
January 2002

Network partitioning techniques

based on network natural properties

for power system application

by

Ali Mani Turki Alkhelaiwi

A Thesis submitted for the

Degree of Doctor of Philosophy in

Electrical Engineering, at

BruneI University

Department of Electronic and

Computer Engineering,

BruneI University,

Uxbridge, Middlesex.

Abstract

In this thesis, the problem of partitioning a network into inter­

connected sub-networks is addressed. The goal is to achieve a partitioning

which satisfies a set of specific engineering constraints, imposed in this case,

by the requirements of the decomposed state-estimation (DSE) in electrical

power systems. The network-partitioning problem is classified as NP-hard

problem. Although many heuristic algorithms have been proposed for its

solution, these often lack directness and computational simplicity.

In this thesis, three new partitioning techniques are described which

(i) satisfy the DSE constraints, and (ii) simplify the NP-hard problem by

using the natural graph properties of a network.

The first technique is based on partitioning a spanning tree optimally using

the natural property of the spanning tree branches. As with existing heuristic

techniques, information on the partitioning is obtained only at the end of the

partitioning process. The study of the DSE constraints leads to define

conditions of an ideal balanced partitioning. This enables data on the

balanced partitioning to be obtained, including the numbers of boundary

nodes and cut-edges. The second partitioning technique is designed to obtain

these data for a given network, by finding the minimum covering set of nodes

with maximum nodal degree. Further simplification is then possible if

additional graph-theoretical properties are used. A new natural property

entitled the 'edge state phenomenon' is defined. The edge state phenomenon

may be exploited to generate new network properties. In the third

partitioning technique, two of these, the 'network external closed path' and

the 'open internal paths', are used to identify the balanced partitioning, and

hence to partition the network.

Examples of the application of all three methods to network

parti tioning are provided.

11

Acknowledgements

My continuous thanks are to Allah. the creator of the uniYerse. Then. I

would like to express my gratitude to my research supervisor Dr. John F.

::\Iarsh, \\-ho aroused n1y interest in net\york-partitioning problem, for his

continuous invaluable guidance. help and interest throughout the course of

this \york.

I am indebted to l11Y family for their constant encouragement and

support. \yhich made this thesis at all possible. I would like to thank 111Y

mother for her continuous praying for me.

Finally~ I am yery grateful to 111y friends. for their praying and

encouragement throughout this \\-ork.

111

Memorandum

This thesis is based on work carried out by the author in the

Department of Electronic and Computer Engineering at BruneI University

between February 1997 and January 2002.

All work and ideas in this thesis are original unless otherwise

acknowledged in the text or by references. The work has not been submitted

for another Degree in this University, nor in any other University.

The main contributions of this thesis include:

1. Development of an optimal partitioning technique suitable for

partitioning an electrical power system network.

2. Definition of conditions for ideal balanced partitioning.

3. Development of a fast algorithm to partition the network whilst

satisfying the DSE restrictions.

4. The discovery of the edge state phenomenon, following an

exploration of the network natural properties.

5. Development of the balance partitioning theorem based on the

edge state phenomenon.

IV

Dedication

To

Anwar

and

to my sons

v

List of contents

Title I

Abstract ..
Il

Acknowledgements III

Memorandum .
IV

Dedication V

List of contents VI

. List of tables XIV

List of examples xv
. List of figures XVI

List of flowcharts XXI

List of symbols XXIl

Glossary XXVI

Chapter 1 Introduction

1.1 General 1

1.2 Applications and early developments of partitioning 3

1.3 The partitioning problem 5

1.4 Classifications of partitioning algorithms 6

1.5 Conditional partitioning 8

1.6 The thesis organization 9

Chapter 2 Review of PSSE algorithm

2.1 General

2.2 The integrated state estimation algorithm

2.3 The decomposed state estimation algorithm

2.4 The DSE constraints

VI

12

14

16

19

2.4.1 The computation constraints at the lower level 20

2.4.2 The computation constraints at the upper level 20

Chapter 3 Review of recent partitioning techniques

3.1 General 22

3.2 The integer-linear-programming approach 23

3.2.1 General 23

3.2.2 Interchange methods for partitioning 23

3.2.3 ILP eigenvector-based approach 26

3.2.3.1 An algorithm for equi-partition of

a spanning tree 28

3.2.3.2 Equi-partition of IEEE-14 bus network 29

3.2.3.3 Algorithm for multi-partitioning of

spanning tree 31

3.2.3.4 Multi-partitioning of IEEE 14-bus network 32

3.3 Karger approach to the minimum cut problem 34

3.3.1 The minimum cut strategy 34

3.3.2 An abstract formulation of the contraction algorithm 34

3.3.3 The contraction algorithm 35

3.3.4 Implementation of the contraction algorithm 38

3.3.4.1 Choosing an edge 39

3.3.4.2 Contracting an edge 40

3.3.5 The recursive contraction algorithm 41

3.4 Markov chains partitioning approach 42

3.4.1 General 42

3.4.2 Markov chain model 42

3.4.3 Partitioning algorithm 43

3.4.4 Comparative performance 44

3.5 Advantages and disadvantages of these approaches 50

VB

Chapter 4 Spanning tree partitioning technique

4.1 General 51

4.2 Graph representation of networks 53

4.2.1 The incidence matrix 54

4.3 Spanning trees 55

4.3.1 The row reduction method 57

4.3.2 The spanning tree matrix 62

4.3.3 Testing connectivity 62

4.4 The cut concept 62

4.4.1 Cut-sets 62

4.4.2 Cuts 63

4.4.3 Fundamental cut-sets 65

4.4.4 The cut matrix 67

4.4.5 The fundamental cut-sets matrix 70

4.5 Balancing the edges of the k sub-spanning trees 71

4.6 Classifying the spanning tree nodes 73

4.7 The branches of a spanning tree 75

4.8 Overview of the partitioning technique 77

4.9 Finding the branches of a sub-spanning tree 78

4.10 Simulation results 87

4.11 Performance evaluation 89

4.12 Limitations of the partitioning technique 90

4.13 Chapter review 91

Chapter 5 The conditions of ideal balanced partitioning

5.1 General 93

5.2 The partitioning restrictions for the DSE 93

5.2.1 Defining the k subsystems 94

5.2.2 Balancing the internal nodes 95

5.2.3 The balancing number of boundary nodes 97

Vll1

5.2.4 The possible range of k

5.3 The possible range of the cut-edges

5.4 The partitioning restrictions and the network different

connections

5.5 The conditions of ideal balanced partitioning

5.6 Theoretical balanced partitioning results

5.6.1 Theoretical balanced results for k=2

5.6.2 Theoretical balanced results for k=3

5.7 Chapter review

Chapter 6 A fast maximum degree technique

6.1 General

6.2 An overview of the maximum degree technique

6.3 The number of spanning trees in a network

6.4 The edge-edge connectivity matrix

6.4.1 Network cycles

6.4.2 Generating all spanning trees

6.5 Maximum nodal degree technique

6.5.1 The covering set principle

6.5.2 An algorithm to find the minimum covering set in

97

98

101

103

109

109

111

112

114

115

116

118

118

120

123

123

a network 125

6.5.3 An algorithm to find the minimum covering set in

a spanning tree 130

6.5.4 Finding the boundary nodes and the cut-edges 132

6.5.5 Finding the k subsystems internal nodes 135

6.6 Simulation results 137

6.7 Chapter review 139

Chapter 7 The edge state phenomenon

7.1 General

IX

141

7.2 Types of network edges 142

7.3 Types of network nodes 144

7.3.1 General 144

7.3.2 Node-type definitions 145

7.3.3 The network node equation 150

7.3.4 The network degree equation 150

7.4 Types of network cycles 151

7.4.1 A walk, a trail and a path 151

7.4.2 A cycle 154

7.4.3 Cycle types 156

7.4.4 The network external closed path 157

7.5 Membership of edge sets 160

7.5.1 The number of one-degree edges 160

7.5.2 The number of external and internal edges 160

7.5.3 The number of bridge edges 167

7.6 The maximum circumference 172

7.6.1 The network and the maximum circumference 174

7.7 Subclasses of membership 174

7.7.1 Connections between classes 178

7.7.2 The subclasses of the mixed-cycles 179

7.8 The network open paths 181

7.8.1 The open external paths 181

7.8.2 The open internal paths 181

7.8.3 The open mixed paths 184

7.9 The network dimensions 184

7.9.1The network diameter 185

7.10 The range of PGX 186

7.11 The relation between PGX and gc 187

7.12 The relation between PGX and gmax 188

x

7 .13 Network classifications

7.14 Identifying the different possible connections

7.15 The relation between PGX and the mixed-cycles

7.16 Number of possible connections

7.17 The network entity

Chapter 8 Using the edge state phenomenon to

partition the network

194

195

198

199

199

8.1 General 206

8.2 The cut-line concept 207

8.3 Partitioning a cycle 208

8.3.1 Partitioning one cycle into two open paths 208

8.3.2 Dependent and independent cut-lines 209

8.3.3 Partitioning one cycle into three open paths 210

8.3.4 Partitioning one cycle into four open paths 211

8.3.5 Partitioning one cycle into k parts 213

8.4 Partitioning more than one cycle 213

8.4.1 Partitioning two cycles with an internal edge 213

8.4.2 Using dependent cut-lines 214

8.4.3 Using independent cut-lines 215

8.5 The class of the starting-edge and the ending-edge 217

8.5.1 The sub-classes of the starting and the ending edges 218

8.5.2 The number of possible cut lines in PGX 218

8.5.3 The cut-line route 219

8.6 Partitioning the network nodes 220

8.6.1 The boundary nodes 220

8.6.2 The remaining internal nodes 221

8.6.3 The internal and external nodes of the two parts 222

8.6.4 Using the network open paths to obtain the V1P-i 223

Xl

8.7 The I-I and I-J cut-lines

8.7.1 The new balanced partitioning conditions

8.8 Partitioning a network into k-balanced parts

8.9 Applying the new balanced partitioning conditions

8.10 Determining the suitable I-I cut-line

8 .11 Chapter review

Chapter 9 Concluding remarks

223

225

226

227

230

237

9.1 General 238

9.2 Developments of research 239

9.3 Partitioning by using the spanning tree property 240

9.4 Determining the conditions of balanced partitioning 241

9.5 Using the ideal balanced partitioning values 242

9.6 Towards theoretical foundation for graph theory 243

9.7 Towards a mathematical partitioning model 244

9.8 Future work 245

References 247

Appendix A The network basic definitions and notations

A.1 The network basic variables and properties 253

A.2 A walk, a path and a cycle 254

A.3 Connectivity in Networks

A.4 Network types

Appendix B The NP-complete problem

B.1 The NP-complete

B.2 The NP-hard

xu

254

255

256

256

Appendix C The IEEE standards networks

C.l The IEEE standard network

Xl11

258

List of Tables

Table 2.1 The two-level iterative procedure for the SE 18

Table 3.4.1 The n-step transition matrix 43

Table 3.4.2 The transition matrix of the of the IEEE-14 network 45

Table 3.4.3 First iteration Parent-Child Relationship 47

Table 3.4.4 First update operation on the transition matrix 47

Table 4.1 The data of the branches ofa spanning tree of the

IEEE-14 network 76

Table 4.2 Modification of Table 4.1; k=2. 83

Table 4.3 Modification (1) of Table 4.1; k=3 85

Table 4.4 Modification (2) of Table 4.1; k=3. 86

Table 4.5 The result of balanced partitioning the IEEE-14

network 87

Table 4.6 The result of balanced partitioning of the IEEE-3~

network 88

Table 4.7 The result of balanced partitioning of the IEEE-57

network 88

Table 6.1 Node-degrees 126

Table 6.2 Ordered node-degrees 126

Table 6.3 Searching sequence for the minimum covering set 129

Table 6.4 Finding the minimum covering set in the spanning

tree 131

XIV

List of Examples

4.1 Illustrates the row reduction method 57

4.2 Finding the cut-edges 69

4.3 The fundamental cut-set 71

4.4 Using the spanning tree branches to partition the

IEEE-14 network for k=2 82

4.5 Using the spanning tree branches to partition the

IEEE-14 network for k=3 84

7.1 The open internal paths of Figure 7.12 are derived 183

7.2 To identify the network entity 204

8.1 Applying the new balancing conditions 228

xv

List of Figures

2.1 Two level state estimator 17

3.2.1 Five-module, three-net netlist example 24

3.2.2a Shifting of module 2 to block 2 25

3.2.2b Shifting of module 4 to block 1 25

3.2.2c Partition at end pass 26

3.2.4 A spanning tree of the IEEE-14 network 30

3.2.5 Optimal equi-partitioning of a spanning tree 31

3.2.6 Partitioning of IEEE-14 network into two

observable sub-networks 31

3.2.7 First step of multi-partitioning the spanning tree 33

3.2.8 Second step of multi-partitioning spanning tree 33

3.2.9 Optimal multi-partitioning of spanning tree 34

3.3.1a A graph and a cut-line 36

3.3.1b Selecting an edge in the graph 36

3.3.1c Contracting the edge 36

3.3.1d The graph after contracting one edge 36

3.4.1 Family tree of spanning tree of the IEEE-14

network 48

3.4.2 Two equal clusters of spanning tree of the

IEEE-14 network 48

3.4.3 One option of two unequal clusters of spanning tree 49

3.4.4 Another option of two unequal clusters of the

spanning tree of the IEEE-14 network 50

4.1 A directed graph of a networkG N 54

4.2 The incidence matrix of the network in Figure 4.1 54

XVI

4.3a A spanning tree of Figure 4.1 55

4.3b A co-spanning tree of figure 4.1 56

4.4 A network used to illustrate the row reduction 57

4.5 The incidence matrix of Figure 4.4 58

4.6a The first row reduction operation 58

4.6b The resultant matrix of the first row reduction

operation 58

4.7 a The second row reduction operation 59

4.7b The resultant matrix of the second row reduction

operation 59

4.8a A spanning tree of Figure 4.4 60

4.8b A spanning tree matrix of Figure 4.4 60

4.9a A graph G to illustrate the cut-sets concept 63

4.9b G1 =G-Eb_1 and Eb_1 ={e2,e6 ,e9 } 63

4.9c G2 =G-Eb_2 and Eb_2 ={el'e 4 ,e 6 ,eg } 63

4.9d G 3 = G - E'b_2 and E'b_2 = {e1 , e 4' eg } 63

4.10a A network to illustrate the cut concept 64

4.10b The cut 64

4.11a A network to illustrate the fundamental cut-sets 66

4.11b A spanning tree of Figure 4.11a 66

4.11c The edge b is removed from the spanning tree 67

4.11d The cut-edges between the two cuts 67

4.12 A graph G=(5, 7) 67

4.12a A transpose of the incidence matrix of figure 4.12 68

4.12b Cut-1 = { e1 , e7 , e5 , e6 } 68

4.12c Cut-2 = { e1 , e2, e6 , e7 } 68

4.12d Cut-3 = { e2, e3 , e5 , e6 } 69

4.12f The cut matrix 69

4.13 The fundamental cut-matrix 71

XVll

4.14a The IEEE-14 network 74

4.14b A spanning tree of the IEEE 14-bus 74

5.1 The set of cut-edges between three subsystems 98

5.2a and b Two networks with 14 nodes and 20 edges 101

5.3 Theoretical results of partitioning the IEEE-14

network when k=2 and nb = n b1 = 4 110

5.4 Theoretical results of partitioning the IEEE-14

network when k=2 and nb = nbh = 5

5.5 Theoretical results of partitioning the IEEE-14

network when k=3 and nb = n b1 = 3

5.6 Theoretical results of partitioning the IEEE-14

network when k=3 and nb = nbh = 4

6.4A network used to illustrate the covering set

111

111

112

principle 125

6.5 Simulation balance results 138

6.6 a and b The unbalanced results when n b =6 139

7.1 A network to illustrate types of edges 144

7.2 A network to illustrate the nodes types 145

7.3 A network to illustrate the Xd nodes 147

7.4 A network to illustrate the XdB nodes 149

7.5 A network to illustrate the walk and the path 152

7.6 A network of ladder shape 160

7.7 A network in which the number of internal edges

equal the number of cycles

7.8 A network with external node of degree four

7.9a A network without bridge edges

XVlll

161

161

167

7.9b A network with bridge edges 167

7 .10a A network with n=18,m=22, gc =18 169

7.10b Converting a bridge edge into an internal edge 170

7.11 Connections between classes 1 79

7.12 A network to illustrate the open internal paths 183

7.13 The first basic configuration of G
u

189

7.14 The second basic configuration of G
u

190

7.15 A network with PGX = 4 192

7.16 A network with PGX = 5 192

7.17 A network with PGX = 6 192

7.18 A network with PGX = 7 193

7.19 A network used to define the network entity 204

8.1a One cut-line 207

8.1b Two cut-lines 208

8.2 One cut line cuts two independent cut edges 209

8.3 One cut-line cuts two dependent cut edges 209

8.4a Two dependent cut-lines cut three independent

edges 210

8.4b Two dependent cut-lines and three cut-edges,

two dependent and one independent 211

8.4c Two dependent cut lines cut three dependent edges 211

8.5 Three dependent cut-lines and four cut-edges 212

8.6a Two independent cut-lines cut four independent

edges 212

8.6b Two independent cut-lines cut three dependent

cut-edges and one independent edge

8.6c Two independent cut-lines cut two dependent

edges and two independent edges

XIX

212

213

8.6d Two independent cut-lines cut four dependent edges 213

8.7 Partitioning two cycles by one cut-line 214

8.8a and b Partitioning two cycles by two dependent

cut lines 215

8.9 Partitioning two cycles by two independent cut-lines 216

8.10a and b Partitioning two cycles by two independent

cut-lines 216

8.11 Using the I-I cut line to partition a network with

even PGX 224

8.12 Identifying the parameters of the IEEE-14 network 228

8.13 The balancing result of using the IEEE-14 network by

using the I-I cut-line 234

xx

List of Flowcharts

4.1 The row reduction method

6.1 Generating a new spanning tree

6.2 Partitioning and balancing

6.3 The minimum covering set algorithm

XXI

61

122

124

128

List of Symbols

<I> - The empty set

A - The incidence matrix -

B. - The i th branch -1

BB - A bottom branch in a spanning tree -

BJ - A junction branch in a spanning tree

C - The number of cycles in the network

c I - The number of internal cycles in the network -

Cx - The number of external cycles in the network -

C XI - The number of mixed cycles in the network

DG - The total degree of the network G

Dx - The degree of the external nodes

DI - The degree of the internal nodes

DB - The degree of the bridge nodes -

Ds - The degree of the one degree nodes -

e - An edge

E - The set of network edges -

EXCi - The set of external edges of the i th cycle

E ICi - The set of internal edges of the i th cycle -

ECi - The set of edges of the i th cycle -

Ep - The set of edges of a path P

gc - The sum of the circumferences of the c cycles in the network

gi - The circumference of the i th cycle

gxc - The circumference of an external cycle in the network

XXll

glC - The circumference of an internal cycle in the network -

gXI - The circumference of a mixed cycle in the network -

gmax - The circumference of a cycle in the network with maximum

number of edges

gmin
- The minimum circumference of a cycle is three -

G - A graph -

ON - A graph of a network

L. - The length of the i th branch 1

ffi - The total number of network edges

mx - Number of external edges in the network

m I - N umber of external nodes in the network

ffis - N umber of one-degree edges in the network

ffiB - N umber of bridge edges in the network

ffi xCi
- The number of external edges of the i th cycle -

ffi ICi - The number of internal edges of the i th cycle

ffiCi - The number of edges of the i th cycle -

ffit - The number of edges of a spanning tree

ffip - The number of elements of Ep -

II - Number of nodes in the network -

nx - Number of external nodes in the network

n I - Number of internal nodes in the network

lls - N umber of one-degree nodes in the network

llB - Number of bridge nodes in the network

IIp - Number of elements of Vp

llXd - Number of elements of the V Xd set

llXD - Number of elements of the V XD set

XXlll

llXdI - N umber of elements of the V XdI set

llXdB - Number of elements of the V XdB set

llXDB - Number of elements of the VXDB set

llXdBI
- Number of elements of the VXdBI set -

llXDBI - Number of elements of the VXDB1 set

llxCi - N umber of external nodes of the i th cycle

llICi
- N umber of internal nodes of the i th cycle -

llCi
- The number of nodes of the i th cycle -

P - A path

Pc - A closed path

Po - An open path

Pox - An open external path

Pma - An open mixed path

Pax - The network external close path

T - A spanning tree -

T - The i th sub-spanning tree
1

T* - A co-spanning tree -

U - A spanning tree matrix

V - The network set of nodes

Vx - The set of external nodes

VI - The set of internal nodes

VB - The set of bridge nodes -

Vs - The set of degree nodes

Vp - The set of nodes of a path P

VXd - The set of external nodes of degree d for d = 2,4,· ..

VXD - The direct sum of the V Xd sets

XXIV

VXdI - The set of external-internal nodes of degree d

VXDI - The direct sum of the VXdI sets for d = 2,4,···

VXdB
- The set external bridge nodes of degree d -

VXDB - The direct sum of the V XdB sets for d = 2,4,· ..

VXdBI - The set of external bridge nodes with internal edges

VXDB1
- The direct sum of the V XdBI sets for d = 2,4,· .. -

VXCi - The set of external nodes of the i th cycle

V1Ci
- The set of internal nodes of the i th cycle -

VCi - The set of nodes of the i th cycle

xxv

Adjacent nodes

Adjacent edges

Boundary nodes

Circumference

Common node

Connected

Covering set of

nodes

Cut-edge

Cut-line

Cut-node

Cycle

Dependent edges

Independent edges

Maximum

circumference

Glossary

Two nodes are adjacent if they are connected

by an edge.

Two edges are adjacent if they share one node.

The end-nodes of the cut-edges.

The number of edges or nodes of a cycle.

A node between two dependent edges.

A graph is connected if there is a path connecting

every pair of vertices. A graph that is not connected

can be divided into connected components and

disconnected.

A set of nodes that has connection with every node

in the network.

An edge that its removal disconnects

the network.

A line that partitions every edge into two nodes.

A cut node is a node that if removed (along with all

edges incident with it) produces a graph with more

connected components than the original network.

A closed path with a minimum number of edges.

Two edges that share one node

Two edges are independent if do not have any node

between them

The maximum number circumference of a cycle

in the network

XXVl

Minimum

circumference

The network external

closed path

Partitioning

Path

The minimum number of edges that a cycle

may have

The number of external edges in the

network

A conditional division operation

A path is a sequence of consecutive edges in a

network and the length of the path is the number of

edges traversed.

Gobal boundary nodes The set of boundary nodes in the complete network

Gobal internal nodes

Spanning tree

Set of cut-edges

The set of nodes in the complete network that are

not boundary node

A tree with n nodes and m-I edges

The minimum set of edges, the removal of which

produces a disconnected network

XXVll

Chapter 1

Introduction

1.lGeneral

A network is a graphical representation of a system, which is a

physical or abstract object exhibiting complexity. A network comprises a

set of vertices or nodes, together with a set of edges, which define

interconnections between pairs of nodes. A set of nodes and a set of

interconnected node-pairs provide a complete and unique characterisation

of the configuration for a related network.

In studies of system performance, it is often required to perform

computations based on a model description of a network, together with a

set of measurement data obtained from simulations and/or

instrumentation. Such computations typically utilise a database indexed

on each node, and covering all nodes in the network. The volume of

computation clearly increases with network size. In an n-node network,

computations of O(n P) may be required where the exponent p depends on

the functional nature of a performance index. Often p>l, perhaps

significantly so. If the network is sufficiently large, it may become

unattractive to carry out the computational task in a single processor, for

reasons of computing time or numerical accuracy.

One approach to overcoming the dimensionality problem in large

networks is to partition the network into a number of interconnected sub­

networks of reduced size. This provides the opportunity for distribution of

the original computational task within a multi-processor configuration,

where individual processors handle sub-network tasks of reduced-order,

together with a further task of sub-network co-ordination which arises

1

directly as a result of partitioning. In principle, the multi-processor

solution offers an improvement in overall computational performance; the

original single serial computation on the overall network may be replaced

by reduced-dimension sub-network computations performed in parallel,

plus a further serial co-ordination computation.

Network partitioning may be achieved by drawing cut-lines through

the original network. Cut-lines intersect edges of the original network but

do not pass through its nodes; a cut-line may approach another cut-line,

but cut-lines do not intersect. The sub-networks so-formed are defined by

the cut-lines, and each will contain a countable number of sub-networks.

The interconnections between the sub-networks are identifiable as

original network edges, which are intersected by the cut-lines, and termed

cut-edges. Neighbouring sub-networks are therefore inter-connected by

countable number of cut-edges.

As the number of partitions k increases, the average number of

nodes in a sub-network will decrease, leading generally to a lighter

computational load in each of the parallel sub-network processors.

However, a greater number of smaller sub-networks will lead to an

increase in sub-network interconnections, and hence an increased number

of cut-edges in the partitioned network. This will increase the

computational load associated with sub-network co-ordination. A trade-off

is therefore necessary between the number of sub-networks to be created

as a result of partitioning, and the resulting volume of computation

necessary for sub-network co-ordination. Intuitively, it may seem that a

useful objective in partitioning is to devise a set of cuts, which produce

sub-networks which are balanced (i.e. of equal or near-equal size), whilst

generating cut-edges with total number as small as possible, and certainly

not significant greater than the average number of sub-system nodes. This

statement is seen to be reasonable in the sense that, for a network with a

fixed number k of partitions, as the number of cut-edges decreases, the

2

sub-network interconnection load decreases, and the overall multi­

processor computational load becomes increasingly dominated by the k­

parallel sub-network computations. In the limit as the number of cut­

edges tends to zero, the overall load tends to the parallel computations

only; this is expected, since the overall network would then consist of k

isolated subsystems.

The problem of partitioning a network according to such a

specification may be relatively straightforward when the network is small

and the number of partitions is low (e.g. n = 4 or n = 5 and k = 2), since the

number of possibilities is not great, and the problem may be investigated

by hand. The amount of work required to bring about a solution increases

dramatically, however, with even a modest increase in network size. It

then becomes essential to devise a systematic computer procedure for

obtaining the desired result.

These observations on computations in interconnected networks

have provided the motivation for investigating computer-assisted methods

for network partitioning.

1.2 Applications and early developments of partitioning

The network-partitioning problem has long been recognized as

being of far more than theoretical importance. Extensive application in

many areas has been recorded, including: scientific computing [56, 61,

63]; VLSI design [53, 42, 73]; geographical information systems [57];

electrical power systems [44, 67]; operation research [59]; and task

scheduling [16]. Other applications include circuit partitioning [53], and

computer-aided design [74]. The partitioning of a network into smaller

sub-networks is sometimes termed the "minimum-cut". The problem of

determining the connectivity of a network arises frequently in issues of

network design and reliability [10]. In a network subject to random edge

3

failure, the network is most likely to be partitioned at the minimum cuts

[40]. Many other problems, which are physically non-graphical, may be

expressed as a graph- or a network-partitioning problem. For example,

graph partitioning plays a fundamental role in parallel computing by

identifying concurrency in a given problem when the computation process

may be modelled by a graph. A partitioning of a graph into sub-graphs

leads to a decomposition of data and/or computing tasks, and the sub­

graphs can be mapped to individual processors of a multi-processor

configuration. A useful survey of applications is given in [54].

The development of systematic algorithms for partitioning has been

considerable; one of the earliest techniques, used in algorithmic problem

solving, is the so-called divide-and-conquer approach [38], which entails

dividing a given problem into a number of smaller sub-problems, finding

solutions to each part, and combining these into a solution for the overall

problem. If required, a further reduction in sub-problem size may be

obtained by extending the technique to a lower level. Graph partitioning

also has an important role to play in the design of many serial algorithms

using a divide-and-conquer paradigm. Two important examples of this

technique are in the solution of partial differential equations (PDEs) by

domain decomposition [14], and in the computation of nested dissection

ordering for solving systems of sparse linear equations [14].

In most cases, the objectives for solution of the network-partitioning

problem are:

partition a given network or graph into a specific number of

smaller sub-graphs having approximately equal numbers

of nodes, such that the cut-edges between the sub-graphs

are as few in number as possible.

In the context of parallel computation, the SIze of a sub graph

determines the computational task that a processor in the parallel set has

to perform, and the number of cut-edges is a measure of (i) the

4

commuincation volume in the algorithm, and (ii) the work involoved in co­

ordinating the results of the parallel computations. The weaker the inter­

actions between the sub-graphs, the lower will be the communication

volume and co-ordination computation.

In the field of information retrieval, minimum cuts have been used to

identify clusters of topically related documents in hypertext systems [7, 8,

15]. If the links in a hypertext collection are treated as edges in a graph,

then a lower number of cuts correspond to groups of documents that have

few links between them, and the clusters are thus likely to be weakly

related. In this case, the computational load is dominated by parallel

processing of the cluster problems, which enables significant savings in

computational time to be achieved compared with a single-processor

solution.

1.3 The partitioning problem

The network-partitioning problem as described generally in the

previous sections is not amenable to a direct solution. To be practically

useful, any technique for solution should be applicable to most, if not all,

arrangements of nodes and edges. The minimum information available on

the network is expected to be a set of indices for the network nodes, plus a

set of indices for node-pairs representing the edges, i.e. the network

configuration is known precisely. It is well-known, however, that the

network-partitioning problem is one of Gary and Johnson's six basis NP­

complete problems which lie at the heart of the theory of NP-completeness

[13, 25]. This implies that the information of the network configuration is

insufficient to facilitate a mathematical solution to the problem. At best,

any attempt at devising a procedure which will result in an algorithmic

solution, if one exists, must be based on heuristic principles. However,

improvements in algorithmic design should be possible if the information

base influencing the principles of design is enhanced. Such enhancements

may come from graph-theoretic and other properties, which may be

5

deduced for a given network. Information such as degree of each node, the

n umber of cycles in the network, and properties of a spanning tree for the

network are examples of possible properties for consideration.

1.4 Classification of partitioning algorithms

Regardless that the graph-partitioning problem is NP-hard,

methods for solution have undergone considerable development since the

divide-and-conquer approaches discussed in section 1.2. Some interesting

heuristic algorithms have been proposed in the literature, [22, 41, 73, 74].

A good partitioning technique can significantly reduce the complexity of

the problem and improve both the timing performance and the reliability

of the system.

In general, the proposed partitioning algorithms can be classified

in three ways [13, 26]. First, partitioning algorithms can also be classified

based on the nature of the algorithms. There are two types under such

criteria; deterministic and probabilistic algorithms. Deterministic

algorithms produce repeatable or deterministic solutions. For example, an

algorithm that makes use of deterministic functions will always generate

the same solution for a given problem. On the other hand, the probabilistic

algorithms are capable of producing a different solution for the same

problem each time they are performed, as they depend on some random

functions.

Second, partitioning algorithms can also be classified into

constructive and iterative algorithms. The input to the constructive

algorithms is the circuit netlist. The output is the set of partitions along

with new netlist. Constructive algorithms are typically used to form some

initial partitions using construction methods such as breadth first search,

network flow, or eigenvector decomposition methods, which then can be

improved by iterative algorithms. In that sense, constructive algorithms

are used as preprocessing algorithms for partitioning. They are usually

fast, but the partitions generated by these algorithms may be far from

6

optimal. Iterative algorithms, on the other hand, accept a set of partitions

and the netlist as input and generate an improved set of partitions along

with the corresponding netlist. Iterative improvement algorithms are

based on the greedy strategy: They start with some feasible solution and

iteratively move to the best (improving) neighboring solution. The process

terminates when the algorithm reaches a local minimum, i.e., a solution

for which all neighbors have greater cost. Greedy improvement methods

apply simple pair-swap or single-move neighborhood operators, and tend

quickly to reach local minimal corresponding to poor solutions. Thus,

many approaches rely on extended neighbourhood structures, which effec­

tively allow hill-climbing out of local minimal.

Third, partitioning algorithms can also be classified based on the

process used for partitioning. We have the following categories under such

criteria; group migration, stochastic hill-climbing, clustering, and multi­

level algorithms. The group migration algorithms start with some

partitions, usually generated randomly, and then move cells among

partitions to improve the partitioning. In practice, group migration

algorithms have been used extensively due to its flexibility in handling

various constraints and controlling runtime vs solution quality trade-off.

The stochastic hill-climbing algorithms such as simulated annealing, tabu

search, and genetic algorithms can move to higher-cost neighboring

solutions in order to escape local minimal during the search based on local

perturbation of the solution.

The clustering algorithms are commonly used to deal with

increasing problem sizes. The netlist modules are divided into many small

clusters and these clusters form the new nodes of a smaller, coarser ,

netlist. Then, the subsequent partitioning performs on top of the coarser

netlist. The multilevel algorithms apply clustering repeatedly to build

multilevel clustering hierarchy. Partitioning can then be performed on

each level of the hierarchy from top to bottom while projecting partitioning

information.

7

1.5 Conditional partitioning

Partitioning may be restricted and it might be without restrictions.

If no restrictions have been put on partitioning, then partitioning is a

simple division operation and is termed unconditional or unrestricted

partitioning. If restrictions are put on partitioning, then the restricted

partitioning is a conditional division operation and is termed a

conditional or restricted partitioning.

Restrictions may be achievable and they might be unachievable.

The achievable restrictions are termed possible restrictions, and the

unachievable restrictions are termed impossible restrictions. For

example, partitioning a set of five elements into two subsets such that the

two subsets have the same number of elements is an impossible

restriction.

In Section 1.3, partitioning has been discussed subject to the basic

restrictions that sub-networks will be balanced and inter-sub-network

connections (i.e. cut-edges) are minimized. In practice, other conditions

may arise which affect the outcome of partitioning. In many practical

applications, where a graph is used as a descriptor of a physical system, a

graphical object such as a node may possess attributes other than an

identifying index. An example of this is in the case of an electrical

network, where power or current flows around the network may be

described (using Kirchhoff's laws) in terms of the voltage level, which is

presen tat each node of the network. Nodal voltage is therefore such an

attribute in this case. The set of nodal voltages are present in

mathematical expressions, which form the basis for computations, which

in turn are the subject of partitioning. This has the effect of placing

constraints on the balance sought between groups of sub-network nodes.

This situation is examined in more detail for a particular application, in

chapter two.

8

1.6 The thesis organization

This thesis contains a description of some new procedures for the

simplification of computational solutions to a conditional network­

partitioning (NP-hard) problem. Throughout the investigation, the

conditions on partitioning are drawn from an application in the

monitoring and control of electric power systems, known as Power

Systems State Estimation (PSSE).

PSSE enables a validated database of electrical network

information to be constructed from a model of the network and a set of

measurements taken from it. The work described in this thesis has not

been concerned with the development of PSSE algorithms. One existing

PSSE technique, however, has features which are particularly attractive

for partitioning. This is achieved through a particular decomposition of the

set of algebraic equations defining PSSE for a global network. In order

that the conditions which then apply to the partitioning procedure may be

clearly understood, this particular method for PSSE is reviewed in

Chapter 2. Following the establishment of conditions, Chapter 2

concludes with some basic network definitions and properties.

Given the constraints applicable to the partitioning problem to be

investigated, it is useful to examine the characteristics of existing

heuristic procedures for partitioning. Three recent contributions are

examined and reviewed in Chapter 3.

Following definition of the conditions for partitioning and a review

of some partitioning approaches, it is sensible to seek properties of a

candidate network which may be utilised to bring about some

improvement in a computational partitioning procedure. The field of graph

theory was selected as a starting point. The result of searching graph

theory for exploitable equations or properties is presented in Chapter 4.

The relationship between a network and an associated spanning tree is of

9

particular interest; the properties of a spanning tree are introduced

followed by introduction of the cut concept. A procedure for partitioning

based on a spanning tree and its cut-set is developed, and the effect on the

solution of selection of an initial spanning tree is examined.

The restrictions imposed by the special conditions of PSSE, and

their effect on the partitioning procedure are examined in more detail in

Chapter 5. A theoretical foundation to find the number of internal nodes of

the k subsystems and the number of boundary nodes in the network in the

balanced case without partitioning the network is described.

The limitations of the partitioning technique of Chapter 4 may be

reduced with the use of a network property termed the covering set of

nodes, in order to partition every spanning tree of the network, and then

to partition the network. The network has many different covering sets. To

minimise the search, the technique is designed to use a special covering

set termed the set with higher degree. The covering set concept and a new

faster technique is described in Chapter 6. To test the speed and validity

of the covering set approach, the technique has been applied over all

spanning trees of the standard IEEE 14-bus network. Some simulation

results are presented.

Chapter 7 opens with a description of a new property known as the

edge phenomenon in the plane. The edge phenomenon is then used to

explore with proofs many new different network properties. Ifn and mare

given, then edges can be connected in many different ways. Identifying all

possible connections presents severe practical difficulties, particularly for

large networks. Under the paradigm of the edge phenomenon, the

difficulties are reduced significantly. The parameters of the network

properties are used to define uniquely the network entity. Each connection

can be defined uniquely.

10

Even the thesis target was not only to find a partitioning technique

to satisfy the DSE restrictions, but also to simply the network partitioning

problem

Finally, some of the properties introduced in Chapter 7 are applied

to a further heuristic partitioning technique in Chapter 8. The technique

defines the cut line concept and then presents a special cut line termed the

I-I cut-line. The I-I cut-line is used to partition the network by partitioning

the external closed path into equal parts.

Concluding remarks and recommendations for extensions of this

research are given in chapter 9.

The network basic definitions and notations are introduced in

AppendixA.

11

Chapter 2

Review of PSSE algorithms

2.1 General

In modern computer-based operation of an electric power system CPS),

it is essential to provide a validated database, updated at regular intervals,

which describes with acceptable accuracy the current state of the PS network.

This is the function of the PSSE. The output of the algorithm is a set of

estimates of the state-variables for the system, together with a measure of

the accuracy of these estimates. The computations are based on input data

which typically comprise a model of the network in suitable form, together

with a set of measurements received from the PS network via a telemetry

system. These measurements usually consist of a mix of nodal voltage

magnitudes, line power flow and/or power injections.

Since the PS model is non-linear algebraic, the solution is iterative.

The PSSE algorithm must have the qualities of good numerical accuracy in

computation with respect to the data supplied and reliable and rapid

convergence. Also, since regular updates are required, all computations plus

any data communication operations must be completed within a defined

sampling time-period.

There are numerous approaches to the design of state estimators, the

most commonly encountered of which is the weighted least squares (WLS)

technique [3]. When applied to a given PS network and implemented in a

single processor at a control centre, the WLS algorithm is termed 'integrated

state-estimator' (ISE).

The ISE requires all measured data to be communicated to a single

location, which can lead to heavy information transfer from many sites to the

12

control centre. The performance of the ISE has been tested against the

system size [3]; it is shown that the computing requirements and numerical

errors of ISE increase super-linearly with the system size. It follows that, for

power systems of large size, it may not be possible to meet the required

execution time for ISE due to the high amount of computation involved.

This disadvantage of a single-processor solution to PSSE has led to the

development of alternative techniques, [3, 47, 49] which utilize partitioning of

the PS network model followed by decomposition of the PSSE algorithm and

implementation in a two-level hierarchical processor configuration.

These different techniques are based on splitting the state estimation

problem into a number of smaller sub-problems. A topologically partitioned

solution is proposed in [75], which used the output of an observability

algorithm to rearrange the measurement vector into non-critical and critical

sub-vectors. This method needs high proportion of critical measurements, and

involves heavy exchanges of information during its iterative procedure.

The original system was divided into a number of subsystems which

overlapped at boundary nodes [44a], or tie-lines. [44b]. In these approaches,

the overall model for the whole system is generally related to subsystems

using a diakoptical representation. The estimation is obtained by using two­

level structure of hierarchical solution [44a], or by an alternating sequential

parallel computer system [44b]. These approaches have common

disadvantages of heavy data transfers at each iteration and the relatively

high numbers of iterations could lead to time delays which may be

unacceptable in a real-time environment.

It was clear from the outset that the design of a practically useful

partitioning method would be influenced by the decomposed SE scheme with

which it is to be used. A decision was therefore taken to select, somewhat

arbitrarily, one method, which would provide a set of constraints for the

study.

The approach described in [49] has features which lead to a simple and

particularly well-defined set of constraints, and was therefore chosen as the

13

application on which design of a partitioning procedure would be.

The approach described in [49] has particular practical advantages.

Termed the 'decomposed state-estimator (DSE), the algorithm is iterative

between two computational levels. The lower level task is shared by k

processors operating in parallel, each one estimating the states of a single

subsystem. The upper-level task is to co-ordinate the lower-level results, and

is performed in a single processor. Per iteration, computation therefore

consists of the parallel lower-order task in series with the single upper level

task; this combination is iterated to convergence. The advantage in overall

computational performance is derived from the reduced order of each of the

parallel computations at lower level, together with an upper-level

computation which is of low order if the subsystems can be created by

partitioning so that the number of inter-subsystem connections is low.

This leads to a broad objective for partitioning: the network is to be

divided into k non-overlapping, balanced subsystems, so that the number of

inter-connections between these subsystems is minimum. The minimum

number of inter-connections is identical with the minimum number of cutting

edges.

The ISE and DSE methods are considered in further detail in the following

two sections.

2.2 The integrated state estimation algorithm

The objective of ISE is to determine the best estimate, in the WLS

sense, of an overall state vector .?f from an available measurement vector z

which is subjected to uncertainty~. The measurement vector z is considered

to be related to the state variable x by

z = hex) + e - - - (2.1)

where:

14

and

~ is a vector ofn state variables, defined as the voltage magnitude at

each node, together with the phase angle at each node except the slack

node;

z is a vector of m measured quantities comprising active and reactive

nodal power injections, and nodal voltage magnitudes;

e is a random m vector representing measurement uncertainty, in the

form of random bias or noise;

h is an m vector of the non-linear observation functions based on the

application of Ohm's and Kirchoffs laws to the power system network.

e is considered to be a random process with statistics:

mean: E~] = 0;

and covarIance: E ~ g T] = R > 0

A performance index for the overall system is given by:

J = ~ II~ -h(x)II~, . (2.2)

A

The weighted least square (WLS) estimator x for the system states is then

given by a convergence of:

Q (i). ~~(i) = HT (i) R -1 • ~!(i); (2.3)

in which:

~x (i)=x (i + 1)-x (i);

Q(i) = HT (i) R -1 H(i) where Q is the gain matrix;

~~ (i) = ~ - h (x) with h (x) evaluated at x = x (i) ;

H= -hi-x, a Jacobian matrix;

15

and i is the iteration index.

A A

Let Hand Q denote Hand Q respectively at convergence. With e so
A

defined as a random process, x may be interpreted as a linear-

unbiased minimum-variance (LUMV) estimator for ~ with covariance

of estimation error given by

__ T A -1

E[x x]=Q , where x=x-x.

The condition: Rank {H(i)} = n; at each iteration of equation (2.3) is sufficient

to ensure convergence of xCi) to give a local minimum for J; the iteration then

has quadratic convergence properties.

2.3 The decomposed state estimation algorithm

An overall network of n nodes is decomposed into k non-overlapping

subsystems interconnected by ties, which are physically either lines or

transformers. The k subsystems are defined uniquely by cuts through the

ties. Ties are terminated within adjacent subsystems at nodes termed

"boundary nodes". Subsystem i contains n i nodes, nib of which are

boundary nodes. The remaining nir = ni - nib nodes are termed "internal

nodes". One slack node, at which the voltage phase angle is assigned to be

zero reference, is selected for the entire network. By convention only, the

slack node is assigned to an internal node in subsystem l.

A mathematical model for subsystem i may then be based upon:

internal states ~ ir E R nir ;

boundary sta tes ~ ib E R nib ;

and the boundary states of adjacent subsystems.

A key features of this decomposition is that the internal states x jr for other

16

subsystems (j "* i) will not appear in the measurement model for subsystem i.

The overall set of measurements ~ is distributed exclusively and exhaustively

amongst the k subsystems; a measurement taken on an inter-subsystem tie

may be assigned to either of the adjacent subsystems. The measurement

model for subsystem i will then be expressible in general form as:

where

~ T = ~; ~ ~ ___ ~ ~] wi th ~ i E R ffii ;

and

T _ r -.r T T T]' th R nib
~ b - L.1f 1 b ~ 2b - - - X kb WI X ib E .

At lower level, each of the k parallel processors is assigned to a subsystem.

All computation at this level is carried out simultaneously for all k

subsystems but independently of each other.

A model of DSE as reported in [49] can be represented by the master

and slave configuration shown in Figure 2.1.

Figure 2.1 Two level state estimator

CP: Co-ordination Processor

SSP i: Subsystem Processor i

The DSE algorithm is iterative between the two computation levels. The

scheme does not require communication between processors at lower-level.

17

The two-level iterative procedure for the DSE is summarised in Table 2.1.

At lower level (k-parallel processors), At the upper level (single

processor) ,

1. Initialise with ~i' Xir (0), Xb (0) .

setj=O.

2. Compute: 3. Compute

hi (Xir (j), Xb (j)); ~~i (j); Hir (j); Hib (j); [G g] = ±JG i (j) g.];
-I

H~ (j) R~l; Q ir (j) ; Q~l (j) ; i=l

W ir (j) ; W ir (j) Hib (j) ; and
and ~Xb(j)

lG i (j) . g. (j)J.
-I

from G(j).~Xb (j) = g(j).

2= Send lG i (j) g. (j) J to upper level;
-I 3= Send ~Xb (j) in k-parallel to

llb (llb + 1) elements in k-parallel. lower level; llb elements.

4. Compute:

~Lb (j) = ~~i - Hib .~Xb (j) ;

and ~X ir (j) from

Q ir(j).~xir (j) = H~ (j) R~l . ~Lb (j)

5.Set j j+1.

Compute: Xir (j); Xb (j) .

If convergence not reached, go to 2;

" "
else Xir (j) = ~ ir; and Xb (j) = ~ b .

End of algorithm.

Table 2.1 The two-level iterative procedure for the SE

18

2.4 The DSE constraints

The hierarchical decomposition of the integrated state estimation

problem into two levels introduces new definitions and constraints which

have a direct influence on the specification of the network-partitioning

problem. Without these constraints, the problem would be to partition the

network such that (i) the k subsystems are equal or balanced and (ii) to

minimize the number of connections between the k subsystems.

Under the new hierarchical decomposition of the state estimation

paradigm, however, the cuts which bring about partitioning define: each

subsystem; the internal nodes of each subsystem; and the boundary nodes of

each subsystem which together form the set of global boundary nodes. The

amount of computation at each level and the volume of communication

between the two levels have been determined by the DSE. Thus partitioning

has a direct consequence on DSE performance. To meet the computational

performance requirements of the DSE, partitioning must consider the size of

the global interconnected area and the size of internal areas of each

subsystem produced by partitioning (measured by the number of nodes) as

well as its impact on performance (measured by the amount of computation

and communication). Reduction in subsystem size clearly produces a

reduction in the computation at lower level. At the same time, reducing

subsystem size by partitioning generally leads to an increase in the number of

interconnections between subsystems, which in turn leads to an increase in

volume of communication and a corresponding increase in the amount of

computation at upper level. In addition, balancing the sizes of the k

subsystems has the effect of approximately equalizing the amounts of parallel

computation at lower level, so that there is no time delay or waiting in the

parallel operation. The computational tasks at both lower- and upper-level

are basically the solution of respective sets of linear algebraic equations. The

size of computation at the upper level of the DSE is therefore O(n~). The

amount of computation of each independent process at the lower level could

similarly be considered, in terms of dimension only, as O(n!). It should be

19

stressed, however, that the lower-level problems are relatively sparse, and

hence sparsity programming [60] techniques would in practice be employed,

for computational advantage. In this case, the amount of computation at

lower level would be more realistically represented as O(n~).

2.4.1 The computation constraints in the lower level

In the lower level, k parallel processors are use to estimate the internal

nodes of k subsystems; each processor estimates the internal nodes of one

subsystem. The i th processor has nir internal nodes. The DSE algorithm

determines the amount of computation at each process at the lower level to be

O(n~) or O(n~) if sparsity programming is employed. If the values of nir are

different for i = 1, 2, ... , k, this will cause a delay in computation at lower level.

The processor with maximum nir will require more time to complete its

computation than the other subsystem processors which are dealing with

lower order problems. Communication from lower to upper level cannot

proceed until the lower level task has been completed. The upper level

processor does not start computing until it receives the data from all k

processors. Communication delays arise from the time taken to transfer data

between levels; this clearly increases as the volume of data increases. Since

the volume of data in either direction is a function of the number of boundary

nodes, this means that the number of interconnections between subsystems

needs to be kept low if the communications delay is to be kept low.

It is therefore clear that the constraints imposed by the DSE problem

produce the requirement that the balance to be sought at lower level is not

between numbers of subsystem nodes, but between subsystem internal

nodes.

2.4.2 The computation constraints at the upper level

Mter computation of the lower level tasks, the data from the k

processors at the lower level are sent to the single processor at the upper

20

level, in order to compute updates of the nb boundary nodes. The computation

size is O(n~) . If nb > n ir , then n~» n;r , i.e. overall computational

performance will be dominated by that of upper level processing, which is

undesirable. For example, if nb = 5 > nir = 3, then n~ = 125 » n! = 27. The

computation time at the upper level processor is about 5 times that of the i th

processor at the lower level.

To avoid such a situation, the size of nb needs to be not greater than

the largest value of n ir ; overall performance is improved if nb can be made as

small as possible. In probability, a decrease in nb will be obtained if k, the

number of subsystems, is decreased.

Many proposed partitioning techniques do not consider delays which

result from computation or communication, while others do not classify the

network nodes into internal and boundary nodes nor do they consider

subsystem size. As a result, there is a strong need for method which gives a

balanced partitioning, considering both the number of boundary nodes, fast

computation and communication delay, in providing an equal or balanced

parti tioning.

Thus, the partitioning problem can be defined as partitioning the DSE

network into k sub-networks such that the number of the k sub-networks

internal nodes are equal or balanced with each other, and the number of the

total boundary nodes are less than, equal or balanced with the number of

internal nodes of the i th subsystem. These new definitions and specifications

are of great significance for any partitioning techniques for the DSE to

perform efficiently.

21

Chapter 3

Review of recent partitioning techniques

3.1 General

In this chapter, three recent partitioning techniques are presented.

Each technique introduces a different approach to solve the network­

partitioning problem. The first approach has been introduced by [33]. It

presents a development of some heuristic algorithms to partition a PS

network into two or more sub-networks. The proposed heuristic algorithm

partitions a spanning tree of a PS network. These partitioning algorithms are

based on using an integer linear programming (ILP) eigenvector based

approach to have a good initial partition, and then on using an interchange

method to obtain the optimal partition.

The second approach has been introduced by [39]. The new approach is

based on the observation that the edges of a graph's minimum cut form a very

small fraction of the graph's edges so that a randomly selected edge is

unlikely to be in the minimum cut. Therefore, if an edge is chosen at random

and its end-points are contracted into a single vertex, the probability is high

that the minimum cut will be unaffected. Therefore, the minimum cut are

found by repeatedly choosing and contracting random edges until the

minimum cut is apparent.

The third approach has been developed by [32], to partition a PS

network for the purpose of the decomposed state estimator. The technique is

based on markov chains process. It partitions a spanning tree into k sub­

spanning trees and then finds from the network the minimum cuts.

The three approaches do not classify the network nodes into internal

and boundary nodes, but they can be modified to satisfy the DSE restrictions.

22

3.2 The Integer-linear-programming approach

3.2.1 General

This approach has been introduced by [33]. It presents a development

of some heuristic algorithms to partition an observable PSSE network into

two or more observable sub-networks. The proposed heuristic algorithm

partitions a spanning tree of an observable PSSE network. These partitioning

algorithms are based on using an integer linear programming (ILP)

eigenvector based approach to have a good initial partition, and then on using

an interchange method to obtain the optimal partition.

3.2.2 Interchange methods for partitioning

Iterative improvement algorithms start with a random partition and

try to optimise it by making small local changes such as successively shifting

(or moving) of modules from one block to another. Kernighan and Lin [41]

described a heuristic procedure for netlets (hypergraphs) partitioning, which

became the basis for most of the iterative improvement partitioning

algorithms.

The Kernighan and Lin algorithm, which starts with a given random

partition, consists of a series of passes. In each pass, two modules are

interchanged in turn until all nodes are moved. Each pass consists of a series

of interactions. At each iteration the modules to be moved are chosen from

among the ones that have not yet been moved during the pass. The modules

to be interchanged or moved are chosen so that the maximum decrease in cut­

set size (i.e. minimum number of nets cut by a partition) may be obtained (or

minimum increase ifno decrease is feasible). At the end of each pass, since all

modules must have been interchanged, the cut-set size of the partitioned

blocks should be exactly the same as it was at the beginning of the pass. The

partitions produced during a pass are examined and the one with the

smallest cut-set size is chosen as the starting (initial) partition for the next

pass. Passes are performed until no improvement in cut-set size can be

obtained.

23

Fiduccia and Mattheyeses [22] introduced modifications to the

Kernighan and Lin algorithm. One of the significant modifications suggested

by them is to move one module at a time instead of switching pairs. This

modification allows for more flexibility in the size of the partitioned blocks.

Partitioning simple netlist example:

This example gives a general idea of how the interchange method works in

partitioning a netlist, using Fiduccia and Mattheyses approach. Consider the

partitioning of the following five-modules, three-net netlist example shown in

figure 3.2.1 into two blocks. Let the upper bound of any block be four (i.e. the

maximum number of modules inside any block at any iteration and during

any pass is four).

block 1 block 2

1 _I 1 J
1 2 3 4 5

1 I i I I

Figure 3.2.1 Five-module, three-net netlist example

Define ~.. as the gain in cut-set size when module i moves to block j. Assume
£j

the starting random partition given in figure 3.2.1 that places modules 1 and

2 in block 1, and modules 3, 4 and 5 in block 2. This initial partition, as

shown in Figure 3.2.1, cuts three nets. Now start with the first pass, as

explained.

Pass 1. Iteration 1

~12 = 0 ~22 = +2 ~31 = + 1 ~41 = 0 ~51 = + 1

It is obvious from iteration 1 that the maximum decrease in cut-set size that

can be obtained in this iteration is by moving module 2 to block 2; this

partition cuts 1 net only, as shown in Figure 3.2.2a Module 2 is locked in

block 2 and cannot be moved any more in pass 1. Moreover, the number of

modules in block 2 does not exceed the upper bound limit (i.e. four modules),

24

block 1 block 2
I

1 I I I
1 .:}:::::: 3 4 5

'.

I I I I

Figure 3.2.2a Shifting of module 2 to block 2

Pass2.Iteration 2

~12 = violates upper bound of block 2.

~21 = locked in block 2

~31 =-1 ~41 = 0 ~51 = -1 .

It is obvious from iteration 2 that the cut-set size cannot be further reduced.

Since moving module 4 to block 1 does not affect the cutest size, this is the

best move in this iteration, as shown in figure 3.2.2B. Module 4 is locked in

block 1 and cannot be moved any more in this pass.

Block 1 block2

I I I I
.' .. '

1 ····4 ·····23 3 5 .'
. ' ,,' '.

I I I I

Figure 3.2.2b Shifting of module 4 to block 1

Proceeding until the end of this pass (i.e. at iteration 5) the final partition will

look like the one shown in figure 3.2.2c.

Block 1 block2
I

I I I I
". .' '. .' .' '. .'
"S:J.< :: .~<: ~ ... ~<:: . .. '1 '
..... ••••••• n •••••••••

.' . ' " . '. . ' " . . ' ' . .'

I I I I
I

Figure 3.2.2c Partition at end pass

25

The number of cuts is exactly same as the starting (initial) partition and this

is due to the fact that all modules have been moved and got locked; this is the

end of pass 1.

Investigation of the smallest cut-set size throughout this pass shows

that partition of the first three iterations has the smallest number of cuts.

Therefore, anyone of these three partitions could be chosen as the starting

partition for the next pass. The procedure continues until a pre-specified

number of passes is reached. In this example, since the optimal cut-set size is

one and has been obtained from the first pass, one can terminate at this pass.

3.2.3 ILP eigenvector-based approach

In this section an integer-linear-programming eigenvector (ILP) based

approach is presented. The ILP is to find a good initial partition between the

busses of an undirected graph. This approach was, first presented by Barnes

[4]. A brief summary of Barnes approach follows:

Assume that an undirected graph G of n busses needed to be

partitioned into k disjoints blocks of size mpm2"·· ,mk . Define the following

0-1 integer variable:

x·· = 1J

1 if bus i is in block j

l·=I···n·J·=I···k , " "
o otherwise

Let a be the number of edges connecting busses sand t, s * t, and let
st

a = 0 s t = 1 ... n. Let A denote the n x n matrix that corresponds to the
ss " "

adjacency matrix (or connectivity matrix) of the undirected graph G. Let v ij

be defined as the i th component of the eigenvector corresponding to the

largest eigenvalue jth largest eigenvalue of the adjacency matrix A of the

undirected graph. Barnes shows that the solution of the following ILP

transportation problem gives an approximate solution to the undirected

graph G partitioning problem:

26

max LL ij X
ij {

n k V }

i=l)=1 ~mj

subject to

n

L X ij = m j , j = 1,. .. , k
i=l

k

~X .. =1 i =1 ... n ,L.J IJ' "
)=1

X··>O i=I···n· J·=I···k
IJ' " , "

The partitioning given by the solution of the transportation problem (expr.1)

usually places most of the busses of G in the correct blocks.

In the two-block case (i.e. k=2), the transportation problem can be

further simplified by replacing X i2 by 1- XiI [11] . Let Xi = XiI' then the

transportation problem could be replaced to the following ILP {O,I}-Knapsack

problem:

{
n [}}
~ v' l v'2 max,L.J 1 - 1 i

i=l ~m1 ~m2
(3.1)

Subject to

(3.2)

i =1 ... n , ,

The solution to the knapsack problem (expr.2) can be obtained (without

solving the knapsack problem [63]) by sorting the objective coefficients in

non-increasing order and setting Xi = 1 for the first m 1 variables in the sorted

list (all other variables are set to zero). An interchange technique, whose

initial partitioning is one obtained from the solution of the problem expr.2,

can be applied afterwards to obtain a good final partition.

27

The ILP eigenvector-based approach is used to obtain a good initial partition

for a spanning tree of an observable PSSE network. An interchange method

can be applied afterwards to obtain the optimal partition of the spanning tree

(i.e. every spanning tree is full of rank).

3.2.3.1 Algorithm for equi-partition of a spanning tree

A heuristic algorithm is proposed to partition a spanning tree of an

observable PSSE network into two blocks of buses of sizes m
l

and m
2

.

Optimality can be achieved when the number of cuts between the two

partitioned blocks is equal to one (i.e. the existent of two sub-spanning trees

of full rank). The proposed algorithm involves the following steps:

Algorithm 3.2.1:

a- Obtain a spanning tree of an observable PSSE network.

b- Use the knapsack integer-linear-problem of equation (3.2) to partition

the spanning tree into two blocks of busses with block size m
l

and m
2

.

If the number of cuts is one, stop, optimality has been reached:

otherwise, proceed to the next step.

c- Interchange those busses that are connected between the two

partitioned blocks (while maintaining the block sizes m l and m 2 fixed)

until optimality is reached. If so, stop, otherwise continue to the next

step.

d- Allow one or more of those buses that are connected between the two

partitioned blocks to move from one block to the other (i.e. change the

block size m l and m 2) such that the size of the new blocks does not

violate a pre-specified limit. If optimality is reached, stop, otherwise

continue to the next step.

e- The existing spanning tree cannot be partitioned. Optimality (i.e.

number of cuts between the partitioned blocks cannot be one). Find

another possible spanning tree and go back to step 2. If there is no

more possible spanning trees that can be partitioned optimally, stop;

the system cannot be partitioned into two observable sub-networks.

28

Once the spanning tree is optimally partitioned into sub-spanning trees of

full rank (i.e. the number of cuts is one), the actual interconnected lines

between the two partitioned sub-networks can be obtained directly from

the original network graph.

3.2.3.2 Equi-partition of IEEE-14 network

Consider partitioning of the IEEE-14-bus observable PSSE network, shown in

Figure 3.2.3, into two observable sub-networks each with block size of seven

(i.e. m 1 = 7 and m 2 = 7).

lQ-----e"--'J... ____ ~4

2

Figure 3.2.3 The IEEE-14 network

12 13 14

sL:: ~9
1

2~-------~3

Figure 3.2.4 A spanning tree

29

Allow changes in the size of any of the two blocks such that the maximum

allowable difference between the two blocks be zero (i.e. retaining the size of

each block to be seven). A possible spanning of this network is shown in

Figure 3.2.4.

The largest, the second largest eigenvalues and the corresponding

eigenvectors have been calculated.

The solution of the knapsack problem (expr. 2) after sorting its coefficients

leads to

and

This solution cuts two of the spanning tree branches. According to step 3 of

algorithm 1, if node 8 is interchanged with node 2, the optimal partition can

be obtained (number of cuts is one). The optimal partitioned buses are shown

in Figure 3.2.5.

Block 2 block 1

)110~~4
(........ :._ ... /---Q

12

1

2~------~------~

Figure 3.2.5 Optimal equi-partitioning of spanning tree

This optimal partition cuts 5 lines of the IEEE 14-bus network graph, as

shown in Figure 3.2.6, and the two partitioned sub-networks are still

observable (i.e. every sub-network has a sub-spanning tree of full rank).

30

Figure 3.2.6. Partitioning of

IEEE I4-bus into two

observable sub-networks.

block 2 block 1

::::: ::::~.-..••. -----<1

"\

3.2.3.3 Algorithm for multi-partitioning of spanning tree

Multi-partitioning of a spanning tree using the transportation problem (expr.

1) directly is not an easy task; it requires the solution of kn variables with

k+n constrains. This subsection presents a heuristic multi-partitioning

algorithm of a spanning tree that avoids the complexity associated with using

the transportation problem (expr. 1) directly. Optimality can be achieved

when the number of cuts between the k partitioned sub-spanning trees is

equal to k -1. The following heuristic steps of the proposed algorithm leads to

mul ti -parti tioning.

Algorithm 3.2.2:

a- Obtain a spanning tree of an observable PSSE network.

b- Use the knapsack interchange-linear-program problem of expr.2 to

partition the spanning tree into two blocks of busses with block sizes of

m· and ~~. m
J
. for i = 1, 2,,,,, k -1.

I L..JJ=Hl

c- For every i in step 2 of this algorithm, follow step 2-5 of algorithm 1 to

obtain the optimal partition between every two blocks. Overall

optimality can be obtained when the total number of cuts between the

k-partitioned blocks of buses is equal to k-l.

31

Once the spanning tree is optimally partitioned into k sub-spanning trees (i.e.

the number of cuts is k-1) the actual interconnected lines between the k sub­

networks can be obtained directly from the original network graph.

3.2.3.4 Multi-partitioning of IEEE 14-bus network

Assume the case k=3, i.e. partitioning the IEEE 14-bus network into three

sub-networks, and the original size of each sub-network (block) be m 1 = 4,

and m 2 = m3 = 5. Also allow changes in the size of a block such that the

maximum allowable difference between any two blocks be two. The largest

and second largest eigenvalues and corresponding eigenvectors have been

calculated. According to Algorithm 3.2.2, this multi-partitioning has to be

done in two steps.

In the first step, the entire spanning tree is to be partitioned into two blocks

with sizes of m 1 = 4 and m 2 + m3 = 10, and the second step partitioning the

ten-bus into two other blocks of busses with block sizes of m 2 = 5 and m3 = 5 .

The partitioned buses are shown in Figure 3.2.7.

Block 1 blocks 2 and 3

12IL:13 \ ~14
~ ~.~! 11

0

9

8 12

1 4

2 3

Figure 3.2.7 First step of multi-partitioning

the spanning tree.

The next step, according to Algorithm 3.2.2, is to partition the ten buses sub­

spanning tree of Figure 3.2.7 into two further blocks, with five buses in each

block.

32

Whatever a pair of buses are interchanged between the two blocks 2 and 3,

the minimum number of cuts that can be obtained would still be two.

Therefore, this is the only way to partition the ten-bus sub-spanning tree of

Figure 3.2.8 without changing the block sizes m
2

and m
3

•

Block 1 Block 3 12/31 14

6~1O 11~9
································ i

8 I 12
O-;-----(J

Block 2

1Q----G 5 4

2 3

Figure 3.2.8 Second step of multi-partitioning spanning tree

According to step 4 of algorithm 1, if bus 8 from block 2 is allowed to move to

block 3 (this is what the interchange method will do within the allowable

limit), optimality can be achieved. In this case, only one branch of the ten-bus

sub-spanning tree will be cut, as shown in Figure 3.2.9. Therefore, the overall

optimal partition of the spanning tree of the IEEE 14-bus network can be

obtained. Block 1 Block 3

Figure 3.2.9

Optimal multi -parti tioning

of spanning tree of Fig.3 .2.3 ... ·············· ... ··r:-·····_·· --(J

Block 2 1 8
1 ': _!

4

2 3

33

3.3 Karger approach to the minimum cut problem

The minimum cut approach has been introduced by [39].

3.3.1 The minimum cut strategy

Given a network which can be represented by an undirected graph

with n vertices and m (possibly weighted) edges, it is required to partition the

vertices into k nonempty sets so as to minimize the number (or weight) of

edges crossing between them. More formally, a cut (A, B) of a graph G is a

partition of the vertices of G into two nonempty sets A and B. An edge (v, w)

crosses cut (A, B) if one of v and w is in A and the other in B. The value of the

cut is the number of edges that cross the cut or, in a weighted graph, the sum

of the weights of the edges that cross the cut. The minimum cut problem is to

find a cut of minimum value.

Throughout this section, the graph is assumed to be connected, and

all edge weights is assumed to be nonnegative.

3.3.2 An abstract formulation of the contraction algorithm

The algorithm is based on the observation that the edges of a graph's

minimum cut form a very small fraction of the graph's edges so that a

randomly selected edge is unlikely to be in the minimum cut. Therefore, if an

edge is chosen at random and its endpoints are contracted into a single

vertex, the probability is high that the minimum cut will be unaffected.

Therefore, the minimum cut is found by repeatedly choosing and contracting

random edges until the minimum cut is apparent.

The algorithm is divided into two stages. In the first stage, an efficient

way to implement the repeated selection and contraction of edges, which form

a single trial of the contraction algorithm, is introduced. The second stage

deals with the need for multiple trials of the contraction algorithm.

34

3.3.3 The contraction algorithm

The Contraction algorithm uses one fundamental operation,

contraction of vertices. To contract two vertices vIand v 2 replace them by a

vertex v and let the set of edges incident on v be the union of the sets of edges

incident on vIand v 2 •

Edges from vIand v 2 that have the same other ends are not merge;

instead, multiple instances of those edges are created. However, self loops,

formed by edges originally connecting vIand v 2 , are removed.

35

Figure 3.3.1a A graph and a cut-line

Figure 3.3.1b selecting an edge in the graph

Figure 3.3.1c contracting the edge

Figure 3.3.1d The graph after contracting one edge

Formally, An edge e(v l' V 2) is deleted, and each e(v l' w) or e(v 2' w) is

replaced with e(v, w). The rest of the graph remains unchanged. The

36

con tracted gra ph G wi th e(v, w) con tracted is denoted by GI (v, w) ,

(contracting an edge, means contracting the two endpoints of the edge).

Extending this definition, for an edge set F let G/f denote the graph produced

by contracting all edges in F. An example of an edge contraction is given in

figures 3.2.1a, b c and d.

Assume initially that given a graph G (V, E) with n vertices and m

edges . The contraction algorithm is based on the idea that SInce the

minimum cut is small, a randomly chosen edge is unlikely to be in the

minimum cut. The contraction algorithm, which is described in figures 3.2.1,

repeatedly chooses an edge at random and contract it.

When the contraction algorithm terminates, each original vertex has

been contracted into one of the two remaining "meta-vertices". This defines a

cut of the original graph: each side correspond to the vertices contained in one

of the meta -vertices.

More formally, at any point in the algorithm, sea) can be defined as the

set of original graph vertices contracted to a current meta-vertex a. Initially,

s(v)=v for each v in V, and whenever the algorithm contracts (v, w) to create

vertex x it sets s(a)=s(v) U sew). A cut (A,B) in the contracted graph

corresponds to a cut (A',B') in G, where A' =Us(a) and B'=Us(b).

Note that a cut and its corresponding cut will have the same value,

where the value of a cut is defined to be the sum of the weights of the edges

crossing the cut.

Procedure 3.1.1: Contract (G)

repeat until G has 2 vertices

choose an edge (v, w) uniformly at random from G

let G .- G I(v, w)

return G

37

When the contraction algorithm terminates, yielding a graph with two

meta-vertices a and b, the corresponding cut (A, B) in the original graph are A

= sea) and B = s(b). Lemma (3.3.1) has been given its and proof in [39].

Lemma 3.3.1:

A cut (A, B) is output by the Contraction Algorithm if and only if

no edge crossing (A,B) is contracted by the algorithm.

Proof:

The only direction is obvious. For the other direction, consider two vertices on

opposite sides of the cut (A, B). If they end up in the same meta-vertex, then

there must be a path between them consisting of edges that were not

contracted. However, any bath between them crosses (A, B), so an edge

crossing cut (A, B) would have had to be contracted. This contradicts the

hypothesis. Theorem (3.3.1) is given and its proof in [39].

Theorem (3.3.1)

A particular minimum cut in G is returned by the

Contraction Algorithm with probability at least

Proof: [39].

3.3.4 Implementation of the contraction algorithm

To implement the contraction algorithm an n x n weighted matrix, W is

used. The entry W(u, v) contains the weight of edge (u, v), which can

equivalently be viewed as the number of edges connecting u and v. If there is

no edge connecting u and v then W(u, v)=O. The optimal (weighted) degree

D(u) of each vertex u is also maintained; thus

D(u) = Lv W(u, v) ;

38

N ext, is the implementation of the two steps: randomly selecting an edge and

performing a contraction.

3.3.4.1 Choosing an edge

A fundamental operation, that IS needed to be implemented, is the

selection of an edge with probability proportional to its weight. A natural

method is the following. First, from edges eI ,"', em with weights WI"'" W m ,

construct cumulative weights WI = L,:l Wi W. Then choose an integer r

uniformly at random from 0"", W m and use binary search to identify the edge

ei such that Wi _I < r < W m • This can be done in 0 (log W) time.

Assume that given a subroutine called RANDOM-SELECT. The input to

Random-Select is a cumulative weight array of length m. Random select

returns an integer between 1 and m, with the probability that i is returned

being proportional to Wi'

Now, the Random_Select will be used to find an edge to contract it. The

goal is to choose an edge (u, v) with probability proportional to W (u, v). To do

so, choose a first endpoint u with probability proportional to D(u) , and then

once u is fixed choose a second endpoint v with probability proportional to

W(u, v) W(u, v). Each of these two choices requires O(n) time to construct a

cumulative weight array plus one O(log n) time call to Random-Select, for a

total time bound of O(n). The following lemma proves the correctness of this

procedure. The lemma and its proof is given in [39].

Lemma 3.3.2

If an edge IS chosen as described above, then Pr[(u,v)is chosen] IS

proportional to W(u,v).

Proof: [39].

39

3.3.4.2 Contracting an edge

Having shown how to choose an edge, next is the implementation of

contraction. Given Wand D, which represent a graph G, to update Wand D

to reflect the contraction of a particular edge (u, v). Call the new graph G' and

compute its representation via the algorithm in Procedure 3.3.2.

Procedure (3.3.2) Contract an edge

let D(u) <-- D(u) + D(v) - 2w(u, v)

let D(v) <-- 0

let W(u, v) <-- W(u, v) <-- 0

For each vertex w except u v

let W(u, v) <-- W(u, v)+W(u, w)

let W(w, u) <-- W(w, u)+W(w, v)

let W(v, w) <-- W(W, u) <-- 0

This algorithm moves all edges incident on v to u. The algorithm

replaces row u with the sum of row u and row v, and replaces column u with

the sum of column v. It then clears row v and column v. Wand D now

represent G', since any edge that was incident to u or v is now incident to u

and any two edges of the form (u, w) and (v, w) for some w have had there

weights added.

Furthermore, the only vertices whose total weighted degrees have

changed are u and v, and D(u) and D(v) are updated accordingly. This

procedure can be implemented in O(n) time. Summarizing, an edge can be

chosen and contracted in O(n) time. This yields the corollary (3.3.1) [39].

Corollary: (3.3.1)

The Contraction Algorism can be implemented to run

in O(n 2) time.

Proof: [39].

40

For the rest of this section we will use the contraction algorithm as a

subroutine, that accepts a weighted graph G and parameter k and in

O(n) time , returns a contraction of G to k vertices. With probability at least

(~){ ~) (Corollary3.3.1), a particular cut of the original graph will be

preserved in the contracted graph.

3.3.5 The recursive contraction algorithm

The Contraction Algorithm can be used by itself as an algorithm for

finding minimum cuts. The contraction Algorithm has an Q(m) probability of

success. Therefore repeating the contraction algorithm (en 2In n) times, and

out put the smallest cut produced by any runs of the contraction algorithm.

The only way this procedure can fail to find the minimum cut is if all (en 2In n)

runs of the contraction algorithm fail to find the minimum cut, but we can

upper bond the probability that this occurs by:

(

1 Jcn2lnn
1-~ < exp(e In n) < n c

Thus, the minimum cut will be found with high probability. However,

the resulting sequential running time of O(n4) is excessive. Lemma (3.3.3)

and its proof is given in [39].

Lemma (3.3.3)

Algorithm Recursive Contract runs in O(n 2 log n) time.

Proof: [39].

41

3.4 The Markov chains partitioning approach

3.4.1 General

The partitioning technique, in this section, has been developed by [32],

for the purpuse of the decomposed state estimator. The technique is based on

markov chains as explained in Section (3.4.2). It partitions a spanning tree

into k sub-spanning trees and finds all optimal minimum cuts. Partitioning a

spanning tree guarantees the observability of all the sub-networks.

3.4.2 Markov chain model

In decision-making process, decisions are taken based upon past

experiences. Not all decisions however prove to be correct, often because of

certain inconsistencies or uncertainty associated with the phenomena upon

which the decision was based.

Markov Chain theory has been used in hypertext, by associating a

certain probability value to each hypertext link. Such an application helps the

designer to decide how nodes are to be placed, and to make informed

hardware configuration decisions based on the projected performance of the

resul ting system.

A Markov Chain can be described as a set of states, and transitions

between those states that occur with a given probability. It is possible that in

a stochastic process, the future (or next state) of the system depends only on

the present state, and is independent of past events. This is called the

Markovian property. A stochastic process is claimed to have the Markovian

property if it satisfies the following condition:

\-I"" >0 . vI, J. Pij - ,

N

Vi, LPij = 1;
j=O

(3.4.1)

(3.4.2)

42

A typical N-states Markov chain and its N-step transition probabilities are

represented in a matrix. The matrix is called the transition matrix.

state 0 1 2 3 N

0 Poo POI P02 P03 PON

1 PlO

2 P20

3 P30

.

..

..

N PNO PNN

Table 3.4.1 The n -step transition matrix

3.4.3 Partitioning algorithm

The following summarizes the steps that are required to obtain all

optimal possibilities of spanning tree by using Markov chain model. The

technique guarantees minimum number of cuts to obtain the required of

observable sub-networks.

1. Obtain a spanning tree of an observable PSSE network.

2. For each node in the spanning tree, count the number of branches that are

connected directly to this node.

3. Assign to each branch a probability of one over the number of branches

found in step 2 (i.e. assign equal branch probabilities such that their

summation is equal to one).

4. Establish the transition matrix T, whose dimension is equal to the number

of nodes in the system, in which each entry Pij represents the probability

val ue that has been assigned in step 3.

43

5. For each row i of the matrix T, search for a probability Pij equal to one. The

probability equal to one implies that node i in the ith row is connected only to

node j in the jth column. Store node i as a child of node j, and delete row i and

col umn i from the matrix T.

6. Redistribute the probabilities related to node j (which is the parent of the

deleted child i).

7. Repeat steps 5 and 6 until the dimension of the matrix T reduces to one. A

family tree (parent-child relationship) is established with actual connection

between the nodes.

Once the family tree is established, it is easier to check all possible

optimal cuts amongst the family tree. All optimal cuts take place between a

parent and one of its children. In this case the selected child with its offspring

are assigned to one cluster (or clusters).

3.4.4 Comparative performance

The performance of this technique has been eval ua ted by uSIng

different IEEE standard networks:24-bus, 30-bus, 118-bus and larger

networks of 707 -bus and 1084-bus. The 14-bus was used as an example.

The transition matrix T of the IEEE-14 network, according to the

proposed algorithm will then be as in Table 3.4.2.

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.5 0.0 .05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.33 0.0 0.0 0.0 0.33 0.0 0.33 0.0 0.0 0.0 0.0 0.0

5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.25 0.0 0.25 0.25 0.0

7 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.0 0.33

10 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Table 3.4.2 The transition matrix of the IEEE-14 network

The non-zero entries represent the connection between the nodes and the

summation of the assigned probabilities of any row equals one.

In the above example, node 3 is connected to node 2 and 4, and in the

assigned probabilities to each branch is equal to one half. The next step is to

45

search the transition matrix T for those entries that have a probabilities

value of one, i.e. looking for the youngest child in the family of this system; or

according to Markov Chain terminology, we are looking for transition

probabilities equal to one. The out come of the first search iteration is the

following children and their respective parents in Table 3.4.3.

Parent Attached Children

7 8

6 10,12,13

9 11, 14

Table 3.4.3 First iteration Parent-Child Relationship

The new transition matrix after removIng the corresponding rows and

columns of the attached children (after the first iteration) and updating the

related rows, we have a matrix as shown in Table 3.4.4.

1 2 3 4 5 6 7 9

1 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0

2 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0

3 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0

4 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.3

5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Table 3.4.4 Updated transition matrix

46

The summation of the new probabilities in any row in the modified transition

matrix remains one, and confirms that the modified matrix T still has the

Markovian property explained in Section 3.4.3. The final result will converge

after the fifth iteration. The family tree is shown in Figure 3.4.1.

3

2/~

/ / "" 1 7 9

51 / /~

I
/\~

13 12 10

8 14 11

Figure 3.4.1 Family tree of spanning tree of IEEE-14 network

As represented in this family tree, the youngest members are calculated first,

and then proceed upwards towards the eldest member of the tree.

In terms of partitioning, this family tree provides all optimal partitioning

possibilities of the spanning trees. In case of large networks, the computer

solution will automatically present all possible solutions.

2 3

/ "" 1
/~ 51 7 9

I / /~
/\~

8 14 11

13 12 10

47

Figure 3.4.2. Two equal clusters of spanning tree of IEEE 14-bus

network

If the spanning tree needs to be partitioned into two equivalent clusters, the

only solution would cut child 2 (and its offspring) from its parent 3. Child 2

with its offspring form a collection of 7 family members, and the rest with

parent 3 form another cluster. The two partitioned clusters, therefore, are

shown in Figure 3.4.2.

If the spanning tree is to be partitioned into two clusters of unequal sizes

with added constraint that the minimum number of nodes in any of the two

clusters must be at least six. The family would provide three possible

solutions. The optimal has already been shown above. The others are:

• By cutting the branch between child 1 and its parent 2, the clusters are

shown in figure 3.4.3.

• Or, by cutting the branch between child 4 and its parent 3, the clusters

are shown in Figure 3.4.4.

3

I""
2 I'"

7 9

/ /~
8 14 11

Figure 3.4.3 One option of two unequal clusters of spanning tree

48

4"" { 9

/ /~
8 14 11

Figure 3.4.4 Another option of two unequal clusters of the spanning tree of

the IEEE 14 -bus.

3.5 Advantages and disadvantages of these approaches

Knowing the DSE objective and constraints as introduced in Section 2.4, the

three approaches can be developed to satisfy the DSE requirements. In the

present case they share several points against the DSE constraints, such as:

1. None of the three approaches take into account the DSE constraints

and they do not classify the network nodes into internal nodes and

boundary nodes.

2. Depending on which spannIng tree is used, the partitioning which

results from the first and the third partitioning approaches may give

good balanced results, but it may not.

3. Obtaining the optimal cut edges from a spannIng tree does not

guarantee obtaining the minimum number of cut-edges from the

network.

49

4. The three methods are heuristic in their approach. They do not discuss

the network-partitioning problem itself or its NP-hard nature, nor do

they provide any mathematical model to simplify the problem.

50

Chapter 4

Spanning tree partitioning technique

4.1 General

Graph theory IS a branch of mathematics that has wide practical

applications. Many problems arising in such diverse fields as psychology,

chemistry, electrical network, transportation planning, management,

marketing, and education can be posed as problems in graph theory [5]. A

graph of a power system network has n nodes connected by m edges

representing the actual network.

Partitioning a network has objectives and constraints. These objectives

and the constraints are directly related to the addressing problem. Optimal

partitioning of a network is relative to the partitioning objectives and

constraints, i.e. if these objectives are met, and these constraints are

satisfied, then the partitioning solution is classified as optimal, and if these

objectives are met and the constraints are almost satisfied, then the

partitioning solution is classified as near optimal. If the solution does not met

the objectives the partitioning solution is rejected.

The objective of partitioning a power system network for the purposes

of the decomposed state estimation problem has been discussed in Section

(2.4). The idea is to partition the network into k non-overlapping subsystems

subject to constraints. The constraints are such that (i) the internal nodes of

the k subsystems are balanced and (ii) the number of total boundary nodes is

balanced with the number of internal nodes of the i th subsystem.

The problem associated with partitioning networks is a compound

problem. Networks have different sizes together with different types of

connections they can take. In addition, the nodes in a very large network may

have different type of distribution. They may be concentrated in one or more

clusters, or they may be distributed equally over the very large network. The

partitioning problem has proven [13, 25] to be NP-Hard problem; thus most

51

existing partitioning algorithms are heuristically based.

Searching graph theory [18, 21, 68] for relationships that describe a

network of any size with any type of connection, very few such relationships

appear to exist. Examples are: the network degree relationship, i.e. D = 2m,

which relates the sum of the nodes degrees to twice the number of edges; and

the cycle relationship i.e. c = m - n + 1. Neither of these direct relationships are

particularly helpful in providing information for partitioning the network.

They do not describe the network connection in an appropriate way.

Alternatively, it may be useful to examine indirect relationships that

can describe the network connection. An example of this is the spanning tree

relationship. A spanning tree of a network is a connected sub-graph of the

network, having n nodes (as has the network) and n-l edges. A spanning tree

can be obtained by eliminating exactly one edge from each cycle in the

network [64]. Thus, a spannIng tree of a given network may be used to

partition the network.

Partitioning a spanning tree into k partitions is obtained by cutting

exactly (k-l) edges from the spanning tree. The partitioning technique

introduced in this chapter is based on partitioning the spanning-tree

optimally into k sub-spanning trees. The technique first defines the number

of edges of each sub-spanning tree, and then finds the branches of each sub­

spanning tree such that the number of edges in those branches equals the

number of edges of the sub-spanning tree. The DSE constraints are to have

balance between the internal nodes and the boundary nodes. These

constraints are achieved by balancing the edges of the k sub-spanning trees.

Balanced k-subsystems that satisfy the requirements of the DSE may

be obtained by partitioning the given network for different values of k. Thus

the partitioning technique starts from k=2, and then for k=3, and so on. It

terminates when k does not give balanced results.

The chapter is organized as follows: A power system network can be

represented by a direct graph or undirected graph. The direct representation

of a network is presented in Section 4.2. The definition and the properties of

the spanning trees are presented in Section 4.3. A method for obtaining a

52

spannIng tree, using row reduction, is described in Section 4.3.1. The

resultant matrix, described in Section 4.3.2, is a descendent star matrix

representing the spanning tree. The partitioning technique utilizes the

descendent property as the starting point for partitioning. Cutting one edge

from the spanning tree partitions the spanning tree into two separate parts,

but it may not partition the network into two separate subsystems. Thus, the

cut concept is introduced in Section 4.4. Obtaining the cut-edges between the

k subsystems is described in Section 4.4.5 as a matrix sum operation.

Balancing the edges of the k sub-spanning trees is derived in Section 4.6. An

overview of the spanning tree partitioning technique is given in Section 4.7.

The technique is based on finding the branches of each sub-spanning tree.

Thus, the spanning tree nodes are classified in Section 4.7.1 into three types.

The definition and the property of a branch are discussed in Section 4.7.2.

The steps of finding the sub-spanning tree are described in Section 4.7.3. An

example and the simulation results are given is Sections 4.9 and 4.10. The

performance of the technique and its disadvantages are described in Sections

4.11 and 4.12 respectively. Some conclusions are drawn in Section 4.13.

Definitions of terms associated with graph theory are provided in Appendix

A.

4.2 Graph representation of network

Directed graphs are adequate for representing many situations [70],

such as traffic flow networks, where an edge may represent a street and the

direction to indicate the permissible direction of traffic flow. Also, a power

system network, consisting of power stations and transmissions lines,

requires a directed graph, where each node is represented by a vertex in the

graph, and each line is represented by an edge. The current flow direction is

represented by an edge direction.

In this chapter, a directed graph is used to represent a power system.

An example of a directed network is shown in Figure 4.1:

53

Figure 4.1 A directed graph of a networkO N

4.2.1 The incidence matrix

Consider a network represented by a direct graph ON with n nodes and

m edges and having no self-loops. The all-nodes incidence matrix A = la jj J of

ON has m rows, one for each edge, and n columns, one for each node. The

element a ij of A is defined as follows:

a .. = IJ

1, if the j th edge is from the i th node

-1 , if the j th edge is to the i th node

0, if there is no edge between the i th node and the j th node

For example the incidence matrix of the network in Figure 4.2 is:

1 -1 0 0 0

1 0 -1 0 0

0 -1 1 0 0

A= 0 1 0 -1 0

0 0 1 -1 0

0 0 1 0 -1

0 0 0 -1 1

54

(4.1)

Figure 4.2 The incidence matrix of the network of Figure 4.1

It is noticed from the incidence matrix definition that it has common

properties [21, 64, 70], namely,

Properties of the incidence matrix

• Each column of A contains exactly the degree of the jth node.

• Each row contains exactly two non-zero entries 1 and -1.

• Any row of A can be obtained from the remaining n-1 rows. Thus any

n-1 rows of A contain all information about A. In other words, the rows

of A are linearly dependent, and the rank of A < n -1.

• For any connected graph, the rank of A is n-l.

• The determinant of any incidence matrix of a tree is equal to + 1 or -1.

• If a network consists of k disconnected components, then the rank of A

is n-k.

4.3 Spanning trees

A spanning tree, T, of a network G N is, by definition, connected and it

includes all the network nodes [64, 70]. Figure 4.3a shows a spanning tree of

figure 4.1 network. A co-spanning tree T* of a spanning tree T of a graph G:\

is a sub-graph of G
N

having exactly those edges of GN that are not in the

spanning tree T.

v~

55

Figure 4.3a A spanning tree of Figure 4.1

Figure 4.3b shows a co-spanning tree T* of figure 4.1. Each spanning tree T

uniquely determines its co-spanning tree T* .

Figure 4.3b A co-spanning tree of Figure 4.1

The following gives full characterization of any tree [70]:

Trees Properties

The following statements are equivalent for a tree, T, with n nodes and fit

edges:

1. T is a tree.

2. There exists exactly one path between any two nodes ofT.

3. T is connected and fit = n -1. (4.2)

4. T is acyclic and fit = n -1.

5. T is acyclic, and if any two nonadjacent nodes of

G are connected by an edge, then the resulting graph

has exactly one circuit.

A consequence of the tree properties IS the following [70] spannIng tree

properties.

Spanning trees property (4.1)

Consider a sub-graph T of n nodes of graph G. Let T have n nodes and

fit edges, then the following statements are equivalent:

1. T is a spanning tree of G.

56

2. There exists exactly one path between any two nodes ofT.

3. T is connected and fit = n -1 .

4. T is acyclic and fit = n -1.

5. T is acyclic, and, if any two nonadjacent nodes ofT are

connected by an edge, the resulting graph has exactly

one circuit.

4.3.1 The row reduction method

A network may be represented by A, the associated incidence matrix.

The incidence matrix has m rows of edges and n columns of nodes. It is

interesting to consider the operation of row reduction on matrix A. Row

reduction eliminates a certain type of edge from A, specifically one edge from

each cycle in the network [64]. When row reduction is performed on A, each

operation has a meaning in the network, i.e. each operation moves or

eliminates one or more edges from the network. Since there are m-n+1 cycles

in the network, then there will be m-n+1 edges eliminated from the network

in 0 (m-n+1) operations. Once row reduction is complete, the row reduced

form of A is termed the spanning tree matrix, represented by U. The

spanning tree matrix has exactly n-1 rows of edges, and it has n columns,

each column representing a node.

Example (4.1) Example 4.1 illustrates the row reduction method.

The network in Figure 4.4 has:

n = 4 nodes and m = 5 edges.

Figure 4.4 A network used to

57

illustrate on the row reduction

The incidence matrix of Figure 4.4 is shown in Figure 4.5.

1 -1 0 0

0 1 -1 0

A= 0 1 0 -1

0 0 1 -1

-1 0 0 1

Figure 4.5 The incidence matrix of Figure 4.4

Figures 4.6a and 4.6b show the first row reduction operation, in which, when

row 5 is reduced by row 1, es will move from e (v 4' VI) to e (v 4' v 2).

Figure 4.6a The first row reduction operation

1 -1 0 0

0 1 -1 0

A -1- 0 1 0 -1

0 0 1 -1

0 -1 0 1

Figure 4.6b The resultant matrix of the first row reduction operation

Figure 4.7 a and 4.7b show the second row reduction operation, in which,

column 2 (or V 2) has 3 edges, e2 , e3 and es · The second edge, e2 , has the

leading one, so it will be the reference for the other two edges. The ones of es

58

and e3 will be eliminated by the one of e2 • This results in moving e
3

to be

from v 3 to node v 4 , and moving es to be from node v 4 to node v 3 •

es e 2

•
... e3

V 4 e4 V3

Figure 4.7a The second row reduction operation

1 -1 0 0

0 1 -1 0

A2 = 0 0 1 -1
0 0 1 -1
0 0 -1 1

Figure 4.7b The resultant matrix

of the second row reduction operation

Figure 4.8a and Figure 4.8b show the result of the third row reduction

operation. Between node 3 and node 4, there are three edges, e3 , e4 and es ,

and those edges are in opposite directions. From those edges e3 has the

leading one at v3 • Then the ones at e4 and at es will be eliminated.

Therefore, eliminating the edges e4 and es from the matrix and from the

graph. The result is a spanning tree of the network as shown in Figure 4.8b.

The row reduction method is described in Flowchart 4.1.

59

1 2

Figure 4.8a A spanning tree of Figure 4.4

1 -1 0 0

u= 0 1 -1 0

o 0 1 -1

Figure 4.8b A spanning tree matrix of Figure 4.4

60

j = j + I;

.-.h"es

~

Input: A An m

i=l;j=l;

No we---G)

~
,...~

yes ~

yes

no

A(ii,:) = A(ii,:) - A(i,:);

ii=i+l;

ii = ii + I;

yes

A(ii,:) = A(ii,:) + A(i,:);

10

Flowchart (4.1) The row reduc Ion method flowchart

61

4.3.2 The spanning tree matrix

Provided that the edge numbered one leaves the node numbered one (to

ensure that the element in the first row and the first column is always non­

zero), the resultant spanning tree matrix U has a descending staircase shape.

The spanning tree matrix U has exactly n columns of nodes and n -1 rows of

edges. Each row has two non-zero elements representing an edge in the

spanning tree. Each column has one or more non-zero elements representing

a node in the spanning tree. The columns with one nonzero element represent

a single node, i.e. a node with only one edge. The number of the non-zero

elements in each column gives the degree of that node in the spanning tree.

The descending staircase shape of matrix U has been utilized to partition the

spanning tree, as explained in Sections 4.6 to 4.8.

4.3.3 Testing connectivity

The spanning tree is anther way of testing the connectivity of the network

[70]. Property (4.2) proves that a network is connected if it has a spanning

tree.

Spanning trees property (4.2)

A graph G is connected if and only if it has a spanning tree.

4.4 The cut concept

When a network is partitioned into k disjoint subsystems, one or more

edges from the network must be cut. Those edges are termed cut-edges. In

this section, the cut concept is introduced.

4.4.1 Cut-sets

A cut-set Eb of a connected graph is a minimal set of edges of G such

that its removal from G disconnects G [70]; that is the graph G - Eb is

disconnected. For example, consider the subset Eb_1 = {e 2 , e6 , e9 } of edges of

the graph G in Figure 4.9a. The removal of E b_1 from G results in the graph

62

0 1 = 0 - E b _1 of Figure 4.9b, whereupon 0 1 is disconnected. Furthermore, the

removal of any proper subset of E b-l

set ofG.

cannot disconnect G. Thus E b_1 is a cut-

Consider next the set E { } Th h 0 0 b-2 = el'e 4 ,e6 ,eg • e grap :. = -Eb_:'

shown in Figure 4.9c is disconnected. However, the set E' { } b-2 = el' e ~, eg ,

which is a proper subset of E b_2 , also disconnects G. The graph 0 3 = 0 - E'b_2 IS

shown in Figure 4.9d. Thus Eb_2 is not a cut-set of G.

Figure 4.9a A graph G, Figure 4.9b 0 1 = 0 - E b _1

to ill ustra te the cut-set concept

Figure 4.9c O2 = 0 - E b _2
Figure 4.9d 0 3 = 0 - E'b_2

4.4.2 Cuts

Consider a network ON = (V, E) with node set V. Let VI and V2 be two

mutually disjoint subsets of V such that V = VI EB V2 ; that is, VI and V2 have

no common nodes and together contain all the nodes ofV. Then the set Eb of

all those edges of 0 N having one end node in VI' and the other end in V 2 ,

is called a cut of 0 N [70]. This is usually denoted by < VI' V2 > [70]. For

example, for the network shown in Figure 4.10a, if VI = {v l' v:.' V 3' V ~} and

V
2

= {v 5' V 6' V 7}, then the cut < VI' V2 > of 0 N is equal to the set {e6 , e7 , eg } of

63

edges, as shown in Figure 4.10b.

Figure 4.10a A network to

illustrate the cut concept

(//~
\ v I V 3

........•

........ ········.Y..4

.................................

(//~ v

7

V
;')

.........................
..................

Figure 4.10b The cut

The cut <VI'V2 > of GN is the minimal set of edges of GN whose removal

disconnects G N into two (induced) sub-graphs Gland G 2' on the node sets VI

and V2 • Thus, if the number of edges between the two (induced) sub-graphs,

i.e. the cut < VI' V2 >, is minimum, then the cut < VI' V2 > is Eb , by definition,

the cut-set of G N •

Partitioning a spanning tree

Since every spanning tree T of G is acyclic, then every sub-graph ofT is

also acyclic [70]. A sub-graph of a spanning tree is termed a sub-spanning

tree.

Spanning trees property (4.3)

A sub-graph T of a connected graph G is a sub-graph of some

spanning tree of G if and only if T is acyclic .

If k-1 edges are cut from a spannIng tree of a network then the

spanning tree is partitioned into k sub-spanning trees. The nodes of each sub-

64

spanning tree are the nodes of one subsystem. The k-l cut edges are used to

find the remaining cut-edges between the k subsystems.

The partitioning technique partitions the spanning tree into k sub­

spanning trees by cutting k-l edges. Each sub-spanning tree, T, has mit edges

and (mit + 1) nodes. Determining the edges of each sub-spanning tree is given

in Section 4.4.

Spanning trees property (4.4)

1. A cut < VI' V2 > of a connected graph G is a cut-set of G if the two

induced sub-graphs of G on node set VI and V2 are disconnected.

2. If Eb is a cut-set of a connected graph G, and VI and V2 are the

node sets of two induced sub-graphs of G - E b, then Eb = < VI' V2 >.

Any cut < VI' V2 > in a connected graph G contains a cut-set of G, since the

removal of <VI' V2 > from G disconnects G. In fact, a cut in a graph G is the

union of some edge-disjoint cut-sets of G. This is stated in the following

property.

Spanning trees property (4.5)

A cut in a connected graph G is a cut-set or union of edge-disjoint cut-sets of

G.

4.4.3 Fundamental cut-sets

This section shows how a spanning tree can be used to define a set of

fundamental cut-sets. Consider a spanning tree T of a connected graph G. Let

b be an edge ofT. Removal of the edge b from T disconnects T into exactly two

components TI and T2. Note that TI and T2 are trees of G. Let VI and V2 be

the nodes of TI and T2 respectively. Then VI and V2 contain all nodes of G.

Let Gland G 2 be, respectively, the induced sub-graphs of G on the

65

nodes set VI and V2. It can be seen that TI and T2 are, respectively, spanning

trees of Gland G 2' Hence, by property (4.2) Gland G 2 are connected. This

in turn, proves property (4.4) that the cut < VI' V2 > is a cut-set of G [70]. This

cut-set is known as the fundamental cut-set of G with respect to the edge b of

the spanning tree T of G. The set of all the n -1 fundamental cut-sets with

respect to the n -1 edges of a spanning tree T of a connected graph G is known

as the fundamental set of cut-sets of G with respect to the spanning tree T.

Note that the cut-set < VI' V2 > contains exactly one edge, namely, the edge b

of T. All other edges of < VI' V 2 > are belong to G T' This follows from the fact

that < VI' V2 > does not contain any edge of TI and T2 •

Further, the edge b is not present in any other fundamental cutest

with respect to T. Because of these properties, the edge set of the

fundamental cut-set can be expressed as the ring sum of the edge sets of

some or all of the remaining fundamental cut-sets. A graph G and a set of

fundamental cut-sets of G are shown in Figures 4.11a to 4.11d.

Figure 4.11a A network to

illustrate the fundamental cut-set

66

Figure 4.11b A spanning tree

Figure 4.11c The edge b is removed from the spanning tree

Figure 4.11d The cut-edges between the two cuts

4.4.4 The cut matrix

Define a cut matrix Q of m columns and c rows, where m is number of

edges of a graph G and c is the number of cutting edges in G. For example, let

A T given in Figure 4.12a be the transpose of the incidence matrix of the

graph given in Figure 4.12, and let the graph has three different cuts as

shown in Figures 4.12b, 4.12c and 4.12d.

Figure 4.12 A graph G=(5, 7)

67

nodes/edges e1 e2 e3 e4 es e6 e 7

Vi 1 1 0 0 0 0 0

AT =
v 2 -1 0 -1 1 0 0 0

V3 0 -1 1 0 1 1 0

v 4 0 0 0 -1 -1 0 -1

Vs 0 0 0 0 0 -1 1

Figure 4.12a A transpose of the incidence matrix of figure 4.12

68

Figure 4.12d Cut-3 = { e 2 , e 3 , e5 , e
6

}

Then, the cut matrix of the three cuts is

cut/edges e1 e 2 e 3 e4 e5 e 6 e 7

cut! 1 0 1 0 1 1 0
Q=

cut2 1 1 0 0 0 1 1

cut3 0 1 1 0 1 1 0

Figure 4.12fThe cut matrix

Each cut (or row) in Q can be expressed as a linear combination of the rows

(i.e. the nodes) of A T which represent the nodes of the induced sub-graph, i.e.

sum of the rows of nodes (in AT) of one sub-graph = (-) sum of the rows of

nodes (in AT) of the other sub-graph [69].

Property of cut matrix

Each cut (or row) in the cut matrix Q can be expressed in two ways, as

a linear combination of the nodes (i.e. the rows in AT) of one sub-graph or as

a linear combination of nodes of the other sub-graph with (-1) sign.

Example (4.2) Finding the cut-edges

Considering cut-I, this cut partitions G into two sub-graphs. The nodes of the

sub-graphs are

69

V2 = {V 2' V 4' V 5} .

To find the cut-edges between the two sub-graphs, add the rows

corresponding to the nodes of each sub-graph, i.e.

v 1 = row 1 = [l 1 0 0 0 0 0];

V 3 = row3 = [0 -1 1 0 1 1 0].

Adding the two rows gives cutl

cut! = v 1 + V 3 = [1 0 1 0 1 1 0].

Thus the cut edges between Vl and V2 are {e1 ,e3 ,eS 'v6 } as shown in Figure

4.12b. Considering the nodes of the second sub-graph i e S = {v v v} we , •. 2 2' 4' 5 ,

get the same result.

v 2 = row2 = [-1 0 -1 1 0 0 0];

V 4 = row4 = [0 0 0 -1 -1 0 -1];

v 5 = row5 = [0 0 0 0 0 -1 1];

cut! = -(v 2 + V 4 + V 5) = [1 0 1 0 1 1 0].

4.4.5 The fundamental cut-sets matrix

Another important sub-matrix of Q is defined, namely Qf' It is known

that a spanning tree T defines a set of n-l fundamental cut-sets, one

fundamental cut-set for each branch of T. The sub-matrix of Q corresponding

to these n-l fundamental cut-sets is known as the fundamental cut-set matrix

Qf of G with respect to the spanning tree T. Qf has dimensions (n-l) x m; the

ith row of Qf is a linear combination of the nodes of the partitioned sub­

network. In the matrix Qf , an element +1 (-1) indicates branch direction from

(to) this sub-network.

The i th row of Qf carries the information:

1- the number of cut-edges in the network if the ith branch is cut from T.

2- the identification of all cutting edges in the network, from which the

boundary nodes can be obtained.

70

Example (4.3):

The fundamental cut-set matrix Qf of the graph of Figure 4.10 with respect

to the spanning tree T = {e1 , e2 , e6 , e7 } is given in Figure 4.13

e1 e2 e3 e4 e5 e6 e7

e1 1 0 1 -1 0 0 0

Qf= e2 0 1 -1 1 0 0 0

e6 0 0 0 1 1 1 0

e7 0 0 0 1 1 0 1

Figure 4.13 The fundamental cut-matrix

It is clear that the rank of Qf is n-1, the rank of Q [70]. Thus every cut-set (or

cut vector) can be expressed as linear combination of the fundamental cut-set.

The spanning tree partitioning technique partitions the spanning tree

into k sub-spanning trees by cutting (k-1) edges from T. It uses the sub­

spanning tree edges to find the nodes of the subsystem. Each cut-edge

determines one fundamental cut-set. This fundamental cut-set determines

exactly all connections, which are minimum, between the i th subsystem to all

other subsystems. The boundary nodes are the end-nodes of the cut-edges.

4.5 Balancing the edges of the k sub-spanning trees

The goal of partitioning a spanning tree is to cut the minimum number

of edges such that the total number of boundary nodes is minimum and to

have balanced internal nodes for the k sub-spanning trees. Since T, the

spanning tree has n nodes and exactly n - 1 edges, if T is partitioned into k

sub-spanning trees, the minimum number of cutting edges is exactly k-1

edges. Let msbtree-i and nsbtree-i be the number of edges and nodes, respectively,

in the i th sub-spanning tree. Then, the total number of nodes in the k sub­

spanning trees is:

n = n sbtree-l + n sbtree-2 + ... + n sbtree-k ; (4.3)

71

the number of edges of each sub-spanning tree is:

m -n -1' sbtree-i - sbtree-i , (4.4)

and the total number of edges of the k sub-spanning trees is:

m ktrees = msbtree-l + msbtree-2 + ... + msbtree-k • (4.5)

Substituting equation (4.4) into equation (4.5)

mktrees = (nsbtree-l -1) + (nsbtree-2 -1) + ... + (nsbtree-k -1);

It follows that

m ktrees = n - k . (4.6)

Each sub-spanning tree belongs to a subsystem. It is required by the DSE to

have balanced subsystems. Therefore, balancing the edges of the k sub­

spanning trees will balance the nodes of the k subsystems.

In general, when k-l edges are cut from a spanning tree, the resultant k sub­

spanning trees might be balanced, and they might be unbalanced. Since a

tree consists of nodes connected by edges with no loops, then the smallest

possible tree has one node without an edge, i.e. when a spanning tree is

partitioned into k sub-spanning trees, some of the sub-spanning trees might

have only one node. This case is not desirable.

It is required by the DSE to balance the internal nodes in the k sub-spanning

trees and find the minimum boundary nodes that is with respect to equation

(4.6). Equation (4.6) can be rewritten as:

(n - k) = msbtree-l + msbtree-2 + ... + msbtree-k (4.7)

Balancing the subsystems nodes is achieved by balancing the number of

edges of the k sub-spanning trees. The algorithm of balancing the edges of the

k sub-spanning trees is described below:

Since mktrees are the edges of the k parts, then, define mp to be the

edges of the one part.

(4.8)

72

where L J indicates rounding down to the nearest integer.

Let R be the remainder. Then

R = (n - k) - fip ;

and the range of R is:

O<R<k-l

(4.9)

(4.10)

This range of R determines exactly the number of possible balanced solutions,

by distributing R equally and increasingly, in turns.

If R=O, then the k sub-spanning trees are equal, i.e. there will be one solution.

fisbtree-i = fip for i = 1, ... , k; (4.11a)

and ifR > 0 then there will be R possible balanced solutions, as follows:

for i = 1, ... , k-R

fisbtree-i = fip + 1 for i = k-R+1, ... , k. (4.11b)

After determining the edges of the balanced k sub-spanning trees it is easy to

determine the nodes of each sub-spanning tree.

4.6 Classifying the spanning tree nodes

The partitioning technique classifies the nodes of the spanning tree,

according to their degrees, into three types, as follows:

If the degree of the i th node is one then the i th node is termed a bottom­

node. If the degree of the i th node is two then the i th node is termed a

branch-node. If the degree of the i th node is more than two then the i th node

is termed a junction-node. For example, Figure 4.14a is the IEEE 14-bus

network, with a spanning tree shown in Figure 4.14b.

73

Figure 4.14a

The IEEE-14 network

In the spannIng tree of Figure 4.14b, the nodes { v 2' V 5' V 7' V 13' V 14 } are

bottom nodes, the nodes {v l' V 6' V 8' V 9' V 10' V l2} are branch-nodes and the

nodes {v 3' V 4' V 11} are junction-nodes.

Figure 4.14b A spanning tree of the IEEE-14 network

74

4.7 The branches of a spanning tree

A branch B in a spanning tree is an open path, consisting of one or

more edges. Each branch in the spanning tree has two end-nodes. The two

end-nodes are either junction-nodes or one of them is a junction-node and the

other one is a bottom-node. The first end-node is termed VFirst' the first-node

and the other end-node is termed the v Last' the last-node.

The branch end-nodes are used to classify the branch. If the two end­

nodes of a branch are junction-nodes then the branch type is classified as BJ .

If the branch has different end-nodes, i.e. one junction-node and one bottom

node, then the branch type is classified as BB.

The length of a branch, L, is the number of edges between its two

end-nodes. The end-edges of a branch are termed the first-edge eFirst' and

the last-edge e Last ' The first-edge has the first-node and the last-edge has the

last-node. If the branch has one edge then the first-edge and the last-edge are

the same. If the branch has two edges then one edge is the first-edge and the

other is the last-edge.

Let B represents a branch with EB be the set of edges of the branch.

Let L be the length of B, and let v First be the first-node of B and v Last be the

last-node in B. Similarly let e First be the branch first-edge in B and let e Last be

the last-edge in B. The data that identifies the i th branch in the spanning tree

can then be written as follows:

(4.12)

For example, the data of the branches of the spanning tree in figure 4.14b are

shown in Table 4.1.

75

The i th
V First V Last Branch EB L.

1 eFirst eLast

branch Type

1 V 2 V3 BB {el' e2 } 2 el e2

2 V3 v4 BJ {e 4 } 1 e4 e4

3 Vs V 4 BB {e 3 } 1 e3 e3

4 v4 v7 BB {eS ,e6} 2 es e6

5 V3 V ll BJ {e lO } 1 elO elO

6 V ll V13 BB { e9, eg , e7, ell' e12 } 5 e7 e12

7 V ll v 14 BB {e 13 } 1 e13 e13

Table 4.1 The data of the branches of a spanning tree of the IEEE-14 network

Let the total length of a BJ branch be the length of the BJ branch

plus the lengths of all BB and BJ branches, from the junction-node of the BJ

branch, to the last bottom-node.

Let SiBB be the sum of the lengths of the BB branches at the junction-

node of B j •

Then SjBB = L BB-l + LBB-2 + (4.13)

Let SrBJ be the length of the rth BJ branch to the bottom-node.

Then SrBJ = L rBJ + SrBB . (4.14)

The total length of the B j branch may then be defined as:

(4.15)

For example, in Table 4.1, B2 is a BJ branch with L2 = 1. The junction-node,

v 4 , of B 2 has two BB branches B 3 and B 4' The length of B 3 is L3 = 1 and the

length of B4 is L4 = 2. Applying equation (4.13) gives the sum of lengths of

76

the BB branches at B 2 , i.e.

S 2BB = L BB-3 + L BB-4 = 1 + 2 = 3 .

Since there is no BJ branches at the junction-node, v 4' of B 2 , then L2BJ = 0

and equation (4.14) cannot be used, i.e.

S2BJ = O.

Thus the total length of B2 is obtained by using equation (4.15), i.e.

S 2 = L 2 + S 2BB + S 2BJ = 1 + 3 + 0 = 4

4.8 Overview of the spanning tree partitioning technique

The initial goal of the partitioning technique is to partition a spanning

tree, into k balanced sub-spanning trees. The final goal of the partitioning

technique is to partition the network into k subsystems such that the number

of internal nodes of the k subsystems is balanced, and the number of

boundary nodes in the network is balanced with the number of internal nodes

of the i th subsystem.

The technique begins by checking the network connectivity. If the network

has a spanning tree then the network is connected. The row reduction

method, as Sectioned 4.2.1, is then used to obtain a spanning tree T from A.

The number of edges in T is m t = n -1 edges.

The partitioning technique, instead of searching for the k-1 cut-edges,

finds one sub-spanning tree at a time and then cuts one edge. It terminates

when k sub-spanning trees are obtained. Thus, it cuts k-1 cut-edges from the

spanning tree.

The partitioning technique finds the sub-spanning trees by finding the

branches of the sub-spanning tree, such that the total length of the branches

of the sub-spanning tree is either ffip or ffip +1. Table 4.1 is used to find the

branches as explained in Section 4.9.

77

The partitioning technique is flexible in selecting the starting branch.

It starts looking for a BB branch with maximum length. If all the BB

branches have the same lengths, then the partitioning technique starts from

a BB branch with maximum length and with the first order in the table.

The parti tioning technique is designed as a general parti tioning

technique, i.e. to partition every spanning tree into k equal or balanced sub­

spanning trees and to cut only one edge. Thus, if the selected BB branch gives

a sub-spanning tree so that the technique has to cut more than one edge, then

the technique will select the next BB branch with maximum length or next in

order in the table.

The partitioning technique then proceeds to find the branches of the

first sub-spanning tree as explained in Section 4.9. After finding the first sub­

spanning tree the partitioning technique cuts only one edge. The end-nodes of

the cut-edge are boundary nodes, one boundary node belongs to the first sub­

spanning tree and the second boundary node belongs to the new sub-spanning

tree.

The technique then rearranges Table 4.1 by deleting the used

branches. Then it repeats the process of finding a new BB branch with

maximum length, then finding the branches of the new sub-spanning tree

and then cutting one edge.

The process terminates when k sub-spanning trees are obtained, i.e.

when the modified Table 4.1 is empty.

4.9 Finding the branches of a sub-spanning tree

A sub-spanning tree of ffip edges consists of one or more connected

branches. Finding the branches of a sub-spanning tree is based on finding the

first branch in each sub-spanning tree, and then by using its last-node, i.e.

the junction node, to find the BB and/or the BJ branches where their lengths

pI us the first branch length balance with ffi p . The first branch is a BB branch

with maximum length. The length of B1 , first branch, is LI edges. Three

cases are considered.

78

Case 1:

If ffip > L1 , then this sub-spanning tree has more than one branch. The

last-node of B1 is a junction-node. It may have BB branches or BJ branches

or both. If it has BB branches and the length of anyone of them is > ffi p ' then

this BB branch is a sub-spanning tree. Thus, starting from the bottom node of

this BB branch cut the (ffip + 1) th edge. If the lengths of the BB branches are <

ffip then the sum of the lengths of the BB branches is given by equation

(4.13):

SBB = L BB-1 + L BB-2 + ... ;

and the total length of the first branch is given by equation (4.15):

Sl = L1 + SBB;

If Sl > ffip then cutting any of those BB branches produces unconnected and

unbalanced sub-spanning trees, thus this spanning tree is rejected.

If Sl = ffi p , then B1 and the BB branches form a sub-spanning tree, thus the

other BJ branches must be cut.

If Sl < ffi p , then B1 and the BB branches are part of the sub-spanning tree,

and one or more BJ branches have to be added. Let B2 be a BJ branch that is

to be added, then:

Let S2 = Sl + L2, then S2 will be compared with respect to ffip as done with Sl'

Case 2:

If ffip < L1 then B1 is the first sub-spanning tree.

The (L1 +l)th edge is the cut-edge.

Case 3:

If ffip = Lp then branches at the junction of B1 may be of BB type or

BJ type or they may be of both types. There are two possible cases related to

the suitability of partitioning this spanning tree.

If the length of each BB branch is less than or equal to ffip then cutting

79

anyone of those BB branches gives unbalanced sub-spanning trees. Thus this

spanning tree is not suitable and partitioning terminates.

If the length of any of the BB branches is more than m , then the
p

partitioning technique will consider it the starting branch as in case 2.

If there are only BJ branches, then the Bl branch is the first sub­

spanning tree.

The first-edge of each BJ branch must be cut. This may and may not

give equal or balanced results.

Thus, the partitioning technique finds the branches of each sub­

spanning tree. The junction-node, at the end of each BJ branch, is used to

find the other branches (or the remaining edges).

The nodes of the first-edge are of different types. One of them is always

a bottom node and the other node is either a branch node or a junction node.

The bottom node is considered as v 1 and the other node is v 2 •

These steps of finding the branches of a sub-spanning tree are as follows:

1- Find from equation (4.8) m p , the number of edges of the sub-spanning

tree

2- Form the branches table as shown in Table 4.1.

3- From the branches table find B j with maximum length.

4- If L j > m p , then

a. Starting from the first-edge in B j cut the (mp + l)th edge.

b. Rearrange the table by deleting B j or by deleting (mp + 1) edges

from B j •

c. Go to step 3 to find a new sub-spanning tree

5- Find

a. n
BB

, the number ofBB branches at the junction of B j •

b. n
B
l' the number ofBJ branches at the junction of B j •

80

6- If L i < m p , then

a. Check the BB branches at the junction of Bi

b. If the length of any of the II BB branches is > m p , then starting

from the bottom-node of this BB branch cut the (mp + l)th edge.

Delete the (mp + 1) edges of the BB branch from the table.

Rearrange the table.

c. By using equation (4.13) find SBB' the sum of the lengths of the

remaining BB branches.

d. By using equation (4.15), find Si = Li + SBB'

e. If Si = mp and if llBJ = 1 then

A. Cut the first-edge of the BJ branch.

B. Delete the BJ, B i and the remaining BB branches from

the table.

C. Rearrange the table.

D. Go to 3.

f. If Si = mp and if llBJ > 1 then

A. Find the total lengths of each BJ branch to the bottom­

node, i.e. let S·1,S·2'···'S. be the total lengths of each of
1 1 IllBJ

the llBJ branches to its bottom-nodes.

B. If the total length of any BJ branch is less than mp then

terminate.

C. If the total length of every BJ branch is more than fi p ,

then cut the BJ branches from the first edge.

D. Rearrange the table.

E. Go to 3

g. If Si < mp then

A. Find the total lengths Sil,Si2"",SinBJ of each of llBI BJ

branches to the bottom-node.

B. Let S2h = Si + Sih for h = 1,2, ... , llBJ'

C. If S2h = mp for h = 1,2, ... ,n BP then cut the other BJ

81

branches from the first-edge.

D. Rearrange the table.

E. Go to 3.

7- If L j = mp then

a. If the length of any of BB branches is > mp , then the

partitioning technique will consider it Bj' the first branch with

maximum length equalling L j •

b. If any of BB branches has length < m p , then cutting any edge

gives unbalanced sub-spanning trees. Thus this spanning tree is

rejected.

c. If there are only BJ branches, then

A. Find the total lengths Sjl'Si2,···,Sjn BJ of each of n BJ BJ

branches to the bottom-nodes.

B. If the length of every BJ branch is > mp then cut the

first-edge of the BJ branches.

C. Rearrange the table.

D. Go to 3.

Example (4.4): Using the branches to partition the spanning tree

The IEEE 14-bus network shown in Figure 4.13 is to be partitioned

using the spanning tree given in Figure 4.14. The spanning tree has m t = 13

edges.

Let k = 2.

The number of cut edges = k-1 = l.

Each sub-spanning tree has mp = 6 edges.

The partitioning technique starts by finding the branches with maximum

length. From Table 4.1, B6 has the maximum length, L6 = 5. Since L6 < mp

then check the branches at the junction of B 6 • The junction-node of B 6 is v 11 •

82

The junction-node has one BB branch and one BJ branch, i.e. nss = 1 and

nS] = 1. From Table 4.1, the BB branch is B7 , and the BJ branch is B5 •

The BB branch is B7 , and L7 = 1 < m p , then Sss = 1.

which indicates that the first-edge of the B5 branch must be cut. Since B5

has only one edge then B5 will be deleted from the table. The first sub-

spanning tree consists of the two branches B 6 and B 7 •

The edges of the second sub-spanning tree = {e7 , e g , e 9, ell' e 12 , e 13 }.

The nodes of the first sub-spanning tree

= {v g, V 9' V 10' V 11 ' V 12' V 13' V 14 } •

Rearranging Table 4.1, after deleting B5 , B6 and B7 , gives Table 4.2.

Thei th
v First V Last Branch EB L.

1
e First e Last

branch Type

1 V 2 V 4 BB {ep e 2,e4 } 3 e l e 4

3 V 4 V5 BB {e 3 } 1 e 3 e 3

4 V 4 V 7 BB {e5,e6 } 2 e 5 e 6

Table 4.2 Modification of Table 4.1; k=2.

From Table 4.2 BI has the maXImum length, LI = 3. There are two BB

branches at the junction-node of B1 • Those are B3 and B 4 • Thus

The edges of the second sub-spanning tree = {el' e 2, e 3, e 4' e 5 , e 6 }.

The nodes of the first sub-spanning tree = the nodes of the first subsystem =

83

Having found the nodes of each subsystem, the property of the cut matrix as

given by example (4.2) is used to find the cut-edges between the two

subsystems.

VI = { VI' V 2' V 3 ' V 4' V 5 ' V 6' V 7 } •

V 2 = {V 8' V 9' V 10' VII' V 12' V 13' V 14 } •

From A, the sum of the nodes columns of VI = {V l' V 2' V 3' V 4' V 5' V 6' V 7} gives the

following cut-edges= {elO' eI4 ' eI5 } .

The end nodes of the cut edges are the boundary nodes {v 3' V 4' V 6' V 8' VII} ;

The number of boundary nodes is nb = 5;

The internal nodes in each subsystem are obtained by deleting the boundary

nodes from the subsystem nodes, i.e. the internal nodes of VI = {v l' V 2' V 5' V 7 } ;

The number of internal nodes in VI is n ir = 4;

Since the difference between the internal nodes of the k=2 subsystems is 1,

the internal nodes of the two subsystems are balanced. Since the number of

boundary nodes equals the number of internal nodes of the second subsystem,

the boundary nodes are balanced with the internal nodes.

Example 4.5: Using the spanning tree branches to partition the IEEE-14

network for k=3: as for Example 4.4, but with k = 3.

The number of cut edges k = k -1 = 3 -1 = 2 edges;

f
14 -3l From equation (4.8), ffip = 3 = 3; and R = 2;

Thus the k sub-spanning tree edges are {3, 4, 4} .

From Table 4.1, B6 has the maximum length.

84

Since L6 > mp = 3,

and

then the first sub-spanning tree has mp_1 = mp + 1 = 4 edges from B 6 .

SBB = 0 ;

The edges of the first sub-spanning tree are E SPS-1 = {e8 , e 7 ' ell ' e 12 } .

The nodes of the first sub-spanning tree are VSPS-1 = { V 8' V 9' V 10' V 12' V 13 } .

Since (mp_1 + 1) = 5, the 5 th edge of B6 , namely e
9

, is a cut-edge.

The cut-edges between the first subsystem and the other subsystems are

obtained by adding the nodes columns in A, i.e.

The cut-edges = {e lO , e 14 , e 1S ' e 17 , e 18 , e 19 } •

deleted from Table 4.1. The updated table is shown in Table 4.3.

The i th
v First V Last Branch EB L.

1 qFirst qLast

branch Type

1 v 2 V3 BB {el'e2 } 2 e 1 e 2

2 V3 v 4 BJ {e 4 } 1 e 4 e 4

3 V 4 Vs BB {e3 } 1 e 3 e 3

4 v 4 v 7 BB {eS,e6 } 2 e s e 6

5 V3 V 14 BB {e lO , e 13 } 2 e lO e 13

Table 4.3 Modification (1) of Table 4.1; k=3.

From Table 4.3, the first branch is B1 , with L1 = 2. The junction-node, v 3' of

Bl has one BB branch, B s ' and one BJ branch, B2 • Then, n BB = 1 and TI B] = 1.

First, the technique considers the BB branch B s :

85

Since SI = mp + 1 = 3 + 1 = 4; and since n BJ = 1 then the branches in Sl' i.e. B1

and B s ' represent the second sub-spanning tree.

The edges of the second sub-spanning tree are E SPS-
2

= {e1' e
2

, e
lO

, e13 } .

The nodes of the second sub-spanning tree are VSPS-2 = {v l' V 2' V 3' VIP V 14 } .

Thus B 2 , the BJ branch is cut from the first-edge, i.e. e4 •

The cut-edges = {e4,eS,e6,e13,e18,e19}.

From the cut-edges, the boundary nodes are = {v 3' V 4 } .

Note that B2 has one edge only, the cut-edge e4 •

Table 4.3 may now be rearranged by deleting B1 , Bs and the cut-edge e4 ,

which is B 2 • The result is shown in Table 4.4.

Thei th
v First V Last Branch EB L.

1 qFirst qLast

branch Type

3 V4 Vs BB {e3} 1 e3 e3

4 V4 V 7 BB {eS,e6} 2 es e6

Table 4.4 Modification (2) of Table 4.1; k=3.

The technique proceeds looking for the third sub-spanning tree, starting from

B4, which has the maximum length, L4 = 2. At the junction node v 4' of B4

there is only one BB branch, i.e. B3 •

Thus

S3 = L3 + S3BB = 2 + 1 = 3;

Since S3 = mp = 3, then the branches in S3 represent the third sub-spanning

tree.

The edges of the third sub-spanning tree are ESPS-3 = {e3, e s ' e6} .

86

The nodes of the third sub-spanning tree are VSPS-3 = {v 4' V 5' V 6' V 7 } .

The cut-edges = {e4,e5,e6,elO,eI5}'

This completes the partitioning procedure.

4.10 Simulation results

The spanning tree partitioning technique has been applied to partition

several networks including the standard IEEE-14, IEEE-30 and IEEE-57

networks given in Appendix C. The source code of the partitioning technique

was written in Matlab.

The spanning tree partitioning technique partitions the spanning tree

of the IEEE 14-bus into equal or balanced k sub-spanning trees, following

which the sets of boundary nodes and internal nodes in each subsystem are

identified. The results are checked for satisfaction of the DSE constraints, i.e.

equal or balanced cases. If the results are satisfied with the DSE constraints,

then the results are saved, and the method continues with k increased by 1. If

the results do not satisfy the DSE constraints, the procedure terminates.

Tables 4.5-4.7 show the results of balanced partitioning spanning trees

of the IEEE 14-bus, the IEEE 30-bus and the IEEE 57-bus.

k Number fip Number llb Vb ll· IT
V.

IT

of cut- of cut-

edges In edges In

T G

2 1 6 3 5 3,4,6,8,11 llIr = 4; VIr = {1,2,5,7} ;

ll2r = 5 V 2r = {9,10,12,

13,14}

Table 4.5 The results of balanced partitioning the IEEE 14-bus

87

k Number ffip Number nb Vb nir Vir

of cut- of cut-

edges in edges in

T G

2 1 14 4 7 4,6,9,10, n ir = 12 ; VIr = {1,2,3,5,7 ,8,
,

12,24,25 n 2r = 11
11,26,27,28,29,30}

V 2r = {13,14,15,

16,17,18,19,20,21,

22,23}

Table 4.6 The results of balanced partitioning the IEEE 30-bus

k Number ffip_i Number nb Vb n· IT Vir

of cut- of cut-

edges in edges in

T G

2 1 27' , 8 14 7,9,19,20, n ir = 21; VIr = {1,2,3,4,5,

28 29,38,41, n 2r = 22
6,8,10,11,12,13,

42,44,45,
14,15,16,17,18,

43,46,47,50,51}
48,49,55,

56
V 2r = {21,22,23,

24,25,26,27,28,

30,31,32,33,34,

35,36,37,39,40,

52,53,54,57}

Table 4.7 The results of balanced partitioning the IEEE 57-bus

88

4.11 Performance evaluation

The network partitioning process principally involves a search for the

minimum number of cut-edges among the network edges. The decision

making process is used to evaluate whether the number of boundary nodes,

which are the end-nodes of the cut-edges, is equal or balanced with the

number of internal subsystem nodes.

U sing the spanning tree parti tioning technique to parti tion the

network reduces the search-time and reduces the number of decision-making

operations drastically.

The technique starts by constructing the branches table as Table 4.1.

The number of operations to find the length of the i th branch is O(L j), and

since the total length of all branches is fit' then the total number of

operations to find all branches is O(fi t) •

The partitioning technique then uses the data in the table to find the

starting branch, i.e. a branch with maximum length. One comparison

operation, to the lengths of the branches, is sufficient to find such a branch.

In the partitioning technique, the decision-making process is a

mathematical addition operation and a comparison operation. First, the sum

of the lengths of branches of one direction is obtained, and compared with fi p ,

the edges of a sub-spanning tree. The decision is taken only at junction-nodes.

Thus the technique replaces the wide range searching process with a

few steps of decision-making. The number of the decision-making steps is

related to number of junction-nodes in the spanning tree.

The technique evaluates the suitability of the obtained spanning tree.

If the obtained spanning tree is suitable it terminates when k balanced sub­

spanning trees are obtained, otherwise it terminates without partitioning the

spanning tree.

The check of the obtained k subsystems for meeting the DSE

requirements also involves a matrix addition operation and comparison

89

operation. When the matrix addition operation is performed on the D j nodes

columns from A, the result is the cut-edges between the i th subsystem and the

other subsystems. For one subsystem, the matrix addition operation,

maximally, takes O(E. -1). Thus for the k parallel subsystems it takes the
k

same number of operations as for the one subsystem. Then, O(2k) set

operations are used to obtain the boundary nodes and the internal nodes of

each subsystem. Balanced partitioning is obtained by comparing the number

of internal nodes of the k subsystems with the boundary nodes. Thus, the

total number of operations taken by the partitioning technique is

D
0(--1+ 2k).

k

4.12 Limitations of the partitioning technique

Performance of the partitioning technique is limited by a number of factors.

Limitation 1:

For k partitions, the technique is designed to cut (k-1) edges in the spanning

tree. However, not every spanning tree can be partitioned into k balanced

sub-spanning trees. If more than (k-1) edges are cut from a spanning tree,

then there are more than k sub-spanning trees. Thus, if the technique is

directed to cut more than (k -1) edges from the spanning tree, the procedure

will terminate and the spanning tree will be rejected as unsuitable.

Limitation 2:

A network has many spannIng trees. To overcome limitation 1, another

spanning tree has to be obtained. As described so far, the technique obtains a

spanning tree by using the row reduction method. To obtain another

spanning tree the network incidence matrix needs to be permutated. The cost

of permutation is undesirable. In an attempt to overcome this difficulty,

alternative methods for obtaining a sequence of spanning trees have been

investigated. A further difficulty is that there is no guarantee that each of the

new spanning tree matrices will have the 'descending staircase' shape

90

described in Section (4.3.2). Thus, the partitioning technique needs to be

modified for use with a new spanning tree matrix.

Limitation 3:

The principal steps in the partitioning procedure described in this chapter

may be summarized as follows:

Step 1: Partitioning of the obtained spannIng tree into k balanced sub­

spanning trees.

Step 2: Finding the boundary nodes and the internal nodes of each

subsystem.

Step 3: The decision step. It checks whether the partitioned k subsystems

satisfy the DSE requirements or not.

Step 3 illustrates a disadvantage of this procedure, shared by other

partitioning techniques such as those described in Chapter 3, when applied to

the DSE problem. The constraints which apply due to DSE are not

incorporated into the partitioning algorithm; the decision on suitability of the

result for DSE is made only at the very last moment in the procedure. If the

result is unsuitable, much computational effort has been expended for little

return.

These limitations lead to a revised approach of partitioning the

network, in which the objective is to seek a substantial reduction in the

computational effort required: (i) to generate new spanning trees; and (ii) to

obtain a balanced partition of a network whilst meeting the DSE constraints.

Emphasis is to be placed on identification of the sets of boundary nodes and

the k-balanced internal nodes much earlier in the overall procedure. This

aspect is addressed in Chapter 5. Generation of new spanning trees and the

revised partitioning procedure are investigated in Chapter 6.

4.13 Chapter review

In this chapter, a new and computationally efficient technique for

partitioning a spanning tree has been developed to satisfy the DSE

91

requirements, i.e. to balance the total number of boundary nodes from the k

subsystems with the number of subsystem internal nodes.

The partitioning technique described in this chapter is suitable for

application to networks of general configuration and size. The technique is

based on using the spanning tree properties rather than a purely heuristic

procedure. It uses the spanning tree branches to find the connected k sub­

spanning trees by cutting k-1 edges. The partitioning technique is designed to

obtain balanced sub-spanning trees only, where 'balance' is in the sense of

equal, or near-equal, numbers of edges in the sub-spanning trees.

The network has many different spannIng trees. Partitioning a

spanning tree of a network is sensitive to the obtained spanning tree. Some of

the partitioned spanning trees may give balanced k sub-spanning trees and

others may not give balanced sub-spanning trees. Some of the balanced k sub­

spanning trees may satisfy the DSE requirements and others may not satisfy

the DSE requirements.

The partitioning technique is fast and flexible in selecting the starting

branch, i.e. it uses a table such as Table 4.1 to find the i th branch that has the

maximum length to start every new sub-spanning tree.

Once the k sub-spanning trees are obtained, the technique uses a fast

operation to find the boundary nodes between the k subsystems, namely a

matrix addition operation. Then the internal nodes of the k subsystems are

obtained. Finally, the technique uses a single comparison operation to test

the suitability of the k subsystems for DSE.

The performance of the technique has been tested on several IEEE

networks. Following the DSE check, if the obtained spanning tree is suitable,

then the result is accepted; if the obtained spanning tree is not suitable, the

result is rejected. On successful completion of the procedure, a database

representation of the partitioned subsystems can then be used by a DSE

algorithm.

92

Chapter 5

The conditions of ideal balanced partitioning

5.1 General

Network partitioning, as stated in Chapter 1, is a conditional division

operation. The DSE restrictions defined in Chapter 2 introduce three

important constraints on the partitioning of a network. In this chapter, the

DSE restrictions are examined in further detail, formalized in a

mathematical form, and the conditions of ideal balanced partitioning are

introduced.

5.2 The partitioning restrictions of DSE

The decomposition of state estimation into two levels with parallel

computation at one level, introduced in chapter (2), introduces three

important restrictions on partitioning of a network. Firstly, partitioning the

network into k subsystems requires that: (i) every subsystem is defined by its

internal nodes and boundary nodes; (ii) no overlapping occurs between the

sub-system nodes; and (iii) all nodes in the global network are present in the

partitioned model. Secondly, in order that the k parallel processors compute

their tasks without unnecessary delay, their load should ideally be balanced

in size. Balancing the k parallel processors necessitates that the network

must be partitioned into k subsystems of identical sizes. Thirdly, determining

k that satisfies the decomposed SE is of great significance. If k=l (the global

case), all computations will be done in one processor at lower level; if k=n,

then all computations will be done in the upper level processor, since all

nodes are then of boundary type. Both cases are attended by the complexity

associated with the integrated state estimation problem, particularly for large

networks. The number of subsystems k has a direct relation with the

93

boundary nodes and an indirect relation with the internal nodes. In general,

as k increases the number of boundary nodes increases and the number of

internal nodes decreases. The SE requirements necessitate that the size of

computation at the upper level should be no greater than that at the lower

level. Accordingly, the best k is defined as that which minimizes the number

of subsystem internal nodes whilst providing balance between internal nodes

of all subsystems and the total number of boundary nodes. Thus, the task

incorporating the DSE restrictions can be summarized as follow:

1. Define the k subsystems by partitioning with no overlapping.

2. Balance the internal nodes of the k subsystems.

3. Balance the global boundary nodes with the internal nodes.

4. Seek the maximum value ofk such that balance can be maintained.

5.2.1 Defining the k subsystems

When the network is partitioned into k non-overlapping subsystems,

each subsystem is partly characterized by its nodes, nj in number. Whether

balance is present or not, the sum of nj across all values of i must equal n,

the total number of nodes in the network.

Let V be the set of network nodes with n elements. Then

(5.1)

Let Sj represent the subset of nodes of the i th subsystem and nj be the

number of elements of Sj. If k>l, then V is partitioned into k subsets of

nodes such that:

and

V = Sl EB S2 EB EB Sk;

which implies that

S. n S. = 0 for i, j = 1 : k and i :;t j .
1 J

94

(5.2)

(5.3)

Hence
k

n=L,ni.
i=l

(5.4)

Let the subset of nodes of the i th subsystem be classified into two subsets, the

subset of boundary nodes and the subset of internal nodes. Let Vib be the

subset of boundary nodes of the i th subsystem with nib the number of

elements of Vib . Let Vir be the subset of internal nodes in the i th subsystem

with n ir be the number of elements of Vir.

Then n· = n·b +n. I I Ir • (5.5)

Let Vb be the set of global boundary nodes in the network with nb be the

number of elements of Vb' then:

and
k

nb = L,n ib ;
i=l

(5.6)

(5.7)

Let Vr be the set of global internal nodes in the network with nr the

number of elements of Vr , then

and (5.8)

Thus, from equation (5.3) and equation (5.4), n, the network nodes, equals the

sum of global boundary nodes and the total number internal nodes in the

network, i.e.

(5.9)

5.2.2 Balancing the internal nodes

Two or more subsystems have balanced internal nodes if the

difference between them is no more than one. It is required by the DSE to

95

balance the internal nodes of the k subsystems. Ideal balancing is achieved

when

(5.10)

Let np be the number of internal nodes per partition, i.e.

(5.11)

where L J indicates rounding down to the nearest integer. If fk IS the

remainder,

(5.12)

and the range of f k is:

(5.13)

Let the allowable difference between the internal nodes of the k subsystems

to be one node, then

and

Then, if fk > 0, then balancing is achieved with

nir = n pI = np for i=l, ... , k-f k ;

and

n· = n = n + 1 for i = k - fk + 1, ... , k .
IT pu P

The set R of subsystems then consists of the disjoint subsets

R L : (k - f k) subsystems of size n pI ;

And

R u: f k subsystems of size n pu •

If fk = 0, then the balancing is achieved with

nir = n pI = np for i=l, ... , k.

The set R of subsystems then consists of the disjoint subsets

R= R L: k subsystems of size n pI = n p .

96

(5.14)

(5.15)

(5.16a)

(5.16b)

(5.17a)

(5.17b)

(5.18a)

(5.18b)

5.2.3 The balancing number of boundary nodes

It is required by the DSE to partition the network such that nb IS

balanced with n ir . The value of nb has a direct relationship with k, whilst the

value of nir has an indirect relationship with k. When k = 1, nb = 0 and

nir = n; (i.e. i = 1). As k increases, nb increases and nir decreases. As k

approaches n, n b approaches nand n ir a pproaches zero. Since, In a

connected network, each subsystem must contain at least one boundary node,

then the lower limit of nb is

(5.19)

An upper limit on nb is provided by the balancing requirements for the DSE,

l.e.

n b < n pI; f k = 0 .

Hence, the range of nb is given by:

k < n b < n pu; f k > 0 .

k < n b < n pI; f k = 0 .

5.2.4 The possible range of k

(5.20a)

(5.20b)

The lower limit of k is k = 2. Since the relation between nb and k is

direct, and since the DSE requires nb < nir , then equation (5.19) gives the

upper limit ofk, which balances nb and nir . Accordingly, equations (5.20) give

the range of k which balances the k nir's at the lower level, and balances

between the global boundary nodes at the upper level with nir at the lower

level. This range is

(5.21)

Having introduced the partitioning restrictions of the DSE, applying these

restrictions on the different connections a network may have is discussed in

Section (5.3).

97

5.3 The possible range of cut-edges

Since Vb = {VIb , V 2b ,···, Vkb } is the set of global boundary nodes of the

partitioned network, then let Eb be only the set of cut-edges between the

Vb nodes such that the removal of Eb disconnects the network into k

subsystems, and let mb be the number of elements of Eb • Note that the edges

between the boundary nodes of the i til subsystem are not cut-edges. For

example, Figure 5.1 shows the boundary nodes and the set of cut-edges for a

three subsystems partitioning. The set of cut-edges is Eb = {e2 , e3 , es , e6 , e7 } and

fib = 5. The edges el and e4 are not cut-edges.

Figure 5.1 The set of cut-edges between a three subsystems

A cut-edge is termed an independent cut-edge if its end-nodes are

not shared by any other cut-edges. For example, es ' in Figure 5.1, is an

independent cut-edge. Two or more cut-edges are termed dependent cut­

edges if they are shared by one or more boundary node. For example, in

Figure 5.1, e
2

, e
3

, e
6

and e7 are dependent cut-edges, they share VI' V 6 and

There is a relation between the number of cut-edges fib' the number of

98

boundary nodes nb and the number of subsystems k. The set of cut-edges may

be dependent, independent or combination of dependent and independent cut­

edges. The dependent set of cut-edges may form a cycle and they may not

form a cycle. The number of boundary nodes may be odd or even accordingly.

If the cut-edges are independent, then

(5.22)

If the cut-edges are dependent and they are not in a cycle, then they form a

tree, and the number of cut-edges between the nodes of Vb is

(5.23)

Let the cycle formed by the cut-edges only be termed the boundary-cycle

and let C b be the number of boundary cycles in network. If the cut-edges are

dependent and fib > n b , then the cut-edges are forming one boundary-cycle,

for which

(5.24)

and

(5.25)

In this case, the distribution of the cut-edges between the boundary nodes has

a direct relationship with k the number of subsystems, i.e.

if nb = k then njb = 1, thus fib = nb = k and Cb = 1;

if nb > k then njb > 1. If fib > nb then Cb > 1. In this case, the distribution of

the cut-edges between the set of boundary nodes Vb has a direct relationship

with the distribution of the Vb nodes between the k subsystems, i.e. the

number and distribution of the cut-edges depend on k and nib for i =1, 2, ... ,k.

For example, let nb = 6 , then

If k = 2 then n'b for i = 1, 2 can be one of the following combinations:
, 1

Casel: nIb = 1 and n 2b = 5;

Case2: nIb = 2 and n 2b = 4 ;

99

Case3: nIb = 3 and n 2b = 3.

Casel: nIb = 1 and n 2b = 5. The cut-edges are dependent, but they cannot form

a cycle, then

fib = nb -1 = 5.

Case2: nIb = 2 and n 2b = 4. Then from every boundary node in V
ib

there are

four cut-edges to the four nodes in V2b , one cut-edge to each node in V2b . Since

Vib has nIb = 2, then there are (nIb = 2) x (n 2b = 4) = 8 cut-edges, i.e.

Case3: nIb = 3 and n 2b = 3. Then from every boundary node in Vib there are

three cut-edges to the n 2b = 3 nodes in V2b , one cut-edge to each node in V2b .

Then the maximum possible number of cut-edges between the two

subsystems is:

Ifk=3, then nib for i = 1, 2 can be one of the following combinations:

Casel: nIb = 1 and n 2b = 1 n3b = 4 ;

Case2: nIb = 1 and n 2b = 2 n3b = 3 ;

Case3: nIb = 2 and n 2b = 2 n3b = 2 ;

Casel: nIb = 1 and n 2b = 1 n3b = 4.

Case2: nIb = 1 and n 2b = 2 n3b = 3 .

100

Case3: nIb = 2 and n 2b = 2 n3b = 2.

Then fib = (n Ib).(n 2b) + (n Ib).(n 3b) + (n 2b).(n 3b)

= (2).(2) + (2).(2) + (2).(2) = 12;

Let fib-max be the maximum number of cut edges between the nodes of Vb In

the k subsystems, then

fib-max = (n Ib).(n 2b) + (n Ib).(n 3b) + ... + (n Ib).(n kb)

+ (n 2b). (n 3b) + (n 2b). (n 4b) + ... + (n 2n). (n kb)
(5.26)

+ (n (k-I)b).(n kn)

This shows that, for a single value of n b , there may be different numbers of

cut-edges.

5.4 The partitioning restrictions and the network different

connections

One of the difficulties facing designing a general partitioning technique

IS that a network of m edges and n nodes has many different possible

connections. The m edges can be connected in many different ways between

the n nodes to form the network. When the different connections of a network

are partitioned into k to satisfy the DSE restrictions, some of the different

connections can give the balanced partitioning results, and many other

connections cannot give the balanced partitioning results.

Figure 5.2a A network

wi th 14 nodes and 20 edges

101

Figure 5.2b Another network

with 14 nodes and 20 edges

For example, Figure 5.2a is the IEEE 14-bus with m=20 edges and

with n=14 nodes. Figure 5.2b is another possible connection with m=20 edges

and with n=14 nodes. If those two different network connections are

partitioned into two parts, such that the number of internal nodes in the i th

part is equal or balanced with the number of the global boundary nodes, then

they may give the equal or balanced partitioning results and they may give

different partitioning results. For example the connection of Figure 5.2a gives

the balanced partitioning results. These results are nb = 5, n lr = 4 and

n 2r = 5. The connection of Figure 5.2b, however, cannot give balanced

partitioning results. The partitioning results of Figure 5.2b are nb = 6 and

nlr = n 2r = 4. It is also possible to obtain balanced partitioning results by

changing the end nodes of one or more edges.

There are few possible connections of G = (14, 20) other than Figure

5.2a that can give balanced partitioning results as Figure 5.2a, and there are

many other possible connections of G = (14, 20) that cannot give balanced

partitioning results as Figure 5.2b.

The possibility to know that a network connection can or cannot give

balanced partitioning results, prior to use of a partitioning technique,

remains an unsolvable problem for general network.

The concern here is on those connections, which can gIve equal or

balanced partitioning results. Those connections share common properties

between them.

The first property is related to the existence of the equal or balanced

partitioning values between the boundary nodes and the internal nodes in the

network, i.e. the nb value and the nir values for i=1,2, .. , k. The second

property is related to the existence of the exact number of cut-edges that

gives this number of boundary nodes in that network connection. The ideal

conditions of partitioning a network are discussed in Sections (5.5).

102

5.5 The conditions of ideal balanced partitioning

An ideal balanced partitioning of a network is a conditional

partitioning in which the number of global boundary nodes is balanced with

the number of internal nodes in the i th subsystem fori = 1,2, ... ,k.

Thus the ideal balanced partitioning conditions can be formulated as follows:

Condition 1: Let the conditional partitioning be termed equal partitioning

if

(1.1) nb = np;

(1.2) fk = 0, i.e. nir = np for i = 1,2, ... ,k.

Condition 2: Let the conditional partitioning be termed balanced

partitioning if the difference is one between nb and np' This has two cases:

Case 1:

(2.1) nb = npl ;

and the internal nodes of the k subsystems have the difference of one, i.e.

(2.2) fk > 0, i.e. nir = np = npl for i = 1,2, ... , j,

and n· = n + I = n for i = J' + 1, ... , k .
IT P pu

Case 2:

(3.1) nb =np +1;

and the internal nodes of the k subsystems are either equal, i.e.

(3.2) fk >0, i.e. nir =np =n pl for i=I,2, ... ,k

or they have only a difference of one, i.e.

(3.2) fk > 0, i.e. nir = np = npl for i = 1,2, ... , j ,

and n· = n + I = n for i = j + 1, ... , k .
IT P pu

103

In all cases, n is given by equation (5.9), i.e. II = llb + llr .

Applying these conditions for a global ideal balanced-partitioning gives

the following:

From condition (1.2), since llir = IIp for i = 1,2, ... , k, then llr = k.ll p.

Equation (5.9) can be written as follows: II r = II - llb .

Substituting condition (1.2) in equation (5.9) gives: k.ll p = II - llb .

Substituting condition (1.1), i.e. llb = IIp' and solving for llb:

Therefore the exact value of llb that satisfies condition 1 is given by

II
llb = .

k+l

The upper and lower limit of llb can be determined by equations (5.20a) and

(5.20b) according to the value of f k •

If f k = 0, k < II b < II pi .

If f k > 0, k < II b < II pu .

In all cases

II
llb <-­

k+l
(5.28)

Equation (5.28) gives the upper limit of llb' global boundary nodes in the

network, which is balanced with np the internal nodes of a partition. In

practice, llb is preferable to be llb < _ll_ for efficient computation. The global
k+l

boundary nodes, llb' is an integer number, and the result of dividing n by

(k+1) is not always an integer number, hence the division result is rounded

down to the lower integer l II J and rounded up to r II l the upper integer,
k+l k+l

giving the range ofn b , i.e.

(5.28a)

104

and

n - . r n l
bu - k + 1 '

And, in all cases,

(5.28b)

This theoretical nb will be equal or balanced with np the internal nodes

of the i th part. The following theorem establishes that the network set of

nodes possess the global balance property.

Having introduced the conditions for ideal balanced partitioning and

the possible range of cut-edges between the boundary nodes that gives this

ideal balanced partitioning, those conditions and the possible range of

number of the cut-edges are the bases of Theorem (5.1).

Theorem (5.1)

If a network G=(n, m) is partitioned into k parts, k>l, such that

n
(1) nb = >k

k+1

and

n-n
(2)n p = b>k-1,

k

then

(1) nb = np or nb - np .

Also, if cb = 0, i.e. the cut-edges only do not form a cycle, then the range of the

number of cut edges is

(2) r n; 1 < fib < (nb -1) ,

and if Cb > 0, i.e. the cut-edges only form at least one cycle, then the range of

the number of the cute-edges is

Proof:

105

Let the network set of nodes be given as described in Section (5.2.1), i.e.

(5.1)

Let V be partitioned into k>l subsystems, as described in Section (5.2.1), i.e.

V = {S1' S2'··· , Sk } , (5.2)

(5.3)

Let n, the network nodes be classified and defined as described in section

(5.2.1), i.e.

k

nb = Lnib .
i=l

(5.4)

(5.5)

(5.7)

(5.8)

(5.9)

Let np be the number of internal nodes per subsystem as defined in Section

5.2.2, i.e.

O<fk <k-l.

Let n p1 and npu are as defined in Section 5.2.2

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

The proof consists of establishing firstly, necessary conditions then sufficient

conditions. The necessary conditions consists of determining firstly the values

of nb and n p • Then determining the balance between nb and n p •

The first necessary condition is to determine the balanced value of nb:

106

if nb = n = k, then each subsystem has exactly one boundary node;
k+l

if nb = n > k, then each subsystem has at least one boundary node.
k+l

The second necessary condition is to determine the value of np by dividing

the global internal nodes, nr = n - nb, between the k subsystems such that:

(1) The number of internal nodes in each subsystem is equal or greater

than (k-1); and

(2) The k subsystems internal nodes are equal or balanced.

Case 1:

If nb = k, the balanced partitioning is achieved only if np = n pl = l n ~nb J = k -1;

and the equal partitioning is achieved only if np = npu = l n ~nb J = k.

Case 2:

If n > k then the balanced value of n is achieved only if one of the following b , p

two cases occurs.

Case 1: fk > 0, then

n;c = n pl = l n ~nb J> k for i = 1: k - fk; (5.16a)

and

n. = n = n + 1 for i = k - fk + 1 : k ;
IT pu P

(5.16b)

Then the set R of subsystems then consists of the disjoint subsets

R L : (k - f k) subsystems of size n pI ; (5.1 7 a)

And

R u: f k subsystems of size n pu •
(5.17b),

Case 2: fk = 0, then equal partitioning is achieved with

107

n· = n I = n for i = 1 : k ,.
If P P

and

R= R L: k subsystems of size n I = n . p p (5.18)

and

Now, the necessary conditions for global balance between the boundary nodes

and the internal nodes can be formulated as follows:

Then by substituting in the network nodes defined by equation (5.9), i.e.

and solving for n b ,

Then,

n
n =--

b k +1 .

The upper limit on nb is given by equation (5.20) to satisfy the balancing

requirements for the DSE, i.e.

n b < n pI; f k = 0 .

Thus

< n nb - .
k+1

The sufficient conditions:

The sufficient conditions are combination of two parts: the number of

cut-edges between the boundary nodes, and the dependent and independent

relationships between those cut-edges.

It is suffice to know that:

if the cut-edges are independent, then Cb = 0,

108

and
m =r~l' b 2'

and if the cut-edges are dependent and C b = 0, then the cut-edges form a tree

and mb = llb -1 .

If the cut-edges are dependent or mixed of dependent and independent and

Cb > 0, then

llb < mb < mb-max ; where mb-max is defined in equation (5.27)

•
if the number of cut edges is more than II b then Cb > 1.

5.6 Theoretical balanced partitioning results

The theoretical partitioning balanced values, i.e. llb and lllr,ll2r, ... ,n kr

that satisfy the DSE restrictions for any network can be obtained by applying

theorem (5.1). For example, the theoretical balanced partitioning values for

the IEEE-14 network are calculated for k=2 and for k=3.

5.6.1 Theoretical balanced results for k=2

The IEEE-14 has n = 14. Let k = 2, then

1. Calculating the theoretical nb is done by equation (5.28), i.e.

fib =lk:lJ
Substituting n=14 and k=2 gives the following result

II =l~J=4' b 2 + 1 '

then

109

2. Calculating the internal nodes is done by equation (5.9), i.e.

2.1 Case llbl = llb = 4, substituting the values ofn and nb, gives

the following:

nr = 14 - 4 = 10, internal nodes.

The number of internal nodes in each subsystem is given

by equation (5.11), i.e.

Substituting the values gives the following:

np =ll~ J=s; and fk =0.
Thus

This theoretical nb = 4 is the minimum value which provides balance between

the two levels, i.e. the global boundary nodes at the upper level and the equal

internal nodes of the k subsystem at the lower level as shown in Figure 5.3.

Figure 5.3 Theoretical results of partitioning the

IEEE-14 network when k=2 and nb = llbl = 4

2.2 Case llbu = llb + 1 = 5,

Substituting the values ofn and llb' gives the following:

The total internal nodes are nr = II - llbu = 14 - 5 = 9;

. d . . lllr J 19 J 4' The number of Internal no es per partItIon IIp = k = "2 = ,

fk = 9-2x4=1.

110

Therefore n Ir = 4 and n 2r = 5, as shown in Figure 5.4.

Figure 5.4 Theoretical results of partitioning the

IEEE-14 network when k=2 and nb = n bu = 5

These partitioning values k, nb and nir for i=1,2, satisfy the DSE restrictions.

5.6.2 Theoretical balanced results for k=3

Let k = 3, then

1. The theoretical nb is calculated by equation (5.28) for k=3, gives:

n b=l3
1
:1J=3; llbl =llb =3; llbu =llbl +1=4.

Case 1: nb = nbI = 3

n = n - n = 14 - 3 = 11 . r bI ,

n = l~J = 3· and f = 2·
p 3 ' k'

R L : 1 subsystem nIr = np = 3;

R u:2 subsystems nir = np + 1 = 4 ; for i=2,3

Figure 5.5 Theoretical results of partitioning the

IEEE-14 network when nb = nb] = 3

111

These theoretical partitioning values shown in Figure 5.5 satisfy the DSE

restrictions.

Case 2· nb = n = 4 . bu

n =n-n =14-4=10· r bu ,

fl. = ll~ J = 3; and fk = 1

R L: 1 subsystem nir = np = 3 ; for i=1,2

Ru: 2 subsystems nir = np + 1 = 4; for i=3.

Figure 5.6 Theoretical results of partitioning the

IEEE-14 network when nb = nbu = 4

These theoretical partitioning values shown in Figure 5.6 satisfy the DSE

restrictions.

5.7 Chapter review

The introduction of Theorem (5.1), the ideal balancing partitioning

theorem, defines and determines without using a partitioning technique, the

balanced partitioning values, i.e. nb, nir for i = 1, 2, ... , k and the range of fib.

The goal of the existing partitioning procedures is to find the balanced

partitioning values. The existing methods for finding these values are

heuristic, uncertain and time consuming.

Knowing the ideal balanced partitioning values, as described by

Theorem (5.1) changes the direction, i.e. the goal and the methodology, of the

112

partitioning techniques. These values are now known, thus the new goal of

the partitioning procedure is not to find these values but to check of the

existence of these values in the given network.

The goal of the partitioning procedure now is to use these values and to

decide whether the given network has these values or not and if the network

has these values which set of edges is the set of cut-edges which need to be

removed to give these ideal balanced partitioning values.

The progress towards these goals requires more understanding about

the natural network properties. Thus identification of the suitable cut-edges

and how to find them is postponed to Chapter 8 and more network properties

are introduced in Chapter 7.

Chapter 6 presents a new fast method for partitioning a network, i.e. to

obtain the ideal balanced partitioning values. The technique illustrates an

application of Theorem (5.1).

113

Chapter 6

A fast maximum degree technique

6.1 General

In this chapter, a new and fast partitioning technique is described to

find the balanced partitioning values, as defined by theorem (5.1), of a

directed network. The proposed partitioning technique finds first the global

boundary nodes then the internal nodes of the k subsystems.

The algorithm of the maximum degree partitioning technique is based

on finding two minimum covering sets of nodes with higher degree, one

covering set from the directed network and one covering set from a spanning

tree of the network. The intersection of the two sets gives a subset of nodes

termed the common nodes. The common nodes are connected in the network

and they are not always connected in the spanning tree. The set of common

nodes represents the minimum global boundary nodes in the network. The

connected subset of common nodes in the spanning tree represents the

minimum global boundary nodes in the spanning tree. The sets of edges

between the sets of common nodes in the network and in the spanning tree

are termed the set of common edges in the network and the set of common

edges in the spanning tree. Both sets of common edges contain the cut-edges

and contain edges that are not cut edges.

Cutting (k-1) edges from the common edges of the spannIng tree

partitions the spanning tree into k sub-spanning trees and guarantee that the

end-nodes of the cut-edges are from the boundary nodes of the spanning tree.

Each sub-spanning tree represents a subsystem. The nodes of each sub­

spanning tree consist of the internal nodes and the boundary nodes.

The equal or balanced partitioning is achieved by selecting (k-1) edges

from the common edges, which gives the most balanced k sub-spanning trees.

114

The range of selecting the set of cut edges is k or less. Mter finding the k sub­

spanning trees, the technique proceeds to find the remaining boundary nodes

for each subsystem from the eliminated edges, and then starts a new

spanning tree.

6.2 An overview of the maximum degree technique

Following the generation of a spanning tree, the method proceeds,

firstly with the partitioning of the spanning tree, and then with partitioning

of the network. The extent to which the result meets the objectives of

partitioning for DSE is therefore dependent on the choice of spanning tree.

The bulk of the computation involved lies in the generation of each spanning

tree. Even moderate sized networks are characterized by very large numbers

of possible spanning trees. A novel feature of the method to be described lies

in the very rapid generation of a high proportion of all possible spannIng

trees. The opportunity is then presented for selection of the resulting

network decomposition which best meets the objectives of partitioning for

DSE. In this sense, the method to be described is optimal.

The maXlmum degree technique is based on obtaining two coverIng

sets, one covering set from the network and one covering set from the

spannIng tree, such that the number of nodes in each covering set is

minimum and the nodal degree of each set is the highest. The nodes of each

subset contain connected and unconnected nodes. The unconnected nodes, in

each subset, are deleted from the subset. The remaining nodes in each subset

are connected and with maximum degree. The intersection of the two

remaining subsets gives a new subset of nodes with maximum degree. The

new subset represents the minimum boundary nodes for that spanning tree.

The set of edges between the minimum boundary nodes is termed common

edges. A spanning tree is partitioned into k sub-spanning trees by cutting (k-

1) edges from the spanning tree. The set of common edges consists of one or

more subsets of (k-l) edges. Each subset can partition the spanning tree into

k sub-spanning trees. The equal or balanced partitioning is achieved by

115

selecting one subset of the cut subsets, which gives the most balanced k sub­

spanning trees. The range of selecting the cut set of edges is k or less. After

finding the k sub-spanning trees, the technique proceeds to find the

remaining boundary nodes for each subsystem from the eliminated edges, and

then starts a new spanning tree.

The row reduction method, introduced in Section 4.3.1 is used to obtain

a spanning tree of the given network. Then a new method, described in

Section 6.4.1 is used to identify the network cycles. Following this, a

permutation of the edges of each cycle is used to derive all possible spanning

trees.

6.3 The number of spanning trees in a network

If the row reduction method, introduced in Section 4.3.1 is performed on the

incidence matrix A, then every elimination step has a meaning for the graph,

and, at the end of the elimination process, a graph without loops is produced.

This is a spanning tree for the directed network. Its edges span the graph,

and its rows span the row space of matrix A.

The number of cycles in a graph is c = m - n + 1 [64]. The value of c is

also the number of eliminated edges from the graph to obtain one spanning

tree [64], one edge from each cycle. Adding one of the eliminated edges (or

rows) to the spanning tree would close a loop. These facts are used to obtain

the network spanning trees. The standard IEEE-14 network shown in Figure

6.1 is used to illustrate these facts.

116

Figure 6.1 The IEEE 14 network

Any spanning tree is obtained by eliminating m-n+1 edges from the

network. Following elimination, the nodes degree structure is modified. When

an edge is eliminated, the degree of each of its node will reduce by one. If

more than one edge is eliminated from a node, then its degree will reduce by

the number of eliminated edges. Different spanning trees have different nodal

degree structures.

Since the rank of the incidence matrix A is (n-1) [64], the removal of

any column of A will give a (m x (n-1)) matrix B of the same rank [64]. B is

termed the reduced incidence matrix. The total number of spanning trees of

the network equals the determinant of matrix BTB [64]. In the case of the

IEEE 14-node network, this gives a total number of 3909 different possible

spanning trees.

117

6.4 The edge-edge connectivity matrix

Gaussian elimination takes 0 (n 3), [64], operations to obtain a

spanning tree. Different spanning trees may be obtained by permutating the

incidence matrix, and then by applying the elimination method.

An alternative, faster way to obtain all possible spanning trees is

introduced. The new method is based firstly on finding the network cycles

such that each cycle is defined by its edges. Secondly, deleting one edge from

each cycle such that no edge is repeated generates a spanning tree.

Repeatedly, changing one edge from the set of eliminated edges and then

deleting the set of eliminated edges from A generates a new spanning tree.

Obtaining the network cycles is described in Section 6.4.1, and generating not

only one spanning tree but also all possible spanning trees is described in

Section 6.4.2.

6.4.1 The network cycles

The cycle definition is introduced In Appendix A. The number of

independent cycles in the network is c = m - n + 1 cycles. To obtain one

spanning tree, c = m - n + 1 edges must be eliminated from the network, one

edge from each cycle. If, in the other side, the spanning tree of a network is

given and it is required to obtain the c cycles, then to obtain one cycle, one of

the eliminated edges must be added to the spanning tree. To obtain the c

cycles, the c eliminated edges, (i.e. the co-spanning tree edges) must be added

to the spanning tree. This fact, i.e. adding the c eliminated edges to the

spanning tree produces the c cycles, is used to obtain the network cycles.

The number of cycles, c, in a network may be very large, and obtaining

the edges of the c cycles manually is time consuming and not a practical

proposition. Thus a fast method to obtain the network cycles, i.e. the edges of

each cycle is described.

Let E be the (m x m) edge-edge connectivity matrix defined as follows:

E =AAT.

The elements of E may be obtained simply from logical operations. The

118

entries of E are:

2 if i = j ; 1 if the i th edge has a connection with the jth edge and

they have the same direction;

-1 if the ith edge has a connection with the jth edge but with

different

direction;

o if the ith edge has no connection with the jth edge.

Let S be the eliminated edges matrix of dimension (c x m) such that each row

is a zero row, apart from two (+1) elements, one at the i th eliminated edge and

one at the i th start-edge. The start-edge is a spanning tree edge having a

common node with the i th eliminated edge. For example, the edges e1 or e3 in

the spanning tree of Figure 6.2 can be a start edge with respect to the

eliminated

Figure 6.2 A spanning tree of the IEEE-14 network

edge e
2

• The network cycles can then be characterized by a matrix C, where

C=S.E.

This operation may be efficiently performed with exploitation of sparsity, in

119

which case multiplication takes 0 (4m) operations. For the IEEE 14-node

network, the network cycles matrix Cis:

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

c= 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

The non-zero elements in each row of C represent one cycle. The cycles are

given below:

Cyclel={ e1 ,e 2 ,e3 };

Cycle2={e 2 ,e 4 ,e5 };

Cycle3={ e 4' e6 , e7 };

Cycle4={ eg ,e9 , e15 };

6.4.2 Generating all spanning trees

Selecting one edge from each cycle, such that no edge is repeated,

generates a co-spanning tree. Deleting the co-spanning tree edges from the

incidence matrix, A, generates a spanning tree. For example, Figure 6.3 is a

co-spanning tree of the IEEE-14 network.

120

G

Figure 6.3. A co-spanning tree

The set of the eliminated edges is:

The corresponding spanning tree is shown in Figure 6.2. The set of edges of

the spanning tree is:

Changing anyone of the co-spanning tree edges without repetition gives a

new co-spanning tree; deleting the co-spanning tree edges from A generates a

new spanning tree. The generation of all possible spanning trees is given in

Flowchart 6.1.

121

i =i+1 No

nc=nc+l No

Read ith edge of cycle 1

X(i)=e il (cycle 1)

J=2

Read ith edge of cycle j

Y=e i "
J

j=j+1

Co-spanning tree=X

Deleting the cospanning
tree edges from A gives
a new spanning tree
T=A[X,:]=[]
Counter nsp=nsp+ 1

Flowchart 6.1 Generating a new spanning tree

122

Initialization
nc=m-n+1

i1 =i 2 = ... =i nc =1
X=[];

Number of edges in each cycle=nc i

i=l

6.5 The maximum nodal degree technique

A method is now described for automatic partitioning of firstly, a

spanning tree and secondly, the network from which it has been derived. The

technique is based on using the covering set principle to find the minimum

covering set of nodes, with highest degree in the network and in a spanning

tree of the network. Thus the technique is called the maximum nodal

technique. Starting from the identification of the node(s) with highest degree,

the network nodes are listed by degree in descending order. This list is then

searched to obtain a set of nodes, minimum in number but of highest degree,

which covers the network. The covering set is then used to partition the

network. The maximum nodal technique is illustrated in Flowchart 6.2 with

reference to the IEEE-14 network.

The covering set principle is introduced in Section 6.5.1. Then, an

algorithm to find the minimum covering set with highest nodal degree in a

network such as the IEEE-14 network is described in Section 6.5.2. The

algorithm of finding the minimum covering set with highest nodal degree in a

spanning tree of a network is described in Section 6.5.3. Finding the

minimum global boundary nodes in the network and the set of edges between

them is described in Sections 6.5.4 and 6.5.5.

6.5.1 The covering set principle

The set of nodes connected directly wi th a node v is termed the

neighbouring nodes of node v. In this case, node v is said to be the covering

node and the set of neighbouring nodes is termed the covered set of nodes.

Thus, the network covering set is a subset U of nodes such that all the

network nodes are covered, i.e. directly connected to the nodes in U. I U I
denotes the number of elements (i.e. nodes) in U. The network has more than

one covering set. A covering set is a minimum covering set if I U I ~ I U' I ,
where U'is

123

The incidence matrix A of the network

-"

Get U the covering set of the network Get T the spanning tree by using row reduction

....

Common nodes = B 1 = U n W

E={ set of common edges }={ set of
independent edges, set of dependent edges}
NE={ not common nodes}
Boundary nodes=B=B 1 - NE

An optimal cut set (ocs)=k-l edges;
Permutate E such that each set has k-l
independent edges, this gives the optimal
cut sets={ ocsl, ,ocsr}

Partitioning
for i=l:r

-"

sub-spanning trees=T[cosi,:]
subsystems(i)={nl, n2, ... , nbk}
subsystems boundary nodes (i)=nbl, ... ,nbk}
subsystems internal nodes(i)=nirl, ... ,nirk}

k

Total number of boundary nodes= L n hb

h=l

Check the balance of boundary nodes and
internal subsystem nodes
nexti

."

Balancing:
Minimum nbs= {nb 1 <nb2< ... <nbr }
for i=l:r
select the ith partition with minimum boundary
nodes and balanced internal nodes
nexti

Get W the covering set of T

Flowchart 6.2 Partitioning and Balancing

124

any coverIng set of G. In this case,

numberofG.

Figure 6.4

A network to illustrate

the covering set principle

For example, in Figure 6.4

Node a covers {b, d, e, f};

Node b covers {a, c};

Node c covers {b, d, e, f};

Node d covers {a, c, e};

Node e covers {d, c, a, f};

Node f covers {a, c, e}.

lUI .
IS termed the node covering

The set {a, c} covers {b, d, e, f} only, and it does not cover nodes a and c. Thus

the set {a, c} does not cover all the network nodes.

The set {a, c, f} covers {a, b, c, d, e, f}. Thus, the set {a, c, f} covers the network.

The following are different covering sets: set {a, c, e}, {a, c, e, f}, {b, d, e, f},

and {a, c, e}. Of these, {a, c, f} and {a, c, e} are the minimum covering sets;

thus, the node covering number is 3. Of those two sets, the set {a, c, e} has

maximum degree. Thus, the set {a, c, e} is the minimum covering set with

maximum degree.

6.5.2 An algorithm to find the minimum covering set in the

network

The maximum node degree technique is based on finding a subset of

125

nodes U with highest possible degree such that this subset U is a covering

set. Since the number of possible covering sets increases with network size,

the method used for computation of the minimum covering set is crucial to

the practical usefulness of such techniques. A new, fast algorithm for

computation of the minimum covering set is now described with reference to

the IEEE-14 network. Table (6.1) shows the IEEE-14 network nodes and the

degree of each node.

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Degree 2 4 4 5 2 3 1 4 2 2 4 2 3 2

Table 6.1 Node-degrees

Reorder table (6.1) in a descending order such that the node with maximum

degree is first and the node with minimum degree is last. Table (6.2)

represents table (6.1) after reordering.

Degree 5 4 4 4 4 3 3 2 2 2 2 2 2 1

v· 1
4 2 3 8 11 6 13 1 5 9 10 12 14 7

.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

Table 6.2 Ordered node-degrees

Let U. and y. be variable sets indexed by i, with U o=[] and Yo=[] (i.e. empty
1 1

sets) respectively. Xi is an i-indexed set of neighboring nodes (i.e. connected

directly by edges) associated with node Vi' U i and Yi are defined recursively

by:

U.=U· 1 UV.,·
1 1- 1

(6.1)

And

(6.2)

126

It is also necessary to define a test function qi' defined by

(6.3)

which is a set of elements in X. (v·) which are not in y ..
1 1 1

Flowchart 6.3 shows the algorithm of the maximum degree technique. The

following steps describe how the maximum degree algorithm searches for the

network minimum covering set, which has maximum degree, from Table 6.2:

Algorithm (6.1)

Let i=l, then

1- The algorithm starts by reading Vi and Xi (Vi)' the neighbouring nodes

of Vi' from Table 6.2.

2- Then it uses equation (6.2) to check that qi is not empty, i.e. if any of

the neighbours of viis not in Yi-1 •

3- If qi is empty, then the algorithm does not update Yi, and it does not

insert Vi into Vi.

4- If qi is not empty, the algorithm uses equation (6.2) to update Yi, and

it uses equation (6.1) to insert Vi into Vi' the covering set.

5- After updatingYi' the algorithm check if Yi equals V, the set of

network nodes.

6- If Yi = V the algorithm terminates, else the algorithm update, i, i.e.

i=i+1, and then repeat, the previous steps starting from step 1. At

termination lUi I = i.

127

Vj={Vl' ... ,Vn }

~
Y O=[]

u 0 =[];

j=l

•
Read v 1 and X 1 (v 1)

q . =setdiff((X . (v .) Y . 1)
J J J' J-

Yes

Y'=Y' 1 U X.(v·) J J- J J

u ,=U' 1 U v·
J J- J

j=j+l

Minimum covering set = U j

Flowchart 6.3. The minimum covering set algorithm

128

Table 6.3 shows the result of applying the maximum nodal algorithm

for the IEEE-14 network.

1 degree v· X. (v.) qi y. U. y. =V
1 1 1 1 1 1

1 5 4 2,3,5,6,8 [] 2,3,5,6, 4 No

8

2 4 2 1,3,4,5 1,4 1,2,3,4, 4,2 No

5,6,8

3 4 3 1,2,4,11 11 1,2,3,4, 4,2,3 No

5,6,8,11

4 4 8 4,6,9,12 9,12 1,2,3,4, 4,2,3,8 No

5,6,8,9,

11,12

5 4 11 3,10,13, 10,13, 1,2,3,4, 4,2,3,8,11 No

14 14 5,6,8,9,

10,11,12,

13,14

6 3 6 4,7,8 7 1,2,3,4, 4,2,3,8,11,6 Yes

5,6,7,8,

9,10,11,

12,13,14

Table 6.3 Searching sequence for the minimum covering set

Applying this algorithm to the IEEE-14 network gives the following

covering subset U={2,3,4,6,8,11}. Finding each node takes three set

129

operations. The maximum number of nodes the covering set may have in a

network is (nl2) [69]. This method is the first step in reducing the partitioning

problem size from n nodes to < nl2 It uses set operations to find the minimum

covering subset therefore it takes 0 (3n12) operations.

6.5.3 An algorithm to find the minimum covering set in the

spanning tree

Let W be the minimum covering set of nodes, with higher degrees, in

the spanning tree such that all the spanning tree nodes are covered. It is

possible to find W by using the maximum nodal algorithm given explained in

Section 6.5.2 and by using Flowchart 6.3. The steps of obtaining the minimum

covering set of the spanning tree of Figure 6.3 are similar to Algorithm (6.1).

Nodes with highest degree are selected first. If two nodes have the same

degree then the nodes order is used, i.e. the node with first order is selected

first.

The steps are shown in Table 6.4. For example, W of the spanning tree

of the IEEE-14 network shown in Figure 6.2, is:

W={1,3,4,6,8,9,11,14}

130

I degree v· X. (v.) qi y. W. y. =V 1 1 1 1 I 1

1 3 3 1,4,11 [] 1,4,11 3 No

2 3 4 3,5,6 3,5,6 1,3,4,5, 3,4 No

6,11

3 3 11 3,10,14 10,14 1,3,4,5, 3,4,11 No

6,10,11,

14

4 2 1 2,3 2 1,2,3,4,5, 1,3,4,11

6,10,11,

14

5 2 6 4,7 7 1,2,3,4,5, 1,3,4,6,11 No

6,7,10,11,

14

6 2 8 9,12 9,12 1,2,3,4, 1,3,4,6,8,11 No

5,6,7,9,

11,12,14

7 2 9 8,10 7 1,2,3,4, no

5,6,7,8,

9,10,11,

12,14

8 2 14 11,13 13 1,2,3,4,5, 1,3,4,6,8, Yes

6,7,8,9, 9,11,14

10,11,12,

13,14

Table 6.4 Finding the minimum covering set in the spanning tree.

131

6.5.4 Finding the boundary nodes and the cut-edges

The intersection of the two subsets U and W gives a new subset Bl

termed the common node subset, i.e.

Bl=U n w.
For example, from the IEEE-14 network

U ={2,3,4,6,8, II};

and from the spanning tree of Figure 6.2,

W={1,3,4,6,8,9,11,14}

Then the intersection of the two sets gives the common nodes:

B1={3,4,6,8,11} .

In the network, the nodes of B1 are always connected, and they are not

always connected in every spanning tree. The set of edges between the

common nodes in the network is termed EG-common' the set of common-edges.

The set of EG-common edges contains the cut-edges and it may contain edges or

branches other than the cut-edges.

Since cutting any branch or an edge of a branch results in at least one

new boundary node that is not in B1, then all branches in EG-common are not

cut-edges, thus they are deleted from EG-common' The following example

illustrates this step.

The set of E between the B1 nodes in the IEEE-14 network given in
G-common

Figure 6.1 is:

Thus, the B1 nodes are connected to each other, by an edge or by a branch:

Between node 3 and node 11 there is one edge, i.e. e14 ·

Between node 3 and node 4 there is one edge, i.e. e5 ·

Between node 4 and node 8 there is one edge, i.e. e15 •

132

Between node 4 and node 6 there is one edge, i.e. es .

Between node 6 and node 8 there is one edge, i.e. e
9

•

Between node 8 and node 11 there is one branch, i.e. {en, e12 , e
13

} •

Since the branch is not a cut-edge, then deleting the branch from EG-conunon

reduces EG-common to:

As a result of eliminating (m-n+1) edges from the network, the B1

nodes in the spanning tree are not always connected. The unconnected

nodes are deleted from Bl. The remaining nodes in B1 are connected. Let B

be the subset of connected nodes in B 1, and let the set of common edges

between the B nodes, in the spanning tree, is termed ET-common'

For example, B1={3,4,6,8,11},

The following nodes are connected to each other:

Between node 3 and node 4 there is one edge, i.e. es ;

Between node 3 and node 11 there is one edge, e14 ;

Between node 4 and node 6 there is one edge, i.e. e8 •

Between node 8 and node 11 there is one branch, i.e. {ell' e12 , e13 }.

Then the nodes ofB1 in the spanning tree of Figure 6.2 are connected.

Thus,

B=B1= {3, 4, 6, 8, II}.

And the edges between the B nodes are

ET-common ={ e14 ,e5 , es , {en, e12 , e13 }}.

The nodes of B are the global boundary nodes of the spanning tree of

Figure 6.2 Vb = B = B1={3,4,6,8,11} .

. They are connected to each other in the spanning tree, and their number is

133

minimum. The number of nodes of the set B is n b , the minimum number of

global boundary nodes. The value of nb in this case is Db = 5.

Deleting the branches from ET-common reduces ET-common to:

The edges of ET-common may be dependent or independent. For example, from

the spanning tree in Figure 6.2, the edges e5 and e14 are dependent and

nodes 3 is the boundary node between them. The edges e5 and es are

dependent and the boundary node between them is node 4. The edges e14 and

es are independent.

The number of cut-edges that partitions the spanning tree into k sub­

spanning trees is (k-l). Thus for k=2, then the number of cut-edges=l, and if

k=3, the number of cut edges equals 2. The maximum degree technique cuts

(k-1) edges from ET-common in turn until the balanced partitioning is achieved.

For example, for k=2, the number of cut-edges = 1. Then each one of the

ET-common edges will be cut in turn, i.e. e14 , e5 and es .

The value of n b, obtained by using the maximum degree method, is in

the acceptable range as defined by equation (5.22). This characteristic is used

to obtain the range ofk, which balances the k parts.

Since networks have different SIzes and topology, generating all their

spanning trees is not a practical solution. Therefore, Procedure 6.1, described

below, is to narrow the band of selecting the spanning tree, and to determine

n b and the range of k. The procedure is based on using the intersection of the

minimum covering set of the network and the minimum covering set of a

spanning tree as a threshold for the minimum global boundary nodes.

Procedure (6.1):

134

Initialization: k=2;

Compute U; The network minimum covering set.

5 Obtain a new T; A new spanning tree

Compute W; The spanning tree minimum covering set

nb=U n W;

If fk = 0, then compute the equal partitions

nir = np; for i = 1"" ,k;

elseif fk> 0, then compute the balanced partition

n· =n . for i=k-f+l .. · k' lr p' , , ,

end' ,

save (k, nb,nir ; for i =1, .. ·,k;);

k=k+l' ,

go to 10;

elseif nb > (np + 1)

Go to 5;

End.

6.5.5 Finding the k subsystems internal nodes

Cutting one of the cut-edges disconnects the spanning tree into two sub­

spanning trees.

The cut operation IS performed in the spannIng tree matrix T by

deleting the set of cut-edges from T (i.e. by setting the rows of the cut-edges

equal to zero). The resultant k sub-spanning trees are connected. The nodes of

each sub-spanning tree equal the union of the end-nodes of the edges of the

135

sub-spanning tree. The nodes of each sub-spanning tree represent a

subsystem. For example, if k=2, then the E - {e e e} WI·II be cut I·n
T-common - 14' 5' 8

turn.

Let Vb = {3,4,6,8,11}.

If e5 is cut, then

the end-nodes are

VI = { VI' V 2' V 3' V S' V 9' V 10' VII' V 12' V 13 ' V 14 } ;

V 1b = Vb nVI = {v3 ' VS ' Vll };

VIr is obtained by deleting V ib from VI' i.e.

and

Also V 2r is obtained by deleting V 2b from V 2 , then

V 2r = {v 5' V 7 }; and n 2r = IV 2r I = 2

The results of cutting e5 , (i.e. n ir = 7 , n 2r = 2 and nb = 5) are unbalanced

partitioning values. Thus e5 is not accepted by the maximum degree

technique as a cut-edge.

The maximum degree technique cuts the next edge in ET-common.

If e14 is cut, then

VI = { VI' V 2' V 3' V 4' V 5' V 6' V 7 } ;

V ib = Vb n VI = {v 3' V 4' V 6 } ;

Then VIr is obtained by deleting V ib from VI' then

and

136

V 2b = Vb n v 2 = {V 8' V 11 } ;

Also V2r is obtained by deleting V2b from V2, then

The results of cutting e14 , (i.e. nlr = 4, n 2r = 5 and nb = 5) are balanced

partitioning values. Thus e14 is accepted by the maximum degree technique

as a cut-edge.

After finding the balanced partitioning values, the maXImum partitioning

technique terminates.

6.6 Simulation Results

The maximum degree technique has been applied to partition the

spanning trees of the IEEE-14 network. The IEEE-14 network has 3909

different spanning trees. The technique finds the possible range of k and the

corresponding value of nb that satisfies the DSE restrictions. The technique

partitions the spanning trees by deleting (k-1) edges from the common edges

between the B nodes in each spanning tree. Once a spanning tree has been

partitioned for a given k, then nb the number of boundary nodes and n ir the

number of internal nodes, for i=1,2, ... ,k, are easily obtained. For each k, the

simulation results are compared with the theoretical balanced partitioning

values obtained in section 5.6.

Simulation results for k=2

Partitioning all the 3909 different spanning trees for k=2 gIves the

following results: Out of the 3909 spanning trees, 413 spanning trees gave

fib =4., 1304 spanning trees gave nb =5 and 1208 spanning trees gave nb =6.

The remaining spanning trees gave n b »6.

1. Case nb = 4

137

The topology of the IEEE-14 network is such that none of partitioned

spanning trees give nb = 4 with balanced internal nodes.

2. Case nb = 5

The maximum degree partitioning technique gave 1304 spanning trees that

gave nb = 5. Of the 1304 spanning trees, 514 spanning trees gave balanced

n ir for i=1,2 as shown in Figure 6.5.

Figure 6.5 Simulation balanced results

Comparing the simulation and the theoretical results

1. The simulation result of nb is nb =4. This simulation value, i.e. nb =4, is in

the acceptable range ofnb given by (5.17). It equals the theoretical result nbh .

2. The simulation values of nir for i=1,2 are balanced and they equal the

theoretical values.

3. Thus, These simulation results, i.e. nbu and nir for i=1,2, do satisfy the

DSE restrictions (5.16) and (5.28). Therefore, the balanced partitioning values

that satisfy the DSE restrictions exit in the IEEE 14-bus network for k=2 and

nb =5.

3. Case nb = 6

The next n b, in the simulation results, equals nb =6. The total number of

spanning trees, which gave this value, is 1208.

2. The simulation results, of the balanced and unbalanced subsystems

internal nodes, are shown in Figures 6.6a and 6.6b.

138

Figure 6.6a Figure 6.6b

The unbalanced results when nb =6

Comparing the simulation and the theoretical results

1. This value of n b = 6 is not in the theoretical range and it does not fulfill the

DSE restrictions (5.17).

2. Both internal nodes simulation results do not satisfy restrictions (5.11),

(5.12) and (5.17) of the DSE restrictions.

3. This nb does not satisfy the global balance restrictions of the DSE.

Therefore n b = 6 is not acceptable by the DSE.

All simulation results of nb > 6 do not satisfy restriction (5.14), therefore they

are not acceptable by the DSE.

6.7 Chapter review

The major conclusion in this chapter is the application of Theorem (5.1). It is

the forward step to simplify the network-partitioning problem. By using

Theorem (5.1) it is possible to know, without using any partitioning

technique, the balanced partitioning values of any given network for a given

k. It leads to further investigation of the network properties to find the

139

number of cut edges.

A network has many different covering sets of nodes. The algorithm of the

maximum degree partitioning technique gives a very fast way of finding the

minimum covering set in the network and in a spanning tree. The technique

can avoid the sensitivity of the spanning tree, i.e. the intersection of the

minimum covering set of the network with the minimum covering set of a

range of the network spanning trees gives the minimum global boundary

nodes that satisfy the DSE restrictions and the ideal balanced partitioning

conditions.

Using the network cycles and the set operations speeds up the process

of obtaining and partitioning different spanning trees.

140

Chapter 7

The edge state phenomenon

7.1 General

The concept of partitioning a network into small-sized sub-networks has

been introduced in Chapter 1. The partitioning techniques introduced in

Chapters 3 and 4 can be classified as heuristic methods to solve the partitioning

problem. To date, most of the partitioning techniques presented in the literature

have heuristic bases [13, 16, 22]. The reason behind using heuristic methods is

that the existing graph theory is not yet complete. Many of the graph properties

are not known.

For example, the traditional definition of a graph G=(V, E) of a network, is

that it consists of two sets: a finite set V of elements called nodes and a finite set

E of elements called edges. A pair of nodes terminates each edge. Only a few

natural relationships between V and E have been derived, for example the sum

of the degrees of all nodes equals twice the number of edges, and the relationship

between the number of cycles and the numbers of edges and nodes. Also many

important relationships have been derived to solve problems other than these

relating to the graph characteristics and relationships, such as the cut concept,

Hamiltonian Graphs, connectivity, matching and colouring.

Naturally, a connected network has n nodes connected by m edges. The

network may have cycles and it may not. A node, in the connected network, may

be of one degree or of two degrees or of more degrees. An edge, in the same

network, may be connected to a node of one degree or to a node of two degrees or

141

to a node of more degrees, and it may form, with other edges, a cycle and it may

not. This is the natural state of a network with its nodes, edges and cycles.

Knowing the natural state of the network and its nodes edges and cycles,

in graph theory, there are no relations that distinguish and specify between the

edges and the nodes as they exist naturally in the network. The non-availability

of these precise definitions and relationships are sufficient not only for using

heuristic methods to solve related problems, such as the network partitioning

problem, but also to classify it as NP-Hard [25].

Having stated that, in this chapter, a natural phenomenon that does exist

in every graph is introduced. The phenomenon is that if an edge is in a network,

in the two-dimensional plane, then the edge must belong to a zero cycle or one

cycle or two cycles. The phenomenon is also valid in the planer graph.

The phenomenon leads to a new approach of studying a graph of a

network and classifying its edges, nodes and cycles accordingly, and exploring

some of the natural laws and relationships which govern the graph. The

phenomenon will be named "The Edge State Phenomenon".

In this chapter, the new approach "The edge state phenomenon" is

introduced.

7.2 Types of network edges

When a network is partitioned into k sub-networks certain edges will be cut, the

remaining edges not being cut. A cut edge may belong to one cycle, or may be a

common edge between two cycles, or may not belong to a cycle. In this section, a

classification of the network edges is introduced.

In graph theory, an edge is defined as a line connecting two nodes. A node

with no edges is termed an isolated node and its degree equals zero. The degree

of a node with one edge is one, thus the node is termed a one-degree node. A

cycle is defined as the shortest closed loop (i.e. the closed-loop contains the least

number of edges) starting from a node and ending at the same node. Every cycle

has three edges or more. The network consists of those nodes and edges.

142

Accordingly, some of the network edges are connected to one-degree nodes, some

belong to one cycle only, some are between two cycles and others do not belong to

any cycle. This natural phenomenon is used to classify the network edges as

follows: If an edge is connected to a one-degree node, then it is termed a one­

degree edge. If an edge belongs to only one cycle, then it is termed an external

edge. If an edge is a common edge between two cycles, then it is termed an

internal edge. If an edge does not belong to any cycle and not connected to a one­

degree node, then it is termed a bridge edge.

Let Es be the set of one-degree edges in the network, and let ills be the

number of one-degree edges in E s ' i.e.

(7.1)

Let EI be the set of internal edges in the network, and let ill I be the

number of internal edges in E I , i.e.

(7.2)

Let Ex be the set of external edges in the network, and let illx be the

number of external edges in Ex , i.e.

(7.3)

Let EB be the set of bridge edges in the network, and let illB be the

number of bridge edges in EB , i.e.

(7.4)

The total number of edges in the network, m, can be written as the sum of the

four types, (7.1) to (7.4):

ill = ills + m I + mx + m B .

For example, in the network of Figure 7.1,

ills = ill! = m B = 1, and

illx = 8 , so that, for equation (7.5),

143

(7.5)

m=1+1+1+8=11.

Figure 7.1 A network to illustrate the edge types

7.3 Types of network nodes

Based on the classification of network edges, the network nodes can

similarly be classified into those four types or combinations of them.

7.3.1 General

If a node has only one type of edge then the node type is classified

according to the type. If a node has two types or more, then the node is classified

as a combination of these types. In Section 7.3.2 the combined nodes types

precedence in classification is explained.

A node mayor may not belong to a cycle. Ifit belongs to a cycle then the

node is either an external node or an internal node. If it does not belong to a

cycle the node is either a bridge node or a one-degree node.

If no external nodes exist then no internal nodes exist, but if external

nodes exist then it is not necessary that internal nodes should exist. Therefore

the external type has higher precedence than internal type. The same principle

is true with the bridge edges and the one-degree edges. Therefore, if a node has

the four types, then the external type always has highest precedence in ordering,

the bridge type next highest, then the internal type, and lastly the one-degree

type.

If the node does not belong to a cycle then the node is either a bridge node

or a one-degree node. The one-degree node always has one one-degree edge,

while the bridge node has at least two edges. The other end of the one-degree

144

edge can be connected to a bridge node, an internal node or an external node.

The other end of the bridge edge is always connected to an external node or a

bridge node but never to an internal node. Thus, in a network with cycles, the

external node has higher precedence than the bridge node. Since there is no edge

between the bridge node and the internal node and since both of them come after

the external node in the precedence order, then the bridge node and the internal

node both have the second order in precedence after the external node, then the

one-degree node.

The two edges are either two bridge edges, or one bridge edge and one

one-degree edge. Therefore, the bridge node can have a one-degree edge, but it

does not take an external edge or an internal edge. Therefore, the bridge type

precedes the one-degree type.

7.3.2 Node-type definitions

The following types of node are defined:

(i) S node:

A node is termed S node (or one-degree node) if

(1) It does not belong to a cycle,

(2) It has only one edge.

Let the set of S nodes be denoted Vs ' and let ns = IVsl be the number of elements

in Vs. In Figure 7.2 Vs = {v 2 , v12 }, and ns = 2.

Figure 7.2 To A network to illustrate the nodes types

145

(ii) B node:

A node is termed a B node (or a bridge node) if

(1) It does not belong to a cycle,

(2) Its degree is two or more,

(3) At least one of its edges is of a bridge type.

Let the set ofB nodes be denoted VB' and let llB = IVBI be the number of

elements in VB' In Figure 7.2 VB ={v 5 ,v ll },and llB =2.

(iii) I node:

A node is termed an I node (or internal node) if

(1) Its degree is more than one,

(2) The number of cycles it has equals its degree.

(3) All its edges are of internal type.

Let the set of I nodes be denoted VI' and let III = IVII be the number of elements

in VI' In Figure 7.2 VI = {v 7 }, and III = 1.

A node is termed an external node if all edges are external. Every external node

has an even number of external edges. If an external node has two external

edges, then it belongs to one cycle. If the external node has four edges, then it

belongs to two cycles; and so on. Therefore, an external node is classified

according to its degree and the number of cycles it belongs to. This leads to

definition (iv).

(iv) Xd node:

A node is termed an Xd node (or external node of degree d),

whered = 2,4,.··, if

(1) It belongs to d/2 cycles,

(2) Its degree equals d,

146

(3) The d edges are of external type,

Let the set of Xd nodes, for particular even values of d, be denoted V Xd , and let

n Xd = IVXdl be the number of elements in V Xd .

Define a set V XD of nodes as the union of the Xd sets for d = 2,4" ...

Then, V XD = {VX2 Ee V X4 Ee··· }, and let n XD = IVXDI = n X2 + n X4 +

Figure 7.3 A network to illustrate the Xd nodes

In Figure 7.3, the Xd sets are:

V X2 = { VI' V 3' V 7' V 8 }, with n X2 = 4 ,

V X4 = { V 4 } , with n X4 = 1 ,

and set VXD is:

V XD = {V X2' V X4 } = {v l' V 3' V 4' V 7' V 8 } , with

n XD =4+1=5.

Note that the number of cycles at an Xd node equals d/2.

In addition to Xd nodes, a network may contain nodes that have two or more

external edges, together with edges of other types. This gives rise to the need for

the following additional definitions:

(v) XdI node:

A node is termed an XdI node (or external-internal node of degree d)

where d = 2,4,,,,, if

(1) It belongs to more than one cycle,

147

(2) Its degree is greater than d,

(3) It has d external edges,

(4) It has at least one internal edge.

Let the set of XdI nodes, for particular even values of d, be denoted V XdI' and let

n XdI = IVXdII be the number of elements in VXdI .

Define a set V XDI of nodes as the union of the XdI sets for d = 2,4" ...

Then, V XDI = {V X2I EB V X4I EB··· }, and let n XDI = IV XDI I = n X2I + n X4I + ... + n XdI . In

Figure 7.3, the XdI sets are:

V X2I = { V 2' V 5' V 9} with n X2I = 3 ,

and the V XDI is

VXDI = {VX2I EBVX4I }= {v2, vs' v 6 , v 9 }, with

n XDI = 4.

(vi) XdB node:

A node is termed an XdB node (or external bridge node of degree d) where

d = 2 4 ... if , ,

(1) It belongs to dJ2 cycles,

(2) Its degree is greater than d

(3) It has d external edges.

(4) It has at least one bridge edge.

Let the set of XdB nodes, for particular value of d, be denoted V XdB' and let

nXdB = IVXdBl be the number of elements in

Define the set V XDB of nodes as the union of the XdB sets for d = 2,4,' ...

Then, VXDB = {VX2B EB VX4B EB···}, and let n XDB =IVXDBI =n X2B +n X4B +

In Figure 7.4 the set ofXdB nodes are:

V X2B = { V 7} with n X2B = 1 ,

148

V X4B = { V 8 } with n X4B = 1.

The set V XDB is

V XDB = {V X2B (f) V X4B } = {v 7' V 8} with

n XDB = 2.

Figure 7.4 A network to illustrate the XdB nodes

(vii) XdBI node:

A node is termed an XdBI if:

(1) It belongs to more than d/2 cycle,

(2) Its degree is greater than d,

(3) It has d external edges.

(4) It has at least one bridge edge and at least one internal edge

Let the set ofXdBI nodes, for a particular value of d, be denoted V XdBI ' and let

n XdBI = IVXdBII be the number of elements in V XdBI •

Define the set V XDBI of nodes as the union of the XdBI sets for d = 2,4" ...

Then, V XDBI = {V X2BI (f) V X4BI (f) ... }, and let n XDBI = IV XDBI I = n X2BI + n X4BI +

In Figure 7.4, the set ofXdBI is:

V X2BI = { V 6} with n X2BI = 1 .

The set ofXDBI nodes is

V XDBI = { V X2B1} = {v 6} with

149

n XDBI = 1.

7.3.3 The network node equation

Let V x represents the union of all sets of nodes having external nodes, and let

nx represent the total number of elements in VX • Since any node in Vx is a

member of one and one only of the sets {V XD ' V XDI' V XDB' V XDBI}' then

(7.6)

and nx = n XD + n XDI + n XDB + n XDBI ; (7.7)

Let V represents the union of all sets of nodes in the network, and let n

represent the total number of elements in V . Since any such node is a member of

one and one only of the sets {V x' VI ' VB' Vs}, then

(7.8)

and n, the total number of nodes in the network, is given by:

(7.9)

7.3.4 The network degree equation

The network degree equation, given in Appendix A.I, is the sum of the degree of

the network nodes, i.e.

n

Da = 2m = Ldegree(v i) (A.I)
i=l

Since the set V includes all the types as given in equation (7.8), and since the

elements of each type are not included in any other type then the degree of each

type can be defined as follows:

The degree of the external nodes is

150

Dx = 2mx = tdegree(vXi);

i=l

The degree of the internal nodes is

DI = 2mI = fdegree(v Ii);

i=l

The degree of the bridge nodes is

DB

DB = 2mB = Ldegree(vBJ;
i=!

The degree of the one-degree nodes is

DS

Ds = 2ms = Ldegree(vSi);

i=l

Thus

7.4 Types of network cycles

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

In this section, the definition and properties of network cycles are

reviewed.

7.4.1 A walk, a trail and a path

A walk, W, in a network ofm edges and n nodes, is a finite sequence of

nodes and edges VI' e1 ' v 2' e2 ,· .. , V k-l ,ek_1 , v k beginning and ending with a node

such that Vi and V i+1 are the end nodes of the edge ei , 1 <i < k. Note that in a

walk, edges and nodes can appear more than once. The length of a walk w, is the

number of edges in the walk. A walk is closed if VI = V k ; otherwise the walk is

open.

is an open walk, whereas the sequence

151

Figure 7.5 A network to illustrate the walk and the path

A walk is a trail if all its edges are distinct, i.e. each edge appears only

once in the walk. A walk is a path if all its nodes are distinct, i.e. each node

appears only once in the walk. A trail is termed Tr and a path is termed P. A

trail or a path may be open or closed.

The properties of a closed trail are:

(1) Its edges are distinct, but nodes are not necessarily distinct,

(2) A closed trail is a closed path if all its nodes except the end nodes are

distinct.

(3) One-degree nodes and edges do not exist in a closed trail,

(4) If a closed trail consists of only all external edges of a network, then

the closed trail is termed an external closed trail.

In Figure 7.5, the sequence vl'el' v2 ,e2 , v3 ,e4 , v6 ,e9 , v5 ,e5 , V3 is an open trail,

whereas the sequence vl'el' v2 ,e 2 , v3 ,e5 , v5 ,e3 , v2 ,e6 , v4 ,e7 , VI is a closed trail.

The properties of a closed path:

(1) All nodes and edges are distinct.

(2) The minimum length is three edges,

(3) The number of edges equals the number of nodes

152

(4) Every node has at least two edges,

(5) e 1e 2 .. ·ek+l and ek+1e k .. ·el denote the same path,

(6) One-degree nodes and bridge nodes do not exist in the closed path,

(7) One-degree edges and bridge edges do not exist in the closed path.

(8) If a closed path consists of all external edges in a network, then the

closed path is termed an external closed path.

(9) If a network has nodes of the following types {V Xd ' V Xdl ' V XdB V XdBI } for

d >2, then the external closed path cannot contain all external edges of

the network.

Let Vp be the set of nodes of a path P, and let IIp be the number of elements of

Vp. Let Ep be the set of edges of a path P, and let fip be the number of elements

of Ep.

If a path P is open then P is termed Po

(7.15)

and if the path P is closed, then P is termed Pc

llpc = fi pc · (7.16)

An example of an open path in Figure 7.5 is Po = {VI ,el , V 2 ,e2, V 3 ,e4 , V 6}·

The set of nodes of Po is Vpo = {vI' V 2 ' v3 ' V 4} and llpo = 4, and the set of edges of

Po is Epo = {ep e 2,e4 } and fipo = 3.

An example of a closed path is Pc = {v pel' V 2 ,e3, V 5 ,eg, V 4,e7 , V d .

The set of nodes of Pc is Vpc = {v I' V 2' V 4' V 5} and llpc = 4, and the set of edges of Pc

Remark (7.1):

153

If, in a network, the length of an external closed path equals the length of an

external closed trail, then EB = {<I>} and V XD = V XDI = {<I>} for d>2.

7.4.2 A cycle

The cycle definition is introduced in Appendix A. A cycle, in a network, is a

closed path with a minimum length. The cycle path starts and ends at the same

node, so that every edge and every node is counted once only. The length of a

cycle is defined as the number of edges. In a cycle, the number of edges equals

the number of nodes. The cycle is usually denoted eIe2 .. ·ek (instead of

Let V XCi = {v XCI' V XC2" • " V XCo
XCi

} be the set of external nodes of the i th cycle, and let

the number of elements of V XCi be:

n XCi = IVXCil·
(7.17)

Let V ICi = {v ICI' V IC2"", V IC0
1Ci

} be the set of internal nodes of the i th cycle, and let

the number of elements of V ICi be:

n ICi = IVICil·
(7.18)

Then the set of nodes of the i th cycle is:

VCi = {V XCi EB V ICi },
(7.19)

and, the number of elements of V Ci is:

(7.20)

Let E . = Je e ... e } be the set of external edges of the i th cycle, and let the
XCI ~ I' 2' 'rnXCi

number of elements of EXCi be:

m XCi = IExCi I·
(7.21)

154

Let E1ci = {el'e2,··,em[Ci} be the set of internal edges between the i th cycle and jth

cycles for j = 1,2, ... ,c and j"# i, and let the number of elements of E1Ci be defined

as follows:

c

ffi lCi = IE1Ci 1= L ffiIC(i,j) ;
j=l,
j*i

Then the set of edges of the i th cycle is:

ECi = {E XCi E9 EICJ;

and the total number of elements of ECi is:

(7.22)

(7.23)

(7.24)

Since the cycle is a closed path, i.e. it starts and ends at the same node, and

since the nodes of the closed path are distinct, then the edges of the closed path

are distinct. Each node in the closed path must have at least two distinct edges,

one out of the node, and one into the node. The out-edge, of the kth node, is an in­

edge of the following node (the first node) in the closed path, and the in-edge of

the kth node is an out-edge of the previous (k-l) node.

Therefore P, the closed path must have at least three nodes. Each node has two

distinct edges, and each edge has two distinct nodes. The three nodes have three

distinct edges. Thus a closed path with k nodes has k distinct edges. If the length

of the closed path is minimum, the closed path is a cycle, and thus the number of

edges of the cycle equals the number of nodes, i.e.

(7.25)

Remark (7.2):

If a network has n nodes and m edges and m = n, then it has one and only one

cycle.

155

7.4.3 Cycle types

The edges of a cycle may be:

(1) all external edges, or

(2) all internal edges, or

(3) a mix of external and internal edges.

If all edges of a cycle are external, then the cycle is termed an external cycle; if

all edges of a cycle are internal, then the cycle is termed an internal cycle; and

if the cycle edges consist of both external and internal edges then the cycle is

termed a mixed-cycle.

Let Cx be the number of external cycles in the network,

Let C
I

be the number of internal cycles in the network,

Let CXI be the number of mixed cycles in the network,

Then c the total number of cycles in the network can be written as:

C = C x + C I + C XI •

A cycle has the properties:

(1) Nodes and edges are distinct.

(2) Every node has at least two edges.

(3) The number of edges equals the number of nodes.

(4) The length of the cycle is minimum.

(5) {e}e2 .. ·ek } and {e2 .. ·eke!} denote the same cycle.

(7.26)

(6) Bridge edges and one-degree edges do not exist in a cycle.

156

Define gi' the circumference of the i th cycle as the number of edges of the

i th cycle. Since the number of edges and the number of nodes in a cycle are equal

as given in equation (7.25), then:

(7.27)

The circumference of an external cycle is:

gXCi = m XCi = n XCi ' (7.28)

The circumference of an internal cycle is:

gICi = m ICi = n ICi . (7.29)

The circumference of the i th mixed-cycle is:

gXCi = m XCi + m ICi = n XCi + n ICi ' (7.30)

Let gc be the sum of the c circumferences of the c cycles in G, then

C

gc = Lgi ; (7.31)
i=l

7.4.4 The network external closed path

In Theorem (7.1), conditions are established under which all external

edges of a network G are in a single closed path. This closed path is termed PGX '

the network external path, and the length of PGX is PGX

Theorem (7.1)

If, in a network, m>n, Es = {cI>}, EB = {cI>}, V XD = {cI>} for d > 2 ,

VXD1 = {cI>} for d > 2 then

(1) mx = m-mI (7.32)

(2) n x = n - n I = n X2 + n X2I , (7.33)

(3) PGX =mx =nx
(7.34)

(4) CX! = n X21
(7.35)

(5) c I =C-C X1
(7.36)

157

Proof:

Let G be a network with m edges and n nodes, then

n = n s + n I + n x + n B , and

V x = {V XD Ef) V XDI Ef) V XDB Ef) V XDBI }

nX = n XD + n XDI + n XDB + n XDBI ·

Since m>n then c>l. Thus fi l > 0 and n l > o.

Since each one-degree node has one-degree edge, then n s = fis .

Since Es = {<t>} then fis = 0 and ns = o.

Since EB = {<t>} then fiB = 0 and n B = o.

Thus VXdB = {<t>}, VXdBI = {<t>}, n XDB =0 and n XDBI =0.

Thus m consists of external and internal edges only

(1) fix = fi - fi l ,

and n also consists of external nodes and internal nodes only:

V = {Vx Ef) VI};

and n = n x + n I .

Furthermore,

Since VXd = {<t>} for d> 2, then VXd = {VX2 } and n XD = n X2 '

Since VXdI = {<t>} for d > 2, then VXdI = {VX21 } and n XDI = n X21 ·

Thus the external nodes consist of:

V x = {V X2 Ef) V X21 },

and

158

Each external edge, by definition, belongs to a cycle. This cycle is either an

external cycle or a mixed-cycle.

Since mI > 0

and EB = {<t>}.

and VXd = {VX2 }'

and V XdI = {V X2I},

Then, there are no external cycles in the network,

and the external closed trail is the external closed path.

Thus all external nodes and edges belong to mixed-cycles,

and they form an external closed path or an external closed trail.

The length of the external closed trail equals the length of the external

closed path.

Hence,

(3) P GX = m x = II x = m - mI·

Each external node of VX2 ' has a degree equals to two, and it belongs to only one

cycle. Each node of V X21 has two external edges and internal edges, and it

belongs to more than one cycle. Therefore, each external edge between two V X21

nodes belongs to a different cycle. Thus, llX2P the number of the V X21 nodes gives

the number of mixed cycles in the network.

(4) CX! = llX2P

Thus, the number of internal cycles can be obtain as follows:

(5) C 1 = C - CX! .

•

159

7.5 Membership of edge sets

As introduced in Section 7.2, there are four edge sets, namely the one-degree

edge set, the bridge edge set, the internal edge set and the external edge set.

The existence of some of these sets, in a given network, depends on other sets.

For example, it is not possible to have the internal set without having the

external set. Also it is not possible to have the one-degree set without having the

external or bridge set. Furthermore, the set of edges of each type will be

classified into subsets based on the end-nodes of each edge.

7.5.1 The number of one-degree edges

The number of one-degree edges in a network can be determined from the

incidence matrix of the network. Since every column represents a node, a column

that contains only one non-zero element represent a one-degree node. The sum of

such columns gives the number of one-degree edges in the network.

7.5.2 The number of external and internal edges

The number of internal edges ffiI in a network depends on the network

configuration. A network ofm edges and n nodes has m-n+l cycles. lfthe

network has a ladder shape as shown in Figure 7.6, then between adjacent

cycles there is one internal edge, and the total number of internal edges between

all the cycles is ffiI = ffi - n .

Figure 7.6 A network of ladder shape

160

If, however, the network has a configuration such as that shown in Figure

7.7, then the number of internal edges equals the number of cycles.

m I =m-n+1

I
(

')

)

r

Figure 7.7 A network in which the number of

internal edges equal the number of cycles

Some networks may have no internal edges. For example, the following

network shown in Figure 7.8 has no internal edges, but has an external node

with degree four as a common node between the two cycles.

Figure 7.8 A network with external node of degree four

The number of internal edges in a class of networks is established in

Theorem (7.2).

161

Theorem (7.2):

If a network has Es = {<p}, EB = {<p}, V Xd = {<p} for d>2 and m>n, then

(1) mx = m-mI

(2) n I =n-mx

(3) gc = mx + 2mI

(4) m I = gc- m

(5) gc = 2m-nx

(6) 1
m I = -(gc -n + n I)

2

Proof:

Let G be a network with m edges and n nodes, then

nX = n XD + n XDI + n XDB + n XDBI ;

Since Es = {<p}, then ms = 0 and ns = O.

Since EB = {<p}, then m B = 0 and n B = O.

Also VXd = {<p} and n XdB = 0;

And VXdBI = {<p} and n XdBI = o.

Therefore, n XDB = 0 and n XDBI = O.

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

Since V Xd = {<p} for d>2, then n Xd = 0, for d>2, and n XD = n X2 '

Therefore,

and

and

nX = n XD + n XDI = n X2 + n XDI ,

162

Hence the total number of external edges, or the circumference of the network

external path is:

(1) mx = gox = m - m I ,

and

The total number of internal nodes in the network is then

(2) n I =n-mx'

and it also equals:

Since m > n , then from 1 and 2

if n = n x , then n I = 0 ,

and if n > n x then n I > 0 .

Thus n I > o.

From 1, if m = mx then,

and there is one and only one closed path in the network,

thus c = 1.

If m > mx then, m I > 0 and c > 1.

Thus c > 1.

The circumference of the i th mixed-cycle is given in equation (7.28):

c

gXCi = m XCi + LmIC(i,j) .
j=l,
j;o!oi

The total circumference of the c cycles is given by equation (7.30):

C

gc = Lgi ;
i=l

163

Since there is at least one internal edge between any two cycles, then each

internal edge will be counted twice, once in each cycle, and the two end-nodes of

the internal edge will also be counted twice, while each external edge or node

will be counted once. Therefore, the sum of edges in the c cycles can be written

as:

c c c-l

gc = (ffi XCl + L ffiIC(l,j)) + (ffi xC2 + L ffi IC(2,j)) + ... + (ffi xcc + L ffiIC(c,j)) ,
j=2 j=l, j=l

jn

If there is no internal edge between the i th and jth cycles, then

ffiIC(i,j) = 0, V1C(i,j) = {<I>} , and n IC(i,j) = 0 ,

and if there is an internal edge between the i th and jth cycles,

then ffiIC(i,j) = ffiIC(j,i) ,

then, gc can be written in the following form:

c c c-l

gc = Lffi xCi + L LffiIC(i,j);
i=l i=l j=i+l

Jti

Since every external edge occurs once and once only in a cycle, then the sum of

external edges in the c cycles equals ffix the total number of external edges in

the network, i.e.

c

Lffi xCi = ffi x ,

i=l

Since every internal edge share two and only two cycles, then every internal

edge will be counted twice, once in each cycle, thus

then

c c-l

L LffiIC(i,j) = 2ffiI
i=l j=i+l

Jti

Since (1) gives ffi = ffix + ffiI ,

Then

164

Therefore,

and

The circumference also equals the sum of external nodes and internal nodes of

i th mixed-cycle as given by equation (7.30), i.e.

g i = V XCi U VIC(i,j)
j=I, ... ,c
j;>!j

the sum of the c circumferences is

c

g C = L, V XCi U VICCi,j)
i=I j=I, ... ,c

J;ti

gc = I{ (V XCI U VIC(l,j»)}1 + I{ (V XC2 U V ICC2,j»)}j + ... + I{ (V XCc U VIC(c,j»}1 '
j=I,2, ... ,c-I j=2, ... ,c j=I,2, .. ,c

j:t:2

c c

gc = L,1{VXCi] + L, UVICCi,j) ,

i=I

c

n XC = L,1{VXCi]

i=I

i=I j=I, .. ,c
J;ti

The set of external nodes of the i th mixed -cycle consists of V X2I as in V XdI type

and V as in V type and the union of the c sets includes all the external
X2 Xd ,

nodes in the network.

165

Every node of the V X2 type has a degree equal two, and it is used by only one

cycle, i.e. degree (v X2) -1. Every node of V X21 type is shared by y cycles, where y

equals the degree of the i th node from the V X21 type minus one, i.e.

degree (v X21) -1. Thus, the sum of the external nodes of the c cycles equals the

sum of the cycles they belong to, i.e.

n XC = tdegree(vXCi)-n X ,
i=1

In the internal nodes side,

the number of cycles associated with an internal node equals its degree.

The sum of internal nodes of the c cycles equals the sum of the internal nodes

degree, i.e.

Therefore

but

Thus

c fi,

L UVIC(i,j) = L degree(v ICi) ;
i=1 i=1 j=I, ... ,c

j*i

fiX fi,

gc = L degree(v XCi) - n X + L degree(v ICi) ,
i=1 i=1

fiX fi,

2m = L degree(v XCi) + L degree(v ICi) ,
i=l i=1

(5) g C = 2m - n X ,

Substitute from (3), then

gc = 2m - (n - n l) = 2m - n + n l ,

g C = 2(m X + m l) - n + n I ,

g C = 2(n - n I + m I) - n + n I ,

166

Thus

(6)

•
7.5.3 The number of bridge edges

Let a network have c > 1 cycles, with no bridge edges between them as

shown in Figure 7.9a. Then if the c cycles are separated such that a bridge edge

is inserted between each pair of adjacent cycles, then the maximum number of

bridge edges between the c cycles is c -1 bridge edges, as shown in Figure 7.9b

Figure 7.9a A network without bridge edges

I I ~
Figure 7.9b A network with bridge edges

The following theorem proves that, in any network, if gc = n then the number of

bridge edges is c - 1 .

167

Theorem 7.3: (The bridge edges)

In any network, if c > 1, Vs = {<I>}, VI = {<I> }, EI = {<I> } and VB = {<I> }

then

and

m B =(c-l).

Proof:

Let G be a network with m edges and n nodes.

Then

nX = nXX + n XI + llXB + n XBI + n BX + n BXI ;

then m = n = o· n = 0 . s s 'I ,

ill! = 0; and n XdI = n XdBI = 0;

and nB = o.

Thus

and the total number of external edges in the c cycles is

Also n is reduced to n = llx, and llx is reduced to nx = n XD + n XDB ·

(7.42)

(7.43)

Thus the total number of external nodes in the c cycles is n x = n XD + n XDB = n .

Since c>l and n I = 0 then all cycles are of external types.

The circumference of the i th external cycle is given by equation (7.21), i.e.

168

and

The total circumference of the c cycles is given by equation (7.24).

Thus

c c

(1) gc = LffixCi = Ln XCi =ffix =nx =n.
i=l i=l

Since there are c cycles, and since ffi 1 = 0, then

since fix = n, then

ffi =ffi-n' B ,

but c -1 = ffi - n , thus

(2) ffiB =c-l.

•
It can be noted that if one of the c-l bridge edges is to be converted to an internal

edge, then two edges and two nodes must be deleted from the network. The

bridge edge and an external edge, with its end-nodes, at one of the end-nodes of

the bridge edge. For example, in Figure 7.10a, e1 is a bridge edge, it has two

external edges (e 2 , e 3) at one end -node and it has two external edges (e 4 , e 5) at

the other end-node. When e
1

is deleted from the network, one of the external

edges must be deleted with its end-nodes. When one of the external edges is

deleted the other dependent external edge will be an internal edge, i.e. if e3 is

deleted, then e
4

will be an internal edge. And if e2 is deleted then e5 will be an

internal edge.

Figure 7.10a A network with n=18,m=22, gc =18

169

Figure 7.10b shows the network after converting a bridge edge to an internal

edge.

Figure 7.10b Converting a bridge edge to an internal edge

Every time a bridge edge is converted into an internal edge, n, the total number

of nodes in the network, reduces by two nodes, and m, the total number of edges

in the network, also reduces by two edges. The number of cycles, c, does not

change, and gc' the sum of the circumferences of the c cycles, also does not

change.

When a network has a combination of internals and bridges, this fact can be

used to find the number of internal edges and bridge edges in the network.

Theorem (7.4)

In a network, if fiB > 0 and fiI > 0, then

(1)

(2)

(3)

Proof:

PGX = fi xc = fix = llx·

If fiI = 0 then from Theorem (7.3) gc = II and fiB = (c -1) .

If fiI > 0 then c>1.

(7.44)

(7.45)

(7.46)

The circumference of the i th mixed-cycle is given by equation (7.30), i.e.

gXCi = fi XCi + fi ICi = llXCi + llICi'

C

The sum of the c circumferences, i.e. gc = Lgi , is given by equation (7.31).
i=l

Applying (7.31) on (7.30) gives the following:

170

c c c c

gc = 'LmXCi + 'LmICi = 'LnXCi + 'LnICi
i=l i=l i=l ;=1

Since mB > 0 then the network has more than one external closed path. Since

the external edges of the closed path are distinct, then the total number of

external edges in the closed paths equals the total number of external edges in

the network, i.e.

(1) P GX = m xc = m x = n x .

Every external node has two or more edges. If an external node has two edges

then the two edges will be in the external closed path, and if the external node

has more than two edges, then two edges will be in the closed path and the extra

edges will be either internal edges or bridge edges or both. Those internal and

bridge edges indicate that the type of their external nodes is either V XdI or V XdBI

for d = 2,4,

Therefore, the degree of a node of type VXdI minus two gives the number of

internal edge with respect to that node. Similarly, the degree of a node of

type V
XdB

or V
XdB1

minus two gives the number of bridge edges and internal edges

at that node. Let mIX be the number of internal edges from the nodes of

type VXdl ' then:

~
mIX = Ldegree(vX2I) - n X2I ;

i=l

If this is applied over the set of external nodes Vx , then the number of bridge

edges and mIX internal edges can be obtained as follows:

171

Since Dx, the degree of the external nodes is given by equation (7.10), includes

all edges connected to the set of external nodes, then

(2) fiB =Dx -2nx -mxl '

Since every internal edge is counted twice, once in each cycle, then

fi lc = 2ml

Thus gc can be written as follows:

(3) gc = mx + 2mI = n xc +n IC

•

7.6 The maximum circumference

In a network with c cycles the minimum circumference a cycle can have is

three edges. Let gmin = 3 be the minimum circumference of a cycle. The

circumferences of the c cycles may be equal or different. If the c circumferences

are different then the cycle with maximum circumference will be termed gmax'

The following theorem introduces the conditions that the maximum

circumference in a network is g max = n -1 .

Theorem (7.5)

In a network with only V X2' V X2I' n I > 0 and with gi = 3 for i = 1,2, ... ,c -1,

c > 1, then the maximum circumference is:

Proof:

Since V = {V X2 (f) V X2I}

then n = n x + n I ;

and nx = n X2 + n X2I ;

and PGX = n x = mx .

172

(7.47)

If c = 1 then g 1 = m = n .

If c > 1, and mI > 1 then m > n ,

and gi *- n *- m; otherwise there is a contradiction with gl = m = n.

Thus gi < n < m .

Since gmin = 3 then gmax > gmin always.

The necessary conditions to have one of the c cycles with gmax are:

Each cycle of the remaining c-l cycles, has a circumference equals g min ,

this condition necessitates that c>2, otherwise if c = 1 the two cycles can

have gl = g2 = gmin .

Thusifc>2 and gi =gmin fori=I, ... ,c-l then:

The external edges of the c-l cycles are mX(e-l) = 2 edges.

The internal edges between the c cycles is mI = (c - 2) + (c -1) = 2c - 3,

There are three nodes of type V X2I' One node with degree c, and two nodes

with degree three. Thus the total number of external nodes in the c-l cycles is

llXC(e-l) = 3. The total number of internal nodes is n I = c - 2.

Then, the total circumferences of the c-l cycles is

e-l
g(e-l) = Lgmin = gmin X (c -1) = 3(c -1),

i=l

Thus the c th cycle has n XCe = nx -1 and nICe = n I = c - 2.

Thus
gmax = ge = n XCe + nICe'

= nx -1+nl'

gmax = n-l

173

•

7.6.1 The network and the maximum circumference

Any network with gmax = n -1 will be termed the basic configuration of G, and it

has the following properties:

It has one node with degree = c.

I t has c nodes with degree = 3.

It has two nodes of V
X21

type.

It has c-2 internal nodes.

It has n-Cc+l) nodes with degree = 2;

It has ffiI = C + 1;

It has gc = 3c + n - 4 ;

It has one cycle with gmax = n -1,

It has c-l cycles with g = gmin

7.7 Sub-classes of membership

The number of edges of each type can be obtained by using the previous

equation. An edge of any type has two end-nodes. The two end-nodes may be of

the same type as the edge type, or one of the end-nodes might be of different

type. For example, the two end-nodes of an internal edge may be internal nodes,

or one of them might be an internal node and the other an external node.

Furthermore, the degrees of the two end-nodes, of the same type or different

type, may be the same or different. For example, an external edge may have two

end-nodes of VXd type, and d may have the same value, or it may have different

values. Also an external edge may have one end-node of VXd type and the other

end-node of V
XdI

type. Therefore, the set of edges of each type will be classified

further based on the type of the end-nodes of that edge, i.e. if the two end-nodes

have exactly the same type, then the edge will be termed by the same type of the

end-nodes, and if the two end-nodes have different types, then the edge will be

174

termed by the type of the two end-nodes. If d of the two end-nodes is the same

value, then the value of d will be used, and if d has two different values, then the

two values will be used.

Therefore, the following sub-classes are defined:

(1) The sub-classes of the one-degree edges are:

(i) 8X edge

A one degree edge is termed 8X if:

(1) One end node is of one-degree type.

(2) The other end-node is of Vx type.

(ii) 8B edge

A one degree edge is termed 8B if:

(1) One end-node is of one-degree type.

(2) The other end-node is of VB type.

(iii) 81 edge

A one degree edge is termed 81 if:

(1) One end-node is of one-degree type.

(2) The other end-node is of VI type.

(2) The sub-classes of the bridge edges are:

(i) BB edge

A bridge edge is termed BB if

(1) The two end -nodes of the edge are of VB type.

(ii) BX edge

A bridge edge is termed BX if:

(1) One end-node is of V XdB type.

175

(2) The other end-node is of VB type.

(iii) BXX edge

A bridge edge is termed BXX if:

(1) The two end-nodes are of V
XdB

type.

(iv) BXI edge

A bridge edge is termed BXI if:

(1) One of the end-nodes is of V
XdB

type.

(2) The other is of VXdBI type.

(v) BXXI edge

A bridge edge is termed BXXI if:

(1) The two end-nodes are of VXdBI type.

EB = {EBB' EBx ' EBXI , EIX }

(3) The sub-classes of the internal edges are:

(i) IX edge

An internal edge is termed IX if:

(1) One end-node is of V x type.

(2) The other end-node is of VI type.

(ii) II edge

An internal edge is termed II if:

(1) The two end-nodes are of VI type.

Thus, EI = {Err' EIX }

(4) The sub-classes of the external edges are:

176

(i) xx edge

(ii)

An external edge is termed XX if:

(1) The two end-nodes are of V Xd type.

(2) The two end nodes have the same value of d.

(3) It belongs to only one cycle.

X .. edge
1J

An external edge is termed X.. if:
1J

(1) The two end-nodes are of V
Xd

type.

(2) The values ofd are i andj and i=tj.

(iii) XIi edge

An external edge is termed XIi if:

(1) One end-node is of VXd type.

(2) The other is of VXdI type with i internal edges.

(iv) XIij edge

An external edge is termed XIij if:

(1) The two end-nodes are of V XdI type.

(2) The i and j are the number of internal edges in the first and the second

end-nodes.

(v) XB edge

An external edge is termed XB if:

(1) One end-node is of VXd type.

(2) The other end-node is of VXdB type.

177

(vi) XBI j edge

An external edge is termed XBI j if:

(1) One end-node is of VXd type or V
XdB

type.

(2) The other end-node is of VXdBI or V
XdI

type.

(vii) XBIij edge

An external edge is termed XBIij if:

(1) One end-node is of V XdI type with i internal edges.

(2) The other end-node of VXdBI withj internal edges.

7.7.1 Connections between classes

The nodes and edges classification and sub-classification have been introduced

in Section 6.2 and 6.3. An external node of subclass VX2 is always connected, by

an edge of external type, to an external node of subclass V X2' V XdI or V XdB .

Similarly, a bridge node of subclass VBB is always connected, by an edge of

bridge type, to a node of subclass VBB , VXdB or VXdIB • Also an internal node of sub

class VII is always connected to a node of subclass VII or Vxr . A nodes of a class

are connected by edges of the same class, and nodes at the boundary, i.e.

between two classes have a mixed entity of the two classes. Figure 7.11 shows

the different connections between classes.

178

Internal Nodes
connected by
Internal Edges

External Nodes
connected by External
Edges

One-degree Nodes
connected by One­
degree Edges

Bridge Nodes
Connected by Bridge
Edges

I

Figure 7.11 Connection between classes

7.7.2 The sub-classes of the mixed-cycles

A mixed cycle, CX1 ' is defined in Section 7.4.3 as a cycle with mixed external

edges and internal edges. Furthermore, a mixed-cycle may have zero, one or two

edges of XI jj type. Accordingly, a mixed-cycle is classified into the following three

types:

(i) CXIO mixed-cycle

A mixed-cycle, cx!' is termed CXIO if:

(1) It has zero edge of type XIij •

(2) It has one or more nodes of type VX2 •

(3) It has exactly two nodes of type VX2I •

179

(ii) C XII mixed -cycle

A mixed-cycle, cx!' is termed C
XIl

if:

(1) It has one edge of XI jj type.

(2) It has zero node of type V
X2

•

(3) It has exactly two nodes of type V
X2I

•

(iii) C XI2 mixed -cycle

A mixed-cycle, C X!' is termed C
XI2

if:

(1) It has two edges of XI jj type.

(2) It has zero, one or more nodes of type V X2 •

(3) It has exactly four nodes of type V X2I •

An adjacent cycle:

If two cycles have one or more share internal edges, then the two cycles are said

to be adjacent.

Classifying the mixed-cycles into these types, introduces another natural

property, namely "the location property" of a mixed cycle with respect to other

mixed-cycles in the network external closed path.

Since a mixed-cycle of classc xI2 has two independent edges of XIjj type,

then CXI2 have at least two independent internal edges. Therefore, a CXI2 a

mixed-cycle must lie between at least two independent mixed-cycles. Therefore a

CXI2 mixed-cycle will be termed C XI2M ' a two sided-middle mixed-cycle. Also a

mixed-cycle of class C
XI1

has two internal edges, not necessary dependent, and

therefore lies between at least two mixed-cycles, not necessarily dependent. A

CXIl mixed-cycle will be termed CXIlM ' a one-sided middle mixed-cycle.

180

A mixed-cycle of class CXIO has one or more dependent internal edges, and it has

one or more nodes of VX2 type. The VX2 type nodes belong to one and only one

cycle. Therefore, a mixed-cycle of class CXIO has one or more adjacent mixed­

cycles, and will be termed C XIOT ' a terminal mixed-cycle.

7.8 The network open paths

The definition of an open path is given in Section 7.4.1. Since there are different

types of edges in the network, and since an open path starts and ends at two

different nodes, then the edges of a path can be used to classify the open path

type. Thus, if all edges of an open path are external, then the path is termed an

external open path. If all edges of an open path are internal edges, then the

open path is termed an open internal path. If the edges of an open path

consist of external edges and internal edges, then the open path is termed an

open mixed path.

7.8.1 The open external paths

A path will be termed Pox, open external path if:

(1) All its edges are of external type.

(2) Its end-nodes are external nodes.

(3) Its end-nodes belong to PGx •

(4) Its length is the minimum number of external edges between the two

external end-nodes.

7.8.2 The open internal paths

A path will be termed P OJ , open internal path if:

(1) Its edges are of internal type.

(2) Its end-nodes are always external nodes of type VX2I •

(3) Its end-nodes belong to PGx •

181

(4) Its length is the number of internal edges between the two external

end-nodes.

(5) The end-nodes may have more than one internal path.

The ith POI maybe written with its end-nodes as POI(V
X1

' v
X2

). Let llOl be the

length of the ith POI' i.e. the number of edges between the external end-nodes.

Since the end-nodes of POI may have one or more open internal paths, then

POI_/V Xp VX2) for j = 1,2, , is used to define and to distinguish each POI between

the two external end-nodes. For example, in Figure 7.11, between V:2 and v 4

there is only one open internal path, i.e.

POI (V 2' V 4) = { e 5 ' e 6 ' e 7 ' e 8} with II 01 (V 2' V 4) = 4 .

While between VI and V2 there are two open internal paths, i.e.:

POI-I (vI' v 2) = {e9 , e5 }, with llOl_I (vI' v 2) = 2; and

Since the end-nodes of POI are external nodes of type VX2P then:

An external node of degree two does not have an internal path.

An external node of degree three has one internal path.

An external node of degree four has two internal paths.

Let n be the total number of different POI in the network, then there is a
POI

direct relationship between the external nodes and n
pOI

, i.e. in a network with

PGX = llx = fix, then:

np' = (nx -1) + (nx - 2) + ... + 2 + 1 .
OI

(7.48)

182

Since the end-nodes are of type VX2I ' then the number of open internal paths is:

n~-l

npor = .l./nX21 - i) = (nX21 -1) + (nX21 - 2) + ... + 2 + 1. (7.49)
i=l

and let SGOI be the sum of the lengths of the np' paths, then or

llPOI

SGOI = LnOI(vXp V X2);

i=l

Let PGOI be the set of open internal paths in a network, then

Example (7.1): The open internal paths of Figure 7.12 are derived

(7.50)

(7.51)

Figure 7.12 A network to illustrate the open internal paths

POI(V l , v3) = {<I>};

183

POl(V 3 , v 4)={<l>};

thus

n =3·
POI '

3

llpOl = LnOI-i = 2 + 3 + 4 = 9;
i=l

7.S.3 The open mixed paths

A path will be termed P OXI , open mixed path if:

(1) Its edges consist of both external edges and internal edges.

(2) Its end-nodes are external nodes.

(3) Its end-nodes belong to PGx •

(4) Its length is the minimum number of edges between the two external

end-nodes.

(5) The end-nodes may have more than one mixed open paths.

7.9 The Network dimensions

In a connected network, any two nodes have at least one open path

between them. Define distance to be the length of an open path between the

two nodes in the connected network. Therefore, an isolated node has a zero

distance. It has no edges connected to any other nodes. The distance between

two adjacent nodes is one edge. The minimum distance between two, non­

adjacent, nodes, is then the minimum length of the open path between the two

nodes, and the longest distance between them is the maximum length of the

open path between them.

184

7.9.1 The network Diameter

The network external closed path, PGX ' has been introduced in Section 7.4.4.

If (n x /2) > n l then the maximum length of an open internal path in the network

is nl -1. The end-nodes of the open internal path are of external type. Define

the network diameter to be the maximum value of the minimum distance

between two nodes on P GX • The following theorem determines the value of the

network diameter:

Theorem (7.6) (The network Diameter)

If a network has an external closed path and (n x /2) > n
l

,

then the network diameter is:

Diameter = r ~x 1·

Proof:

Let G be a network with m edges and n nodes, and let m>n.

(7.52)

Since (nx/2) > n l then the maximum distance of an open internal path in the

network is n I - 1, and the maximum value of the minimum distance of an open

external path between any two external nodes is > (nx/2) > n l -1.

Since PGX = fix = nx , as given by equation (7.34), then if fix is even then the

diameter, i.e. the maximum value of the minimum distance, between any two

external nodes, is fix 12. If fix is odd, then the diameter is (fix + 1) I 2 .

•

185

7.10 The range of Pax

Consider the set of networks having n nodes and m edges but in which the end­

nodes for each edge are not specified. Such a network with unspecified edge

locations will be termed G u '

Since Pax = fix = n x , as given by equation (7.34), then Pax includes all the

external edges of G u ' Since the minimum length a closed path can have is three

edges, then the minimum length of Pax is three edges. Let POXmin denote the

minimum length of Pax' i.e.

POXmin = 3.

Remark (7.3):

Every network with Pax and with n l > 0 can have a POXmin '

Let PGXmax denote the maximum value that the Pax can be.

In G
u

' if n = m, then c = 1 and g = n = fi, i.e. the maximum number of nodes or

edges a cycle can have is n = m. Thus, if n = m, then c = 1 and the maximum

length Pax can have is: POXmax = fix = nx = n .

If m> n then c> 1 and gmax = n -1, i.e. POXmax = fix = nx = n -1.

The set of many give different networks. They may give a network with

PGX = PGXmin , or a network with Pax = POXmin + 1 or more up to POXmax = mx = nx = n .

Thus for each network Pax varies from POXmin to POXmax' i.e.

POXmin < Pax < POXmax .
(7.53)

186

7.11 The relation between PGX and gc

From Theorem (7.2), gc = 2m - n x ; and from theorem (7.1), PGX = fix = n x .

Substituting PGX instead of nx yields an important relationship between the

network external path, the circumference of the c cycles and the m, i.e.

gc +PGX = 2m. (7.54)

Since the value of 2m is constant for a given network, then

l.There is an indirect relationship between PGX and gc' i.e. as PGX

increases gc decreases, and the opposite is true.

2.For each one value of PGX the network has one and only one value of gc.

Thus, if PGX = Pm(min = 3, then gc = 2m - 3 . Let gCmax the maximum value gc can

be, then gCmax = 2m-3. (7.55)

As PGX is increasing by one edge, gc is decreasing by one edge. Thus, if

PGX = Pm(max = mx = nx = n , there will be no internal nodes, i.e. nr = 0, then gc

has the minimum value it can be, i.e. gc = gCmin = 2m - n . Let gCmin be the

minimum value of gc.

Then gCmin = 2m-n. (7.56)

Thus gCmin and gCmax define the range of gc for a given network, i.e.

gCmax > gc > gCmin· (7.57)

3. For each value of PGX and gc the network has several possible connections,

and these connections are countable as given in the next section.

187

7.12 The relation between Pox and gmax

In a network with mr > 1, the maximum circumference of a cycle is

gmax = n -1, as given by equation (7.41). The conditions, at which a network has a

cycle with gmax = n -1, have been introduced in Section (7.6).

Since POXmax = n and since gmax = n -1 then a network can have only one

cycle with gmax = n -1. The network has many different connections, some of the

connections may have one cycle with gmax = n -1 and some connections may not

have a cycle with gmax = n -1, i.e. if Pox = POXmax = n then a network may have a

cycle with gmax = n -1, and all connections with Pox < POXmax = n have to have a

cycle with gmax = n -1. The opposite is not necessarily true, i.e. if Pox = POXmin = 3

and has a cycle with gmax = n -1, then not necessarily all connections with

PGX > POXmin = 3 have a cycle with gmax = n -1. The basic configuration of a

network introduced in Section 7.6 will be used to introduce the relation between

Let n
l2

be the number of internal nodes of degree two, and let n l3 be the

number of internal nodes of degree three, then n l = n l2 + n 13 ·

Pox = m x = n x = C XI = 3 ,

One cycle with gmax = n -1,

and g. = g . = 3 of the remaining (c-1) cycles then the network has only one of
1 IIlln

two possible configurations as shown in Figures 7.10 and 7.11.

188

The first possible configuration:

The first possible basic configuration of Gu is shown in Figure 7.10. It has:

(1) Pax = m x = n x = C XI = 3 , i. e.

One external node of degree c; and

Two external nodes of degree three.

(2) It has nI3 = C - 2 nodes of degree three.

(3) It has n I2 = 0 nodes of degree two.

(4) One cycle with gmax = n -1.

(5) Each cycle has three edges except one cycle,

i.e. g. = 3 for i = 1 2 ... c-1
1 ",.

Figure 7.13 The first basic configuration of G u

The number of internal cycles can be obtained, i.e.

For example, in Figure 7.13, c
I

= C - c
XI

= 6 - 3 = 3.

If gj = gmin = 3 kept unchanged for i = 1,2"" ,C -1 and Pax of G u is changed, then

gc = gmax = n l + 2 = n -1 will be destroyed, i.e. Gu will not have a cycle with

gmax = n -1, it may has a cycle with a circumference > gmin = 3 . The relationship

between g c and g i is direct.

189

Let gi =gmin = 3 for i =1, ... ,c-l, and

let gc = gmax

then the sum of the c circumferences is gc = 3(c -1) + gmax .

Since gc + PGX = 2m, as given by equation (7.46), and since PGX of G
u

vanes

from PGXmin < PGX < PGXmax , then

gmax =gc -3(c-l);

gmax =(2m-PGx)-3(c-l);

thus the relation between PGX and the maximum circumference of a cycle in G
u

IS:

g max = 3n - m - P GX . (7.58)

The second possible basic configuration:

The second possible basic configuration of Gu is shown in Figure 7.14. It has:

(1) P GX = m x = n x = C XI = 3 , with

One external node of degree c; and

Two external nodes of degree three.

(2) Number of nodes of degree three is nI3 = C - 2 .

(3) Number of nodes of degree two is nu = n - nx - nI3 = n - c -1.

(4) One cycle with gmax = n -1 .

(5) One cycle with gc-l = n I2 + 3 .

(6) gi = 3 for i = 1,2,,," C - 2.

Figure 7.14

The second basic configuration

of G
u

190

The number of internal cycles can be obtained, i.e.

C1 = C - CX! .

For example, in Figure 7.14, cI = c - cXI = 4 - 3 = 1 .

Let each internal cycle has three edges only, then the internal nodes of each

internal cycle are of degree three, furthermore:

One internal cycle has two internal nodes of degree three,

Two internal cycles have three internal nodes of degree,

Thus there is a relationship between the numbers of internal cycles and internal

nodes, i.e.:

Applying these relationships on Figure 7.14, then;

n 13 = cI + 1 = 1 + 1 = 2 ;

n l = n - nx = 7 - 3 = 4;

n I2 = n I - n l3 = 4 - 2 = 2 ;

Thus gi = 3 for i = 1, ... ,c - 2, and

gc-l = n l2 + 3 = 2 + 3 = 5

g =g =n-1=7-1=6. c max

If gj = gmin = 3 kept unchanged for i = 1,2,· .. ,C - 2 and PGX of G u is changed, then

g = g = n + 2 = n -1 will exist as long as nI2 > 0, but gc-l will change, i.e. it
c max I

will decrease, with the increase PGX of Gu • Figures 7.15 to 7.18 show the

variation in g and g = g as PGX is increasing. c-l c max

If G has P = m = n = 4 as shown in Figure 7.15
u GX x X '

191

then

Thus

n I = n-nx = 3;

n 12 = n 12 -1 = 2 -1 = 1 ;

gi = 3 for i = 1, ... ,c - 2, and

g c-l = n 12 + 3 = 1 + 3 = 4

g c = g max = n -1 .

-0

Figure 7.15 A network with PGX = 4

If Gu has PGX = fix = llx = 5, as shown in Figure 7.16,

then

n I = n-nx = 2;

n 12 = n 12 -1 = 1 -1 = 0 ;

Thus

gc-l = lll2 + 3 = 0 + 3 = 3;

l.e. Figure 7.16 A network with PGX = 5

gi = 3 for i = 1, ... ,c -1 ;

and gc = gmax = n -1.

If Gu has PGX = 6 and gi = 3 for i = 1, ... ,c -1; and one of the internal nodes of

degree three is an external node as shown in Figure 7.17, i.e.

If P GX = fi x = II x = 6 ,

and gi = 3 for i = 1, ... ,c -1,

then

n I = n -nx = 1;

DI2 = 0

DI3 = III - lll2 = 1- 0 = 1 ;

g c = g max = n - 2 . Figure 7.17 A network with PGX = 6

192

If Gu has PGX = n then the last internal node of degree three will be an external

node as shown in Figure 7.18, i.e.

If P GX = m x = n x = n = 7

then

n I =0

gi = 3 for i = 1, ... ,c -1 ;

gc = gmax = n - 3.

o

Figure 7.18 A network with PGX = 7

Thus for the second basic configuration of a network with n I2 > 0

gc = 2m-PGX;

gmax = n -1;

and

or

gc-l = 2n - m + 4 - PGX . (7.58)

The difference between the first and the second basic configuration is n I2 • If

nI2 = 0, then G
u

has the first configuration, and if n I2 > 0 then Gu has the

second configuration.

193

7.13 Network classifications

The network external closed path PGX is a natural property exists in every

connected network. The relation between PGX' m and gc has been given by

equation (7.46), in Section (7.11) and the relation between PGX and gmax has also

been described in Section (7.12). Every connected network has one and only one

PGX as described in Section 7.4.1 and proved by Theorem (7.1). Since PGX has a

range of values as given by equation (7.45). Then the PGX property can be used to

classify the different sets of networks that Gu may have. Each subset of

networks of Gu that has only one value of PGX represents one class. Then its

possible to find the basic configuration of each PGx '

Let Gp represents one subset of networks of G u which has only one
ax

value of PGx ' Then G has the same range as the range of PGx ' For example, if
Pax

7 ~ PGX > 3 G 3 then G Pax has (7-3+ 1)=5 classes from G 3 to G 7 • Finding the a class

of G for a certain value of PGX depends on finding the basic configuration first.
Pax

Then the parameters of the basic configuration of Gpax for every value of

PGX can be obtained.

For example, let PGX = 3 then the parameters of G3 are:

P GX = m x = n x = 3 ;

gc = 2m-3

nr = n - n x ;

mr =m-mx;

cxr = 3;

c =c-3' r ,

gmax = n -1.

194

Let n= 14 nodes and m = 20 edges, and let PGX = 3 then the parameters of G
3

are:

PGX = mx = fix = 3 .

gc = 2m - 3 = (2).(20) - 3 = 37 .

n l =n-nx =14-3=11.

m l = m - mx = 20 - 3 = 17 .

C = m - n + 1 = 20 - 14 + 1 = 7 .

n B = C - 2 = 5.

cX! = 3;

CI = C - 3 = 7 - 3 = 4.

Since n I2 > 0 then 0 3 has the second configuration, then

gc-l = 2n - m + 4 - PGx' (7.59)

gc-l = (2).(14) - 20 + 4 - 3 = 9.

g = g = n -1 = 14 -1 = 13 c max .

g. = g . = 3 for i = 1 2 ... 5
1 mIll ",.

Knowing parameters of the basic configuration of G 3' it is possible to find

the parameters of the basic configuration of any value of PGX in the possible

range of PGx'

7.14 Identifying the different possible connections

If PGX of a network is known, then it is easy to identify all possible connections

that this network may have. Each PGX identifies a set of connections. The

identification is based on using PGX and the basic configuration of the network

as introduced in Section 7.6.

195

If the network has the first basic configuration, then the number of

possible connections is:

Z =gmax - gmin' (7.60)

The z possible connections can be obtained as follows: let CPGX,z be the set of c

circumferences of the basic configuration of the network for PGX where

P GXmin > P GX > P GXmin , then,

(7.61)

for

i=1 ... c-z' " ,

J'=c-z ... c-1' " ,

with gmax =3n-m-PGx' (7.62)

Each z may have w different possible connections.

Thus, if PGX = 3, then the z the number of possible connections are:

C3,2 = {gi = gmin' gc-l + 1,gmax -I} for i = 1, .. ·,c - 2

C3,3 = {gi = gmin' gc-2 + 1,gc-l + 1,gmax - 2} for i = 1, "',c -3

C ={g. =g. g. =g . +1 g -z} for i=1 "',c-z, and j=z+1, .. ·,c-l
3,z 1 mm , J mm , max '

if PGX = 4

C {g - g g }. for i = 1, ... , c -1 4 1 = i-min' max , ,

If a network has the second basic configuration, then the z possible connections

can be obtained by using the following procedure:

196

let CPGX'z be the set of c circumferences of the second basic configuration of the

network for PGX where PGXmin > PGX > PGXmin , then,

for

i = 1, ... , c - 2

with gc-l = 2n - m + 4 - PGX;

and gmax = 3n - m - PGX •

Procedure:

PGX = 3;

Z = 1;

CPGX,z = [gl' g2 ,. .. , ge-2' gc-1' ge] ;

if ZI > 1

10 for j = c - 2 : -1 : 1

g - g -1' e-I - e-I ,

z=z+l;

Cp z = [gVg2 ,.",ge-2,ge-vge];
GX,

end' ,

end' ,

Z -g g . 2 - e - e-I'

197

(7.63)

(7.64)

(7.65)

z=z+I' ,

Go to 10;

end.

Each CPGX,z connection has different possible configuration, i.e. if P
GX

of a

network is known, and gi for i = 1,2, ... ,c, is also known, then the c cycles may

have different possible configurations.

7.15 The relation between PGX and the mixed-cycles

In a network as the one described in Theorem (7.1) and (7.2), c, the number of

cycles is given by:

c = cXI + cl ;

Each CXI ' mixed-cycle, as introduced in Section 7.7, has at least one external

edge in PGx ' Thus if each CXI cycle has exactly one external edge in the network,

then

C XI = PGX; this is the maximum number of C XI in the network.

and CI = 0;

and n l > 0;

and all the nx nodes are of type VX2U i.e. of degree three;

and all the C XI are of type C XI1M '

If c = 1, then c is of external type.

If c = 2, then they are mixed-cycles, i.e. the minimum number of mixed-cycles in

a network is 2 cycles. Thus, PGX > CX! > 2 .

Since c = m - n + 1 = C
XI

+ c
l

' is constant, then if C XI increases then C r must

decrease to give c.

198

A mixed-cycle has three types as given in Section 6.7.1, these types are C
XIOT

'

CX11M and cXI2M •

The first basic configuration has C X! = PGX always.

If the second basic configuration has one cycle with g i = g max = n -1, then c XI = 3 .

If gi = gmax = n -1 decreases by one, cXI increases by one mixed-cycle until

CX! = PGX' A PGX with one cycle has PGX < gi < gmax = n -1 may have C X! < PGX'

Thus the c cycles can have different position in the network.

7.16 Number of possible connections

There are many different possible connections of a network with n nodes

and m edges. For example, if m=n, then there is only one cycle.

n

There are L (n - i) possible ways to have one cycle with m=n.
i=l

n

If c=2, then the first cycle has L (n - i) possible ways, and the second cycle has
i=l

n

(n - 3) possible ways. If c=3 then there are L (n - i) + 2 (n - 3) .
i=l

In general if c> 1, then
n

the number of possible connection = L (n - i) + (c -l)(n -3) .
i=l

7.17 The network entity

Having introduced the edge state phenomenon and the different parameters and

relations associated with a graph of a network, this chapter concludes by

defining the network entity, which describes and identifies the minimum set of

connections having the same descriptions.

An entity is a set of parameters describing an object such that the object

199

or a class of the object can be identified. An example of an entity is a home

address. The home address consists of the following parameters:

The house/apartment number;

The street name;

The city name;

The county name;

The zip code;

The country name.

If anyone of these parameters is changed the mail may not be delivered

correctly.

A connected graph is an object. It has a set of parameters which define its

entity. In this section, the analysis of defining the network parameters proceeds

from the most general case of a network without restrictions, and then applies

the network natural properties as natural restrictions that have to be used as

parameters to define the network entity:

(1) V is the set of nodes with n the number of elements in V.

(2) E is the set of edges with m the number of elements in E.

(3) If V is considered alone, i.e. without considering the edges between

the n nodes, then V form an isolated set of nodes, every node has no

edges.

(4) If the n nodes are connected by the m edges without restrictions, then

there are many possible ways of different connections as given in

Section 7.14.

(5) If one restriction is applied on the connection, then the number of

possible ways of connection will reduce. It will be less than the

number of possible ways without restrictions. The more restrictions

applied, the more the number of possible ways of connections will be

200

reduced.

(6) The mechanism of connection: connecting an edge to a node

defines not only the edge and the node types, but also it defines the

induced relationship, such as the degree of the node and the cycle

relationship. For example, if an isolated node is connected by an edge

coming from an internal node, then the isolated node is changed to be

a one-degree node, and the edge is classified as an edge of SI type.

Furthermore, if another edge coming from an external node is

connected to the previous one-degree node, then, the attribute of the

one-degree node changes to be an internal node. From the degree side,

the connection of the first edge then the second edge changes the node

degree from zero to one to two, and it changes the node type from an

isolated node to a one-degree node to an internal node, and finally it

changes the network structure by adding a new cycle of a certain

class. Thus, adding (or deleting) an element (an edge or a node) to the

network changes the entity of the element accordingly, and this

change, consequently, changes the network parameters and relations.

So that, every element, in each set, has a very well defined class or

sub-class.

(7) The restrictions that will be applied on the connections are the edge

and node natural types that induced through mechanism of

connection and the induced relationships.

(8) The node and edge restriction: V is the set of nodes, and E is the

set of edges. Each set is classified, as given in Sections 7.2 and 7.3,

through the mechanism of connection into four types, i.e.

V = {Vx E9 VI E9 VB E9 Vs} and E = {Ex E9 EI E9 EB E9 Es} with n = IVI the

number of elements of V, and m = lEI and the number ofE. If a

201

network has the same description as the one described by Theorems

(7.1) and (7.2), and if EB = Es = VB = Vs = {<I>} then V reduces to

V = {Vx EB VI} and E reduces to E = {Ex EB EI}, which in turn must

reduce the number of possible connections. For example, if a network

has n nodes, unclassified, and there is one edge to be connected

between any two nodes, then there are n.(n-I) possible ways of

connecting the edge. Ifn and m are classified as internal and external,

and if the one edge is of external type then the external edge has to be

connected between external nodes only. Thus, the edge/node type

restriction reduces the number of possible ways of connecting the one

external edge to n x . If there are mx edges to be connected between

nx nodes, then the number of possible ways of connection reduces to

one.

(9) The network external path restriction: If a network has Pex , then

PGX = nx = mx · Many other relations, related to Pex , can be obtained

such as n I = n - nx and m I = m - mx . The range of Pex , of a network,

is 3 <PGX < n. Since range of Pex is deterministic, then the related

functions are deterministic, such as gc-l = 2n - m + 4 - PGX and

gc = 2m - PGx· Determining one Pex of a network out of the range of

P not only a reduction from n to n I and from the m to mI. Thus, GX'

reducing the number of different possible connections to the internal

edges and nodes. There are m I edges to be connected internally

between the nx nodes and n I nodes such that the network has c

cycles. There is nI(nX + 1) possible ways to connect one internal edge,

and there are nI(nX +1)-1 possible ways to connect two internal

edges. Thus there are nI(nX + 1) -m I possible ways to connect mI

internal edges.

202

(10) The circumference restriction: The number of cycles, in all

different possible connections, with or without restrictions IS ,

constant. But the c circumferences of the c cycles are not equal in all

different possible connections. As explained in Section 7.10, gc has a

direct relation with PGX ' each PGX has one and only one gc' Each

combination of PGX and gc has z different possible connections as

given in Section 7.13. At each zth connection the c circumferences are

fixed. But, the internal edges of the c cycles can be connected in

different away so that the sum of the c circumferences is always gc'

I.e. gc = gl + g2 + ... + gc = 2m - PGX' The circumference restriction

reduces the number of different possible connections to one connection

with one PGX and one gc and one z configuration, which has fixed

valueofgi for i=1,2, ... ,c.

(11) The open internal paths restriction: The internal edges has to

be change such that gc = gl + g 2 + ... + gc = 2m - PGX • If the connection of

one internal edge is changed from (v 11' V 12) to (v 11' V 13) the length of

one or more of the open internal paths will change. Thus, if a

connection has one PGX and one gc and one z configuration, i.e. with

fixed value of gi for i = 1,2, ... , c, then if one or more internal edges

have been changed, then the length of one or more of the internal

paths will change. Thus, Lp, the total length of the npO! open internal

paths will change. If after the change, Lp did not change, then the

two connections are similar to each other. Thus, applying npO! and Lp

restrictions reduced the different possible connections to small

number of similar connections.

(12) Thus, these parameters, the natural restrictions, are used to form

the network entity, i.e. G = {V, E, PGX ' CpGX,z' PGI } .

203

(13) The network entity can describe one or a set of similar connections

of a network.

Example (7.2): To identify the network entity

The network in Figure 7.19 has mx = nx = 6; n l = 3; ml = 7 .

Thus c=(mx +ml)-(n X +n)l +1=(6+7)-(6+3)-1=5.

The C={gl'g2,g3,g4,gS}={3, 3, 4, 4, 6}

There are few different connections that can give a network with these data.

The open internal paths of Figure 7.19 are:

VX6
y-----I

VX4

Figure 7.19 A network used to define the entity

204

POI (V X2 ' V X5) = { e II , e 13 ' e 16 e 17 } = 4

POI (V X2 ' V X6) = { e II ' e 13 ' e 14 } = 3

POI (V X3 ' V X5) = { e IS ' e 13 ' e 16 ' e 17 } = 4

POI (V X3 ' V X6) = { e IS ' e 13 ' e 14 } = 3

Thus the total number of open internal paths can be written as follows:

3(2) + 4(3) + 3(4) = 30

if PGX ' C are kept constant and one of the internal edges change its position,

then set of open internal paths will change to describe the new connection. Thus

the set of {V, E, PGX ' {PoG!}} describe one and only one connection.

205

8.1 General

ChapterS

Using the edge state phenomenon

to partition the network

The edge state phenomenon has been introduced in Chapter 7 in

order to define some new properties of the network, which are useful in the

theoretical development. In this chapter, the edge phenomena and some of

the induced network properties are used to introduce a new approach for

solution of the network-partitioning problem. The new approach is introduced

for a class of network connections without bridge edges. The problems of: (i)

establishing the existence of a balanced k-partitioning of a network; and (ii)

obtaining such a partitioning; are known [25] to be NP-hard problems. The

method to be described offers a new heuristic approach to compact

computational solution of (ii), and gives insight into (i). Partitioning a

network is an operation in which a set of the network edges is cut. Those

edges are termed cut edges, the end nodes of the cut edges are termed the

boundary nodes, and the remaining nodes in each part consists of internal

nodes and external nodes are termed the internal part nodes. The goal of

partitioning a network into k parts is to balance the number of boundary

nodes with the number of the part nodes in the k partitions.

A cut-line is a line used to cut a set of edges of the network. The cut­

line concept is introduced in Section 8.2. The concept is introduced gradually

from partitioning a network with one cycle by one cut line, in Section 8.3, to

partitioning a network with c>l cycles by k-l cut lines, in Section 8.4. Cut

lines are not allowed to cross each other, thus the relationship between cut

lines are introduced.

The external close path of a network and the open internal paths are

all data obtainable from the network.

206

In a network with an external close path, the starting edge, the

ending edge and the route of each cut-line are defined in Section B.5. The

starting edge and the ending edge of a cut-line are always of external type.

Thus the end nodes of the starting edge and the ending edge are classified as

external boundary nodes. Two open paths determine the cut line route.

While the cut line is proceeding from one internal edge to another internal

edge, it defines the internal boundary nodes.

The I-I cut-line, which partitions the external close path into k equal

or balanced parts, is defined in Section B.7.

The open internal paths are used not only to specify the cut line route

but also to find the internal nodes in each part.

8.2 The cut-line concept

Let P be an open path consisting of n nodes and n-l edges as defined in

Section 7.4.1 and let e be one of the edges in P. Let a cut operation is

performed on e by a line so that the cut operation partitions e by

disconnecting e from its end nodes. Then it can be said that the line partitions

e into two separate parts, each part has one node and it partitions P into two

open paths PI and P2, as shown figure (B.la). The line is termed the cut­

line, the edge that has been cut is termed the cut-edge and the end nodes of

the cut-edge are termed the boundary nodes.

PI P2 The cut-line

o~--~tt~-:~(--tt'---~Or----o
:

:"

e

Figure (B.la) One cut-line

o
tt

Anode

A boundary node

A cut-line

The two end nodes of P and the two boundary nodes of the cut-edge are the

four end nodes of the new two open paths PI and P2, two end nodes for each

207

"':~"

open path.

Thus, one cut-line partitions an open path into two open paths by cutting only

one edge from P. Accordingly, two cut-lines partition P into three open paths

by cutting two edges only as shown in Figure 8.lb.

Cut-line I

PI P2

............... Cut-line 2

P3

Figure 8.lb Two cut-lines

Remark (8.1)

If a cut-line cuts k edges from an open path, then the open path is partitioned

into k+1 open paths

8.3 Partitioning a cycle

A cycle in a network, as defined in Section 7.4.2, is a closed path with

minimum number of edges. Partitioning a cycle into two or more open paths

involves using one or more cut-lines. The necessary conditions of partitioning

a cycle into two or more open paths are introduced in Section 8.3.1.

8.3.1 Partitioning one cycle into two open paths

If a cut-line cuts one edge from a cycle, then the cycle becomes an open path.

The end nodes of the open path are the boundary nodes of the cut-edge. If the

cut-line cuts another edge in the cycle, then the cycle is partitioned into two

separate open paths. Each open path starts and ends at a boundary node, i.e.

the boundary nodes of the two cut-edges are the ending nodes of the two open

paths. Thus, if one cut-line cuts exactly two edges from a cycle, then the cut­

line partitions the cycle into exactly two open paths, as shown in Figure 8.2.

208

Cut line

Figure 8.2 One cut line cuts two independent cut edges

There are four boundary nodes.

The two edges are cut-edges, and the partitioned cycle is termed the cut­

cycle. The two cut-edges are either dependent edges or independent edges. If

the two cut-edges are independent, then there are four boundary nodes, as

shown in Figure 8.2, and if the two cut-edges are dependent, then there are

three boundary nodes as shown in Figure 8.3.

)-----jO--I

... /

Figure 8.3

One cut line cuts two dependent cut edges

There are three boundary nodes.

Remark (8.2)

If one cut-line cuts only two edges from a cycle, then cut-line partitions the

cycle into two open paths.

8.3.2 Dependent and independent cut-lines

Since one cut-line partitions a cycle into two separate open paths by cutting

only two edges from the cycle, then one of the cut-edges is termed the

starting-edge of the cut-line and the other cut-edge is termed the ending-

edge of the cut-line.

If a cycle is partitioned by two or more cut-lines such that each cut-

lines cuts only two edges, then some of the cut-lines have the same starting­

edge or the same ending-edge and some have different starting edges and

different ending edges.

209

Definition:

If the two cut-lines have the same starting edge or the same ending edge

then the two cut-lines are said to be dependent.

If the two cut-lines have different starting edges and different ending edges,

then the two cut-lines are said to be independent.

The dependent and independent cut-lines principle is used to partition a cycle

into k>2 open paths as explained in Section 8.3.2.

8.3.3 Partitioning one cycle into three open paths

Since one cut-line partitions a cycle into two open paths by cutting only

two edges from the cycle, then one cut-line is not sufficient to partition the

cycle into three open paths. Therefore, it is necessary to have two cut-lines

and the two cut-lines must be dependent. One cut line partitions the cycle

into two open paths, say PI and P2, by cutting only two edges. The second

dependent cut-line partitions only one of the two open paths, say P2, into two

open paths, say P2I and P22, by cutting only one edge from P2. Thus, the two

dependent cut-lines have only three cut-edges. The three cut-edges have three

different types of connection, either all of them are dependent or all of them

are independent or one cut-edge is independent and two cut-edges are

dependent. Figures 8.4a, 8.4b and 8.4c show all possible connections of the

cut-edges. Figure 8.4a shows the two dependent cut-lines and three cut-edges,

and the three cut edges are independent. Therefore there are six boundary

nodes, i.e. (2 boundary nodes per cut edge x 3 cut-edges).

Cut lin.~ 2

Cut linel

Figure 8.4a

Two dependent cut-lines cut three independent edges

210

Figure 8.4b shows two dependent cut-lines and three cut-edges. Two of the

cut-edges are dependent and the third cut edge is independent. Therefore

there are five boundary nodes, i.e. (2 nodes per cut-edge x 2 dependent cut­

edges - 1) + (2 nodes per cut-edge x 1 independent cut-edge).

Cut line 1 / :: cut line 2
"""""""--+--4

Figure 8.4b

Two dependent cut-lines and three cut-edges,

two dependent and one independent

Figure 8.2c shows the two dependent cut-lines and three cut-edges. The three

cut-edges are dependent, one cut edge is common between the other two cut

edges. Therefore there are four boundary nodes, i.e. (2 nodes per cut edge x 3

dependent cut edges - 1 node from each two dependent cut-edges x 2 set of

dependent cut-edges).

U---O-----l

....

'Figure 8. 4c

Two dependent cut lines cut three dependent edges

Remark (8.3)

Every two dependent cut lines partition the one cycle into three parts by

cutting only three cut-edges. The number of boundary nodes depends on the

type of connection these edges have.

8.3.4 Partitioning one cycle into four open paths

If the circumference of a cycle is equal or greater than k (=4), then the

cycle can be partition into four open baths by either dependent cut-lines or by

independent cut-lines.

211

If the cut-lines are dependent, then three (i.e. k-I) dependent cut-lines are

needed to partition the cycle into four open paths. The three cut-lines cut four

edges. The four cut-edges can be dependent or independent as shown in figure

8.5.

P3

PI

Figure 8.5

Three dependent cut-lines and four cut-edges

If the cut-lines are independent, then two cut-lines partition the cycle into

four open paths by cutting four edges. The first cut-line partitions the cycle

into two open paths, as described in Section 8.3.1. The second cut-line

partitions one of the resultant two open paths into three open paths by

cutting two edges as described in Section 8.2. Thus, the two independent cut­

lines partition the cycle into four open paths by cutting four edges as shown

in Figures 8.6a to 8.6d. The four cut-edges can be independent or dependent

or combination of dependent and independent cut-edges.

Cut linel Cut line 2

Figure 8.6a Figure 8.6b '.

Two independent cut-lines Two independent cut-lines

cu t four independent cut edges cu t three dependent cut-edges

and one independent edge

212

Cut linel Cut line 2

Figure 8.6c Figure 8.6d

Two independent cut lines

cut two dependent cut edges

and two independent cut edges

Remark (8.4)

Two independent cut lines

cut four dependent cut-edges

A one cycle can be partitioned into four open paths by either three

dependent cut-lines or two independent cut-lines.

8.3.5 Partitioning one cycle into k open paths

In general, a cycle can be partitioned into k open paths by dependent or

independent cut lines, or by combination of them such that each cut line cuts

two edges. If k is even, then, the cycle can be partition by k-l dependent cut

lines, or by kl2 independent cut-lines.

Ifk is odd and k>3, then the cycle can be partition by two dependent cut-lines

and (k-2)/2 independent cut lines.

8.4 Partitioning more than one cycle

Two cycles may have one or more internal edges between them. Partitioning

more than one cycle by one or more cut-line is the same as partitioning one

cycle.

8.4.1 Partitioning two cycles with an internal edge

Two cycles have one or more internal edges. If a cut-line is to partition

the two cycles into two parts, then, according to Remark (8.2), the cut-line has

to cut two edges from each cycle. If the cut-line cuts only two external edges

213

from any cycle, then the cut-line will not partition the second cycle. Thus, to

partition the two cycles the cut-line must cut two edges from each cycle, i.e.

the internal edge and one external edge from each cycle. The result is two

open paths as shown in Figure 8.7.

Figure 8.7 Partitioning two cycles by one cut-line

Therefore, each cut line has to cut three edges (two external edges and one

internal edge) to partition two cycles into two open paths.

Also, one cut-line has to cut five edges (two external edges and three internal

edges) to partition four cycles into two open paths.

Remark (8.5)

In general, if there are c cycles, and there is one internal edge between each

two cycles then one cut-line partitions the c cycles into two open paths by

cutting those internal edges and two external edges.

8.4.2 Using dependent cut-lines

Remark (8.3) establishes that two dependent cut-lines partition one

cycle into three open paths. The same rule can be used to partition two or

more cycles into three parts, each part is an open path.

Figure 8.8a shows two cycles with one internal edge between them, and

Figure 8.8b shows two cycles with more than one internal edge. To partition

the two cycles into three parts two dependent cut-lines must be used. If one of

the cut-lines cuts two external edges and one internal edge, then the two

cycles are partitioned into two parts. Since the two cut-lines are dependent,

then the two cut-lines have one or more common edges.

214

The second

cut-line

Figure 8.8a

•

·······f

Figur~ 8.8b

Partitioning two cycles by two dependent cut lines

Thus the second cut-line has two dependent edges as shown in Figure 8.8a,

and it has one common edge as shown in Figure 8.8b. The two cut lines cut

four edges. The four cut-edges may be dependent as in Figure 8.8a, and they

might be independent as shown in Figure 8.8b.

If the four cut edges are dependent, then there are four boundary nodes. If

one cut edge is independent and three are dependent, then there are six

boundary nodes. If two cut edges are independent and two are dependent,

then there are seven boundary nodes. If all cut edges are independent, then

there are eight boundary nodes.

Remark (8.6)

Two dependent cut lines partition two cycles into three parts by cutting only

four edges.

8.4.3 Using independent cut-lines

Let the circumference of each cycle be gj = gmin = 3, i = 1,2, and let mr = 1,

then m = 5. If the two cut-lines do not cut the internal edge, then each cut

line cuts two external edges from each cycle. Therefore the two cycles will be

partitioned into three parts as shown in Figure 8.9.

215

Figure B.9 Partitioning two cycles by two independent cut-lines

If one cut-line partitions the two cycles it will cut three edges, the internal

edge, and two external edges, one edge from each cycle. Since the other cut

line is independent, it must cut different edges. This implies that the size of

one of the cycles must be more than the three edges, to have another

independent cut line as shown in Figures B.10a and B.10b. The second cut line

cuts another set of edges entirely different from the cut edges that have been

cut by the first cut-line. It cuts either another internal edge and two other

external edges from the two cycles as shown in Figure B.10a or it cuts two

external edges from one cycle as shown in Figure B.10b. If two internal edges

have been cut, then the two cycles will be partitioned into five parts, if not,

then the two cycles are partitioned into four parts.

Figure B.10a Figure B.10b

Figure B.10a and b Partitioning two cycles by two independent cut­

lines

Therefore, two independent cut-lines can partition two cycles into three, four

or five parts. The two independent cut-lines partition the two cycles into:

three parts if the two cut-lines did not cut any internal edge;

four parts if one cut-line cuts the internal edge and the other did not;

or five parts if the two cut-lines cut the internal edge independently.

216

Having illustrated the different routes one or more cut-lines have to follow to

partition a cycle or a set of cycles, Sections 8.5 and 8.6 define the starting

edge and the ending edge and the route of each cut line.

8.5 The class of the starting-edge and the ending-edge

A network can be partitioned into k parts by either k-l dependent cut-lines or

kl2 independent cut-lines or a combination of dependent and independent cut­

lines and depending on the size of the network. Each cut-line partitions the

network into two parts exactly. Let L represent a cut-line.

The starting-edge and the ending-edge of a cut-line with respect to a

cycle have been introduced in Section 8.3.2.

In a network, the cut-line starts by cutting an edge of external type and

then proceeds inside a cycle, in the network, looking to cut another edge. The

next edge is either an internal edge or an external edge. If the cut-line cuts an

internal edge, it will continue proceeding looking for another edge. If the next

edge is of external type, the cut-line will terminate. Thus, the starting-edge

and the ending-edge of a cut-line, in a network, are always of

external type.

Furthermore, the starting-edge and the ending-edge of a cut-line

may belong to the one cycle or they may belong to two different cycles. If they

belong to one cycle, then the cycle is either an external cycle, so that there is

no internal edge to be cut, or a mixed-cycle, and the cut-line does not cut any

internal edge. If they belong to two different cycles, then the two cycles are of

mixed-cycle type, and the cut-line has to cut one or more internal edges.

Therefore each cut-line starts from an external edge of a mixed-cycle, ,
i.e. it starts by cutting a mixed cycle, and it ends by cutting an external edge

of a mixed-cycle, i.e. by cutting another mixed-cycle.

Each mixed-cycle has one or more internal edges with other cycles.

These cycles are either internal cycles or mixed-cycles. If there is only one

internal edge, then the cut-line will cut the internal edge, i.e. it will cut the

new cycle. If there are more than one internal edge, and each internal edge

217

belongs to a different cycle, then the cut-line selects a route to minimize the

number of internal edges as will be explained in Section 8.5.4.

8.5.1 The sub-classes of the starting and the ending edges

Even though the starting-edge and ending-edges of the cut-line are of

external type, the external type has many sub-classes as given in Section

7.5.4. For example, the X edges have nodes of type VX2 ' and at least every two

edges belong to one mixed-cycle, while each edge of sub-class XI .. has two
IJ

nodes of type V XdI' therefore each XIjj edge belongs to one and only one

mixed-cycle. Furthermore, Section 7.6.1 gives the location of a mixed cycle in

the external closed path. Therefore, a XI jj edge of a mixed cycle of middle

location is more suitable to be the start edge or the end edge than an X edge

of a terminal mixed cycle.

8.5.2 The number of possible cut lines in PGX

Since PGX = mx = n x , as defined by equation (7.34), then the edges of

PGX can be numbered from 1 to mx . Since a cut line starts and ends by

cutting external edges, then if the i th external edge is selected to be the

starting edge, then, then there will be (fix -1) different cut lines to the

remaining (mx -1) external edges. If the cut lines are started from the (i + 1) th

external edge, there will be (fix - 2) different cut lines. If the cut lines started

from (i + 2)th external edge, there will be (fix - 3) different cut lines. The

same case continues with other external edges until there is one cut line

between the last external edge and the first external edge. Thus, the total

number of cut lines is the sum of the number of cutting lines from external

edge, i.e.

Total possible number of cut lines in PGX of a network

= (mx -1) + (mx -2) + (mx -3) + ... + 2 + 1. (8.1)

The required number of cutting lines is based on k the number of partitions.

218

8.5.3 The cut-line route

Each cut-line partitions the network into two parts by cutting a set of

cut-edges, i.e. by cutting two external edges and zero, one or more internal

edges. The route of a cut-line is defined to be the set of cut-edges.

If there is more than one cut-line, then each cut-line has its route. Cut­

lines are not allowed to cross each other. If the two cut-lines are independent,

then each cut-line has a different route, (i.e. different starting edge, ending

edge and internal edges). If the two cut-lines are dependent, then the two cut­

lines will share part of the route but not all the route. They may have the

same starting edge or the same ending edge or they may share one or more

internal edges, but each cut line has its route.

The starting-edge and the ending-edge, each, belong to cycles of mixed

type. Thus, route of a cut-line starts from a mixed-cycle, and proceeds to

either a mixed cycle or an internal cycle until it terminates by cutting an

external edge of a mixed-cycle.

The open internal paths, POI' and the open mixed paths PO)a

introduced in Section 7.8 are used to determine the route of a cut-line from

the starting-edge to the ending-edge, i.e. from one cycle to anther cycle. Since

the end-nodes of the starting edge and the end-nodes of the ending edge are of

external type and since the end-nodes of both the open internal path and the

open mixed path are of external type, then there are two open paths

between the end nodes of the starting-edge and the ending-edge. Those two

open paths determine the route of one and only one cut line. The two paths

both may be open internal paths or both open mixed paths or combination of

an open internal path and an open mixed path. If one of the two paths is an

open mixed path then the open a mixed path has minimum number of

external edges. Those two open paths are termed Ph-I and Ph-2' the

boundary-cut-lines. Between Ph-I and Pb-2, there are only two external

edges, the starting-edge and the ending-edge, and there may be zero, one or

more than one internal edges. The goal of the cut line is to cut the minimum

219

number of internal edges between the starting edge and the ending edge.

The cut-line may cut zero, one, or more than one internal edge of P
b-l

and Ph-2 edges. The end nodes of the external edges, i.e. the starting edge and

the ending edge, is termed the external boundary nodes, and the end

nodes of the internal edges, that have been cut by the cut line, will be termed

the internal boundary nodes, as explained more in section (8.6.1).

8.6 Partitioning the network nodes

Since the cut-line partitions the network into two parts, then V, the set of

network nodes, is partitioned into three sets: the boundary set; the external

set; and the internal set. Thus each part consists of these sets.

8.6.1 The boundary nodes

The two open internal paths may have internal edges between

them, and they might not. The end nodes of the starting edge, the ending

edge and the internal edges between Ph-I and Pb-2 are the boundary nodes.

Let

Then

and

Vb be the set of boundary nodes,

nb be the number of elements of Vb'

VXb be the set of boundary nodes from the external edges only,

nXb be the number of elements in V Xb'

V be the set of internal boundary nodes from only the internal edges, Ib

between Ph-I and P b-2 , and let nIb be the number of elements in VIb ·

(8.2)

(8.3)

Since the cut-line cuts two edges, the starting-edge and the ending-edge, then

220

the two edges are either independent or dependent If th . d
. ey are In ependent

then

nXb = 4;

and if they are dependent, then

nXb = 3.

(8.4)

(8.5)

From Theorem (6.1) the balance partitioning number of boundary nodes is:

and

Thus, let

or

Then the range of the number of internal boundary nodes is

(8.6)

8.6.2 The remaining internal nodes

Since VI is the set of internal nodes in the network, and VIb is the set

of internal boundary nodes in the network, then the difference between VI

and VIb gives the set of remaining internal nodes in the network.

Let

VIP be the set of remaining internal nodes,

nIP be the number of elements of VIP'

then

221

(8.7)

and

(8.8)

8.6.3 The internal and external nodes of the two parts

The nodes of each part (or subsystem) consist of external nodes and

internal nodes. The following discussion defines the numbers of external

nodes and boundary nodes in each part.

Since V x is the set of external nodes in the network as described by

equation (7.6), and since VXb is the set of external boundary nodes in the

network as defined by equation (8.2), then let Vxp be the set of remaining

external nodes in the network such that:

(8.9)

and let n xp be the number of elements of V Xp, then

Let

then

then

Let

then

V XP-i be the set of external nodes of the i th part

n xp-i be the number of elements in V XPi ,

n xp . = n xp = nx - 2 .
-1 2 2

n = n
xp

2 = nx - 4 = nx - 2.
XP-l - 2 2

(8.10)

(8.11)

(8.12)

V
1P

-
i

be the set of remaining internal nodes in the i th part for i = 1.2 ,

n . be the number of elements of V1P-i '
IP-1

222

and

Thus, from equation (8.8) and (8.14)

If n IP-1 = n IP_2

then

Let

then

and

V P-i be the set of nodes of the i th part

np_i be the number of elements in Vp_i ,

V P-i = {V XP-i EB VIP_i } ;

np_i = n xp_i + nIP_i'

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

8.6.4 Using the network open paths to obtain the V1P_i

The set of nodes of VIP-i can be obtained from the set of in ternal paths

between V XPi , the i th part external and Pb-i the i th boundary path.

Since the end nodes of any open internal path between VXPi and Pb-i are

either external nodes or internal nodes or internal boundary nodes,

VIP-i = U(p OI-Pi)

n IP_i = IVIP-i I·

8.7 The I - I and I - J cut lines

(8.18)

Since the starting edge and the ending edge of a cut line are of

external type, then they belong to PGX the network external path. Since

223

PGX = fiX = n x ' as given by equation (7.34), then one cut-line partitions F
GX

into two parts.

Let each part equals the network diameter as given by equation (7.45).

Let the edges of each part be numbered from one to the network diameter.

If PGX is even, then the length of each part equals the network

diameter, and if PGX is odd, then the length of one part equals the network

diameter, and the length of the second part equals the network diameter

mInus one. Figure 8.11 shows a network, with even PGX' partitioned by an I-I

cut line.

An I - I cut line

eX2

Figure 8.11 Using the I-I cut line

to partition a network with even PGX

The starting-edge of a cut line can be any external edge of part one, i.e.

{e e e e } and the ending-edge can be any external edge of part two,
Xl , X2 , X3 , X4 ,

1· e {e e e e } If both the starting-edge and the ending-edge have the
.• TI , T2 , T3 , T4 •

same edge number, then the cut line is termed an I-I cut line, else it is

termed an I-J cut line.

Let L(e Xi ,eT
) be a cut line from the i th external edge of part one to the

jth external edge of part two.

Let j = Diameter + i ;
(8.19)

then ifi = j

then L(eXi ,eT) is an I-I cut line;

else L(eXi,eT) is an I-J cut line.

The end-nodes of the starting edge and the ending edge determine the route

224

of the cut line. Thus if the network diameter is even there are (mX) I-I cut
2

lines, and if the network diameter is odd there are (n;X -1) I-I cut lines.

8.7.1 The new balanced partitioning conditions

An I-I cut line partitions the network nodes into two three parts. One part

represents the boundary part and two parts each of them represents one

subsystem. Those three parts may be equal, balanced or unbalanced. The

necessary balancing conditions of these three parts are discussed in this

section.

The number of external nodes, in each the two parts, is given by equation

(8.11), and the number of the internal nodes, in each of the two parts, is given

be equation (8.15).

If PGX is even, then an I-I cut line partitions PGX into two equal external

parts such that n xp_
1

= n xp-
2

= n2x - 2. Then the two parts have equal number

of external nodes.

If the PGX is odd, then the I-I cut line partitions PGX into two balanced

external parts such that n xp-1 = n2x - 2, and n xp-2 = n xp-1 -1. Then the two

parts have balanced number of external nodes.

n -nib
If n 1P_1 = n 1P_2 = I 2

in ternal parts.

then the I-I cut-line partitions VIP into two equal

Since the nodes of each part is defined by equation (8.17), i.e.

n . = n . + n . then the two parts are equal if they have equal numbers of
P-l XP-l IP-l ,

external nodes and the internal nodes, i.e.

If (n + n) = (n + n) then the two parts are equal.
XP-l IP-l XP-2 IP-2

225

If nb = np_l = np_2 then the I-I cut line partitions the network nodes into two

equal parts, in this case the partition is called equal partitions.

If Inb -np_il = 1 then the partition is called balanced partitions.

8.8 Partitioning a network into k-balanced parts

Partitioning a network, with c> 1 cycles and with EB = {cI>}, Vs = {cI>} and

VXdB = {cI>} into k subsystems, has the same principle as partitioning a cycle

into k parts.

The first step: determining the number of cut-lines and weather these

cut

lines are dependent or independent.

The second step: partitioning P GX' the network external closed path

in to k -balanced parts.

The third step: partitioning n I , the total number of internal nodes

into (k+1) balanced parts.

The goal of the following theorem is to establish an approach to test the

existence of balanced partitioning in a given network. The approach is based

on using the cut-line principle introduced in Section 8.5.

Theorem 8.2 (The balanced partitioning theorem)

In a network with c>l and VB = {cI>}, V XdB = {cI>} and VXdB1 = {cI>},

if the network diameter is even and ifL is an I-I cut-line such that

n xp-1 - n xp_2

then

If np' = r n l for i = 1,2,
-1 k+1

226

Then nb = np_i = n2x + n IP_i - 2 for i = 1, ... ,k .

Proof

Since the network diameter is even, then from equations (B.ll)

nx 2 c . n xp ' = - - lor I = 1 2
-1 2 ' .

Since n IP_1 = n IP_2

Then

np_i = n xp_i + n IP_i for i = 1,2 .

smce np_i = r k: 11 for i = 1,2,

nIb <r n 1-n
k+l Xb

and since

then

thus nb <r n 1
k+l

•

8.9 Applying the new balanced partitioning conditions

The new balanced partitioning conditions are applied on the IEEE-14

network, shown in figure B.12. The goal is to partition the network with using

a partitioning technique.

227

V T-4 eT-4 V T-5 eT-5 V X-I

e
X

_
1

v 1-2 V 1-1

e l_3 e
l
_2 e

l
_1 VX_2

eSI-1

0
V S-1 eX_2

V T-1 eT-1

eI-7

eX_
3

VX-5 VX-4

Figure 8.12 Identifying the parameters of the IEEE-14 network

Example (8.1) Applying the new balancing conditions

Step 1: Identifying the network parameters

v x = {v X-I' V X-2' V X-3' V X-4' V X-S' V T-I ' V T-2' V T-3' V T-4' V T-5 } ;

Thus m and n given by equations (7.5) and (7.9) are

m = mx + m I + m B + ms = 10 + 9 + 0 + 1 = 20 ;

n = nx + n l + n B + ns = 10 + 3 + 0 + 1 = 14 ;

and Pax =mx =nx =10

and

and

and

and

and

Step 2: Calculating the k-balanced partitioning

228

fix = IExl = 10 ;

nx =IVxl=10;

fiI =IEd =9;

n l = IVII = 3;

ns =IVsl=l.

Let k=2, and by applying Theorem (8.1), the following results are obtained:

Since PGX is even, then from equation (8.11) n xp.
i

= n2x - 2 = 3; for i = 1,2

Since PGX > 4 , then from equation (8.4) nXb = 4;

Since n l = 3, then from equation (8.15) n 3
n - I - l' IP'- --=

-1 k + 1 3 '

Thus, from equation (8.6) 1 > nIb > 0

If nIb = 1,

then from equation (8.3)

nb = nXb + nIb = 4 + 1 = 5;

and from equation (8.17)

np_i = n xp_i + n lP_i = 3 + 1 = 4 for i = 1, ... ,k;

and since ns = IVsl = 1, then the one-degree node is an internal node and it

belongs to one of the two parts.

Thus the two balanced parts are: {4, 5} and the balanced boundary nodes is

{5}.

If nIb = 0,

then

nb = nXb + nIb = 4 + 0 = 4 ;

since nIb = 0, i.e. no internal boundary nodes, then the internal nodes belong

to the two parts, i.e.

Balancing is achieved by dividing the internal nodes equally between the two

pars, and equation (8.14) can be used as follows:

let - n
l

- fnl l- f3l- 2 . n Ik --- - - -,
k k 2

then

n IP_2 = nIP - n IP_1 = 3 - 2 = 1;

229

and from equation (8.17)

np_l = n xp_1 + nIP_l = 3 + 2 = 5.

np_2 = n xp_2 + n IP_2 = 3 + 1 = 4.

Since ns = IVsl = 1, then the one-degree node will belong to subsystem number

two.

Thus the two balanced parts are: {5, 5} and the balanced boundary nodes is

{4}.

Knowing that the network has these balanced values, section 7. describes a

way of finding the I-I cut line, i.e. to check the given network has these

values.

8.10 Determining the I-I cut-line in a network

Because the network has many different connections, now the role of the

partitioning algorithm is to verify that the given configuration of the network

has the balanced properties.

Since n XId = 6, then the number of POI is given in equation (7.48), i.e.

n~-1
n = 1

POI '
i=1

thus np, = 5 + 4 + 3 + 2 + 1 = 15. Instead of generating the 15 open internal
01

paths of the network, only POI'S of the I-I cut lines are generated.

Since the diameter = mx = 5, then there are 5 possible I-I cut-lines.
2

These 5 I-I cut-lines are:

L4,4 (eX-4 , eT-4) and L5,5 (eX-5 ' eT-5) •

L (e e) L2,2 (eX-2' eT-2) , L3,3 (eX-3 ' eT-3), 1,1 X-I' T-l ,

Finding which of these I-I cut lines is based on Procedure (8.1)

Procedure (8.1)

i=1;

230

While (i < the number of I-I cut lines)

Step 1: Find from the network the data of the I-I cut line;

Step 2: Find the set of external boundary nodes of the I-I cut line;

Step 3: Find the set of internal connections between the two open paths;

Step 4: Find from the set of connections the internal boundary nodes;

Step 5: If the number of internal boundary nodes is in the acceptable range

Then the network has the balanced partitioning values.

Terminate.

Else

The I-I cut-line is not suitable;

End

i = i +1;

End· ,

Applying Procedure (8.1) on the IEEE-14 network given in Figure (8.12) gives

the following results:

Step 1: The data of L1,1 (eX-l' eT-1) are:

n OI-2 (v X-2' V T-l) = 4 ;

E por_1
(v X-I' V T-2) = {eT-5, e I-4 ,eT-2 } ;

E por_2
(v X-2 , V X-5) = {eI-5, e I-6 , e I-8 ,eX-5 } ;

V P
or

-
1
(v X-I' V T-2) = {V X-I' V T-5 , V T-3 , V T-2} ;

V P
or

-
2

(V X-2 , V T-2) = {V X-2 , VI-3 , V X-3 , V X-5 , V T-l } ;

Step 2: Finding the external boundary nodes:

VXb-l = {VX-1' VT-2}; and nXb-l = 2;

V Xb-2 = {V X-2' VT-1} ; and n Xb-2 = 2 ;

Thus nXb = nXb-l + n Xb-2 = 4 .

Step 3: Finding the set of connection edges between P 01-1 and P 01-2 :

{e I-7 } ;

231

{e l_8 } •

Step 4: Finding the internal boundary nodes:

The L1,1 (ex_p eT-1) cut line starts by cutting ex_p then it proceeds to the first

set of internal edges {el_p e l_2 ,el_3} as follows:

if L1,1 (eX-I' eT-1) cuts el_1 = (v X-2 , V 1-1)' then v 1-1 will be an internal boundary

node, i.e. nIb = 1.

boundary nodes, i.e. nIb = 2.

node and v T-3 a new unacceptable external boundary node.

Since 1 > nIb > 0, then el_1 is the only suitable edge to be cut by Lll (ex_p eT_1). ,

The Lll (ex_p eT-1) cut line, is then, proceed to the second internal set of edges, ,

i.e. {e l_7 }.

If L1,1 (ex_p eT-1) cuts el_7 , then a new external node becomes a boundary node.

Step 5:

Since the route of Lll (eX-I' eT_1) has to cut el_7 to reach to the ending edge, and ,

since cutting el_7
adds an external node to the boundary set, then the

L1,1 (ex_p eT-1) cut line is not suitable I-I cut line.

Step 1: The data of L 2,2(eX-2' eT-2)

P 01-2 (v X-3 , V T-2) = 1 ;

ER (VX_2'VT-3) = {el_pel_2,el_3};
01-1

E
p01

_
2
(v X-3' V T-2) = {el_7 } ;

VR (v X-2 , V T-3) = {v X-2 , V 1-1' V 1-2' V T-3 } ;
01-1

V R (v X-3 , V T-2) = {v X-3 , V T-2 } .
01-2

Step 2: Finding the external boundary nodes ofL2,2(ex-2, eT-2):

232

The L2,2 (eX-2' eT-2) cut line starts by cutting eX_2 and ends by cutting eT_
2

.

Thus the external boundary nodes are:

VXb-l = {VX-2,VT-3}; nXb-l = 2;

V Xb-2 = {V X-3 , V T-2 }; n Xb_2 = 2 ;

Thus nXb = nXb-l + n Xb-2 = 4 .

Step 3: The set of connection edges between POI-1 and POI-2 are:

Step 4: The internal boundary nodes are:

The L 2,2 (eX-2 ' eT-2) cut line starts by cutting eX-2' then it proceeds to the set of

internal edges between POI-1 and POI-2' i.e. {eI-5,el_6 } as follows:

Step 5:

if L 2,2 (eX-2' eT-2) cuts e l_6 , then v 1-3 will be an internal boundary node and v 81

will be a node belongs to part 1. Thus

therefore

and np_l = n xp_1 + n 1P_1 + n 81 = 3 + 2 + 1 = 6 ;

np_2 = n xp-2 + n 1P_2 + n SI = 3 + 0 + 0 = 3 ;

Thus, if e
l
_
6

is cut it will not give balanced partitions.

If L 2,2 (eX-2' eT_2) cuts e
l
_
5

, then v 1-3 will be an internal boundary node and v 81

will be a node belongs to part 2.

Thus,

therefore nb = nXb + nIb = 4 + 1 = 5;

and np_l = n xp-1 + n 1P_1 + n SI = 3 + 2 + 0 = 5;

np_2 = n xp-2 + n 1P_2 + n SI = 3 + 0 + 1 = 4 ;

Thus if e is cut balanced partitioning is achieved as shown in Figure 8.
, 1-5

233

V T-4 V T-5 V X-I

V 1-2 V 1-1

V T-3

---------------------'" e _......... 81-1 -- The 1:1 cut-line is -------

0---------<
V 8-1

VX-5 VX-4

Figure 8.13 The balancing result of using the I-I cut-line

on the IEEE-14 network

E
pOI

_
2

(V X-4 , V T-3) = {eX-4 ' e l_9 ,eT-2 } ;

V P
OI

-
1
(v X-3 , V T-4) = {v X-3' V 1-3' V X-2 , V 1-1' V 1-2' V T-3 , V T-5 V T-4 } ;

V P
OI

-
2
(v X-4' V T-3) = {v X-4' V X-5' V T-2' V T-3} ;

Step 2: Finding the external boundary nodes:

V Xb-l = {v X-3' V T-4}; nXb-l = 2 ;

234

V Xb-2 = {V X-4 , V T-3} ; n Xb_2 = 2 ;

Thus n Xb = nXb-I + n Xb_2 = 4 .

Step 3: The set of connection edges between POI-I and POI-2 are:

{el _s } ;

{e l_7 } ;

{e l_4 };

Step 4: The internal boundary nodes are:

The L 3,3(eX-3' eT-3) cut line starts by cutting eX-3' then it proceeds to the set of

internal edges between POI-I and POI-2 as follows:

external boundary node. Thus the L 22 (eX-2' eT-2) cut line terminates. ,

Step 5: The L22 (eX-2' eT-2) cut line does not give balance partitions. ,

EpOI_1
(v X-4' V T-5) = {eX-3' e l_6 , e l_5, eX-I' eT_2} ;

E
pOI

_
2

(V X-5 , V T-4) = {el_s , eT-2 ,eT-3} ;

V P
OI

-
1
(v X-4 , V T-5) = {v X-4 , V X-3 , V 1-3' V X-2 , V X-I' V T-5 } ;

V P
OI

-
2
(v X-5 , V T-4) = {v X-5 , V T-2 , V T-3 , V T-4 } ;

Step 2: Finding the external boundary nodes:

V Xb-I = {v X-4 , V T-5 }; nXb-I = 2 ;

V Xb-2 = {V X-5 , V T-4 } ; n Xb-2 = 2 ;

Thus nXb = nXb-I + nXb-2 = 4 ;

Step 3: The set of connection edges between P OI-I and P 0I-2

{el _s } ;

235

are:

{e l_4 }·

Step 4: The internal boundary nodes are:

The L 4,4 (eX-4 ' eT_4) cut line starts by cutting eX_4 ' then it proceeds to the set of

internal edges between POI-I and POI-2 as follows:

If the L 4,4 (eX-4 ' eT-4) cut line cuts e I_8 = (v X-5' V X-3) , then v X-3 will be a new

external boundary node. Thus the L4 4 (eX-4 ' eT_4) cut line terminates. ,

Step 5: The L 4,4 (eX_4 ' eT-4) cut line does not give balance partitions.

nOI-I (v X-5' v X-I) = 4;

E por_1
(v X-5 , V X-I) = {el_8 , e l_6 , el_5 ,eX_I} ;

E por_2
(v T-I' V T-5) = {eT_I ,eT-2 ,el_4 } ;

Vp (v X-5 , V X-I) = {v X-5 , V X-3 , V 1-3' V X-2 , V X-I} ;
OI-1

V P
0I21

(v T-I , V T-5) = {v T-I , V T-2 , V T-3 , V T-5 } .

Step 2: Finding the external boundary nodes:

VXb-1 = {VX_l'VX_5}; nXb-1 =2;

VXb-2 = {VT-5, VT-I}; n Xb-2 = 2;

Thus nXb = nXb-1 + n Xb-2 = 4 .

Step 3: The set of connection edges between POI-I and POI-2 are:

{e l_9 } ;

{e l_7 } ;

Step 4: The internal boundary nodes are:

236

The L5,5 (eX-5' eT-5) cut line starts by cutting eX-5' then it proceeds to the set of

internal edges between POI-1 and POI-2 as follows:

If the L5,5 (eX-5' eT-5) cut line cuts e I-9 = (v X-5' V T-2)' then v T-2 will be a new

external boundary node. Thus the L5,5(eX_5' eT-5) cut line terminates.

Step 5: The L5,5(eX-5' eT-5) cut line does not give balance partitions.

Thus applying such a procedure to test the existence of the balanced

partitioning values in a given network is possible and achievable.

8.11 Chapter review

The cut line concept is very simple but important. It defines the boundary

and the subsystems areas. Cut lines have relationships between them, either

dependent or independent. Partitioning a network by using the network

external path property and the I-I cut-line is possible and the balance

partitioning vales are calculable, i.e. there is no need to use partitioning

techniques to obtain these values. Testing the existence of the balanced

partitioning values in a given network IS possible and achievable by a

procedure such as procedure (8.1).

237

Chapter 9

Concluding Remarks

9.1 General

In this thesis, the network-partitioning problem has been discussed.

The basic requirement has been to produce a balanced partitioning of a given

electrical network, subject to the constraints imposed by engineering

application. That application has been chosen to be a decomposed solution to

the state-estimation problem, with particular reference to an algorithm

known as DSE. This algorithm gives a particularly attractive computational

balanced partitioning of a global network.

The objective of research has been to devise new partitioning algorithms

which satisfy the requirements ofDSE, but which follow new directions in the

use which is made of information provided by the global network, and in

particular, by its graph-theoretical properties.

It is well known that the network-partitioning problem is classified as NP­

hard. Previously proposed solutions to this problem have usually been based

on largely heuristic principles, and the use of graph-theoretical properties in

the partitioning process is often limited. An important aim of this research is

to explore the use of graph-theoretic properties, some of which are newly

defined for the purpose, in order to simplify computational solution to the

partitioning problem.

The broad objectives of partitioning a network are to divide the network

into k subsystems. The partitioning operation is based on 'cuts'. Cuts produce

cut-edges, which determine subsystems and boundary nodes for each

sUbsystem. The remaining nodes in each subsystem are denoted internal

nodes. The effect of constraints arising from DSE is that partitioning should

238

provide a balanced result, in which the number of inte I d . rna no es In each

subsystem are approximately equal and not less than the b fIb num er 0 goal
boundary nodes, as described in Chapter 5, i.e.

then

nir = np for i=1,2, ... , k;

The value of k is not pre-determined by DSE. Instead, k is determined as the

'best' value, in the sense of a balanced result, by the partitioning process, and

used as a defining parameter in specifying the processor arrangement for

DSE.

9.2 Developments of the research

Following the definition of the DSE requirements, the goal was to develop

partitioning techniques to satisfy the DSE restrictions. Several concepts from

graph theory were investigated, such as the spanning tree method introduced

in Chapter 4, the covering set concept and the contraction concept.

Partitioning algorithms may be developed based on these and other graphical

concepts.

Chronologically, the spanning tree approach was developed first,

followed by the maximum degree technique and then by using the newly

defined properties.

239

Due to the limited information on which it is based the spanning tree optimal

partitioning method suffers from the disadvantage that, whilst it may give

satisfactory results for some spanning trees of a given network, results may

be unacceptable for other spanning trees, and its effectiveness varies from

one to another.

The limitations of the first algorithm, the non-availability of helpful relations

from graph theory and the desire to find a general solution were the

motivation behind making better use of the DSE restrictions and examining

graph theory for suitable properties which can help to obtain the boundary

nodes and the internal nodes as early as possible in the partitioning process.

This leads to the ideal balanced partitioning conditions, introduced in

Cha pter 5, and to use the covering set property in trod uced in Chapter 6. An

investigation to find the relationship between the boundary nodes and

boundary cycles leads to the edge state phenomenon discussed in Chapter 7.

Knowing that the network-partitioning problem is an NP-hard problem

and knowing the un-completeness of the existing graph theory have increased

the motivation to simplify the network-partitioning problem. The

simplifications are discussed in the sequence of the thesis chapters. The

following sections summarize the conclusions and the simplifications:

9.3 Partitioning by using the spanning tree property

One of the network properties is the spanning tree and its branching

property. The network has many different spanning trees. The spanning tree

and its branching property have been used to partition the network as

described in Chapter 4. Obtaining a spanning tree by using the row reduction

method is simple and fast. The obtained spanning tree matrix has a staircase

structure. Balancing the number of edges of the k sub-spanning trees

balances the k subsystems. The optimal number of cut-edges is (k-l) edges.

The optimal partitioning technique is designed to use the spanning

tree branches property. Every spanning tree has branches. Using the

h . .!': t nd flexible The technique is branches property made the tec nlque very las a .

240

fast in finding the number of edges of each sub-spanning tree and flexible in

selecting the starting branch. The flexibility of the technique facilitates the

technique to partition a wide range of spanning trees. The staircase structure

of spanning tree matrix limited the flexibility of the technique. Balancing the

k sub-spanning tree is obtained by balancing the number of edges. The set of

cut-edges and the set of boundary nodes are obtained by using simple fast

matrix addition operation.

Classifying the spanning tree nodes into bottom nodes (or one-degree

nodes), branch nodes and junction nodes simplified using the branches,

consequently partitioning the spanning tree.

Using a spanning tree matrix, other than the staircase structure, with

some modification to the algorithm will make the technique more general and

able to partition more spanning trees.

9.4 Determining the ideal balanced partitioning values

Using the network properties is the first step of simplifying the NP­

hard problem. Determining the conditions of an ideal balanced partitioning is

the second step of simplifications the NP-hard problem.

In chapter (5) the DSE restrictions and the conditions for ideal

balanced partitioning are discussed and formalized in simple equations. The

classification of the subsystem nodes into internal nodes and boundary nodes

is a very important fact in balanced partitioning. The number of boundary

nodes has a direct relationship with the number of cut-edges in the network

and with k, the number of subsystems. The number of internal nodes in a

subsystem also has an indirect relationship with k.

Ignoring the existence and the importance of such classification, In

balanced partitioning, was one of the difficulties of developing a

mathematical formula for the balanced partitioning and it was one of the

reasons that lead to classify the network-partitioning problem as NP-

complete problem.

The relationship between internal nodes, the boundary nodes and k

has lead to the ideal balanced partitioning. The concept of balancing the

241

numbers of internal nodes in the k subsystems is fundamental to achieve to a

global balanced partitioning. The conditions of the global ideal balanced

partitioning are discussed in Chapter 5. Theorem (5.1) defined new simple

mathematical formulas to obtain the ideal balanced partitioning values of a

network for a given k, i.e. n b , nir for i = 1, 2, ... , k and the possible range of fib'

The new formulas lead to new directions of dealing with the network­

partitioning problem. The balanced partitioning values of a given network

can be calculated. The introduction of these values by Theorem (5.1) is a

simplification step to calculate these values early in the partitioning process,

comparing with the traditional partitioning methods that find these values

late.

The second new direction is with respect to the role of the partitioning

technique. The role now is to check if the given network configuration has

these values or not. If the network has these values, then how to obtain these

sets, i.e. the set of cut-edges, the set of boundary nodes and the k-sets of

internal nodes of the k subsystems.

9.5 Partitioning by using the ideal balanced partitioning

values

Knowing the balanced partitioning values of a given network prior of

using a partitioning technique leads to (i) check that the given network

configuration possess the balanced partitioning values and to (ii) find these

sets, i.e. the set of cut-edges, the set of boundary nodes and the set of internal

nodes of each subsystem.

It has been found that the covering set concept is one of the nearest

graph concepts which can be used to obtain the global boundary nodes as

early as possible. Thus the maximum degree technique, introduced in

Chapter 6, is based on finding two minimum covering sets, one set from the

network and the other set is from the spanning tree.

Finding the set of global boundary nodes by using the maximum degree

technique is fast, easy. The technique can be applied to a wide range of

242

spanning trees to obtain the global boundary nodes from. The spanning tree

of the network is used to determine the set of cut-edges and the subsystems

nodes, i.e. the global boundary nodes and the internal nodes. The partitioning

technique is fast and the simulation results agree with ideal balanced

partitioning values obtained by using theorem (5.1).

It can partitions a wide range of spanning trees and give the ideal balanced

partitioning values. The maximum degree uses the sets operation more than

the matrix operation.

9.6 Towards theoretical foundation for graph theory

Further investigation in graph theory to obtain relationships between

the set of boundary nodes and the boundary cycles has shown that many

graph properties can be derived if suitable definitions and classifications are

applied to the state of the edge in the network. It has been noted that an edge

in a network is either belongs to a cycle or it does not. This observation has

been named the 'edge state phenomenon' as described in Chapter 7.

The edge state phenomenon is a natural phenomenon that does exist in

every network. It has the ability to explore the graph natural properties.

Some of these properties, which are useful to the partitioning problem, have

been deduced in Chapter 7 such as the network external closed path, the open

internal paths and the cycle circumferences relationships. Other properties

are to be stated in the future work and many other properties can be deduced.

It has been shown that graph is a structured entity. The basic

elements of this entity are the nodes, the edges the connection.

A network is defined as a set of nodes connected by a set of edges. The

mechanism of connection is very important. It defines the state of the edges,

the state of the nodes and the network type. The states of four unconnected

nodes are isolated nodes. The connection of three edges between the four

nodes, such that no cycle is formed, defines the edges states and changes the

nodes state. Two edges will be of one-degree type and one edge will be of a

243

bridge type. The states of two nodes are changed to the one-degree types and

two nodes are changed to the bridge types. The connection of a new edge

between the two one-degree nodes, introduces a cycle. The cycle changes the

states of the four edges and the four nodes to the external type.

The beauty of the edge state phenomenon is that it covers every thing

in the network, the edges, the nodes, the paths and the cycles. It also covers

the network itself in all its different sizes and all possible connections and

with or without cycles. The edge state phenomenon makes it easy to deduce

new graph properties and relationships in the two dimensions plane. There is

a perfect match between the deduced relations, which define the different

graph properties. Such as the network external close path and its relations

with m, gc and gmax' the basic configuration and the network classifications,

Gp •
GX

The edge state phenomenon is also capable to describe the network properties

in three dimensions.

Another graph property can be deduced related to the conservation of

the graph natural properties. A change in the connection of one edge in Gu

does not destroy the original graph properties. While, an elimination or an

addition of an edge or a node to the network destroys the original graph

properties. Thus new graph operations, based on the edge state phenomenon,

can be defined and some of the conventional graph operations, defined in

graph theory textbooks, need to be redefined.

The graph uniqueness is another property that has been deduced by

using the edge state phenomenon and its properties.

9.7 Towards a mathematical partitioning model
Knowing the ideal balance partitioning values, the target IS to find a

mathematical model for partitioning the network. The edge state phenomena

244

has been discovered while trying to find the mathematical solution. The

flexibility and exhaustibility of the edge state phenomena guarantee that a

mathematical partitioning model is possible.

The future mathematical partitioning model is based on the ideal

balanced partitioning values obtained by using theory (6.1) and on the

network properties as defined by the edge state phenomena such as the

network external closed path, the circumference of the c cycles.

The first part of the mathematical model has been described in

Chapter 8. Partitioning, as a cut operation in the network, has to follow a

specified route to give the ideal balanced partitioning values. The route of the

cut-line starts from an edge and ends at another edge. The following points

can be concluded from Chapter 8:

• The cut-lines have relation between them, l.e. dependent or

independent cut-lines

• Each cut-line has to cut at least two edges of external type.

• The cut-line mayor may not cut internal edges.

• The end-nodes of the cut-edges are the boundary nodes. Thus the

boundary nodes are classified into external and internal boundary

nodes.

• The external edges belong to the external closed path. Thus network

•

external closed path property has to be partitioned.

Theorem (8.1) states the conditions of balanced partitioning of a

specified network.

9.8 Future work
The network-partitioning problem is a very interesting and challenging

problem and the discovery of edge state phenomenon makes it more

. t t' d II hard to stop The deduced network properties are few In eres Ing an rea y .
. . h I t'll there are many important graph graph propertIes In t e pane, s I

properties and relationships that can be derived by using the edge

phenomena concept, such as: The three dimensional graph.

245

The subject of the thesis is very interesting to the author. Thus, the future

work will be a continuation to complete the mathematical partitioning model

and to prove that the NP-hard problem is a P problem. Some of the points

that has to be completed are:

• Design a procedure to identify the types edges and the nodes of a given

network as described by the edge state phenomena in Chapter 8.

• Defining the cross edges property and its effect on the network.

• The distribution of the boundary nodes.

• Defining the network balance state.

• Applying the phenomenon in the three dimensions. The concept of

finding the balanced partitioning values can be developed to find the

unbalanced partitioning values.

• Defining new graph operations based on the edge state phenomenon.

246

References

1. Adby, P.R. and Demster, M. A.: "Introduction To Optimization Methods'" ,
Chapman and Hall, London, 1974.

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.; " Network Flows: Theory,

Algorithms, and Applications"; Prentice Hall, Englewood Cliffs, New Jersey,

1993.

3. Azzam, M. H.: " Developments In Decomposition Methods For Power System

State Estimation ", Ph.D. Thesis, BruneI University, 1985.

4. Barnes. E.R.: " An algorithm for partitioning the nodes of a graph", SIAM J.

Algebr. Discrete methods 1982, 3, (4), pp.291-307.

5. Beineke, Lowell W. and Wilson, Robin J.: "Selected Topics in Graph Theory";

Academic Press, New York/London, 1983.

6. Bellman, Richard: "Introduction To Matrix Analysis", New York;

Maidenhead: McGraw-Hill, 1970.

7. Berge, C.; "Graphes"; Gauthier-Villars, 1985.

8. Berge,C.;" Hypergraphes"; Gauthier-Villars, 1987.

9. Biggs, N.L., Lloyd, E.K.; and Wilson, R.J.; " Graph Theory 1736-1936";

Clarendon Press, Oxford, 1976.

10.Bollobas, B.; " Random Graphs"; Academic Press, 1985.

11. Bollobas, B. "Advances In Graph Theory"; Amsterdam; Oxford: N orth-

Holland Publishing, 1978.

12. Bondy, J.A., Murty, U.S.R.; "Graph Theory with Applications"; North-

Holland, 1981.

13.Bui, T. N., and Jones, C.; "Finding good approximate vertex and edge

partitions is NP-hard,"; Inf. Process. Letters, 42, 1992, pp. 153-159.

14.Bui, T. N., and Jones, C.; "A heuristic for reducing fill-in in sparse matrix

factorization"; in Proceedings of Sixth SIAM Conference on Parallel

Processing for Scientific Computing, 1993, pp. 445-452.

247

15. Botafogo, R. A.; "Cluster analysis for hypertext systems", In proceedings of

the 16th Annual International ACM SIGIR Conference on Research and

Development in Information retrieval (Pittsburg, Pa., June 27-July 1). 1993.

ACM, New York, pp. 116-125.

16. Chamberlain, B.L.; "Graph Partitioning Algorithms for Distributing

Workloads of Parallel Computation";

www.washington.edu/homes/bradlcv/publ/degree/generals.pdf, 1998.

17. Clements, K. A. and Wollenberg, B.F.: " An Algorithm for observability

Determination in Power System State Estimation ", IEEE PES Summer

Meeting, San Francisco, CA, A 75 447-3, July 1975.

18. Christofides, Nicos: "Graph Theory: An Algorithmic Approach ", Academic

Press, London, 1975.

19. Colbourn, C. J.: "The Combinatorics of Network Reliability", vol. 4 of The

International Series of Monographs on Computer Science. Oxford University

Press, 1987.

20. Cullum, J. and Willoughby, R.A.: "Large Scale Eigenvalue Problems"; North

Holland, Amsterdam, The Netherlands, pp. 193-240, 1985

21. Diestel, Reinhard: "Graph Theory"; New York: Springer, 1997.

22. Fiduccia,C.M., and Mattheyses, R.M.: " A linear-time heuristic for improving

network Partitioning", Proceedings of 19th Design automation workshop,

1982, pp.175-181.

23.Fiorini, S. and Wilson, R. J.: "Edge Colourings of Graphs", London, Pitman,

1978.

24. Fleischner, H.; "Eulerian Graphs and Related Topics (Annals of Discrete

Mathematics 45), North-Holland, Amsterdam, 1990.

25. Garey, M. R. and Johnson, D. S.: "Computers and Intractability: " A Guide to

NP-Completeness ", Freeman, San Francisco, page 209-210,1979.

26. Gibbons, A.; "Algorithmic Graph Theory"; Cambridge University Press, 1988.

27. Golumbic, M.C.; "Algorithmic Graph Theory and Perfect Graphs"; Academic

Press, 1980.

248

28. Gondran, M., and Minoux, M.;" Graphes et Algorithmes"; Eyrolles, Paris,

1985.

29. Graham, R. M., Grotschel, L. and Lovasz, " Handbook of Combinatorics'" ,

North-Holland, Amsterdam, 1995,2 volumes.

30. Graybill, Franklin A.: "Matrices With Applications in Statistics"; 1983.

31.Hampel, Frank R. and Ronchetti, Elvezio M.: "Robust Statistics", New York,

Chichester, Wiley, 1986.

32. Habiballah, 1.0. Roy, R.G. and Irving M.R.: "Markov Chains For

Multipartitioning Large Power System State Estimation Networks", Int.

Journal og Electric Power Research, Vol. 45, 1998, pp. 135-140.

33. Habiballah, 1.0. and Quintana, V.H.: " Integrated-Linear-programming

eigenvector-based approach for multi-partitioning power system state­

estimation networks ", lEE Proc.-Gener. Transm. Distrib. 141, pp. 11-18,

1994.

34.Harary, F.; "Graph Theory"; Addison-Wesley, Reading, Massachusetts, 1969.

35. Hogben, Leslie: "Elementary Linear Algebra"; St. Paul, MN, 1975.

36.Jensen, T.R. and Toft, B.; "Graph Coloring Problems"; Wiley, New York,

1995.

37.Karypis, G. and Kumar, V.;" Analysis of multilevel graph partitioning"; Tech.

Report 95-037, Computer Science Department, University of Minnesota,

1995.

38. Karypis, G. and Kumar, V.;" Parallel multilevel k-way partitioning scheme

for irregular graphs"; In Super-computing 96 Conference Proceedings.

ACMlIEEE, Nov. 1996. (a more complete version is available at http://www­

users.cs. umn.edulkarypis/metis/publications/main.html).

39.Karger, David R. and Stein, Clifford; " A new Approach to the Minimum Cut

Problem"; Journal of the ACM, Vol. 43, No.4, July 1996, pp.601-640.

40. Karger, D. R. "A randomized fully polynomial time approximation scheme

for the all terminal network reliability problem", In Proceedings of the 27th

annual ACM, New York, pp. 11-17,1995.

249

41. Kernighan, B. W. and Lin, L.: " An effecient heuristic procedure for

partitioning graphs", Bell Syst. Tech. J., 1970, 49, pp. 291-307.

42. Krishnamurthy, B.; "An Improved Min-Cut Algorithm for Partitioning VLSI

Networks", IEEE Trans. on Computers, Vol. C-33, May 1984, pp.438-446.

43.Lawler, E. L., Levitt K. N. and Turner, J.; "Module Clustering to Minimize

delay in Digital networks"; IEEE Trans. on Computers, vol. C-18, Jan. 1969.

pp.47-57.

44. Lo, K. L.; Salem, M. M.; McColl, R. D. and Moffatt, A. M.; "Two-level state

estimation for large power system Partl: Algorithms; Part2: Computational

experience"; lEE Proceedings, Vol. 135, Pt. C, No.4, July 1988, p299-318.

44a. Lo, K. L.; Salem, M. M.; McColl, R. D.; Moffatt, A. M.and Sulley, J.L.; "Multi

level state estimation for electric power systems"; 19th Universities Power

Engineering Conference (UPEC 84), April 1984, paper 14.2, Dundee, UK.

44b. Lo, K. L.; Salem, M. M.; McColl, R. D.; and Moffatt, A. M. : "Two level power

system state estimation"; 20th Universities Power Engineering Conference

(UPEC 85), April 1985, pp. 37-40, Huddersfield, UK .

45. Lovasz, L.; "Combinatorial Problems and Exercises"; 2eme edition,

Akademiai Kiada, Budapest, 1993.

46. Lovasz, L., Plummer, M.D.; "Matching Theory"; Annals of Discrete

Mathematics 29, North-Holland, 1986 - also at: Akademia Kiad6, Budapest,

1986.

47.Marsh, J.F. and Azzam, M "A model co-ordination approach to hierarchical

static state-estimation for power systems"; Proc. of lEE conf., Durham, July

1986; pp. 145-149.

48. Marsh, J.F. and Azzam, M.: "MCHSE: a verstile frame-work for the design of

two-level power system estimators"; lEE Proc. Pt. C, vol. 135, No.4, July

1988, pp. 291-298.

250

49. Marsh, J.F, Zitouni, S. and Irving, M.R.; "Computational Aspects of

Distributed State-estimators for Power Systems"; 12th world Congress; IFAC;

vol. 8, pp. 17-20, Sydney, Australia; 1993.

50.Nishizeki, T., Chiba, N.; "Planar Graphs: Theory and Algorithms (Annals of

Discrete Mathematics 32)"; North-Holland, Amsterdam, 1988.

51. Ortega, James M.: "Matrix Theory", Plenum, London, New York, 1988.

52. Palmer, Edgar: "Graphical Evaluation - An Introduction To Random

Graphs", Wiley, 1985.

53. Park, C., AND Park. Y.: "An efficient algorithm for VLSI network

partitioning problem using a cost function with balancing factor", IEEE

Transactions on Computer-Aided Design 12, 11 (Nov. 1993), 1686-1694.

54. Picard, J. C. and Ratlifff, H. D. "Minimum cuts and related problems",

Networks 5, 357-370. 1975.

55.Picard, J. C. and Queyranne, M.:" Selected applications of minimum cuts in

networks", I.N.F.O.R: Can. Oper. Res. Inf. Proc.20, Nov., 394-422, 1982.

56. Pothen, Alex; "Graph Partitioning Algorithms with Applications to Scientific

Computing"; Department of Computer Science; Old Dominion University;

Norfolk; VA; pothen@cs.odu.edu.

57. Quintana, V.H., Simoes-Costa, A. and Mandel, A.:" Power System Topological

Observability Using a Direct Graph-Theoretical Approach ", IEEE Trans.

Power App. Sys, PAS-I0l, pp. 617-626, March 1982.

58. Ramanathan, A., and Colbourn, C.;" Counting almost minimum cutsets with

reliability applications"; Math. Prog. 39, 3 (Dec.), 1987; 253-261.

59.Rao, V. B. and Arun, K. S.; " Constructive heuristics and lower bounds for

graph partitioning based on a principal components approximation"; SIAM J.

Matrix Annual. Appl., 14, 1993, pp. 991-1015.

60.Reid, J.K; "Large sparse sets of linear equations"; Academic Press, London,

1971.

61. Rose, James R.: " Sparse Matrix Computations", London, Academic Press,

1976.

251

62. Serre, Jean-Pierre: "Trees", Belin, New York: Springer-Verlag, 1980.

63.Sims, Chrles C.: "Computation With Finitely Presented Groups"; Cambridge:

Cambridge University Press, 1994.

64. Strang, Gilbert: "Linear Algebra and its Application"; San Digo: Hartcourt,

Brace, Jovanovich, 1988.

65.Saaki, H.; Aoki, K. and Yokoyama, R.: " A Parallel Computation Algorithm

for Static State Estimation by means of Matrix Inversion Lamma", IEEE

Trans. On Power System, Vol. PWRS-2, pp. 624-632, Aug 1987.

66.Sanchis, L. A. "Multi-Way Network Partitioning", IEEE Trans. on

Computers, Vol.38, No.1, Jan 1989, pp.62-81.

67. Schweikert D. G. and Kernighan, B. W.; "A Proper Model for the Partitioning

of Electrical Circuits", 9th Design Automation Workshop, 1972, pp. 57-62.

68.Suzukivi, Michio: "Group Theory I"; Berlin, New York: Springer-Verlag,

1986.

69. Taylor, A.J.E.: "Techniques for Power System Simulation Using Multiple

Processor" Ph.D. Thesis, University of Durham; 1990.

70. Thulasiraman, K. and Swamy, M. N. S.: "Graphs: Theory And Algorithm",

New York: Chichester, Wiley, 1992.

71.Van Lint, J.H., Wilson, R. M.; "A Course In Combinatorics"; Cambridge

University Press, 1992.

72. White, Peter: "Optimal Control"; Chichester: John Wiley & Sons, 1996.

73. Y. Wei and C. K. Cheng, "Toward Efficient Hierarchical Designs by Ratio Cut

Partitioning", Proc. Int. Conf. on Computer-Aided Design, 1989, pp.298-301.

74.Y. Wei and C. K. Cheng, "Two-way Two-level Partitioning Algorithm," to

appear in IEEE Int. Conf. on Computer Aided Design, 1990.

75. Van Cutsem, TH., and Ribbens-Pavella, M;: " Critical survey of hierarchical

methods for state estimation of electrical power systems", IEEE Trans., 1983.

PAS-I02, pp. 3415-3424

252

Appendix A

The network basic definitions and notations

A.I The network basic variables and properties

A network is a very simple structure [69], consisting of V, a non-empty

set of nodes and E, a non-empty set of lines or edges, each of which links a

pair of nodes. The direction of linkage from one node to another mayor may not

be important; if direction is important, the edge is said to be directed; if not,

undirected.

The number of nodes and the number of edges are the two basic variables

of a network. The notation G = (V, E) is used to denote a graph of a given

network with V and E represent the sets of nodes and E edges respectively and

with n = IVI be the number of elements of V and m = lEI be the number of

elements of E. The number of nodes in a network is termed the size of the

network.

An edge e is associated with exactly two end-nodes v and w. The notation

e(v, w) is used to denote an edge e and its end-nodes v and w. The edge e (v, w)

and the edge e (w, v) are the same edge, but with opposite direction. If e (v, w)

belongs to G, then v and ware adjacent or neighbouring, nodes of G. Two

edges are adjacent if they share a common end-node. Two edges are said to be

dependent if they share one common node between them, otherwise they are

said to be independent.

The degree d (v) of a node v is equal to the number of edges connected to

node v. The network degree DG is the sum of the degrees of all nodes, i.e.

n

DG = L,d(vJ =2m
(A.I)

i=l

253

A node of degree zero is termed an isolated node.

It is assumed that if two nodes are connected, the connection is made by

one and only one edge. Thus, n = 0 (D G) and m = 0 (D
G

).

Further details about the graph network theory and its application may

be found in a wide range of texts, of which references [21, 34, 69] are typical.

A.2 A walk, a path and a cycle

A walk W in a network is an alternating sequence of nodes and edges, for

example {v 0' e1 , VI' e 2 ,' ", e j v j }. A path is a sequence of nodes connecting two

nodes via edges. The set of nodes of a path P has the form Yep) = {v 0' VI"'" v j } .

The set of edges of a path P has the form E(P) = {eo' e1 ,"', ej }; with ei = (Vi' V i+1).

The nodes Vo and Vj are termed the end-nodes of P. The number of edges in a

path is called the length of the path. A path is termed an open path if the

end-nodes of P are different. A path is termed a closed path if the end­

nodes of P are the same. A cycle is a closed path over a set of nodes, V (P),

such that the length of the closed path is minimum, and there is no closed path

between any proper subset of nodes of Yep). Thus each cycle is independent i.e.

each cycle in the network is represented by a different set of edges. A cycle is

sometimes called a circuit. A graph without cycles is termed a tree.

A.3 Connectivity in Networks

A basic property a network may possess is that of being connected. A

network is connected if it contains no isolated nodes or isolated sub-networks

[49]. The isolated sub-networks are termed components of the network. The

smallest component is the isolated node.

The concept of graph connectivity is very important In the DSE. If a

network is not connected then it is not observable, and therefore, the DSE

254

algorithm cannot be used, and all the presented techniques are not applicable.

Consequently, it is assumed that the given network is connected.

A.4 Network Types

Sometimes networks are classified into types, according to known network

properties. For example, if the edges of a network are identified with directions

or with ordered pairs of nodes, the network is called a directed network.

Otherwise the network is called an undirected network. A matrix can

represent the connection of either network type.

Another property that used to classify the network types is the cyclic

property. A network is said to be acyclic if it has no closed loops, i.e. no cycles.

A tree is a typical acyclic connected graph. A spanning tree of a network is a

tree that touches every node of the graph, and in this sense is the largest

possible tree. A spanning tree has very well defined properties. It is a tree with n

nodes and m-l edges, and it may always be obtained by eliminating (m-n+l)

edges from the network. In this thesis, the spanning tree and its properties has

been used to partition the given network. More about the spanning tree and its

properties are introduced in Chapter 4.

A bipartite network is a network G whose node set V can be partitioned into

two non empty sets VI and V
2

in such a way that every edge of G joins a node in

VI to a node in V 2 •

A complete network is a network in which every node is connected to every

n(n -1)
node in the network. A complete network has 2 edges.

255

AppendixB

The NP-complete problem

B.I The NP-complete

Problems are divided into two categories: those for which there exists an

algorithm to solve it with polynomial time complexity, and those for which

there is no such algorithm. The former class of problems are denote by P. There

are problems, for which no known algorithm exists that solves it in polynomial

time, but there is also no proof that no such algorithm exists. Among these

problems that are not known to be in P (or in -P), there is a subclass of problems

known as NP-complete: those for which either all are solvable in polynomial

time, or none are. Formally, a problem is NP if there exists an algorithm with

polynomial time complexity that can certify a solution. For example, it is not

known whether there exists a polynomial algorithm to solve a system of

Diophantine equations, Ax=b for x in Zn (integer n-vectors). However, we can

certify any trial x in polynomial time, just by checking that it is in Zn, then

multiplying by A to compare with b. A problem, p, is NP-complete if it is NP and

for any problem in NP, there exists a polynomial time algorithm to reduce it to p.

A fundamental member of the NP-complete class is the satisfiability problem.

It is an open question whether P=NP, and most regard the NP-complete

problems as having exponential time complexity.

B.2 NP-hard

256

An optimization problem that relies upon the solution of an NP-complete

problem. In that sense, NP-hard problems are at least as hard as NP-complete

problems. Here are some NP-hard problems:

1. Bin packing

2. Covering , Cutting stock

3. Knapsack

4. Packing, Partitioning and Pooling

5. Traveling Salesman

6. Vehicle routing

257

AppendixC

C.l The IEEE standard networks

The schematic diagrams of the 14-node, 3D-node and 57-nodes IEEE

standard networks are given in Figures Cl, C2 and C3 respectively.

258

1

Figure Cl The IEEE-14 network

6 11

~12

13

2 3 ------1-----...--

8 . 7------+-

10 9

14
259

Figure C2 The IEEE-30 network

8

4 ." 6 28

29

30

22 21

25

260

5 4

26 24

27

28

29

Figure C3 The IEEE-57 network

19 20

21

52

. 22

37

. 36

33

32

53 54

261

16

50

9 10 1

	392075_0000
	392075_0001
	392075_0002
	392075_0003
	392075_0004
	392075_0005
	392075_0006
	392075_0007
	392075_0008
	392075_0009
	392075_0010
	392075_0011
	392075_0012
	392075_0013
	392075_0014
	392075_0015
	392075_0016
	392075_0017
	392075_0018
	392075_0019
	392075_0020
	392075_0021
	392075_0022
	392075_0023
	392075_0024
	392075_0025
	392075_0026
	392075_0027
	392075_0028
	392075_0029
	392075_0030
	392075_0031
	392075_0032
	392075_0033
	392075_0034
	392075_0035
	392075_0036
	392075_0037
	392075_0038
	392075_0039
	392075_0040
	392075_0041
	392075_0042
	392075_0043
	392075_0044
	392075_0045
	392075_0046
	392075_0047
	392075_0048
	392075_0049
	392075_0050
	392075_0051
	392075_0052
	392075_0053
	392075_0054
	392075_0055
	392075_0056
	392075_0057
	392075_0058
	392075_0059
	392075_0060
	392075_0061
	392075_0062
	392075_0063
	392075_0064
	392075_0065
	392075_0066
	392075_0067
	392075_0068
	392075_0069
	392075_0070
	392075_0071
	392075_0072
	392075_0073
	392075_0074
	392075_0075
	392075_0076
	392075_0077
	392075_0078
	392075_0079
	392075_0080
	392075_0081
	392075_0082
	392075_0083
	392075_0084
	392075_0085
	392075_0086
	392075_0087
	392075_0088
	392075_0089
	392075_0090
	392075_0091
	392075_0092
	392075_0093
	392075_0094
	392075_0095
	392075_0096
	392075_0097
	392075_0098
	392075_0099
	392075_0100
	392075_0101
	392075_0102
	392075_0103
	392075_0104
	392075_0105
	392075_0106
	392075_0107
	392075_0108
	392075_0109
	392075_0110
	392075_0111
	392075_0112
	392075_0113
	392075_0114
	392075_0115
	392075_0116
	392075_0117
	392075_0118
	392075_0119
	392075_0120
	392075_0121
	392075_0122
	392075_0123
	392075_0124
	392075_0125
	392075_0126
	392075_0127
	392075_0128
	392075_0129
	392075_0130
	392075_0131
	392075_0132
	392075_0133
	392075_0134
	392075_0135
	392075_0136
	392075_0137
	392075_0138
	392075_0139
	392075_0140
	392075_0141
	392075_0142
	392075_0143
	392075_0144
	392075_0145
	392075_0146
	392075_0147
	392075_0148
	392075_0149
	392075_0150
	392075_0151
	392075_0152
	392075_0153
	392075_0154
	392075_0155
	392075_0156
	392075_0157
	392075_0158
	392075_0159
	392075_0160
	392075_0161
	392075_0162
	392075_0163
	392075_0164
	392075_0165
	392075_0166
	392075_0167
	392075_0168
	392075_0169
	392075_0170
	392075_0171
	392075_0172
	392075_0173
	392075_0174
	392075_0175
	392075_0176
	392075_0177
	392075_0178
	392075_0179
	392075_0180
	392075_0181
	392075_0182
	392075_0183
	392075_0184
	392075_0185
	392075_0186
	392075_0187
	392075_0188
	392075_0189
	392075_0190
	392075_0191
	392075_0192
	392075_0193
	392075_0194
	392075_0195
	392075_0196
	392075_0197
	392075_0198
	392075_0199
	392075_0200
	392075_0201
	392075_0202
	392075_0203
	392075_0204
	392075_0205
	392075_0206
	392075_0207
	392075_0208
	392075_0209
	392075_0210
	392075_0211
	392075_0212
	392075_0213
	392075_0214
	392075_0215
	392075_0216
	392075_0217
	392075_0218
	392075_0219
	392075_0220
	392075_0221
	392075_0222
	392075_0223
	392075_0224
	392075_0225
	392075_0226
	392075_0227
	392075_0228
	392075_0229
	392075_0230
	392075_0231
	392075_0232
	392075_0233
	392075_0234
	392075_0235
	392075_0236
	392075_0237
	392075_0238
	392075_0239
	392075_0240
	392075_0241
	392075_0242
	392075_0243
	392075_0244
	392075_0245
	392075_0246
	392075_0247
	392075_0248
	392075_0249
	392075_0250
	392075_0251
	392075_0252
	392075_0253
	392075_0254
	392075_0255
	392075_0256
	392075_0257
	392075_0258
	392075_0259
	392075_0260
	392075_0261
	392075_0262
	392075_0263
	392075_0264
	392075_0265
	392075_0266
	392075_0267
	392075_0268
	392075_0269
	392075_0270
	392075_0271
	392075_0272
	392075_0273
	392075_0274
	392075_0275
	392075_0276
	392075_0277
	392075_0278
	392075_0279
	392075_0280
	392075_0281
	392075_0282
	392075_0283
	392075_0284
	392075_0285
	392075_0286
	392075_0287

