different connections, some of the 

connections may have one cycle with gmax = n -1 and some connections may not 

have a cycle with gmax = n -1, i.e. if Pox = POXmax = n then a network may have a 

cycle with gmax = n -1, and all connections with Pox < POXmax = n have to have a 

cycle with gmax = n -1. The opposite is not necessarily true, i.e. if Pox = POXmin = 3 

and has a cycle with gmax = n -1, then not necessarily all connections with 

PGX > POXmin = 3 have a cycle with gmax = n -1. The basic configuration of a 

network introduced in Section 7.6 will be used to introduce the relation between 

Let n
l2 

be the number of internal nodes of degree two, and let n l3 be the 

number of internal nodes of degree three, then n l = n l2 + n 13 · 

Pox = m x = n x = C XI = 3 , 

One cycle with gmax = n -1, 

and g. = g . = 3 of the remaining (c-1) cycles then the network has only one of 
1 IIlln 

two possible configurations as shown in Figures 7.10 and 7.11. 
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The first possible configuration: 

The first possible basic configuration of Gu is shown in Figure 7.10. It has: 

(1) Pax = m x = n x = C XI = 3 , i. e. 

One external node of degree c; and 

Two external nodes of degree three. 

(2) It has nI3 = C - 2 nodes of degree three. 

(3) It has n I2 = 0 nodes of degree two. 

(4) One cycle with gmax = n -1. 

(5) Each cycle has three edges except one cycle, 

i.e. g. = 3 for i = 1 2 ... c-1 
1 ",. 

Figure 7.13 The first basic configuration of G u 

The number of internal cycles can be obtained, i.e. 

For example, in Figure 7.13, c
I 

= C - c
XI 

= 6 - 3 = 3. 

If gj = gmin = 3 kept unchanged for i = 1,2"" ,C -1 and Pax of G u is changed, then 

gc = gmax = n l + 2 = n -1 will be destroyed, i.e. Gu will not have a cycle with 

gmax = n -1, it may has a cycle with a circumference > gmin = 3 . The relationship 

between g c and g i is direct. 
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Let gi =gmin = 3 for i =1, ... ,c-l, and 

let gc = gmax 

then the sum of the c circumferences is gc = 3(c -1) + gmax . 

Since gc + PGX = 2m, as given by equation (7.46), and since PGX of G
u 

vanes 

from PGXmin < PGX < PGXmax , then 

gmax =gc -3(c-l); 

gmax =(2m-PGx)-3(c-l); 

thus the relation between PGX and the maximum circumference of a cycle in G
u 

IS: 

g max = 3n - m - P GX . (7.58) 

The second possible basic configuration: 

The second possible basic configuration of Gu is shown in Figure 7.14. It has: 

(1) P GX = m x = n x = C XI = 3 , with 

One external node of degree c; and 

Two external nodes of degree three. 

(2) Number of nodes of degree three is nI3 = C - 2 . 

(3) Number of nodes of degree two is nu = n - nx - nI3 = n - c -1. 

(4) One cycle with gmax = n -1 . 

(5) One cycle with gc-l = n I2 + 3 . 

(6) gi = 3 for i = 1,2,,," C - 2. 

Figure 7.14 

The second basic configuration 

of G 
u 
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The number of internal cycles can be obtained, i.e. 

C1 = C - CX! . 

For example, in Figure 7.14, cI = c - cXI = 4 - 3 = 1 . 

Let each internal cycle has three edges only, then the internal nodes of each 

internal cycle are of degree three, furthermore: 

One internal cycle has two internal nodes of degree three, 

Two internal cycles have three internal nodes of degree, 

Thus there is a relationship between the numbers of internal cycles and internal 

nodes, i.e.: 

Applying these relationships on Figure 7.14, then; 

n 13 = cI + 1 = 1 + 1 = 2 ; 

n l = n - nx = 7 - 3 = 4; 

n I2 = n I - n l3 = 4 - 2 = 2 ; 

Thus gi = 3 for i = 1, ... ,c - 2, and 

gc-l = n l2 + 3 = 2 + 3 = 5 

g =g =n-1=7-1=6. c max 

If gj = gmin = 3 kept unchanged for i = 1,2,· .. ,C - 2 and PGX of G u is changed, then 

g = g = n + 2 = n -1 will exist as long as nI2 > 0, but gc-l will change, i.e. it 
c max I 

will decrease, with the increase PGX of Gu • Figures 7.15 to 7.18 show the 

variation in g and g = g as PGX is increasing. c-l c max 

If G has P = m = n = 4 as shown in Figure 7.15 
u GX x X ' 
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then 

Thus 

n I = n-nx = 3; 

n 12 = n 12 -1 = 2 -1 = 1 ; 

gi = 3 for i = 1, ... ,c - 2, and 

g c-l = n 12 + 3 = 1 + 3 = 4 

g c = g max = n -1 . 

-0 

Figure 7.15 A network with PGX = 4 

If Gu has PGX = fix = llx = 5, as shown in Figure 7.16, 

then 

n I = n-nx = 2; 

n 12 = n 12 -1 = 1 -1 = 0 ; 

Thus 

gc-l = lll2 + 3 = 0 + 3 = 3; 

l.e. Figure 7.16 A network with PGX = 5 

gi = 3 for i = 1, ... ,c -1 ; 

and gc = gmax = n -1. 

If Gu has PGX = 6 and gi = 3 for i = 1, ... ,c -1; and one of the internal nodes of 

degree three is an external node as shown in Figure 7.17, i.e. 

If P GX = fi x = II x = 6 , 

and gi = 3 for i = 1, ... ,c -1, 

then 

n I = n -nx = 1; 

DI2 = 0 

DI3 = III - lll2 = 1- 0 = 1 ; 

g c = g max = n - 2 . Figure 7.17 A network with PGX = 6 
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If Gu has PGX = n then the last internal node of degree three will be an external 

node as shown in Figure 7.18, i.e. 

If P GX = m x = n x = n = 7 

then 

n I =0 

gi = 3 for i = 1, ... ,c -1 ; 

gc = gmax = n - 3. 

o 

Figure 7.18 A network with PGX = 7 

Thus for the second basic configuration of a network with n I2 > 0 

gc = 2m-PGX; 

gmax = n -1; 

and 

or 

gc-l = 2n - m + 4 - PGX . (7.58) 

The difference between the first and the second basic configuration is n I2 • If 

nI2 = 0, then G
u 

has the first configuration, and if n I2 > 0 then Gu has the 

second configuration. 
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7.13 Network classifications 

The network external closed path PGX is a natural property exists in every 

connected network. The relation between PGX' m and gc has been given by 

equation (7.46), in Section (7.11) and the relation between PGX and gmax has also 

been described in Section (7.12). Every connected network has one and only one 

PGX as described in Section 7.4.1 and proved by Theorem (7.1). Since PGX has a 

range of values as given by equation (7.45). Then the PGX property can be used to 

classify the different sets of networks that Gu may have. Each subset of 

networks of Gu that has only one value of PGX represents one class. Then its 

possible to find the basic configuration of each PGx ' 

Let Gp represents one subset of networks of G u which has only one 
ax 

value of PGx ' Then G has the same range as the range of PGx ' For example, if 
Pax 

7 ~ PGX > 3 G 3 then G Pax has (7-3+ 1)=5 classes from G 3 to G 7 • Finding the a class 

of G for a certain value of PGX depends on finding the basic configuration first. 
Pax 

Then the parameters of the basic configuration of Gpax for every value of 

PGX can be obtained. 

For example, let PGX = 3 then the parameters of G3 are: 

P GX = m x = n x = 3 ; 

gc = 2m-3 

nr = n - n x ; 

mr =m-mx; 

cxr = 3; 

c =c-3' r , 

gmax = n -1. 
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Let n= 14 nodes and m = 20 edges, and let PGX = 3 then the parameters of G 
3 

are: 

PGX = mx = fix = 3 . 

gc = 2m - 3 = (2).(20) - 3 = 37 . 

n l =n-nx =14-3=11. 

m l = m - mx = 20 - 3 = 17 . 

C = m - n + 1 = 20 - 14 + 1 = 7 . 

n B = C - 2 = 5. 

cX! = 3; 

CI = C - 3 = 7 - 3 = 4. 

Since n I2 > 0 then 0 3 has the second configuration, then 

gc-l = 2n - m + 4 - PGx' (7.59) 

gc-l = (2).(14) - 20 + 4 - 3 = 9. 

g = g = n -1 = 14 -1 = 13 c max . 

g. = g . = 3 for i = 1 2 ... 5 
1 mIll ",. 

Knowing parameters of the basic configuration of G 3' it is possible to find 

the parameters of the basic configuration of any value of PGX in the possible 

range of PGx' 

7.14 Identifying the different possible connections 

If PGX of a network is known, then it is easy to identify all possible connections 

that this network may have. Each PGX identifies a set of connections. The 

identification is based on using PGX and the basic configuration of the network 

as introduced in Section 7.6. 
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If the network has the first basic configuration, then the number of 

possible connections is: 

Z =gmax - gmin' (7.60) 

The z possible connections can be obtained as follows: let CPGX,z be the set of c 

circumferences of the basic configuration of the network for PGX where 

P GXmin > P GX > P GXmin , then, 

(7.61) 

for 

i=1 ... c-z' " , 

J'=c-z ... c-1' " , 

with gmax =3n-m-PGx' (7.62) 

Each z may have w different possible connections. 

Thus, if PGX = 3, then the z the number of possible connections are: 

C3,2 = {gi = gmin' gc-l + 1,gmax -I} for i = 1, .. ·,c - 2 

C3,3 = {gi = gmin' gc-2 + 1,gc-l + 1,gmax - 2} for i = 1, "',c -3 

C ={g. =g. g. =g . +1 g -z} for i=1 "',c-z, and j=z+1, .. ·,c-l 
3,z 1 mm , J mm , max ' 

if PGX = 4 

C {g - g g }. for i = 1, ... , c -1 4 1 = i-min' max , , 

If a network has the second basic configuration, then the z possible connections 

can be obtained by using the following procedure: 
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let CPGX'z be the set of c circumferences of the second basic configuration of the 

network for PGX where PGXmin > PGX > PGXmin , then, 

for 

i = 1, ... , c - 2 

with gc-l = 2n - m + 4 - PGX; 

and gmax = 3n - m - PGX • 

Procedure: 

PGX = 3; 

Z = 1; 

CPGX,z = [gl' g2 ,. .. , ge-2' gc-1' ge] ; 

if ZI > 1 

10 for j = c - 2 : -1 : 1 

g - g -1' e-I - e-I , 

z=z+l; 

Cp z = [gVg2 ,.",ge-2,ge-vge]; 
GX, 

end' , 

end' , 

Z -g g . 2 - e - e-I' 
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z=z+I' , 

Go to 10; 

end. 

Each CPGX,z connection has different possible configuration, i.e. if P
GX 

of a 

network is known, and gi for i = 1,2, ... ,c, is also known, then the c cycles may 

have different possible configurations. 

7.15 The relation between PGX and the mixed-cycles 

In a network as the one described in Theorem (7.1) and (7.2), c, the number of 

cycles is given by: 

c = cXI + cl ; 

Each CXI ' mixed-cycle, as introduced in Section 7.7, has at least one external 

edge in PGx ' Thus if each CXI cycle has exactly one external edge in the network, 

then 

C XI = PGX; this is the maximum number of C XI in the network. 

and CI = 0; 

and n l > 0; 

and all the nx nodes are of type VX2U i.e. of degree three; 

and all the C XI are of type C XI1M ' 

If c = 1, then c is of external type. 

If c = 2, then they are mixed-cycles, i.e. the minimum number of mixed-cycles in 

a network is 2 cycles. Thus, PGX > CX! > 2 . 

Since c = m - n + 1 = C
XI 

+ c
l

' is constant, then if C XI increases then C r must 

decrease to give c. 
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A mixed-cycle has three types as given in Section 6.7.1, these types are C
XIOT

' 

CX11M and cXI2M • 

The first basic configuration has C X! = PGX always. 

If the second basic configuration has one cycle with g i = g max = n -1, then c XI = 3 . 

If gi = gmax = n -1 decreases by one, cXI increases by one mixed-cycle until 

CX! = PGX' A PGX with one cycle has PGX < gi < gmax = n -1 may have C X! < PGX' 

Thus the c cycles can have different position in the network. 

7.16 Number of possible connections 

There are many different possible connections of a network with n nodes 

and m edges. For example, if m=n, then there is only one cycle. 

n 

There are L (n - i) possible ways to have one cycle with m=n. 
i=l 

n 

If c=2, then the first cycle has L (n - i) possible ways, and the second cycle has 
i=l 

n 

(n - 3) possible ways. If c=3 then there are L (n - i) + 2 (n - 3) . 
i=l 

In general if c> 1, then 
n 

the number of possible connection = L (n - i) + (c -l)(n -3) . 
i=l 

7.17 The network entity 

Having introduced the edge state phenomenon and the different parameters and 

relations associated with a graph of a network, this chapter concludes by 

defining the network entity, which describes and identifies the minimum set of 

connections having the same descriptions. 

An entity is a set of parameters describing an object such that the object 
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or a class of the object can be identified. An example of an entity is a home 

address. The home address consists of the following parameters: 

The house/apartment number; 

The street name; 

The city name; 

The county name; 

The zip code; 

The country name. 

If anyone of these parameters is changed the mail may not be delivered 

correctly. 

A connected graph is an object. It has a set of parameters which define its 

entity. In this section, the analysis of defining the network parameters proceeds 

from the most general case of a network without restrictions, and then applies 

the network natural properties as natural restrictions that have to be used as 

parameters to define the network entity: 

(1) V is the set of nodes with n the number of elements in V. 

(2) E is the set of edges with m the number of elements in E. 

(3) If V is considered alone, i.e. without considering the edges between 

the n nodes, then V form an isolated set of nodes, every node has no 

edges. 

(4) If the n nodes are connected by the m edges without restrictions, then 

there are many possible ways of different connections as given in 

Section 7.14. 

(5) If one restriction is applied on the connection, then the number of 

possible ways of connection will reduce. It will be less than the 

number of possible ways without restrictions. The more restrictions 

applied, the more the number of possible ways of connections will be 
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reduced. 

(6) The mechanism of connection: connecting an edge to a node 

defines not only the edge and the node types, but also it defines the 

induced relationship, such as the degree of the node and the cycle 

relationship. For example, if an isolated node is connected by an edge 

coming from an internal node, then the isolated node is changed to be 

a one-degree node, and the edge is classified as an edge of SI type. 

Furthermore, if another edge coming from an external node is 

connected to the previous one-degree node, then, the attribute of the 

one-degree node changes to be an internal node. From the degree side, 

the connection of the first edge then the second edge changes the node 

degree from zero to one to two, and it changes the node type from an 

isolated node to a one-degree node to an internal node, and finally it 

changes the network structure by adding a new cycle of a certain 

class. Thus, adding (or deleting) an element (an edge or a node) to the 

network changes the entity of the element accordingly, and this 

change, consequently, changes the network parameters and relations. 

So that, every element, in each set, has a very well defined class or 

sub-class. 

(7) The restrictions that will be applied on the connections are the edge 

and node natural types that induced through mechanism of 

connection and the induced relationships. 

(8) The node and edge restriction: V is the set of nodes, and E is the 

set of edges. Each set is classified, as given in Sections 7.2 and 7.3, 

through the mechanism of connection into four types, i.e. 

V = {Vx E9 VI E9 VB E9 Vs} and E = {Ex E9 EI E9 EB E9 Es} with n = IVI the 

number of elements of V, and m = lEI and the number ofE. If a 
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network has the same description as the one described by Theorems 

(7.1) and (7.2), and if EB = Es = VB = Vs = {<I>} then V reduces to 

V = {Vx EB VI} and E reduces to E = {Ex EB EI}, which in turn must 

reduce the number of possible connections. For example, if a network 

has n nodes, unclassified, and there is one edge to be connected 

between any two nodes, then there are n.(n-I) possible ways of 

connecting the edge. Ifn and m are classified as internal and external, 

and if the one edge is of external type then the external edge has to be 

connected between external nodes only. Thus, the edge/node type 

restriction reduces the number of possible ways of connecting the one 

external edge to n x . If there are mx edges to be connected between 

nx nodes, then the number of possible ways of connection reduces to 

one. 

(9) The network external path restriction: If a network has Pex , then 

PGX = nx = mx · Many other relations, related to Pex , can be obtained 

such as n I = n - nx and m I = m - mx . The range of Pex , of a network, 

is 3 <PGX < n. Since range of Pex is deterministic, then the related 

functions are deterministic, such as gc-l = 2n - m + 4 - PGX and 

gc = 2m - PGx· Determining one Pex of a network out of the range of 

P not only a reduction from n to n I and from the m to mI. Thus, GX' 

reducing the number of different possible connections to the internal 

edges and nodes. There are m I edges to be connected internally 

between the nx nodes and n I nodes such that the network has c 

cycles. There is nI(nX + 1) possible ways to connect one internal edge, 

and there are nI(nX +1)-1 possible ways to connect two internal 

edges. Thus there are nI(nX + 1) -m I possible ways to connect mI 

internal edges. 
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(10) The circumference restriction: The number of cycles, in all 

different possible connections, with or without restrictions IS , 

constant. But the c circumferences of the c cycles are not equal in all 

different possible connections. As explained in Section 7.10, gc has a 

direct relation with PGX ' each PGX has one and only one gc' Each 

combination of PGX and gc has z different possible connections as 

given in Section 7.13. At each zth connection the c circumferences are 

fixed. But, the internal edges of the c cycles can be connected in 

different away so that the sum of the c circumferences is always gc' 

I.e. gc = gl + g2 + ... + gc = 2m - PGX' The circumference restriction 

reduces the number of different possible connections to one connection 

with one PGX and one gc and one z configuration, which has fixed 

valueofgi for i=1,2, ... ,c. 

(11) The open internal paths restriction: The internal edges has to 

be change such that gc = gl + g 2 + ... + gc = 2m - PGX • If the connection of 

one internal edge is changed from (v 11' V 12) to (v 11' V 13) the length of 

one or more of the open internal paths will change. Thus, if a 

connection has one PGX and one gc and one z configuration, i.e. with 

fixed value of gi for i = 1,2, ... , c, then if one or more internal edges 

have been changed, then the length of one or more of the internal 

paths will change. Thus, Lp, the total length of the npO! open internal 

paths will change. If after the change, Lp did not change, then the 

two connections are similar to each other. Thus, applying npO! and Lp 

restrictions reduced the different possible connections to small 

number of similar connections. 

(12) Thus, these parameters, the natural restrictions, are used to form 

the network entity, i.e. G = {V, E, PGX ' CpGX,z' PGI } . 

203 



(13) The network entity can describe one or a set of similar connections 

of a network. 

Example (7.2): To identify the network entity 

The network in Figure 7.19 has mx = nx = 6; n l = 3; ml = 7 . 

Thus c=(mx +ml)-(n X +n)l +1=(6+7)-(6+3)-1=5. 

The C={gl'g2,g3,g4,gS}={3, 3, 4, 4, 6} 

There are few different connections that can give a network with these data. 

The open internal paths of Figure 7.19 are: 

VX6 
y-----I 

VX4 

Figure 7.19 A network used to define the entity 
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POI ( V X2 ' V X5) = { e II , e 13 ' e 16 e 17 } = 4 

POI ( V X2 ' V X6) = { e II ' e 13 ' e 14 } = 3 

POI ( V X3 ' V X5) = { e IS ' e 13 ' e 16 ' e 17 } = 4 

POI ( V X3 ' V X6) = { e IS ' e 13 ' e 14 } = 3 

Thus the total number of open internal paths can be written as follows: 

3(2) + 4(3) + 3(4) = 30 

if PGX ' C are kept constant and one of the internal edges change its position, 

then set of open internal paths will change to describe the new connection. Thus 

the set of {V, E, PGX ' {PoG!}} describe one and only one connection. 

205 



8.1 General 

ChapterS 

Using the edge state phenomenon 

to partition the network 

The edge state phenomenon has been introduced in Chapter 7 in 

order to define some new properties of the network, which are useful in the 

theoretical development. In this chapter, the edge phenomena and some of 

the induced network properties are used to introduce a new approach for 

solution of the network-partitioning problem. The new approach is introduced 

for a class of network connections without bridge edges. The problems of: (i) 

establishing the existence of a balanced k-partitioning of a network; and (ii) 

obtaining such a partitioning; are known [25] to be NP-hard problems. The 

method to be described offers a new heuristic approach to compact 

computational solution of (ii), and gives insight into (i). Partitioning a 

network is an operation in which a set of the network edges is cut. Those 

edges are termed cut edges, the end nodes of the cut edges are termed the 

boundary nodes, and the remaining nodes in each part consists of internal 

nodes and external nodes are termed the internal part nodes. The goal of 

partitioning a network into k parts is to balance the number of boundary 

nodes with the number of the part nodes in the k partitions. 

A cut-line is a line used to cut a set of edges of the network. The cut­

line concept is introduced in Section 8.2. The concept is introduced gradually 

from partitioning a network with one cycle by one cut line, in Section 8.3, to 

partitioning a network with c>l cycles by k-l cut lines, in Section 8.4. Cut 

lines are not allowed to cross each other, thus the relationship between cut 

lines are introduced. 

The external close path of a network and the open internal paths are 

all data obtainable from the network. 
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In a network with an external close path, the starting edge, the 

ending edge and the route of each cut-line are defined in Section B.5. The 

starting edge and the ending edge of a cut-line are always of external type. 

Thus the end nodes of the starting edge and the ending edge are classified as 

external boundary nodes. Two open paths determine the cut line route. 

While the cut line is proceeding from one internal edge to another internal 

edge, it defines the internal boundary nodes. 

The I-I cut-line, which partitions the external close path into k equal 

or balanced parts, is defined in Section B.7. 

The open internal paths are used not only to specify the cut line route 

but also to find the internal nodes in each part. 

8.2 The cut-line concept 

Let P be an open path consisting of n nodes and n-l edges as defined in 

Section 7.4.1 and let e be one of the edges in P. Let a cut operation is 

performed on e by a line so that the cut operation partitions e by 

disconnecting e from its end nodes. Then it can be said that the line partitions 

e into two separate parts, each part has one node and it partitions P into two 

open paths PI and P2, as shown figure (B.la). The line is termed the cut­

line, the edge that has been cut is termed the cut-edge and the end nodes of 

the cut-edge are termed the boundary nodes. 

PI P2 The cut-line 

o~--~tt~-:~(--tt'---~Or----o 
: 

:" 

e 

Figure (B.la) One cut-line 

o 
tt 

Anode 

A boundary node 

A cut-line 

The two end nodes of P and the two boundary nodes of the cut-edge are the 

four end nodes of the new two open paths PI and P2, two end nodes for each 
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"':~" 

open path. 

Thus, one cut-line partitions an open path into two open paths by cutting only 

one edge from P. Accordingly, two cut-lines partition P into three open paths 

by cutting two edges only as shown in Figure 8.lb. 

Cut-line I 

PI P2 

............... Cut-line 2 

P3 

Figure 8.lb Two cut-lines 

Remark (8.1) 

If a cut-line cuts k edges from an open path, then the open path is partitioned 

into k+1 open paths 

8.3 Partitioning a cycle 

A cycle in a network, as defined in Section 7.4.2, is a closed path with 

minimum number of edges. Partitioning a cycle into two or more open paths 

involves using one or more cut-lines. The necessary conditions of partitioning 

a cycle into two or more open paths are introduced in Section 8.3.1. 

8.3.1 Partitioning one cycle into two open paths 

If a cut-line cuts one edge from a cycle, then the cycle becomes an open path. 

The end nodes of the open path are the boundary nodes of the cut-edge. If the 

cut-line cuts another edge in the cycle, then the cycle is partitioned into two 

separate open paths. Each open path starts and ends at a boundary node, i.e. 

the boundary nodes of the two cut-edges are the ending nodes of the two open 

paths. Thus, if one cut-line cuts exactly two edges from a cycle, then the cut­

line partitions the cycle into exactly two open paths, as shown in Figure 8.2. 
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Cut line 

Figure 8.2 One cut line cuts two independent cut edges 

There are four boundary nodes. 

The two edges are cut-edges, and the partitioned cycle is termed the cut­

cycle. The two cut-edges are either dependent edges or independent edges. If 

the two cut-edges are independent, then there are four boundary nodes, as 

shown in Figure 8.2, and if the two cut-edges are dependent, then there are 

three boundary nodes as shown in Figure 8.3. 

)-----jO--I 

... / ........................ . 

Figure 8.3 

One cut line cuts two dependent cut edges 

There are three boundary nodes. 

Remark (8.2) 

If one cut-line cuts only two edges from a cycle, then cut-line partitions the 

cycle into two open paths. 

8.3.2 Dependent and independent cut-lines 

Since one cut-line partitions a cycle into two separate open paths by cutting 

only two edges from the cycle, then one of the cut-edges is termed the 

starting-edge of the cut-line and the other cut-edge is termed the ending-

edge of the cut-line. 

If a cycle is partitioned by two or more cut-lines such that each cut-

lines cuts only two edges, then some of the cut-lines have the same starting­

edge or the same ending-edge and some have different starting edges and 

different ending edges. 
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Definition: 

If the two cut-lines have the same starting edge or the same ending edge 

then the two cut-lines are said to be dependent. 

If the two cut-lines have different starting edges and different ending edges, 

then the two cut-lines are said to be independent. 

The dependent and independent cut-lines principle is used to partition a cycle 

into k>2 open paths as explained in Section 8.3.2. 

8.3.3 Partitioning one cycle into three open paths 

Since one cut-line partitions a cycle into two open paths by cutting only 

two edges from the cycle, then one cut-line is not sufficient to partition the 

cycle into three open paths. Therefore, it is necessary to have two cut-lines 

and the two cut-lines must be dependent. One cut line partitions the cycle 

into two open paths, say PI and P2, by cutting only two edges. The second 

dependent cut-line partitions only one of the two open paths, say P2, into two 

open paths, say P2I and P22, by cutting only one edge from P2. Thus, the two 

dependent cut-lines have only three cut-edges. The three cut-edges have three 

different types of connection, either all of them are dependent or all of them 

are independent or one cut-edge is independent and two cut-edges are 

dependent. Figures 8.4a, 8.4b and 8.4c show all possible connections of the 

cut-edges. Figure 8.4a shows the two dependent cut-lines and three cut-edges, 

and the three cut edges are independent. Therefore there are six boundary 

nodes, i.e. (2 boundary nodes per cut edge x 3 cut-edges). 

Cut lin.~ 2 

Cut linel 

Figure 8.4a 

Two dependent cut-lines cut three independent edges 
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Figure 8.4b shows two dependent cut-lines and three cut-edges. Two of the 

cut-edges are dependent and the third cut edge is independent. Therefore 

there are five boundary nodes, i.e. (2 nodes per cut-edge x 2 dependent cut­

edges - 1) + (2 nodes per cut-edge x 1 independent cut-edge). 

Cut line 1 / .......................... :: cut line 2 
"""""""--+--4 

Figure 8.4b 

Two dependent cut-lines and three cut-edges, 

two dependent and one independent 

Figure 8.2c shows the two dependent cut-lines and three cut-edges. The three 

cut-edges are dependent, one cut edge is common between the other two cut 

edges. Therefore there are four boundary nodes, i.e. (2 nodes per cut edge x 3 

dependent cut edges - 1 node from each two dependent cut-edges x 2 set of 

dependent cut-edges). 

U---O-----l 

.... 

'Figure 8. 4c 

Two dependent cut lines cut three dependent edges 

Remark (8.3) 

Every two dependent cut lines partition the one cycle into three parts by 

cutting only three cut-edges. The number of boundary nodes depends on the 

type of connection these edges have. 

8.3.4 Partitioning one cycle into four open paths 

If the circumference of a cycle is equal or greater than k (=4), then the 

cycle can be partition into four open baths by either dependent cut-lines or by 

independent cut-lines. 
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If the cut-lines are dependent, then three (i.e. k-I) dependent cut-lines are 

needed to partition the cycle into four open paths. The three cut-lines cut four 

edges. The four cut-edges can be dependent or independent as shown in figure 

8.5. 

P3 

PI 

Figure 8.5 

Three dependent cut-lines and four cut-edges 

If the cut-lines are independent, then two cut-lines partition the cycle into 

four open paths by cutting four edges. The first cut-line partitions the cycle 

into two open paths, as described in Section 8.3.1. The second cut-line 

partitions one of the resultant two open paths into three open paths by 

cutting two edges as described in Section 8.2. Thus, the two independent cut­

lines partition the cycle into four open paths by cutting four edges as shown 

in Figures 8.6a to 8.6d. The four cut-edges can be independent or dependent 

or combination of dependent and independent cut-edges. 

Cut linel Cut line 2 

Figure 8.6a Figure 8.6b '. 

Two independent cut-lines Two independent cut-lines 

cu t four independent cut edges cu t three dependent cut-edges 

and one independent edge 
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Cut linel Cut line 2 

Figure 8.6c Figure 8.6d 

Two independent cut lines 

cut two dependent cut edges 

and two independent cut edges 

Remark (8.4) 

Two independent cut lines 

cut four dependent cut-edges 

A one cycle can be partitioned into four open paths by either three 

dependent cut-lines or two independent cut-lines. 

8.3.5 Partitioning one cycle into k open paths 

In general, a cycle can be partitioned into k open paths by dependent or 

independent cut lines, or by combination of them such that each cut line cuts 

two edges. If k is even, then, the cycle can be partition by k-l dependent cut 

lines, or by kl2 independent cut-lines. 

Ifk is odd and k>3, then the cycle can be partition by two dependent cut-lines 

and (k-2)/2 independent cut lines. 

8.4 Partitioning more than one cycle 

Two cycles may have one or more internal edges between them. Partitioning 

more than one cycle by one or more cut-line is the same as partitioning one 

cycle. 

8.4.1 Partitioning two cycles with an internal edge 

Two cycles have one or more internal edges. If a cut-line is to partition 

the two cycles into two parts, then, according to Remark (8.2), the cut-line has 

to cut two edges from each cycle. If the cut-line cuts only two external edges 
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from any cycle, then the cut-line will not partition the second cycle. Thus, to 

partition the two cycles the cut-line must cut two edges from each cycle, i.e. 

the internal edge and one external edge from each cycle. The result is two 

open paths as shown in Figure 8.7. 

Figure 8.7 Partitioning two cycles by one cut-line 

Therefore, each cut line has to cut three edges (two external edges and one 

internal edge) to partition two cycles into two open paths. 

Also, one cut-line has to cut five edges (two external edges and three internal 

edges) to partition four cycles into two open paths. 

Remark (8.5) 

In general, if there are c cycles, and there is one internal edge between each 

two cycles then one cut-line partitions the c cycles into two open paths by 

cutting those internal edges and two external edges. 

8.4.2 Using dependent cut-lines 

Remark (8.3) establishes that two dependent cut-lines partition one 

cycle into three open paths. The same rule can be used to partition two or 

more cycles into three parts, each part is an open path. 

Figure 8.8a shows two cycles with one internal edge between them, and 

Figure 8.8b shows two cycles with more than one internal edge. To partition 

the two cycles into three parts two dependent cut-lines must be used. If one of 

the cut-lines cuts two external edges and one internal edge, then the two 

cycles are partitioned into two parts. Since the two cut-lines are dependent, 

then the two cut-lines have one or more common edges. 
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The second 

cut-line 

Figure 8.8a 

• .... 

·······f 

Figur~ 8.8b 

Partitioning two cycles by two dependent cut lines 

Thus the second cut-line has two dependent edges as shown in Figure 8.8a, 

and it has one common edge as shown in Figure 8.8b. The two cut lines cut 

four edges. The four cut-edges may be dependent as in Figure 8.8a, and they 

might be independent as shown in Figure 8.8b. 

If the four cut edges are dependent, then there are four boundary nodes. If 

one cut edge is independent and three are dependent, then there are six 

boundary nodes. If two cut edges are independent and two are dependent, 

then there are seven boundary nodes. If all cut edges are independent, then 

there are eight boundary nodes. 

Remark (8.6) 

Two dependent cut lines partition two cycles into three parts by cutting only 

four edges. 

8.4.3 Using independent cut-lines 

Let the circumference of each cycle be gj = gmin = 3, i = 1,2, and let mr = 1, 

then m = 5. If the two cut-lines do not cut the internal edge, then each cut 

line cuts two external edges from each cycle. Therefore the two cycles will be 

partitioned into three parts as shown in Figure 8.9. 
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Figure B.9 Partitioning two cycles by two independent cut-lines 

If one cut-line partitions the two cycles it will cut three edges, the internal 

edge, and two external edges, one edge from each cycle. Since the other cut 

line is independent, it must cut different edges. This implies that the size of 

one of the cycles must be more than the three edges, to have another 

independent cut line as shown in Figures B.10a and B.10b. The second cut line 

cuts another set of edges entirely different from the cut edges that have been 

cut by the first cut-line. It cuts either another internal edge and two other 

external edges from the two cycles as shown in Figure B.10a or it cuts two 

external edges from one cycle as shown in Figure B.10b. If two internal edges 

have been cut, then the two cycles will be partitioned into five parts, if not, 

then the two cycles are partitioned into four parts. 

Figure B.10a Figure B.10b 

Figure B.10a and b Partitioning two cycles by two independent cut­

lines 

Therefore, two independent cut-lines can partition two cycles into three, four 

or five parts. The two independent cut-lines partition the two cycles into: 

three parts if the two cut-lines did not cut any internal edge; 

four parts if one cut-line cuts the internal edge and the other did not; 

or five parts if the two cut-lines cut the internal edge independently. 
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Having illustrated the different routes one or more cut-lines have to follow to 

partition a cycle or a set of cycles, Sections 8.5 and 8.6 define the starting 

edge and the ending edge and the route of each cut line. 

8.5 The class of the starting-edge and the ending-edge 

A network can be partitioned into k parts by either k-l dependent cut-lines or 

kl2 independent cut-lines or a combination of dependent and independent cut­

lines and depending on the size of the network. Each cut-line partitions the 

network into two parts exactly. Let L represent a cut-line. 

The starting-edge and the ending-edge of a cut-line with respect to a 

cycle have been introduced in Section 8.3.2. 

In a network, the cut-line starts by cutting an edge of external type and 

then proceeds inside a cycle, in the network, looking to cut another edge. The 

next edge is either an internal edge or an external edge. If the cut-line cuts an 

internal edge, it will continue proceeding looking for another edge. If the next 

edge is of external type, the cut-line will terminate. Thus, the starting-edge 

and the ending-edge of a cut-line, in a network, are always of 

external type. 

Furthermore, the starting-edge and the ending-edge of a cut-line 

may belong to the one cycle or they may belong to two different cycles. If they 

belong to one cycle, then the cycle is either an external cycle, so that there is 

no internal edge to be cut, or a mixed-cycle, and the cut-line does not cut any 

internal edge. If they belong to two different cycles, then the two cycles are of 

mixed-cycle type, and the cut-line has to cut one or more internal edges. 

Therefore each cut-line starts from an external edge of a mixed-cycle, , 
i.e. it starts by cutting a mixed cycle, and it ends by cutting an external edge 

of a mixed-cycle, i.e. by cutting another mixed-cycle. 

Each mixed-cycle has one or more internal edges with other cycles. 

These cycles are either internal cycles or mixed-cycles. If there is only one 

internal edge, then the cut-line will cut the internal edge, i.e. it will cut the 

new cycle. If there are more than one internal edge, and each internal edge 
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belongs to a different cycle, then the cut-line selects a route to minimize the 

number of internal edges as will be explained in Section 8.5.4. 

8.5.1 The sub-classes of the starting and the ending edges 

Even though the starting-edge and ending-edges of the cut-line are of 

external type, the external type has many sub-classes as given in Section 

7.5.4. For example, the X edges have nodes of type VX2 ' and at least every two 

edges belong to one mixed-cycle, while each edge of sub-class XI .. has two 
IJ 

nodes of type V XdI' therefore each XIjj edge belongs to one and only one 

mixed-cycle. Furthermore, Section 7.6.1 gives the location of a mixed cycle in 

the external closed path. Therefore, a XI jj edge of a mixed cycle of middle 

location is more suitable to be the start edge or the end edge than an X edge 

of a terminal mixed cycle. 

8.5.2 The number of possible cut lines in PGX 

Since PGX = mx = n x , as defined by equation (7.34), then the edges of 

PGX can be numbered from 1 to mx . Since a cut line starts and ends by 

cutting external edges, then if the i th external edge is selected to be the 

starting edge, then, then there will be (fix -1) different cut lines to the 

remaining (mx -1) external edges. If the cut lines are started from the (i + 1) th 

external edge, there will be (fix - 2) different cut lines. If the cut lines started 

from (i + 2)th external edge, there will be (fix - 3) different cut lines. The 

same case continues with other external edges until there is one cut line 

between the last external edge and the first external edge. Thus, the total 

number of cut lines is the sum of the number of cutting lines from external 

edge, i.e. 

Total possible number of cut lines in PGX of a network 

= (mx -1) + (mx -2) + (mx -3) + ... + 2 + 1. (8.1) 

The required number of cutting lines is based on k the number of partitions. 
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8.5.3 The cut-line route 

Each cut-line partitions the network into two parts by cutting a set of 

cut-edges, i.e. by cutting two external edges and zero, one or more internal 

edges. The route of a cut-line is defined to be the set of cut-edges. 

If there is more than one cut-line, then each cut-line has its route. Cut­

lines are not allowed to cross each other. If the two cut-lines are independent, 

then each cut-line has a different route, (i.e. different starting edge, ending 

edge and internal edges). If the two cut-lines are dependent, then the two cut­

lines will share part of the route but not all the route. They may have the 

same starting edge or the same ending edge or they may share one or more 

internal edges, but each cut line has its route. 

The starting-edge and the ending-edge, each, belong to cycles of mixed 

type. Thus, route of a cut-line starts from a mixed-cycle, and proceeds to 

either a mixed cycle or an internal cycle until it terminates by cutting an 

external edge of a mixed-cycle. 

The open internal paths, POI' and the open mixed paths PO)a 

introduced in Section 7.8 are used to determine the route of a cut-line from 

the starting-edge to the ending-edge, i.e. from one cycle to anther cycle. Since 

the end-nodes of the starting edge and the end-nodes of the ending edge are of 

external type and since the end-nodes of both the open internal path and the 

open mixed path are of external type, then there are two open paths 

between the end nodes of the starting-edge and the ending-edge. Those two 

open paths determine the route of one and only one cut line. The two paths 

both may be open internal paths or both open mixed paths or combination of 

an open internal path and an open mixed path. If one of the two paths is an 

open mixed path then the open a mixed path has minimum number of 

external edges. Those two open paths are termed Ph-I and Ph-2' the 

boundary-cut-lines. Between Ph-I and Pb-2, there are only two external 

edges, the starting-edge and the ending-edge, and there may be zero, one or 

more than one internal edges. The goal of the cut line is to cut the minimum 
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number of internal edges between the starting edge and the ending edge. 

The cut-line may cut zero, one, or more than one internal edge of P 
b-l 

and Ph-2 edges. The end nodes of the external edges, i.e. the starting edge and 

the ending edge, is termed the external boundary nodes, and the end 

nodes of the internal edges, that have been cut by the cut line, will be termed 

the internal boundary nodes, as explained more in section (8.6.1). 

8.6 Partitioning the network nodes 

Since the cut-line partitions the network into two parts, then V, the set of 

network nodes, is partitioned into three sets: the boundary set; the external 

set; and the internal set. Thus each part consists of these sets. 

8.6.1 The boundary nodes 

The two open internal paths may have internal edges between 

them, and they might not. The end nodes of the starting edge, the ending 

edge and the internal edges between Ph-I and Pb-2 are the boundary nodes. 

Let 

Then 

and 

Vb be the set of boundary nodes, 

nb be the number of elements of Vb' 

VXb be the set of boundary nodes from the external edges only, 

nXb be the number of elements in V Xb' 

V be the set of internal boundary nodes from only the internal edges, Ib 

between Ph-I and P b-2 , and let nIb be the number of elements in VIb · 

(8.2) 

(8.3) 

Since the cut-line cuts two edges, the starting-edge and the ending-edge, then 
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the two edges are either independent or dependent If th . d 
. ey are In ependent 

then 

nXb = 4; 

and if they are dependent, then 

nXb = 3. 

(8.4) 

(8.5) 

From Theorem (6.1) the balance partitioning number of boundary nodes is: 

and 

Thus, let 

or 

Then the range of the number of internal boundary nodes is 

(8.6) 

8.6.2 The remaining internal nodes 

Since VI is the set of internal nodes in the network, and VIb is the set 

of internal boundary nodes in the network, then the difference between VI 

and VIb gives the set of remaining internal nodes in the network. 

Let 

VIP be the set of remaining internal nodes, 

nIP be the number of elements of VIP' 

then 
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(8.7) 

and 

(8.8) 

8.6.3 The internal and external nodes of the two parts 

The nodes of each part (or subsystem) consist of external nodes and 

internal nodes. The following discussion defines the numbers of external 

nodes and boundary nodes in each part. 

Since V x is the set of external nodes in the network as described by 

equation (7.6), and since VXb is the set of external boundary nodes in the 

network as defined by equation (8.2), then let Vxp be the set of remaining 

external nodes in the network such that: 

(8.9) 

and let n xp be the number of elements of V Xp, then 

Let 

then 

then 

Let 

then 

V XP-i be the set of external nodes of the i th part 

n xp-i be the number of elements in V XPi , 

n xp . = n xp = nx - 2 . 
-1 2 2 

n = n
xp 

2 = nx - 4 = nx - 2. 
XP-l - 2 2 

(8.10) 

(8.11) 

(8.12) 

V
1P

-
i 

be the set of remaining internal nodes in the i th part for i = 1.2 , 

n . be the number of elements of V1P-i ' 
IP-1 
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and 

Thus, from equation (8.8) and (8.14) 

If n IP-1 = n IP_2 

then 

Let 

then 

and 

V P-i be the set of nodes of the i th part 

np_i be the number of elements in Vp_i , 

V P-i = {V XP-i EB VIP_i } ; 

np_i = n xp_i + nIP_i' 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

8.6.4 Using the network open paths to obtain the V1P_i 

The set of nodes of VIP-i can be obtained from the set of in ternal paths 

between V XPi , the i th part external and Pb-i the i th boundary path. 

Since the end nodes of any open internal path between VXPi and Pb-i are 

either external nodes or internal nodes or internal boundary nodes, 

VIP-i = U(p OI-Pi ) 

n IP_i = IVIP-i I· 

8.7 The I - I and I - J cut lines 

(8.18) 

Since the starting edge and the ending edge of a cut line are of 

external type, then they belong to PGX the network external path. Since 
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PGX = fiX = n x ' as given by equation (7.34), then one cut-line partitions F
GX 

into two parts. 

Let each part equals the network diameter as given by equation (7.45). 

Let the edges of each part be numbered from one to the network diameter. 

If PGX is even, then the length of each part equals the network 

diameter, and if PGX is odd, then the length of one part equals the network 

diameter, and the length of the second part equals the network diameter 

mInus one. Figure 8.11 shows a network, with even PGX' partitioned by an I-I 

cut line. 

An I - I cut line 

eX2 

Figure 8.11 Using the I-I cut line 

to partition a network with even PGX 

The starting-edge of a cut line can be any external edge of part one, i.e. 

{e e e e } and the ending-edge can be any external edge of part two, 
Xl , X2 , X3 , X4 , 

1· e {e e e e } If both the starting-edge and the ending-edge have the 
.• TI , T2 , T3 , T4 • 

same edge number, then the cut line is termed an I-I cut line, else it is 

termed an I-J cut line. 

Let L( e Xi ,eT
) be a cut line from the i th external edge of part one to the 

jth external edge of part two. 

Let j = Diameter + i ; 
(8.19) 

then ifi = j 

then L(eXi ,eT) is an I-I cut line; 

else L(eXi,eT) is an I-J cut line. 

The end-nodes of the starting edge and the ending edge determine the route 
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of the cut line. Thus if the network diameter is even there are (mX) I-I cut 
2 

lines, and if the network diameter is odd there are (n;X -1) I-I cut lines. 

8.7.1 The new balanced partitioning conditions 

An I-I cut line partitions the network nodes into two three parts. One part 

represents the boundary part and two parts each of them represents one 

subsystem. Those three parts may be equal, balanced or unbalanced. The 

necessary balancing conditions of these three parts are discussed in this 

section. 

The number of external nodes, in each the two parts, is given by equation 

(8.11), and the number of the internal nodes, in each of the two parts, is given 

be equation (8.15). 

If PGX is even, then an I-I cut line partitions PGX into two equal external 

parts such that n xp_
1 

= n xp-
2 

= n2x - 2. Then the two parts have equal number 

of external nodes. 

If the PGX is odd, then the I-I cut line partitions PGX into two balanced 

external parts such that n xp-1 = n2x - 2, and n xp-2 = n xp-1 -1. Then the two 

parts have balanced number of external nodes. 

n -nib 
If n 1P_1 = n 1P_2 = I 2 

in ternal parts. 

then the I-I cut-line partitions VIP into two equal 

Since the nodes of each part is defined by equation (8.17), i.e. 

n . = n . + n . then the two parts are equal if they have equal numbers of 
P-l XP-l IP-l , 

external nodes and the internal nodes, i.e. 

If (n + n ) = (n + n ) then the two parts are equal. 
XP-l IP-l XP-2 IP-2 

225 



If nb = np_l = np_2 then the I-I cut line partitions the network nodes into two 

equal parts, in this case the partition is called equal partitions. 

If Inb -np_il = 1 then the partition is called balanced partitions. 

8.8 Partitioning a network into k-balanced parts 

Partitioning a network, with c> 1 cycles and with EB = {cI>}, Vs = {cI>} and 

VXdB = {cI>} into k subsystems, has the same principle as partitioning a cycle 

into k parts. 

The first step: determining the number of cut-lines and weather these 

cut 

lines are dependent or independent. 

The second step: partitioning P GX' the network external closed path 

in to k -balanced parts. 

The third step: partitioning n I , the total number of internal nodes 

into (k+1) balanced parts. 

The goal of the following theorem is to establish an approach to test the 

existence of balanced partitioning in a given network. The approach is based 

on using the cut-line principle introduced in Section 8.5. 

Theorem 8.2 (The balanced partitioning theorem) 

In a network with c>l and VB = {cI>}, V XdB = {cI>} and VXdB1 = {cI>}, 

if the network diameter is even and ifL is an I-I cut-line such that 

n xp-1 - n xp_2 

then 

If np' = r n l for i = 1,2, 
-1 k+1 
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Then nb = np_i = n2x + n IP_i - 2 for i = 1, ... ,k . 

Proof 

Since the network diameter is even, then from equations (B.ll) 

nx 2 c . n xp ' = - - lor I = 1 2 
-1 2 ' . 

Since n IP_1 = n IP_2 

Then 

np_i = n xp_i + n IP_i for i = 1,2 . 

smce np_i = r k: 11 for i = 1,2, 

nIb <r n 1-n 
k+l Xb 

and since 

then 

thus nb <r n 1 
k+l 

• 

8.9 Applying the new balanced partitioning conditions 

The new balanced partitioning conditions are applied on the IEEE-14 

network, shown in figure B.12. The goal is to partition the network with using 

a partitioning technique. 
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V T-4 eT-4 V T-5 eT-5 V X-I 

e
X

_
1 

v 1-2 V 1-1 

e l_3 e
l
_2 e

l
_1 VX_2 

eSI-1 

0 
V S-1 eX_2 

V T-1 eT-1 

eI-7 

eX_
3 

VX-5 VX-4 

Figure 8.12 Identifying the parameters of the IEEE-14 network 

Example (8.1) Applying the new balancing conditions 

Step 1: Identifying the network parameters 

v x = {v X-I' V X-2' V X-3' V X-4' V X-S' V T-I ' V T-2' V T-3' V T-4' V T-5 } ; 

Thus m and n given by equations (7.5) and (7.9) are 

m = mx + m I + m B + ms = 10 + 9 + 0 + 1 = 20 ; 

n = nx + n l + n B + ns = 10 + 3 + 0 + 1 = 14 ; 

and Pax =mx =nx =10 

and 

and 

and 

and 

and 

Step 2: Calculating the k-balanced partitioning 
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fix = IExl = 10 ; 

nx =IVxl=10; 

fiI =IEd =9; 

n l = IVII = 3; 

ns =IVsl=l. 



Let k=2, and by applying Theorem (8.1), the following results are obtained: 

Since PGX is even, then from equation (8.11) n xp.
i 

= n2x - 2 = 3; for i = 1,2 

Since PGX > 4 , then from equation (8.4) nXb = 4; 

Since n l = 3, then from equation (8.15) n 3 
n - I - l' IP'- --= 

-1 k + 1 3 ' 

Thus, from equation (8.6) 1 > nIb > 0 

If nIb = 1, 

then from equation (8.3) 

nb = nXb + nIb = 4 + 1 = 5; 

and from equation (8.17) 

np_i = n xp_i + n lP_i = 3 + 1 = 4 for i = 1, ... ,k; 

and since ns = IVsl = 1, then the one-degree node is an internal node and it 

belongs to one of the two parts. 

Thus the two balanced parts are: {4, 5} and the balanced boundary nodes is 

{5}. 

If nIb = 0, 

then 

nb = nXb + nIb = 4 + 0 = 4 ; 

since nIb = 0, i.e. no internal boundary nodes, then the internal nodes belong 

to the two parts, i.e. 

Balancing is achieved by dividing the internal nodes equally between the two 

pars, and equation (8.14) can be used as follows: 

let - n
l 

- fnl l- f3l- 2 . n Ik --- - - -, 
k k 2 

then 

n IP_2 = nIP - n IP_1 = 3 - 2 = 1; 
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and from equation (8.17) 

np_l = n xp_1 + nIP_l = 3 + 2 = 5. 

np_2 = n xp_2 + n IP_2 = 3 + 1 = 4. 

Since ns = IVsl = 1, then the one-degree node will belong to subsystem number 

two. 

Thus the two balanced parts are: {5, 5} and the balanced boundary nodes is 

{4}. 

Knowing that the network has these balanced values, section 7. describes a 

way of finding the I-I cut line, i.e. to check the given network has these 

values. 

8.10 Determining the I-I cut-line in a network 

Because the network has many different connections, now the role of the 

partitioning algorithm is to verify that the given configuration of the network 

has the balanced properties. 

Since n XId = 6, then the number of POI is given in equation (7.48), i.e. 

n~-1 
n = 1 

POI ' 
i=1 

thus np, = 5 + 4 + 3 + 2 + 1 = 15. Instead of generating the 15 open internal 
01 

paths of the network, only POI'S of the I-I cut lines are generated. 

Since the diameter = mx = 5, then there are 5 possible I-I cut-lines. 
2 

These 5 I-I cut-lines are: 

L4,4 (eX-4 , eT-4 ) and L5,5 (eX-5 ' eT-5 ) • 

L (e e) L2,2 (eX-2' eT-2) , L3,3 (eX-3 ' eT-3 ), 1,1 X-I' T-l , 

Finding which of these I-I cut lines is based on Procedure (8.1) 

Procedure (8.1) 

i=1; 
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While (i < the number of I-I cut lines) 

Step 1: Find from the network the data of the I-I cut line; 

Step 2: Find the set of external boundary nodes of the I-I cut line; 

Step 3: Find the set of internal connections between the two open paths; 

Step 4: Find from the set of connections the internal boundary nodes; 

Step 5: If the number of internal boundary nodes is in the acceptable range 

Then the network has the balanced partitioning values. 

Terminate. 

Else 

The I-I cut-line is not suitable; 

End 

i = i +1; 

End· , 

Applying Procedure (8.1) on the IEEE-14 network given in Figure (8.12) gives 

the following results: 

Step 1: The data of L1,1 (eX-l' eT-1) are: 

n OI-2 (v X-2' V T-l) = 4 ; 

E por_1 
(v X-I' V T-2 ) = {eT-5, e I-4 ,eT-2 } ; 

E por_2 
(v X-2 , V X-5 ) = {eI-5, e I-6 , e I-8 ,eX-5 } ; 

V P
or

-
1 
(v X-I' V T-2 ) = {V X-I' V T-5 , V T-3 , V T-2} ; 

V P
or

-
2 

( V X-2 , V T-2 ) = {V X-2 , VI-3 , V X-3 , V X-5 , V T-l } ; 

Step 2: Finding the external boundary nodes: 

VXb-l = {VX-1' VT-2}; and nXb-l = 2; 

V Xb-2 = {V X-2' VT-1} ; and n Xb-2 = 2 ; 

Thus nXb = nXb-l + n Xb-2 = 4 . 

Step 3: Finding the set of connection edges between P 01-1 and P 01-2 : 

{e I-7 } ; 
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{e l_8 } • 

Step 4: Finding the internal boundary nodes: 

The L1,1 (ex_p eT-1) cut line starts by cutting ex_p then it proceeds to the first 

set of internal edges {el_p e l_2 ,el_3} as follows: 

if L1,1 (eX-I' eT-1 ) cuts el_1 = (v X-2 , V 1-1)' then v 1-1 will be an internal boundary 

node, i.e. nIb = 1. 

boundary nodes, i.e. nIb = 2. 

node and v T-3 a new unacceptable external boundary node. 

Since 1 > nIb > 0, then el_1 is the only suitable edge to be cut by Lll (ex_p eT_1 ). , 

The Lll (ex_p eT-1) cut line, is then, proceed to the second internal set of edges, , 

i.e. {e l_7 }. 

If L1,1 (ex_p eT-1) cuts el_7 , then a new external node becomes a boundary node. 

Step 5: 

Since the route of Lll (eX-I' eT_1) has to cut el_7 to reach to the ending edge, and , 

since cutting el_7 
adds an external node to the boundary set, then the 

L1,1 (ex_p eT-1) cut line is not suitable I-I cut line. 

Step 1: The data of L 2,2(eX-2' eT-2) 

P 01-2 (v X-3 , V T-2 ) = 1 ; 

ER (VX_2'VT-3) = {el_pel_2,el_3}; 
01-1 

E
p01

_
2 
(v X-3' V T-2) = {el_7 } ; 

VR (v X-2 , V T-3 ) = {v X-2 , V 1-1' V 1-2' V T-3 } ; 
01-1 

V R (v X-3 , V T-2 ) = {v X-3 , V T-2 } . 
01-2 

Step 2: Finding the external boundary nodes ofL2,2(ex-2, eT-2): 
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The L2,2 (eX-2' eT-2) cut line starts by cutting eX_2 and ends by cutting eT_
2

. 

Thus the external boundary nodes are: 

VXb-l = {VX-2,VT-3}; nXb-l = 2; 

V Xb-2 = {V X-3 , V T-2 }; n Xb_2 = 2 ; 

Thus nXb = nXb-l + n Xb-2 = 4 . 

Step 3: The set of connection edges between POI-1 and POI-2 are: 

Step 4: The internal boundary nodes are: 

The L 2,2 (eX-2 ' eT-2) cut line starts by cutting eX-2' then it proceeds to the set of 

internal edges between POI-1 and POI-2' i.e. {eI-5,el_6 } as follows: 

Step 5: 

if L 2,2 (eX-2' eT-2) cuts e l_6 , then v 1-3 will be an internal boundary node and v 81 

will be a node belongs to part 1. Thus 

therefore 

and np_l = n xp_1 + n 1P_1 + n 81 = 3 + 2 + 1 = 6 ; 

np_2 = n xp-2 + n 1P_2 + n SI = 3 + 0 + 0 = 3 ; 

Thus, if e
l
_
6 

is cut it will not give balanced partitions. 

If L 2,2 (eX-2' eT_2) cuts e
l
_
5

, then v 1-3 will be an internal boundary node and v 81 

will be a node belongs to part 2. 

Thus, 

therefore nb = nXb + nIb = 4 + 1 = 5; 

and np_l = n xp-1 + n 1P_1 + n SI = 3 + 2 + 0 = 5; 

np_2 = n xp-2 + n 1P_2 + n SI = 3 + 0 + 1 = 4 ; 

Thus if e is cut balanced partitioning is achieved as shown in Figure 8. 
, 1-5 
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---

V T-4 V T-5 V X-I 

V 1-2 V 1-1 

V T-3 

---
---------------------'" e _......... 81-1 -- The 1:1 cut-line is -------

0---------< 
V 8-1 

VX-5 VX-4 

Figure 8.13 The balancing result of using the I-I cut-line 

on the IEEE-14 network 

E
pOI

_
2 

( V X-4 , V T-3 ) = {eX-4 ' e l_9 ,eT-2 } ; 

V P
OI

-
1 
(v X-3 , V T-4 ) = {v X-3' V 1-3' V X-2 , V 1-1' V 1-2' V T-3 , V T-5 V T-4 } ; 

V P
OI

-
2 
(v X-4' V T-3) = {v X-4' V X-5' V T-2' V T-3} ; 

Step 2: Finding the external boundary nodes: 

V Xb-l = {v X-3' V T-4}; nXb-l = 2 ; 
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V Xb-2 = {V X-4 , V T-3} ; n Xb_2 = 2 ; 

Thus n Xb = nXb-I + n Xb_2 = 4 . 

Step 3: The set of connection edges between POI-I and POI-2 are: 

{el _s } ; 

{e l_7 } ; 

{e l_4 }; 

Step 4: The internal boundary nodes are: 

The L 3,3(eX-3' eT-3) cut line starts by cutting eX-3' then it proceeds to the set of 

internal edges between POI-I and POI-2 as follows: 

external boundary node. Thus the L 22 (eX-2' eT-2) cut line terminates. , 

Step 5: The L22 (eX-2' eT-2) cut line does not give balance partitions. , 

EpOI_1 
(v X-4' V T-5) = {eX-3' e l_6 , e l_5, eX-I' eT_2} ; 

E
pOI

_
2 

( V X-5 , V T-4 ) = {el_s , eT-2 ,eT-3} ; 

V P
OI

-
1 
(v X-4 , V T-5 ) = {v X-4 , V X-3 , V 1-3' V X-2 , V X-I' V T-5 } ; 

V P
OI

-
2 
(v X-5 , V T-4 ) = {v X-5 , V T-2 , V T-3 , V T-4 } ; 

Step 2: Finding the external boundary nodes: 

V Xb-I = {v X-4 , V T-5 }; nXb-I = 2 ; 

V Xb-2 = {V X-5 , V T-4 } ; n Xb-2 = 2 ; 

Thus nXb = nXb-I + nXb-2 = 4 ; 

Step 3: The set of connection edges between P OI-I and P 0I-2 

{el _s } ; 

235 

are: 



{e l_4 }· 

Step 4: The internal boundary nodes are: 

The L 4,4 (eX-4 ' eT_4 ) cut line starts by cutting eX_4 ' then it proceeds to the set of 

internal edges between POI-I and POI-2 as follows: 

If the L 4,4 (eX-4 ' eT-4 ) cut line cuts e I_8 = (v X-5' V X-3) , then v X-3 will be a new 

external boundary node. Thus the L4 4 (eX-4 ' eT_4 ) cut line terminates. , 

Step 5: The L 4,4 (eX_4 ' eT-4 ) cut line does not give balance partitions. 

nOI-I (v X-5' v X-I) = 4; 

E por_1 
(v X-5 , V X-I) = {el_8 , e l_6 , el_5 ,eX_I} ; 

E por_2 
(v T-I' V T-5 ) = {eT_I ,eT-2 ,el_4 } ; 

Vp (v X-5 , V X-I) = {v X-5 , V X-3 , V 1-3' V X-2 , V X-I} ; 
OI-1 

V P
0I21 

(v T-I , V T-5 ) = {v T-I , V T-2 , V T-3 , V T-5 } . 

Step 2: Finding the external boundary nodes: 

VXb-1 = {VX_l'VX_5}; nXb-1 =2; 

VXb-2 = {VT-5, VT-I}; n Xb-2 = 2; 

Thus nXb = nXb-1 + n Xb-2 = 4 . 

Step 3: The set of connection edges between POI-I and POI-2 are: 

{e l_9 } ; 

{e l_7 } ; 

Step 4: The internal boundary nodes are: 
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The L5,5 (eX-5' eT-5) cut line starts by cutting eX-5' then it proceeds to the set of 

internal edges between POI-1 and POI-2 as follows: 

If the L5,5 (eX-5' eT-5) cut line cuts e I-9 = (v X-5' V T-2)' then v T-2 will be a new 

external boundary node. Thus the L5,5(eX_5' eT-5) cut line terminates. 

Step 5: The L5,5(eX-5' eT-5) cut line does not give balance partitions. 

Thus applying such a procedure to test the existence of the balanced 

partitioning values in a given network is possible and achievable. 

8.11 Chapter review 

The cut line concept is very simple but important. It defines the boundary 

and the subsystems areas. Cut lines have relationships between them, either 

dependent or independent. Partitioning a network by using the network 

external path property and the I-I cut-line is possible and the balance 

partitioning vales are calculable, i.e. there is no need to use partitioning 

techniques to obtain these values. Testing the existence of the balanced 

partitioning values in a given network IS possible and achievable by a 

procedure such as procedure (8.1). 
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Chapter 9 

Concluding Remarks 

9.1 General 

In this thesis, the network-partitioning problem has been discussed. 

The basic requirement has been to produce a balanced partitioning of a given 

electrical network, subject to the constraints imposed by engineering 

application. That application has been chosen to be a decomposed solution to 

the state-estimation problem, with particular reference to an algorithm 

known as DSE. This algorithm gives a particularly attractive computational 

balanced partitioning of a global network. 

The objective of research has been to devise new partitioning algorithms 

which satisfy the requirements ofDSE, but which follow new directions in the 

use which is made of information provided by the global network, and in 

particular, by its graph-theoretical properties. 

It is well known that the network-partitioning problem is classified as NP­

hard. Previously proposed solutions to this problem have usually been based 

on largely heuristic principles, and the use of graph-theoretical properties in 

the partitioning process is often limited. An important aim of this research is 

to explore the use of graph-theoretic properties, some of which are newly 

defined for the purpose, in order to simplify computational solution to the 

partitioning problem. 

The broad objectives of partitioning a network are to divide the network 

into k subsystems. The partitioning operation is based on 'cuts'. Cuts produce 

cut-edges, which determine subsystems and boundary nodes for each 

sUbsystem. The remaining nodes in each subsystem are denoted internal 

nodes. The effect of constraints arising from DSE is that partitioning should 
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provide a balanced result, in which the number of inte I d . rna no es In each 

subsystem are approximately equal and not less than the b fIb num er 0 goal 
boundary nodes, as described in Chapter 5, i.e. 

then 

nir = np for i=1,2, ... , k; 

The value of k is not pre-determined by DSE. Instead, k is determined as the 

'best' value, in the sense of a balanced result, by the partitioning process, and 

used as a defining parameter in specifying the processor arrangement for 

DSE. 

9.2 Developments of the research 

Following the definition of the DSE requirements, the goal was to develop 

partitioning techniques to satisfy the DSE restrictions. Several concepts from 

graph theory were investigated, such as the spanning tree method introduced 

in Chapter 4, the covering set concept and the contraction concept. 

Partitioning algorithms may be developed based on these and other graphical 

concepts. 

Chronologically, the spanning tree approach was developed first, 

followed by the maximum degree technique and then by using the newly 

defined properties. 
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Due to the limited information on which it is based the spanning tree optimal 

partitioning method suffers from the disadvantage that, whilst it may give 

satisfactory results for some spanning trees of a given network, results may 

be unacceptable for other spanning trees, and its effectiveness varies from 

one to another. 

The limitations of the first algorithm, the non-availability of helpful relations 

from graph theory and the desire to find a general solution were the 

motivation behind making better use of the DSE restrictions and examining 

graph theory for suitable properties which can help to obtain the boundary 

nodes and the internal nodes as early as possible in the partitioning process. 

This leads to the ideal balanced partitioning conditions, introduced in 

Cha pter 5, and to use the covering set property in trod uced in Chapter 6. An 

investigation to find the relationship between the boundary nodes and 

boundary cycles leads to the edge state phenomenon discussed in Chapter 7. 

Knowing that the network-partitioning problem is an NP-hard problem 

and knowing the un-completeness of the existing graph theory have increased 

the motivation to simplify the network-partitioning problem. The 

simplifications are discussed in the sequence of the thesis chapters. The 

following sections summarize the conclusions and the simplifications: 

9.3 Partitioning by using the spanning tree property 

One of the network properties is the spanning tree and its branching 

property. The network has many different spanning trees. The spanning tree 

and its branching property have been used to partition the network as 

described in Chapter 4. Obtaining a spanning tree by using the row reduction 

method is simple and fast. The obtained spanning tree matrix has a staircase 

structure. Balancing the number of edges of the k sub-spanning trees 

balances the k subsystems. The optimal number of cut-edges is (k-l) edges. 

The optimal partitioning technique is designed to use the spanning 

tree branches property. Every spanning tree has branches. Using the 

h . .!': t nd flexible The technique is branches property made the tec nlque very las a . 
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fast in finding the number of edges of each sub-spanning tree and flexible in 

selecting the starting branch. The flexibility of the technique facilitates the 

technique to partition a wide range of spanning trees. The staircase structure 

of spanning tree matrix limited the flexibility of the technique. Balancing the 

k sub-spanning tree is obtained by balancing the number of edges. The set of 

cut-edges and the set of boundary nodes are obtained by using simple fast 

matrix addition operation. 

Classifying the spanning tree nodes into bottom nodes (or one-degree 

nodes), branch nodes and junction nodes simplified using the branches, 

consequently partitioning the spanning tree. 

Using a spanning tree matrix, other than the staircase structure, with 

some modification to the algorithm will make the technique more general and 

able to partition more spanning trees. 

9.4 Determining the ideal balanced partitioning values 

Using the network properties is the first step of simplifying the NP­

hard problem. Determining the conditions of an ideal balanced partitioning is 

the second step of simplifications the NP-hard problem. 

In chapter (5) the DSE restrictions and the conditions for ideal 

balanced partitioning are discussed and formalized in simple equations. The 

classification of the subsystem nodes into internal nodes and boundary nodes 

is a very important fact in balanced partitioning. The number of boundary 

nodes has a direct relationship with the number of cut-edges in the network 

and with k, the number of subsystems. The number of internal nodes in a 

subsystem also has an indirect relationship with k. 

Ignoring the existence and the importance of such classification, In 

balanced partitioning, was one of the difficulties of developing a 

mathematical formula for the balanced partitioning and it was one of the 

reasons that lead to classify the network-partitioning problem as NP-

complete problem. 

The relationship between internal nodes, the boundary nodes and k 

has lead to the ideal balanced partitioning. The concept of balancing the 
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numbers of internal nodes in the k subsystems is fundamental to achieve to a 

global balanced partitioning. The conditions of the global ideal balanced 

partitioning are discussed in Chapter 5. Theorem (5.1) defined new simple 

mathematical formulas to obtain the ideal balanced partitioning values of a 

network for a given k, i.e. n b , nir for i = 1, 2, ... , k and the possible range of fib' 

The new formulas lead to new directions of dealing with the network­

partitioning problem. The balanced partitioning values of a given network 

can be calculated. The introduction of these values by Theorem (5.1) is a 

simplification step to calculate these values early in the partitioning process, 

comparing with the traditional partitioning methods that find these values 

late. 

The second new direction is with respect to the role of the partitioning 

technique. The role now is to check if the given network configuration has 

these values or not. If the network has these values, then how to obtain these 

sets, i.e. the set of cut-edges, the set of boundary nodes and the k-sets of 

internal nodes of the k subsystems. 

9.5 Partitioning by using the ideal balanced partitioning 

values 

Knowing the balanced partitioning values of a given network prior of 

using a partitioning technique leads to (i) check that the given network 

configuration possess the balanced partitioning values and to (ii) find these 

sets, i.e. the set of cut-edges, the set of boundary nodes and the set of internal 

nodes of each subsystem. 

It has been found that the covering set concept is one of the nearest 

graph concepts which can be used to obtain the global boundary nodes as 

early as possible. Thus the maximum degree technique, introduced in 

Chapter 6, is based on finding two minimum covering sets, one set from the 

network and the other set is from the spanning tree. 

Finding the set of global boundary nodes by using the maximum degree 

technique is fast, easy. The technique can be applied to a wide range of 
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spanning trees to obtain the global boundary nodes from. The spanning tree 

of the network is used to determine the set of cut-edges and the subsystems 

nodes, i.e. the global boundary nodes and the internal nodes. The partitioning 

technique is fast and the simulation results agree with ideal balanced 

partitioning values obtained by using theorem (5.1). 

It can partitions a wide range of spanning trees and give the ideal balanced 

partitioning values. The maximum degree uses the sets operation more than 

the matrix operation. 

9.6 Towards theoretical foundation for graph theory 

Further investigation in graph theory to obtain relationships between 

the set of boundary nodes and the boundary cycles has shown that many 

graph properties can be derived if suitable definitions and classifications are 

applied to the state of the edge in the network. It has been noted that an edge 

in a network is either belongs to a cycle or it does not. This observation has 

been named the 'edge state phenomenon' as described in Chapter 7. 

The edge state phenomenon is a natural phenomenon that does exist in 

every network. It has the ability to explore the graph natural properties. 

Some of these properties, which are useful to the partitioning problem, have 

been deduced in Chapter 7 such as the network external closed path, the open 

internal paths and the cycle circumferences relationships. Other properties 

are to be stated in the future work and many other properties can be deduced. 

It has been shown that graph is a structured entity. The basic 

elements of this entity are the nodes, the edges the connection. 

A network is defined as a set of nodes connected by a set of edges. The 

mechanism of connection is very important. It defines the state of the edges, 

the state of the nodes and the network type. The states of four unconnected 

nodes are isolated nodes. The connection of three edges between the four 

nodes, such that no cycle is formed, defines the edges states and changes the 

nodes state. Two edges will be of one-degree type and one edge will be of a 
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bridge type. The states of two nodes are changed to the one-degree types and 

two nodes are changed to the bridge types. The connection of a new edge 

between the two one-degree nodes, introduces a cycle. The cycle changes the 

states of the four edges and the four nodes to the external type. 

The beauty of the edge state phenomenon is that it covers every thing 

in the network, the edges, the nodes, the paths and the cycles. It also covers 

the network itself in all its different sizes and all possible connections and 

with or without cycles. The edge state phenomenon makes it easy to deduce 

new graph properties and relationships in the two dimensions plane. There is 

a perfect match between the deduced relations, which define the different 

graph properties. Such as the network external close path and its relations 

with m, gc and gmax' the basic configuration and the network classifications, 

Gp • 
GX 

The edge state phenomenon is also capable to describe the network properties 

in three dimensions. 

Another graph property can be deduced related to the conservation of 

the graph natural properties. A change in the connection of one edge in Gu 

does not destroy the original graph properties. While, an elimination or an 

addition of an edge or a node to the network destroys the original graph 

properties. Thus new graph operations, based on the edge state phenomenon, 

can be defined and some of the conventional graph operations, defined in 

graph theory textbooks, need to be redefined. 

The graph uniqueness is another property that has been deduced by 

using the edge state phenomenon and its properties. 

9.7 Towards a mathematical partitioning model 
Knowing the ideal balance partitioning values, the target IS to find a 

mathematical model for partitioning the network. The edge state phenomena 
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has been discovered while trying to find the mathematical solution. The 

flexibility and exhaustibility of the edge state phenomena guarantee that a 

mathematical partitioning model is possible. 

The future mathematical partitioning model is based on the ideal 

balanced partitioning values obtained by using theory (6.1) and on the 

network properties as defined by the edge state phenomena such as the 

network external closed path, the circumference of the c cycles. 

The first part of the mathematical model has been described in 

Chapter 8. Partitioning, as a cut operation in the network, has to follow a 

specified route to give the ideal balanced partitioning values. The route of the 

cut-line starts from an edge and ends at another edge. The following points 

can be concluded from Chapter 8: 

• The cut-lines have relation between them, l.e. dependent or 

independent cut-lines 

• Each cut-line has to cut at least two edges of external type. 

• The cut-line mayor may not cut internal edges. 

• The end-nodes of the cut-edges are the boundary nodes. Thus the 

boundary nodes are classified into external and internal boundary 

nodes. 

• The external edges belong to the external closed path. Thus network 

• 

external closed path property has to be partitioned. 

Theorem (8.1) states the conditions of balanced partitioning of a 

specified network. 

9.8 Future work 
The network-partitioning problem is a very interesting and challenging 

problem and the discovery of edge state phenomenon makes it more 

. t t' d II hard to stop The deduced network properties are few In eres Ing an rea y . 
. . h I t'll there are many important graph graph propertIes In t e pane, s I 

properties and relationships that can be derived by using the edge 

phenomena concept, such as: The three dimensional graph. 
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The subject of the thesis is very interesting to the author. Thus, the future 

work will be a continuation to complete the mathematical partitioning model 

and to prove that the NP-hard problem is a P problem. Some of the points 

that has to be completed are: 

• Design a procedure to identify the types edges and the nodes of a given 

network as described by the edge state phenomena in Chapter 8. 

• Defining the cross edges property and its effect on the network. 

• The distribution of the boundary nodes. 

• Defining the network balance state. 

• Applying the phenomenon in the three dimensions. The concept of 

finding the balanced partitioning values can be developed to find the 

unbalanced partitioning values. 

• Defining new graph operations based on the edge state phenomenon. 

246 



References 

1. Adby, P.R. and Demster, M. A.: "Introduction To Optimization Methods'" , 
Chapman and Hall, London, 1974. 

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.; " Network Flows: Theory, 

Algorithms, and Applications"; Prentice Hall, Englewood Cliffs, New Jersey, 

1993. 

3. Azzam, M. H.: " Developments In Decomposition Methods For Power System 

State Estimation ", Ph.D. Thesis, BruneI University, 1985. 

4. Barnes. E.R.: " An algorithm for partitioning the nodes of a graph", SIAM J. 

Algebr. Discrete methods 1982, 3, (4), pp.291-307. 

5. Beineke, Lowell W. and Wilson, Robin J.: "Selected Topics in Graph Theory"; 

Academic Press, New York/London, 1983. 

6. Bellman, Richard: "Introduction To Matrix Analysis", New York; 

Maidenhead: McGraw-Hill, 1970. 

7. Berge, C.; "Graphes"; Gauthier-Villars, 1985. 

8. Berge,C.;" Hypergraphes"; Gauthier-Villars, 1987. 

9. Biggs, N.L., Lloyd, E.K.; and Wilson, R.J.; " Graph Theory 1736-1936"; 

Clarendon Press, Oxford, 1976. 

10.Bollobas, B.; " Random Graphs"; Academic Press, 1985. 

11. Bollobas, B. "Advances In Graph Theory"; Amsterdam; Oxford: N orth-

Holland Publishing, 1978. 

12. Bondy, J.A., Murty, U.S.R.; "Graph Theory with Applications"; North-

Holland, 1981. 

13.Bui, T. N., and Jones, C.; "Finding good approximate vertex and edge 

partitions is NP-hard,"; Inf. Process. Letters, 42, 1992, pp. 153-159. 

14.Bui, T. N., and Jones, C.; "A heuristic for reducing fill-in in sparse matrix 

factorization"; in Proceedings of Sixth SIAM Conference on Parallel 

Processing for Scientific Computing, 1993, pp. 445-452. 

247 



15. Botafogo, R. A.; "Cluster analysis for hypertext systems", In proceedings of 

the 16th Annual International ACM SIGIR Conference on Research and 

Development in Information retrieval (Pittsburg, Pa., June 27-July 1). 1993. 

ACM, New York, pp. 116-125. 

16. Chamberlain, B.L.; "Graph Partitioning Algorithms for Distributing 

Workloads of Parallel Computation"; 

www.washington.edu/homes/bradlcv/publ/degree/generals.pdf, 1998. 

17. Clements, K. A. and Wollenberg, B.F.: " An Algorithm for observability 

Determination in Power System State Estimation ", IEEE PES Summer 

Meeting, San Francisco, CA, A 75 447-3, July 1975. 

18. Christofides, Nicos: "Graph Theory: An Algorithmic Approach ", Academic 

Press, London, 1975. 

19. Colbourn, C. J.: "The Combinatorics of Network Reliability", vol. 4 of The 

International Series of Monographs on Computer Science. Oxford University 

Press, 1987. 

20. Cullum, J. and Willoughby, R.A.: "Large Scale Eigenvalue Problems"; North 

Holland, Amsterdam, The Netherlands, pp. 193-240, 1985 

21. Diestel, Reinhard: "Graph Theory"; New York: Springer, 1997. 

22. Fiduccia,C.M., and Mattheyses, R.M.: " A linear-time heuristic for improving 

network Partitioning", Proceedings of 19th Design automation workshop, 

1982, pp.175-181. 

23.Fiorini, S. and Wilson, R. J.: "Edge Colourings of Graphs", London, Pitman, 

1978. 

24. Fleischner, H.; "Eulerian Graphs and Related Topics (Annals of Discrete 

Mathematics 45), North-Holland, Amsterdam, 1990. 

25. Garey, M. R. and Johnson, D. S.: "Computers and Intractability: " A Guide to 

NP-Completeness ", Freeman, San Francisco, page 209-210,1979. 

26. Gibbons, A.; "Algorithmic Graph Theory"; Cambridge University Press, 1988. 

27. Golumbic, M.C.; "Algorithmic Graph Theory and Perfect Graphs"; Academic 

Press, 1980. 

248 



28. Gondran, M., and Minoux, M.;" Graphes et Algorithmes"; Eyrolles, Paris, 

1985. 

29. Graham, R. M., Grotschel, L. and Lovasz, " Handbook of Combinatorics'" , 

North-Holland, Amsterdam, 1995,2 volumes. 

30. Graybill, Franklin A.: "Matrices With Applications in Statistics"; 1983. 

31.Hampel, Frank R. and Ronchetti, Elvezio M.: "Robust Statistics", New York, 

Chichester, Wiley, 1986. 

32. Habiballah, 1.0. Roy, R.G. and Irving M.R.: "Markov Chains For 

Multipartitioning Large Power System State Estimation Networks", Int. 

Journal og Electric Power Research, Vol. 45, 1998, pp. 135-140. 

33. Habiballah, 1.0. and Quintana, V.H.: " Integrated-Linear-programming 

eigenvector-based approach for multi-partitioning power system state­

estimation networks ", lEE Proc.-Gener. Transm. Distrib. 141, pp. 11-18, 

1994. 

34.Harary, F.; "Graph Theory"; Addison-Wesley, Reading, Massachusetts, 1969. 

35. Hogben, Leslie: "Elementary Linear Algebra"; St. Paul, MN, 1975. 

36.Jensen, T.R. and Toft, B.; "Graph Coloring Problems"; Wiley, New York, 

1995. 

37.Karypis, G. and Kumar, V.;" Analysis of multilevel graph partitioning"; Tech. 

Report 95-037, Computer Science Department, University of Minnesota, 

1995. 

38. Karypis, G. and Kumar, V.;" Parallel multilevel k-way partitioning scheme 

for irregular graphs"; In Super-computing 96 Conference Proceedings. 

ACMlIEEE, Nov. 1996. (a more complete version is available at http://www­

users.cs. umn.edulkarypis/metis/publications/main.html). 

39.Karger, David R. and Stein, Clifford; " A new Approach to the Minimum Cut 

Problem"; Journal of the ACM, Vol. 43, No.4, July 1996, pp.601-640. 

40. Karger, D. R. "A randomized fully polynomial time approximation scheme 

for the all terminal network reliability problem", In Proceedings of the 27th 

annual ACM, New York, pp. 11-17,1995. 

249 



41. Kernighan, B. W. and Lin, L.: " An effecient heuristic procedure for 

partitioning graphs", Bell Syst. Tech. J., 1970, 49, pp. 291-307. 

42. Krishnamurthy, B.; "An Improved Min-Cut Algorithm for Partitioning VLSI 

Networks", IEEE Trans. on Computers, Vol. C-33, May 1984, pp.438-446. 

43.Lawler, E. L., Levitt K. N. and Turner, J.; "Module Clustering to Minimize 

delay in Digital networks"; IEEE Trans. on Computers, vol. C-18, Jan. 1969. 

pp.47-57. 

44. Lo, K. L.; Salem, M. M.; McColl, R. D. and Moffatt, A. M.; "Two-level state 

estimation for large power system Partl: Algorithms; Part2: Computational 

experience"; lEE Proceedings, Vol. 135, Pt. C, No.4, July 1988, p299-318. 

44a. Lo, K. L.; Salem, M. M.; McColl, R. D.; Moffatt, A. M.and Sulley, J.L.; "Multi 

level state estimation for electric power systems"; 19th Universities Power 

Engineering Conference (UPEC 84), April 1984, paper 14.2, Dundee, UK. 

44b. Lo, K. L.; Salem, M. M.; McColl, R. D.; and Moffatt, A. M. : "Two level power 

system state estimation"; 20th Universities Power Engineering Conference 

(UPEC 85), April 1985, pp. 37-40, Huddersfield, UK . 

45. Lovasz, L.; "Combinatorial Problems and Exercises"; 2eme edition, 

Akademiai Kiada, Budapest, 1993. 

46. Lovasz, L., Plummer, M.D.; "Matching Theory"; Annals of Discrete 

Mathematics 29, North-Holland, 1986 - also at: Akademia Kiad6, Budapest, 

1986. 

47.Marsh, J.F. and Azzam, M "A model co-ordination approach to hierarchical 

static state-estimation for power systems"; Proc. of lEE conf., Durham, July 

1986; pp. 145-149. 

48. Marsh, J.F. and Azzam, M.: "MCHSE: a verstile frame-work for the design of 

two-level power system estimators"; lEE Proc. Pt. C, vol. 135, No.4, July 

1988, pp. 291-298. 

250 



49. Marsh, J.F, Zitouni, S. and Irving, M.R.; "Computational Aspects of 

Distributed State-estimators for Power Systems"; 12th world Congress; IFAC; 

vol. 8, pp. 17-20, Sydney, Australia; 1993. 

50.Nishizeki, T., Chiba, N.; "Planar Graphs: Theory and Algorithms (Annals of 

Discrete Mathematics 32)"; North-Holland, Amsterdam, 1988. 

51. Ortega, James M.: "Matrix Theory", Plenum, London, New York, 1988. 

52. Palmer, Edgar: "Graphical Evaluation - An Introduction To Random 

Graphs", Wiley, 1985. 

53. Park, C., AND Park. Y.: "An efficient algorithm for VLSI network 

partitioning problem using a cost function with balancing factor", IEEE 

Transactions on Computer-Aided Design 12, 11 (Nov. 1993), 1686-1694. 

54. Picard, J. C. and Ratlifff, H. D. "Minimum cuts and related problems", 

Networks 5, 357-370. 1975. 

55.Picard, J. C. and Queyranne, M.:" Selected applications of minimum cuts in 

networks", I.N.F.O.R: Can. Oper. Res. Inf. Proc.20, Nov., 394-422, 1982. 

56. Pothen, Alex; "Graph Partitioning Algorithms with Applications to Scientific 

Computing"; Department of Computer Science; Old Dominion University; 

Norfolk; VA; pothen@cs.odu.edu. 

57. Quintana, V.H., Simoes-Costa, A. and Mandel, A.:" Power System Topological 

Observability Using a Direct Graph-Theoretical Approach ", IEEE Trans. 

Power App. Sys, PAS-I0l, pp. 617-626, March 1982. 

58. Ramanathan, A., and Colbourn, C.;" Counting almost minimum cutsets with 

reliability applications"; Math. Prog. 39, 3 (Dec.), 1987; 253-261. 

59.Rao, V. B. and Arun, K. S.; " Constructive heuristics and lower bounds for 

graph partitioning based on a principal components approximation"; SIAM J. 

Matrix Annual. Appl., 14, 1993, pp. 991-1015. 

60.Reid, J.K; "Large sparse sets of linear equations"; Academic Press, London, 

1971. 

61. Rose, James R.: " Sparse Matrix Computations", London, Academic Press, 

1976. 

251 



62. Serre, Jean-Pierre: "Trees", Belin, New York: Springer-Verlag, 1980. 

63.Sims, Chrles C.: "Computation With Finitely Presented Groups"; Cambridge: 

Cambridge University Press, 1994. 

64. Strang, Gilbert: "Linear Algebra and its Application"; San Digo: Hartcourt, 

Brace, Jovanovich, 1988. 

65.Saaki, H.; Aoki, K. and Yokoyama, R.: " A Parallel Computation Algorithm 

for Static State Estimation by means of Matrix Inversion Lamma", IEEE 

Trans. On Power System, Vol. PWRS-2, pp. 624-632, Aug 1987. 

66.Sanchis, L. A. "Multi-Way Network Partitioning", IEEE Trans. on 

Computers, Vol.38, No.1, Jan 1989, pp.62-81. 

67. Schweikert D. G. and Kernighan, B. W.; "A Proper Model for the Partitioning 

of Electrical Circuits", 9th Design Automation Workshop, 1972, pp. 57-62. 

68.Suzukivi, Michio: "Group Theory I"; Berlin, New York: Springer-Verlag, 

1986. 

69. Taylor, A.J.E.: "Techniques for Power System Simulation Using Multiple 

Processor" Ph.D. Thesis, University of Durham; 1990. 

70. Thulasiraman, K. and Swamy, M. N. S.: "Graphs: Theory And Algorithm", 

New York: Chichester, Wiley, 1992. 

71.Van Lint, J.H., Wilson, R. M.; "A Course In Combinatorics"; Cambridge 

University Press, 1992. 

72. White, Peter: "Optimal Control"; Chichester: John Wiley & Sons, 1996. 

73. Y. Wei and C. K. Cheng, "Toward Efficient Hierarchical Designs by Ratio Cut 

Partitioning", Proc. Int. Conf. on Computer-Aided Design, 1989, pp.298-301. 

74.Y. Wei and C. K. Cheng, "Two-way Two-level Partitioning Algorithm," to 

appear in IEEE Int. Conf. on Computer Aided Design, 1990. 

75. Van Cutsem, TH., and Ribbens-Pavella, M;: " Critical survey of hierarchical 

methods for state estimation of electrical power systems", IEEE Trans., 1983. 

PAS-I02, pp. 3415-3424 

252 



Appendix A 

The network basic definitions and notations 

A.I The network basic variables and properties 

A network is a very simple structure [69], consisting of V, a non-empty 

set of nodes and E, a non-empty set of lines or edges, each of which links a 

pair of nodes. The direction of linkage from one node to another mayor may not 

be important; if direction is important, the edge is said to be directed; if not, 

undirected. 

The number of nodes and the number of edges are the two basic variables 

of a network. The notation G = (V, E) is used to denote a graph of a given 

network with V and E represent the sets of nodes and E edges respectively and 

with n = IVI be the number of elements of V and m = lEI be the number of 

elements of E. The number of nodes in a network is termed the size of the 

network. 

An edge e is associated with exactly two end-nodes v and w. The notation 

e(v, w) is used to denote an edge e and its end-nodes v and w. The edge e (v, w) 

and the edge e (w, v) are the same edge, but with opposite direction. If e (v, w) 

belongs to G, then v and ware adjacent or neighbouring, nodes of G. Two 

edges are adjacent if they share a common end-node. Two edges are said to be 

dependent if they share one common node between them, otherwise they are 

said to be independent. 

The degree d (v) of a node v is equal to the number of edges connected to 

node v. The network degree DG is the sum of the degrees of all nodes, i.e. 

n 

DG = L,d(vJ =2m 
(A.I) 

i=l 
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A node of degree zero is termed an isolated node. 

It is assumed that if two nodes are connected, the connection is made by 

one and only one edge. Thus, n = 0 (D G ) and m = 0 (D
G

). 

Further details about the graph network theory and its application may 

be found in a wide range of texts, of which references [21, 34, 69] are typical. 

A.2 A walk, a path and a cycle 

A walk W in a network is an alternating sequence of nodes and edges, for 

example {v 0' e1 , VI' e 2 ,' ", e j v j }. A path is a sequence of nodes connecting two 

nodes via edges. The set of nodes of a path P has the form Yep) = {v 0' VI"'" v j } . 

The set of edges of a path P has the form E(P) = {eo' e1 ,"', ej }; with ei = (Vi' V i+1 ). 

The nodes Vo and Vj are termed the end-nodes of P. The number of edges in a 

path is called the length of the path. A path is termed an open path if the 

end-nodes of P are different. A path is termed a closed path if the end­

nodes of P are the same. A cycle is a closed path over a set of nodes, V (P), 

such that the length of the closed path is minimum, and there is no closed path 

between any proper subset of nodes of Yep). Thus each cycle is independent i.e. 

each cycle in the network is represented by a different set of edges. A cycle is 

sometimes called a circuit. A graph without cycles is termed a tree. 

A.3 Connectivity in Networks 

A basic property a network may possess is that of being connected. A 

network is connected if it contains no isolated nodes or isolated sub-networks 

[49]. The isolated sub-networks are termed components of the network. The 

smallest component is the isolated node. 

The concept of graph connectivity is very important In the DSE. If a 

network is not connected then it is not observable, and therefore, the DSE 
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algorithm cannot be used, and all the presented techniques are not applicable. 

Consequently, it is assumed that the given network is connected. 

A.4 Network Types 

Sometimes networks are classified into types, according to known network 

properties. For example, if the edges of a network are identified with directions 

or with ordered pairs of nodes, the network is called a directed network. 

Otherwise the network is called an undirected network. A matrix can 

represent the connection of either network type. 

Another property that used to classify the network types is the cyclic 

property. A network is said to be acyclic if it has no closed loops, i.e. no cycles. 

A tree is a typical acyclic connected graph. A spanning tree of a network is a 

tree that touches every node of the graph, and in this sense is the largest 

possible tree. A spanning tree has very well defined properties. It is a tree with n 

nodes and m-l edges, and it may always be obtained by eliminating (m-n+l) 

edges from the network. In this thesis, the spanning tree and its properties has 

been used to partition the given network. More about the spanning tree and its 

properties are introduced in Chapter 4. 

A bipartite network is a network G whose node set V can be partitioned into 

two non empty sets VI and V
2 

in such a way that every edge of G joins a node in 

VI to a node in V 2 • 

A complete network is a network in which every node is connected to every 

n(n -1) 
node in the network. A complete network has 2 edges. 
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AppendixB 

The NP-complete problem 

B.I The NP-complete 

Problems are divided into two categories: those for which there exists an 

algorithm to solve it with polynomial time complexity, and those for which 

there is no such algorithm. The former class of problems are denote by P. There 

are problems, for which no known algorithm exists that solves it in polynomial 

time, but there is also no proof that no such algorithm exists. Among these 

problems that are not known to be in P (or in -P), there is a subclass of problems 

known as NP-complete: those for which either all are solvable in polynomial 

time, or none are. Formally, a problem is NP if there exists an algorithm with 

polynomial time complexity that can certify a solution. For example, it is not 

known whether there exists a polynomial algorithm to solve a system of 

Diophantine equations, Ax=b for x in Zn (integer n-vectors). However, we can 

certify any trial x in polynomial time, just by checking that it is in Zn, then 

multiplying by A to compare with b. A problem, p, is NP-complete if it is NP and 

for any problem in NP, there exists a polynomial time algorithm to reduce it to p. 

A fundamental member of the NP-complete class is the satisfiability problem. 

It is an open question whether P=NP, and most regard the NP-complete 

problems as having exponential time complexity. 

B.2 NP-hard 
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An optimization problem that relies upon the solution of an NP-complete 

problem. In that sense, NP-hard problems are at least as hard as NP-complete 

problems. Here are some NP-hard problems: 

1. Bin packing 

2. Covering , Cutting stock 

3. Knapsack 

4. Packing, Partitioning and Pooling 

5. Traveling Salesman 

6. Vehicle routing 
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AppendixC 

C.l The IEEE standard networks 

The schematic diagrams of the 14-node, 3D-node and 57-nodes IEEE 

standard networks are given in Figures Cl, C2 and C3 respectively. 

258 



1 

Figure Cl The IEEE-14 network 
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Figure C2 The IEEE-30 network 
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Figure C3 The IEEE-57 network 
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