
Tabu Search for Ship Routing and Scheduling

A thesis submitted for the degree of Doctor of Philosophy

By: Khaled Al-Hamad

School of Information Systems, Computing and Mathematics
Brunel University

December 2006

Abstract

This thesis examines exact and heuristic approaches to solve the Ship Routing

and Scheduling Problem (SRSP). The method was developed to address the problem

of loading cargos for many customers using heterogeneous vessels. Constraints relate

to delivery time windows imposed by customers, the time horizon by which all

deliveries must be made and vessel capacities. The objective is to minimise the

overall operation cost, where all customers are satisfied. Two types of routing and

scheduling are considered, one called single-cargo problem, where only one cargo can
be loaded into a ship, and the second type called multi-cargo problem, where multiple

products can be carried on a ship to be delivered to different customers.

The exact approach comprises two stages. In the first stage, a number of

candidate feasible schedules is generated for each ship in the fleet. The second stage
is to model the problem as a set partitioning problem (SPP) where the columns are the

candidate feasible schedules obtained in the first stage. The heuristic approach uses

Tabu Search (TS). Most of the TS operations, such as insert and swap moves, tenure,

tabu list, intensification, and diversification are used. The results of a computational

investigation are presented. Solution quality and execution time are explored with

respect to problem size and parameters controlling the tabu search such as tenure and

neighbourhood size.

The results showed that the average of the solution gap between TS solution

and SPP solution is up to 28% (for small problems) and up to 18% for large problems.

However, obtaining an optimal solution requires a large amount of computer time to

produce the solution compared to obtaining approximate solutions using the TS

approach. The use of Tabu Search for SRSP is novel and the results indicate that it is

viable approach for large problems.

Acknowledgments

First I thank God for helping me to succeed in the accomplishment of this

thesis.

I wish to express my deepest gratitude and sincere appreciation to Professor

Ken Darby-Dowman for his continuous guidance, encouragement, careful reading,

correction, and constructive criticism of my thesis.

I am grateful to Dr Con-nac Lucas and Mathematical department staff for any
help they provided me during this study.

Special thank to my parents who always prayed to God to support and help me
during the four years I spent doing my research.

To my wife Wedad, who supported and encouraged me to complete my thesis.

I also dedicate this work to my children Mohammad, Omar, Ibrahim, Munira and Ola.
I am also grateful to my brothers and sisters for their support and who prayed

to God to help me.
Finally, I would like to thank all my friends for their good wishes that I

succeed.

Table of Contents

Abstract

Acknowledgements

Chapter 1: Introduction

1.1 Transportation Management ..
1.1.1 The Economic Importance of Transportation

1.1.2 Modes of Transportation
1.2 Sea Transportation ...

1.2.1 Increase in the number of ships world wide
1.2.2 Type of ships ...
1.2.3 Cost of operation and other expenses
1.2.4 Terms in Maritime Transportation Systems
1.2.5 Classification Scheme for The Ship

and Scheduling Problem
1.3 Methods Of Scheduling ...
1.4 The aims of this research project

Chapter 2: Solution Techniques for Routing and Scheduling
2.1 Integer Programming (IP) ..

2.1.1 Branch and Bound B&B method
2.1.2 Illustration of (0-1) integer programming
2.1.3 Applications of (0- 1) integer programming

2.2 Approximate Technique (Heuristic methods)
2.2.1 Tabu Search (TS) ..

2.2.1.1 Tabu Search Process ..
A. Neighbourhood Search
B. Tabu List ..
C. Tabu Tenure

...
D. Aspiration Criteria

..................................
E. Longer term memory
F. Intensification and Diversification strategies

2.2.1.2 Tabu Search Applications
..................................

2.2.2 Simulated Annealing (SA)
..................................

2

2

3

4

5

6

9

10

12

12

14

19

20

22

22

23

23

27

30

30

31

31

32

34

III

2.2.2.1 Applications on SA ...
38

2.2.3 Genetic Algorithms (GAs) ...
40

2.2.3.1 Background of Genetic Algorithms (GAs)
...............

40

2.2.3.2 Applications using GAs
..

46

Chapter 3: A Review of the Literature on Ship Routing

and Scheduling .. 51

3.1 An Overview of Research on Transportation

Routing and Scheduling ... 51

3.2 Land Routing and Scheduling Models 51

3.2.1 Vehicle Routing and Scheduling 51

3.2.2 Railroad Scheduling Models 52

3.3 Airline Routing and Scheduling
................................. 53

3.4 Ship Routing and Scheduling Modes 54

3.4.1 Liner Operations ... 55

3.4.2 Tramp Operations ... 58

3.4.3 Industrial Operations I 58

Chapter 4: Ship Scheduling: Specification and algorithms 63

4.1 Problem specification .. 63

4.1.1 Definition of the Ship Routing and

Scheduling Problem (SRSP) 63

4.1.2 Classes of SRSP ... 63

4.1.3 Notation .. 64

4.1.4 Exact algorithm ... 65

4.1.4.1 Generation of the candidate schedules 67

A. Single-cargo
.. 68

B. Multi-cargoes
.. 73

4.1.5 Heuristic Approach
... 81

4.1.5.1 Tabu Search
... 83

A. Single-cargo
.. 84

B. Multi-cargo ... 89

C. Intensification and Diversification
........................ 91

IV

Chapter 5: Design and implementation of solution Approaches 94

5.1 Introduction ...
94

5.2 Exact Approach Design 94

5.3 Approximate Approach 100

5. 3.1 Conditions ... 104

5.4 Model Validation ... 106

Chapter 6: Computational Experiment
107

6.1 Design
.. 107

6.1.1 Input data
... 107

6.2 Tabu Search Parameter evaluation 109

6.2.1 TS Parameters Evaluation
............................ 110

6.2.1.1 Selecting Nbri by Systematic or Random method .. 110

6.2.1.2 Size of Neighbourhood (NZ)
..................... III

6.2.1.3 Diversification (Diverti)
.............................. 114

6.2.1.4 Intensification 115

6.2.1.5 Minimum Tenure (Min Tn) 117

6.2.1.6 Problem size 119

6.2.2 Single-cargo and Multi-cargo Comparison 120

6.2.3 Comparison between SPP approach and TS approach 122

Chapter 7: Conclusions and Further Researches 126

Bibliography .. 130

Appendices ..
140

V

List of Figures

Figure 2.1: Branch and bound first step
16

Figure 2.2: Branch and bound second step 17

Figure 2.3: Branch and bound tree .. 18

Figure 2A Depth-First Search (DFS) and Breadth-First Search BFS) 19

Figure 2.5: Searching within neighbourhood distances less than 80 miles 26

Figure 2.6: Searching within neighbourhood distances less than 95 miles 27

Figure 2.7: Module insulation problem .. 28

Figure 2.8: Initial solution for module insulation problem 28

Figure 2.9: New solution for module insulation problem 28

Figure 2.10: Current solution for module insulation problem 31

Figure 2.11: TSP with four customers 35

Figure 2.12: Genetic process ... 41

Figure 2.13: Chromosome and fitness
....................................... 42

Figure 2.14: Second parent ..
42

Figure 2.15: Five arrows represent the possible position

for crossover point ..
43

Figure 2.16: One-point crossover ..
43

Figure 2.17: PMX crossover operation
44

Figure 2.18: Several common mutation operations
44

Figure 2.19: Swap nodes ...
45

Figure 2.20: Two parents with 2-point crossover
47

Figure 2.2 1: Crossover operation ..
47

Figure 2.22: Duplicated genes ..
47

Figure 2.23: Duplicated genes ..
48

Figure 2.24: Two cutting ... 49

Figure 2.25: OX method ... 49

Figure 4.1: Generating all candidate feasible schedule flowchart for

Single-cargo ... 70

Figure 4.1: Generating all candidate feasible schedule flowchart for

Multi-cargo ... 75

Figure 4.3: If the answer is YES for question (1)
................................. 78

Figure 4.4: If the answer is YES for question (4)
................................. 79

vi

Figure 4.5: If the answer is NO for question (4)
Figure 4.6: If the answer is NO for question (3)
Figure 4.7: Presentation of trip in Multi-cargo case
Figure 4.8: Two ships delivered five cargo-ports
Figure 4.9: Deleting cargo-port 2 from ship 2 and inserting in ship I
Figure 4.10: Potential insert trial places for cargo-port i
Figure 4.11: Swap move ...
Figure 4.12: Tabu list and the Tabu tenure
Figure 5.1: Structure of Exact Method
Figure 5.2: User Interface ...
Figure 5.3: Generation of candidate feasible schedule
Figure 5.4: Model fon-nulation using MPL
Figure 5.5: Structure of Approximate Method
Figure 5.6: Initial solution ..
Figure 5.7: The neighbourhood of cargo-port II.................................

Figure 5.8: Results obtained by applying tabu search
Figure 6.1: Presents different size problems ..

79

80

83

85

85

86

86

87

94

95

97

99

100

101

102

103

120

Vil

List of Tables

Tablel. I: Lloyd's Register of Shipping "World Fleet Statistics"
...............

3

Table 1.2: capital costs for various classes of bulk carriers 4

Table 1-3: Three different ship types with their fuel consumption by

tonnes for each day at normal speed 5

Table 2.1: The distances (miles) between each pair of customers 25

Table 2.2: Neighbours that are with less than 80 miles apart 25

Table 2.3: Neighbours that are with less than 95 miles apart 26

Table 2.4: Distance (miles) between customers, where o denotes to the depot
... 37

Table 2.5: Bracketed values in the Solution columns represent

cost function values ... 38

Table 2.6: Distance between each customer (miles)
........................ 41

Table 4.1: Possible set of candidate feasible schedules 67

Table 4.2: All candidate feasible schedules for Single-cargo problem 73

Table 4.3: All candidate feasible schedules for Multi-cargo problem 81

Table 4.4: Example of schedule of n cargo-ports 83

Table 4.5: Nbri for cargo-port i .. 88

Table 6.1: All generated random data involved in SRSP 107

Table 6.2: Problem features to Evaluate Selecting Nbri 110
Table 6.3: Average cost obtaining in the evaluation of the procedure

to select Nbri ..
III

Table 6.4: Problem features to Evaluate Selecting NZ III

Table 6.5: Average number of iterations for each NZ for each case
112

Table 6.6: the difference in quality of the objective function for all cases 113

Table 6.7: The percentage of times each value of NZ produced

the best solution among forty problem instances
............... 113

Table 6.8: Three different problem size with number of iterations
............... 114

Table 6.9: Results of applying diversification on three different

problem sizes ... I 115

Table 6.10: Results of applying first method of intensification on

three different problem sizes .. 116

Vill

Table 6.11: Results of applying second method of intensification

on three different problem sizes .. 117

Table 6.12: The evaluation of MinTn .. 118

Table 6.13: problems of different MinTn .. 119

Table 6.14: Problem features to evaluate problem size 119

Table 6.15: The objective cost and solution time for four different

problem sizes .. 121

Table 6.16: SPP and TS computational results 123

ix

Notation and Abbreviation

The following notation is used in this thesis:

Data. -

denotes the set of m ships to be scheduled, indexed by v,

where v r= V

N= ý0,1,.., ný, denotes the set of n cargo-ports to be visited, indexed by i,

where icN and 0 denotes to origin and N\ 101 denotes cargo-ports

A V, denotes to the availability time of ship v at the origin Vv E=- V

ej earliest arrival time for cargo-port i Vi EE IN \ 0)

1i latest arrival time for cargo-port i Vi E=- IN \ 01

Q, cargo quantity of cargo-port i (tons) Vi E-= IN \ 01

dik distance (in days) between cargo port i and cargo port k, where

il kE=- N

CT, capacity of ship v (tons) Vv c- V

PCjv port entrance due (fee) at cargo port i for ship v Vi E-= IN \ 01, VvE=- V

SP,, sailing cost using ship v (per day) VvE=- V

LDjv time required for loading cargo-port i onto ship v (days)

Vi EIE:
fN \ 01 VV E: -: V

ULiv time required for unloading cargo-port i from ship v (days)

Vi EI
fN \ 01 VV EI-: V

OCiv operating cost for ship v to handle cargo-port i, including loading and

unloading costs Vi E-= fN \ 01 VvE=- V

WP waiting cost (idle in the ocean) for ship v (per day) Vv (=- V
v

Sv denotes to a set of candidate schedules are available for ship v, and

indexed to specific schedule Vv cV

Cvj denotes to the cost for using schedulej for ship v VvE=- V, jE Sv

x

S Cij =I
if schedule j for ship v servicing cargo

0 otherwise
Vi EI ýN \ 01 Vve: ViE

z-
S

Decision Variables

fiv actual arrival time for ship v to cargo-port i Vi c fN \ 01, Vv c- V

V"iv duration of waiting (idle) time for ship v until time-window of cargo-

port i opens (days) Vi E-= IN \ 01, Vv E=- V

=I
if schedule j for ship v is selected

-Vj E=- Sv XVJ.
0 otherwise

VV E=

The following notations are used in the Tabu Search (TS) approach.

T-f-f; - -

TN Tenure (Tabu list size)

Min Tn Minimum tenure size

MaxTn Maximum tenure size

Ins Th i cargo-port i entered insert tabu list, where i E=- N

SwTni cargo-port i entered swap tabu list, where i c- N

In c Tn number of iterations to increase tenure by one

Nbri neighbourhood set of cargo-port i, where i E: -: N

AT7
Z neighbourhood size

NbrSeIj cargo-port i is selected to form it's neighbourhood, where icN

NbItr, number of iterations within the neighbourhood of cargo-port i, where

i

A Iffir number of iterations for the entire problem
D_

lxptj number of times cargo-port i entered tabu list, where i c= N

Divei-ti cargo-port i will be hold for a number of time of fon-ning new

neighbourhood, not to be chosen, where i (=- N

S the current solution

S* the best-known solution

xi

-f* value of S*

N(S) the neighbourhood of S

N'(S) non-tabu subset (admissible subset)

The following of abbreviations are used,

B&B Branch and Bound

BFS Breadth-First Search

DFS Depth-First Search

GA Genetic Algorithm

IP Integer Programming

LNS Local Neighbourhood Search

LP Linear Programming

LR Linear Relaxation
MIP Mixed Integer Programming

PIP Pure Integer programming
SA Simulated Annealing

SPP Set Partitioning Problems

SRSP Ship Routing and Scheduling Problem

TS Tabu Search

TSP Travelling Salesmen Problem

VRP Vehicle Routing Problem
ZIP Zero-one Integer Programming

xii

Chapter 1: Introduction

1 Introduction

1.1 Transportation Management

1.1.1 The Economic Importance of Transportation

The continuous growth of the world population and of its standard of living,

combined with reduction of local resources, increases the dependence of the world

economy on international trade. Initial data available for 2004 indicate that growth in

world output was 3.8%, which is 1.3% above the 2.5% recorded for 2003[80]. This

reflects the fact that most regions of the world experienced simultaneously positive

economic growth.
Freight transportation is a vital component of the economy. It supports

production, trade, and consumption activities by ensuring the efficient movement and

timely availability of raw materials and finished goods. Freight transportation

represents a significant part of the cost of products, as well as of the national

expenditure of any country (Crainic and Laporte [35]). This explains the highly

competitive environment for freight transportation fin-ns. Carriers have to quickly

adjust to changing economic and regulatory conditions; offer reliable, high quality,

low cost services to their customer, and clearly make profit. Both the planning and

operational units of a company have to work together towards the achievement of

these goals.

1.1.2 Modes of Transportation

Transportation can be accomplished in different ways: overland by road or

rail, by air, or by sea. Each mode has its own particular characteristics. Ronen [92]

and Christiansen et al. [29] mention several significant differences between sea, air,

and land transportation modes:

I- The ability of ports to accommodate a particular ship differes (e. g. a

deep water harbour may be required for a large ship).

2- A voyage by a ship (also aircraft) usually has one or very few

unloading locations, whereas land based vehicles frequently have

many unloading locations.

3- Ships come in a large variety of sizes with different compartment

sizes. When a shipment consists of multiple products that have to be

loaded on the same vessel, the product quantities will have to be

adjusted to fit the available compartment.

4- Higher uncertainty is involved in scheduling ships due to much
longer voyages.

5- Destination change can occur whilst the ship is underway. This is

seldom the case, for aircraft or and based vehicles.

On the other hand, in some aspects, aircraft are more similar to ships:
I- Both ships and aircraft have uncertainty in their operations due to

their higher dependence on technology and weather conditions.
2- Both ships and aircraft pay port fees and both operate on

international routes.
3- Aircraft and ships involve large capital and operating costs,

compared to road vehicles.

Since this research is focused on ship routing and scheduling, it is important to

give background and information about ships.

1.2 Sea Transportation

1.2.1 Increase in the number of ships world wide

The latest available sea transportation statistics show that the world shipping
fleet has increased to a record level of 633,321 million gross tons in 2004, an increase

of 28 million gross tons from a year earlier. Over the last ten years there has been a

growth of 33% in the number of ships, resulting in 89,960 ships operating in 2004.

Table 1.1 shows the total number of ships and gross tonnage in the period 1990-2004.

In 2004 world shipments of tanker cargos reached 2.32 billion tons, a growth of 4.2%

over the previous year. About 76.4% of this tanker trade is in crude oil, with the

remainder in petroleum products. In 2004,1,397 new building contracts were placed

for various ship types, an impressive increase of 20.5% in comparison with 2003

(1159 contracts)[801. Approximately, 70% of the value and 90% of the volume of all

the goods transported worldwide are made by sea. [6]. These facts emphasize the

reliance of the Nvorld economy on seabome trade and hence highlight the need for

2

well-organized and reliable maritime transportation systems. Routing and scheduling

of ships requires a significant level of fleet management planning.

Year Number of
ships

Gross tons

000 GT
1990 78,336 423,627

1991 80,030 436,027

1992 79,845 444,305

1993 80,655 457,915

1994 80,676 475,859

1995 82,890 490,662

1996 84,264 507,873

1997 85,494 522,197

1998 85,258 531,893

1999 86,817 543,610

2000 87,546 553,054

2001 87,939 574,551

2002 89,010 585,583

2003 89,899 605,218

2004 89,960 633,321

Table]. P Lloyd's Register of Shipping "World Fleet Statistics"

1.2.2 Type of ships

There are four type of ships employed around the world:

I- Passenger ships, where people are carried on vacation trips of various

durations.

2- Bulk carriers, which are designed to carry specific commodities (liquid

bulk and dry bulk ships). They vary in size. The Ultra large Crude

Carriers (ULCC) are up to 500,000 deadweight tons (dwt), where as the

typical is size around 100,000 to 150,000 dwt, such as Suezmax [80].

3- General cargo, where the ship is designed to carry non-bulk cargoes.

The traditional ships were less than 10,000 dwt. Recently, these ships

have been replaced by container ships, where loading and unloading can

be implemented efficiently.

3

4- Roll on-Roll off are ships designed to carry vehicles and trains to be

loaded directly on board.

1.2.3 Cost of operation and other expenses

Because of the ship size, the major feature of the economics of shipping is

capital cost. Cruise ships represent the most expensive class of ships. For example, the

Queen Mary2, which launched the first trip in 2004 from Southampton to Fort

Lauderdale in United States, cost 800 million dollars [60]. Table 1.2 illustrates capital

costs for various classes of bulk carriers [80].

Classes of bulk carriers Capital cost

(Millions of dollars)

2)500 TEU full containership 42

30-50,000 dwt bulk carrier 30

80-105,000 dwt tanker 56

75,000 m' LPG 77

250-280,000 dwt tanker 105

TEU: 20-foot equivalent unit
LPG: liquefied petroleum gas

Table 1.2: capital costsfor various classes of bulk carriers

Port entrance dues vary between ports, and differences also occur due to ship

size, (loaded or empty), and time remaining in port. For example, in the port of

Duisburg in Germany, a ship of 310,513 dwt, loaded with 158,503 tonnes, will be

charged 27,013 Euro for up to three days, while the charge will increase to 32,447

Euro for more than three days, up to a maximum of ten days. A bulk carrier of 47,471

dwt, loaded with 42,904 tonnes will be charged 4132 Euro for up to three days, while

charge will increase to 4963 Euro for more than three days, up to a maximum of ten

days[61].

The average speed of ships is about 15 Knots (about 28 km per hour). A ship

can travel about 575 krn per day, under such circumstances. Newer ships can travel at

speeds of between 25 to 30 knots (45 to 55 km per hour). The cost of fuel

consumption (bunker) depends on ship size and the speed. Table 1.3 presents three

4

different ship types with their fuel consumption by tonnes for each day at non-nal

speed, where the price of fuel per tonne equal to 71 dollars according to Kuwait Oil

Tanker Company (KOTC) officials (price applicable in May, 2006) [5].

Ship Type Bunker Consumption Bunker Consumption

Sailing

Volume Cost (Dollars)

Tonne/Day

Idle

Volume Cost (Dollars)

Tonne/Day

ULCC 96 6816 10 710

VLCC 96 6816 3 213

LPG 86 6106 7 497

ULCC: Ultra Large Crude Carrier
VLCC: Very Large Crude Carrier
LPG: liquefied petroleum gas

Table 1-3. - Three different ship types with theirfuel consumption by tonnesfor each
day at normal speed

Most companies resort to the market to charter ships to deliver their

shipments. The price for chartering is based on ship size and the time of the year. For

example, the chartering rate for a 55,000 dwt tanker is $27,100 per day in August

2004, increasing to $55,000 per day in December 2004. In November 2004, the

charter rate for a five-year-old VLCC was 90,000 dollars per day. In August 2004, a

48,263 dwt ship was chartered for a trip to China at 14,200 dollars per day.

1.2.4 Terms in Maritime Transportation Systems

To understand the maritime transportation operation, some terms needs to be

clarified before proceeding. Ronen [92] mentioned these terms as follows: Shipping

refers to moving of cargoes by ship. Routing refers to defining a sequence of ports of

call to ships. Scheduling refers to routing with specific times allocated to ships for

their stay in the ports. There are different meanings of time in maritime transportation,

Short terin is usually up to several weeks, mediurn terni refers to up to several months,

while long terin is over six months. Operations in shipping have three general modes.

The first one is liner operation which is like a bus line with a timetable. Such ships

compete for cargos. The schedule of a liner ship is influenced by the demand for its

service (cargo available), where the route is defined before the ship leaves the port. A

liner may be scheduled to call at a particular port more than once on a single voyage

(subject to cargo being available). The second mode, tramp operation is like a tax, -

cab operation, where ships can be sent depending on the availability of cargos.

Usually, the cargo is a whole shipload with a single origin and one or two

destinations. The objective of both liner and tramp operations are usually to maximise

profits per time unit. Moreover, liner and tramp operations is common in shipping

companies. The last mode, industrial operation, is similar to private truck fleet

operation, where the owner operates the fleet of ships. The objective of this mode is to

minimise the sum of the overall costs for all ships in the fleet, at the same time,

ensuring that all cargoes have been delivered. Such a fleet often lacks the required

capacity (fleet capacity is less than cargos volume), in which case the owner has to

resort to chartering from others. There are two types of chartering: spot chartering

which is for one or two specified tasks, and time chartering for a period of time

(months or years).

1.2.5 Classification Scheme for The Ship and Scheduling Problem

In the section, a little modified classification scheme to the one proposed by

Ronen [92] is presented. Different problems may involve different difficulties.

A. Mode of Operation
I- Liner

2- Tramp

3- Industrial

4- Other Modes (Naval, Barge, Coast Guard and Fishing)

B. Loading and Discharging Times

I- Specified (ship scheduling problem)

2- Time windows

3- Open (routing problem)

C. Number of Origins

I- One

2- Multiple

D. Number of Discharging Ports

6

I- One

2- Multiple

E. Number of Loading Ports per Vessel Voyage

I- I- One

2- Multiple

F. Number of Discharging Ports per Vessel Voyage

I- I- One

2- Multiple

G. Number of Products to be Shipped

I- I- One

2- Multiple

H. Fleet Size

I- I- One

2- Multiple

1. Compartments Capacities of Vessels

I- I- One

2- Multiple

J. Type of Vessels

1- 1- One

2- Multiple

K. Status of vessels

I- Owned

2- Time Chartered

3- Spot Chartered

L. Demands (Shipment Sizes)

I- Deten-ninistic (continuous, discrete)

2- Stochastic (continuous, discrete)

7

M. Cruising speed as a Decision Variable

I- Yes

2- No

N. Fleet Size and Composition

I- Specified and cannot be changed (short term problem)

2- Can be changed (medium term problem)

3- Constant over a scheduling period

4- Changes pen-nitted over a scheduling period

0. Port Entry Constraints on Vessels

I- Exist

2- None

P. Sea Route Constraints on Vessels
I- Exist

2- None

Cost

I- Fixed costs (operating cost and capital cost)

a. In operation

b. In lay-up

c. Change of status

2- Variable costs

a. Fuel consumption

b. Port entry charges

c. Time in ports

d. Unit shipping cost

e. Demurrage (cost of vessel's waiting time)

3- Penalties incurred by late shipments

R. Objectives

I- Minimise costs

8

2- Maximise profits
3- Maximise utility

S. Cargo Transshipment

I- Allowed

2- Excluded

T. Time between Events

I- Deterministic

2- Stochastic

U. Other Problem-Specific Characteristics

I- Some customers impose condition that shipments of products are to be

made based on specified minimum and maximum aspiration storage
levels.

2- Some customers state in advance the quantities of shipments of

products and the times.

3- Some customers do not accept shipments of certain products if the

compartments carrying such products on the previous trip, have carried

different product. For example, if the compartments carrying crude oil

have carried Naphtha on the previous trip [8].

1.3 Methods Of Scheduling

The traditional way of scheduling is called "rule of thumb". This way is

implemented by sending the larger ships to the farther destinations. For example, if

there are three ships available of 10,000,8,000, and 5,000 tonnes of capacity

respectively. The scheduler will try to load the first ship with the cargo to the farthest

destination, and if that cargo does not fill the ship, then the scheduler may add more

cargo(es) to other destinations in the same direction [93]. The rule of thumb approach

may be specified as follows (Ronen [93]):

I- Read data and set up the problem.

2- If fleet capacity is not enough go to 10.

3- Select the largest ship remaining (if none left go to 8).

4- Select the cargo at the farthest port remaining (if none left go to 8).

9

5- Add the port to the ship's route, calculate left over capacity on the ship

and quantity of the cargo left for other ships).

6- If ship is full go to 3.

7- If the ship is capable of entering an additional port, add the cargo of the

port closest to the ship's discharging ports; go to 6.

8- For each ship, calculate the shortest route.

9- Calculate the cost of the schedule.

10- Stop

This way of scheduling is not efficient in comparison with other scientific

methods, such as exact or approximate methods. Much research has been published

using these scientific methods, and excellent results have been reported. Some of

these methods will be described in Chapter 3.

1.4 The aims of this research project
The reason for the interest in this class of problems is for two reasons. First,

since maritime transportation is an expensive mode to transport cargoes and services,

any reduction in cost resulting from appropriate routing and scheduling of a fleet of

ships will contribute a large monetary saving. This can occur by using mathematical

programming models. Secondly, contributions made for this class of problems are
based on a numerous solution algorithms. These solution algorithms are created from

either optimisation or heuristic approaches. Much research are carried out to address

this class of problems. However, researchers faced the challenge of complexity when

making use of mathematical programming based models to generate good solutions. It

seems that the underlying nature of the problem is simple, but mathematically it is

challenging and complex.

In this thesis, both optimisation and heuristic methods are used. The aim of

this thesis is to present and evaluate a new algorithm for a class of ship routing and

scheduling problem. Golden et al. [51], presented a good survey on Vehicle Routing

Problems (VRP). They showed that one of the best metaheuristics for solving VRP is

Tabu Search (TS). Baker and Ayechew [12] reported that TS is better than a Genetic

Algorithm (GA) approach for solving VRP. The contribution offered by the research

reported in this thesis is based on a heuristic approach obtained by designing a new

10

model based on Tabu Search (TS). To measure the quality of the output, an

optimisation algorithm based on Set Partitioning Problem (SPP) has been applied.

Therefore, the aim of this research is to design a reliable model, whIch Is

capable of generating a good schedule for industrial sectors, which can be used in

proactive, simple and efficient way.

This thesis is organised as follows. Chapter 2 presents a background of

solution techniques for routing and scheduling in general. Some applications for each

technique will be provided. Chapter 3 gives a literature review of different classes of

routing and scheduling problems and methods for addressing each one. A full

description of ship routing and scheduling problem (SRSP) addressed in this thesis, is

presented in Chapter 4. First, an exact approach using integer programming will be

described, followed by a full explanation of a heuristic method to solve the problem.

Chapter 5 will specify the design and implementation of solution approaches.

Computational results and analysis for each approach are presented chapter 6. Finally,

chapter 7 offers some conclusions and suggestion for future work.

Chapter 2: Solution Techniques for Routing and Scheduling

Introduction

Operations Research has long recognised the need for systematic mathematical

techniques for solving complicated problems. There are two types of techniques, exact

and approximate techniques. This chapter presents an explanation for each type with

application studies. The first section is devoted to explaining the technique of Integer

Programming, while the following section will present a description of approximate

approach with some application studies.

2.1 integer Programming (IP)

A mathematical program is a constrained optimization problem in which a

function of n nonnegative variables is to be maximized or minimized subject to m

constraints. Thus, a mathematical program identifies an extreme (i. e., minimum or

maximum) point of an objective function AXI)X2)-ýXn)
7 subject to a set of

constraints 9i (XI
ý X2 5- Xn) :! ' bi, i=1,.., n. Linear programming (LP) is a special case

of mathematical programming where both the functionf and the constraints are linear.

This can be represented as follows:

Objective Function:

Min (or Max)f (XI, X2)**) Xn) =CA+ C2X2 +
"'

+ CnXn

Subject to

Set of m constraints:

ailx, +ai2X2+... +aj, x. bi

J

Sign restrictions:

xi ý! 0 for j- ll..
l n

Pure Integer programming (PIP) is a special case of linear programming in

which all the variables are required to take integer values. It can be represented as

follows:

12

Objective Function:

Min (or Max)f (XI
5X2 "'I

Xn) =CA+ C2X2 +
"'

+ CnXn

Subject to

Set of m constraints:
(<, N

aiixl +ai2X2 +... + ain Xn bi

Sign restrictions and integrality conditions:

xj ý! o and integer for j=1,.., n

A mixed integer programming problem (MIP) is a relaxation of PIP where

some but not all of the variables are required to be integer values. It can be

represented as follows:

Objective Function:

Min(orMax)

f(XIýX2l**5XplYlýY2--Yq) --: lCIXI +C2X2 +"'+Cp xp+d, y, + d2 Y2 +... + dq Yq

Subject to

Set of (m)constraints:

ail x, + a, 2X2 +... + aip x. + hil y, + hi2 Y2 +... + hiq Yq ý: bi i=1,2,..,

\,
=

1/

Sign restrictions:

0 and integer), for j=1,..,

0), for k=1,..,

A zero-one integer programming problem (ZIP) is a special case of PIP in

which each vanable is required to take a value of zero or one, which represents a

binary choice. It can be represented as follows:

13

Objective Function:

Min (orMaX) PXPX25'*ýXn) =C A +C2X2 +"'+CnXn

Subject to
Set of m constraints:

a,, x, + ai2 X2 + ain Xn bi m

Sign restrictions:

xi EE
10,11

LP and IP models are increasingly used within decision-making (e. g. network
design in the telecommunication sector [55], aircraft scheduling [53,62], production

scheduling in the industry sector [45,113]). The simplex method, developed by

George Dantzig in 1947 (see [121]), is very successful in solving LP problems and

efficient software is capable of solving large-scale LP problems. Solution methods for

IP have progressed quickly since the work of Land and Doig [69] who proposed using

Branch and Bound (B&B), and since the research reported in this thesis requires IP

problems to be solved, the following section will present more details about B&B.

1.1 Branch and Bound B&B method
The most widely used method for solving IP problems is Branch and Bound

B&B. Large scale integer problems generally have a very large number of possible

solutions. For example, the Travelling Salesmen Problem (TSP) with II nodes (which

is quite small) has (I I- 1)! = 3,628,800 possible solutions. To date the most effective

way off tackling these hard combinatorial problems (any optimization problem that

has a finite number of feasible solutions) is the B&B method, which provides a

systematic partial enumeration of the solution space [12 1]. It involves searching a tree

which is developed using a binary branching process. B&B starts by considering the

problem with the entire feasible solution space. For a maximization problem, for

example, if the objective function after relaxation has an optimal solution with all

variables integer values, then an optimal solution has been found and the procedure

stops. Otherwise, the feasible region will be divided into two or more regions. This

process is called branching. The branching operation will be repeated on identified

sub-regions and will produce sub-regions (nodes) to fon-n a tree structure. The method

14

of finding the upper bounds for the optimal solution within each feasible sub-region is

called bounding (upper bounds in maximization problems and lower bounds in

minimization problems). The major tool in branch and bound is searching within a

sub-region to establish better objective function values. Searching starts by selecting a

variable x with fractional value (>N but <N+ 1). The solution space between (NN+ 1)

will be eliminated. Variable x (x:! ý N) will forrn a sub-region, while the other sub-

region will be fori-ned by (x ý! N+I). Upper bounds will be provided by a linear

programming relaxation of the problem. If the upper bound for sub-region A in the

tree is less than the value of the best integer feasible solution found to date, then sub-

region A will be terminated and this operation is called pruning (orfathoming). On the

other hand, if the value of the upper bound is greater than the value of the best integer

feasible solution found to date, then this objective function value for sub-region A is

set as a new upper bound and is called incumbent. Hence, the best objective function

value is obtained in the search tree operation together with the corresponding feasible

solution. This operation continues until all sub-regions of the search tree are either

pruned or solved, and the best integer feasible solution is proven to be optimal [38,

12 1]. For minimization problems, the same procedure is applied expect that decisions

are made on the basis of lower bounds instead of upper bounds. To illustrate the B&B

process, consider the following example [121];

Example: consider the following integer programming problem:
max z= 8x, + 5X2

s. t. XI +X2

9x, + 5X2 < 45

XI , X2 ý: 0; XI 3 X2 integer

B&B method starts by finding the solution to the Linear Relaxation (LR). The

LR solution is z= 41.25, x, = 3.75, and X2 = 2.25. Since not all the variables are

integers, the solution is not integer feasible. The integer solution will not have a value

greater than 41.25. The first step is to select a fractional variable. For example, select

x, = 3.75

This operation forces x, to integer and implemented by branching on x, to

create two sub-problems (sub-regions). One with x, :! ý 3 and the other with x, ý! 4 as

shown Figure 2.1:

15

The solutions to the two sub-problems are:

x, =3 1
X2 =3 , z=39

and x, =41 X2 = 1.8, z= 41

z= 41.25

: ýý 3
X, = 3.75, X2 = 2.25

x] >4

z=39 z= 41

X, -- 3, X2 =3 XI = 41 X2 = 1-8

Figure 2. P Branch and boundfirst step

In general, selecting the sub-problem with the highest solution value is the next

step. The sub-problem with x, =3 has no fractional variables, and the left path is

therefore pruned with an integer feasible solution and the right branch will be

developed by branching onX2
.

The solutions to the two sub-problems are:

X2 =1, x, = 4.46
,z=

40.6

and, No feasible solution (does not satisfy constraint 2 in original IP)

Figure 2.2 illustrates the branch and bound diagram for the next operation. The

sub-problem with X2 =2 has no feasible solution, and the right path is therefore

pruned and the left branch will be developed by branching on x,.

16

Figure 2.2. - Branch and bound second step

The solutions to the two sub-problems are:

x, =41 X2 =1 z= 37

x, -5 , X2 -01 Z=40

The best integer feasible solution found to date (the incumbent solution) has

value z= 40. Since there are no unfathomed nodes remains in the tree, this solution is

the optimal solution to the problem. In general, the incumbent solution is optimal if no

unfathomed node has an upper bound greater than the incumbent value. Figure 2.3

illustrates the B&B for the entire problem, where the last rectangle (shaded)

represents the optimal integer feasible solution.

17

Figure 2.3: Branch and bound tree

In general, there are many different methods for selecting the next sub-region.

One of these methods and widely used is called Depth-First Search (DFS) also known

as Last-In-First-Out (LIFO). The way of applying this method is by selecting one of

the new created sub-regions, where the search is implemented down one side of the

branch and bound tree, with the intention of quickly finding a candidate solution.

When a node is fathomed (pruned), the process backtracks from this node toward the

root until it finds the first node that has a sub-region that has not yet been explored

[121]. An alterative method called a Breadth-First Search (BFS), which starts at level

zero. In the first stage, all nodes will be considered at level one. In the second stage all

nodes will be considered at second level. The BFS traversal stops when all nodes have

been considered. However, it needs a large amount of memory, which makes the

approach impractical for solving large-scale problems. On the other hand, DFS does

not need a large amount of memory, but needs extensive duplicate searching [124].

Figure 2.4 illustrates these two rules.

is

Depth-First Search (DFS) Breadth-First Search (BFS)

Figure 2.4. - Depth-First Search (DFS) and Breadth-First Search (BFS)

2.1.2 Illustration of (0-1) integer programming
Since the Ship Routing and Scheduling Problem (SRSP) -which is addressed in

this thesis- is of type (0-1) integer programming, it is useful to present some

applications of this type. Any optimization problem that has a finite number of

solutions is called a combinatorial optimization problem. There are many examples of

combinatorial optimization problems such as assignment problems, one of which solves

the problem of selecting m objects (vehicle, machine, manpower, etc.) to implement n

events (commodity, product, job, etc.), where m ý! n. The requirement is to select I

objects, where m ý! I, to implement all events at minimum total cost. For example,

suppose there are n jobs and m people, where m ý: n and each job must be implemented

by exactly one person, the problem is to make a decision between these two

possibilities. By using binary variables, it can be modelled as follows:

I if j is selected to do job i

0 otherwise

Variable Xj represents the action of selecting person j to job i, where

i=1,2,..., n. and j=1,2,..., m. To ensure that each job is implemented by only one

person, the following constraints are required.

(
ýo

0,
' 01/ ý

19

m

v =I for i=1,2,..., n. xi
j=l

Since each person cannot do more than one job, then the following constraints

are required.
n

x, :! ý I forj=1,2,..., m.

The requirement of x, G (0,1), i n, jm completes the

specification of the solution space.

Another example of a combinatorial optimization problem is the Travelling

Salesman Problem (TSP). It can be defined as a complete digraph G =(VA) , where

V=nI is the vertex set and A= J(i, j) : i, j c= VI is the arc set. The objective is to

visit each vertex once and only once, passing through all vertices in minimum overall
distance (time). One more example of a combinatorial optimization problem is called
Vehicle Routing and Scheduling Problem (VRSP). This problem is concerned with
deten-nining the composition and routing of a fleet of vehicles in order to visit a pre-

specified set of customers with known delivery demands from a central depot. Each

customer is visited exactly once. The total demand of a route does not exceed the

capacity of the vehicle specified to it, and the total cost is minimized [71].

In general, the best method of finding an optimal solution for a combinatorial

optimization problem is by using B&B method [125].

2.1.3 Applications of (0-1) integer programming
There are many applications of (0-1) integer programming, usually solved by the

B&B. Tozkapan et al. [119] addressed the two stage assembly scheduling problem.

This problem can be described as if there are n jobs to be processed, where each job

requires m- I components to be processed. In the first stage, each job to be processed

needs m-1 independent machines. After finishing stage one, an assembly machine at

stage two assembles the components. Each machine can accomplish one job at a time.

The objective is to minimize the sum of weighted finishing times of all jobs. The

authors tackled this problem using the B&B method. The results showed that the

method could handle test problems with n< 20. Chung et al. [3 1] addressed the m-

machine permutation flow shop problem, where each of n jobs have to be

implemented on machines in order. The operation time to finish each job on

20

each machine is known. Each machine can process only one job and each job can be

processed by using only one machine, at any time. The objective is to minimize the

total flow time. The algorithm they proposed was based on B&B, where a depth-first

plus backtracking search technique was used. They presented computational results,

which showed that this algorithm is capable of solving problems of up to 15 jobs.

Facility location is a problem that can be solved by using IP. Facility location

can be defined as follows. Given set of demand points, a distance function, and a

parameter p it is required to find a set of p supply objects (points, lines, warehouse,

etc.); where the objective function is to minimize distance. This type of problem is

encountered in many application areas, such as telecommunications networks, where

one may wish to disperse radio transceivers to serve cellular phones in order to

minimize interference problems. Other applications are material distribution, supply

chain management, and transportation. Pisinger [84] addressed a type of facility

location problem, called the p-dispersion-surn problem (PDSP). This problem can be

defined as establishing p facilities at some of m predefined locations. The distance

between two facilities i andj is obtained by a square matrix (d,), where iJ =1,.., m.

The objective of this problem is to minimise the maximum distance between any

demand point and its supply point. The author applied the B&B method to solve this

problem, where experiments showed that the algorithm is capable of handling

problems with a size of up to 90 locations.

(0-1) integer programming can be used to solve planning problems, such as,

aircraft fleet routing and scheduling. This problem occurs in the long range planning

operations of many airlines. loachin et al. [62] considered this problem where a given

set of flights that present schedule flexibility on departure time and the flights had to

be covered at a minimum cost. Each individual flight has its identifier such as origin

and destination stations, a duration, etc. The authors tackled this problem of weekly

fleet routing and scheduling by proposing an approach which solved problem samples

with up to 80000 arcs (connection between origin and destination) in less than 21

seconds.

Zamani [124] considered a project scheduling problem called constrained

project scheduling (RCPS). This problem can be defined as a set of n activities (jobs),

which are given, where each activity has a fixed integer duration and a fixed amount

of one or more different resources. This is subject to a set of precedence relations that

21

specify permissible activity orders. Once activities start they may not be interrupted.

There are specified fixed limits on the availability of each resource type. The

objective of this problem is to minimize the processing time. The author solved this

problem using a B&B method based on a depth-first method, where the computational

results showed that the algorithm is capable of solving problems of up to 100

activities and six different resource types. The author presented a numerical example

to explain the effectiveness and the application of the algorithm. Maniezzo and
Mingozzi [75] also considered project scheduling using B&B, where each node of the

tree is associated with job i. The computational results reflect the ability of the

algorithm to solve problems with up to 100 activities.

2.2 Approximate Technique (Heuristic methods)

It is very important before introducing heuristic methods to explain the

meaning of heuristics. Heuristics are approximate solution techniques and have been

used since the beginning of Operations Research to obtain solutions of complex

combinatorial problems. With the growth in the number of difficult problems, where

the level of difficulty in solving mathematically problems is measured by the time,

memory space required, or number of steps or arithmetic operations required to solve

them. The interesting aspect is usually complexity with respect to the size of the input,

N. Since many of these problems are NP-hard, there was little hope of finding an

efficient solution procedure to solve all instances of such problems.

This issue emphasized the role of heuristics for solving the combinatorial

problems. Many heuristics have been proposed to solve these difficult problems such

as, Genetic Algorithm (GA) [57], Simulated Annealing (SA) [66], or Tabu Search

(TS).

2.2.1 Tabu Search (TS)

Tabu search is a memory-based search method, established by Glover in 1986

[471. The method is capable of providing optimal or near optimal solutions. This

capability for solving large combinatorial problems encountered in various practical

settings attracted many researchers interested in finding optimal or near optimal

solutions to this type of problem.

22

Tabu search is a meta-heuristic which leads a local search procedure to

discover the solution space away from local optima. A meta-heuristics refers to a

master strategy that leads and modifies other heuristics to generate solutions beyond

those solutions generated by a procedure that may converage to a local optimum.

The main idea of Tabu Search (TS) is based on the Local Neighbourhood

Search (LNS) improvement method. LNS can be described as operations of iterative

search called move, which start from an initial feasible solution (obtained by using

any heuristic method such as greedy algorithm or randomly). The search continues by

applying a series of local moves. Examples of moves are adding or deleting an

element from a set, changing the value assigned to a variable, or interchanging the

position of two jobs on a machine, and so on [48]. At each iteration, the search moves

to an improved feasible solution. This procedure carries on until the search reaches a
local optimum with respect to the trans formations that it considers. One important

component of TS is the use of adaptive memory, that allows LNS methods to

overcome local optima. This idea is implemented in LNS by using information to

guide the search from one solution to the next, avoiding cycling. Cycling is defined as

revisiting past sequences of solutions. Tabu Search uses memories called tabu lists

(forbidden lists), which record recently made moves or visited solutions (history of

moves). Therefore, when a solution is visited, the movement from which it was

obtained will be considered tabu. A move made in iteration t is called tabu until a

certain number e of iterations are executed at which point, after iteration (t+e), a move

will be non-tabu.
A background to some of the effective elements of tabu search is presented in

the following sections.

2.2.1.1 Tabu Search Process

Tabu search can be applied directly to many types of decision problems. On

the other hand, introducing mathematical notation to explain many classes of these

problems is helpful to communicate the principal ideas of tabu search.

A. Neighbourhood Search

Tabu search starts in the same way as neighbourhood search. In

neighbourhood search, each value x E=- X has an associated set of

23

neighbours, N(x) (-- X, where N(x) refers to all elements that neighbour x. Each

value x'E=- N(x) is reached from x by an operation called move, and x is said to move

to x' when such an operation is implemented. There are two types of trail moves,

insert and swap. An insert move consists, for example in VRP problems, of taking a

customer from one route and inserting it into a different route. A swap move consists

of exchanging two customers belonging to two different routes. For large problems,

where a neighbourhood may include many elements, or for some problems where

these elements are costly to examine, the best choice of TS makes it highly important

to isolate a candidate subset of the neighbourhood and examine it instead of

examining the entire neighbourhood. A candidate subset size depends on the problem

type and the move definition and the best candidate subset size is a critical step. In

comparison to TS, Local Neighbourhood Search (LNS) permits moves to

neighbouring solutions that improve the current objective function, valuef(x), and

ends with a local optimum solution when no improving solutions can be obtained. On

the other hand, the Tabu Search method is capable of avoiding being trapped at a local

optimum by moving to a different search area. The following steps illustrate Local

Neighbourhood Search using descent method:

1. Choose xE=- X to start the process.

2. Find x'E=- N(x) such that f (x') <f (x).

3. If no such x' can be found, x is the local optimum and the method

stops.

4. Otherwise, set x= x' and go to step 2.

At the end of the process, x is a local optimal solution with respect to its

neighbourhood. However, a local optimum in most cases will not be a global

optimum. In some cases, the solution of a specific problem may get trapped at a local

optimum.

To provide a background for understanding one of the elements of

neighbourhood search (the relationship between neighbours), the following example

illustrates the basic operation.

24

An illustrative example
As a basis for illustration, consider the travelling salesman problem (TSP), and

suppose there is a depot and five customers (A, B, C, D, E). The distances (miles)

between each pair of customers are shown in Table 2.1.

Depot A B c D E

Depot 0 100 119 78 67 134

A 100 0 70 129 90 50

B 119 70 0 30 92 117

c 78 129 30 0 79 145

D 67 90 92 79 0 61

E 134 50 117 145 61 0

Table 2.1: The distances (miles) between each pair of customers

It is desirable that a search method is capable of finding an optimal or near

optimal solution by examining a small subset of the total number of possible solutions

(in this case 5! =120). To achieve this, a neighbourhood search can be defined as the

relationship between customers, for example, distances. Consider two cases of

constructing neighbourhoods: case 1, customer i is a neighbour of customerj if the

distance between them is less than 80 miles, while in case 2 the distance limit is 95

miles. This procedure defines the size of the neighbourhoods and reduces searching

time. Table 2.2 illustrates case 1, while Table 2.3 illustrates case 2.

Depot A B c D E

Depot 0 78 67

A - 0 70 - - 50

B - 70 0 30 - -
c 78 - 30 0 79 -
D 67 - - 79 0 61

E - 50 - - 61 0

Table 2.2: Neighbours that are with less than 80 miles apart

25

Depot ABDE

Depot 0 78 67

A -0 70 - 90 50

B - 70 0 30 92 -
c 78 - 30 0 79 -
D 67 90 92 79 0 61

E - 50 - - 61 0

Table 2.3: Neighbours that are with less than 95 miles apart

The neighbourhood search in case I will be restricted within a small space,

where the search will produce four search paths. Figure 2.5 illustrates the four

possible search as for case 1, where last column is the overall distance (miles) for

each specific neighbourhood search.

70 50 61
0' A 10 E 10 D

3

c 79
78 10 -4.

Depot

67ý
14

D
79

61 50 70
A0

50 70 30
>A>B>

30 70 50
0BA 10 E

Figure 2.5: Searching within neighbourhood distances less than 80 miles

On the other hand, for case 2, the neighbourhood search will be greater than in

case 1. Figure 2.6 illustrates all possible neighbourhood searches when the distance is

less than 95 miles.

26

70
A 61

50 D

90 50
D 10 A

92 B 10 AE
D 70 50

50 70
01 A 10 B

14 79 30 70 50
C ol B 10 A----* E

70 30
01 BN

Defining a neighbourhood can reduce search time to get a solution. In case I

there are 4 solutions out of 120 possible solutions and 8 solutions out of 120 possible

solutions for case 2. This way of solving large problems reduces computing time.

However, an optimal solution is not guaranteed.

To deten-nine the dimension of the neighbourhood search and the type of

movement (dynamic or static) is considered an important condition in many

combinatorial problems. Some researchers succeeded in reducing the size of

neighbourhood whilst, at the same time, finding good solutions in a short computing

time. For example, Toth and Vigo [118] addressed the Vehicle Routing Problem

(VRP) and presented an algorithm to find solutions in a short computing time, by

reducing the size of the neighbourhood to explore only the potentially most promising

moves.

B. Tabu List

The guidance mechanisms of TS are introduced to go beyond the local optimal

termination value of a descent method. Thus an important step to consider in TS is to

deten-nine an appropriate candidate list strategy (tabu list) for narrowing the

27

Figure 2.6: Searching within neighbourhood distances less than 95 miles

examination of elements of NW, in order to achieve an effective tradeoff between

the quality of f (x) and the effort extended to find it. The tabu list helps the search to

get away from a previously visited section of the search space and execute a more

extensive exploration [49]. For instance, on the module insulation problem [91],

where the order in which modules are arranged deten-nines the overall insulating

property of the resulting material as shown in Figure 2.7.

Materials

FigUre 2.7. - Module insulation problem

The objective of this type of problem is to find the ordering of modules that

maximizes the overall insulating property of the combined material. Consider an

initial solution for this problem constructed as the one shown in Figure 2.8 and

consider the resulting material to have an insulating property of 10 units.

Value

Fi, Q, ure 2.8: Initial solution for module insulation problem

As mentioned previously, swap pairs of elements exchange their positions. If a

swap for example, between materials 4 and 5 is applied, a new construction as shown

in Figure 2.9 is created with an insulating property of 16 units.

Value

= 16

Figure 2.9. - New solutionfor module insulation problem Cý

In this case, (4,5) will be considered classified as tabu and enters the tabu list.

Exchange positions are not allowed for a number of iterations (tenure) of n iterations

- this issue will be discussed in section 2.3-.

The length of the tabu list L plays a cntical part in most tabu search

algorithms. Thescn [117] presented some examples to show that the wrong choice of

28

L may lead to a very inefficient algorithm. Anderson et al. [9] reported that list lengths

between 7 and 15 worked well for a path assignment problem. Where Allahverdi and
Al-Anzi [7] showed that when L exceeds 5, results remain the same with no

significant improvement. Taillard [I 10] reported that the successful use of lists when
it is implemented randomly change in length. It is clear that the most efficient length

of the list depends on the problem being solved and the algorithm being used.
We can illustrate tabu search steps as follow:

Notation:

S the current solution

the best-known solution
J* value of S*

N(S) the neighbourhood of S

N'(S) non-tabu subset (admissible subset)

Initialization

Construct an initial solution So using any heuristic method such as greedy

method or randomly.

Set S= So, f* =J(So), S*= So, T (Tabu list) = 0.

Search

Select S in argmin [A S')]; S'E N'(S)

IfAS)<f*, then setf* =J(S), S* = S;

Record tabu for the current move in T and delete oldest entry;

endwhile.

The most commonly used termination criteria in TS are after a fixed number

of iterations (or a fixed amount of CPU time) or after some number of iterations

without any improvement in the solution.

Record and delete tabu elements in and from the tabu list during the

exploration process are obtained by using two types of tabu list. The first one is called

short term memory to maintain the most recently visited tabu transfori-nations. In some

applications, the short terrn memory is sufficient to provide very high quality

solutions. However, in general, TS becomes significantly stronger by including the

second type, long term memory, where the history through all the exploration process

as a whole is kept.

29

C. Tabu Tenure

A tabu list consists of a list of moves the search has recently encountered. The

moves on the tabu list cannot be revisited for a particular number of iterations called

the tabu tenure. Once a move is on the tabu list for a number of iterations equal to the

tabu tenure, it will be removed from the list and considered as a non-tabu element, and

is again a valid move choice. The size of the list can be either variable (dynamic) or

fixed [17]. In the case of using variable list size, called Dynamic tabu tenure, tabu

tenure starts out small and grows rapidly if cycling occurs and decreases gradually as

cycling is diminished. Varying the tabu tenure during the search provides one way to

induce a balance between closely examining one region and moving to different

spaces of the solution area. There are several ways to implement dynamic tabu tenure,

we will mention two of them. The first implementation is called Random Dynamic

Tenure, often given one of two forms. Both forms use a tenure range defined by

parameters trnin and t ma, .
The tabu tenure t is randomly selected within this range and

usually uses a uniform distribution. In the first form, the selected tenure remains

constant for tmax iterations, and then a new tenure is chosen by the same operation.

The second form draws a new tabu tenure t for every attribute that becomes tabu at a

given iteration. The second implementation is called Systematic Dynamic tenure, and

this consists of creating a sequence of tabu search tenure values in the range defined

by tmin and t max '
Then this sequence is used rather than using a uniform distribution to

allocate the current tabu tenure value [49]. Thesen [117] reported, by extensive

experiments, that the best value for ti-nin is one, and the best value for tmax is L (the

length of the list).

D. Aspiration Criteria

Aspiration Criteria techniques are introduced in tabu search to deten-nine when

tabu activation rules can be ignored. An improving move is not accepted if it is tabu

list unless it leads to an overall the best solution of the search process. In this case,

aspiration criteria can be used, which allows one to ignore the tabu status of a move

if this move leads to a value better than the best-known value found by the search so

far. Consider the module insulation problem, if the current solution as is shown in

30

Figure 2.10 and the resulting material has an insulating property of 18 units, and the

best solution so far is 22 units.

Value

Figure 2.10. - Current solutionfor module insulation problem

If exchanging (3,7) classified tabu (tabu list), and exchanging positions will

result in a solution of 24 units, which is better than any visited so far (22 units), then

its tabu classification may be overridden.

A basis for one of these criteria arises by introducing the concept of influence,

which measures the degree of changes induced in solution structure [91].

E. Longer term memory

Short term memory components in some applications are adequate to generate

very high quality solutions. On the other hand, TS becomes significantly stronger by

introducing long term memory. Long term memory operates principally as a basis for

diversifying the search [72]. If a search begins cycling within, and cannot escape a

region, it needs some starting event forcing the search to move to another region.

Intensification and Diversification strategies

Intensification strategies are based on initiating a return to attractive regions to

search them more carefully. Intensification strategies can be applied to stress the

search to a more promising region of the solution space, so that the moves to the local

optimum are intensified. On the other hand, diversiji'cation strategies can be used to

enlarge the search into less explored regions by forcing the moves out of the local

optimum. Diversification strategies are usually based on some form of long term

memory of the search, such as a frequency memory, in which one records the total

number of iterations that various solution components have been involved in the

selected moves or have been presented in the current solution. For instance, in Vehicle

Routeing Problem (VRP) application, one could calculate how many times each

customer is moved from its current route. These techniques could be considered the

most critical issue of designing TS heuristic [13].

31

2.2.1.2 Tabu Search Applications

Tabu search has been found to be very effective for a variety of combinatorial

problems [74]. Tabu search methods has been applied intensively for various types of

optimisations problems and enjoyed success in many of these problems. TS has been

compared against simulated annealing and found to find better solutions more

efficiently for many combinatorial optimisation problems [4]. Scheduling provides

one of the most successful areas for modem heuristics techniques in general and tabu

search in particular.

Some of these studies, which have used tabu search as a method to solve their

problems, will be mentioned. There are of course many of applications, not mentioned

here because of limitation of the space. Jaszkiewicz [64] presented a short survey on

TS for combinatorial optimisation problems. The following are some of the

applications reported [49].

Planning and scheduling

1.1 Scheduling in Manufacturing Systems [90].

1.2 Audit Scheduling [41].

1.3 Scheduling a Flow-Line Manufacturing Cell [103].

2- Telecommunications

2.1 Hub-and-Spoke Communication Networks [10 1].

2.2 Design of Optical Telecommunication Networks [102].

3- Parallel Computing

3.1 Multiprocessor Task Scheduling in Parallel Programs [117].

3.2 Quadratic assignment Problem on a connection Machine [26].

4- Transportation, Routing and Network Design

4.1 The Fixed Charged Transportation Problem [107].

4.2 The Vehicle Routing Problem [13].

4.3 Vehicle Routing Problem with Time Windows [56].

4.4 Routing and Distribution [36].

5- Optimization on Graphs

4.1 The P-Median Problem [98].

4.2 Graph Partitioning [40].

4.3 Graph Drawing [68].

32

It is useful to mention some of the applications concerned with transportation

and routeing in detail because of the similarity with our study. The need for more

efficient logistical planning became the main subject for most transport and
distribution companies due to global competition. Taillard [109] introduced a novel

approach where the set of vertices are decomposed into sub problems that may be

solved separately in order to speed up the iterative search method. Results indicated

that it performed better than all other tabu search approaches. Two different

decomposition schemes are proposed for the uniform and nonuniform problems.
Vertices and tours are exchanged between the subproblems after a summary

resolution of the subproblems. Brandao, and Mercer [20] presented a tabu search for

the multi-trip vehicle routeing and scheduling problem (MTVRSP). The algorithm

consists of three stages and with the initial solution of each stage being the best

solution found in the previous stage. The aspiration criteria are considered which

allows a move to be performed that is tabu in the current iteration. Two types of

moves are also considered, insert move which consists of moving one variable from

one position to another and swap move which consists of interchanging two variables

of the candidate set. They reported an improvement of 17% and 22% over the manual

solution for the overall cost and time, respectively. Ho and Haugland [56] studied a

variant of the general VRP with time windows and split deliveries (VRPTWSD). A

customer whose demand exceeds the vehicle capacity can be served by the option of

splitting a demand. They solved the problem using three steps. The first step, involved

computing an initial feasible solution on the basis of a simple analysis of travel time

and waiting time. In the second step, they improved the solution by using tabu search.

The neighbourhoods were based on some common operators; relocate, exchange, 2-

opt, and relocate split. Comparison with the best published VRPTW solutions in the

literature had been made. Barbarosoglu and Ozgur [13] developed an algorithm for

VRP namely DETABA, using most of the tabu search principles, but they proposed a

new neighbourhood search procedure without any diversification and a new

intensification scheme. Companson was made to measure the performance against

many tabu search algorithms using the well-known benchmark problems. The authors

reported that the performance was better than all of them except that of Taillard [109].

33

2.2.2 Simulated Annealing (SA)

Simulated Annealing (SA) is considered as a method for finding a good

approximate solution for optimization problems. The idea behind this method

emerged when Metropolis et al. [78] in 1953 presented an approach to estimate the

rate of cooling for liquid material to reach a solid state, a process known as annealing.
Physical annealing is a process of heating solid material to a temperature past the

material's melting point and then cooled back into a solid state. The atomic structure

of the material will depend on the cooling rate. The preparation starts by, first melting
the solid material followed by reducing the temperature gradually. If the reduction in

the cooling temperature is performed very quickly, the shape of atoms will be nearly
the same shape as in the previous structure. On the other hand, if the cooling process
is implemented very slowly, the chance of obtaining a good shape will be high. The

last shape will be obtained when the temperature reaches a steady frozen state.
Kirkpatrick et al. [66] suggested that this kind of operation could be exploited and

transferred to a method for solving optimisation problems by searching the feasible

solutions, where feasible solutions can be analogous to construction of the materials.
In Kirkpatrick's proposal, the term control parameter T which represents temperature

is not constant, but it is decreased gradually after a number of iterations. A newly

generated feasible solution which is different from the current solution is similar to a

small displacement of an atom in the solid material to obtain a new shape. There are

two important categories of decisions to be mentioned. The first one is a set of generic

decisions related to simulated annealing itself and consists of. (i) initial temperature

to) (ii) cooling schedule, (as mentioned previously, the temperature is not constant in

SA), which is responsible for a, the rate of change the temperature, and (iii) lower

limit or stopping function. The rate of temperature reduction is fundamental to the

success of any annealing operation, and this can be achieved by specifying a number

of iterations at each temperature and the rate at which the temperature is reduced. This

can be perfon-ned either by using a small number of iterations at a high temperature,

or by a large number of iterations at a low temperature. The deten-nination of a is

critical, either as a constant or a variable. There are different ways to determine a.

The most popular is a geometric reduction function using the fon-nula,

Tk
= Tk-,. a Where a<I

34

Research has shown that a high value of a performs better and in most

published research a value between 0.8 and 0.99 is used [91]. Lundy and Mees [73]

executed their problem using only one iteration at each temperature. On the other
hand, the temperature rate of change was very slow and determined by the formula

T-
T4

-1 Where 6 is close to zero kI+

)6Tk-,
The second category is about problem- specific decisions and consists of three

decisions (i) space of feasible solutions, (ii) neighbourhood structure, and (iii) the cost
function. In a problem such as TSP, where the problem consists of n customers, any

route can be represented by a string of the numbers I to n. for example if n =10
(including the depot) the string could be formed as follows:

0-2-6-8-5-3-9-7-1-0

These strings shape the solution space. The size of solution space can be

calculated, although in some types of problems it may difficult to calculate. For TSP

with n customers, the size of solution space can be calculated as n!, whereas in a

problem which is constrained by strict feasibility conditions it may be hard to

calculate. Several results showed that the number of iterations depends on the size of

the solution space. It is desirable to keep the solution space small [91]. The

neighbourhood feasible solutions can be generated randomly, and the size of the

neighbourhood is recommended to be small for large and complex problems.

Consider a TSP problem with 4 customers to be visited and an initial solution as

shown in Figure 2.11.

(Do- L- oo (: D---oo. 0
-oo-G)

Figure 2.11: TSP withfour customers

The selection of customers for deleting and inserting, or swapping considers

the size of neighbourhood structure. By using the 2-Opt method and selecting

customers 2 and 4 randomly, there is only one way to reconnect the two customers, 2

exchanged to position 4 and 4 exchanged to position 2. Whereas in 3-opt for the same

problem there are 6 choices. In general TSP, with m customers, the size of

neighbourhood is m(m-l). The changes between the objective function value (the cost

35

function) for both the current solution and the newly generated feasible solution can
be defined by (5.

(5=FCk -FCk-I

Where FC denotes to function cost. If o5 <0, then the newly generated feasible

solution becomes the current solution, but if (5 >0 the newly generated feasible

solution has a probability of

exp(-i5 / T) of assumption as the current solution

Initially, the temperature is at its highest and therefore the acceptance

probability is also at its highest value. At the end of the procedure, the temperature is

close to zero and the correspondent acceptance probability is very small. This

procedure will prevent simulated annealing from being trapped in local solutions. The

simulated annealing algorithm can be stated as follows [91]:

(Simulated annealing for minimisation problem with solution space S, objective function

f and neighbourhood structure N)

Select an initial solution so ;

Select an initial temperature to > 0;

Select a temperature reduction function a

Repeat

Repeat

Randomly select se N(so)

9=f (s) -f (so);

if 5<0

then so =s

else

generate random x uniformly in the range [0,1];

if x< exp(-(5 / t) then so = s;

until iteration_count=nrep

Set t= a(t);

Until stopping condition = true

so is the approximation to the optimal solution.

36

1. Example of TSP

To simplify SA methodology, consider a TSP with six customers including the

depot. The distance between each customer is presented in Table 2.4.

Customer 0 12 3 4 5
00 67 2 9 8
1 04 6 8 12
2 0 6 11 13
3 0 10 7
4 0 5
5 0

Table2.4: Distance (miles) between customers, where 0 denotes to the depot

Let the initial temperature be high, To =I 00, and the reduction parameter

a after each iteration will be Tk = Tk-1 * 0.8 . If the cost of the current solution is lower

than that of the new generated neighbouring solution, it will be accepted

automatically. But if the difference giving rise to cost function, may be accepted

subject to condition that depends on the control parameter (temperature) and the

magnitude of the increase, which is fon-nulated as

x< exp (-, 5 / t) where x is

In this example let x be constant and equal to 0.9. The initial solution is

generated randomly as follow (0-1-4-2-5-3-0) with cost function equal to 47 miles.

The neighbours are generated randomly by using 2-Opt method. Table 2.5

illustrates SA applied on TSP problem.

37

Current Solution Swap New solution T exp T) Acceptance Decision

9>0 X=0.9
x< exp(-, 5/T)?

1 0-1-4-2-5-3-0 (47) (1)&(5) 0-5-4-2-1-3-0 (36) 100 <0 YES

2 0-5-4-2-1-3-0 (36) (4)&(3) 0-5-3-2-1-4-0 (42) 80 6 0.93 > 0.9 YES

3 0-5-3-2-1-4-0 (42) (2)&(4) 0-5-3-4-1-2-0 (44) 64 2 0.97 > 0.9 YES

4 0-5-3-4-1-2-0 (44) (1)&(3) 0-5-1-4-3-2-0 (51) 51 7 0.87 > 0.9 NO

5 0-5-3-4-1-2-0 (44) (5)&(3) 0-3-5-4-1-2-0 (33) 51 <0 YES

6 0-3-5-4-1-2-0 (33) (3)&(2) 0-2-5-4-1-3-0 (41) 41 8 0.82 > 0.9 NO

7 0-3-5-4-1-2-0 (33) (1)&(2) 0-3-5-4-2-1-0 (35) 41 2 0.95 > 0.9 YES

Table 2.5. - Bracketed values in the Solution columns represent costfunction values

In this example, the best solution is in row six, where the cost function has

reduced to 33 miles.

There have been a number of independent implementations of SA in the

solution of a variety of classical combinatorial optimization problems. Most of these

studies have used different cooling rates and enhancement in some of SA parameters

such as Marin and Salmeron [76], Wu et al. [122], Breedam [21,22], Tan et al. [112],

and Bent and Hentenyck [18]. The following section highlights on some of these

studies.

2.2.2.1 Applications on SA:

A good description of SA is provided by Breedam [21], where VRP was

solved using SA. The author used three methods of selecting customers for using

solution update action. The first method, called the relocation method, tries to delete a

customer or a string of customers from one route and insert into another route. The

second method, called string exchange method, exchanges customers or a string of

customers between two routes. The last method is a mixture of the previous methods,

called string mix method, which tries to exchange or relocate a customer or a string of

customers. The maximum number of customers to be relocated or exchanged was 3

customers. The initial temperature To = 1000, and the total number of iterations was

equal to 1000000. An iteration occurs every time a move was generated, whether it

was feasible or not. The acceptance ratio was 0.01, while the stop temperature

38

Tfinal
= 1. A comparison with 14 classical VRP problems [30] was made. Bent and

Hentenryck [18] used a two-stage algorithm for pickup and delivery vehicle routing

problems with time window (PDPTW), where the customers in this problem were
divided into pickup and delivery pairs. A pair (a, b) in a route must visit customer a

and b using the same vehicle. Meantime, the schedule must pickup customer a before

the delivery to customer b. The objective function was to minimize the number of

used vehicles and the total travel cost. The first stage was to reduce the number of

vehicles using SA, while the second stage of minimizing the total travel cost was

solved using a heuristic method. Because of the success in reducing routes on the

VRPTW and overall simplicity of its implementation the authors selected SA to solve

part of this problem. The initial solution started by serving each customer using its

own vehicle. Each temperature started after finding the best solution so far, where the

search was based on a number of local searches. Each local search has a number of

iterations and decreases of temperature, where these two steps were repeated until a

time limit was reached or the temperature has reached its lower bound. The cooling

rate was specified as exp(-t5 / T) . The initial temperature was To = 2000 with cooling

factor a=0.9 ý
2500 iterations per temperature and minimum temperature

Tfinal = 0.01. The time allowed for running SA was 5 minutes. The acceptance

condition number was selected randomly in the range [0,1]. The results they achieved

were compared with standard PDPWT benchmarks [I]. Tan et al. [112] addressed

VRPWT using heuristic methods, one of which was SA. The authors generated an

initial solution, with initial temperature To = 100. They decreased the temperature by

applying the formula

Tk
Tk-I

+ 1 k-I

where Tk was the current temperature at iteration k and -rwas the time

constant in the range of (0, I). To speed up the cooling process, they introduced the

square root of Tk. The neighbourhood solutions selected randomly or systematically

with the acceptance ratio for those solutions according to

exp(-A / T)

Where A= C(s') - C(s), C(s') was the cost of the new solution and C(s) was

the cost of the current solution. When the temperature reaches the final temperature

39

Tf = 0.001, or no more feasible moves in the neighbourhood, the temperature was

reset using the formula

T, = max(TO ,
Tb

2

where T, was the reset temperature and Tb was the temperature at which the best

current solution was found. The authors adapted the 2-exchange approach for local

neighbourhood search. The operation terminates after a given number of resets.
Results showed that SA was very fast and offered reasonably good solutions.

2.2.3 Genetic Algorithms (GAs)

2.2.3.1 Background of Genetic Algorithms (GAs):

Genetic Algorithms (GAs) were introduced and developed by Holland [57],

his colleagues, and his students at the University of Michigan. The aim of their study

was to abstract and explain the adaptive technique of natural systems and to design

artificial systems software that preserves the important mechanisms of natural

systems [50]. GAs are considered as an adaptive technique that simulates the

optimisation operation with the natural system of genes in a population of organisms

as illustrated in Figure 2.12. The GA keeps a population of candidate members over

many generations. The population consists of a number of strings of artificial

chromosomes. A chromosome consists of a number of entities known as genes. The

number of genes in a chromosome is usually the same for all chromosomes in the

population. Each gene has a value associated with it. In most applications those

numbers are either binary or integer. Variables are often called genes, and the values

of variables are called alleles. The process starts by selecting parents according to the

fitness value (quality). Operations such as crossover and mutation are applied to

parents to produce offspring (children). The new generation is considered as the new

population and the procedure reapplied.

40

chrol-l-losollic

Gene s

'ý P. 1 P. rtlin g
Crossovc: r

> 'Mutation

Population Generation

Figure 2.12: Genetic process (derivedftom Tan et al. [I I]])

The methodology and the basic operators of GAs can be illustrated as follows.

Consider, for example the Travelling Salesman Problem (TSP), to visIt six customers,

starting and finishing at a depot. The objective of this problem is to serve all

customers at minimum total distance. The distance between each customer is shown
in Table2.6 where 0 denotes to the depot.

Customers 01

0 0 15 12 20 25 16 9
1 0 10 8 7 8 12

2 0 17 8 9 13
3 0 21 14 9
4 0 18 15

5 0 11
6 0

Table2.6. - Distance between each customer (miles)

A genetic algorithm starts by first generating initial solutions which form a

population. Consider for this example that there is an initial population of size =4

with the total distance (fitness value) for each string as shown in Figure 2.13.

41

Chromosome or string
II Fitness

I 10 14 16 12 15 13 1110]

202361 15 40

301652430

405136240

Figure 2.13

The operation of generating an initial population could be perfon-ned by using

a systematic procedure or randomly. There are sets of operations that take this initial

population and generate successive populations, which lead to improving the

objective function over time. There are three basic operations in GA: (i)

Reproduction, (ii) Crossover, and (iii) Mutation, usually applied in sequence. First,

reproduction is an operation of selecting individual strings according to their fitness

values. The selected strings are known as parents and can be produced by several

methods. Since the TSP is a minimization problem the way of selecting a parent will

be according to lower fitness values. This means, the lower the fitness value, the

greater the probability that the parent will contribute one or more offspring (new

generation) for the next generation. Referring to the example shown in Figure 2.11,

string 4 has the lowest fitness value (87) and will be the first parent, while string 1

(99) will be the second parent as shown in Figure 2.14

1111111
Parents

10 14 16 12151311 Efl

FigUre 2.14: Secondparent

These two strings (parents) will enter a mating pool for further genetic

operator procedures.
Crossover operator is the next operation after reproduction, which is applied

to the selected strings (parents). A crossover point is selected at random from the five

possible positions as shown in Figure 2.15, and a new solution is created by

combining partial solutions from the original parents.

42

os sible cro ss over p oints

1ý 1ý
41

1ý
ý

405362 4-[0 8-7-]
Parents

1046253 11 0 99

Figure 2.15. - Five arrows represent the possible positionfor crossover point

Figure 2.16 illustrates an example for I-point crossover operator, where all

genes before the crossover point will remain and the two sets of genes after crossover

point will be exchanged. There are other ways to apply crossover. For example, more

crossover points can be chosen (2-point, 3-point, and multi-point crossover

procedures have been developed from the simple I -point). For this example, the

crossover is located between the third position and the fourth position in the strings.

4

Fitne ss

Parents

4,
Fitne ss

0151121531101

2 10 14 16 1316141j
Offspnng

Figure 2.16: One-point crossover

All elements from the third position to the last position are swapped and two

offspring are generated. As mentioned previously, variables are often called genes,

and the values of variables are called alleles. It is obvious from the new generation

(offspring) that there is duplication in some alleles (customer), such as I and 5 in first

offspring and 4 and 6 in the second offspring. To avoid this duplication, partially

matched crossover (PMX) is applied in this example. PMX was first proposed by

Goldberg et al. in [3] where PMX proceeds by positionwise exchanges as shown in

Figure 2.17. The same procedure as the one implemented previously is applied, where

all elements from the third position to the last position are swapped. Since I has

exchanged with 4 in position 6,5 has exchanged with 6 in position 4, then to solve

duplication, for positions I and 2, occupy position with the element has been

exchanged with in the previous step. Where I occupies first position in Offspring 2,

where 4 has been occupied previously, and 4 occupies second position in Offspring 1,

43

where I has been occupied previously. The same procedure applies on elements 5 and

6.

4
arents

4
Fitne ss

110 1 6: 14 12131 11 01
Offspring

2 10 11 1.3 1'. ýý&] 2 14 10

Figure 2.17: PAM crossover operation

It is obvious from the result obtained from the crossover operation that the

fitness value in offspring I equals 78 which the best solution so far. Elitism should be

used for saving the best-found solution. Elitism is an operation for searching for the

best solution to date at various stages of the GA procedure. This guarantees the

preservation of the best chromosomes at each generation.

The Mutation operator plays the next role in the simple GA. Mutation is

achieved by swapping genes. There are several ways of implementing the mutation

operator, such as Swap Nodes or Swap Sequence as shown in Figure 2.18.

Swap Node

0 14 16 12 15 13 1 110
1

I

Fitne ss

Swap Sequence

10141612151311101
I

I

Figure 2.18. - Several common mutation operations

In this example swap node will be implemented on both offspring as shown in

Figure 2.19.

44

4e-4ý
Fitti ess ellloý Fitne ss

210 11 151316 12 14 10

I

I 1_0 16 14 1215131 11 0] 2 10 11 151316 12 14 10 1

Figure 2.19: Swap nodes

Mutation involves a random element in order to help the search to obtain

solutions that crossover alone may not encounter. The fitness value now is the best

one so far which is clear from offspring I (fitness value = 77).

Once this operation is finished, the procedure is repeated by selecting a new

parent from the initial population to create new offspring. The same operation is

carried out and the process stops after a defined number of generations or a number of

generations with no improvement in the best solution obtained.

The steps of simple GA can be summarised as follows:

Generate an initial population (randomly or structured method) with size =M

Repeat

Repeat

Evaluate fitness (objective function) of each string in population

Select two parents from the population

Apply crossover to produce two offspring

Mutate offspring

Until number of generated offspring =M

Until stopping criterion is satisfied

It is important to mention some recommendations regarding other parameters

associated with crossover and mutation operators. These parameters are the

probability (rate) of crossover Pc and the probability of mutation Pm. The probability

of crossover means the proportion of iterations at which crossover occurs, while the

probability of mutation means the proportion of iterations at which a chromosome

will be mutated during GA searching procedure. The crossover is necessary to exploit

the population (to combine good genes) while mutation must be used only from time

to tirne to diversify the search (to bring new genes). The value of Pc and Pm depend

45

on the type of the problem. In combinatorial optimization, for example, the usual

practice is to perform one crossover at each iteration, i. e. Pc = 100% and Pm is

between 2% to 5% [86]. Taniguchi and Shimarnoto [114] found thatPc = 90% and

Pm = 2%.

In general, the value of Pc should be large, where Pm is recommended to be

small. If the Pm is too large, the population is badly exploited.

This introduction to GAs covers only the basic version. There are many

enhancements that have been proposed and the reader is refered to [50,57,91] for an
in depth treatment of the subject. The following section presents a brief literature

review.

2.2.3.2 Applications using GAs:

Baker and Ayechew [12] considered a vehicle routing problem (VRP) and

tackled it using GA. The VRP consists of a number of customers with known demand,

where each customer will be visited once. The problem is to find a set of delivery

routes to visit all customers at minimal total cost. Two methods were used to generate

the initial population. In the first method, solutions are generated using a structured

approach and in the second method by a mixed approach which is part structured and

part random. A population size of 30 was used for the smallest problems (50

customers), while a population size of 50 was used for large problems (from 75

customers up to 199 customers). Two parents are chosen from the population using

the binary tournament method, where a group of T parents is selected from the

population and compared. The one with the best fitness value is considered as the first

parent, and the best value after the first parent is considered as the second parent. A

standard crossover procedure is used to produce offspring. By experiments, the

authors found that the best procedure was a 2-point crossover, where two crossover

points are selected randomly. Offspring that duplicate an existing solution are

eliminated. The authors applied a mutation operator by selecting two vehicles

randomly and switched their positions. Computational results were presented, and a

comparison with Simulated annealing (SA) and Tabu Search (TS) was made using

through 14 vehicle routing problems which can be downloaded from OR-library (see

Beasley [151). Results showed that solutions were up 0.5% above best known results

on average, with solution times that were not excessive. Choi et al. [28] solved a

46

symmetric travelling salesman problem using GA. In their study, infeasible solutions

were generated and included in the population through genetic operators so that the

solution can be utilized. The sum of arc costs in the tours represents the fitness value

of a chromosome in the algorithm. Two crossover operations were presented, partially

matched crossover (PMX) and tie break crossover (TBX). The methodology of TBX

can be presented as follows: consider that two parents are given and two-crossover

points (2-point) are selected randomly as shown in Figure 2.20.

Pi

P2

Figure2.20: Two parents with 2-point crossover

After applying the crossover operation, two new offspring are produced as shown in

Figure 2.2 1.

rr_ i
oLi. spnngl 11 16 38 17 14 83

offspnng2 12 15 17 1--4 12 15 16

Figure2.21: Crossover operation
In this example some genes are duplicated as shown by an underscore. Solving

the duplication can be performed by generating numbers between 0 and I randomly.
For example (0.3 0.5 0.6 0.1) and (0.3 0.6 0.8 0.2). These numbers are added to

duplicated genes as shown in figure 2.22.

offspringl 1 11 6 13.3 18.51 7 14 IT865 F3.1]

offspring2 1 2.31 5.61 71 41 2.81 5.21 61 11

Figure 2.22. - Duplicated genes

Finally, the smallest among the four underscored values in offspringl change

to allele value 2, the next smallest to 3, then 5, and the last to 8. The same operation is

47

applied to offspring2. The new two offspring, after removing the duplication, will be

as displayed in Figure 2.23.

offspring 116357 14 18

offspnng2 28743 157761 11

Figure 2.23: Duplicated genes

Through computational experiments the authors found that PMX and TMX

performed better when they were used together rather than separately in the algorithm.
Since 2-opt operation shifts the orientation of arcs, they used three-way swapping as a

mutation operator to preserve the orientation of genes in parents. Because the

algorithm they used generated infeasible solutions, they applied a repair algorithm

called Karp's patching algorithm (details about this algorithm can be found [65]). The

authors presented results that showed GA is efficient in producing high quality

solutions for this type of problem. Tan et al. [III] considered vehicle routing

problems (VRP). This problem involved routing a fleet of vehicles with limited

capacities from the depot to serve a number of customers with known demands and

predefined time window constraints. The objective is to minimise the total cost with a

minimum number of vehicles without violating any constraints. The authors used
heuristic methods to solve this problem, one of which was GA. The sequence for the

customers in a chromosome represented the order of visiting these customers. Initial

solutions were generated partially by using the push forward insertion heuristic PFIH

(see Solomon [104]) and the remaining solutions were produced randomly. The

population size was kept to 1000, and the total generation number was set at 500-

1000. The fitness value associated with each chromosome is the total cost and the

select on procedure is implemented by selecting the best chromosome fitness value

mating pool. The PMX crossover operator was implemented and applied to each pair,

where the crossover probability was more than 60%. The mutation operator was

applied by selecting and swapping two customers in the same chromosome randomly.

Infeasible solutions generated by crossover or mutation operations are deleted. GA

was applied to problems with 100 customers served by a fleet of vehicles with

between 2 and 21 vehicles. Compared to the best-published results the presented GA

achieved an overall distance gap of not more than 4.3%. Prins [86] addressed VRP

where chromosome repeated a sequence of n customer nodes. The population was

48

implemented as a number of chromosomes, and sorted in increasing order of fitness

value. Three good solutions were generated using heuristics denoted as CW [32], MJ

[79], and GM [46], then sorted as the first three chromosomes in the population. The

other chromosomes were generated randomly and any identical chromosome deleted.

The author adapted order crossover OX in this problem. This method does not

generate any duplicated nodes. The methodology of this OX works as follows:

suppose PI and P2 are selected, then 2-point crossover pointed is implemented, where

two cutting, before i= 4 and afterj= 6, are selected randomly as shown in Figure 2.24.

Pi

P2

i=4 1=6

Figure 2.24: Two cutting

By applying the OX method, the offspring will be as shown in Figure 2.25

Pi

P2

i=4

4.

1=6

Cl 12 13171815 14 16 1 11

C2 18 15 14 12 13 17 1 11

Figure 2.25. - OX method

The substring between position 4 and 6 will be copied and placed in the same

position for CI (offspringl) and C2 (offspring2). Finally, PI is transferred circularly

49

fromj+l forwards to complete Cl with the missing nodes. C2 is also filled using the

same procedure with Pl. The author applied local search procedure LS instead of

simple mutation operators which achieved much better results. Offspring C generated

by OX is improved by LS with fixed probability Pm. The GA was applied on 20

problems with a number of customers between 200 to 483 customers. The best

standard setting of population size was equal 30, Pm started at 5% and increase up to

10%. GA gave the best solutions for 12 of the 20 problems.

50

Chapter 3: A Review of the Literature on Ship Routing and
Scheduling

3.1 An Overview of Research on Transportation Routing and Scheduling

The transportation revolution poses challenges to transportation companies in

providing a good service at an economic cost. Efforts continue to find creative

solutions to the challenging environment for transportation. A survey of published

work on routing and scheduling problems are presented in this chapter. The survey

consists of three categories: (1) land transportation problems, (2) air transportation

problems, and (3) ship routing and scheduling problems. Categories I and 2 are
briefly summarised and the main focus is on ship routing and scheduling.

3.2 Land Routing and Scheduling Models:

This category consists of two subcategories: vehicle routing and scheduling

models and railroad routing and scheduling models.

3.2.1 Vehicle Routing and Scheduling:

Most studies have been devoted to the general Travelling Salesman Problem

(TSP) and Vehicle Routing Problem (VRP). Some of these studies were presented in

Chapter 2.

The Vehicle Routing with Time Windows Problem (VRWTP) is the extension

of VRP. This type of problem has many real world applications, such as gas and

petroleum deliveries, bank deliveries, postal deliveries, and school bus routing. Many

research studies have been conducted on VRWTP because of the challenging

difficulty and strategic cost impact [97]. Russel and Chiang [97] considered VRWTP.

The objective was to minimise the number of vehicles required and the total travel

distance incurred by the fleet of vehicles. All feasible routes were generated and a set

covering formulation was applied to obtain the optimal solution. Haghani and Jung

[54] solved the problem of a pick-up or delivery vehicle routing problem with soft

time window using heterogeneous vehicles with different capacities. The authors

solved the problem using an exact approach based on mixed integer programming

(MIP). The authors also proposed a Genetic Algorithm (GA) heuristic method for

large-scale problerns. For small size problems (10 demands), the GA produced

51

solutions close to the exact solutions. For large problems (30 demands), the GA

generated solutions that were within 8% of optimality.

Yau [123] addressed a problem of truck scheduling. This problem is to

schedule a fleet of trucks from many warehouses to many delivery points subject to

some constraints such as truck capacity, loading and unloading time, and travelling

time. The problem owner was STARLINK, a warehousing and a distribution

company which based in Hong Kong. The author solved the problem using a heuristic

method to build a complete schedule. Each step of the method involves two possible

actions: (i) a delivery point may be inserted into the set of partial routes, or (ii) a
delivery point in the partial solution may be moved to another position in the routes

where the latter has the priority over the former. This procedure continues until all
delivery points have been included into the routes. An average of 8.8% improvement

in cost compared to the manual method used by STARLINK Company was reported.

3.2.2 Railroad Scheduling Models

A railroad system is considered an important part of the transportation network in

many countries, both for passengers and cargoes. In the United States, for example,

about 30% of total revenues of all carriers are delivered from railroad, and these

account for 3 5.6% of total express freight transport (Assad [I I]). Train routing and

scheduling decisions represent a large problem that is made more difficult by a

number of constraints on track, engine and crew availability (Assad [I I]).

Train scheduling activities in planning applications are conducted in two

phases. The first phase is line planning (i. e. sketch planning), which is to specify the

routes, frequencies, and stop schedules of trains. The second phase is schedule

generation, which constructs the arrival and departure times for each train at passing

stations.

The train scheduling problem is to find an optimal train timetable, subject to a

number of operational and safety requirements, such as crossing heading and

overtaking constraints. The major objective of planning applications is to minimise

the overall operational costs, while freight traffic demand and passenger satisfaction

are considered.

Zhon and Zhong [126] considered a problem of double-track train scheduling

for planning applications with multiple objectives. Double-track train means that there

can be two trains in any direction at the same time. Two types of trains are designed

52

to operate on the same track system, namely high-speed trains (250-300 km. /h) and

medium-speed trains (160 krn/h). The first objective is to minimise the expected

waiting time for high-speed trains, while the second objective is to minimise the total

travel times for both high-speed and medium-speed trains. The traditional planning

approach usually schedules high-speed trains followed by medium-speed trains. To

prevent extremely long travel times for medium-speed train passengers, the authors

applied a branch and bound algorithm and heuristic method. Results were obtained by

applying their approach on a case study based on a railroad in China.

To reduce the chance of a missed connection, buffer times are inserted into the

schedule. Vansteenwegen and Oudheusden [120] presented a technique for creating

robust timetables. Linear Programming was used to construct an improved timetable.

The authors applied their approach on the Belgium Railway Company, where waiting

cost was 40% lower compared to the existing timetable.

Delays can occur when a train on a single track switches to the sidetrack to

allow another train travelling in the same direction to pass. Delays also occur if the

length of the train's standstill interval at the arrival platform exceeds a certain lower

bound, then the train may be shunted towards a parking area in order to release the

arrival platform. Zwaneveld et al. [127] addressed a problem of routing trains through

a railway station. Several aspects were taken in account such as capacity, safety and

customer service. The two ma or objectives were, minimising the number of shunting

movements, while the second objective was to maximise the preferences of the trains

for platforms or routes. The authors solved the problem to optimality by using integer

programming.

A comprehensive survey for train scheduling problems and other train

problems is given by Cordeau et al. [33].

3.3 Airline Routing and Scheduling:

Commercial airlines face a series of operational decision problems regarding

the deployment of their fleets. First, they have to assign aircraft types to flights (fleet

assignments). Secondly, a specific aircraft has to be assigned to each flight (fleet

routing), and finally, crews have to be assigned to the aircraft (crew scheduling).

These problems have to be solved whilst meeting the aircraft maintenance

requirements (maintenance planning) (Ronen [95]). Achieving a match between

capacity and demand for optimal revenue is the objective of fleet assignment.

53

Many researchers presented models to solve these types of problems.
Subramanian et al. [106] considered a fleet assignment problem at Delta Airlines.

They solved the problem by using interior point methods [59]. They reported savings

of up to $220,000 per day for the airline company by using this method. Ronen [95]

considered a combined fleet assignment and fleet routing problem which involved

maintenance activities and crew availability considerations. The problem was solved

using an elastic set partitioning model that was embedded within a decision support

system. Holstand and Sorenson [58] considered a maintenance problem at the Federal

Aviation Administration (FAA). They solved the problem by generating several
thousands feasible routes. Then, a minimum cost subset of these routes is selected by

solving a set covering formulation. Subramaniarn and Marsten [105] considered this

problem by presenting an integer programming formulation and applied Lagrangian

Relaxation.

Operational changes due to technical difficulties, bad weather, head winds on

route, etc, may lead to delaying or cancelling flights, swapping aircraft among flights

or using spare aircraft. These problems affect future deployment of aircraft and crews.
This kind of problems called a Day of Operations Scheduling (DAYOPS) problem.
Actually, many researchers presented models to find a good balance between the

optimality of a proposed solution and the speed with which it is achieved (dispatchers

usually adjust the planned schedules under stress and have little time to analyse cost-

effective scheduling alternatives). Rakshit et al. [87] collected 251 cases of aircraft
delays during one day. They succeeded in saving 8495 minutes by using simple swaps

between planed aircraft. A conservative estimate of the value per minute of delay is

$20. Thus a $169,900 saving in delay cost was achieved in the given period.

Teodornic and Guberinic [115] proposed a simplified model to minimise the

overall passengers waiting time. Later, Teodornic and Stojkovic [116] developed a

heuristic procedure which first minimises the number of cancelled flights and then

minimises the overall passenger waiting time.

For more applications in this area, the reader can refer to Gopalan and Talluri

[52] who presented a survey of mathematical models in airline schedule planning.

3.4 Ship Routing and Scheduling Modes

This category is further divided into three ship routing and scheduling sub-

sections:

54

3.4.1 Liner Operations:

The literature on modelling techniques and approaches for liner shipping is

quite limited. However, in recent years an increased activity in this area has become

evident, due to China's economic boom (Lane et al. [70,100] and Shantani et al
[100]). In 1995 container liner ships made up 5.9% of the world fleet's total dead

weight capacity. In 2001 there was an increase of 9% [29]. Despite these facts, liner

shipping has drawn little attention from researchers, at least in its quantitative aspects.
This might be due to the nature of some of variables and factors that influence the

operations of a liner company, such as some minimum required services frequencies,

subsidies, and government regulations. These factors have discouraged attempts

towards a systematic approach to the analysis and optimization of liner transportation

systems.

Since there exists a high degree of uncertainty with liner operations because of
factors such as weather conditions, strikes, or mechanical problems, which made the

routing or scheduling problems for ships less structured than in the case with other

transportation modes [27]. The main modelling techniques relied mainly on

simulation and heuristic decision rules to solve liner problems. Exact methods, such

as linear, integer, or non-linear programming can be used to tackle liner fleet

deployment and scheduling problems, given that the cargo forecasts are dependable. It

is known that simulation techniques can provide an evaluation for the system or help

users to choose the best solution among limited group of alternatives submitted to it.

On the other hand, exact methods present an optimal solutions (Perakis and

Jaramillo[83]).

Datz et al. [39] presented a simulation model for liner operations which

produces a schedule and gives an estimation of the financial consequences for the

schedule. The model took into account the chance that a "promised" cargo could be

cancelled. Simulation was also used by Kydland [67] and Olson et al. [82] to solve

liner problems. Kydland [67] utilized linear programming to developed a stochastic

simulation model to determine the optimal number of ship required to offer a

specified service frequency. Olson et al. [821 presented a deten-ninistic simulation

model to produce medium terrn regular schedules for a liner company, operating

between the US west coast and Hawaii. Additionally, the model was used to

investigate the impact of factors such as waiting in port for additional cargo, and to

evaluate scheduling decisions.

55

Cho and Perakis [27] addressed the problem of determining a fleet size and
design in optimal liner routes for a liner shipping company. They solved the problem
by first, generating a number of candidate feasible routes for different ships, and then

applied a linear programming formulation to solve it. The generated feasible routes

are represented by the variables. The authors also presented a mixed integer

programming model to extend the model to consider more investment by expanding
fleet capacity such as building or purchasing new ships, or resorting to the market for

chartering.

Fagerholt [42] considered a problem of designing an optimal fleet in a real
liner shipping problem. The methodology used to solve the problem consisted of two

steps; first generating ship routes based on a dynamic programming algorithm. In the

second step, a Set Partitioning model (SPP) was formulated. The solution considered

only ships with fixed speed. Later on, Fagerholt and Lindstad proposed an approach
that could cater for different ship speeds. The model was applied on real problems
belonging to offshore supply operations based in the Norwegian Sea. The model

presented saving of $7 million compared to the manual method.
Boffey et al. [19] solved a problem of scheduling container ships over the

North Atlantic route. The authors developed an optimisation model which was

presented as an interactive computer program based on a greedy heuristic to generate

schedules. This interactive computer program provided the user with information such

as profitability, timing, and transit times.

Nemhauser and Yu [8 1] studied a model for rail service which can be used for

a liner problem. They used dynamic programming to locate the optimal frequency of

services to maximise the profit over the planning horizon.

Rana and Vickson [88] presented a deten-ninistic mathematical programming

model for optimally routing a simple container ship. The formulation involved

nonlinearity, which was converted into a number of mixed integer programs. Bender's

decomposition was applied to the mixed integer programs, where a specialized

algorithm was used to solve the integer network subprograms. Later, Rana and

Vickson [891 provided an extension to the work of their previous paper , by allowing

multiple ships. The authors formulated the problem as a non-linear problemand

solved it using Langrangean Relaxation, which decomposed it into several sub-

problems, one for each vessel, and each sub-problem was decomposed into a number

of mixed integer programs.

56

Perakis and Jaramillo [83] presented a linear programming model to minimize

the annual operating costs of a fleet of liners. This minimization is equivalent to

maximizing the profit. The operating costs are; fuel costs, daily running costs (such as

salaries and benefits of the crew), port charges, and canal fees. The authors also

presented two separated approaches to find the optimal speed and frequency of

service on routes by using non-linear constrained optimisation. In a subsequent paper,
Jaramillo and Perakis [63] continued the work. An optimum deployment of a liner

fleet that contains both controlled and chartered ships subject to time, frequency and

other constraints was developed. To avoid nonlinearity and to fon-nulate the problem

using linear programming, the authors resorted to fixing the speed of the ships and the

frequency of the service on each route. They provided an example where the solution

was derived by rounding the number of ships on a route obtained by using Linear

Programming (LP). The authors used sensitivity analysis to present insights in to the

impact of the various cost components and constraints on the profitability of the liner

company. This analysis indicated that the operating costs are very sensitive to the

composition of the fleet with more owned ships resulting in higher operating

expenses. The example they presented was based on the data provided by the liner

fleet of Flota Mereante Grancolombiana (FMG), a large liner company operating

routes between Colombia and many countries such as US, and Japan. The authors

compared their solution with the present fleet deployment of the company. The result

presented a reduction of 3% in operating costs without any changes in the service

frequencies. A reduction of 13% could be a achieved with a little modification on the

service frequencies. Six years later, Powell and Perakis [85] provided an extension

and improvement of the previous work. They solved the problem by an integer

programming formulation. The model provides information such as the optimal

deployment of a fleet of ships, service, route, and chartering from the market. The

model was applied to a real world problem and resulting a significant saving

compared to the actual deployment.

The sea container industry is confronted with the problem of allocating empty

containers. If the inventory control fails in locating empty containers at demand points

at the requested time, there are two possible decisions: load rejection or container

leasing. As a result, a significant decision at the operational level is how to transfer

empty containers in an efficient and timely way and / or lease containers. Shintani et

al. [100] proposed a design method for containership liner shipping service network

5

that incorporates empty container repositioning among calling ports. The authors

solved the problem by linear programming and a heuristic method based on Genetic

Algorithm (GA). The objective was to maximise the profit for a liner shipping

company, by finding a set of calling ports, the number of ships of each ship size, the

resulting cruising speed to be deployed in the service network, and an associated port

calling sequence. Experiments and analysis were presented based on a case study.

3.4.2 Tramp Operations

Very little work has been done on the allocation, routing, and scheduling of
tramp shipping. Christiansen et al [29] refer to the shortage of research related to

tramp shipping compared to the large number of comparatively small operators in the

tramp market. Large shipping companies usually watch the tramp market as a

secondary one, and this occurs because of uncertainty over ship availability and the

reality that ships of a tramp operation when such an operation is very profitable
(Ronen [92]).

The first author to address this type of problem was Appelgren [10], who used

the Dantzig-Wolfe decomposition approach for routing and scheduling. Bronmo et al
[24] considered a tramp ship scheduling problem. The problem involved pickups and
deliveries of bulk cargoes between specified ports within a specific time frame. The

objective was to minimise the profit of this operation. The authors formulated the

problem as a Set Partitioning Problem (SPP), where all possible schedules are

generated. The authors also proposed a heuristic method to tackle large size problems,
in order to measure heuristic efficiency compared to the SPP optimal approach.

Computational results were presented with excellent solutions.

Fagerholt [43] developed a decision support system (DSS) for ship fleet

scheduling for both tramp and industrial shipping. The author designed an interactive

computer program consisting of two different heuristic methods. The first heuristic

method generates initial schedules for each ship, where as the second, a heuristic

hybrid search method, is used to improve the solution to the ship scheduling problem.

3.4.3 Industrial Operations

Industrial operators have control over both the ships and the cargos. This type

of operation is well known in carrying bulk and semi-bulk commodities, such as oil,

58

ore, coal, pulp, lumber, and sugar. Industrial operations have attracted more research

than liner or tramp shipping (Perakis and Jaramillo [83]).

Most of existing ship routing and related scheduling studies are covered by the

following three major review papers: Ronen [92,95] and Christian et al. [29].

Seaborne routing and scheduling problems for bulk products can be presented
into two separate types: inventory routing and cargo routing problems. First,

inventory routing problems are constrained by inventory requirements, where the

level of products at ports should be maintained. The second type, routing problems are

usually constrained by the cargo, which is specified by loading/ unloading ports, and
by time windows for loading and unloading.

Al-Khayyal and Hwang [6] considered an inventory routing problem. A

heterogeneous fleet of ships with multiple compartments capable of carrying different

products simultaneously were employed. The fleet is used to distribute multiple liquid

products to many ports, where each port is either a producer or a consumer. The

average production and consumption rate for each product is known. The problem is

to deten-nine which product is to be loaded (or unloaded) onto which ship, the quantity

to be loaded/unloaded, and to schedule the arrivals and departures of the ships to

maintain the inventory levels. The objective is to minimise the total daily cost of the

ships. The authors formulated the problem using mixed integer linear programming

and applied CPLEX 7.5 to solve the problem. More than 100 test problems were

randomly generated and solved. Results and analysis were presented.

Ronen [96] considered an inventory routing problem. There is a single loading

port at the origin and a single unloading port at destination, for each vessel's voyage,

but a vessel may load multiple products (in separate compartments). This problem

tried to deten-nine when and how to ship each product from which origin to which

destination and by which vessel. The objective function of this problem was to

minimise the overall shipping cost and not violate the safety stock and storage

volume. A mixed integer progranuning was presented as a first approach, and solved

with aI% optimality tolerance, while the heuristic approach was within 15% of the

LP bound.

Much research has been conducted with seaborne routing and scheduling

problems for bulk products for the second type. Dantzig and Fulkerson [37]

considered a tankcr scheduling problem for a homogeneous fleet, i. e., speeds, carrying

capabilities, and operating expenses were similar for all ships. Meantime, loading and

59

unloading dates were predetermined. The authors considered that just one loading and

one unloading port for each ship. The objective was to generate a specified schedule,

where the number of ships is minimised. Later, Briskon [23] extended the problem the

previous work by allowing several unloading ports. The author exploited dynamic

programming to find out the schedule of unloading ports for each ship.
Bellmore et al. [16] extended the problem of Dantzig and Fulkerson [37] by

allowing different types of ships and permitting partially loaded ships. Predefined

delivery dates within a certain time interval were provided. The objective was to

maximize the total benefit of deliveries. They solved the problem using a mixed
integer linear programming model, where branch and bound was used. No application

or results were presented.

Ronen [93] considered a single voyage ship-scheduling problem of an

organization that ships quantities of bulk or semi bulk commodity from one origin to

several destinations. A ship schedule specifies the cargos to be carried on a ship, the

locations between which each of these cargos are carried and the timings of each

activity (loading, unloading, transits). A feasible ship schedule is a schedule that

satisfies all specified practical requirements. It is assume that the total capacity of the

available fleet is greater than the total cargo demand, which means that there is no

need to resort to chartering, was presented. Each ship is allowed to load cargoes to

multiple destinations, and the demand at each destination can be met by more than

one ship. Three ways to address the problem were presented: two different heuristic

algorithms to minimize the cost per ton-mile of cargoes and an exact optimising

algorithm (applied to a small sized problem due to excessive computing time). Ronen

tried to minimize the cost of operating a fleet to deliver available shipments. He

calculated the operating cost (consisting of port costs and bunker fuel consumption

during the voyage), canal dues, the cost of the unit loaded to the vessel, demurrage

(payment for holding a vessel on anchor, without employment) and unloading port

charges for each route. Ronen presented 20 examples with between 3 to 13 vessels

serving 5 to 13 ports (the exact algorithm was applied to 5 vessels and 7 ports). These

examples illustrated the reduction of cost compared with the ad hoc methods currently

used by fleet managers.

Brown et. al. [25] considered a crude oil tanker scheduling problem faced by a

major company, and solved it using an elastic set-partitioning model. The oil

company controlled several crude oil vessels of similar sizes to ship crude oil (full

60

shipload) from Middle East to North America and Europe. The problem was solved
by generating all feasible schedules, and selecting the optimal subset of schedules.
The model took into account all fleet cost components, and determined the optimal

speed for the vessels, and the best routing of empty vessels. The model also
determined which shipments to load on controlled vessels, and which to spot charter.
Bausch et al. [14] expanded the Brown et al. [25] model for scheduling shipments of

refined oil products from several refineries to multiple destinations using either

tankers or barges. A microcomputer system was designed with an EXCEL user
interface. A detailed cost model was integrated in the system. The model can be used

to find out the optimal speed of the ships and the need for spot chartering ships.
Mehrez et al. [77] considered the problem of an ocean transportation system

for bulk products from an overseas port to transshipment ports on the Atlantic Coast

and then over land to final destinations. This model took into account the number and

the size of vessels to charter in each time period during the planning horizon, the

number and location of the transshipment ports to use, and the delivery from port to

final destination. The resulting formulation of the problem was a mixed-integer

program.
Fagerholt and Christiansen [44] considered a problem of a bulk ship

scheduling which was a multi-ship pickup and delivery with time window problems.

Time windows were presented for each customer, both for the pickup and delivery

ports. Different ship capacities and cruising speeds were available. Management may

resort to the market to charter one or more ships. There were a number of types of

ships with fixed compartments which enable different products to be loaded on the

same route. The authors solved the problem using a set partitioning approach. The

approach consisted of two stages: firstly, a number of candidate schedules generated

for each ship with allocation of cargoes to the ships compartments. In the second

stage, SPP was applied to minimise transportation cost. For large problems, a subset

of candidate schedules were inclinded in order to reduce computational time and

memory requirements. The model was applied on a real case from Hydro Agri's

waterborne transportation of fertilizer in Northern Europe.

Sherall et al. [99] considered a problem for routing and scheduling ships. The

main thrust of the research was focused on the Kuwait Petroleum Corporation (KPC)

Problem. A fleet of ships was involved in deliý, ering crude oil and refined oil-related

products from Kuwait to ports around the world. The model considered a fleet of

61

ships consisting of controlled and chartered ships. There are two route options to

deliver shipments to US or European countries: around the Cape of Good Hope or

through Suez Canal. The problem was solved and formulated using an integer

programming model. The results presented a good cost reduction compared with the

ad-hoc schedule procedure used by Kuwait Petroleum Corporation (KPC).

Most cargo routing problems adopt a set partitioning problem (SPP) approach

to solve the problems. However, heuristic methods such as Tabu Search, Genetic

Algorithm, Simulated Annealing, or other heuristic methods are proposed for large-

scale problems.

62

Chapter 4: Ship Scheduling: Specification and algorithms

4.1 Problem specification
4.1.1 Definition of the Ship Routing and Scheduling Problem (SRSP)

The Ship Routing and Scheduling Problem (SRSP) considered here involves

efficient scheduling of a set V of a heterogeneous fleet of m ships (controlled and

chartered ships, where the operations manager can resort to the market for spot

chartered ships at a given cost), where V= ml. N= ý0,1,.., nI is a set containing

an origin port and n cargo-ports, where 0 represents the origin and nj represents

the set of cargo-ports to be transported by the ships. Each cargo-port consists of a

given quantity to be loaded at the origin and delivered to a cargo port. For any cargo-

port there are time-window constraints on the earliest and latest time for arrival at

each cargo port. No ship is allowed to arrive outside the time-window. It is assumed

that all ports can accommodate any ship. Each ship has a set of known attributes such

as capacity and availability at the origin. All ships can carry any type of cargo. There

are operations costs for any ship engaged in servicing one or more cargo-ports. These

expenses relate to loading, unloading, crewing, and bunker (fuel) consumption in

sailing. The cost of using a spot chartered ship is more than the cost of using a

controlled ship of the same type. In addition to the above-mentioned costs, the overall

cost for each ship includes port charges. The decisions required are to assign a ship to

each cargo-port either by using a controlled or a spot ship at minimum overall cost.

These decisions are usually made for a planning time horizon of several months with

revisions to the schedule being made during the planning horizon as emergencies

occur or new data become available.

Two classes of routing and scheduling problems are considered in this thesis

and are discussed in the following section.

4.1.2 Classes of SRSP

There are two classes of scheduling problem considered in this thesis. The

first one is called single-cargo schedule, while the second is called multi-cargo

schedule. The single-cargo schedule problem consists of routes containing trips that

service only one cargo-port on each trip, where each specific ship returns to the origin

63

after each trip for loading for the next trip. For example, consider there are 3 cargo-

ports A, B, and C. A route can be presented as follows:

O-A-0-B-0-C-0

The multi-cargo schedule considers routes in which each trip may service

more than one cargo-port. Consider the previous example, the route could be

presented as follows:

O-A- B-0-C-0

Kuwait Petroleum Company (KPQ uses single-cargo schedules, whereas most

other companies use multi-cargo schedules.

In this thesis, two computational approaches to handle SRSP are considered.

The first is an optimisation approach based on the set partitioning problem (SPP) and

the second approach is an approximate method based on Tabu search (TS). The

following section will give details about notation, while the other sections will explain

the use of each approach.

4.1.3 Notation

The following notation is used:

Data. -

denotes the set of m ships to be scheduled, indexed by v,

where v E=- V

N= fO, I,.., nj, denotes the set of n cargo-ports to be visited, indexed by il

where i (z-: N and 0 denotes to origin and N\ ýOj denotes cargo-ports

A V, denotes to the availability time of ship v at the origin VvE: V

ej earliest arrival time for cargo-port i Vi E-= fN \ 01

Ii latest arrival time for cargo-port i Vi E: -: fN \ 01

Qi cargo-port quantity of cargo-port i (tons) Vi E-= fN \ 0)

dik distance (in days) between cargo port i and cargo port k, where

i5kE=- N

CT, capacity of ship v (tons) VvF= V

64

Pciv port entrance due (fee) at cargo port i for ship v Vi c- IN \ 01, Vve V

SPv sailing cost using ship v (per day) VvE: V

LDjv time required for loading cargo-port i onto ship v (days)

Vi e fN \ 01 VvE=- V

ULiv time required for unloading cargo-port i from ship v (days)

Vi E_= fN \ 01 Vv E=- V

Ociv operating cost for ship v to handle cargo-port i, including loading and

unloading costs Vi E=- fN \ 01 Vv (=- V

WP, waiting cost (idle in the ocean) for ship v (per day) Vv c- V

Decision Variables

fV actual arrival time for ship v to cargo-port i Vi E-= fN \ 01, Vv E=- V

WViv duration of waiting (idle) time for ship v until time-window of cargo-

port i opens (days) Vi E-= fN \ 01, Vv c- V

The following section will present details about the exact approach used to

solve the problem.

4.1.4 Exact algorithm

The approach adopted to solve this type of problem is based on the Set

Partitioning Problem (SSP). The major advantages of SPP models are that cost can be

easily incorporated when generating all feasible schedules. The SPP model involves

generating candidate feasible schedules and can be solved by use of a heuristic

method or by optimisation depending on the desired solution quality and the time

available for solution. SPP is a widely used model for solving routing and scheduling

problems, Christiansen et al. [29] reported that 40% of the reviewed papers use the

SPP models or a variant. This thesis adapted SPP for exact solution, where candidate

feasible schedules are generated. The SPP formulation is the same for the two classes

of problem considered here.

65

In this section, notations and formulation for solving SRSP are presented,

while the full description of generation of the candidate schedules will be presented in

the following section.

Sv denotes to a set of candidate schedules are available for ship v, and

indexed to specific schedule Vv E=- V

Cvj denotes to the cost for using schedulej for ship v Vv c V, j E=- Sv

SCiVj =I
if schedule j for ship v servicing cargo i

0 otherwise

Vi Ei
fN \ 0) VV E2 VjG Sv

Decision variable
I if schedule j for ship v is selected vv Cvj C= - Sv x Vi 0 otherwise

The following is SPP based formulation for solving SRSP

Min EI cVjxVj (4.1)
VEV j(=S,,

Subject to

sci, Vi cN (4.2) ýx Vi

I

VEV j(=S,,

I
xvi :! ý 1 5'Vv eV (4.3)

jES,

x
Vi

E=-
fO, II VV Cz Vj E=- Sv (4.4)

The objective function (4.1) represents overall cost. Constraints (4.2) ensure

that all cargo-ports have been delivered either by controlled ship or spot chartered

ship. Constraints (4.3) ensure that each ship has used at most once.

The following section will explain the method of generating all possible

candidate schedules SCj, ý.

66

4.1.4.1 Generation of the candidate schedules

Candidate schedule generation uses a procedure that generates a set of feasible

candidate schedules, and limitation of generating of feasible schedules for large

problems, each of which corresponds to a variable in the SPP model. Each individual

candidate schedule has a route for a specific ship containing one or more cargo-ports.

A number of candidate schedules for a specific ship are represented by a subset. The

union for all subsets (for the set of all ships in the fleet) forms a set of candidate

schedules. For example, suppose there are four cargo-ports A, B, C, and D to be

delivered and two ships available to implement this task. Table 4.1 illustrates a

possible set of candidate feasible schedules for each ship.
Ship Schedule Cargo-port A B C D Cost
v Set Schei j

S1 I 1 0 0 0 F- 2000

2 1 0 1 0 f 3500

3 0 0 1 0 f 1800

4 0 0 1 1 f 3450

5 0 1 0 0 f 1900

6 0 1 0 1 f 3550

7 0 0 0 1 E 2200

2 S2 1 0 1 0 0 f 1500

2 0 1 0 1 f 2980

3 0 0 0 1 f 1900

4 0 0 1 0 f 1700

Table 4.1. - Possible set of candidate feasible schedules

There is a set of II candidate feasible schedules in Table 4.1, ship I has a

subset of 7 candidate feasible schedules and ship 2 has a subset of 4 candidate feasible

schedules. A value of one in the body of the table indicates that the corresponding

cargo-port is delivered. For example, schedule 4 represents a candidate feasible

schedule for ship 1, where the route in this schedule delivers cargo-ports C and D at a

cost f 3450. A cargo-port's quantity relative to ship capacity or the availability time

of the ship at origin may restrict the ship from delivering a particular cargo-port. For

67

example, ship 2 cannot deliver cargo-port A since some or all of these restrictions

cannot be met. These feasibility tests will be discussed later.

The candidate feasible schedules in this example are represented by SCivj in

SRSP, for example, SCM =0 and SC3,3=1, which means that cargo-port A in the

third schedule for ship one will not be delivered, while cargo-port C will be delivered.

The subset of candidate feasible schedules for ship v is denoted as Sv. In the previous

example, S, = ý11-171 and S2 = fl,.., 41. For each schedule there is an overall cost

denoted by Cvj,

Since column generation for this type of problem may produce an enormous

number of columns, an assumption has to be imposed to restrict the number of

columns generated in order to reduce the computational time. However, heuristic

methods (TS) is capable of solving large-scale problems of this type. Therefore, all

cargo-ports are arranged in order according to earliest delivery time for each specific

cargo-port before starting to generate candidate schedules. This generation of possible

schedules will be accomplished in cargo-port order.

Since there are some differences between single-cargo and multi-cargo, the

explanation for each class will be presented in separate sections.

A. Single-cargo

The generation of schedules is implemented in a systematic way by expanding

an existing schedule by inserting a new cargo-port. Since the route in the schedule

consists of origin and cargo-port nodes, there are at least 3 nodes in each route, where

the first and the last nodes represent the origin. Before continuing to explain the

method of generating candidate feasible schedules, it is necessary to illustrate the test

of feasibility for each generated schedule.

Feasibility tests for each generated schedule will be implemented by

considering each ship capacity or availability time at origin, as follows:

1. To ensure that each ship arrives within the required time-window, the

following test is necessary

ý9 f : ýg li i Ez- N, v cm V ei (4.5)

68

2. To ensure a ship has sufficient capacity to handle a specific cargo-port, it is

necessary to add the following test

CT VvE=- V, where i c= N (4.6)

These two tests will apply for each generated schedule to ensure that SPP will

consider only feasible schedules.

To understand the mechanism of generating feasible schedules, the following

flowchart in Figure 4.1 illustrates this operation for only one ship, while the second

ship will follow the same procedure.

69

4%ý, ---l/

NM=O, PL=O, L=O , Bin =0, j= 1, Cond(i)=O ViEN

L
Select cargo i

< Cond(i)-- I
N

y

Cond(i)= 0

Bin= I

N
Tests

fi satisfied**

y Cond(i)= I

Insert i inj NM=NM+ I

IL=i
j=j+ I

i= i+l

Tests y
s sfi at il s filed*

NZ

PL= cargo pnor cargo L inj Calculate cost

Cond(i)= 0 y
Bin= I Bin=O

N
NM>O NM> I N

y i=0

y
NM> I PL= cargo prior

cargo L inj

L= N
PL=O

N
n

[*-- ENM
= NM -I Delete L

From i y

y
*d NM=NM-2 Cond(L)= I

N\
Delete L& PL y Cond(PL)= I

Fromij i= PL

IN, N
i= PL+1

L Ln> PL=O
>

N

NM NM - 1 Delete L
From i

N N
< L=n NM=O

y
40 y 00 y

Tests satisfied': test ot leasioility ior concimons (4) & (-))
Tests satisfied": test of feasibility for conditions (4) & (7)

Figure 4.2. - Generating candidate feasible schedules Flowchartfor Multi-
cargo

70

The operation starts by initially selecting cargo-port I (i=l). If the test of
feasibility is satisfied, schedule number I Y=l) is established, with one cargo-port.
The operation cost of this schedule, Cj , will be calculated after the insert event. It can

be represented as follows:
0-1-0

This schedule starts from origin 0 and sailing to deliver cargo-port I and then

returning to origin 0. Cargo-port 1 is considered as the last cargo-port (L=I) in this

schedule. The next candidate schedule is obtained by extending this first candidate

schedule by examining the second cargo-port (i=i+l, which means i=2) in the order of
the set N of available cargo-ports. However, if the test of feasibility has shown

violation, such as the cargo-port quantity exceeds the ship capacity or delivery will

not be within the time-window, then this cargo-port will not be inserted and the third

cargo-port (i=i+l) examined). If inserting the third cargo-port yields a feasible

schedule, then this is considered as the second candidate feasible schedule (j=2), with
2 cargo-ports (NM=2). The operation cost of this schedule, Cj, will be calculated 11

after the insert event. The second schedule can be represented as follows:

0-1-0-3-0

This schedule starts from origin 0, sailing to deliver cargo-port 1, returning to

origin 0 to load cargo-port 3, then delivering it and finally returning to origin 0.

This operation will carry on by examining the next cargo-port in order to the

previous candidate schedule until examining last cargo-port in the set N (i=n).

Consider that cargo-port n generates a feasible schedule, then no more cargo-ports can
be added after that and a new schedule is created, which can be represented as

follows:

0-1-0-3-O.... O-k-0-h-0-n-0,

where k and h are cargo-ports belong to set N. At this stage, cargo-port n is

considered as the last cargo-port (L=n) in this schedule, while cargo-port h is

considered preceding the last cargo-port (PL=h).

However, if inserting cargo-port n yields violation, then the candidate feasible

schedule will be as follows:

0- 1-0--3-0.... 0-k-0--h-0

Cargo-port h is considered as the last cargo-port (L=h) in this schedule and

cargo-port k is considered as preceding the last cargo-port (PL=k).

71

At this stage, the procedure will be performed according to the following

question: was cargo-port n included in the last schedule? If the answer is YES, then
the following procedure will be implemented:

I- i==h+l (i=-PL+1).

2- Delete cargo-ports h and n from the last schedule.
3- NM=NM-2.

If the answer is NO, then the following procedure will be implemented:

I- i=h+l (i=L+I).

2- Delete cargo-port h from the last schedule.
3- NM=NM-1.

The previous schedule after deletion can be represented as follows:

0-1-0-3-O.... O-k-0

After this stage, L and PL will be stated according to their position in this

schedule.

The order in which cargo-ports are included in a route is not necessarily the

same as they appear in the set N. For example, cargo-port 5 can be delivered before

cargo-port 3 in the same schedule, if the test of feasibility is satisfied. This issue will
be considered in the generation process. In the flowchart of Figure 4.2, the binary

indicator Bin is set to one after the first generation phase in which candidate schedules

contain cargo-ports in cargo-port list order. When the procedure recognises that Bin is

equal to one, candidate schedules are generated with cargo-ports that are not in list

order schedules. Consider the following schedule:

0- 1 -0-3-0.... 0-k-0-(h+ 1)-0

Where Bin=l the generation process will generate new candidate schedules

based on the above schedule. The search starts from cargo-port I (i=i+l, where i=O).

The example of a schedule that could be generated is shown below.

0-1-0-3-O.... O-k-O-(h+l)-O- (h)-O- (n)-O

The operations of select and insert will continue to be applied to generate a set

of candidate feasible schedules Sv for specific ship v until no more feasible schedules

72

can be generated. Each ship in the fleet will have a set of candidate feasible schedules

generated by using the same procedure.
To simplify this procedure, consider an example with three cargo-ports and

one ship. If all constraints are relaxed, then Table 4.2 illustrates all the candidate

schedules that can be generated:

No. Candidate schedules No. Candidate schedules No. Candidate schedules

1 0- 1- 0 6 0- 2- 0 11 0- 3 -0
2 0- 1 -0 -2 -0 1 0- -2- 0 -1 -0 12 0- 3 -0-1- 0

3 0- 1 -0 -2 -0-3-0 8 0- 2- 0 -1 -0-3-0 13 0- 3 -0-1- 0-2-0

4 0- 1 -0 -3 -0 9 0- 2- 0 -3 -0 14 0- 3 -0-2- 0

5 0- 1 -0 -3 -0-2-0 10 0- 2- 0 -3 -0-1-0 15 0- 3 -0-2- 0-1-0

Table 4.2: All candidate feasible schedulesfor Single-cargo problem

After finishing each candidate schedule, the overall cost for each specific

schedule is calculated by computing the number of sailing days multiplied by sailing

cost SP, and adding port entrance and operating cost (PCA, and OCk,).

B. Multi-cargoes

The generation of schedules for the multi-cargo problem is implemented in the

same way as in the case of the single-cargo problem, by expanding an existing

schedule by inserting one cargo-port at a time. Feasibility tests are applied by

considering the two parameters, ship capacity and availability time at origin, as

defined below:

1. To ensure that each ship arrives within the required time-window, the

following test is applied

ei :5 fi, :5 li icN, vE: -: V (4.7)

2. A ship must have sufficient capacity in order to handle the assigned cargo-

ports, so it is necessary to add the following for each trip
I Qk ýý CTv VV GV

i, kE=N
i*k

(4.8)

Two tests are applied for each cargo-port under consideration for insertion

during the generation of new feasible schedules. If the first test Is satisfied for a

73

specific cargo-port, a new candidate feasible schedule is generated. The first test is

defined as follows:

fi, + ULi, + dki ýý lk i, k E=- N, v E=- V (4.9)

This test examines the feasibility of inserting cargo-port k on the same trip as

cargo-port i, where the route after inserting cargo-port k can be represented as
follows:

i-k

If (4.10) is satisfied in addition to (4.9) then the ship will have arrived before

the delivery time-window

f, ULi, + dki < ek i, kE=- N, v cV (4.10)

In this case, waiting costs are imposed until the delivery time-window is

satisfied. Calculation of waiting time can be computed as follows:

WVkv = max fO, ek- (fi, + ULi, + dik)l

The second test is defined by (7).

+ ULj, + dio + LDk, +d "ý Ok ':::::::
lk

i) kE=- N, v cV

iý k (=- N3V E=- V

If (4.11) is satisfied, ship v has sufficient time to deliver cargo-port i, return to

the origin, load and then deliver cargo-port k before the close of the delivery time-

window. The route after inserting cargo-port k can be represented as follows:

i-0-k

On the other hand, if neither (4.9) nor (4.11) are satisfied, then cargo-port

(k+1) will be examined.
The mechanism of generating feasible schedules for a single ship is defined in

the flowchart shown in Figure 4.2. This procedure is applied to each ship.

74

NM=O, PL=O, L=O
, Bin =0, j= II

Select cargo i 77, -+1

N

Bin= I

iL= cargo in j

L =Last cargo inj
PL= cargo prior cargo L inj

NM>O

L=O
PL-0

NM=NM-2

NM=NM-1

NM >

Delete L& PL
Fromj

F-i
PL+ I

Tests
satisfied*

yý

Insert i in j

jýj+ I

NM=NM+ I

L=i

Calculate cost
C

Vi

y
B Bin= I Bin=O

N E E
0

i= -

:

y I
NM> I PL= cargo prior

cargo L inj

N

i=n

yy

y
ý"ý L=

ýn

Delete L i= (L+I) L=n
From iN

STOP

N
PL=O

y

N
NM= 0

yv

PL= Prior cargo L of schedulej
n: Last cargo of set N
NM: number of cargoes in schedulej
Commentj for first ship will be equal 1, whilej will continue for the next ships.

Figure 4.1. - Generating candidate feasible schedules Flowchartfor Single-
cargo

75

Generating candidate feasible schedules for multi-cargo is implemented in

almost the same way was the case for the single-cargo problem. The difference arises

as a result of whether the ship that delivers a specific cargo-port has come from the

origin or from a customer. For example, if ship v sails directly from the origin to

deliver cargo-port 2, this route can be represented as follows:

... - 3-0- 2-....

On the other hand, if ship v has finished delivering cargo-port 3, and sails
directly to deliver cargo-port 2, then this route can be represented as follows:

3 -2
Therefore, to differentiate between the two types (A) and (B), a condition is

placed to handle this problem. If cargo-port 2 was delivered from the origin as in case
(A), then cond(2)=O, whereas for type (B), cond(2)=1.

The generation of the first feasible schedule will be similar to that of the first

schedule for the single-cargo problem. The procedure starts as shown in the flowchart

in Figure 4.2, by selecting the first cargo-port of set N, which is cargo-port I (i=l).

Since cargo-port I is the first cargo-port to be tested, cond(l)=O. therefore, the first

test of feasibility by testing conditions (4.8) and (4.9) will be applied. If this test of
feasibility is satisfied, then the first candidate schedule can be represented as follows:

0-1-0

The number of schedules now is equal to I (NM=I). Cargo-port I will be

considered as the last cargo-port in this schedule (L=1).

Cargo-port 2 (i+l= 2) will be the next cargo-port to be chosen. Since cond(2)=O,

then the first test of feasibility is to satisfy conditions (4.8) and (4.9) for inserting the

second cargo-port, where (4.8) tests the capability of loading cargo-ports I and 2, and

(4.9) tests the time to deliver each cargo-port within its delivery time-window. In this

case, the second new candidate feasible schedule is generated and added to the set of

candidate feasible schedules. It can be represented as follows:

0-1-2-0

If the ship does not have sufficient capacity to load both cargo-ports, but can

load cargo-port 1, if the ship deliver it, returns to the origin and loads cargo-port 2,

which is delivered it within the time-window (i. e. it satisfies condition (4.11)), then

the second new candidate feasible schedule can be represented as follows:

0-1-0-2-0

76

For the last two possible schedules, cargo-port 2 will be considered as the last

cargo-port in the current schedule (L=2), while cargo-port I is considered to be the

preceding cargo-port of the last cargo-port (PL=I). Meanwhile, NM =2=
(NM=NM+I).

The next cargo-port is cargo-port 3 (i+l = 2) to be chosen, and the same

procedure is applied by examining the first test of feasibility by applying conditions
(4.8) and (4.9). In this case, the new candidate feasible schedule is generated and

added to the set of candidate feasible schedules. It can be represented as follows:

0-1-2-3-0

If the first test of feasibility is not satisfied, then the second test of feasibility by

applying conditions (4.8) and (4.11) will take place. In this case, the new candidate
feasible schedule is generated and added to the set of candidate feasible schedules. It

can be represented as follows:

0-1-2-0-3-0

Now, for the previous two possible schedules above, cargo-port 3 will be

considered as the last cargo-port in the current schedule (L=3), while cargo-port 2 is

considered to be the preceding cargo-port of the last cargo-port (PL=2). Meanwhile,

NM =3= (NM=NM+ 1).

Meanwhile, if condition (4.10) as well as condition (4.7) are satisfied, then

waiting cost (wviv) will be added to the operating cost for this specific schedule.

This operation will continue by examining the next cargo-port in the set N and

testing to see whether the cargo-port is to be included in a new candidate schedule.

This process is repeated until the last cargo-port in the set N (i=n) is considered.

Consider that cargo-port n satisfied the first two conditions (4.8) and (4.9), then the

new candidate schedule can be represented as follows:

0-1-2-0-3-.... -k-0-h-n-0,
On the other hand, if the first test of feasibility is not satisfied, then the second

test of feasibility will be examined by applying conditions (4.8) and (4.11). The new

candidate schedule can be represented as follows:

-2-0-3-.... -k-O-h-Oý--n--03
Where k and h are cargo-ports belong to the set N. At this stage, for the last

two possible schedules above, cargo-port n is considered as the last cargo-port (L=n),

77

while cargo-port h is considered to be the preceding cargo-port of the last cargo-port
(PL=h).

However, if inserting cargo-port n yields violation, then no new candidate
feasible schedule will be added, where the current feasible schedule will be as
follows:

0-1-2-0-3-.... -k-0-h-0
Cargo-port h is considered as the last cargo-port (L=h) in this schedule and

cargo-port k is considered to be the preceding cargo-port of the last cargo-port (PL=k).

At this stage, the procedure will be perfonned according to the following

ques ion:

Is cond(L)= I? (1)
If the answer is YES, then the following procedure will be implemented:

I- i=L

2- Delete cargo-port L from the last schedule.

3- NM=NM- I

Figure 4.3 illustrates an example of this case.

0-1 -0-2- ... -k- h -n-0

0-1 -0-2- ... -k- h -0

i =: n

Figure 4.3: If the answer is YESfor question (1)

In Figure 4.3, cargo-port n is deleted from the current schedule, at the same

time, cargo-port n will be chosen (i = n) to examine whether it is to be included in a

new candidate schedule.
Meanwhile, if the answer is NO for question (1), then the following question

will be asked:
Is PL= 0? (2)

(is there at most one cargo-port in the current schedule). If the answer is NO,

then the following question will be asked:

Is L= n (3)

If the answer is YES, then the following question will be asked:

Is cond(PL)= I? (4)

78

If the answer is YES for question (4), then the following procedure will be

implemented:
I- i=PL
2- Delete cargo-ports PL and L from the last schedule.
3- NM=NM- 2.

Figure 4.4 illustrates an example of this case.

0-1-0-2-... -k- h-0-n-0

0-1-0-2-... -k-0
i=h

Figure 4.4: If the answer is YESfor question (4)

In Figure 4.4, cargo-ports h and n will be deleted from the current schedule

and cargo-port h will be chosen (i = h) to examine whether it is to be included in a

new candidate schedule.
Meanwhile, if the answer is NO for question (4), then the following procedure

will be implemented:
I- i=PL+ I

2- Delete cargo-ports PL and L from the last schedule.

NM=NM- 2.

Figure 4.5 illustrates an example of this case.

0-1-0-2-... -k-0--h-0-n-0

0-1-0-2-... -k-0
i"

Figure 4.5. - If the answer is NOfor question (4)

In Figure 4.5, cargo-ports h and n are deleted from the current schedule and

cargo-port (h+l) will be chosen (i = h+l) to examine whether it is to be included in a

new candidate schedule.

On the other hand, if the answer 's No for question (3), then the following

procedure will be implemented:

I-

?_ Delete cargo-port L from the last schedule.

79

3- NM=NM- 1.

Figure 4.6 illustrates an example of this case.

0--1-0-2-... -k-O-h-0

1..
- -0 0-1-0-2 .k

i=h+i

Figure 4.6: If the answer is NOfor question (3)

In Figure 4.6, cargo-port h is deleted from the current schedule and cargo-port

(h+l) will be chosen (i = h+l) to examine whether it is to be included in a new

candidate schedule.

If the answer is YES for question (2), then the following question will be

asked:
Is NM= 0? (5)

If the answer is YES, then STOP. Otherwise, the following question will be

asked:
Is L= n? (6)

If the answer is NO, then following procedure will be implemented:

I- i=L+ 1

2- Delete cargo-port L from the last schedule.

3- NM= NM- L

Otherwise, the generating operation will STOP.

To simplify this procedure, consider an example with three cargo-ports and

one ship. If all constraints are relaxed, then Table 4.3 illustrates all the candidate

schedules that can be generated:

80

No. Candidate schedules No. Candidate schedules No. Candidate schedules
1 0- 1 -0 14 0-2- 0 1 27 0-3 -0
21 0- 1 -2 -0 0-2 -1 -0 28 10-3

-1-0
3 0- 1 -2 -3-0 16 0-2 -1- 3 -0 29 0-3 -1-2-0
41 0- 1 -2 -0-3 -0 17 0-2 -1 -0 -3 -0 30 0-3 -1---G-2-0
5 0- 1 -0 -2-0 18 0-2 -0 -1 -0 31 0-3 -0-1-0
6 0- 1 -0- 2-3- 0 19 0-2 -0- 1 -3 -0 32 0-3 -0-1-2-0
7 0- 1 -0- 2-0- 3-0 20 0-2 -0- 1 -0- 3-0 33 0-3 -0-1-0-2-0
8 0- 1 -3- 0 21 0-2- 3- 0 34 0-3 -2-0
9 0- 1 -3- 2-0 22 0-2- 3- 1 -0 35 0-3 -2-1-0
10 0- 1 -3 -0-2- 0 23 0-2- 3- 0- 1- 0 36 0-3 -2-0-1-0
11 0- 1 -0 -3-0 24 0-2- 0- 3- 0 37 0-3 -0-2-0
12 0- 1 -0 -3-2- 0 25 - 0-2 0- 3- 1- 0 38 0-3 -0-2-1-0
13 0- 1 -0- 3-0- 2-0 26 0-2- 0- 3- 0- 1-0 39 0-3- 0-2-0-1-0

Table 4.3: All candidate feasible schedulesfor Multi-cargo problem

For each candidate schedule, there is overall cost CVj . The overall cost CVj is

calculated by computing the number of sailing days multiplied by sailing cost SP,

adding port entrance and operating cost (pCkvand OCk,) and considering the waiting

time cost (wviv x WPv) for each cargo-port.

4.1.5 Heuristic Approach

In the previous section, the exact approach using SPP was presented. Since the

exact approach is capable of solving small size problems, but may have difficulty with

large problems, the need for an approach to solve large-scale problems is essential.

The following section presents a full description of the Tabu Search (TS) method,

which is capable of solving large scale instances of SRSP. However, since this is a

heuristic method, optimality is not guaranteed in all cases

To solve this problem, a list of all cargo-ports is arranged in sequence

according to their earliest delivery time.

An initial solution can be obtained by using a Greedy Algorithm. The Greedy

Algorithm is implemented by first, selecting the ship with the least overall cost ship.

This method selects controlled ships first. A route is then created for this ship starting

81

from cargo-port number one in the list, provided all constraints such as capacity and
delivery time window are satisfied. The process can be presented as follows:

I- The insertion of cargo-port i in a route for ship v, does not violate the

delivery time window if ej :5 fi, :! ý 1i i E=- N, v E=- V

2. The insertion of cargo-port i in a route for ship v, does not violate the

capacity of ship v if Qj :! ý CTv VV E=- V.

If cargo-port one has satisfied these constraints, then the cargo-port will be

added to this ship. The same operation applies on the second cargo-port such that, if

the constraints are satisfied, the cargo-port will be added to the route; otherwise,

cargo-port two will be left for another ship, while the procedure continues to evaluate

cargo-port three for this specific ship. This operation of testing all cargo-portes in the

list continues for this specific ship until cargo-port n. At that stage, a schedule for this

ship is obtained. The next step is to select the ship with the next lowest cost and

considering the unalloeated cargo-ports in the list. This procedure will carry on until

no cargo-port remains unallocated.

Greedy Algorithm.

(1) Until number of N0

(2) set N= 10,1,.., n1

(3) choose v, where veV, and v0 Hold

(4) Select cargo-port i, where i0 served,

(5) If v satisfies all constraints then

Cargo-port i served by ship v, i E=- served

n= n- I

If in then

ii+I

go to (5)

Else, v c: hold

go to (3)

(6) End Until

The result can be illustrated in Table 4A

82

Cargo-port 1 2 3 4 n-3 n-2 n-I n
Ship 3 1 5 k

............ 1 4 3 k
Table 4.4: Example ofschedule of n cargo-ports

In Table 4.4, cargo-port I is served by ship 3, cargo-port 2 is served by ship 1,

and so on until last cargo-port n is served by ship k.

The initial schedule consists of a set of routes. A route is represented, for

example, as [0,3,..., k, O], which defines the sequence in which the cargo-ports are

visited. A route for a ship v is denoted by Rv
.A schedule consists of all routes

together with the servicing time of each cargo-port in the route, and denoted as S.

In the multi-cargo case, each route is made up of some trips. A trip is a

partition of the route, starting and finishing at the origin. Figure 4.7 illustrates the

concept of a trip. Since in single-cargo case, the ship delivers only one cargo-port and

returns to the origin, there is no need to use trips.

Route

Trip Trip

0-1-0-3-8-5-0-k-O-h-(h+3)-0

Figure 4.7: Presentation of trip in Multi-cargo case.

After forming the initial schedule, it is possible that one or more ships are not

used in this schedule. These ships are referred as idle ships. These idle ships will be

available for use during TS operation.

The following section explains the methodologies for solving this type of

problem by using the tabu search method, and describes separately the characteristics

of each component of the method.

Tabu Search

The Ship Routing and Scheduling Problem (SRSP) is solved using the Tabu

Search method, proposed and developed by Glover [47]. The most important

83

characteristic of tabu search is the use of memory for the solution to solve difficult

problems. There are many techniques used in Tabu Search such as attributes, tabu list,

tabu list size (tenure), intensification, diversification, neighbourhood, and

neighbourhood size, move and evaluation of the move, all which are adapted in this

approach. Parameters defining the neighbourhood size and the tabu list size are

considered critical in terms of solution quality and computing time. The most
important point in Tabu Search is the need for experimentation to choose the best

parameters and their values for each specific type of problem.
The following notations are used in the tabu search approach.

Notations:

TN Tenure (Tabu list size)

Min Tn Minimum tenure size

MaxTn Maximum tenure size

InsTnj cargo-port i entered insert tabu list, where i E=- N

SwTnj cargo-port i entered swap tabu list, where i E: -: N

In c Tn number of iterations to increase tenure by one

Nbri neighbourhood set of cargo-port i, where i E=- N

NZ neighbourhood size

NbrSeli cargo-port i is selected to form it's neighbourhood, where ieN

NbItri number of iterations within the neighbourhood of cargo-port i, where
i E=- N

A Iffir number of iterations for the entire problem

Rpti number of times cargo-port i entered tabu list, where i E=- N

Diverti cargo-port i will be hold for a number of time of fort-ning new

neighbourhood, not to be chosen, where i E=- N

Since there are two classes of SRSP, the following section is devoted to the

single-cargo problem. The multi-cargo problem will be discussed in section 4.2.3.

A. Single-cargo

It is important to explain some characteristics of tabu search. Insert and swap

moves are the only moves used in tabu search. First, the insert move can be described

84

as deleting cargo-port i from route j and inserting it in route j', where the routes

belong to different ships. For example, suppose there are five cargo-ports to be visited
by two ships.

After applying the Greedy algorithm, the routes for each ship may be illustrated as

shown in Figure 4.8.
..

.......... I

Origin

The route of ship I is: 0 --oo. 3 -jo. 0-* 4 -0.0
The route of ship 2 is: 0 -lo. 0 --oo. 2 --* 0 --Oo. 5 -0o. 0

The route for ship I states, that the ship is loaded at the origin to serve cargo-

port 3 then returns to the origin to load cargo-port 4, which is delivered, and then

returns to the origin.

Applying the insert move such that, deleting cargo-port 2 from ship 2 and

inserting in ship I is shown in Figure 4.9.

veq. "Zi-. 1 I
.......... I

I

....................... I
V ess e12

..

2)

r-

T
Origin

.......................................

'S

)

Figure 4.9. - Deleting cargo-port 2from ship 2 and inserting in ship I

Now, after insertion, the routes for each ship will be as follows:

.................
Veqqpl 2

..............................

Figure 4.8. - Two ships deliveredfive cargo-ports

85

The route of ship I is: 0 -Oo. 3--op. 0 --Oo. 2 -0o. 0 --* 4 --* 0

The route of ship 2 is: 0 --po- 1--oo. 0 ---* 5 --oo. 0

The insertion process considers many potential places for insertion in the

candidate route. The first potential insertion trial place is immediately before the first

cargo-port in the specified route, the second place is immediately before the second

cargo-port, and so on until after the last cargo-port. Figure 4.10 illustrates route RV of

ship v, where the above arrows are the potential insert trial places for cargo-port i.

Potential insert trial places for cargo-port i

03 5 0 47 -00- 0

Ngure 4.10

In the approach adopted here, the insert move starts by selecting the cargo-port

with the lowest quantity size among all neighbourhoods, Next step, the lowest cost

ship in the fleet (according to sailing cost per day) is selected. Finally, deleting and
inserting is completed if some conditions are satisfied (these conditions will be

explained later in this section).

Using the routes shown in Figure 4.8, the swap move can be described by, for

example, selecting cargo-port 4 from ship I and cargo-port I from ship 2. The swap

move action can take place by exchanging their positions as illustrated in Figure 4.11.

..
Vessel I

........................

I1--

..
Vessel 2
.........................

Origin

........................ Figure 4.11. - Swap move Cý

86

A swap move starts by selecting the two cargo-ports of the lowest quantity

sizes among all neighbourhoods. The next step is to exchange their positions, where

each cargo-port will transfer to the other cargo-port's route (ship). Finally, a swap

move is completed if some conditions are satisfied (these conditions will be explained
in this section).

Each cargo-port that has recently encountered moves (either insert move or

swap move) will enter the tabu list. The tabu list helps the search to move from a

previously visited section of the search space and to execute a more extensive

exploration. A tabu list usually consists of a list of moves the search has recently

encountered. The cargo-ports on the tabu list cannot be revisited for a particular

number of iterations called tabu tenure TN (in this model there are two tabu lists, one

for insert move events InsTni and the other for swap move events SwTni). Figure

4.12 illustrates the Tabu list and the Tabu tenure. After each iteration, the longest

serving cargo-port in the tabu list will leave the list and the remaining cargo-ports in

the list will move one place down the list, where for each iteration tabu elements will

move one step toward dropping out of the tabu list.

TN 01 TT

TN iterations

FigUre 4.12

Since it has been shown experimentally by many researchers (such as Taillard

[108] and Brandao and Mercer [20]) that a tabu list of variable size tends to give

better solutions than one of fixed size, the tabu list size TN , is taken to be a number

starting at MinTn and increasing regularly by one until it reaches MaxTn

(TN c [Min Th, MaxTn]). Increasing TN from MinTnj by one will be implemented for

a number of iterations called I77cTn. Once MinTn equals to MaxTn, then no further

increase will occur.

Since the previous example contains 5 cargo-ports (which is quite small), all

cargo-ports are neighbours for each other. For large-scale problems, the search among

all cargo-ports in the schedule would require excessive computer time. Avoiding this

difficulty can be achieved by selecting a neighbourhood and searching will be within

87

it. The neighbourhood structure or neighbourhood list Nbri for variable i (cargo-port

i in the schedule) can be defined by different approaches. In this thesis two

approaches are adopted, one by a systematic approach and the other random. The

systematic approach is implemented by the following steps:

I. Select cargo-port i, which has the lowest quantity size among n cargo-ports

and call it NbrSe1j,

2. Forrn the neighbourhood cargo-ports of cargo-port i (Nbri), by selecting the

cargo-port, whose time-window starting time is closest to the cargo-port i

time-window starting time, then select the next closest and so on until the

neighbourhood has been determined. Represent these neighbours by Nbri.

3. The magnitude of Nbri is denoted by NZ, the number of cargo-port

neighbours for cargo-port i, and must be defined.

Table 4.5 illustrates Nbri for cargo-port i.

Cargo-port 1 2 i-b i
;

i+b N
Ship 3 1 k i

t
Range Nbri for cargo-port i
Table 4.5

The second approach is to select cargo-ports to form a neighbourhood in a

random way with the neighbourhood size fixed at NZ. Maximum tenure MaxTn

must not exceed NZ (MaxTn:! ý NZ).

The neighbourhood size NZ is considered as a critical point in the moves

operation. If NZ is too small it will restrict the search and a good solution is less

likely to be found. On the other hand, if NZ is too large, it loses its purpose in

diminishing the neighbourhood size. A good trade-off can be obtained by

experimentation.

88

Execute moves of both types within Nbri will be carried out with some

conditions. A trial insert by deleting the current ship and inserting another ship
happens only if. -

1. Selecting a cargo-port is within the neighbourhood (Nbý.) of cargo-port i.

2. The insertion of cargo-port i in a route of ship V, does not cause the

violation

ei, :5 fi, v, :5 li, i 5 i'(=- N, v'c= V

3. The insertion of cargo-port i in route (or idle) of ship V, does not violate the

capacity o ship vf (Qj :! ý CT,, VV' E=- V).

A trial swap of two cargo-ports takes place if and only if-

Both selected cargo-ports exist within Nbr.
I

2. Both selected cargo-ports have different routes (ships).

3. The capacity for each of the two ships is sufficient to load the other

cargo-port.

4. Each ship does not violate the other cargo-ports delivery time-

window.

Execute moves of both types within Nbri will be carried out for a specified

number, NbItri of iterations, where insert is the first move followed by swap move.

The search within Nbri stops after a given number of iterations, NbItri, has been

executed without improvement. If searching in this specific area has been completed,

r
the next step is to select another Nbri and execute moves of both types for a

number of iterations. Searching is based on the best solution found to date. The

iteration limit for the entire problem is denoted as A111tr.

Multi-cargo

The elements used in the single-cargo problem are also used in the multi-cargo

problem, while some differences on applying trail moves are encountered. First, by

deleting cargo-port i from route R, and inserting it in route R,, ,a new trip on route R,,

is created. To simplify, consider cargo-port j, where i c- Rv - To insert cargo-port i

of other cargo-port's delivery time window.

89

between cargo-port t and k, where t, k E=- R,, and cargo-port t will be serviced before

cargo-port k, one of the following four sets of conditions must be satisfied, otherwise,
insert trail will not carry on:

I- State 1: with the following conditions

f, UL, + d1o + dio + LDi :ý li (4.12)

f, +ULi +dio +dk 0
!ý lk (4.13)

Then the new route Rv, can be represented as follows:

.-. --* t --0, --Op.
0

-00.
k

--oo.

2- State 2: if (4.13) is satisfied and the following test is also verified

LD, + LDi + d1i :! ý 11

ft, + ULI + dti :g li (4.15)

Then the new route Rv, can be represented as follows:

... --po. I --*
i -0.0 -p. k -pp.

3- State 3: if (4.12) is satisfied and the following test is also satisfied

LDi + LDk + doi !! ý li (4.16)

fi, + ULi + dik ýý lk (4.17)

Then the new route Rv, can be represented as follows:

... --* t --0.

4- State 4: if (4.15) and (4.17) are satisfied, additional to the following test:

LD, + LDi + LDk + d1i !ý It (4.18)

Then the new route Rv, can be represented as follows:

... -00. t --0,1 --* --00. **-

These four states are encountered for both insert and swap trials. Meanwhile,

the same tests of feasibility for the single-cargo problem, mentioned in the previous

section must be satisfied.

90

After each move, the overall cost for both new routes must be calculated and
added to the total cost of the schedule, replacing the costs of the previous two routes.

C. Intensification and Diversification

To explore the current neighbourhood Nbri further, intensification search is

adopted. Two methods of intensification search are used in this approach. With the
first method, if the search yields an improved solution, the iteration count will be set
to zero. This means, that this area seems to be attractive. With the second method, if

cargo-port i has repeatedly entered the tabu list a given number of times, the cargo-

port will remain in tabu list for a number of iterations equal toMaxTn (cargo-port i

has entered the tabu list for a number of times denoted by Rptj To explore a large

search region and to prevent the method from being trapped at a local optimum, a
diversification technique is used within this stage. Diversification search is a

technique that tries to alleviate this problem by forcing the search to unexplored areas

of the search space. This technique can be used only for the problem solved by using

the systematic method of forming neighbourhood Nbri. Having searched the

neighbourhood of cargo-port i, the process moves to another neighbourhood. This is

achieved by ensuring that cargo-port i is not selected again for a number of time

(called Diverti) of forming new neighbourhood Nbri,. This method gives the chance

to explore different neighbourhoods Nbri,, by selecting cargo-port i', and so on for

the whole AllItr.

Tabu Search Algorithm

1) Initial S and the value f of S obtained from Greedy algorithm

2) S* = S, f* =f

3) All= o
4) Until All1tr= NbItri* All

5) Diverti =0 Vi cN
6) Dw =D
7) NZ =M
8) IncTn = IncreaseRyOne
9) InsTnj =0 Vie N

10) SivTni =0Vi E=- N

11) count =0

91

12) TN = Min Th

13) (Neighbourhood procedure)
" All= All+1

" if Diverti >0 Vi cN then

0 Divert, = Divert, A

L3 Select cargo-port i, where i c- N and Divert, =0
Ej Forrn Nbr, by size = NZ

0 Diverti = Dvt

Ll NbItr = Localfter i
14) If count = IncTn then

El TN= YW+ I
15) (Insert procedure) select cargo-port k, where k E=- Nbr,, and InSTnk =0

16) Select route Rv,, where Rv, 0- Chosen Vessel

Q If inserting cargo-port k into ship Rv, satisfies constraints then

" Insert continues

" InsTnk = TN

" If f 'ý f then

0 f*=f

0 count =0
L3 Else

If all i E=- nr, are examined then

" Keep the same route R,

" Ins Tnk = TN

Else

" Rv, c Chosen Vessel

" Go to 16
17) (Tenure procedure)

0Vi c- Nbr, if InsTni >0 then

* Ins Tni = Ins Tni -I

18) (Swap procedure) select cargo-port h, h EE R, and hE Arbri and

SwTnh =0

19) Select cargo-por-t g, where g E=- ATbr,

Rv, 0 ChosenSwap
Q If exchange positions satisfy constraints then

Exchange continues
SWT = TN nh
count= count+ I

eiff <f* then

0 f* =f

0 count =0

and hc Rvi, where

92

Else
If all V E=- V are examined then

" Keep the same route Rv

" SwTnh = TN

0 count = count +I
o Else

o R., e ChosenSwap

o Go to 19
20) (Tenure procedure)

Ll Vi E=- Nbri If SwTni >0 then

9 SwTni = SwTni -1
21) (Forma new Neighbourhood)

Ll If count= NbItý. then

9 Go to 9
LI Else

9 Go to 14
22) End until

The steps of tabu search are as described above, where the first schedule is

obtained by applying the Greedy Algoritlun. Steps 2 to 12 specify all the data

involved in this operation. Step 13 forms a new neighbourhood every time the search
finishes the search for any particular neighbourhood after NbItr, iterations. Step 14 is

designed to increase MinTn when reaching a number of iterations equal to IncTn,

during the search in every particular neighbourhood. Steps 15 to 17 represent the

insert move, while steps 18 to 20 represent the swap move. Step 21 represents the two

options of tabu search operation, where the search will be implemented on a new

neighbourhood, if the iteration has reached the limit, otherwise, the search will

continue for the same neighbourhood. Finally, step 22 stops the search if the number

of iterations is equal to Afftr.

93

Chapter 5: Design and implementation of solution approaches

5.1 Introduction

This chapter provides details of the design and implementation of the two

approaches for solving SRSP. The first approach is an exact method based on the Set

Partitioning Problem SPP. The implementation language Visual Basic 6 [3] was used

to generate all candidate feasible schedules. The MPL [2] software was used to create

the model which was solved using the commercial optimisation solver CPLEX-10

[34]. The second approach is based on the heuristic method Tabu Search. The

implementation language was Visual Basic 6 and all results are displayed using an
Excel spreadsheet.

5.2 Exact Approach Design

5.2.1 Overall Structure

The structure for this approach consists of several stages, as shown in Figure

5.1. These stages are, in most respects, the same for both single-cargo and multi-cargo

problems. II Stage 1: User Interface
User specifies all data

Stage 2: Schedule Generation

Generate all candidate feasible schedules

Stage 3: Saving candidate feasible schedules
All candidate feasible schedules are saved to a file (Schedules. dat)

Stage 4: Export data to Optimisation Model (MPL)

All data on file Schedules. dat and other files are exported to MPL optimisation software, where

the ! ýPp mociel P; fc)mll)lqti-ci

Stage 5: Optimal Solution

Solve the problem using the solver CPLEX, then display optimal solution

Figure 5.1. - Structure of Exact Method

94

Stagge 1: The user specifies the data that defines a particular problem instance of
SRSP. This infon-nation can be entered using an interface called feasible schedules

generation. This interface is designed using Visual Basic 6 (V136 and run on a 2.00

GHZ Intel 9 Pentium under Windows 2000. The interface design consists of several

components as illustrated in Figure 5.2.

I

-0- Ge

3

1 15 12(j
EMT

Distance Cargo Entities

10 11 12 13 14 15 16 17 18 19 110 [ýEaij: j Later I Qty I depar

This Table represents cargo's cost using specific ship

The following ate all schedules can be obtained using the pfevious data

11

-(Jý' -
18: 34-- jAStart A0 E2 ý-^IbSolum.. J!, ý Project I- Mj... CDocumentl-,.. fOqChapter5. d... I FZ Feasible Sc

Figure 5.2. - User Inteýface

The components of the interface, shown in Figure 5.2, are as follows:

1. Problem size parameters:

Time horizon

Number of ships available (controlled and spot chartered).

0 Number of cargo-ports.

2. Ship features.

Availability time at origin.

Ship capacity

Cost of sailing (per day)

40 Cost of waiting -idle- (per day)

3. Cargo ports distances

95

Ship En6ties

4. Cargo-port features

Time-window (start and end of delivery time-window)

Quantity (ton)

5. Loading and unloading time required for each cargo-port
6. Port entrance fee for each ship.

Cvý -- Stage 2: A number of candidate feasible schedules will be generated. The

number of candidate feasible schedules generated depends on the following three
factors:

1. Time horizon.

2. Number of ships.

3. Number of cargo-ports.

It is obvious that if there are a large number of ships and cargo-ports, and the

time horizon duration is large, then the possibility of obtaining a large number of

candidate feasible schedules is high. Moreover, three further factors control the

number of candidate feasible schedules. These three factors are as follows:

I. The width of delivery time-window

2. Distance between cargo ports.
3. Cargo-port quantity in relation to ship capacity.

For the first factor, if the width of delivery time window is large for all or most

cargo-ports, then this will enable ships to visit more customers. Moreover, with the

second factor, if the distance between cargo ports is small, then a ship can deliver

many cargo-ports. Finally, if ship capacities are large and the cargo-port quantities are

small, then a ship can deliver many cargo-ports in the same trip before returning to the

origin.

A number of candidate feasible schedules will be displayed as a list view on

the interface once the user clicks on the "generation" icon (item 7 in Figure 5.3). The

first column in the list view represents schedule number and ship number, the other

columns except for the last one represent ship route, where numbers represent cargo-

ports. A route could contain "0" between two cargo-ports, which means the ship will

return to the ongin port after unloading a cargo-port before delivering then its next

96

cargo-port. Since, in the single-cargo case, the ship automatically returns to the origin

port after every delivery, there is no need to mention the origin in the list view. The

last column represents the route's cost. Some of generated schedules are illustrated in

Figure 5.3. The user can browse through the list view to review the generated

schedules. For example, schedule number 40 in Figure 5.3 is delivered by shipl. The

ship starts from the origin (represented by 0) to load cargo-port 1, then sails to deliver

cargo-port 1, after that the ship will return to the origin to load cargo-ports number 4

and 5. The operation cost of this route is E165870.

G eneration
yr. - 'Tt; 14'ý Jf-

Thb Ules can be obtained'usin' the pre'Vious data.. - 161lowing-areWl-sy, 9
fI

Schedule I P1 I P2 j_P3
.1

P4
.

P6 P7, Plo Pll P1 2A 1 P9 J- l

36 (1) 0 1 0 3 04 252880
37 (1) 0 1 0 3 5 186915
38 (1) 0 1 0 3 05 207045
39 (1) 0 1 4 0 5 220770
40 (1) 0 1 0 4 5 1 G5870
41 (1) 0 1 0 4 05 219940
42 0 (1) 1 0 5 4 165870

Figure 5.3: Generation of candidate feasible schedule

Staze 3: These candidate feasible schedules will be saved on an external file

called Schedule. dat, and the operation cost for each schedule will be saved on another

external file called Schedule Cost. dat. The representation for the schedule at this stage

will not be the same as presented at stage 2. Each schedule will consist of schedule

number and ship route. Each route contains an identifier for each cargo-port, where a

value of "I" indicate that the cargo-port is included in this schedule, and the value of

"0" indicates that it is not carried by this schedule. For example, schedule 40 in Figure

5.3 will be presented as (1 001 1), where cargo-port 1 delivered then cargo-ports 4

and 5, and cargo-ports 2 and 3 will not. Additional to the previous files, there are

three more external files representing number of ships, number of cargo-ports, and the

set of schedules for each ship. These three files called ShipNumber. dat,

CargoNumber. dat, and ScheduleNumber. dat respectively. There is a total of five files,

representing all data required for the optimisation. In chapter 4, the SPP formulation

was defined using several parameters, where m represents the total number of ships, n

represents the total number of cargo-ports, S, denotes the set of candidate schedules

for ship v, Cvj denotes the operation cost for schedulej using ship v, and finally, SCjj

97

equals one if schedule j for ship v services cargo-port i, and equals zero otherwise.
This information will be presented as follows:

Total number of ships, m, will be saved at file ShipNumber, dat.

Total number of cargo-ports, n, will be saved at file CargoNumber. dat

Total number of candidate feasible schedules generated S, for all ship v, will

be saved at file ScheduleNumber. dat

All costs, for each schedule, Cj , will be saved at file Schedule Cost. dat

SCivj Set of candidate feasible schedules, for ship v, will be saved at file
Schedule. dat

Staze 4: The five files mentioned previously will be input to the optimisation

model. The SPP formulation will be created using software called MPL

(Mathematical Programming Language). MPL is an advanced modelling system,

which allows the user to formulate optimisation models in a clear and efficient way.
Models developed in MPL can then be solved using an efficient commercial solver

such as CPLEX-10. The MPL model file is divided into two major parts: the

definition (model dimensions, data, variables) and the model (objective function and

constraints). The definition part consists of index (dimension of the problem), data,

and decision variables. The model part contains the algebraic model formulation. The

model part consists of the objective function, the constraints, bounds (upper and lower

bounds), integer variables, and binary variables. The definition part for solving SRSP

using MPL is illustrated in Figure 5.4.

98

DATA

MaxShip := DATAFILE("ShipNumber. dat");

MaxSehed: = DATAFILE("ScheduleNumber. dat");

MaxCargo: = DATAFILE("CargoNumber. dat");

fNDEX

ship= I.. MaxShip ;

schedule = L. MaxSched ;

cargo = I.. MaxCargo ;

DATA

S ched [ship, schedule, cargo]: =

cost[ship schedule]-. =

SPARS EFILE(" S chedul e. dat");

SPARS EFILE(" S chedul eCost. dat");

DECISION

x[ship schedule]

Figure 5.4: Modelformulation using MPL
C-3

MPL will import the five files directly to the model, as illustrated in Figure 5.4.

The first data represent the dimension of the problem, number of ships, number of

candidate schedules, and number of cargo-ports. The second data consists of a set of

candidate schedules and the cost for each candidate schedule. The decision section of

Figure 5.4, identifies the decision variables x(v, j). x(v, j) will equal one if schedule

j for ship v is selected, and zero otherwise.

One of the most important features of MPL is its ability to handle very large

sparse index and data sets. This feature allows the model fon-nulator to identify only

those cargo-ports that will be delivered by each specific ship. It can be presented as

follows:

[Ship ID, Schedule number, Cargo number, Delivered index]

To clarify this part, consider the previous example (Figure 5.3), schedule

number 36 delivering cargo-ports 1,3, and 4. They will be listed as follows:

99

[1,36,1,1,]

[1,36,3,1]

[1,36,4,1]

The first number represents ship number, the second represents schedule

number, the third represent cargo-port number, where the delivered index equal 1,

which means this cargo-port is included in this schedule. This feature allows the

model formulator to export only delivered cargo-ports for each specific ship, instead

of having to examine all cargo-ports, which would be considerably slower.

Sta, ae 5: The model produced using MPL is passed to the solver CPLEX-10.

The solution results will be automatically retrieved from the solver and displayed. The

result contains the objective function, followed by the selected schedules.

5.3 Approximate Approach

The approximate approach for solving SRSP was coded using Visual Basic 6

(V136) and run using 2.00 GHZ Intel V Pentium under window 2000. The structure of

the design is shown in Figure 5.5.

Stage 1: User Interface
User wecifies all data information of the problem

Stage 2: Initial Solution

Produce initial solution using greedy Algorithm, and display the

solution on Excel spreadsheet

Stage 3: Approximate solution
Apply Tabu Search method on initial solution to generate approximate

solution, and then display the solution on Excel spreadsheet

Figure 5.5. - Structure ofApproximate Method

Stage 1: The user specifies the requirement

100

Staize 2: Once all infon-nation has been entered, the user can obtain an

initial solution by pressing the initial solution button. The initial solution will be

obtained by applying a Greedy Algorithm as described in chapter 4. The

program calls the first ship in the fleet (the cheapest day sailing expenses as
determined by fuel consumption), then the process starts adding cargo-ports to

the ship in order. If the cargo-port satisfies the constraints (mentioned in chapter
4) then it will assign the cargo-port to the ship. Otherwise, rejection occurs and
the next cargo-port is examined. During the search operation for an initial

solution , if there are insufficient ships to deliver all available cargo-ports, the

user will be asked to add more ship(s). Additional ship(s) required can be

obtained from the market (spot chartered). Once this stage has finished, the

initial solution will be displayed on an Excel software spreadsheet. Figure 5.6

illustrates the multi-cargo model for three ships involving the delivery of six

cargo-ports, where the results are displayed by an Excel software spreadsheet.

The first number means the sequence of the cargo-port in the route, and the

number between brackets denotes to trip number. For example, ship I has only one

trip in the route, where the ship services cargo-port number 3 and then sails directly to

cargo-port 5. Meantime, ship 3 has two trips in its route, where the ship will visit

cargo-port number 2 and then return to the origin to load cargo-port number 6. In the

case of the single-cargo problem, where the ship services only one cargo-port each

101

Figure 5.6. - Initial solution

time, there is no need for brackets. The cost f or each route is presented in the last

column, while the overall cost is displayed in the lowest cell of the column.

Stq, ae 3: Tabu search will be applied in this stage to generate an approximate

solution based on the initial solution obtained by the first stage (Greedy Algorithm).

The user should enter the following six inputs:

I- Neighbourhood size (NZ)

2- Minimum tenure value (MinTn)

3- Intensification value, (Rpti)

4- Number of iterations needed to increase minimum tenure by one (IncTn)

5- Diversification value (Divert,)

6- Number of iterations within the neighbourhood of cargo-port i, (NbItr,)

7- Total number of iterations (AIIItr)

The user enters neighbourhood size (NZ) which specifies the number of cargo-

ports that fonus the neighbourhood. NZ is always an even number and the number of

cargo-ports in the neighbourhood on each side of the cargo-port is equal to (NZ12).

Consider the following example, where the selected cargo-port is number 11, as

shown in Figure 5.7. The user wants the total number of neighbourhoods for cargo-

port II to be 12 cargo-ports (13 cargo-ports include cargo-port 11). The user in this

case has to enter half of the total of the number required (one neighbourhood side of

cargo-port 11), in order to gain the total number of neighbourhood.

Selected

cargoes
cargo

cargoes

lo 1 11 12 1 13 1 14 1 15 1 16 ý 17 ý 18 ý 19

Figure 5.7. - The neighbourhood of cargo-port II

This means that the designed model will multiply 6 neighbourhoods by 2 (2

sides for cargo-port 11), which is equal to 12 neighbourhoods.

The user also enters minimum tenure value (MinTn). The maximum tenure

value (A4axT") is equal to the number of neighbourhoods.

102

As mentioned in chapter 4, the user enters the intensification value, (Rpti),

where the number denotes to the number of times cargo-port i has entered the tabu

list. This means that, if cargo-port i has entered the tabu list Rpt, times, then cargo-

port i will. remain in tabu list for a number of iterations equal to MaxTn
.

The user also enters the number of iterations to increase minimum tenure by

one (IncTn). This procedure will carry on until the value of tenure reach MaxTn .

Moreover, the user enters (Divert,), mentioned in Chapter 4, which

represents the number of times the specific neighbourhood. will not be searched after

the first search. The user also enters the number of iterations within each

neighbourhood NbItri, and finally, the user enters the total number of iterations

AllItr for the whole problem.

When the user has entered the previous data, tabu search will start looking for

good solution for this specific problem.

The result will be displayed on the same Excel software spreadsheet. Figure 5.8

illustrates the results obtained by applying tabu search, where Stage 2 displays the

results obtained from Greedy Algorithm as mentioned before, and Stage 3 shows the

solution obtained by applying Tabu Search.

Ejle Edit View Insert Four

b-I
Nll

AB

Stage 2b
__7

10

12
13

Stage 3 14

16
17
10

Tools Data Window Help

100%

A -' -! 4" A0 F 6-1 : Zj

-E
FG

argo 1 2 3 4 5 61 Overall Cost
hip

(1) 2(l) E5,643
2 1 (1) 2(l) U, 61 0
3 1 (1) 2(2) f8,650

E22.1 uj

ýýc argo 1 2 3 4 5 6 1 Overall Cost
hip

1 1 (1) 2(1) E5,643
2 2(1) 1 (1) E6

ý785 3ý
1 1 (1) 2(2) U. 090

El 9.516

Figure 5.8. - Results obtained by applying tabu search

103

5.3.1 Conditions

Two major factors control the operation of assigning a specific cargo-port to a
specific ship. The first factor relates to ship capacity in relation to the cargo-port size,

and the second factor relates to the delivery time-window for each cargo-port in

relation to ship's availability.
Ship capacity: there is a limited capacity for each ship in the fleet. This

capacity allows the ship to be loaded by one or more cargo-ports, where the total

size of these cargo-ports must not exceed the ship capacity.

2. Delivery time: there are three important states affecting ship delivery time:

Sta te I Ship can arrive before delivery opening time.

State 2 Ship can arrive before delivery ending time, but not before delivery

opening time.

The following state occurs only with the multi-cargo case:
State 3 There is more than one cargo-port on the ship.

Statel can be expressed as follows:

If ShiplntialCapacity(Ship) >= cargoAmount(cargo) Then

If ServicingTime(O, Ship) + DistanceCustorn er(O, cargo) +Loading (Trip)

Cargo Earlytim e(cargo) Then

ShipFinishTim e(Cargo, Ship) = CargoEarlytime(cargo) + Unloading(cargo)
RouteCapacity(Trip, Ship)=RouteCapacity(Trip, Ship) - cargoAmount(cargo)

If the ship capacity is greater than or equal to the cargo-port size, and since

there is sufficient time to deliver the cargo-port, the ship will start unloading

immediately after the opening time-window, and finish after unloading the cargo-port.

"Servicinjime(O, Ship)" denotes the ship availability at origin. Available ship capacity

after unloading this cargo-port will be increased, since the first cargo-port has

occupied space in the ship (this case only occur for the multi-cargo problem).

State2, where the ship can arrive within the time-window, but not before, can

be represented as follows:

104

If ShiplntialCapacity(Ship) >-,:: cargoAmount(cargo) Then

If ServicingTime(O, Ship)
Cargo Latenesstim e (cargo) Then

D istanceCustom er(O, cargo) +Loading (Trip)

ShipFinishTime(Cargo, Ship) = ServicingTime(O, Ship)
Dista nceC ustom er(O, cargo) + Unload ing(cargo)

RouteCapacity(Trip, Ship)=RouteCapacity(Trip, Ship) - cargoAmount(cargo)

Finally, state3 is related to loading more than one cargo-port on a specific ship. In

this state, the same conditions as mentioned previously will be applied as for the first

cargo-port. The next cargo-port in the trip will be in one of two situations:
I- The remaining capacity is greater than or equal to the cargo-port size and there

is sufficient time to reach the port of this cargo-port before opening delivery time-

window. In this case, the ship will wait at sea after unloading the first cargo-port,

waiting for the opening delivery time-window for the next cargo-port. This can be

presented as follows, where "PreCargo" represents the preceding cargo-port on the

trip:

If RouteCapacity(Trip, Ship) >= cargoAmount(cargo)Then
If ShipFinishTime (PreCargo, Ship) + DistanceCustom er(PreCargo, cargo)

Cargo Earlytim e(cargo) Then

ShipFinishTime(Cargo, Ship) = Cargo Earlytim e(cargo) + Unloading(cargo)

RouteCapacity(Trip, Ship)=RouteCapacity(Trip, Ship) - cargoAmount(cargo)

Slack(cargo, Ship) = Cargo Earl yti m e(ca rgo) -
[ShipFinishTime(PreCargo, Ship) + DistanceCustorner(PreCargo, Cargo)]

"Slack" represents waiting at sea. Waiting on this occasion must be counted,

since there are expenses for waiting per day.

2- The remaining capacity is greater than or the equal to cargo-port size and

the ship can arrive within the opening delivery time-window, but not before. This can

be presented as follows:

If RouteCapacity(Trip, Ship) >= cargoAmount(cargo)Then

if ShipFinishTime (PreCargo, Ship) +D ista nceCustom er(PreCargo, cargo)
CargoLatenesstime (cargo) Then

ShipFinishTime(Cargo, Ship) = ShipFinishTime (PreCargo, Ship)
D istanceC ustom er(PreCargo, cargo) + Unloading(cargo)

RouteCapacity(Trip, Ship)=RouteCapacity(Trip, Ship) - cargoAmount(cargo)

105

5.4 Model Validation

Validation is used for the process of ensuring that the model produces results
that correspond with those of the real system.

Two methods are implemented to validate the Tabu Search model. The first

method is concerned with the detail of program execution. After each iteration there

are codes added to the model to test the state of the system. This is implemented by

tracing each ship route and examining the cargo-port delivery time for each cargo-port
by adding the sailing, loading and unloading times, and then testing if the results are

correct. If there is any difference, a small window will appear in the screen with a

message stating that there is an error in the model. Meanwhile, the method also

examines the waiting time and the overall cost for each ship and for the whole fleet of

ships.

The second method examined the model manually. In this step, the procedure
is to observe and evaluate each route in the system, with particular attention to cargo-

port delivery time in the route, waiting time, and overall cost for the route. This is

implemented by testing the model every 1000 iterations by opening a small window

which provides the user with a result summary (available in Visual Basic 6) and a

comparison is made. The test is performed by tracing each route and compares the

results with the results obtained from manual method.

Validation of the model designed to generate candidate feasible schedules has

been examined using the second method. First, the method is applied by relaxing the

constraints and testing the number of candidate feasible schedules which should be

generated. The second step is to test that the number of candidate feasible schedules

generated is correct. Each candidate feasible schedule is tested logically for the

delivery time of the cargo-port in the route, waiting time, and the overall cost for each

candidate feasible schedule. Different problem sizes were examined.

106

Chapter 6: Computational Experiment

6.1 Design

The major objective of the computational experiment reported here is to

evaluate the perfon-nance of the proposed TS designed model in terms of the quality

of the solutions and the computing time. This evaluation can be achieved by

comparing the results of the two approaches: the exact method using SPP and the TS

designed model. Since some companies ship their cargo-ports using single-cargo

mode, as do the Kuwait Oil Tanker Company (KOTC), the second aim is to examine

effectiveness of using multi-cargo mode compared to the single-cargo mode.

There are many parameters used in the TS designed model, such as the value

of minimum tenure and number of iterations, which are going to be evaluated in order

to reach an efficient TS designed model to solve large-scale instances of SRSP.

Since there were obstacles in obtaining some infon-nation related to Kuwait

Petroleum Company (KPC), due to commercial confidentiality, random data are

generated. The following section presents all data generated and their distributions,

while section 6.2 presents an evaluation of TS parameter selection. Section 6.3

demonstrates the comparison between the results of solving SRSP in single-cargo and

multi-cargo mode by using the TS designed model. Section 6.4 examines the gap

between the exact approach and the TS designed model and the computing time for

each approach.

6.1.1 Input data

In order to evaluate the performance of each approach, data is needed to carry

out the evaluation. Data involved in SRSP can be presented as follows:

Ship details (Time availability at origin, capacity, sailing expenses,

and waiting at sea expenses).

2- Distance between cargo ports (include origin).

3- Cargo-port details (delivery time-window (start and close) and

quantity)

4- Loading and unloading duration, and cost.

5- Port fee due for each ship.

Table 6.1 illustrates all generated random data involved in SRSP.

107

Parameter Distribution / value

CA V,, Availability time of controlled ship v at the origin U[1,3 5]

ChA V, Availability time of chartered ship v at the origin

C7ý capacity of ship v (1000 tons)

CSP sailing cost using controlled ship v ($/day)
v

ChSP, sailing cost using chartered ship v ($/day)

CWP, waiting cost (idle in the ocean) for controlled ship v

Ch WP waiting cost (idle in the ocean) for chartered ship v v
dik distance (in days) between cargo port i and cargo port k

ej earliest arrival time for cargo-port i

latest arrival time for cargo-port i

Qi cargo-port quantity of cargo-port i (1000 tons)

LDjv time required for loading cargo-port i onto ship v (days)

ULiv time required for unloading cargo-port i from ship v (days)

Lql, 5]

L470,350]

0ý x 29

C7ý x 29 x U[I. 5,2]

CT,, x9

CT, x9xU[I. 5,2]

V-- ý(b7-ý (a, -aký +

30 + U[1,71

ei + 143,20]

U[30,300]

I if Qj 200

2 if Qj 201

1 if Qj 200

2 if Q, 201

Ociv operating cost loading and unloading for ship v to handle Qj x300
cargo-port i

Pciv port entrance due (fee) at cargo port i for ship v (CTv + Qj) x 22

T Time Horizon
Table 6-1. - all generated random data involved in SRSP

The planning horizon T is defined as the number of days over which all cargo-

ports are to be delivered.

For test problems, controlled ship availability, CA vý, is generated as a uniform

distribution of U[1,3 5] (days), where U[a, P] denotes a unifonn distribution over the

interval [a,, 8]. Meanwhile, chartered ship availability, ChA V, is generated as a

uniform distribution of U[1,5]. The capacity of the smallest bulk carrier is about 70

dwt, whereas the largest is about 350 dwt (as ULCQ, so the distribution for cTis

t470,350]. As was mentioned in first chapter, the fuel consumption cost is about 22

times ship capacity. For example, if ship capacity equal 300,000 dwt (oý. =300), the

108

fuel consumption cost equal 6816 dollars per day, which is approximately 22 times

c7ý. Meanwhile other expenses such as crew and labour cost are approximately equal

to one third of fuel consumption cost. Therefore, sailing cost (CSIý) is valued

(22+22/3)cT, =29cTý. On the other hand, the charter market is unstable, so the

expenses of a chartered ship are valued at between 1.5 and 2 times that of a controlled

ship. Therefore, a multiplier with distribution specified as U[I. 5,2] is used to compute
the sailing cost for a chartered ship. The same method is applied for waiting cost,

since fuel consumption cost is assumed to be 710 dollars for a ship with capacity

equal to 300,000 dwt (cT, =300), which is approximately 2 times c7ý,. Since fuel

consumption costs approximately 2 times cT, waiting and labour costs are

approximately equal to 7 times c7ý, the waitin cost (cwp x 9. The 9) is valued at CT,

location for each cargo port, denoted as (ai. bi), is randomly generated by taking ai

and bi to be L43,35] (days). As mentioned previously, operating management should

schedule their fleet of ships 30 days before the first delivery. Therefore, the start of

delivery time-window, ej, is distributed as 30 + U[1,71. The end of delivery time-

window, Ii, is distributed as ej + (43,20], where some customers impose a delivery

time-window of 3 days, while others specify a window of up to 20 days. Due to the

uncertainty of customer demand, cargo-port quantity Qj is distributed as U[30,300].

According to official working in KOTC, loading and unloading duration is about one

to two days for fully loaded ships. Therefore, if a ship is loaded with less than 200,000

tons, then it will take one day for unloading, otherwise two days. Because there is no

certain information about the cost of loading and unloading, OCj, it is assumed that

the distribution is based cargo-port quantity multiply by 300. According to Duisburg

port in Gen-nany, the port entrance fee is approximately 18 Euro per 1000 tonnes

(about 22 $) based on the weight of the ship and cargo-port. Therefore PCj, is

computed as (CT, + Q,) x 22.

6.2 Tabu Search Parameter evaluation

In this section, results for computational experiments on approximate and

exact models are presented. These experiments are divided into three subsections.

Subsection 6.2.1 presents all experiments related to TS parameters as follows:

109

I- Neighbourhood (Nbri) forming method (systematic or random).

2- The size of Neighbourhood (Nbri).

Intensification value.

Diversification value Diverti,

Minimum tenure value Min Tn.

6- Size of problems to be solved by TS.

Subsection 6.2.2 presents a comparison between solving SRSP by using

single-cargo mode model and multi-cargo mode model. To measure the efficiency of

the TS model, subsection 6.2.3 presents results for the exact and approximate models

applied to the multi-cargo mode problem.

6.2.1 TS Parameters Evaluation

6.2.1.1 Selecting Nbri by Systematic or Random method

To evaluate the impact of the method used to select a neighbourhood on

solution quality, forty randomly generated instances for three problem sizes were

used. These experiments were applied, firstly by selecting Nbri using the systematic

method and secondly using random selection (for more understanding about

systematic and random selection, the reader can refer to Chapter 4 section 4.1.6). The

experiments are conducted using the same values for other TS parameters (such as the

value of Tenure) for the both systematic and random methods. The problem features

are illustrated in Table 6.2.

Problem No. Cargo-port No. Ship

1 50 25

2 75 30

3 100 33

Table 6.2: problem features to Evaluate Selecting Nbri

The experiments show that using the systematic method yields solutions that

are better than those obtained by the random method for the whole experiments. Table

6.3 illustrates the solution quality for both methods.

110

Problem The average of objective
function

Systematic Random

1 3030620.4 3111539

2 4818052.8 4940431.3

3 6458454.5 6635888

Table 6.3: Average cost obtaining in the evaluation
of the procedure to select Nbri

Since the systematic method to determine Nbri results in better solutions than

obtained by the random method, all the following experiments will be applied to

measure the influence of TS parameters on the solution and computing time based on

determining Nbri using the systematic method.

A possible explanation for the these results is due to the chance of applying

the swap move between two cargo-ports will be high if they are near each other,

where, after deleting the cargo-port from the route to swap the other route, the

previous empty position can be filled with the other cargo-port since the

neighbourhoods are near each other. On the other hand, if the swap move is applied

with two cargo-ports with a long distance between them, the chance of implementing

this move will be small, since the insert to the other route could be infeasible. Since

the random method may contain neighbours not near each other, the chance of

obtaining a good solution in the random method is lower.

6.2.1.2 Size of Neighbourhood (NZ)

The size of the neighborhood is considered to be an important factor in Tabu

Search. Five cases are examined with different number of cargo-ports and ships. Forty

randomly generated instances for each of these problem sizes were used. Table 6.4

presents the features for each case.

Case Time Horizon (days) No. of cargo-ports (n) No. of sh ip s

1 120 50 18
2 150 80 25
3 180 100 30
4 220 150 40
5 350 200 50

Table 6.4: Problem features to Evaluate Selecting NZ

In this experiment, values for neighborhood size, NZ, start at eleven cargo-

ports and increase gradually by ten cargo-ports up to the half of the total number

cargo-ports in each specific case. The reason for using this method is to evaluate

whether the results are influenced by considering a fixed number of cargo-ports for

any problem size, or by the ratio between NZ and the total number of cargo-ports.
Since the MinTn used in these experiments is less than MaxTn by six, where MaxTn

as mentioned in Chapter four is equal to NZ, and MinTn is increased by one every
(5*NZ) - number five is specified by experiments- until reaching MaxTn, then the

number of iterations for each neighborhood NbItri is equal to (30*NZ). The overall

number of iterations is equal to NbItri multiplied by the number of cargo-ports (AIIItr

= NbItri *n), where n is the total number of cargo-ports. Table 6.5 illustrates the

number of iterations for each case.

Iterations (3 0x NZ x n)
NZ 1 21 31 41 51 61 71 81 91

Case
1 16500 31500 46500
2 26400 50400 74400 98400
3 33000 63000 93000 123000 153000
4 49500 94500 139500 184500 229500 274500 319500
5 66000 126000 186000 246000 306000 366000 426000 486000 546000

Table 6.5: Average number of iterationsfor each NZfor each case.

Table 6.6 indicates that good solutions may be obtained when the size of

neighborhood NZ is equal to II or 2 1. In cases two and four the best average of

objective function occurs when NZ is equal to 11 and for cases one, three and five the

best average of objective function is occurred when NZ is equal to 2 1.

112

Case NZ Quality Computing Time
Objective Function Objective Function

Mean Mean Std. Dev.
11 1308851.5 25.4 5.8
21 1306576.6 53.9 11.2
31 1314388.5 107 16.3

2 11
21
31
41

2013849
2013955
2029028
2038295

72.5
194
282.7
389.2

14.7
30.7
44.8
51.5

3 11 2414093 82.1 13.2
21 2404989 210 41.6
31 2423163.8 293.4 65.7
41 2420206.8 424.7 88.6
51 2433479.5 518.4 104.5

4 11 3483500.2 151.8 35.5
21 3486496.2 357.2 69
31 3490358 470.6 76.8
41 3490358 760.8 103.6
51 3509417 938 116.8
61 3509103 1189.2 181
71 3509110 1533.3 266.7

5 11 4522246 330.7 73.3
21 4515273 483.3 97.2
31 4520761.7 764.5 113.3
41 4545257 1070.9 174.6
51 4558025 1403 195.6
61 4546985 1818 242.6
71 4556866 2232.7 332.9
81 4559507 2793.5 399.2
91 4545856 3397.6 413.5

Table 6.6: the difference in quality of the objective function for all cases

Table 6.7 illustrates the percentage of times each value of NZ produced the

best solution found for each case.

Case The percentage of times each value ofNZproduced the best solution

NZ

11 21 31 41 51 61 71 81 91
45% 35% 20%

37.5% 27.5% 17.5% 17.5%

20% 25% 20% 15% 20%

4 32.5% 25% 17.5% 12.5% 0% 5% 7.5%

5 25% 25% 17.5% 0% 5% 7.5% lo% 5% 5%

Table 6.7. - The percentage of times each value of NZproduced the best solution

amongforty problem instances

I
11)

Table 6.7 indicates that the best values of NZ are II and 2 1. Thus, it could be

recommended to adopt a value in the range (11-2 1). However, reference to Table 6.6

indicates that, overall cases the average solution quality is higher with NZ = 21. The

possible explanation for the success of the systematic method selecting the

neighborhood is also could explain the results here.

6.2.1.3 Diversification (Diverti)

The following experiments to evaluate other TS parameters will be applied on

three different problem sizes and forty randomly generated instances for each of these

problem sizes were used as illustrates in Table 6.8.

Case Time Horizon Cargoe-
ports

Ships NZ NbItr
(5 0 *NZ)

AllItr
(NbItr*n)

Days Number Number Number Number Number
1 100 40 20 21 1050 42000
2 120 60 23 21 1050 63000

3 150 80 25 21 1050 84000

Table 6.8: Three different problem size with number of iterations

As mentioned previously, NZ will be set to 21 cargo-ports. Since one of the

experiment is to evaluate the value of MinTn (Section 6.2.1.5), where one of these

values is equal to MaxTnl2 (21/ 2 ý--- II), therefore, increasing MinTn by one requires

ten times to reach MaxTn. Since MinTn is increased by one every (5*NZ) - as

mentioned previously - until reaching MaxTn, then the number of iterations for

searching within each neighbourhood will be equal to 1050 iterations (50*21) as

shown in Table 6.8.

The aim of diversification as mentioned in Chapter four is to steer the search

to another region instead of searching in a local area. When searching a specific

region has finished, a new neighbourhood will be defined. For the three cases, five

different values of Diverti are evaluated. The first value of Diverti is equal to zero

which means that the diversification parameter is not applied. The second value of

Dii, erti is equal to AIIItr14 which means that if cargo-port i has been selected to form

a ne%v neighbourhood, then cargo-port i will not be selected for at least AllftrI4

114

iterations. The other values of Diverti to be evaluated will be equal to AllftrlZ

3A llItr14 and A llItr.

Case Diverti

0A I1Itr14 A IIItr12 3A11Itr14 A 1IItr

Frequency of best Percentage 0% 27.5% 17.5% 15% 40%
solution
Quality A verage 2692999.7 2557731.3 2571257.4 2575080.3 2547382.4

PC time (sec.) Average 43.3 46.4 46.3 45.2 45.5
Std. Dev 5.9 6.6 6.8 6 6.5

2 Frequency of best Percentage 2.5% 20% 17.5% 15% 45%
solution
Quality A verage 4138192.1 3997969.5 3999681.9 4009363.6 3934461.1

PC time (sec.) Average 103.7 103.5 105.8 111 104.4

Sid. Dev 14.1 15.2 16.3 13.5 16.7

3 Frequency of best Percentage 2.5% 32.5% 25% 22.5% 17.5%
solution
Quality A verage 5577322.2 5424004.3 5436278.5 5433320.1 5448568.7

PC time (sec.) Average 167.5 173.3 178 176.6 170

Std Dev 27.4 30.9 33.7 33.4 30.1

Table 6.9: Results of applying dive ifi cation on three different problem sizes

It is clear from Table 6.9 that applying diversification is beneficial. The quality of

the solution and the frequency of best solutions is the lowest when Diverti equal zero.

On the other hand, when Diverti is greater than zero the average quality of the

solutions is close: within 1% for case one, 2% for case two and 0.5% for case three.

It can be concluded that applying diversification is essential to produce good

solutions, and a value of Diverti between AIIItr14 and A11Itr is recommended.

When Diverti is equal to zero, then the chance to search in the same

neighbourhood is high since the search will be implemented in small area. On the

other hand, if Diverti is not equal to zero, then the search will be diverted to another

area to be searched and this could explain why the quality of the solution is better

when Divert is not equal to zero.

6.2.1.4 Intensifleation

There are two methods of intensification as mentioned in Chapter four to be

evaluated. In the first method, if cargo-port i has repeatedly entered the tabu list a

115

given number of times, the cargo-port will remain in the tabu list for a number of
iterations equal to MaxTn (cargo-port i has entered the tabu list for a number of times

denoted by Rpt,). In the second method, if the search yields an improved solution, the

iteration count will be set to zero.
The first method is evaluated by examining the solutions when Rpt, is equal to

three (denote by YES), where number three determined by experimenters, and then by

ignoring the method (denote by NO). Table 6.10 illustrates the results.

Case Rpti

Yes No

Frequency of best Percentage 47.5% 52.5%
solution
Quality Average 2544288.3 2547382.4

PC time (sec.) Average 39.2 45.5
Std. Dev 7.1 6.5

2 Frequency of best Percentage 47.5% 52.5%
solution
Quality A verage 3943770.6 3934461.1

PC time (sec.) Average

Std. Dev

103.7

16.1

104.4

16.7

3 Frequency of best Percentage 42.5% 57.5%
solution
Quality A verage 5470913.9 5448568.7

PC time (sec.) Average 176 170

Sid. Dev 34.3 30.1

Table 6.10: Results of applyingfirst method of intensification on three different
problem sizes

For the three cases, there is no advantage in applying the first method.

The second experiment is to evaluate the second method. Table 6.11 illustrates

the results when the method is (YES) or not (NO). It is clear from the Table 6.11 that

applying the second method where the iteration count will be set to zero when the

search yields an improved solution is beneficial.

116

Case Second method
Yes No

Number of obtaining Percentage 65% 35%
the best solution
Quality Average 2547382.4 2553905.9

PC time (sec.) Average

Std. Dev

45.5

6.5
42.9

6.3
2 Number of obtaining Percentage 52.5% 47.5%

the best solution
Quality A verage 3929003.6 3934461.1

PC time (sec.) Average 104.4 100.2

Std. Dev 16.7 15.7

3 Number of obtaining Percentage 55% 45%
the best solution
Quality A verage 5435114.5 5448568.7

PC time (see.) Average 170 163.3

Std. Dev 30.1 29.4

Table 6.11. - Results of applying second method of intensification on three different
problem sizes

According to these experiments, the conclusion is to use the second method. This

can be explained due to the intensive searching in each area. If the search can generate

a better solution, then the counter will set to zero to search again, where the search

will not stop unless no better solution is achieved.

6.2.1.5 Minimum Tenure (MinTn)

In this experiment, minimum tenure value (MinTn) is set in three possible

ways. As explained in Chapter four, MaxTn is set equal to NZ, and the value of Min Th

is set up relation to the value of MaxTn, as follows:

I- MinTn=MaxTnl2

2- Min Th = 2Max Th 13

3- Min Th =Max Th

Two types of experiments were applied. The first one is to evaluate the value of

MinTn, when it is less than MaxTn (MinTn == MaxTnl2 or MinTn =- 2MaxTn 13) or equal

to MaxTn. The second experiment is to evaluate the number of iterations needed to

increase MinTn by one. If the first experiment where the value of MinTn is less than

MaxTn produces a solution better than the case, where the value of MinTn is equal to

However, if the first MaxTn, then the second experiment will be implemented.

117

experiment where the value of MinTn is less than MaxTn produces a solution worse
than the other case, then the second experiment need not be applied.

Table 6.12 shows that when the value of MinTn is equal to MaxTnl2 or 2MaxTn

13 a good solution can be achieved, where the frequency of best solution and the

quality of the solution are better in all three cases. In addition, a comparison was

applied between the results for the two ratios to evaluate the better value of MinTn. In

the first case, the results show that when MinTn is equal to 2MaxTn 13 the solution is

slightly better where the difference between the quality and frequency of best solution

are very close. On the other hand, for cases two and three the results with MinTn

equal to MaxTnl2 perform better than when MinTn equal to 2MaxTn 13, where the

frequency of best solution is higher, 40%, while the quality of the solutions are very

similar within 0.4% for case two and 0.2% for case three. In addition, the computing

time is almost the same for all experiments.

Case

Percentage

A verage

Number of obtaining
the best solution
Quality

PC time (sec.)

Min Tn value
NZ12 2NZ13 MaxTn

32.5% 35% 32,5%

2550504.8 2547382.4 2557406.4

Average 49.8

Std Dev 6.8
Percentage 40% 2 Number of obtaining

the best solution
Quality

PC time (sec.)

A verage

Average

Std. Dev

3 Number of obtaining
the best solution
Quality

PC time (sec.)

Percentage

A verage

46.4 45.7.3

6.6 6.3
30% 30%

3919173.3 3934461.1 3953311.3

112.6 103.5 103.9

16.3 15.2 14.7

40% 27.5% 32.5%

5438934.4 54485687 5454806

Average 173.4 173.3 171.7

Std. Dev 31.6 30.9 29.4

Table 6.12. - The evaluation of MinTn

Since first experiment showed that, when the value of MinTn is less than

MaxTn, performed better, then the second experiment is to evaluate the best number

of iterations needed to increase MinTn by one. Five different numbers of iterations

(required to increase MinTn by one) have been evaluated. Table 6.13 presents the

performance of applying these different numbers of iterations (NZ equal to 21).

118

Case Increase MinTn every number of iterations equal
NZ 2NZ 3NZ 4AIZ 5NZ

I Frequency of best Percentage 15% 10% 20% 27.5% 27.5%
solution
Quality A verage 2575750 2581167.4 2562946.4 2558958.2 2550504.8

PC time (sec,) Average
Std. Dev

47.9

7.1

52.5

5.9

45

6
45.4

6.5
49.8

6.8
2 Frequency of best Percentage 20% 12.5% 15% 35% 17.5%

solution
Quality A verage 3885558.6 3897239.4 3890452.9 3868807.5 3919173.3

PC time (sec.) Average 104.1 115.2 103.4 106.9 112.6

Std. Dev 14.3 20.1 13 17.9 16.3

3 Frequency of best Percentage 22.5% 15% 25% 22.5% 15%
solution
Quality Average 5443578.4 5463166.6 5431646 5423709.1 5438934.4

PC time (sec.) Average 177 176.9 168.3 183.1 173.4

Std. Dev 31 29.3 33.6 34.3 31.6

Table 6.13: Problems of different MinTn

Table 6.13 shows that there is not a big difference between these different

numbers of iterations. However, there is an indication that increasing MinTn by one

every 4NZ iterations performs better than other numbers of iterations. It is clear in

case two and three the frequency of best solution and the quality are the best among

other results, while in case 1, the quality is the second best.

From these experiments, a conclusion can be drawn by considering that Min Th

equal to MaxTnl2 or to 2MaxTn 13 generates a solution better than would be obtained

with MinTn equal to MaxTn. Meanwhile, MinTn is equal to MaxTnl2 generates a

solution better than would be obtained with MinTn equal to 2MaxTn 13. Finally,

increasing MinTn by one can be carried out every 4NZ iterations.

6.2.1.6 Problem size

Table 6.14 presents different size problems, start with 50 cargo-ports up to 200

cargo-ports problem. The experiment applied on forty problem instances for each

problem size.
Case Time Horizon Cargo-port Sh ip

Days Number Number

1 80 50 18
2 100 80 25
3 150 100 30
4 180 150 40
5 250 200 50

Table 6.14. - Problemfeatures to evaluate problem size

119

Figure 6.1 illustrates the increase of the computing time corresponding to the

increase of the problem size. Problem of fifty cargo-ports can take an average 57

seconds, while problem of 200 cargo-ports can take an average 1337 seconds. This

indicates to the requirement for more time to solve large-scale problems.

Problem size

1500 -777 7, -. C
0 ý

. 6.1 Cx
E -0 1000
=a
U) 0
r
o 500
E
I 01

50 80 100 150 200

Number of cargoes

FigUre 6.1. - Different problem sizes C: 7

The next subsection will compare the experiment results of solving SRSP

using TS between single-cargo mode and on multi-cargo mode. All TS parameters

yield good solutions are shown by the previous experiments.

6.2.2 Single-cargo and Multi-cargo Comparison

Since some companies (as Kuwait Oil Tanker Company (KOTC)) prefer to

use single-cargo mode to schedule their fleet of ships. Four different problem sizes

and 100 randomly generated instances for each of these problem sizes was used.

Table 6.15 illustrates the objective cost and the computing time for each problem. The

number between brackets denotes the problem setting, where first number denotes

time honzon, second denotes number of cargo-ports, and last number denotes the

number of ships.

120

u2

. ID

(n

n
CD
C)

CD

1-1
kr)
CIA

C)
C14

ll-ý

C14

Cý
C)

11-1 C)
C14

1 C 4
ý-o C)
C14 V-)

a)

.E C. ID

" -4

a)

ri

" -4

a)

CID

-I

a) I

"I

C14
C14
00
I--
t1r)
C14
r-

I'D
110
00
in
C'n

C14
-4 C14
ON

00

oo
00
CD
ff)

00

rr)

Oo
-4
C7*A
CIA
00

C14

ýs

kf)

kq

tf)
00

OIR

IT C'4

C:)

"o C'R
I'D 0ý

ý, o n
It 110

CD

& C)

CD

10

.1 ON

CD

Q, il

E

Z

*. ä

Z
c3

. -ilä

r-)

C46)

_S:

tr)
P-4

1-46

121

From these experiments, the quality of the objective function using multi-

cargo mode is better in all four cases, where the difference of the quality between

single and multi modes for the four sizes are 13%, 15%, 10%, and 12% respectively.
These percentages reflect the influence of the operation cost by using multi mode
instead of single mode. Meanwhile, among 100 problem instances, single mode does

not have the ability to handle all 100 problems, where for example in case one single

mode can solve seventy instance problems and cannot solve the rest thirty problem
instances with the specified time horizon. On the other hand, solution time for single-

cargo is slightly, less than multi-cargo mode.

This provides a good indication that using multi-cargo mode saves a lot of

money and utilizes the available fleet of ships in an efficient way.

6.2.3 Comparison between SPP approach and TS approach

Since the previous computational results indicate that using multi-cargo mode

is more efficient than single-cargo mode. This fact makes the comparison between the

exact approach model and approximate approach model is unnecessary. Therefore, the

following computational results are only for multi-cargo. Meanwhile, all TS

parameters values, which provided good solutions in the experiments presented

previously, are used in these experiments.

Table 6.16 presents the computational results for six cases. For each, forty

different problem instances were generated (240 different problems are the total). The

results for all cases represent schedule generations, applying Set Partitioning model,

and applying Tabu Search model. Number of cargo-ports, start from twenty cargo-

ports up to one hundred cargo-ports, with number of nine to forty ships involved.

The number of candidate schedules has a limit set at 900,000. Since the

number of candidate schedules in cases one and two are within this limit, all candidate

schedules are generated (all instances of case one and 36 out of 40 instances for case

two). Therefore, it is ensured that the solutions are optimal. On the other hand, when

the total number of candidate schedules generated exceeds this number, as in cases

three to six, a subset of candidate schedules are selected.

122

1110

I'll)

I ;: t-

i ry)

i

I -ý

ý C! "),

cn -
C) 00 00 C) (::) C) t- CS

tn C) CD CD q: r -
,T C14 10 ýo Cýl C14

CD rr) CD
N C> V) cq tý CD V) (Z

r- rrl

CD
CD CD

N C> C) tr) v) e CD cý c11
Ö'0>

- C, 4

(::, "' ",:,
00 I ;T c-, (D r- C:) C14 C:) cf) =

"t - tr) ý: r --

cý cý

CD 0G r- ýp
CD CD kr) 00 CD rn

c, f) clý Kn 00
CD CD

le ('f)

>: ru :: r4) 4 ru 4Q

2 11P

:3Z
'U (3

to2
k.

CL

lo
;2 3
-2

s'

e

s> g

\o

liý

V)

V'l --

CN
IT
kn

To C7\ "t C)
1ý0 r- C)
C14 r- 1ý0

00

V) 00
CD r14 "0
CN "0 't

00

ON
cf) I--

C14
1-0
rn 00 00 all

00
(D -

110 ýQ

60
SZ

cjý

Cý

't
Ic; 00 CD
00 CD rn C>

CD r--: rn CD r9 00
10 V) (N t f)

Itt
14D
IZ CD
r- CD
00 CD
\Z CD C>
00 "0 \ID o0
Ict CN --

tn
ON
110 CD
C) C>
"N 00 00 tn . cf) - C>

Irý
tn
tf)
rq CD
r- CD
rn CD
ý, 0 5 ý, 0 rl SO e �b

C>
00 C>

CD
c7,

C>
00
t- C>
t'n CD
CN CD r-
m,

rq - -ý

ru (U z:

*z2 "ZJ

%) u

-411 2

C14

Ci tf)
r-4

00 rq

N

c'1

Z ru
ru

\O

r41

\o
i lz

E-ý4

123

It is expected that the solution is not optimal but may approach the optimal

solutions for cases three to six, where a subset of candidate schedules are selected.

According to Table 6.16 the generation of candidate feasible schedules of case

one requires CPU-time more than the time required to obtain the solution of the set

partitioning problem. This occurred due to the exponential computational time, which

were not occurred for the other cases.

As the problems been larger, the solutions obtained by SPP lose the property

of optimality since only a subset of all feasible schedules can be included in the

model. Thus, the relative quality of the TS approach approaches that of SPP approach

as shown in Table 6.16, where for cases three to six the gap is shown to be 28%,

25.3%, 24.2%, and 17.9% respectively. This can be interpreted due to the number of

the subset of candidate feasible schedules generated for each case, where in case three

the number is large (up to 50000 schedules for each ship), while it gets smaller for

next cases (the candidate feasible schedules for case six do not exceed 20000).

A conclusion can be drawn from these results of these experiments that the

gap between solutions obtains by applying TS and SPP is large. However, these

results required more computing time when SPP is applied, where applying TS

generate the solution more quickly. This time will increase exponentially if the

problem size is increased. On the other hand, the perfon-nance of TS is more predicted

in tenn of computing time, while in SPP is not and this is clear from standard

deviations provided in Table 6.16, which are large.

Meanwhile, the experiments for SPP indicate that the number of ships

involved in the problem should be large to obtain subsets capable to generate feasible

solutions, especially for large problem. This fact does not exist in tabu search model.

Problems for more than 100 cargo-ports such as 125 cargo-ports and over were

attempted to solve using the same subset method, however, infeasible solutions were

achieved. This has happened in some instances in case six, where four solutions out of

forty, generated infeasible solutions.

Many factors influence the number of candidate schedules. For example, time

horizon, if the length of the time horizon is so wide, then the number of candidate

schedules will be large. Also, the delivery time window of customers influence the

number of candidate schedules, where the width for delivery time-window will allow

many ships to deliver there cargo-ports if it is wide, while the opposite will restrict the

number of ships. Other factor, such as ship capacities, if the capacity of the ship is so

124

large will allow the ship to deliver many cargo-ports in the same route. Therefore, as

illustrated in Table 6.16, the number of feasible schedules is varied among the

provided instance problems and this is obvious from the standard deviation. For

example, in case one the average number of feasible schedules generated are 16836.6

schedules and standard deviation is 10799 schedules, which is more than 64%.

125

Chapter 7: Conclusions and Further Researches

The latest available sea transportation statistics show that the world shipping
fleet has increased to a record level of 633,321 million gross tons in 2004, an increase

of 28 million gross tons from a year earlier. This fact and many facts mentioned in
this thesis, emphasize the reliance of the world economy on seabome trade and hence

highlights the need for well-organized and reliable maritime transportation systems.
Routing and scheduling of ships requires a significant level of fleet management

planning.
Most of the shipping companies such as (KPQ, schedule their fleet of ships

using little or no use of optimisation approaches. They usually schedule their fleet

using ad-hoc (as in KPC) and then use a spreadsheet (excel software) to visualize the

schedule.

In the past, there was a scarcity of research in this area. However, there has

been an increased interest and focus on it since the review on ship routing and

scheduling by Ronen in 1993 [94]. Ship routing and scheduling is considered to be an
interesting area with great potential for using optimisation to improve fleet utilization.

This thesis is devoted to solving this type of problem, called Ship Routing and

Scheduling Problem (SRSP). There are two classes of scheduling problem considered

in this thesis. The first one is called single-cargo schedule, while the second is called

multi-cargo schedule. The single-cargo schedule problem consists of routes

containing trips that service only one cargo-port on each trip, while the multi-cargo

can service more than one cargo-port on each trip.

Two computational approaches to handle SRSP are considered. The first is an

optimisation approach based on the Set Partitioning Problem (SPP) and the second

approach is an approximate method based on Tabu Search (TS). For the optimisation

approach, a number of candidate feasible schedules are generated, each of which

corresponds to a variable in the SPP model. A user-friendly interface is developed

which allows the user to specify the data that defines a particular problem instance of

SRSP. This information can be entered using an interface called "feasible schedules

generation". A number of candidate feasible schedules will be generated and then

transferred to software called MPL. The MPL software was used to generate the

model which was solved using the commercial optimisation solver CPLEX-10. The

126

second approach adopted is Tabu Search. A proposed schedule for this problem will
be displayed on EXCEL spreadsheet.

The major objective of the computational experiment was to evaluate the

performance of the proposed TS designed model in terms of the quality of the

solutions and the computing time. This evaluation was achieved by comparing the

results of the two approaches: the exact method using SPP and the TS designed

model.

The following parameters were evaluated in the TS designed model:
1. Neighbourhood (Nbri) fon-ning method (systematic or random).

2. The size of Neighbourhood (Nbri).

3. Intensification value.

4. Diversification value Diverti *
5. Minimum tenure value Min Tn.

6. Size of problems to be solved by TS.

The experiments showed that forming a neighbourhood with the systematic

method performed better than by using the random method. The best size of

neighbourhood was fonned to be 21 cargo-ports. Also, experiments emphasised that

applying intensification and diversification parameters is worthwhile. The best value

of MinTn is equal to the half of the value of MaxTn (MaxTn /2), and increasing MinTn

by one can be carried out every 4NZ iterations, where NZ is equal to 2 1.

Some companies (as Kuwait Oil Tanker Company (KOTC)) prefer to use

single-cargo mode to schedule their fleet of ship instead of multi-cargo mode. The

results indicates that using the second mode performed significantly better than the

first mode. The difference of the solution quality between single and multi modes

showed multi-cargo is better than single-cargo mode by at least 12%.

To measure the efficiency of the TS model, the exact approach based on SPP

was applied to the multi-cargo mode problem. Computational results in Chapter six

showed that the gap between solutions obtained by applying TS and SPP is up to 28%

for small problems and up to 18% for large problems. On the other hand, these results

required more computing time when SPP was applied, whereas the TS model could

solve larger problem more quickly.

Computational results in Chapter six also indicated that the optimisation

approach can solve moderate size problems by generating all feasible schedules and

127

some large size problems by using a method to generate a subset of feasible

schedules, which is considered very close to the optimal solution. On the other hand,

due to an exponential increase in the number of schedules, a very large problem will
be difficult to solve. Therefore, the user in this situation can resort to TS model to

solve his/her problems.
A conclusion from this thesis can be drawn, for small problems (such as thirty

cargo-ports) and reasonable middle size problems (not more than one hundred cargo-

ports) can be solved efficiently using the SPP model, whereas for larger problems, the

user can resort to the TS model to obtain approximate solutions. The use of Tabu

Search for SRSP is novel and the results indicate that it is viable approach for large

problems.

Further Researches

To improve the performance of the first model (SPP) and to enhance the

quality of the solution, various methods are proposed. A heuristic method to select

the subset of feasible schedules could be designed. Meanwhile, reducing the

computational time may be achieved by considering the waiting time (wviv). Since

the waiting time for unloading the cargo-port is considered costly, all schedules that

have a waiting time will be eliminated to control the number of candidate schedules.
The quality of the solution could be improved by using Aspiration Criteria

technique, which allows one to ignore the tabu status of a move if this move leads to a

value better than the best-known value found by the search so far. Another way is to

merge the Tabu Search method with other heuristic methods, such as Genetic

Algorithm (GA). The methodology of these hybrid methods can be achieved as

follows: since a Genetic Algorithm is considered to be a very powerful heuristic

method, compared to a Greedy Algorithm, the initial solution could be generated

using a Genetic Algorithm, followed by applying TS to continue the search to obtain a

solution. Another way, is the opposite case, where the initial solution could be

obtained using Tabu Search, followed by a Genetic Algorithm to continue the search

for a better solution.

Meanwhile, further work can be considered by using soft delivery time-

windows. Most customers impose a delivery time-window for their cargo-ports. This

delivery time-window can be violated. However, there are penalties imposed for any

128

violation of the delivery time-window. Therefore, ships can be loaded to their entire

capacity by violating the time-window, and this approach is taken to reduce the

overall cost.

129

References:

I., posting date.

http: //www. sintefno/static/am/opti/projects/top/vrp/benchmarks. html.

[Online.]

2.1988-2002. MPL Modeling System. Maximal oftware, Inc.

3.6, v. v. 1987-1998. Microsoft Visual Basic 6, p. 32-bit window deveploment.

Microsoft Corp.

4. Aarts, E., P. Laarhoven, J. Lenstra, and N. Ulder. 1994. A computational

study of local search algorithms for job shop scheduling. ORSA Journal on
Computing 6: 118-125.

5. Al-Basry, M. 2006. Bunker Consumption and Price, p. Interview May. 2006.

In K. 0. T. Company (ed.), Kuwait.

6. Al-Khayyal, F., and SA. Hwang. In Press. Inventory constrained maritime

routing and scheduling for multi-commodity liquid bulk, Part L Applications

and model. European Journal of Operational Research.

7. Allahverdi, A., and F. AI-Anzi. 2006. A PSO and a tabu search heuristics for

the assembly scheduling problem of the two-stage distributed database

application. Computers and Operations Research 33: 1056 - 1080.

8. AI-Yakoop, S. 1997. Mixed-Integer Mathematical programming Optimization

Models and Algorithms for Oil Tanker Routing and Scheduling Problem. PhD.

Faculty of the Virginia Polytechnic Institute and State University, Virginia.

9. Anderson, C. A., K. Fraughnaugh, M. Parker, and J. Ryan. 1993. Path

assignment for Call Routing: An Application of Tabu Search. Annals of

Operations Research 41.

10. Appelgren, L. 1969. A column generation algorithm for a ship scheduling

problem. Transportation Science 3: 53-68.

11. assad, A. A. 1980. Models for Rail Transportation. Transportation Research

Part A 14A.

12. Baker, B. M., and M. A. Ayechew. 2003. A genetic algorithm for the vehicle

routing problem. Computers & Operations Research 30: 787-800.

13. Barbarosoglu, G., and D. Ozgur. 1999. A tabu search algorithm for the

vehicle routing problem. Computers & Operations Research 26: 255-270.

130

14. Bausch, D. 0., G. G. Brown, and D. Ronen. 1991. Elastic set partitioning: A

powerful tool for scheduling transportation of oil and gas. M. Breton and G.

Zaccour (eds.), advanced in Operations research in the Oil and Gas Industry,

Editions Technip, Paris: 151-162.

15. Beasley, J. 1990. distributing test problems by electronic mail. Journal of the
Operational Research Society 41: 1069-1972.

16. Bellmore, M., G. Bennington, and S. Lubore. 1971. A multi-vehicle tanker

scheduling problem. Transportation Science 5: 36-47.

17. Ben-Daya, M., and M. Al-Fawzan. 1998. A Tabu Search Approach for the
Flow Shop Problem. ORSA Journal on Operations Research Society 109: 88-

95.

18. Bent, R., and P. V. Hentenryck. 2006. A two-stage hybrid algorithm for

pickup and delivery vehicle routing problems with time windows. Computers

& Operations Research 33: 875-893.

19. Boffey, T. B., E. D. Edmond, A. 1. Hinxman, and C. J. Pursglove. 1979.

Two Approaches to Scheduling Container Ships with an Application to the

North Atlantic Route. Operational Research Society Ltd 30: 413-425.

20. Brandao, J., and A. Mercer. 1997. A tabu search algorithm for multi-trip

vehicle routing and scheduling problem. European Journal of Operational

Research 100: 180-191.

21. Breedam, A. V. 1995. Improvement heuristics for the Vehicle Routing

Problem based on Simulated Annealing. European Journal of Operational

Research 86: 480-490.

22. Breedam, A. V. 2001. Comparing descent heuristics and metaheuristics for

the vehicle routing problem. Computers & Operations Research 28: 289-315.

23. Briskon, L. E. 1966. Selecting delivery dates in the tanker scheduling

problem. Management Science 12: 224-233.

24. Bronmo, G., M. Christiansen, K. Fragerholt, and B. Nygreen. In press. A

multi-start local search heuristic for ship scheduling - acomputational study.

Computers & Operations Research.

25. Brown, G. G., G. W. Graves, and D. Ronen. 1987. Sheduling ocean

transportation of crude oil. Management Science 33: 335-346.

131

26. Chakrapani, J., and J. Skorin-Kapov. 1993a. Massively Parallel Tabu

search for the Quadratic Assigriment Problem. Annals of Operations Research
41: 327-341.

27. Cho, S. -C., and A. N. Perakis. 1996. Optimal liner fleet routing strategies.
Maritime Policy and Management 23: 249-259.

28. Choi, L-C., SA. Kim, and H. -S. Kim. 2003. A genetic algorithm with a

mixed region search for the asymmetric traveling salesman problem.
Computers & Operations Research 30: 773-786.

29. Christiansen, M., K. Fagerholt, and D. Ronen. 2004. Ship Routing and
Scheduling: status and Perspectives. Transportation Science 38: 1-18.

30. Christofides, N., and P. Toth. 1979. The vehicle routing problem.
Combinatorial Optimization, Wiley, Chichester.

31. Chung, C. -S., J. Flynn, and 0. Kirca. 2002. A branch and bound algorithm
to minimize the total flow time for m-machine permutation flowshop

problems. Int. J. Production Economics 79: 185-196.

32. Clarke, G., and I Wright. 1964. Scheduling of vehicles from a central depot

to a number of delivery points. Operations Research 12: 568-58 1.

33. Cordeau, J. F., P. Toth, and D. Vigo. 1998. A survey of optimization models
for train routing and scheduling'. Transportation Science 32: 380-404.

34. CPLEX-10.2005. ILOG.

http: //www. ilog. com/products/cplex/news/whatsnew. cfin.

35. Crainic, T. G., and G. Laporte. 1997. Planning models for freight

transportation. European Journal of Operational Research.

36. Crino, I R., J. T. Moore, J. W. Barnes, and W. P. Nanry. 2004. Solving

the theater distribution vehicle routing and scheduling problem using group

theoretic tabu search. Mathematical and Computer Modelling 39: 599-616.

37. Dantzig, G. M., and D. R. Fulkerson. 1954. Minimizing the number of

tankers to meet a fixed schedule. Naval Research Logistics Quarterly 1: 217-

222.

38. Darby-Dowman, K., and J. Wilson. 2002. Developments in linear and

integer programming. Journal of the Operational Research Society 53: 1065-

1071.

132

39. Datz, 1. M., C. M. Fixrnan, A. W. Friedberg, and V. A. Lewinson. 1964. A
description of the maritime administration mathematical simulayion of ship
operations. Trans. SNAME: 493-523.

40. Dell'Arnico, M., and M. Trubian. 1998. Solution of large weighted equicut
problems. European Journal of Operational Research 106: 500-521.

41. Dodlin, B., A. A. Elimarn, and E. Rolland. 1998. Tabu Search in Audit
Scheduling. European Journal of Operational Research 106: 373-392.

42. Fagerholt, K. 1999. Optimal fleet design in a ship routing problem.
International. Transaction of Operational. Research. 6: 453-464.

43. Fagerholt, K. 2004. A computer-based decision support system for vessel
fleet scheduling-experience and future research. Decision Support Systems
37: 35-47.

44. Fagerholt, K., and M. Christiansen. 2000. A combined ship scheduling and
allocation problem. Journal of the Operational Research Society 51: 834-842.

45. Giannelos, N. F., and M. C. Georgiadis. 2003. Efficient scheduling of
consumer goods manufacturing processes in the continuous time domain.
Computers & Operations Research 30: 13 67-13 8 1.

46. Gillett, B., and L. Miller. 1974. A heuristic algorithm for the vehicle dispatch

problem. Operations Research 22: 340-349.

47. Glover, F. 1986. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers & Operations Research 13: 533-549.

48. Glover, F. 1990. Tabu Search: A tutorial. Interfaces 20: 74-94.

49. Glover, F., and M. Laguna. 1997. Tabu search. Kluwer Academic

Publishers, Bosten.

50. Goldberg., D. E. 1989. Genetic Algorithms in Search, Optimization &

Machine learning. Addison-Wesley.

51. Golden, B., E. Wasil, J. Kelly, and 1. Chao. 1998. The impact of

Metaheuristics on solving the vehicle routing problem: algonthms, problem

sets, and computational results. Fleet Management and Logistics: 33 -56.
52. Gopalan, R., and K. T. Talluri. 1998. The aircraft maintenance routing

problem. Operations Research 46: 260-271.

53. Gr6nkvist, 1.2006. Accelerating column generation for aircraft scheduling

using constraint propagation. Computers & Operations Research 33: 2918-

2934

133

54. Haghani, A., and S. Jung. 2005. A dynamic vehicle routing problem with

time-dependent travel times. Computers & Operations Research 32: 2959-

2986.

55. Han, J. Article in press. Frequency reassignment problem in mobile

communication networks. Computers & Operations Research.

56. Ho, S. C., and D. Haugland. 2004. A tabu search heuristic for the vehicle

routing problem with time windows and split deliveries. Computers &

Operations Research 31: 1947-1964.

57. Holland, I H. 1975. Adaption in Natural and Artificial Systems. University

of Michigan Press, Ann Arbor, MI.

58. Holst, 0., and B. Sorenson. 1984. Combined scheduling and maintenace

planning for an aircraft fleet. Operations Research 32: 735-747.

59. http: //mathworld. wolfram. com/InteriorPointMethod. htm].

60.

http: //www. cunard. com/0urShips/default. asp? Ship=ONI2&main=i

nt&sub=his. 2004. Queen Mary 2.

61.

http: //www. duisport. de/en/lol4istik transport/trans port sepmente/s

hort sea schifffahrt/hafenent2elte/index. php.

62. loachim, I., I Desrosiers, F. Sounus, and N. Belanger. 1999. Fleet

assignment and routing with schedule synchronization constraints. European

Journal of Operational Research 119: 75-90.

63. Jaramillo, D. I., and A. N. Perakis. 1991. Fleet deployment optimization for

liner shipping Part 2. Implementation and results. Maritime Policy and

Management 18: 235-262.

64. Jaszkiewicz, A. 2001. Multiple objective metaheuristic algorithm for

combinatonal optimization. Politechnika Poznanska, Poznan.

65. Karp, R. A. 1979. patching algorithm for the nonsymmertric traveling-

salesman problem. SIAM 8: 561-573.

66. Kirkpatrick, S., J. Gelatt, and M. P. Vecchi. 1983. Optimizatlon by

Simulated Annealing. Science 220: 671-680.

67. Kydiand, F. 1969. Simulation of liner operation. Institute for Shipping

Research, Bergen.

134

68. Laguna, M., R. Marti, and V. Valls. 1997. Arc crossing minimization in

hierarchical digraphs with tabu search. Computers & Operations Research

24: 1175-1186.

69. Land, A., and A. Doig. 1960. An automatic method for solving discrete

programming problems. Econometrica 28: 497-520.

70. Lane, D. E., T. D. Heaver, and D. Uyeno. 1987. Planning and Scheduling for

Efficiency in Liner Shipping. Maritime Policy and Management 14: 109-123.

71. Lima, C. M. R. R., M. C. Goldbarg, and E. F. G. Goldbarg. 2004. A

memetic algorithm for heterogeneous fleet vehicle routing problem. Electronic

Notes in Discrete Mathematics 18: 171-176.

72. Lokketangen, A., and F. Glover. 1998. Solving Zero-One Mixed Integer

Programming Problems Using Tabu Search. European Journal of Operational

Research 106: 624-658.

73. Lundy, M., and A. Mees. 1986. Convergence of an annealing algorithm.

Math. Prog. 34: 111-124.

74. Malek, M., M. Guruswamy, P. M, and 0. H. 1989. Serial and parallel

simulated annealing and tabu search algorithms for travelling salesman

problem. Annals of Operations Research 21: 59-84.

75. Maniezzo, V., and A. Mingozzi. 1999. The project scheduling problem with

irregular starting time costs. Operational Research Letters 25: 175-182.

76. Marin, A., and J. Salmeron. 1996. A simulated annealing approach to the

Railroad Freight Transportation design Problem. International. Transaction of

Operational. Research. 3: 139-149.

77. Mehrez, A., M. Hung, and B. Ahn. 1994. An industrial ocean-cargo shipping

problem. Dec. Sci. 26: 395-423.

78. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller. 1953. Equation of state calculation by fast computing machines. The

Journal of Chemical Physics 21: 1087-1092.

79. Mole, R., and S. Jameson. 1976. A sequential route-building algorithm

employing a generalized savings criterion. Operational Research Quaterly

27: 503-511.

80. Nation, U. 2005. Review of Maritime Transportation, 2005, United Nations

Conference on Trade and Development (UNCTAD).

135

81. Nemhauser, G. L., and P. L. Yu. 1972. A problem in the bulk service

scheduling. Operations Research 20: 813-819.

82. Olson, C. A., E. E. Serenson, and W. J. Sullivan. 1969. Medium-Range

Scheduling for a Freighter Fleet. Operations Research 17: 656-582.

83. Perakis, A. N., and D. 1. Jaramillo. 1991. Fleet deployment optimization for

loner shipping. Partl: background problem fon-nulation and solution

approaches. Maritime Policy and Management 18: 183-200.

84. Pisinger, D. 2006. Upper bounds and exact algorithms forp-dispersion

problems. Computers & Operations Research 33: 1380-1398.

85. Powell, B. J., and A. N. Perakis. 1997. Fleet deployment optimization for

liner shipping: an integer programming model. Maritime Policy and
Management 24: 183-192.

86. Prins, C. 2004. A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research 31: 1985-2002.

87. Rakshit, A., N. krishnamurthy, and G. Yu. 1996. system operations advisor:
A real-time decision support system for managing airline operations at united

airlines. Interfaces 26: 50-58.

88. Rana, K., and R. G. Vickson. 1988. A model and Solution Algorithm for

optimal Routing of a Time-Chartered Containership. Transportation Science

22: 83-95.

89. Rana, K., and R. G. Vickson. 1991. Routing container ships using lagrangian

relaxation and decomposition. Transportation Science 25: 201-214.

90. Rasaratnam, L., S. Nasser, and S. Chelliah. 2006. Two-machine group

scheduling problems in discrete parts manufacturing with sequence-dependent

setups. Computers & Operations Research 33: 158-180.

91. Reeves, C. R. (ed.). 1995. Modem Heuristic Techniques for Combinatorial

Problems. McGraw-Hill Book Company Europe.

92. Ronen, D. 1983. Cargo ships routing and scheduling: Survey of models and

problems. European Journal of Operational Research 12: 119-126.

93. Ronen, D. 1986. Short-tenn Scheduling of vessels for shipping bulk or simi-

bulk commodities originating in a single area. Operations Research 34: 164-

173.

94. Ronen, D. 1993. Ship scheduling: The last decade. European Journal of

Operational Research 71: 325-333.

136

95. Ronen, D. 2000. scheduling charter aircraft. Journal of the Operational

Research Society 51: 258-262.

96. Ronen, D. 2002. Marine inventory routing: shipments planning. Journal of the

Operational Research Society 53: 108-114.

97. Russell, R. A., and W. -C. Chiang. 2006. Scatter search for the vehicle

routing problem with time windows. European Journal of Operational

Research 169: 606-622.

98. Salhi, S. 2002. Defining tabu search list size and asperation criterion within

tabu search methods. Computers & Operations Research 29: 67-86.

99. Sherali, H. D., S. M. AI-Yakoop, and M. A Hassan. 1999. Fleet

management models and algorithms for oil-tanker routing and scheduling

problem. HE Transactions 31: 395-406.

100. Shintani, K., A. Imai, E. Nishimura, and S. Papadimitriou. in press. The

container shipping network design problem with empty container repostioning.

Transportation Research Part E.

101. Skorin-Kapov, D., J. Skorin-Kapov, and M. O'Kelly. 1996. Tight Linear

Programming Relaxations of P-Hub Median problems. European Journal of

Operational Research 94: 582-593.

102. Skorin-Kapov, J., and J. -F. Labourdette. 1995. On minimum Congestion in

Logically Rearrangeable Multihop Lightwave Networks. Journal of Heuristics

1: 129-146.

103. Skorin-Kapov, J., and A. Vakharia. 1993. Scheduling a Flow-Line

Manufacturing Cell: A Tabu Search Approach. International Journal of

Production Research 31: 1721-1734.

104. Solomon, M. M. 1987. Algorithms for vehicle routing and scheduling

problems with time window constraints. Operational Research 35: 254-265.

105. Subramanian, R., and R. E. Marsten. 1993. Strategic planning and

scheduling of aircraft heavy maintenance at Delta airlines. AGIFORS 33rd

Annual Symposium Proceedings, Chicago, IL.

106. Subramanian, R., R. Scheff, J. Quillinan, D. Wiper, and R. Marsten.

1994. Coldstart : Fleet assignment at Delta Air Lines. Interfaces 24: 104-120.

107. Sun, M., I E. Aronson, P. G. McKeown, and D. Drinka. 1998. A tabu

search heuristic procedure for the fixed charge transportation problem.

European Journal of Operational Research 106: 441-456.

137

108. Taillard, E. 1991. Robust tabu search for the quadratic assignment problem.
Parallel Computing 17: 443-455.

109. Taillard, E. D. 1993. Parallel iterative search methods for vehicle routing

problems. Networks 23: 661-672.

110. Taillard, E. D. 1994. Parallel Tabu Search Techniques for the Job Shop

Scheduling Problem. ORSA Journal on Computing 6: 108-117.

111. Tan, K. C., L. H. Lee, and K. Ou. 2001. Artificial intelligence heuristics in

solving vehicle routing problems with time window constraints. Artificial

Intelligence 14: 825-837.

112. Tan, K. C., L. H. Lee, Q. L. Zhu, and K. Ou. 2001. Heuristic methods for

vehicle routing problem with time windows. Artificial Intelligence in

Engineering 15: 281-295.

113. Tang, L., G. Wang, and J. Liu. Article in press. A branch-and-price

algorithm to solve the molten iron allocation problem in iron and steel
industry. Computers & Operations Research.

114. Taniguchi, E., and H. Shimarnoto. 2004. Intelligent transportation system
based dynamic vehicle routing and scheduling with variable travel times.

Transportation Research Part C 12: 235-250.

115. Teodorovic, D., and S. Guberinic. 1984. Optimal dispatching strategy on an

airline network after a schedule perturbation. European Journal of Operational

Research 15: 178-182.

116. Teodorovic, D., and G. Stojkovic. 1990. Model for operational daily airline

scheduling. Transportation Planning and Techniligy 14: 273-285.

117. Thesen, A. 1998. design and evaluation of Tabu Search Algorithms for

Multiprocessor scheduling. Journal of Heuristics 4: 141-160.

118. Toth, P., and Daniele. 2003. The granular tabu search and its application to

the vehicle routing problem. WFORMS Journal on Computing 15: 333-346.

119. Tozkapan, A., 0. Kirca, and C. -S. Chung. 2003. A branch and bound

algorithm to minimize the total weighted flowtime for the two-stage assembly

scheduling problem. Computers & Operations Research 30: 309-320.

120. Vansteenwegen, P., and D. V. Oudheusden. 2006. Developing railway

timetables which guarantee a better service. European Journal of Operational

Research 173: 337-350.

138

121. Winston, W. L. 1993. Operations Research: Applications and Algorithms,

Third ed. International Thomson Publishing, California.

122. Wu, T. -H., C. Low, and J. -W. Bai. 2002. Heuristic solutions to multi-depot
location-routing problems. Computers & Operations Research 29: 1393-1415.

123. Yau, C. 1988. A heuristic Method for Scheduling of Trucks Many

Warehouses to Many Delivery points. Computers in Industry 11: 175-180.

124. Zamani, M. R. 2001. A high-performance exact method for the resource-

constrained project scheduling problem. Computers & Operations Research

28: 1387-1401.

125. Zhang, W., and R. E. KorL 1996. A study of complexity transitions on the

asymmetric traveling salesman problem. Artificial Intelligence 81: 223-239.

126. Zhou, X., and M. Zhong. 2005. Bicriteria train scheduling for high-speed

passenger railroad planning applications. European Journal of Operational

Research 167: 752-771.

127. Zwaneveld, P. J., L. G. Kroon, and S. P. M. v. Hoesel. 2001. Routing trains

through a railway station based on a node packing model. European Journal of

Operational Research 128: 14-33.

139

Appendix A

A. 1 SPP model using MPL.

TITLE
Ship_scheduling

DATA
MaxShip :- DATAFILE("ShipNumber. dat");
MaxSched: = DATAFILE("SchedNumber. dat");
MaxCargo := DATAFILE("CargoNumber. dat");

INDEX
ship l.. MaxShip;
schedule :=l.. MaxSched;
cargo I.. MaxCargo;

DATA
Schedules [ship, schedule, cargo]: = SPARS EFILE(" SCHEDULE. dat");
cost[ship schedule]: = SPARS EFILE("Costt. dat");

DECISION
x[ship schedule] WHERE (cost> 0)

MODEL
MIN TotalCost = SUM (ship, schedule: x* cost);

SUBJECT TO
condition I [cargo] SUM (ship schedule: Schedules *x
condition2 [ship] SUM (schedule: x)<= I

BINARY

END

140

A. 2 Generation Feasible Schedules Model

The method of using Generation Feasible Schedules model is provided in the
following file name (CD provided):

ColumnGenerMulti.

The steps are as follows:

I- Open shipMulti. vbp (Visual Basic Project) icon.

2- Click on Run (Tools Box).

3- Ship Scheduling interface will appear.

4- Click on "Time Horizon, Ships & Cargoes" button.

5- Specify Time Horizon, number of Ships (controlled), number of Chartered

Ship, and finally number of cargoes.

6- Once generation finishes, small icon with total number will display.

7- Go to MPL software and run the model.

141

A. 3 Tabu Search Design Model

The method of using TS model is provided in the following file name (CD

provided):

Tabu Search Multi.

The steps are as follows:

I- Open shipMulti. vbp (Visual Basic Project) icon.

2- Click on Run (Tools Box).

3- Ship Scheduling interface will appear

4- Click on "Time Horizon, Ships & Cargoes" button.

5- Enter Time Horizon, number of Ships (controlled), number of Chartered Ship,

and finally number of cargoes (must be twenty cargoes and over).

6- Excel window will be opened and display initial solution.

7- Return to Ship Scheduling interface.

8- Click on "Tabu Insert & Swap" button.

9- Excel window will display the Tabu Search solution.

142

