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IV. Abstract 

Mobile Digital TV (MDTV), the hybrid of Digital Television (DTV) and mobile 

devices (such as mobile phones), has introduced a new way for people to watch DTV 

and has brought new opportunities for development in the DTV industry. Nowadays, 

the development of the next generation MDTV service has progressed in terms of 

both hardware layers and software, with interactive services/applications becoming 

one of the future MDTV service trends. However, current MDTV interactive services 

still lack in terms of attracting the consumers and the service creation and 

implementation process relies too much on commercial solutions, resulting in most 

parts of the process being proprietary. In addition, this has increased the technical 

demands for developers as well as has increased substantially the cost of producing 

and maintaining MDTV services. In light of the aforementioned situation, the Thesis 

has contributed to this field, by proposing an innovative MDTV service creation and 

consumption system based on XHTML and Java ME. On the head-end it introduces a 

semi-automatic creation mechanism to facilitate a less technical and more efficient 

interactive service creation process. This enables designers and creative individuals to 

be actively involved in the MDTV service creation process and to develop interactive-

rich MDTV service. On the client-end it employs an open-source software 

environment as the interactive service MDTV consumption platform, rendering the 

MDTV service implementation process as less proprietary as possible. Furthermore, 

the Thesis offers a discussion on the different MDTV interactive application models 

currently used and based on the proposed software, a novel MDTV service 

presentation method is further introduced and adopted instead of the Rich Media and 

ECMAScript based methods. Finally, a series of qualitative testing procedures have 

been implemented with regards to conducting an essential evaluation on the 

operability of the proposed software system. 
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1. CHAPTER 1: INTRODUCTION 

1.1 RESEARCH SCOPE 

Modern Digital TV (DTV) systems broadcast not only traditional Television (TV) 

content through the broadcast networks but also provide viewers with a series of 

interactive TV services. This improvement has so far succeeded in encouraging 

people to change from simply “watching” the content offered in their TV sets to 

“interacting” with it. Moreover, the advent of Mobile Digital TV (MDTV) has been 

realized and implemented today, due to the popularization of personal mobile devices 

such as mobile phones, PDAs (Personal Digital Assistants) or even notebooks and 

netbooks. 

In order to ensure that the users of MDTV are able to experience the same services as 

those on the conventional DTV, substantial research work has been conducted in the 

area, a few resulting in some approaches to be proposed and placed into practice. In 

short, the current MDTV related work and solutions mainly focus on shifting existing 

DTV services to MDTV, even though the characteristics between DTV and MDTV 

systems vary considerably. More precisely, research has been conducted in recent 

years on constructing the service distribution (broadcasting) and reception 

environments especially for MDTV, with respect to the mobile service operation 

features from both hardware and software perspectives. The development results on 

hardware environment and lower layer protocols are promising with two main reliable 

solutions (broadcast networks and mobile convergence networks) being formed, 

whilst the implementation and adoption of higher layer standards and specifications 

are running relatively behind. Discussions and attempts on introducing interactive-

rich services into the MDTV domain and in particular focusing on the creation, 

display and interaction aspect of these services are currently ongoing. 

The research in this Thesis focuses mainly on developing an executable solution for 
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MDTV interactive service creation and consumption by proposing a new MDTV 

service creation and consumption environment as well as its associated software tools. 

1.2 ANALOGUE, DIGITAL AND MOBILE TELEVISION 

Broadcast multimedia is a common denominator for networked multimedia platforms 

that involve the use of a unidirectional broadcast channel to convey high-speed and 

high-quality audio-visual services to consumers. The most common example of 

broadcast multimedia is that of the television [2]. Switching from Analogue 

Television (ATV) to DTV, and to MDTV, has brought new elements, challenges and 

evolution on both technologies and markets. The following sections provide a brief 

overview of the key historical milestones of the TV medium. 

1.2.1 ANALOGUE TELEVISION – A SERIES OF TV PROGRAMMES 

 
Figure 1.1: Analog Television service [http://11takes.blogspot.com/2007/12/free-digital-tv-

converter.html, 6/12/2007] 

Starting from the first conventional Analogue Television (ATV) service broadcasted 

by the British Broadcasting Corporation (BBC) in the UK in 1936, broadcasters began 

to distribute the initial form of TV services by providing a series of TV programmes 

through different signal channels, using analogue signals. People consumed the TV 

services by watching these programmes and often switching between them. As the 

time went by, ATV service was improved significantly by the introduction of a variety 

of TV programmes that brought massive amount of information to the users such as 
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premade recordings (e.g.: movies), live shows, news reports and even some simple 

auxiliary interactive applications. So far ATV has helped to establish a passive visual 

information environment and has become the predominant consumer medium for the 

majority of the population and has become a vehicle in exploring the world around us. 

1.2.2 DIGITAL TELEVISION – A SERIES OF BIDIRECTIONAL TV SERVICES 

 
Figure 1.2: Sky Digital TV service [http://stuff.tv/blogs/future/archive/2008/05/29/first-look-

sky-s-new-hd-epg.aspx, by Mark Wilson, 29/5/2008] 

Digital Television (DTV) was adopted as the next generation of broadcast television 

technology in the early 1990s, based on the transmission of digitized TV signals. 

Since then, with the introduction of digital technology in the production, distribution, 

and reception of TV services, the trend of digitalization has influenced the entire TV 

broadcasting industry greatly in less than two decades. Digitalization has been a 

technological phenomenon from the standpoint of transmission capability, of 

efficiency of network distribution network, of image quality, and of flexibility and 

variety of performances, which for the very first time widen the TV set’s field of use 

well beyond the programmes’ traditional fruition [4]. TV sets thus have become a new 

portal for the electronically mediated information exchange. Above all, the novelty of 

DTV has improved the relationship between the audiences and the broadcasters as 

well as the nature of the medium and its production processes. The audience now 

becomes the user, starting to become more active within the TV service environment 

by accessing a series of interactive applications and other auxiliary contents. This 
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resulted in an evolution of the TV from a passive medium towards a fully interactive 

environment supporting a variety of innovative service schemes. As a result of this, 

TV broadcasting has established a new range of conceptual series of highly 

customizable integrated interactive multimedia DTV services, in contrast to the ATV’s 

fixed and linearly scheduled TV services. Figure 1.2 illustrates a typical DTV service 

user interface, where various TV programmes and interactive applications (Electronic 

Program Guide for example) can be recognized. 

1.2.3 MOBILE DIGITAL TELEVISION – ENRICHED DTV SERVICES 

ANYWHERE 

 
Figure 1.3: Mobile Digital TV service [http://www.persian-forums.com/f81/dvb-h-esg-

simulator-beta-4-a-20162/ 4/8/2009] 

MIPCOM, one of the most famous media content events held in Cannes every year, 

described Mobile TV in October 2006 as the most significant wireless trend for the 

mobile industry in the coming years. After a successful adoption on the live broadcast 

of FIFA 2006 World Cup in Germany, Mobile Digital TV (MDTV) has become a 

promising reality for the world market. Several leading organizations of 

telecommunication industries, such as the ITU, ETSI and 3G Partnership forum, have 

contributed several recommendations on MDTV, which resulted in the rapid 

implementation of other related components in the mobile industry, such as handsets, 

chip sets, spectrum, operating system, software applications, transmission 

technologies and MDTV service content. 
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Mobile TV is defined as the transmission of TV programmes or video for a range of 

wireless devices ranging from mobile TV-capable phones to PDAs and wireless 

multimedia devices [2]. Currently within the broadcast TV domain, there are two 

different modes of mobile TV, based on the different formats of the transmission 

signal; namely the Mobile Analog TV (MATV) and the Mobile Digital TV (MDTV). 

MATV is a mobile/portable ATV service that enables users to watch TV programmes 

by receiving the traditional analogue TV signal through an ATV system using mobile 

devices with ATV receiver chipsets built-in. MDTV offers enhanced DTV services to 

MDTV-capable devices through digitized broadcast network or telecommunication 

network system. Just like DTV has several advantages over ATV, equally MDTV 

offers substantial advantages over MATV, with the digitalization of TV broadcasting 

system. MDTV, compared to MATV is a more interactive, highly customizable and 

offers multimedia-rich services that provide the user with a higher level of mobile TV 

service experience. 

Among the components in a MDTV system, the terminal device is the most 

distinguishable feature of MDTV comparing with other forms of DTV. With the 

“mobilization” trend of most of the personal electronic devices nowadays such as 

mobile phones, PDAs and game consoles, there are more and more mobile devices 

being adopted as the MDTV service terminal. Moreover in recent years, researchers 

as well as manufacturers have placed great effort in developing mobile devices with 

more functions but smaller chip sets, more powerful processing abilities but less 

power consumption. Meanwhile the network operators have also started adjusting and 

updating current networks (or have even been building up entirely new networks) to 

ensure that the terminal devices are capable of receiving mobile TV services. All these 

developments further encourage the popularization of MDTV and based on a forecast 

in the “Global Mobile TV Forecast to 2013”, the number of the mobile TV 

subscribers worldwide will grow to reach 570 million by the end of 2013 [24]. 

MDTV derives from DTV but constitutes a new information portal on a mobile device. 
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On one hand, its portability is higher than the conventional DTV, offering wide 

service coverage and better reception ability of MDTV signals at a high speeds, when 

compared to traditional DTV networks. Furthermore, when incorporated on a mobile 

phone device, MDTV is able to use the cellular networks for the provision of an 

interaction path that can offer a wider variety of multimedia services. If the 

conventional DTV’ s most attractive point is the high audio-visual quality experience, 

then MDTV greatest advantage is the excellent mobility and integration of 

multimedia in a single portable platform. 

1.3 DTV AND MDTV SERVICE MARKET OVERVIEW 

1.3.1 DTV SERVICES IN THE MARKET 

DTV services have become available in many countries worldwide. The initial steps 

of DTV service implementation were aimed at repurposing ATV programmes in the 

digital domain. Therefore the DTV value-added services were realized as the next 

milestone in the DTV evolution. Apart from the traditional types of services found in 

the ATV, such as TV advertising, subtitles and conditional access (CA), DTV has set 

up a series of services rich in interactive functions, enabling users to interact with the 

DTV content or even with other users through a telecommunication-based/internet-

based return channel. A basic list of different categories of interactive DTV services 

currently in practice is shown in Table 1.1: 

Category Interactive DTV Services 

TV-specific services 

Electronic Program Guide (EPG) 

Pay-per-View (PpV) 

Video-on-Demand (VoD) 

Personal Video Recorder (PVR) 

Value-added services 

Information Portal 

Government 

Health 

Weather information 

Community services 

Communication 
Instant message 

E-mail 

E-commerce 
TV-shopping 

Interactive advertising 

Finance TV banking 

Game 
Simple/Multi-player Game 

Voting and betting 
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Table 1.1: Interactive DTV services 

1.3.2 MDTV SERVICES IN THE MARKET 

With the development of modern telecommunication technology, especially after the 

implementation of the third generation mobile telecommunication technology (3G) 

and the mobile broadcasting technology, the transmission of digital audio/visual 

media to mobile devices became possible. MDTV was launched as a commercial 

service in 2004 [20] and since then it has been experiencing an initial implementation 

phase with the aim of broadcasting a cut-down version of DTV service on the MDTV 

system platform. Meanwhile the development of the MDTV technologies never 

stopped and trials have been carried out for pilot study purpose in many countries. 

Several MDTV standards have so far been published and adopted and the MDTV 

service has become popular and known as a new form of DTV.  

Table 1.2 shows the MDTV services deployed in several countries of different regions 

in the world: in Asia, South Korea and Japan are at the forefront of MDTV 

development and basic services such as Free-to-air were launched since 2005; Italy 

have been the lead on MDTV service in Europe by using 3G network whilst in the 

UK, several trails based on DVB-H and DAB/DMB have been launched with regard 

to collect practical experience for the actual deployment; the USA has launched their 

MDTV service via several popular technologies (as shown in Table 1.2) and the 

service deployment has been well-operated so far with the supports from many 

famous content providers (ESPN, NBC, FOX, etc) as well as network providers 

(AT&T, Alltel, etc). [7], [9], [12], [17] - [23] 

 
Asia Europe North America 

South Korea Japan Italy UK USA 

Bearer 

Technology 

S-DMB, T-

DMB, 3G 

ISDB-T 1seg, 

3G 
3G 

3G, DVB-H, 

DAB/DMB 

3G, MediaFLO, 

ATSC-M/H, DVB-H 

Typical 

Service 

Model 

Free-to-air, Information service 

(e.g. news, weather), ESG. 

Free-to-air, 

PayTV, PpV 
PayTV 

Free-to-air, VoD, 

PayTV, PpV 

Table 1.2: World MDTV services 
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1.3.3 THE MDTV SERVICE DEVELOPMENT STATUS 

Based on a brief overview on the global MDTV service market, it has become clear 

that: 

1. Currently there are two groups of transmission technologies being used for 

distributing MDTV services: namely mobile telecommunication technologies (e.g. 

3G) that support Unicast mode (pier-to-pier delivery), Multicast mode (pier to 

multiple piers delivery) and Broadcast mode (pier-to-coverage delivery), and 

digital broadcast technologies (e.g. DVB-H and ATSC-M/H). These different 

technologies will be discussed and explained in more detail in Chapter 2. 

2. Due to a number of MDTV services and trials deployed in recent years, MDTV 

has become a common service for several mobile device (e.g. mobile phone) users. 

3. Many of the current MDTV services in Europe and North America are carried by 

3G networks whilst the broadcast technologies have not yet been adopted fully 

with a few of the services and trials succeeded; In contrast, MDTV over the digital 

broadcast network has been adopted well in Japan and South Korea. 

4. Free-to-air MDTV services have not yet been widely applied in Europe or North 

America, which is one of the reasons why the MDTV has not become that popular 

in these regions when compared to Japan and South Korea; 

5. Current MDTV service types are mainly free-to-air, PayTV and VoD. Comparing 

with the various service types of conventional DTV, MDTV services are still 

limited and lack of attracting large numbers of subscribers. Several additional 

MDTV services are also required, such as: 

a. Information portals: weather, news, stock and etc.; 

b. Multiplayer gaming; 

c. Voting applications; 

d. Online lotteries and Gambling; 

6. There is no universal MDTV service implementation solution being proposed or 

adopted globally so far and equally importantly is no open-standard based MDTV 
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service design solution has been implemented. 

Consequently, the current situation in the MDTV service market is very interesting 

since MDTV is now well-known but not very popular amongst users and consumers. 

More precisely MDTV has been widely adopted as one a common mobile device 

service although it is currently under the initial implementation phase, since several of 

the fundamental technologies (specifications, protocols, hardware, middleware and 

software, etc.) are still being developed, improved and deployed. The development 

and design of MDTV services and its content and applications are still rather poor in 

terms of quality and quantity. 

The reason for the current situation is considered to be mainly due to the fact that 

even though MDTV has been implemented for several years, it is still under a 

development phase, with several problems arising, such as the rising demand to the 

telecommunication resources (such as spectrum). Markets in different regions have 

presented their own MDTV systems and services however most of them have not yet 

been fully developed with several pilot studies still being conducted. Moreover time is 

required to achieve further evolvement of the technology at a certain level that would 

contribute to the development of the entire MDTV industry and corresponding 

business models. 

1.4 MOTIVATION 

Following the discussion above it is clear that there are challenges and opportunities 

for researchers in the MDTV field for further development and innovation.  One of 

the key areas and challenge identified in this area is that current MDTV services lack 

in terms of attractive and fully interactive applications, which has in turn provided us 

with the motivation for this research project. The current developments as far as  

MDTV services are concerned are mainly aiming their efforts in adapting existing 

DTV services to the MDTV domain and so far only a small group of TV programmed 

based services (free-to-air, PpV, VoD as well as basic information services) have been 
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adopted when compared to the current DTV services listed in Table 1.1. Moreover, 

most of the current MDTV services and applications are unidirectional. This situation 

is in contradiction to one of the key advantages of MDTV: 1) Conventional DTV 

services used to be unidirectional on the early stage of their release and the service 

finally became interactive with the addition of telecommunication wired networks; 2) 

As far as MDTV, mobile communication networks is a key and given benefit of most 

of MDTV terminal devices (e.g. mobile phones), making it in turn the best platform 

for the adoption of interactive MDTV services. Therefore, with a native and 

integrated bidirectional network, MDTV ought to provide users with more interactive 

applications than DTV. Unfortunately, it is the opposite case with MDTV currently 

offering a rather limited set of interactive options for users. 

More importantly, MDTV should develop interactive services and applications 

especially according to its own characteristics and in turn develop a MDTV specific 

interactive service system. However, as the expected mobile multimedia gateway of 

the future, MDTV is still in lack of a promising interactive service model with 

integrated functions and reliable quality. Several aspects need to be considered as the 

reasons of this situation, as follow: 

1. Comparing with conventional DTV, MDTV has different hardware and software 

environments. Since most of the MDTV terminal devices have limited battery supply, 

most of the hardware parts such as CPU are designed to save more power, which 

results in a more limited processing/performance ability in terms of hardware (e.g. 

small size of screen). Thus the software technologies used in a MDTV terminal device 

are usually developed specially for power limited devices with limited functions being 

supported. Such environments have restricted the direct adoption and adaptation of 

DTV interactive services and applications in the MDTV domain, with most of them 

needed to be redesigned to fit the unique characteristics of this environment; 

2. Another related issue is that of many of the software development technologies for 

power limited device are relatively hard to use with much less functions support 
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comparing with their full version. It becomes even worse when developers try to use 

these specific mobile targeted software environments to develop MDTV services, in 

which case a very specific MDTV software layer knowledge is required and 

developers have to be trained extensively before they start the development work. 

3. In terms of the service creation process this too demands designers and creative 

individuals to also acquire technical knowledge on the software platform that a 

service is designed for. This means that designers cannot be involved directly in the 

service creation process as they do not have the software skills to develop the 

graphical user interfaces, look and feel and interactive features of a service. In turn, 

this advanced knowledge demand has therefore increased the time and resource 

expense and moreover prevented designers and professional creators from being 

involved into the process of the MDTV interactive service/application design and 

creation; 

4. Also regarding the software development technologies currently used in the MDTV 

field, most of them have poor compatibility with each other (e.g. LASeR and Java 

ME). The MDTV technology development entities have realized this problem and 

have already standardized the MDTV system’s application layer according to the 

underlying transmission standards (e.g. DVB-H, ATSC-M/H). However, even though 

unification has been achieved within the scope where the same transmission standard 

is utilized, different MDTV middleware/software standards are still not compatible. 

Designers have to use different corresponding standards and technologies even when 

they intend to design the same applications; 

5. As a result of the above situation, the current MDTV service development mainly 

relies on commercial solutions and many of them are able to support multiple MDTV 

standards. However the service creation process and implementation method of these 

solutions are usually proprietary with limited types of interactive service available. 

As a result, various proprietary commercial solutions dominate the current MDTV 
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interactive service implementation field whilst the current middleware/software 

specifications from different MDTV standards have limited contribution on 

developing a universal solution or open-standard on the MDTV’ s application layer. 

This paradox remains one of the current issues limiting the speed of evolution and the 

richness of services, especially in terms of interactive applications within the MDTV 

field. 

1.5 CHALLENGES AND AIMS 

The main technical challenges are further highlighted from the motivation as follows:  

1. How to reduce the technical knowledge demands on the designers, during the 

service creation process and how to facilitate such process to encourage the 

development of MDTV interactive-rich service?  

2. How to improve the inter-compatibility of service development technologies as 

well as their outputs (e.g. service content/applications) under different MDTV 

standards?  

3. How to avoid proprietary characteristics from current service creation and 

implementation process? 

In light of these challenges, we intend to contribute to the current MDTV service 

development and implementation field by proposing an optimized MDTV interactive 

service/application creation and consumption solution. The aims of the Thesis are set 

as follow: 

1)  To optimize the process of MDTV service creation, demystifying and simplifying 

it, making it less technical and more efficient by developing a semi-automatic service 

creation tool within the service creation lifecycle. This enables the involvement of 

more design-oriented and creative professional in the service creation process.  
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2)  To employ an open-source software environment as the platform of research and 

development work, to improve the MDTV service creation and consumption process 

by converting it from proprietary-based to a relatively open standard-based one. An 

open-source based service creation process could introduce more inter-compatible 

features. This would also enable the scalability and future extensions of the currently 

developed platform and its interaction with other open standards (MHP, JSR-272, etc).  

1.6  THESIS ORGANIZATION 

The Thesis has been organized into six chapters.  

Chapter 1 offers an introduction to the research work. The research scope is briefly 

stated at the beginning, followed by a quick overview of the key milestones of TV’s 

history and its service development. An overview of DTV as well as MDTV services 

found currently in the market and a brief discussion about the current status and the 

future of the MDTV services is also being offered here. Then by highlighting the 

technical challenges, this chapter further sets the aims of the research work. Lastly, 

this chapter ends up with the Thesis organization. 

Chapter 2 is the chapter of the Literature review. It starts with a glance on the global 

DTV/MDTV standards and then is the background knowledge related to the MDTV 

service creation and implementation. After a brief introduction on the classical DTV 

service asset lifecycle, a review on global DTV middleware solutions from both 

international standards and commercial aspects follows, with the context and the 

emphasis placed on MDTV middleware. The main body of this chapter consists of an 

additional review and an in-depth discussion of global MDTV service creation and 

implementation solutions within the software engineering scope. By concluding the 

discussion, an introduction of thesis’ methodology is briefly presented, linked to the 

implementation section of the Thesis. 

Chapter 3 offers the first part of the implementation section by presenting the 
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proposed semi-automatic MDTV service creation process. The motivation behind 

introducing the semi-automatic service creation is firstly presented and followed by a 

discussion on the current MDTV service presentation technologies. The system 

architecture of the proposed process as well as its contribution is stated as the main 

body of the chapter, where the semi-automatic service creation tool is presented as the 

main software component. A qualitative comparison between some current solutions 

and the proposed work is presented lastly. 

Chapter 4 offers the second part of the implementation section by presenting the 

proposed MDTV Client Implementation Environment including a service platform on 

the terminal device and a server. This chapter also contains the relevant motivation, 

methodology and the statement of the implementation process. Moreover in the 

statement of implementation, the MDTV service platform is introduced as the main 

software component in the proposed environment according to the software 

construction and the main functionalities of each part are fully presented. The data 

flow within the proposed environment is presented and a brief discussion on the 

contribution of the proposed software concludes this chapter. 

Chapter 5 conducts the software testing and evaluation on the proposed software 

components. An introduction of the motivation and aims of this test procedure is 

stated at the beginning and the testing methodology is presented after that. The main 

body of this chapter consists of the testing conducted on the proposed software 

including the semi-automatic service creation and the service platform. Especially, the 

result of the acceptance testing procedures of the proposed software which involves 

10 actual testers is presented after the conventional software testing cases. Besides, an 

evaluation and discussion based on the results of the testing procedures is offered at 

the end of each testing case. 

Chapter 6 briefly introduces the possible further and future work of the project and 

lastly concludes the Thesis. 
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Summary: 

Having introduced the background of MDTV and the development of its service, this 

chapter further discussed the situation of the current MDTV service and after 

targeting the main problems as well as highlighting the challenges, this chapter has 

set the aims of the research work with regards to making effective improvements to the 

current MDTV service implementation process. 
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2. CHAPTER 2: MDTV SERVICE CREATION AND 

IMPLEMENTATION 

2.1 A GLANCE ON DTV AND MDTV GLOBAL STANDARDS 

Since the Digital TV became widely available worldwide, the development of Digital 

TV has brought a new series of technical specifications for most of the components 

within the DTV system; ranging from the description of coding algorithms to that of 

modulation procedures, transmission parameters, hardware components, device 

interfaces, protocols and techniques for adding interactivity as well as their 

corresponding software platforms and applications. Many research and 

standardisation organizations such as the Moving Pictures Experts Group (MPEG), 

International Telecommunications Union (ITU), International Standardisation 

Organization (ISO) and many more have all played an important role in creating a 

unity on the concepts and developing common standards for global digital 

broadcasting. So far, there are three main DTV standards adopted globally, which are 

the Digital Video Broadcasting (DVB) from Europe, the Advanced Television 

Systems Committee (ATSC) from USA and the Integrated Services Digital 

Broadcasting (ISDB) from Japan. China has also put strong effort on developing its 

own standards in order to formalize and standardize the current broadcasting industry 

within China [30]-[35].  

 DVB ATSC ISDB 

Via Terrestrial DVB-T(2) ATSC-T ISDB-T 

Via Satellite DVB-S(2) ATSC-S ISDB-S 

Via Cable DVB-C(2) ATSC-C ISDB-C 

To Mobile Device 
DVB-H /DVB-

SH 
ATSC-M/H 1seg 

Table 2.1 Main DTV standards in the world with their main transmission solutions 

With Regards to the different hardware and software requirements between MDTV 

service and conventional DTV service deployment, several aspects of DTV 
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technology have been modified and optimized to fit DTV services to MDTV. In 

addition to this a new series of MDTV standards are being developed and deployed by 

leading DTV service operators, 3G cellular mobile network operators and even 

wireless broadband operators throughout the world. As listed in Table 2.2, there are 

two groups of MDTV network technologies: Mobile Broadcast Network technologies 

and Cellular Mobile Communication Network technologies. The former technologies 

usually evolve from their corresponding version for conventional DTV. For example, 

DVB-H is inherited from DVB-T and ISDB-T 1seg is based on ISDB-T. The Cellular 

Mobile Communication Network technologies are developed as the cellular network 

is evolved and they have been improved to become more and more advanced to meet 

the increasing requirement of video casting service over the cellular network. In 

addition, DVB-IP Datacast, DMB-IP Datacast and Open Mobile Alliance Mobile 

Broadcast Services (OMA-BCAST) are also developed to define relative protocols 

and handle the services on the IP layer. 

Mobile Broadcast Network technologies and standards Transport Layer 

specifications 

DVB-Handheld 

(DVB-H) 

ISDB-T 

1seg 

Digital Multimedia 

Broadcast 

 (T/S-DMB) 

ATSC-Mobile/Handheld 

 (ATSC-M/H) 
DVB-IPDC 

DMB-IPDC 

OMA-BCAST 
Cellular Mobile Communication Network technologies and standards 

Unicast Multicast/Broadcast 
Media Forward Link Only 

(MediaFLO) 

Table 2.2 Mobile Broadcast Network technologies and standards 

2.2 A GENERIC DTV SERVICE ASSET LIFECYCLE 

Developed on these network technologies and standards, MDTV service has now 

enabled users to watch a wide range of programmes when and where they wish as 

well as offers a personalized and interactive experience. So far and since its first 

commercial release, MDTV has become an attractive novelty within the mobile phone 

environment and has been initially accepted by the market (see the market study in 

Chapter 1). However in the vertical market of MDTV services, improving the 

efficiency and reliability of the entire MDTV service production workflow and system, 



25 

so as to get service of higher quality, is still one of the key priorities and main issues 

worth considering. By considering this issue, it is firstly necessary to familiarise 

oneself with the structure of a MDTV service system and look into how the system 

components cooperate with each other in the MDTV service lifecycle. The focus and 

motivation of our research would be thus placed at these key components and their 

interactions within a MDTV system. 

Since MDTV derives from DTV, their overall system lifecycles are very similar. As to 

the DTV service, a generic DTV asset lifecycle includes the entire process consisting 

of tasks required to produce the generic DTV service types: a digital A/V service 

combining value-added applications. Its structure corresponds to the generic 

networked multimedia asset lifecycle: preproduction, production, postproduction, 

delivery, consumption and interaction/transaction. Therefore a generic DTV asset 

lifecycle can be illustrated as in Figure 2.1 and in order to make an improvement to 

any DTV service like MDTV, efforts can be put on these six segments below: 

 

Figure 2.1: Generic abstract DTV asset lifecycle (adopted from [2] Chapter 2, page22, Fig 2.6) 

DTV related business entities and service providers are involved along in the lifecycle 
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and the transactions between them to complete the process of DTV service production 

workflow. These commercial entities establish the service provision model and 

relative service providers realize the technological solutions for it. When the DTV 

services are created and edited ready to be distributed, different service providers 

(Broadcast service provider (BSP), Interactive service provider (ISP)) make the 

necessary agreements to deliver and implement the functionality of the corresponding 

DTV services. Prior to the consumption of the DTV services, transactions and 

agreements between the relevant commercial entities and the consumers are 

established, to achieve the final end-to-end business. Taking the DVB standard as an 

example, a practical system architecture is shown in Figure 2.2: 

 

Figure 2.2: An extended DVB system architecture (adopted from [2] Chapter 2 p13) 

 

Central Components Functions 

DVB Broadcast Service Provider (BSP) 
Delivers broadband MPEG-2 transport streams (TSs) 

over different physical broadcast mediums (satellite, 

terrestrial, cable) to the consumer. 

DVB Interactive Service Provider (ISP) 
Provides functionalities and facilities for non local 

interactivity. 

Service Providers (SPs) 

Create service content and act as feedback network 

partners. BSP broadcast the content, Interaction channel 

and ISP help in achieving interactivity between the ISP 

and consumer. 

Service Editors (SEs) 
SEs are responsible for creating the overall services by 

implementing applications and A/V content delivered by 

the broadcasters 
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Broadcast Channel 
The different physical broadcast mediums (satellite, 

terrestrial and cable). 

Interaction Channel 
A feedback channel for bi-directional information 

exchange provided by the ISP through various wired and 

wireless networks. 

Consumer multimedia Home Network 

(CMHN) 

The consumer access the MPEG-2 TS service with 

Multimedia Home Platform (MHP)-compliant set-top 

box. 

Table 2.3: Functions of central components in DVB system architecture 

There are two sections of the generic lifecycle that this Thesis would be focusing on, 

namely: the production and consumption, which correspond to the service editor and 

consumer home network of the above Figure and Table. 

2.3 DTV SERVICE CONSUMPTION  

The consumption of DTV service can be considered as a practical paradigm of 

Human-Computer Interaction (HCI), which has been defined as “the design, 

evaluation and implementation of interactive computing systems for human use and 

with the study of major phenomena surrounding them” [56]. Within this context it 

refers to the DTV service consumption environment, where the HCI model consists of 

the DTV terminal facility, the consumer and the actions between them. 

 
Figure 2.3: Reference DTV service consumption HCI model 

In this model, the DTV service broadcaster firstly forwards the default service content 

to the consumer as per contract agreement. The initial part of the consumption is 

accomplished when the consumer receives and experiences those contents through 
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certain DTV service terminal devices such as a TV with a set-top box or a mobile 

phone with a DTV feature unit. Then the consumer will either watch those DTV 

content or register actions with the service terminal device according to the types of 

the DTV content; for example, pressing a button on a controller to join in a live quiz 

show, to pay to view a specific piece of premium content, to personalize own profile 

and many more. This interaction between the consumer and the service providers is 

achieved through the interaction channel. Additional consumption is accomplished 

when the service provider responds according to these consumer/user requirements by 

creating and sending modified/selected content to the consumer or recording the 

consumer’s preferences through the broadcast/interaction channel.  

2.3.1  DTV SERVICE END-USER TERMINAL ARCHITECTURE 

During the consumption of a DTV service, one of the most essential medium is the 

end-user terminal device. It is designed to include the abilities of receiving the service 

signal streams, demodulating and decoding the service content for the display unit to 

retrieve the A/V and added-on service, connecting the server and the client, and 

handling the interactions between them. There have been different types of DTV 

terminal devices in the market and the two most typical types are the set-box for most 

of stationary digital TV services and the MDTV featured mobile devices for MDTV 

services. The software stacks of both of these are very similar as shown below: 

Set-top Box 

Architecture 

Example 

MDTV End-user 

Device Architecture 

Example 

Stack Components Layers 

GUIs, Interactive 

applications 

GUIs, Interactive 

applications 

Applications based on the 

middleware APIs 

Application 

Layer 

DVB-HTML, DVB-J, 

BML, 
MIDP, BML 

Application programming 

interface (API) Middleware 

Layer 
MHP, BML, DASE, BML, MIDP 

Middleware for specific 

operating system 

Linux, Windows CE 
Linux, Symbian, 

Android, Windows CE 
Operating System 

OS & Hardware Hardware Drivers Hardware Drivers Drivers 

Demodulator, 

Demultiplexer, Decoder 

Demodulator, 

Demultiplexer, Decoder 
Hardware 

Table 2.4: General DTV set-top box or featured unit software stack 
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The Operating system (OS) and Hardware presents the bottom layer of the software 

stack. Hardware units like antenna, demodulator and decoder are required to perform 

the fundamental DTV functionalities such as receiving signals and unpacking them 

into A/V and service stream, when there is also a CPU and memory to assist the 

processing of commands and manage the hardware environment within a DTV feature 

unit. The OS has the duty of connecting software and applications with hardware and 

enabling software to use the hardware functionality. Also there are necessary 

hardware related APIs being installed in the OS so as to make the corresponding 

hardware aware and available to the system. 

Middleware and applications are part of the software layer. Middleware is a special 

designed software layer that is between the OS/hardware and the service applications, 

employed as a platform to hide the differentiations of OSs (Linux, Symbian or 

Android) and hardware structures from upper components. All the DTV service 

applications are then programmed according to the Application Programming 

Interface (API) provided by middleware and executed on the DTV terminals that 

implement this middleware API. 

2.3.2 MIDDLEWARE INTRODUCTION 

When creating DTV service applications, developers need to consider a series of 

issues, such as in which DTV service the applications belong to, which model the 

DTV terminal device is, what its functional ability is, what the configuration of the 

hardware is and which operating system it comes with. Solutions have to be proposed 

after balancing among those factors or limitations, since different hardware and 

operating system conditions may result in different performances for the same 

application.  

Thus in the early years of DTV, before the definition of middleware, most of these 

works had to rely on the support from commercial entities due to the high-cost and 

complex characteristic. The service creation and terminal device production of a 
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digital TV services were in the proprietary domain for a number of specific 

broadcasters at a time, which limited the development of the DTV services in the 

horizontal market. Then the middleware came into our view by acting as an additional 

software layer between hardware and service application software, offering uniform 

interfaces to both of them. This means that any service applications based on this 

middleware will have the same performances including visual, audio and control 

experience as well as other functional mechanisms on any type of hardware where 

this middleware is installed on. The introduction of middleware to DTV unifies the 

service execution procedure and thus reduces the complexity during the service 

production. 

Moreover, when different DTV standards had their corresponding middleware 

standardized, the middleware is eventually accepted as an important part within the 

DTV system. Terminal device manufacturers, service providers and broadcasters thus 

have middleware standards as the reference during the production of DTV services. 

The development and the evolution of DTV service is further encouraged, resulting in 

the new generations of DTV services such as interactive DTV services, which are 

quickly becoming available to more and more end users. 

 

Figure 2.4: Reference middleware architecture (adopted from [57] Figure 1) 
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A middleware consists of application programming interfaces (API) and mechanisms 

relevant to support upper applications and abstract lower layer of the terminal device 

components. The common reference middleware function architecture is as in Figure 

2.4. Two aspects of these functions are:  

 Resources contain the functions that control underlying hardware; a group of 

engines (Java Virtual Machine and etc.) in which applications and other assistant 

script codes can be parsed and executed; reference APIs and models for 

application (creation and execution of interactive applications, GUI, etc.).  

 Services contain native services that are executed by the underlying hardware 

directly and the middleware-based services that are created and run on top of the 

middleware. 

2.4 GLOBAL DTV STANDARDS MIDDLEWARE SOLUTIONS  

2.4.1 STATIONARY DTV SERVICE MIDDLEWARE SOLUTIONS 

All global leading DTV standards have developed their own middleware solutions for 

stationary DTV. These are: the Multimedia Home Platform (MHP) for the Digital 

Video Broadcast (DVB) standard, the Advanced Common Application Platform 

(ACAP) for the Advanced Television Systems Committee (ATSC) standard and the 

Association of Radio Industries and Businesses Standard (ARIB STD) B23 for the 

(Integrated Services Digital Broadcasting (ISDB) standard. Besides these, there are a 

few middleware solutions supported by service providers or network providers such 

as the Multimedia and Hypermedia Experts Group – 5 (MHEG-5). 

2.4.1.1 DVB Multimedia Home Platform and Globally Executable MHP 

The DVB Project realised in 1997 that it would be a natural progression to build a set 

of specifications that would result in an open standardized middleware solution for 

their broadcast standard with its core based on Java technology. The first 

demonstrations of MHP took place at the IFA show in Germany in 1999, followed by 
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the first version of MHP published by ETSI in July 2000 and in 2002 the first MHP 

services were launched on the DVB-T platform in Finland.  

The Multimedia Home Platform (MHP) middleware standard defines a 

comprehensive platform that enables interactive television services to be deployed, 

that are interoperable across any manufacturer’s implementations of the standard ([58] 

4.1.1). The key advantages of MHP are [59]: 

 An open standard with multiple suppliers at all pointers in the value chain; 

 A mature standard with many commercial and trial deployments; 

 Allows true interactivity with actual television content, not just text and graphics; 

 Works with all CA and DRM systems; 

 A flexible standard which is proven to evolve with internet technologies; 

 Specified for use in conjunction with all DVB transmission system specifications; 

 Comes from the DVB Project, a tried and trusted source of DTV standards. 

So far there have been three versions of the MHP published. All these versions 

support the enhanced broadcasting profile and interactive broadcasting profile. 

Version 1.1 adds the Internet access profile and the latest version 1.2 adds the IPTV 

profile as an upgrade.  Several key components defined in MHP version 1.2.2 are 

listed in Table 2.5: 

MHP Components Description 

MHP Transport 

Protocols 

The protocols on both broadcast channel and interaction channel aspect are 

defined to provide a generic solution for a variety of broadcast only and 

interactive services through different network types (e.g. DVB networks 

including terrestrial, cable and satellite, Integrated Service Digital Network, etc). 

Content Formats 
DTV service content formats including audio, video, image, text and streaming 

formats as well as font and colour. 

Application Model 

(DVB-HTML + DVB-

J) 

 Defines the application model based on DVB Mark-up Language (DVB-

HTML) as well as the technologies employed in this model including 

eXtensible Mark-up language (XML), eXtensible Hypertext Mark-up 

Language (XHTML), Cascading Style Sheets (CSS), Document Object 

Model (DOM), and European Computer Manufacturers Association Script 

Language (ECMAScript); 

 Defines the application model based on DVB Java (DVB-J) Xlet as well as 

the technologies employed in this model; 

 Defines the lifecycle of the broadcast MHP applications. 

Application 

Signalling 

 Defines how the terminal receiver identifies the applications associated with 

a service and finds the location from which to retrieve them; 

 Defines the signalling that enables the broadcast to manage that lifecycle of 

applications; 
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 Defines how the receiver can identify the sources of broadcast data required 

by the applications of a service. 

DVB Java (DVB-J) 

Platform 

Defines all the functional APIs and the execution environment of MHP service 

applications based on DVB-J. 

Security 

Define the following areas of security: 

 Authentication of applications; 

 Security policies for applications; 

 Authentication and privacy of the return channel communications; 

 Certificate management. 

Graphics Reference 

Model 

Defines the rules of displaying the DTV interactive service contents including 

video, interface components such buttons and lists, and raw graphical primitives 

on the screen of a DTV featured terminal unit. 

Table 2.5: Key components of MHP [58] 

Globally Executable MHP (GEM)  

The Globally Executable Multimedia Home Platform (GEM) was firstly published in 

January 2003 and it was developed as a common interoperable core middleware 

platform whereby it was essentially the overlap between Open Cable Application 

Platform (OCAP) from CableLabs and Multimedia Home Platform (MHP) from the 

DVB Project. In June 2009 GEM and MHP have been refactored with MHP now 

referencing GEM, the primary DVB specification. GEM deployments now include 

OCAP on cable network and Advanced Common Application Platform (ACAP) on 

terrestrial networks in the USA and South Korea and ARIB B23 in Japan. South 

Korea is also the location for the first rollout of GEM-IPTV. Besides in Brazil, where 

ISDB-T has been adopted, GEM was the basis for the development of the Brazilian 

DTV GINGA-J specification. 

 

Figure 2.5: Relationship between GEM and GEM-based specifications [63] 
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GEM adds a technical solution for the user terminal that enables the reception and 

presentation of applications in a vendor, author and broadcaster neutral framework. 

Here “neutral” includes scenarios that consider legacy infrastructure. Applications 

form various service providers are interoperable with different GEM implementations 

in a horizontal market, where applications, networks, and GEM terminals can be 

made available by independent providers. The GEM specification aims to ensure 

interoperability between GEM applications and different implementations of 

platforms supporting GEM applications. [62]. 

The profile defined by GEM consists of three targets: Broadcast, Packaged Media and 

IPTV, of which the first two can be further subdivided into two application areas: 

Enhanced Broadcasting and Interactive Broadcasting, Enhanced Packaged Media and 

Interactive Packaged Media. The broadcast target is used by GEM-based terminal 

specifications in a broadcast environment such as MHP, OCAP, ATSC and ARIB. The 

packaged media profile targets on where the media is packaged on a physical medium 

which is possibly read-only such as Blu-ray. The IPTV target is used in the 

environment where media is transmitted over a bidirectional broadband connection 

such as MHP or Open IPTV. 

In practice, a wealth of GEM applications are available for more traditional iTV 

applications like EPGs/IPGs, ESGs, email, chat, SMS, enhanced TV, news tickers, 

weather, games and etc.. These GEM applications can be run directly from standard 

web servers and can easily support web 2.0 features like RSS feeds, P2P and user-

contributed contents [63]. 

2.4.1.2 Other widely adopted middleware solutions 

Multimedia and Hypermedia Expert Groups (MHEG-5) 

The International Standardisation Organization (ISO) set up the Multimedia and 

Hypermedia Expert Groups (MHEG) in 1997 to create a standard method of storage, 

exchange and display of multimedia presentation. MHEG-5 is a standard devised for 
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the middleware of digital Teletext services in the United Kingdom. MHEG-5 uses the 

model of multimedia presentations, where a multimedia presentation is a group of 

scenes, which include a collection of objects such as buttons, graphics, text, and links 

that define the process triggered by user interaction [3]. MHEG-5 was designed to be 

supported by systems with minimal resources, which makes it a suitable middleware 

product for low-end digital set-top boxes. [4] The MHEG standard has had different 

version: MHEG-1 to 4 were on the road of developing MHEG-5, which are now 

rarely used. MHEG-5 makes MHEG the first horizontal market in DTV in the world 

and now it is being employed by several British broadcasters, of which the most 

famous one is the BBC. Applications like EPGs, superteletext and other interactive 

service are supported; MHEG-6 is an extension to MHEG-5 allowing the creation of 

Java-based applications; MHEG-7 has defined the test and conformance procedures of 

MHEG-5 applications and MHEG-8 provides XML scripting for MHEG-5[8][3]. 

MediaHighway 

MediaHighway was one of the first proprietary middleware solutions developed by 

the Canal+ research and development department in 1994 for the launch of the first 

launch of the first French Digital Satellite TV service in 1998. Since its launch 

MediaHighway has been mainly employed by the Satellite providers of the Canal+ 

Group, that is all, the national variations of Canal+ in Italy, Spain, Netherlands, 

Finland, Poland, and so forth. MediaHighway’s system architecture is not openly 

available, since it is a proprietary solution. It does however support a number of DTV 

applications, such as EPG, VOD, and pay-per-view functionality. In its current version 

MediaHighway supports Sun Microsystems Java language as a programming 

language. The MediaHighway Virtual Machine is hardware independent and 

implements the MediaHighway API in compliance with the Canal+ Technologies 

(former Canal+ R&D) specifications. Towards the end of 2003, the MediaHighway 

Company was acquired by the NDS middleware provider [8]. 

OpenTV 
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The American Company OpenTV Inc. is a middleware provider with the largest 

number of deployments worldwide, currently the leading middleware player in the 

vertical market, reaching over 27 million set-top boxes produced by more than 30 

suppliers worldwide [8] In the UK, one of the largest service provider SKY employs 

Open TV as their middleware solution [94]. The core middleware architecture 

developed by OpenTV is said to be hardware independent, modular, and extensible. 

The execution layer provides compatibility with applications author in C, HTML, and 

Java code. The C-code execution engine is provided as a part of the basic middleware 

package, and allows for execution of C-code applications. HTML and Java execution 

engine are offered as options in OpenTV in order to support DVB-MHP/GEM. 

Furthermore OpenTV offers a range of development tools for creating interactive 

Television applications for OpenTV middleware [3] [8]. 

Due to the great number of set-top box manufacturers and service providers that 

employ OpenTV, it has to support many different conditional access systems and offer 

a range of interactive applications. In this respect, OpenTV supports Near-Video-On-

Demand, Pay-per-view, Electronic Program Guide (EPG), PVR functionality, and 

downloading of data and applications [8]. 

2.4.2 MOBILE DTV SERVICE MIDDLEWARE SOLUTIONS 

2.4.2.1 Looking forward to the Open Middleware Solution – JSR 272 

Java is well known as one of the most widely used object-oriented programming 

languages with the promise of “Write Once, Run Anywhere”. Besides the Java 

Enterprise Edition (Java EE) and the Java Standard Edition (Java SE), Java released 

the Java Micro Edition (Java ME) for mobile devices and embedded systems in 2006. 

Its core specification group, Mobile Information Device Profile (MIDP) has the goal 

of defining an enhanced architecture and the associated APIs required to enable an 

open, third-party, application development environment for mobile information 

devices (MIDs) such as mobile phone or PDAs [69]. The MIDP specification was 
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defined through the Java Community Process (JCP) by an expert group of more than 

50 companies including the leading device manufacturers, wireless carries and 

vendors of mobile software [70] and now Java Micro Edition and MIDP have been 

well adopted in the mobile industry field. Operated on top of Connected Limited 

Device Configuration (CLDC), MIDP provides a Java runtime environment for 

dynamically and securely delivering graphical, networked, and portable applications, 

for designing games, multimedia and messaging applications, for supporting dynamic 

deployment and updating of applications over the air, and for providing a robust 

security model built on open standards [71]. 

Besides the core specification API in the JSR118 package, JCP have been developing 

assistant optional API packages for MIDP, regarding to the requirements and 

improvements of the MID’s functions, such as JSR82 for Bluetooth, JSR172 as J2ME 

web services specification, JSR209 for advance graphics and user interface, JSR927 

for Java TV API, and JSR280 for XML API. Moreover, with regards to the 

development and deployment of mobile digital TV in recent years, there has been a 

requirement of a standard middleware solution between MDTV service applications 

and the environment within the mobile devices so that the MDTV services can be 

developed and operated regardless of the underlying hardware/software 

configurations of different MIDs. 
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Figure 2.6: The architecture of a typical JSR272 implementation [74] 

JSR272, the Mobile Broadcast Service API for Handheld Terminals, was then 

developed by an expert group of 22 members leading by Nokia and Motorola. The 

JSR272 package provides the functionalities that enable applications to receive and 

view digital television. In addition, the API gives access to electronic service guide 

(ESG) and file carousel, which are the fundamental features of digital television [72]. 

After a series of specified configurations, the JSR272 API works well with a wide 

range of MDTV underlying technologies, such as DVB-H, DMB, OMA-BCAST, 

MediaFLO and TV-Anytime. The architecture of a typical JSR272 implementation is 

shown in Figure 2.6. 

A typical implementation of JSR272 provides the main functionalities described 

below [74]: 

 An Electronic Service Guide (ESG) viewer that allows a user to navigate, 

discover and select. JSR272 abstracts differences in different schemas of different 

broadcast specifications. 

 Service and programme selection is supported and once a programme is selected, 

the system allows the user to “turn into” the broadcast channel that the 

programme is transmitted. 

 The media content of the selected programme can be presented to the user with 

different viewing options. The system may also allow the user to record the 

programme for future viewing. 

 A programme may also carry auxiliary content/data that adds to the viewing 

experience, for example, a slide show of images. 

 Security mechanism are built in and digital rights management (DRM) is 

supported. 

 Purchasing can be conducted in corporation with JSR229. 

Compared to the functionalities of a typical DTV middleware, JSR272 is uncompleted 

as a MDTV middleware since several definitions are missed such as the Application 
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Model and Graphics Model. Even though JSR272 is developed in Java ME 

environment and thus supported by other functional JSRs, those two functions have 

yet to be defined. Extra work is therefore needed to define or develop those missing 

parts if JSR272 is employed as the middleware solution for MDTV services, which 

could be an important reason why JSR272 has still not been widely accepted since its 

final release in 2008. 

2.4.2.2 Standard-specific middleware solutions 

ATSC-Mobile/Handheld standard A153 part4, part5 

ATSC-M/H is the sub standard group of ATSC digital TV for mobile DTV aspect. It 

defines the most specifications for mobile TV including RF/Transmission System 

Characteristics (part2), Multiplex and Transport Subsystem Characteristics (part3), 

Announcement (part4), Application Framework (part5), Security Protection (part6) 

and Audio/Video System Characteristics (part 7 and 8). In the standard group, part 4 

and 5 defines most of the issues concerned with middleware functionality. 

 

Figure 2.7: ATSC-M/H system protocol stack [50] 

Announcement (part4) System Specifications define the data formats and delivery 

mechanisms used to announce the content and services being delivered, or scheduled 

for delivery, in the M/H broadcast stream. 
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In an ATSC-M/H system, the Services available from a broadcast are announced by 

using Service Guide (SG). A SG is a special M/H Service that is declared in the 

Service Signalling subsystem. An M/H receiver determines available SGs by reading 

the Guide Access Table for M/H (GAT-MH). This table lists the SGs present in the 

M/H broadcast, gives information about the service provider for each guide, and give 

access information for each guide. The ATSC-M/H SG is an OMA BCAST Service 

Guide, with constraints and extensions as specified in this standard.  

Application Framework (part 5) is similar to the definition of the application model 

in other middleware solutions. The primary objective for the M/H platform is to 

deliver a set of audio/or video services from a transmission site to mobile or portable 

devices. The Application Framework thus enables the broadcaster of the audio-visual 

service to author and insert supplemental content to define and control various 

additional elements to be used in conjunction with the M/H audio-visual service. 

Furthermore, it enables the broadcaster to send remote events to modify the 

presentation and to control the presentation timeline. The Application Framework 

further enables coherent rendering of the service and input fields, and event handling 

and scripting associated with such buttons and fields. When the interactive application 

framework is included, the broadcaster, service provider, or content provider is able to 

create and control the presentation aspects of the service by applying the interactive 

aspects of the Application Framework. 

M/H’s Application Framework is defined based upon the OMA Rich Media 

Environment (OMA RME). It also extends and constrains some OMA RME 

components such as the use of audio/video/image Element, ATSCGlobal Interface, 

SVG Global Module and DIMS Session Description Protocol (SDP). The OMA RME 

in turn builds on W3C SVG Tiny 1.2, 3GPP Dynamic Interactive Multimedia Scenes 

(DIMS), and the Mobile Profile of ECMAScript which is a rich scripting language 

[50]. 

DMB - Multimedia Application Terminal Environment (MATE) 
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As mentioned in Chapter 2, Digital Multimedia Broadcasting (DMB) service is based 

on standard group of Digital Audio Broadcasting (DAB). In August 2009, ETSI 

published the “Digital Audio Broadcasting (DAB) Middleware: Part 1: System 

aspects and Part 2: DAB” as middleware solution for mobile digital TV services. 

MATE is a middleware standard for a platform-independent environment, where 

executable applications can be signalled and transferred to a receiver via a broadcast 

network and executed on the receiver. It does not support the exclusive use of a 

specific broadcast network but defines the commonly-required specifications among 

diverse broadcast networks. It includes the definitions of basic data formats, protocols 

to deliver data, to signal downloadable applications and to download them, ways to 

denote resources on broadcast networks, and detailed interfaces among receiver 

platform, broadcast and communication, and the applications. 

The MATE standard takes an approach of specifying abstract models for external 

entities such as broadcast network to broaden the range of external environments. 

Thus, MATE is not a valid standard for any implementation by itself and the abstract 

models need to be concreted according to the external environments. 

 
Figure 2.8: Environment external to MATE terminal [75] 

MATE defines its transport protocol from broadcast and communication channel 

aspects. For broadcast channel protocols, file transport protocol, packet streaming 

protocol, and trigger protocol for synchronization of timed media are supported. 
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Multimedia Object Transport (MOT) protocol for DAB and DSM-CC object/data 

carousel are adopted when defining those three sub protocols. For the communication 

channel protocol, UDP, TCP and HTTP which are based on IP layer are involved. The 

Locator model defined in MATE is the model of locator represented as a string to 

indicate an object (a broadcast channel, or a package/video/audio stream and so on) 

for applications to identify it on a broadcast network in MATE. The Security model 

is to guarantee the integrity of application in a receiver and authenticate as well as 

authorizing applications when they are being consumed. The Graphic system model 

defines two layers while presenting visual contents: video plane at the background for 

one or more videos and graphics plane at the front with transparent ability. 

MATE chose Java Micro Edition (ME) MIDlet as its application model and its 

application execution environment, which consists of a Java Virtual Machine (JVM) 

and APIs, is based and extended on Java ME MIDP 2.0 (JSR118) and Java ME 

Personal Basic Profile 1.1 (JSR217). PDA optional package (JSR75) and Mobile 

Media API 1.1 (JSR135) are involved as the optional packages. One of the extensions 

of DMB which has made it to MIDP for MATE is the Graphic user interface (GUI) 

API. With the help of additional rules and APIs, DMB-MIDP applications can be 

displayed and shared with in the same screen. 

 

Figure 2.9: Multiple applications display mode [76] 

ISDB mobile DTV middleware solution 
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ARIB provides the operational guidelines in STD B24 Volume 2 for implementing 

basic services (STD B24 appendix 2) and extended services with different receiving 

condition including fixed receiving system (STD B24 appendix 3), portable receiving 

system (STD B24 appendix 4) and mobile receiving system (STD B24 appendix 5). 

The STD B24 appendix 5 contains the operational guidelines for implementing and 

integrated service that provides broadcasting services and services via the Internet for 

a mobile receiving system, by using the XML-based multimedia coding scheme 

specification responsible for the data broadcasting scheme, part of the digital data 

broadcasting scheme specified as the standard in Japan [29]. 

2.4.2.3 Middleware-like solution in 3G 

Regarding to the deployment of MDTV service over mobile telecommunication 

networks such as a 3G network, there is no middleware definition against MDTV, 

particularly since MDTV service is only one of the multimedia services over the 3G 

network. Functions defined in a typical DTV middleware standard (refer to Table 2.5) 

are defined in different categories that refer to the broadcasting and the streaming 

service specialities over the 3G network. However, the solution for enabling 

multimedia services is also considered important and the relative standards on such 

solution have been developed and published, which include the support of MDTV 

services. Two leading standards are the Dynamic and Interactive Multimedia Scenes 

(DIMS) from the 3GPP and Rich Media Environment (RME) from OMA. 

3GPP-DIMS 

The dynamic and Interactive Multimedia Scenes (DIMS) is a dynamic, interactive, 

scene-based media system which enables the display and interactive control of 

multimedia data such as audio, video, graphics, images and text. The motivation of 

developing such system is the development of the next generation mobile 

infrastructure and the generalization of TV content to new mobile environments. The 

first version of DIMS is v7.0.0 approved in 2007 and the latest version is 9.0.0 revised 
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in 2009.  

DIMS v9.0.0 mainly defines the architecture of a rich media system, the media-type 

used in the system, the supports to the interaction and scripting events, and the 

transport mechanisms that support the delivery of rich media. The rich media system 

is actually a client-server architecture comprising of 3 main components: the rich 

media server, transport mechanisms and the rich media client, as illustrated in Figure 

2.10. The server prepares the rich media contents and encapsulates them; then the 

system utilizes various transport mechanisms based on “Pier-to-Pier” (e.g. PSS) or 

“Pier-to-Many” (e.g. MBMS) protocols for download, progressive download and 

streaming scenarios; finally the content is retrieved on the client allowing for local 

and remote interactivity of feedback and data requests. The media-type used in the 

system is based on the Scalable Vector Graphics Tiny (SVG-T), the interaction event 

is handled using the Document Object Model (DOM) and the scripting event is 

handled using ECMAScript. In the end, the transport mechanisms support rich 

media delivery in the following modes: unicast download, broadcast/multicast 

download, unicast streaming and broadcast/multicast streaming [86]. 

 

Figure 2.10: General architecture of the rich media system [86] Figure 4-1 

OMA-RME 
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The Rich Media Environment is similar to DIMS, as it has been also developed by the 

Open Mobile Alliance to address enhanced rich media services to mobile devices 

including rich-media content and service creation, deployment, distribution and 

presentation. Also, OMA-RME is designed to be able to compatible with 3GPP-DIMS 

but a big difference between them is that RME is agnostic of any bearer networks 

including cellular network (e.g. PSS and MBMS) and non-cellular network (e.g. DVB 

network and ATSC network) whilst DIMS is not.  

 

Figure 2.11: RME client-server architecture and RME scope [55] 

RME system is also based on the client-server architecture. The RME Client typically 

resides on the mobile terminal and provides the capability to display RME data, 

handle dynamic updates to the RME Scene as well as local remote interaction with the 

scene objects. Typically the RME Server is the source of rich media data and provides 

data to the client.  RME also employs SVG-T as the scene description language and 

MPEG-4 part 20 (LASeR) for scene updating commands definition. ECMAScript is 

the scripting language used in RME [55] [96] [77]. 

2.4.2.4 Solution for MDTV service over DVB network 

Considering DVB broadcasting to handheld devices including DVB-H service and 

DVB-Satellite Services to Handheld Devices (DVB-SH), even if there is specification 
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known as IPDC defined upon the network layer, there is no middleware or software 

standard on the upper layer of MDTV system which defines specifications for service 

applications implementations. Specifications such as application model, application 

signalling mechanism, application execution platform and graphics model remain 

undefined for MDTV service over the DVB network. Therefore the implementation of 

MDTV services over the DVB network usually rely on commercial solutions during 

service contents/applications creation, service software platform design on the 

terminal devices and interactive service implementation mechanism between server 

and user-ends. Besides, DVB broadcast services are also planning to harmonize with 

OMA BCAST, which can raise the adaptability of DVB underlying technologies with 

OMA application layer technologies. 

Nokia Mobile Broadcast Solution (MBS) 

The Nokia Mobile Broadcast Solution is a globally deployed DVB-H server platform 

for commercial mobile TV services. These services can utilize the current TV content 

with minimal impact to the existing production system. Its latest version MBS 3.3 

(2Q2008) is compatible with the DVB IPDC 1.0 and OMA BCAST 1.0 sets of 

specifications. It supports real-time streaming control for multiple content sources, 

clear-to-air/paid broadcast services and flexible purchase mechanisms and multiple 

business models. Besides it provides service protection with Internet Protocol 

Security (IPSec), Secure Real-time Transport Protocol (SRTP) and Internet Streaming 

Media Alliance Encryption and Authentication (ISMAcryp), content protection, both 

IPDC and BCAST ESG solution with configurable formats, and a set of open APIs 

that allow seamless integration of the solution to all the relevant content creation, 

monitoring and subscriber management systems.  

The Air Interface between the terminal and the networks is the most important 

interface in Nokia’s mobile broadcast architecture. It defines how terminals can access 

the broadcast services, which includes the broadcast interface and the cellular radio 

interface for interactive services as well as the applications protocols on top of the 
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transmission channels. Nokia continuously publish the mobile TV implementation 

guidelines (Mobile TV Implementation Guide (MTV-IG), MTV-IG 3.0 for the latest 

version) for its air interface, which includes the definition of network and transport 

protocols, service guide solution, service purchase and protection specification, A/V 

streaming and File delivery. In order to reach the interoperability, Nokia also offer 

many alternative options within their Implementation Guidelines for different 

commercial implementation. 

 

Figure 2.12: Nokia Mobile Broadcast Solution 3.2 [78] 

The middleware layer solution has not been published as an individual specification in 

Nokia MBS and the solution is treated as a part of Nokia terminal device solution. 

The Nokia MBS Air Interface defines most of the middleware functionality. Nokia 

DVB-H featured mobile phone such as (Nokia N92 and N96) usually has a MDTV 

reception unit and a software platform for ESG, pay TV, recording and other basic 

interactive applications [77] [78] [79]. 

2.5  MDTV SERVICE CREATION AND IMPLEMENTATION ON 

THE APPLICATION LAYER 

Based on the aforementioned review on the middleware solutions of MDTV service, 

we can conclude that not all the MDTV standards have middleware specifications. 

More precisely, standards such as ATSC-M/H, ISDB-T 1seg and DMB have 
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middleware specifications whilst DVB does not. The 3G network system does not 

define a middleware but enables MDTV services with middleware-like software 

system. This situation is different from the conventional DTV, in which middleware 

have been standardized and become a formal part of the system. Most of the DTV 

service deployments tend to follow the middleware standard and the service creation 

and implementation processes are more industrialized. Commercial entities therefore 

act more like implementers of a standard. As to the service creation and 

implementation of the MDTV service, there are various solutions with different 

scopes and aims in the current market. Commercial entities are not only the 

implementers, but are also involved in technical development and provision of 

different solutions with excellent performance. There are mainly two categories of 

solutions for the current MDTV service creation and implementation: standard-based 

solution and commercial solution. 

2.5.1 STANDARD-BASED SOLUTION 

For MDTV standards such as ATSC-M/H, ISDB-T 1seg and DMB, which have the 

middleware specifications defined as a part of their standards, the service creation and 

implementation of these standards tend to follow the corresponding middleware 

specification (e.g. ATSC-M/H Application Framework, ISDB-BML and DMB-

MATE). As far as the MDTV service over 3G networks, as there are software 

specification such as 3GPP-DIMS and OMA-RME enabling the service instead of 

middleware, the service creation and implementation based on 3G networks tend to 

take those software specifications as the reference. 

Commercial entities that apply this kind of solutions have minimal involvement in 

any technical development work and most of their work is based on the execution of 

the middleware/software specifications as required. Examples of these refer to 

applying the transport protocols in the specification, collecting and producing MDTV 

service content according to the relative content format definition, creating and 
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designing the service applications under the pre-defined application model with the 

specified technologies, designing the service software platform on the terminal device 

according to the application execution platform definition in the specification and 

many more. 

The advantage of such a solution is that the service creation and implementation 

processes are relatively easy to achieve. No extra time or expense is spent on 

developing/deciding those technical components defined in a middleware/software 

specification. Therefore this kind of solution is usually an economical and quick 

option for the implementation of a MDTV service. However, those 

middleware/software specifications are usually compliant only to their corresponding 

MDTV network standards, thus these specification-based service creation and 

implementation processes then restrict their output services which become 

incompatible with each other. Therefore the relative commercial entities may have to 

adopt different schemes in order to create/implement the same service (such as a TV 

programme service) for each of its possible underlying MDTV network standards, 

resulting in the same MDTV service having to be repurposed several times for each 

distinct standard. This leads to an increase of the time, costs, as well as resources 

required for the production of an MDTV service. 

2.5.2 COMMERCIAL SOLUTION 

Actually during the implementations on different layers of MDTV system, the 

commercial solutions usually coexist with corresponding standards (specifications). 

Both standards and commercial solutions aim to provide the methods to solve the 

problem, although standards tend to ensure a normative implementation (last section) 

but commercial methods seek for a quicker and efficient deployment in the market. 

There is also a trend of harmonization between them so that commercial solutions 

tend to support the corresponding standards and the standards are updated to cover 

technologies which are approved by the commercial solutions. In spite of this, the 
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commercial solution still plays its role within the MDTV industry field: namely to 

provide the most effective and economical solution to their customers and to actualize 

the implementation with more practical features or even novelties. In this case, the 

commercial entities act more like the developers against the specific topics (such as 

the solution of MDTV service creation and implementation). 

As to the MDTV service creation and implementation, the commercial solution 

usually defines a similar software mechanism (including the application model) as 

middleware/software standards. But regarding the different business strategies of the 

commercial entities, actually different scopes of solutions have been developed and 

adopted. Some focus on the application layer, offering a range of packages of MDTV 

middleware and software environment solutions with ESG, A/V and interactive 

applications frameworks; some even address in wider scopes, providing the 

integration of broadcast system solutions from the actual implementation of the 

MDTV service from the content provider/broadcaster, to the network operator and 

service operator as well as the terminal device hardware, middleware and software 

platforms. 

2.5.2.1 Middleware-oriented solution 

These solutions only provide middleware solutions rather than an integrated system. 

 

Figure 2.13: TATA ELXSI DVB-CBMS stack [87] 
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TATA ELXSI provides a middleware solution for DVB-H IPDC. Its DVB-H stack is 

compliant with the DVB-CBMS specification and is written in ANSI-C. This solution 

is operating system agnostic and featured with APIs for integration with various VA 

modules, multimedia engines, decoders and applications [87]. 

 

Figure 2.14: TMI Mobile TV middleware solution on DVB-H – thinDVB-H [88] 

TMI Mobile TV middleware solution produced by Thin Multimedia Inc (tmi) has 

two sub sections facing to DVB-H and T-DMB. Both of them implement the basic 

service requirements of the corresponding service system including basic UI, ESG, 

A/V codec, PVR and purchase mechanism [88]. 

2.5.2.2 Integrated software system solution 

The integrated software system solution is more popular in the service creation and 

implementation field because it offers an integrated system for service 

implementation that spans the entire service production lifecycle: all or most of the 

necessary components on the MDTV application layer such as middleware, service 

development APIs or predesigned service applications, or even the software platform 

on the server side as well as client side; many of solutions provide the service 

application authoring tools, which is more convenient for an easy service creation. 

Besides, most of these solutions have seamless mechanisms for an easy adoption on 

various MDTV terminal devices. More precisely for some of the solutions, the client 

software systems are preinstalled in the mobile devices before publishing, whilst some 
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of them are even developed by the terminal device manufacturers such as in case of 

Nokia, which is much easier to deploy. 

According to the different architectures of the client-side service software platform in 

these integrated system solutions, this type of solutions can be categorized into two 

groups: Generic browser based and Rich Media based. 

Generic browser based 

A generic browser based client-side service platform is mainly a software mechanism 

based on the concept of a browser. All the MDTV service contents including the AV 

stream, interactive application and other multimedia are parsed and presented to the 

user through this browser. Its structure is similar with a common web browser or 

based on some of them (NetFront for example). Content and interactive services are 

pre-defined within a mark-up language (such as XML, XHTML or BML) based 

application model and can be synchronized with the AV stream. Due to the mark-up 

language based service outline, which is widely adopted in the web development field, 

it requires less design and development time and cost during the commercial software 

process. Besides, this group of solutions is good in providing basic interactivities such 

as voting by using hyperlink through SMS and http. However, it is relatively too basic 

to handle advanced interactive applications like online gaming and advanced UI 

components like SVG. The UI experience and graphics quality is not as good as with 

the rich media based solution. 

HisTV is a browser based MDTV service solution based on DVB-H. It provides 

service managing server and client side service platform. The main part of the service 

platform is the display engine that parses and presents all the MDTV service contents. 

Basic interactions (SMS and connection via http) through return channel are 

supported. Content authoring reference and APIs are provided as well [89]. 

NetFront Browser is the leading product of ACCESS and its mobile TV profile faces 
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to several leading MDTV standard like DVB-H, ISDB-T 1seg. This profile combines 

the NetFront Browser DTV Profile with the FastESG service guide from EXPWAY 

and it is compliant with DVB-IPDC and OMA-BCAST standards. ACCESS also 

provides the SDK which is an HTML porting/customization kit for ISDB-T based 

DTV and set-top box field [90]. 

 

Figure 2.15: User interface of NetFront Browser for MDTV [90] 

onHandTV from Silicon and Software System delivers a MDTV software client 

compliant with DVB-IPDC and OMA BCAST that enables broadcasters, mobile 

operators and device manufacturers to deliver interactive video and data services 

through mobile and handheld devices. It has a middleware section consisting of ESG 

(DVB, OMA and T-DMB standards) engine, subtitles renderer, file delivery and 

datacasting, conditional access abstraction layer, file transport protocols, video 

recorder and interactive services manager. Along with middleware, the application 

platform is also provided with a TV and audio Browser for rendering MDTV contents 

and a service application generating environment compliant with various mobile 

programming language such as C++, C#, Java, Symbian C++, etc [81]. 

Rich Media based 

Rich media is today becoming more and more popular in content/service design as 

well as terminal service platform design. 3G multimedia services have incorporated 

rich media to their mobile services and several rich media standards are published: 
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3GPP-DIMS and OMA-RME. Recently, rich media has been adopted in the MDTV 

service platform development. The SVG-Tiny graphics and animation based UI 

experience is the key feature. The SVG based MDTV contents/services are 

programmed in the XML language format model and thus they are much easier to 

design, pack and transport in the broadcast stream. A rich media engine is needed to 

parse and present all the services. The interactive components in the MDTV service 

are supported by scripting languages like the ECMAScript and a rich media server. 

However, the design and development of the UI graphics require custom made 

proprietary authoring tools, which on one hand result in more design production costs 

and on the other hand require additional time invested in training to use these custom 

tools, limiting the number of creative individuals and designers who can be involved 

in the design process. In short, this group of solutions is relatively expensive and hard 

to maintain. 

FastESG EXPWAY The EXPWAY’s mobile TV solution provides end-to-end 

solutions ranging from platforms for operators and broadcasters, to software engines 

for device manufacturers.  EXPWAY works closely with leading provider of 

Conditional Access System, Digital Right Management systems, Head-End Systems, 

Video Encoders and Decoders, Graphical User Engine and Video Player and its 

mobile TV solutions are fully compliant with international Mobile TV standard such 

as ATSC-M/H, DVB-H, DVB-T, DVB-SH, OMA-BCAST and 3GPP. 

 

Figure 2.16: Architecture of FastESG Mobile TV platform [80] 



55 

FastESG Mobile TV platform is a complete solution for creating, aggregating and 

delivering advanced Mobile TV services over broadcast and cellular networks. It 

provides Content Provides, Commercial Operators, Network Operators and Broadcast 

Operators with a management platform for ESG, interactive and datacasting services. 

The FastESG Mobile TV engine is an integrated software solution for mobile 

devices manufacturers, chipset manufacturers, and middleware providers. It provides 

advanced mobile TV service to end-users on any type of terminal, regardless of the 

network, including ESG, advertising, interactive and datacasting services and 

audience measurement tools. 

 

Figure 2.17: Interactivity on FastESG [80] 

EXPWAY has so far been in cooperation with many relevant technology and 

commercial entities such as Motorola Networks, Accenture, Access and many more. 

FastESG is also adopted in many MDTV services like 3G Italy, Orange, and Vodafone 

and device manufacturers like Apple, LG and Samsung has applied FastESG in their 

MDTV featured devices [80].  

Streamezzo Interactive Mobile TV is a rich media based MDTV service platform 

solution (see Figure 2.18). It was originally designed for 3G based MDTV but can be 

adapted for other standards such as DVB-H, DMB and MediaFLO. Many MDTV 

services as well as value-added service mechanisms are supported (EPG, VoD, voting, 
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purchasing and PVR). The Streamezzo solution provides support to most of the 

phases in the MDTV service software process from content/service creation, service 

managing server and terminal service platform [91].  

 

Figure 2.18: Streamezzo mobile TV solution architecture [91] 

2.5.2.3 Limitation of the commercial solutions 

From a review of several typical commercial solutions, we can realize that even 

though the service compatibility through different MDTV standards can be resolved 

in these solutions by developing proper compatible mechanisms, these solutions are 

however proprietary. Corresponding commercial entities own the copyrights of the 

products as well as the relative technologies and maintenance or update operations 

have to be under the entities’ authority. This proprietary character may then prevent 

the commercial solution itself from achieving wider industry support and adoption. 

Moreover, a proprietary solution usually requires individuals with more technical 

expertise to develop the services using customized and specialized tools which render 

the difficulty and the complexity during the maintenance and evolution of the solution.  

2.5.3 LOOKING FOR THE UNIVERSAL SOLUTION 

Having discussed two categories of solutions for MDTV service creation and 

implementation on the application layer, we list all the pros and cons in the following 

table: 
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 Standard-based solution Commercial solution 

Pros 

Standardized within its parent MDTV 

standard; easy to be followed and 

implemented by content providers, 

service providers, and terminal device 

manufacturers. 

Straight and efficient solution to meet the 

MDTV service requirements. 

Cons 

Lacks of compatibility; hard to adopted 

through different MDTV standards. 

Heavy proprietary that results in the raise 

of cost, life-cycle, difficulty and 

complexity throughout the software 

process of the three software targets. 

Table 2.6: Pros and Cons of MDTV service creation and implementation solutions 

Since both of these types of solutions have their pros and cons, there is a requirement 

for a universal solution that could join all the pros but prevent all the cons in order to 

cope with the aforementioned challenges in Chapter 1. Considering the standard-

based solution, in order to prevent the poor compatibility, the universal solution would 

have to be compliant with most of the leading MDTV standards such as DVB-H, 

ATSC-M/H, ISDB-T 1seg, DMB and 3G. As to the commercial solution, in order to 

prevent it from being proprietary, the universal solution would have to be based on 

open-standards. 

Due to the complexity of developing such universal solution, there are only a few 

related research pieces of work from the academic research field. One related work is 

a proposal of interoperable middleware architecture for digital broadcasting [98]. This 

architecture offers the flexible management of middlewares from different 

conventional DTV standards (e.g. DVB-MHP, ATSC DTV Application Software 

Environment, ARIB-BML, etc.) and is able to execute the various middleware 

applications that were developed for a specific standard. Even though this proposed 

solution is related to conventional DTV service, it provides a valuable reference for 

developing the universal solution. It concludes that by integrating the multiple 

middlewares, the incompatibility between different DTV standards can be reduced 

and even resolved. Regarding the Standard-based solution for MDTV service creation 

and implementation, this proposal could be helpful for improving the standard-based 

solution to become the universal solution. 

Another related work has given a review of a system architecture and interactivity 
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model for Mobile TV applications [99]. The paper analysed the current common 

existing software platform of digital TV and mobile phones that are being used for the 

software applications and service development and also analysed the requirements of 

interactive mobile TV applications. Moreover based on the analysis of the results, the 

author made a comparison of several existing software platforms including MHP, 

DASE, BML and MIDP. An evaluation of such a comparison pointed out that Java 

MIDP has several advantages over other platforms to fulfil the requirements for 

achieving the interactive applications of mobile TV. Based on the results of that work, 

we can conclude that Java MIDP, as an open standard software system, is an ideal 

software platform for developing MDTV service applications as well as the service 

platform on the terminal devices such as mobile phones. This can be an inspiration 

when seeking the solution for preventing the proprietary problem in the 

aforementioned commercial solution. 

Based on the literature review so far in this chapter as well as the related work in the 

research filed, we have realize that JSR272 could be one of the potential choices for a 

universal solution. JSR272 is currently under proprietary development but already a 

standardized MDTV middleware solution. It was developed under the Java 

Community Process (JCP) by a group of leading content providers, service providers 

and terminal device manufacturers such as Nokia and Motorola. It is agnostic in terms 

of the underlying MDTV standards such as DVB-H, DMB, OMA-BCAST, 

MediaFLO and TV-Anytime. All of these ensure that JSR272 is well support by the 

MDTV industry field and well-compliant with most of the MDTV standard; 

Developed upon the Java ME MIDP platform, JSR272 is natively transplantable 

throughout different mobile devices supporting Java ME MIDP and CLDC. Besides 

with the help of other JSR functional packages like Payment JSR229, Multimedia API 

JSR135, Scalable 2D Vector Graphics API JSR226, and newly released Scalable 2D 

Vector Graphics API 2.0 JSR287, JSR272 can meet most of the current service 

requirements such as ESG, purchase, DRM and A/V content play back. All of these 

ensure the functionality and adaptability of JSR272. Therefore when the JSR272 
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package is available as an open standard like most of the other JSRs from JCP, it 

would be well sufficient as the fundamental technology of a universal solution for 

MDTV service creation and implementation. 

A functionality that is though missing and is not formally defined when JSR272 

becomes the middleware solution is the service application model. Even though the 

DMB-MATE has defined its own application model based on Java ME MIDlet model, 

its MDTV service implementation follows a download-and-play structure that is 

probably not very suitable or reliable for fast, dynamic and interactive service 

applications under non-ideal network conditions. Besides, due to the professional 

character of developing MDTV service applications in the Java ME MIDP 

environment, the cost of the service creation is expensive as well as the higher 

technical knowledge and skill demands to the authors of a service. 

2.6 SOFTWARE ENGINEERING FUNDAMENTAL  

Since on the application layer of MDTV service, the service creation and 

implementation are mainly about application and software development and adoption, 

we can thus take the principles within software engineering as the theoretical 

reference. Within the scope of software engineering, three fundamental concepts have 

to be defined: 

 Software Engineering is commonly defined as an engineering discipline which 

is concerned with all aspects of the practical software production.  

 A software process is the set of activities and associated results that produce a 

software product.  

 A software process model is a simplified description of a software process that 

presents one view of that process. The software process model may include 

activities that are part of the software, software products and the roles of people 

involved in software engineering. 

One of the most widely used process model in current software engineering practice is 
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the waterfall model which is illustrated in Figure 2.19: 

 

Figure 2.19: The waterfall software process model (adopted form [84] chapter 4 Figure 4.1) 

 

 Requirements and definition: The system’s services, constraints and goals are 

established by consultation with system users. They are then defined in detail and 

serve as the system specifications.  

 System and software design: The system design process partitions those 

requirements to either hardware or software system and establishes an overall 

system architecture. Software design involves identifying and describing the 

fundamental software system abstraction and their relationships.  

 Implementation and unit testing: During this stage, the software design is 

realised as a set of programs or program unit. Unit testing involves verifying that 

each unit meets its specification.  

 Integration and system testing: The individual program units or programs are 

integrated and tested as a complete system to ensure that the software 

requirements have been met. After testing, the software system is discovered to 

the customers.  

 Operation and maintenance: Normally this is the longest process model phase. 

The system is installed and put into practical use. Maintenance involves 

correcting errors which were not discovered in earlier stages of the model, 

improving the implementation of system units and enhancing the system’s 
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services as new requirements are discovered. In a waterfall process model, the 

following phase should not be started until the previous phase has finished and 

the last phase can involve any of the previous phases during the software system 

operation and maintenance [84]. 

2.6.1 SOFTWARE TESTING 

During a software process, the software testing is an important part of work. As 

mentioned in the previous section, software testing exists in almost every step of a 

software process from implementation of software units and integration of system 

before the software product is delivered to the user, to the software maintenance after 

the software is deployed.  

Speak within the software engineering scope, when source code has been generated, 

software must be tested to uncover and correct as many errors, also known as bugs, as 

possible before delivery of the software to the end-user. The main two goals of 

software testing are [126] – [131]: 

 To demonstrate to the developer and the end-user that the software meets its 

requirements. 

 To discover faults or defects in the software where the behaviour of the software 

is incorrect, undesirable or does not conform to its specification. 

To conduct a software testing procedure, there are various principles and solutions 

according to the characteristics of the target software but essentially there are three 

main approaches that should to be considered: namely the test level, the test method 

and the test case design. The test level indicates the order of the testing targets and the 

affiliation between different targets; the test method defines which testing model and 

which testing tool and method one will employ to conduct a more efficient testing. 

Having selected the proper testing steps and testing method, the tester should design a 

series of test cases according to the software’s features so that the target software can 

be tested more comprehensively to ensure any further improvement and evaluation. 
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2.6.1.1 Test level 

 Description 

Component testing 
Component testing aima at exposing faults and further verifying that each 

component functions properly against its design requirement. 

Integration testing 
Integration testing is a systematic technique for constructing the software 

architecture while at the same time conducting tests to uncover errors associated 

with interfacing. 

System testing 

Function testing and performance testing will be conducted on the system testing 

level. Function testing evaluates the system to determine if the functions described 

by the software requirement specification are actually performed; performance 

testing is used to test the run-time performance of the software system within its 

context, with regards to the hardware and software in the end-user’s actual working 

environment. 

Acceptance testing 

Acceptance testing is conducted with data supplied by the end-user rather than with 

simulated test data. Two main ways of acceptance testing are alpha testing, which 

is conducted by user with the software developer observing; and beta testing, 

which is conducted entirely by the user without the developer being present. 

Table 2.7: Descriptions to software test levels 

 

Figure 2.20: Reference software testing level flow diagram 

2.6.1.2 Testing method 

There are mainly two methods that software testers use to describe how they approach 

their testing. These are the black-box testing and the white-box testing. Black-box 

testing is conducted under the premise of knowing the specific function that a 

software has been designed to perform and testing is conducted to demonstrate that 

each function is fully operational while at the same time searching for errors in each 

function; White-box testing is conducted under the premise of knowing the internal 

workings of a software and testing is conducted to ensure that the internal operations 
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are performed according to specifications, and all internal components have 

performed effectively. The difference between these two testing methods is that black-

box testing examines some fundamental aspects of a system with little regard for the 

internal logical structure of the software while white-box testing is predicated on close 

examination of procedural detail.  

 Aims Methods 

White-box testing 

1. guarantees that all independent paths within a module have 

been exercised at least once; 

2. exercises all logical decisions on their true and false sides; 

3. executes all loops at their boundaries and within their 

operational bounds; 

4. tests internal data structures to ensure their validity. 

Path testing; 

Condition testing; 

Data flow testing; 

Loop testing. 

Black-box testing 

Derives sets of input conditions that will test all functional 

requirements for a software in order to find:  

1. incorrect or missing functions; 

2. interface errors; 

3. errors in data structures or external data base access; 

4. behaviour or performance errors; 

5. initialization and termination errors. 

Requirement-based 

testing; 

Equivalence 

partitioning; 

Boundary value 

analysis. 

Table 2.8: Testing summary of white-box testing and black-box testing 

2.6.1.3 Testing case design 

The goal of the test design process is to create a set of test cases that are effective in 

discovering program defects and showing that the system meets its requirement [129]. 

The recommended procedure is to develop test cases using the black-box methods and 

then develop supplementary test cases as necessary with white-box methods [133]. 

According to the different test level that the testing target belongs to and the feature of 

the software target, the tester is able to choose the proper testing methods and achieve 

the testing case design. Moreover, some special components or architectures of a 

software system such as graphical user interface (including different types: software 

application GUI, web application GUI, etc), client/server architecture usually require 

a special software testing strategy and testing procedure. 

Graphical user interface (GUI) testing: GUI is one of the most important parts of 

today’s software, its correct execution is essential to the correct execution of the 

overall software and further to ensure the entire software system’s robustness and 

usability. Therefore a GUI testing procedure is indispensible during the development 
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of the software’s GUI. GUI testing requires that test cases are generated and executed 

on the GUI. Currently test cases may either be created manually by a tester or 

automatically by using a model of the software derived from its specifications. 

However most of these techniques for obtaining GUI test cases are resource intensive, 

requiring significant human intervention. The most common GUI test technique is 

record-playback. In this, a test designer interacts with the GUI, generating mouse 

and keyboard events and at the same time uses specialised tools to record the user 

events, capture the GUI session screenshots and then store the session. The tester later 

plays back the recorded sessions to recreate the events with different inputs to conduct 

the GUI test.  

Client/server testing is required when there is a client/server architecture in a 

software system and due to the complex nature of such architecture, relevant tests 

usually demand more time and have higher costs. Commonly, the testing of 

client/server software system has several approaches namely as: application function 

tests, server tests, database tests and transaction tests. 

Network communication tests: These tests verify that communication among the 

nodes of the network occurs correctly and that message passing, transactions, and 

related network traffic occur without error. Network security tests may also be 

conducted as part of these tests. 

2.7 INTRODUCTION OF PROPOSED METHODOLOGY 

2.7.1 REFERENCE MODEL FOR MDTV SERVICE CREATION AND 

IMPLEMENTATION (MDTV-SIM) 

Based on the generic DTV service asset lifecycle of Section 2.2 and with reference to 

the system architectures of different MDTV standards as well as service commercial 

solutions, a reference model for MDTV service creation and implementation on the 

application layer can be illustrated as in Figure 2.21. The five entities in the chain are 
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the: Content Provider (CP), MDTV Service Provider (MSP), Broadcast Network 

Operator (BNO), Cellular Network Operator (CNO), and Terminal Device 

Manufacturer (TDM).  

The key component in the model is the MDTV service application layer agreement. 

This agreement usually consists of most of the definitions in a MDTV middleware 

standard (e.g. DMB-MATE) such as service content (audio, video, and other auxiliary 

data) formats, service application model, application execution platform, application 

signalling, transport protocols, graphics model and security mechanism. Here this 

agreement is set as a standard-based rather than a commercial-solution-based one 

because of the agreement based on standards such as MDTV middleware standards 

(e.g. DMB-MATE) or MDTV service software enablers (e.g. OMA-RME) which is 

more normative and reliable. CP, MSP, TDM can therefore take this agreement as the 

reference during their work within the chain model. 

CP is usually responsible for collecting MDTV service materials such as recording 

TV programs, providing assistant information and completing the initial productions 

to TV programmes; MSP on one hand is to used to collect MDTV contents from 

various CPs, further produce them to become MDTV services by using relative 

service authoring tools and distribute them to the end-user with the help of BNO. On 

the other hand, MSP is responsible to set up the server-end for the MDTV services it 

provides, and meanwhile to cooperate with CPs to actualize the implementation 

solutions for interactive applications. TDM has to follow the agreement and produce 

the MDTV terminal devices that are able to meet the MDTV service requirements 

within the chain such as capable of receiving services from BNO, capable of 

retrieving the services provided by MSP, capable of implementing any interactive 

applications by cooperating with CNO and MSP.  

More precisely when CP, MSP and TDM are taking the application layer agreement, 

CP needs to produce all the audiovisual and auxiliary content based on the application 

model and content formats defined in the agreement. MSP refers to the application 
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model, application signalling and transport protocol definitions when adding or 

creating interactive functions in the service content passed on from CPs. TDM has to 

consider the requirements from CPs and MSPs when configuring the middleware and 

software elements in the terminal devices. An integrated software system will be 

designed according to the agreement. Several necessary additional applications such 

as service browser, ESG handler, plug-in value-added service enabler and specific 

media codec, will be developed and pre-installed by TDM in order to construct the 

MDTV service consumption platform. 

 

Figure 2.21: MDTV service implementation model (MDTV-SIM) 

2.7.2 SOFTWARE PROCESS MODEL FOR MDTV SERVICE (MDTV-SPM) 

Under the concept of software engineering and due to the universal characteristic of 

the waterfall model in the software industry, here we take the waterfall software 

process model (illustrated in Figure 2.19) as the macroscopic reference model for 

realizing the MDTV service creation and implementation on the application layer 

(illustrated in Figure 2.21). Once the waterfall model is adopted in the MDTV service 

implementation process, the MDTV service application layer agreement (in Figure 

2.21) can be practically detailed as the MDTV relative middleware/software 

specifications. This agreement can further correspond to the requirements and 

definitions phase in the waterfall model in Figure 2.21. The remaining phases in 

Figure 2.21, which are MDTV content, service, service managing server and terminal 
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device, are all involved as target software in the waterfall model in Figure 2.19. The 

proposed process model is shown in Figure 2.22. However in the practical or 

commercial environment, this model can be modified in specific phases or enhanced 

by involving other assistant software process models. 

In this model, content and service are treated as one target in the software process. 

The service managing server (server side) and terminal device service platform 

(client side) are the other two targets. The contributions of this Thesis are mostly 

concerned with the second phase – the system and software design, and the third 

phase – Implementation, integration and system testing. Moreover, the 

methodology of our project will be stated under this model as well in the next 

section. 

 
Figure 2.22: Software process model for MDTV service (MDTV-SPM) 

2.7.3 INTRODUCTION OF THE PROPOSED METHODOLOGY 

Regarding the requirement of developing a universal solution for MDTV service 

creation and implementation and after a discussion on related research works and 

potential technologies, here we propose a MDTV service creation and 

implementation solution that has JSR272 as the underlying middleware standard. 
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This proposed solution takes the MDTV-SIM model as the service implementation 

system reference and the software process model of Figure 2.22 as the software 

engineering reference, as illustrated in Figure 2.23. 

 
Figure 2.23: Thesis’s proposed solution architecture 

In the proposed solution architecture, we assume that all the MDTV service relative 

entities including CP, MSP and TDM have employed JSR272 as the fundamental 

elements of their middleware standard based agreement. Under this precondition, the 

boxes in orange in the figure are the author’s work for the proposed solution. The 

author’s work is the MDTV service creation and consumption system that mainly 

consists of a semi-automatic service creation tool and a service platform for the 

terminal device. The semi-automatic service creation tool stands between the MDTV 

content and service, functionally merging the works of CP and MSP when creating the 

MDTV service. The service platform is implemented with a MDTV server for 

handling interactive applications. This server is only a prototype version developed 

for testing purposes.  

As discussed in previous sections, most of the current MDTV service creation and 

implementation solutions cannot cope well with the existing issues and challenges 

mentioned in Chapter 1: standard-based solutions suffers from the inter-compatibility 

issues when deploying services over different MDTV standards; many of the 

commercial solution are developed based on their existing products and technologies 
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thus their proprietary character cannot be avoided from the very beginning; even 

though most of the commercial solutions have adopt multiple MDTV standards as 

their development reference to ensure the solutions’ inter-compatibility, they usually 

construct their own service creation and consumption environment to ensure their 

own commercial benefits. Such kind of solution usually requires additional 

knowledge and specific skills and therefore is not be able to reduce the technical 

demands during the MDTV implementation. In contrast, through the proposed 

universal solution, the aims set in Chapter 1 are able to be addressed and the listed 

challenges can be resolved:  

By introducing the semi-automatic service creation mechanism into the MDTV 

implementation process, the technical demands on the designers can be reduced. 

Without requiring to have specialised MDTV technical knowledge, designers in 

CP/MSP can easily create and modify the service contents semi-automatically through 

convenient operations such as drag-and-drop, rather than the traditional complicated 

programming environments. The MDTV service creation is thus demystified and 

becomes more efficient by using the proposed semi-automatic creation tool. Moreover, 

a novel service content presentation method based on open-source technologies (Java 

ME MIDP and XHTML) is also developed so that on one hand, it further reduces the 

technical demands during service creation process; since most of these open-source 

technologies are already familiar to the designers and commonly used in the IT field. 

This solution would encourage more design oriented and creative professionals to get 

involved in the MDTV service creation process. In addition to this, more open-

standard and inter-compatible features will be introduced into the process, to enable 

the scalability of the service creation system, the inter-compatibility through different 

MDTV standards and also to prevent more proprietary issues. 

The other main part of the proposed system, the terminal device service platform 

addresses the aims by providing a MDTV interactive-rich service consumption 

software environment. Its browser-based framework reduces the difficulty of the 
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service content creation for different terminal device screen sizes; being developed in 

Java ME MIDP further ensures it is extensible to underlying middleware (e.g. JSR272) 

and also its inter-compatibility through various device hardware and software 

conditions. In addition, a novel interaction handling method is also developed using 

the MIDP instead of ECMAScript with regard to reducing the complexity during the 

creation of the interactive services/applications on the head-end as well as processing 

them on the client-end. 

 

Figure 2.24: Thesis’s organization under the MDTV-SPM model 

To follow the software process in Figure 2.22, the Thesis has been organized as 

illustrated in Figure 2.24: Chapter 1, 2 present several pieces of research related to 

MDTV and its corresponding work and offers a discussion on why JSR272 has been 

chosen as the underlying the middleware standard in the proposed solution. The 

following two chapters, chapter 3 and chapter 4, focus on the “system and software 

design” phase and the “Implementation” phase in the MDTV-SPM model. Chapter 3 

presents the semi-automatic MDTV service creation mechanism of the proposed 

system including a novel service presentation method. Chapter 4 describes the 

methodology and design of the terminal device service platform as well as an 

interactive service server prototype. Chapter 5 focuses on the “integration and system 
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testing” phase in the model, where a series of software testing procedures with 

corresponding evaluations will be conducted to the proposed software system. 

One issue that needs to be highlighted is that since we still wait for the official release 

of JSR272 as an open-source MDTV middleware solution, we have designed our 

proposed MDTV service creation and implementation system to be as open as 

possible for JSR272 and treat the implementation of JSR272 functionality elements as 

part of future work. 

Summary: 

This chapter has offered a literature review within the MDTV service creation and 

implementation field, discussed the pros and cons of various current solutions and 

further concluded that there is a requirement of developing a universal service 

creation and implementation solution in order to prevent most of the existing 

problems. This chapter has thus introduced the proposed methodology in the end that 

to propose a novel MDTV service creation and consumption software system (going to 

be stated in Chapter 3 and 4) in order to address the Thesis’s aims 
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3. CHAPTER 3: PROPOSED SEMI-AUTOMATIC MDTV 

SERVICE GENERATION 

3.1 MOTIVATION 

As discussed in the previous chapters, the return channel network of most of the 

MDTV solutions, which is employed for the provision of interactivity, has not yet 

been fully utilized and exploited, resulting in a shortage of available MDTV 

interactive services, such as gaming, accessing additional information and shopping. 

A contributing factor to the limited availability of interactive MDTV services lies in 

the relatively isolated and hard to maintain service creation process. 

Regardless the different types of current MDTV service creation solutions (including 

standard-based and commercial solutions), a common problem that contributes this 

situation has been identified as the high technical demands on the creators/designers 

during the MDTV service creation. Typically MDTV service creators/designers, are 

required to have very specialised technical knowledge and skills especially in the 

following three different areas: technical knowledge and skills for software 

development on mobile device, design and graphics skills on developing web-like 

content and applications, and technical knowledge and skills on developing MDTV 

services/applications based on different MDTV standards. This is due to the fact that a 

MDTV service is a product of the integration of digital TV service, mobile service 

and web-like services.  

Therefore, to involve a creator/designer in the MDTV service creation process 

demands knowledge and skills from all these fields. More precisely, for mobile 

service development, a designer needs to know the capability of mobile devices and 

how to use mobile software technologies such as Java ME, C, and even technologies 

from commercial entities like Symbian C. For web-like service development, which is 

already widely adopted in Information Technology (IT) fields such as the World Wide 
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Web (WWW) and Electronic Commerce, a designer must be familiar with common 

web content design technologies including visual processing skills (e.g. how to use 

Photoshop and Flash), mark-up languages (e.g. XML, HTML and WML), and 

scripting languages (e.g. Javascript, ASP and PHP). Lastly, for digital TV service 

development, a designer also has to know and understand the relative middleware and 

software specifications of different DTV standards (e.g. 3G, DVB-H, DMB, ATSC-

M/H).  

As a result, when developing a MDTV service, such a high demand on the 

background knowledge and skills hinders creative and non-technical individuals and 

professionals from making a quick start on the service creation resulting to a 

considerable amount of training to be required. Those creative and professional 

designers in the IT field are therefore discouraged from getting involved due to the 

gap in the technical knowledge and very specialised skills required. This situation 

contributes further to the lack of human resources in the MDTV service creation field, 

hindering in turn the development of advanced MDTV services creation. 

Moreover according to the analysis and discussion in the literature chapter, none of 

the two types of solutions, including standard-based solution and commercial solution, 

are capable of resolving the existing challenges effectively. Standard-based solutions 

suffer from inter-compatibility issues among different MDTV standards due to their 

different technical backgrounds. As to the commercial solutions, even though the 

commercial entities manage to cope with the technical gap by offering themselves 

methods along with the self-developed proprietary development toolkits, the expense 

of such kind of solutions are usually high and the performance of the final outcome 

are not that satisfying. For instance if we take one of the most popular commercial 

solution, the Streamezzo solution (Section 2.5.2.2), even though the solution supports 

multiple MDTV standards such as 3G, DVB-H, DMB and MediaFLO, almost all of its 

MDTV service implementation enabling segments, including the content/service 

creation, MDTV service application server and terminal device service platform, are 
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under the authority of Streamezzo. Also, only basic interactive applications (e.g. VoD, 

basic voting and purchasing and PVR) are supported in this solution. Besides, their 

core technology LASeR could increase the difficulty in updating and maintaining the 

service content. For example, since the Rich Media technologies like LASeR does not 

support well the different screen sizes of the diverse MDTV terminal devices, the 

service content layout has to be designed several times for each different possible 

screen size. This repetition of work results in extra time and resource expenditure. 

Motivated by this situation, the semi-automatic service creation process is developed 

as the first component of the proposed MDTV service creation and consumption 

system, with regards to provide solutions to all the aforementioned problems. Figure 

3.1 illustrated the main methodology. The main idea of the proposed semi-automatic 

service creation process is to integrate a “service creation tool” in the original creation 

process, which can assist the relative entities (such as CP and MSP) to generate 

interactive-rich MDTV services and applications semi-automatically. This is turn 

results in more creative professional such as designers to be involved in the MDTV 

service creation process, since the semi-automated service creation tools deals with 

the complexity and technical aspects of the MDTV service creation. Meanwhile a new 

MDTV presentation method is adopted to ensure the corresponding creation outputs 

(such as an interactive-rich MDTV service page) are open-source and inter-

compatible with most of the MDTV standards. 

 

Figure 3.1: Semi-automatic service creation process 
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3.2 MDTV SERVICE PRESENTATION DISSCUSSION 

A typical MDTV service consists of Audio/Video data and auxiliary data service, 

whereas the auxiliary data service contains content in multiple forms such as text, 

image, animation, and interactive applications like voting, gaming, or chatting. These 

are created against different service requirements. To present the MDTV service 

audio-visual components and interactive applications through the I/O units of a 

MDTV terminal device such as monitor, keyboard and screen pointer to the service 

consumer, a service presentation mechanism is necessary. With reference to the 

literature on the middleware and software layer of the DTV/MDTV service (as 

presented in the previous chapter), such presentation mechanism usually consists of 

the application model that defines the format, the implementation method of the 

service application, and the application execution platform that provides an execution 

environment for the interactive MDTV applications. 

 

Figure 3.2: Typical MDTV service components (marked in black letters) 

3.2.1 MDTV APPLICATION MODEL 

As discussed in the previous chapters, most of the MDTV services have their own 
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application model as the reference for MDTV service creation (including content 

creation and service development), and MDTV service implementation (including 

service rendering on the terminal device and the implementation of interactive service 

applications). A typical application model defines the following items:  

 The application format;  

 The application lifecycle;  

 The implementation method of the interactive application (how to get, store, run, 

update and remove the application in the terminal device). 

The application format is the first item that needs to be defined as it determines which 

software application development language and tool are to be employed, what 

programming language and APIs need to be used during the creation of applications, 

and how to retrieve those applications in the service terminal device. The definition of 

the lifecycle and the implementation method of the service application both depend on 

this format. As Table 3.1 illustrates most of the DTV standards adopt GEM as the 

middleware solution, of which the application format is DVB-HTML and DVB-J and 

some standards involve ECMAScript as an optional choice. For MDTV, even though 

there is no middleware defined in the DVB-H standard, most of the commercial 

solutions tend to choose rich media as the application format, whilst 3G has adopted 

OMA-RME as its native application environment for rich media application and 

ATSC-M/H also selects its middleware based on the same environment. DMB is an 

exception in that it chooses Java ME MIDlet as their application format. 

 
DTV MDTV 

Standard 
DVB-

T/S/C 

ATSC-

T/S/C 

ISDB-

T/S 
DVB-H 3G 

ATSC-

M/H 
DMB-T/S 

Middleware GEM 
Commercial 

solution 

OMA-

RME 

OMA-

RME 

based 

DMB-

MATE 

Application 

model 

DVB-HTML, DVB-J Xlet, 

(ECMAScript) 

Commercial 

solution 

Rich 

media 

Rich 

media 
MIDlet 

Table 3.1: Application models of DTV and MDTV standards 
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Therefore within the MDTV service scope, two types of application formats are being 

adopted: rich media and MIDlet, with each of them leading to two different 

application models. Herein this chapter, as well as in the Thesis, we refer to them as 

the “stream” model and the “let” model. 

The “stream” model 

The MDTV service application in the “stream” model is usually delivered in a stream 

and a browser-based service platform, which is set in the terminal device for 

consumption purposes such as browsing and user interaction. A “stream” application 

model usually supports download-and-play and progressive rendering while 

downloading. This means that the application can either be downloaded first to the 

terminal device and run, or can be rendered and displayed on the service platform 

browser progressively while being downloaded. Here we take the rich media and 

BML as the examples.  

The rich media model is used by 3G, ATSC-M/H and is known as the OMA-Rich 

Media Environment (OMA-RME). The RME addresses enhanced rich media services 

and those services often include service aggregation of various kinds of content in a 

single interface (graphics, text, audio, video), and service implementation methods 

based on client-server real-time interaction. The MDTV is a typical example of this 

enhanced rich media service. Even though the OMA-RME does not actually define 

the application model, all the key points of the application model are defined in the 

standard. The MDTV service application in the OMA-RME model is defined in a 

format of rich media: employing SVG Tiny for the visual presentation and the 

ECMAScript for user interaction. The service applications can be distributed either 

through the MDTV broadcast network in the broadcast stream, or the return channel 

network (cellular network) in the point-to-point stream. The application lifecycle 

depends on its bound service, which means that the application starts once the service 

is launched on the terminal device, stopped and destroyed once the user exits the 

application. The MDTV service implementation method in the OMA-RME is based 
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on the RME system, consisting of the RME server and the RME client. The RME 

server is the rich media data source and support for implementing user interactions in 

the RME client. The RME client has the capability to display MDTV service 

application in RME format as well as handling interaction with the client itself (local 

interaction) and with the RME server (remote interaction). Besides, the actual form of 

a RME client can be a pure rich media browser or an integrated XHTML browser 

with enhanced functionality [54] [100 [96]. 

The ISDB application model consists of the ARIB-J model extended from GEM and 

BML document model. The BML document model is defined in the ISDB STD-B24 

“XML-based multimedia coding scheme” specification and can be adopted in the 

ISDB MDTV field. The ISDB MDTV service content are defined in the BML 

documents with the help of DOM and CSS for the purposes of visual presentation, 

and ECMAScript is employed for handling the user interaction. The MDTV service 

implementation method in the BML model is called the Interruption Event Model. 

This denotes that the interactive applications are in the form of an “Interruption 

Event” in the BML document browser of the terminal device and each interruption 

event corresponds to a respective event handler locally or remotely that could execute 

the required functions [29]. 

An example of this in the stationary DTV field is the DVB-HTML application model 

in DVB MHP. 

The “let” model 
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Figure 3.3: DMB application lifecycle [75] 

The MDTV service application in the “let” model is usually delivered in a specifically 

defined application program package and the corresponding execution platform is set 

in the terminal device for the execution of the MDTV service application. A “let” 

model based service application does not support progressive rendering while 

downloading, and it must be initially downloaded to the terminal device before 

launched on the execution platform. Here we take MIDlet as a representative example. 

The MIDlet model is used by DMB and defined in the DMB middleware standard 

DMB-MATE. Since this MIDlet model is based on the Java ME MIDP, the 

application format is also based on MIDP. “Lowest Common Denominator User 

Interface” (LCD UI) API or SVG Tiny API are employed for the visual presentation 

of the content and MIDP along with other assisting JSRs such as Mobile Media API 

(MMAPI) are employed for the user interaction. The MIDlet application consists of 

an “application module”, which is also the basic unit for the transport of an 

application through either the broadcast or communication network. The application 

lifecycle as illustrated in Figure 3.3 is also similar to the MIDP MIDlet lifecycle. The 

application implementation method is based on the application execution platform, 

the Java Virtual Machine (JVM) in Java ME MIDP. All the MDTV service application 

MIDlets run on top of the JVM and DMB manages to enable the simultaneous 

execution of multiple applications rather than only one in contrast to the case of Java 

ME JVM [75] [120]. 

A corresponding format to the above example in the stationary DTV field is the DVB-

J Xlet in the GEM standard. 

Application Model in commercial solutions 

In the MDTV service commercial solutions, the functionality of the Application 

Model is also defined. Those proprietary Application Models (as illustrated in Figure 

3.4) are usually based on Application Model specifications of different MDTV 
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standards and encompass additional technologies (such as Symbian C SDK from 

Nokia) as well as some additional functions. 

 
Figure 3.4: Application Model in commercial solutions 

3.2.2 MDTV SERVICE PRESENTATION 

As discussed above there are two types of application models in the MDTV field. The 

“stream” model is more reliable as the service stream can be progressively rendered 

and displayed while downloading, which reduces the error risk and the latency during 

service consumption. Whilst the “let” model is not as reliable for fast, dynamic and 

interactive MDTV service consumption under non-ideal network conditions, where 

applications based on this model must be completely downloaded before they could 

be launched for use. As a result of this, here we choose the “stream” model as the 

reference model during the proposed semi-automatic service creation process. 

Under the definition of the “stream” Application Model, there are many technologies 

being applied according to different MDTV service design requirements. Refer to the 

functionality of the MDTV service application format, these technologies can further 

be categorized into two functional groups: visual presentation technologies and 

interaction presentation technologies. As mentioned in the last section, the visual 

presentation technologies are applied to format and present all the visual components 

of the MDTV service whilst the interaction presentation technologies enable the 

interactive components and applications of the MDTV service and implement the 

interactions between the service and the user. Including the Rich Media technologies, 
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several candidates for each category are to be discussed in the following section. 

3.2.2.1 Visual presentation technology candidates and discussion 

XML and MDTV service presentation 

Extensible Mark-up Language (XML) is a simple text-based format for representing 

structured information [117] and it is the basis of many popular standards such as the 

Really Simple Syndication (RSS), Extensible HyperText Mark-up Language 

(XHTML) and SVG. XML is widely used as a description language in different layers 

of the MDTV service, regardless of the underlying standards. The Electronic Service 

Guide (ESG), as a key component of MDTV service, is a good example of the XML 

format adoption in the DTV field. However, basic XML is designed to transport and 

store data rather than designed for displaying data like HTML or XHTML. In order to 

display the content in a XML format, there is always need of a specially-designed 

presentation engine to assist in parsing and rendering the data [118]. 

So far there are some cases/products that employ XML as the visual presentation 

technology such as XUL from Mozilla, UIML from Oasis, [111] and [112]. Those 

new versions of XML are usually customized by the developer for specific 

requirements. In turn, the authoring tool as well as the rendering engine on the client 

side has to be designed for each specific customized XML description language. This 

results on one hand on specific solutions that cannot be accepted universally and on 

the other hand requires extra resources for implementation across different platforms. 

However in most cases in the MDTV service creation, XML is used only for the 

purpose of transporting and storing data, whilst several advanced XML-based 

languages like the Synchronized Multimedia Integration Language (SMIL), SVG and 

XHTML are used for the visual presentation and rendering of the service. 

Regarding the MDTV service presentation, the terminal device service platform is 

responsible for rendering and displaying the service contents including the ESG, A/V 

and auxiliary multimedia data. Typically, the relevant audio-video codec, such as 
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MPEG-2, MPEG-4, etc, are used for the rendering and display of the audio-visual 

material, whilst Rich Media and XHTML are used for the visual presentation and 

graphical user interface (GUI) of the service content and Document Object Model 

(DOM), Synchronized Multimedia Integration Language (SMIL) and ECMAScript 

are adopted as the assisting technologies to Rich Media and XHTML for handling the 

service synchronization and the interactivity during the service presentation. 

Rich Media technology 

Scalable Vector Graphics (SVG) [113] is defined for describing two-dimensional 

graphics in XML format and SVG Tiny is its sub-version for providing the ability to 

create a whole range of graphical content, from static images to animations to 

interactive Web applications on small devices like PDA and mobile phones. As one of 

the key components of Rich Media, SVG Tiny is also widely used in MDTV 

standards such as 3GPP, ISDB 1seg and ATSC-M/H and it is also used in a number of 

research [103] [104] [105] and commercial solutions on MDTV service 

implementations such as the 3GPP-DIMS, MPEG-LASeR, MORE, Streamezzo and 

EXPWAY FastESG.  

Flash [114] is a proprietary Rich Media standard owned by Adobe that can manipulate 

vector and raster graphics. Flash Lite is an optimized version of Flash for presenting 

A/V and interactive elements on the mobile and portable devices. Commercial MDTV 

service implementation solutions such as the NetFront MDTV solution have 

employed Flash Lite as its GUI technology. 

Even if Rich Media technologies provide excellent graphics and animation experience, 

a Rich Media featured MDTV service platform suffers from several drawbacks in 

both the browser-based and the rich media based cases. These are summarized below: 

 Incompatible scene size. Although by using Rich Media, the service interface or 

the platform interface can be designed easily to fit different device screen size, 

each individual solution is only suitable for one screen size resulting in that a 
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MDTV service has to propose different Rich Media UI solutions regarding the 

different types of terminal device screen sizes and resolutions. This may lead in 

additional development work on UI design and service layout design and in turn 

result in the increase of project costs and the complexity of system maintenance 

and update. 

 Requirement on using specific/customized authoring tools and advanced 

technical knowledge. Flash Lite is a proprietary Rich Media format that needs 

the end-to-end proprietary development and deployment including the underlying 

technology, authoring tools, server and the Adobe Flash Player client. Although 

SMIL and SVG can be edited in a plain text-editor, the corresponding authoring 

tools are usually necessary for an efficient and effective design. However, three 

main sets of Rich Media technologies, MPEG4 BIFS, MPEG LASeR and SVG 

Tiny, which are currently used in the MDTV service development, offer different 

graphic features and in turn they are incompatible and require different sets of 

authoring tools [119]. Specialized professional knowledge is thus needed when 

using either of them. Moreover there are no promising Rich media authoring tools 

suitable for MDTV service and MDTV UI design and most of rich media based 

service development still depends on proprietary and customized tools. The 

situation becomes worse when considering the different kinds of MDTV 

standards in that there is hardly any universal solution. 

XHTML 

Other than Rich Media, the Extensible HyperText Mark-up Language (XHTML) 

[116] is another option for the visual presentation of a MDTV service and the GUI 

design. Derived from HTML, XHTML has been defined as an XML application with 

a stricter and cleaner syntax than HTML. The motivation for XHTML Basic is to 

provide an XHTML documents type that can share across communities from desktop 

to consumer devices with limited resources such as mobile device, and that is rich 

enough to be used for simple content authoring. 
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As to the MDTV service industry field, many leading MDTV standards such as 3G, 

ISDB 1seg, and DMB have employed XHTML as an optional element of their 

application model. With the same motivation of choosing JSR272 as the underlying 

middleware specification, here we choose XHTML as the service presentation 

technology so as to seek a general universal solution for enabling a compatible 

MDTV service visual presentation solution throughout different MDTV standards. 

Comparing with Rich Media, the XHTML based MDTV service content have similar 

characteristics with the classic web service. Along with the browser-based terminal 

service platform, an XHTML MDTV service UI and layout is more flexible to fit in 

any device screen size with different resolutions. This means that as long as the 

service platform is compatible with different sizes, the MDTV service that is in 

XHTML format is relatively flexible with regards to the layout design. This advantage 

saves further time and cost in a MDTV service developing life-cycle and simplifies 

service maintenance. 

 

Figure 3.5: Comparison of authoring tools between XHTML and Rich Media 

Due to the popularization of XHTML technology in the IT field, the selection of the 

authoring tool for XHTML is also much easier when compared to Rich Media. 
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Software such as Microsoft Expression Web and Adobe Dreamweaver, as well as 

several other freeware tools offer sophisticated SDKs for XHTML based design. 

Moreover, designers and developers that are experienced and active in web service 

design can be attracted and involved in the MDTV service design for an easier and 

more efficient development process. Thus this enables large numbers of designers in 

the web design field to design services for MDTV as well. Besides, with the help of 

the proposed service creation tool that handles different features (for example the 

service signalling mechanism), the service creation becomes a standard-independent 

and service-independent and a universal MDTV service presentation solution. 

The main drawback of XHTML when comparing with Rich Media is that XHTML 

originates from the Desktop PC world and it has not yet been fully adapted to the 

mobile device environment. Furthermore, due to the complexity of such adaptation 

work, a few of promising results have been achieved especially in the MDTV service 

creation field. [102] 

3.2.2.2 Interaction presentation technology candidates and discussion 

ECMAScript is a widely adopted script language for handling and facilitating the 

interactivity between service content (e.g. web service page content) and users. 

Several famous script languages such as Java Script, Jscript are the implementations 

of ECMAScript. It was firstly adopted as the web scripting language that enlivens 

web pages under the web-based client-server architecture. Many scene presentation 

technologies such as HTML and Rich Media (e.g. LASeR) employ ECMAScript has 

assistant. Moreover, most of the DTV and MDTV standards have involved 

ECMAScript as the interaction presentation technology in their corresponding 

middleware/software specifications (e.g. DVB-GEM, 3GPP-DIMS, OMA-RME, 

DMB-MATE, and OMA-ESMP). [101] 

Most of the MDTV standards (ATSC-M/H, 3G, and DMB) have employed scripting 

languages such as ECMAScript in their service for the implementation of interactive 
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functionality for service applications. In the application model of those MDTV 

standards, a scripting language is usually used to assist markup languages like XML, 

SVG or XHTML since these markup languages are not designed to support the 

following capabilities: 

 The ability to apply mathematic and procedural logic locally to document data; 

 Providing access to facilities of the device such as messaging function on a phone; 

 The ability to generate messages and dialogs locally, reducing the need for 

expensive round-trip for alerts, error messages, confirmations etc; 

 The ability to handle events; 

 The ability to allow the dynamic creation and/or modification of documents on 

the client [101]; 

However due to the review of MDTV middleware technologies in the previous 

chapter (Section 2.5.2.1), Java ME, with the excellent native compatibility and 

supported by many industrial mobile device manufacturers such as Nokia, can be an 

ideal choice other than ECMAScript that all these abilities above can be handled by 

programs developed using the MIDP API. Besides if a scripting language is involved 

in the application model, its corresponding scripting code parsing mechanism is 

needed in the terminal device service platform, which means additional resources 

including processing threads, memory and power that are going to be required. This 

approach is against the common software development strategy on the limited 

capability of a mobile device. 

3.3 SEMI-AUTOMATIC MDTV SERVICE CREATION 

3.3.1 SEMI-AUTOMATIC SERVICE CREATION TOOL 

It can be concluded from all the previous discussions that the current MDTV service 

creation solutions based on the corresponding service Application Model and selected 

service presentation technologies have illustrated a series of problems and drawbacks 
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such as weak inter-compatibility and high cost. It can also be realised that selecting 

more suitable presentation technologies such as XHTML and Java ME may be an 

effective way of making some improvements to this situation. Thus when creating the 

MDTV service by using these two technologies, the XHTML page will be the basis of 

the MDTV service page visual presentation components whilst the Java ME will be 

used for constructing the interactive applications. However in this case, even though 

these two technologies ensure the corresponding MDTV service to be open-source 

and less proprietary, knowledge and skills related to XHTML and Java ME are still 

required on the designers’ end and some programming work may be needed. On the 

other hand, most of the MDTV standards have defined their own metadata formats 

and functional API (for example: the URI for audio/video streaming) for service 

implementation. Therefore during the service creation, relevant metadata or functional 

code for various service applications (e.g. interactive application) need to be added in 

the XHTML code according to the design requirement. This part of the service 

creation may also need extra programming work, where the additional professional 

skills and knowledge (e.g. programming skills and MDTV middleware knowledge) 

are required.  

 

Figure 3.6: Semi-automatic service creation process 

As a result, even though the technical demand during the service creation has been 

reduced by choosing XHTML and Java ME as the presentation technologies, the 
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creation process is still too manual with low efficiency. This therefore motivated the 

introduction of the semi-automatic creation tool, which is the core software 

component in the proposed semi-automatic service creation process. Service editors 

can use this tool to further manipulate the XHTML pages, make modifications and 

add necessary MDTV features (e.g. metadata, functional commands or interactive 

applications) to the pages, and finally generate the integrated MDTV service pages 

more easily without the need to do any programming themselves. 

In the MDTV service implementation entity chain, the MDTV content creation is 

usually done by the Content Provider (CP), and the service creation is usually done by 

the Multimedia Service Provider (MSP) (refer to MDTV-SIM model mentioned in 

section 2.7.1). By utilizing the proposed semi-automatic service creation tool, these 

two creation processes can be merged into one aggregation as illustrated in Figure 3.6. 

In this case, the MDTV content/service creation may be performed by only the CP. 

The content integration is an aggregation of the technical works and the relevant 

professionals that integrate the MDTV content and format the content into XHTML 

pages. More precisely, after the MDTV content have been collected and post-

produced by the CP, the designers in the content integration segment will firstly 

format these contents into XHTML code. This process is relatively open to web UI 

and service designers, enabling them to easily design service UIs that include text, 

graphics, links and layout information on popular commercial and professional 

XHTML authoring tools, such as Dreamweaver. A service designer can then use the 

proposed semi-automatic service creation tool to import and post-design the produced 

UIs and service layouts, as well as add MDTV features (URIs, interactive applications, 

and service metadata for ESG) into the XHTML code to eventually transform them 

into a MDTV service ready for implementation. Therefore, without the need of in-

depth MDTV or software engineering background, a service designer can add from a 

library of predefined applications, actions related to the designed MDTV interactive 

service on any element on the UI in a drag-and-drop manner. Thus instead of 

reprogramming from scratch every time a new application/service has to be created, 
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the service creation tool helps designers and creative professionals to construct or 

modify MDTV interactive services semi-automatically, which results in a faster and 

more effective service development lifecycle. 

On other hand and with regards to the functionality of the proposed creation tool 

during the MDTV service provision, we have taken the “Content and service creation 

and management sub-system” developed in the INSTINCT (IP-based Networks, 

Services and Terminals for Converging systems) Project 2006 (Figure 3.7) as the 

reference of our creation tool development. 

 
Figure 3.7: INSTINCT Project Content and service creation and management sub-systems [55] 

INSTINCT [110] is a European project in line with the objectives of DVB 

Convergence of Broadcast and Mobile Services (DVB-CMBS). It is committed to 

assist DVB in realizing the commercial provision of convergent service in mobility 

with special focus on the DVB-T, DVB-H and DVB-MHP standards in conjunction 

with the concept of wireless communications networks (notably GPRS and UMTS) 

combined with terrestrial DVB broadcast networks. INSTINCT aims to a carrier 

grade full specified and open final platform for the delivery of convergent services in 

collaborating wireless communications and terrestrial broadcast networks. A detailed 

system architecture has been developed by the project according to the project’s aim 
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and the “content and service creation and management sub-systems” are the 

components that cover most of the mechanisms and functionalities during the service 

creation phases. Moreover the construction of this sub-system is very similar with the 

architecture of the Thesis’s proposed MDTV service creation solution. Thus this 

“content and service creation and management sub-system” is chosen as a reference 

and a theoretical support to the Thesis’ proposal. 

Comparing this system with the process in Figure 3.6, the component 

correspondences are expressed in Table 3.2. A core difference between these two 

architectures is that in the INSTINCT project the content integration and UI 

generation are separated segments whilst in the Thesis’s proposal those parts of work 

are done in a single step. This is because in the INSTINCT project, the two segments 

are using different presentation technologies: XML is adopted in the content 

integration session for it is a default metadata format in DVB-H; during UI generation, 

some other visual presentation technology (for example: HTML) is applied since 

XML is not capable of presenting visual components of the service directly. In this 

case, some extra conversion work needs to be done between the XML formatted 

service content and the actual service page. In contrast, the Thesis’s proposal has 

chosen XHTML as the presentation technology throughout the entire service creation 

process. Therefore the service editors can use XHTML authoring tool to produce the 

UI components at the same time when the content is integrated. Thus based on the 

service creation methodology of the INSTINCT project, the Thesis has facilitated the 

original creation process and further contributed a novel semi-automatic service 

creation solution. 

Correspondence 
Functionality Description 

INSTINCT Creation aggregation 

Content Processing MDTV content 
Content collection and processing for 

MDTV provision 

Content Integration & UI 

Generation 
Content Integrator 

Content integration and UI editing 

with reference to the application 

model 

Application Generation Service creation tool 

UI modifying and Interactive 

application generation referring to the 

application model 

Content Packaging MDTV service MDTV service packaging process 
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Table 3.2: Components correspondence 

The rest of the components in the INSTINCT system are currently out of our scope 

and can be considered as the further implementation objectives of our project in the 

future. 

3.3.1.1 XHTML and Java ME based MDTV service presentation 

During the semi-automatic service creation, normal editing work like XHTML page 

manipulation or adding MDTV service related metadata into the page can be achieved 

by using basic functions of the proposed creation tool. This type of edition is based on 

basic XHTML knowledge. On the other hand, when there are requirements for adding 

interactive applications to the components, within the XHTML service page, the 

manipulations (of which the operation instruction will be presented in Section 3.3.2) 

are based on a new method called “ID Event” developed along with the proposed 

software. 

ID Event 

In order to arrange a more efficient interaction implementation method based on Java 

ME MIDP and JSR272, we propose the “ID Event” method as an alternative solution 

instead of ECMAScript. This model is enabled by MIDP and a special interactive 

event ID. By using MIDP as well as those assisting APIs, we have developed a novel 

interaction implementation mechanism based on the proposed terminal device service 

platform to handle most of the functionalities that scripting languages can provide 

(which will be discussed in details in Chapter 4). By using the special interactive 

event ID, we bridge the gap between MIDP and interactive application events, where 

the service browser can handle the events by passing them to the corresponding event 

handlers developed in MIDP according their ID value. The event ID is integrated into 

the XHTML code by adding a special ID attribute rather than requiring professionals 

to manually code it using scripting languages, which in turn increases the service 

creation and rendering efficiency. 
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An ID in the “ID Event” method is in the form of a string and its format is defined as 

follows: 

Private ID@@cmdApplication serial No.n@@Application title@@cmdParameter serial 

No.v@@Parameter value@$cApplication serial No.cmd$@ 

The “Private ID” is an identity for private purposes. For example, it can be “DVB-H” 

to indicate that this ID is designed for service over DVB-H network. Another example 

is that it can be “John” to indicate the author of the editor. 

The “Application serial No.” is used to separate different applications when there are 

multiple applications in the ID string. It means that multiple applications along with 

their parameters will be placed in the numeric order in the ID string. Example:  

xxxx@@cmd0n@@Application 1 title@@cmd0v@@Parameter 

value@$c0cmd$@@cmd1n@@Application 2 title@@cmd0v@@Parameter 

value@$c1cmd$@....... 

The “Application title” is automatically generated by the proposed service creation 

tool during the “drag and drop” manner according to the name of the selected 

application in the application database. 

The “Parameter serial No.” has a similar function with the “Application serial No.” 

that is to separate different parameters of an application. Multiple parameters are 

placed in the numeric order in the ID string. Example: 

xxxx@@cmd0n@@Application 1 title@@cmd0v@@Parameter 1 

value@@cmd1v@@Parameter 2 value@@cmd2v@@Parameter 3 

value@$c0cmd$@@cmd1n@@Application 2 title@@cmd0v@@Parameter 

value@$c1cmd$@....... 

The “Parameter value” is the parameter reference to the corresponding application 
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when the service platform on the terminal device is trying to run this application. The 

corresponding parameters of the supported interactive applications illustrated in 

Figure 3.12 are listed in Table 3.3. Besides an example of IDs in a XHTML page 

source code is illustrated in Figure 3.8. 

Applications 

ID Configuration 

Application 

Title 
Parameter value 

Media 

Control 

Playvideo URI of the target video (e.g. “medias/clip1.mpg”) 

Stopvideo “null” 

Live data 

feed 
Realtimedata 

URI of the target data source 

(e.g. “realtimedata.txt”) 

Live voting 
Voteclient 

voting target name__vote_vote value 

(e.g. “medias/clip1.mpg__vote_good”) 

Votereport Order of request (e.g. “yes”) 

Table 3.3: Corresponding parameters of supported interactive applications 

 

 
Figure 3.8: Example of IDs for different interactive applications in an XHTML service page 

source code 

From the definition of the ID, one of the advantages of such ID can be recognized that 

this type of ID supports multiple applications with multiple parameters. More 

precisely, the proposed assisting application model is able to allow multiple 

applications running within the lifecycle (press a component of the service – get 

reactions) of one interaction between the service and the user. 

Therefore by using a XHTML and Java ME based “ID Event” method, the designers 

can successfully create the integrated MDTV service pages with the assistance of the 
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semi-automatic creation tool. All the MDTV service components are created and 

implemented as shown in Table 3.4, where the CSS will be involved also incorporated 

in future work. 

MDTV service components Presentation method 

MDTV content 

Text XHTML + CSS 

Image XHTML + CSS 

Audio and Video XHTML + MIDP MMAPI 

MDTV interactive 

applications 

Local interaction MIDP 

Remote 

interaction 

Hyperlink 

event 
XHTML 

ID Event ID Event method 

Table 3.4: XHTML and Java ME based MDTV service presentation 

3.3.1.2 Semi-automatic service creation software architecture 

The proposed semi-automatic MDTV service creation tool is developed with Java 6 

Standard Edition for the main tool’s GUI and functionality, and Java Micro Edition 

for the embedded MDTV service application database. The GUI is developed with 

Java Swing Component API. Java Swing is the lightweight UI developing toolkit in 

Java SE that its look-and-feel is independent from OS, which is different from Java 

SWT UI toolkit that the look-and-feel is different on different OS. Having considered 

that the creation tool may be used in different OS environment such as Windows, 

MAC OS and Linux, we chose Java Swing for GUI development to increase the 

portability of the software. 

A) Software class components 

As illustrated in the Class Diagram in Figure 3.9, the proposed semi-automatic service 

creation tool consists of eight classes: “MainFrame” (code contains 422 lines) is the 

main class; “LeftPane” (code contains 353 lines), “RightPane” (code contains 241 

lines), “SouthPane” (code contains 70 lines) and “CenterPane” (code contains 446 

lines) are its association classes; “IDHandler” (code contains 181 lines) and 

“CloseIcon” (code contains 80 lines) are the aggregation classes of “CenterPane”; 
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“TreeTableModel2” (code contains 200 lines) is the aggregation class of “SouthPane”. 

The detailed function description of all the classes refers to the corresponding 

software testing section in Chapter 5: 

 
Figure 3.9: UML Class Diagram of proposed service creation tool 
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B) Software functional components 

All the functional components in the service creation tool are listed in Table 3.5: 

Functional Components 

GUI 

Menu 

Hotkey Bar 

Project Explorer 

Workbench 

MDTV application list 

Parameter table 

ID handler 

MDTV service application database 

Table 3.5: Functional components 

 

 
Figure 3.10: Semi-automatic service creation tool GUI overview 

The Menu is the typical GUI functional component in the software design. The Menu 

currently contains two subsets: the File subset and the View subset. The File subset 

contains basic functions such as open file/project, save file/project and exit. The View 

subset contains the method of setting the layout style of the GUI. Other functional 

subset will be added into the menu along with new functions as further work. Hotkey 

bar is designed to quick-access to the frequent-used functions such as open/save file.  

The Project Explorer is a viewpoint project directory. It lists all the XHTML 
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formatted MDTV service content and includes an editor that can select and open 

items from the list by double clicking on them. The Workbench is the main window 

for editing the service page. Once a service page is selected from the project explorer, 

the page will be opened and displayed in the workbench in a “split mode” as the 

default editing mode: page preview is displayed in the upper panel and the 

corresponding source code is shown in the lower panel. The lower source code panel 

supports plain text edit as well as drag-and-drop edit in order to add a MDTV URI or 

the interactive applications based on the “ID Event” method. The workbench also 

supports multi-editing mode where the service editor can use the tab bar to swap 

between different pages to achieve concurrent editing. 

 

Figure 3.11: Workbench and MDTV application list 

The MDTV application list provides a list of all the available MDTV interactive 

applications. It links with the application database embedded at the back-end of the 

service creation tool. When there is a need of adding an interactive application to a 

component in an XHTML service page, the editor can perform this by simply 

dragging the required application from the list and dropping it onto the selected 

component of the page in the workbench. In the meanwhile the rest of relevant 

configuration work (including adding the corresponding application ID attribute to the 

source code of the target element, generating relative metadata for other MDTV 

service like ESG and generating relative functional class for the service platform on 
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the terminal device) will be done automatically. 

The Parameter table displays all the components in the XHTML page under editing, 

in the form of element name, attribute name, attribute value, and element content. 

This parameter table also supports multi-display mode and the sub table gets focused 

and closed together with the corresponding page in the workbench. The contents in 

the table also change along with the XHTML service page. The parameter table 

currently acts as a reference when modifying the components or adding any event ID. 

Further work will optimize the display preference of the table and enable the direct 

edition to the parameters in the table to modify the service page. 

The ID Handler stays at the back-end of the service creation tool providing the link 

between the Parameter table and the Workbench while adding an interactive 

application based on the “ID Event” model. It helps the embedding of the ID’s 

corresponding application program into the back-end of the MDTV terminal device 

service platform, in order to support the ID event when rendering the component that 

has that ID in the XHTML service page. 

 

Figure 3.12: Supported interactive applications 

The MDTV service application database is embedded in the service creation tool. It 

contains all the available interactive applications especially developed for the MDTV 

service based on MIDP and they will be picked up according to the ID and added to 
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the terminal service platform. This database can be enriched by adding new MDTV 

applications with regards to future service requirements.  

Interactive service applications that are currently supported within the proposed 

solution of MDTV service creation and implementation (including service creation 

tool and service platform for the terminal device) are listed in Figure 3.12. 

3.3.2 SEMI-AUTOMATIC MDTV SERVICE CREATION PROCESS 

3.3.2.1 Data flow through the semi-automatic service creation tool 

 
Figure 3.13: UML User Case Diagram for proposed service creation tool 

In the UML User Case Diagram (see Figure 3.13), the proposed MDTV service 

creation tool can be broken down into five user cases: Import XHTML service page; 

manipulate the service page for normal design purpose; map interactive applications 

to service page UI components in order to create MDTV interactive service; save all 

the modifications done to the service page; finally output the integrated MDTV 

service page as well as the updated functional class for supporting new added 

applications on the client-side service platform. 
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After the MDTV content has been integrated in the XHTML format, all the service 

pages will be firstly imported to the service creation tool for further design (see Figure 

3.14). The service designer can select those service pages through the Menu and 

Project Explorer components in the tool and double-click to open them. Both the page 

preview and the source code will then be displayed in the Workbench. The designer 

can carry out a series of design work such as general UI editing.  

 

Figure 3.14: UML Data Flow Diagram: Data flow through the semi-automatic creation tool 

If there is not any additional interactive application that need to be added in the 

service page, the designer can use the “save” function in the Menu or Hotkey bar to 

save the service page and finish editing. If some additional applications need to be 

added in the page, the designer can swap the Workbench to the “element mode” to 

start the “ID Event” edit process. 

The designer first selects the required application from the MDTV application list, 

and then drags it towards to the target component displayed in the Workbench. As 

soon as the designer drops the selected application, the software will require some 

relevant parameter configuration according to the application needs (e.g. video 
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resolution, filename, etc). After setting the parameters, two actions are performed 

automatically: namely a special ID (for its definition refer to Section 3.3.1.1) is added 

into the target component as a new attribute (ID e.g.: 

shrek@@cmd0n@@Playvideo@@cmd0v@@root1/320-240(1).mpg@$c0cmd$@. 

The instruction refers to Figure 3.16). The workbench updates its scene to display the 

modification to the service page; The ID Handler is triggered and picks up the 

corresponding application program from the MDTV service application database, 

according to the name of the dragged application. Then the ID Handler adds this 

application program into the “IDEventFactory.java” in the terminal device service 

platform to generate a new version of “IDEventFactory.java” as the corresponding ID 

Event handler that supports the new added interactive applications.  

 

Figure 3.15: Sample XHTML service page opened in the proposed creation tool (before the 

addition of the ID event) 

 

 

Figure 3.16: Instruction of the ID example 
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Figure 3.17: The screenshot of the service page outputted from the proposed creation tool 

Finally, by saving the project, the integrated MDTV service page is outputted ready 

for further process such as service content packaging. An updated version of 

“IDEventFactory.java” is outputted as well. 

3.3.2.2 Comparison and discussion 

 

Figure 3.18: implementation of semi-automatic service creation 

As discussed in previous sections of this chapter, the proposed semi-automatic service 
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creation mechanism has managed to cope with the most of the challenges of the 

Thesis. Moreover when compared to the current commercial solutions and some 

related research proposals, the proposed semi-automatic service creation mechanism 

also shows advantages. 

As mentioned in Chapter 2, many of the commercial MDTV service creation 

solutions (such as ACCESS NetFront, EXPWAY and Streamezzo) have got a heavily 

proprietary character throughout their solutions. In contrast, the Thesis’s proposed 

service creation process manages to avoid those proprietary issues by utilizing open-

standard technologies including XHTML and Java ME. Just like Apple Co. opens 

their iPhone OS SDK to the public, the proposed service creation process manages to 

demystify the MDTV service implementation process and open the service creation to 

the public. This will encourage more creative designers to get involved and further 

encourages the development of new applications and services for MDTV in the future. 

In the academic field, some of the related research works also realize the same 

problems and have proposed several solutions. However, most of them are based on 

Rich Media technologies [104] [119]. The proposed solution in [104] chooses SVG 

Tiny for visual presentation and Thinlet XUL in cooperation with Java for interaction 

presentation. As discussed in previous sections, Rich Media technologies require 

advanced design skills and do not support different screen sizes well. Moreover the 

interaction presentation solution is relatively complicated since the solution tends to 

use XUL to create the link between SVG Tiny and Java for implementing the 

corresponding interactions. When this solution is compared with the Thesis’s proposal, 

the proposed solution shows evident advantages on both of these two aspects. 

XHTML is much more adaptive than SVG Tiny when producing the visual 

presentation; the ID Event method that has a simple definition is much easier to adopt 

than a script language like the Thinlet XUL. The proposed solution in [119] tends to 

provide a convertor for MDTV service creation based on different Rich Media 

technologies such as MPEG LASeR and MPEG BIFS. Comparing it with our solution, 
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leads to the conclusion that this solution is also relatively weak when trying to 

resolving the incompatibility issue of Rich Media. Since the utilization of XHTML 

can be more efficient than adding a convertor in the Rich Media based service 

creation process that is already complicated. 

As a conclusion, the proposed semi-automatic service creation mechanism has 

realised the following contributions: 

It facilitates the MDTV service creation process by introducing a semi-automatic 

service creation tool in the process to assist the designers producing the interactive-

rich MDTV service. The technical demand to the editors is reduced, so that editors do 

not have to become technical masters on the MDTV professional technologies or the 

Java ME software development skills. Thus the editors can pay more attention to the 

design works based on the XHTML visual presentation and more design oriented 

professionals in IT field can be involved into the MDTV service creation more easily. 

The selection of XHTML as the service visual presentation technology not only 

brings more design-related resources, but also essentially ensures the inter-

compatibility of XHTML based MDTV service among different standards. The ID 

Event method for implementing the interactive applications on the service page is 

much easier to learn and use than other scripting languages such as the ECMAScript. 

This further simplifies the service creation process and also manages to cooperate 

with the service platform in the terminal device (will be discussed in next chapter) 

that is also based on Java ME. Lastly, the utilization of XHTML and Java ME 

provides an open-source and open-standard service development environment and 

does not suffer from the proprietary issues that other solutions face, during the MDTV 

service creation process. 

Summary: 

This chapter further states the motivation and the methodology of the proposed semi-

automatic MDTV service creation process. The semi-automatic service creation tool 
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along with the XHTML and Java ME based service presentation method has been 

introduced in detail. Moreover a relative comparison and discussion has been 

conducted through the chapter and lastly reached the conclusion that the proposed 

semi-automatic MDTV service creation process has met the Thesis’s aim and also 

shows advantages when comparing it with other current and related solutions. 
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4. CHAPTER 4: PROPOSED MDTV CLIENT 

IMPLEMENTATION ENVIRONMENT BASED ON JAVA ME 

4.1 MOTIVATION 

In Chapter 2, Figure 2.21 we have illustrate the typical MDTV service 

implementation model, where the terminal device service platform and the MDTV 

service server form the service consumption environment. Thus as described in 

Section 2.7.3, when the proposed solution for MDTV service creation and 

implementation is sent to the client end, the MDTV client implementation 

environment (MDTV-CIE) that consists of the proposed terminal device service 

platform (Client side) and the prototype server (Server side) enables the retrieval of 

the MDTV service on the terminal device and the consumption of the MDTV service 

through the one-way broadcast provision and the handling of interactivity between the 

terminal device and the server. This is illustrated in Figure 4.1. In this environment, 

the terminal device service platform is proposed as another core component in the 

proposed solution apart from the semi-automatic service creation process and tool 

presented in Chapter 3. The server is currently developed on the prototype level only 

for testing purposed and will be further enhanced during future work. 

 

Figure 4.1: MDTV client implementation environment (MDTV-CIE) 
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The main motivation for developing the terminal device service platform is to assist 

the implementation of the proposed MDTV service solution. In the proposed Semi-

automatic MDTV service creation process, the XHTML and Java ME have been 

chosen as the presentation technologies and the service is then created in the form of 

XHTML formatted pages by the designer using the semi-automatic creation tool. Thus 

when these service content and applications are received in the form of service 

streams and in turn decoded in the MDTV client side device (e.g. mobile phone), 

there is a requirement of a software “platform” on the client-side that is able to 

retrieve those service contents (audio, video, text, image and etc.) and handle any 

interaction between the service and the user during the consumption process.  

4.2 MDTV TERMINAL SERVICE PLATFORM DISCUSSION 

Research work on the current MDTV service platform solutions were then carried out 

after realizing the aforementioned requirement. Through this research the 

methodology for developing a service platform for the Thesis’s proposed MDTV 

service implementation solution has been realised: 1) select a suitable service 

platform structure type; 2) based on the selected structure, actualize the service 

platform either by modifying the existing software with the similar function and 

structure, or by developing a customized service platform according to the proposal’s 

requirement. 

4.2.1 SELECT THE BROWSER-BASED SERVICE PLATFORM STRUCTURE 

As discussed in the previous chapter, two types of MDTV service platforms are being 

researched and adopted in practice: the generic browser based and the rich media 

based, both of which have their pros and cons. The motivation here, in choosing the 

browser-based platform structure, mainly emanates from the facts as below: 

On one hand a browser-based structure is a more common form of a human-computer 

interface (as it has been successfully applied in the Internet navigation paradigm). A 
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typical browser-based structure software achieves its functionality by rendering the 

received service contents and layout, retrieving those content audio-visually through 

the I/O unit of the hardware, and handling the interactions between the service and the 

consumer during the service consumption. It is more generic, and its supported 

contents are usually based on the group of sophisticated open-standard and open-

source technologies (such as HTML, CSS and etc.) that have been already widely 

adopted in the IT field. It is also capable of supporting the newest technology (such as 

SVG Tiny, SMIL and other rich media components) through extending it. On the 

other hand, the service content based on this platform is independent from the 

platform (similar to the relationship between web services and a web browser), which 

means the creation and the maintenance of the service content can be individually and 

separately implemented. This is one of the key differences when compared with the 

rich media based service platform, where content has to be developed specifically and 

is often tied to these platforms. 

A typical rich media based structure usually has a Rich Media parsing engine as the 

core unit with only a few of assistant technologies such as XML DOM and 

ECMAScript. Unlike, even a browser based platform with rich media enhancement, a 

rich media based service platform is more similar to a simple rich media client where 

there is only support for rendering the content with pre-specified rich media features. 

In other words, there are usually no extra features or technologies being supported 

within such rich media client and the extensibility of the rich media structure is 

relatively limited than a browser-based structure for further modification and update. 

This in turn restricts the service platform from being compatible to the content based 

on other presentation technologies and moreover the whole MDTV service 

implementation system (including service creation, server and rich media client) has 

to be proprietary. 

Thus, a browser based platform solution has better flexibility. Its underlying 

supporting technologies are usually much more than a rich media client, which ensure 
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its compatibility to a wider range of service content formats; its extensible framework 

enable itself to be relatively easier and more open when it comes to the service 

creation and maintenance.  

Regarding the Thesis’s aims, if a browser-based structure is applied for the terminal 

service platform development, the proposed semi-automatic service creation process 

can be supported better:  

1) A browser-based service platform is able to support many of the open standard 

technologies such as XHTML more easily. The XHTML based MDTV service 

contents outputted from the proposed semi-automatic service creation process can 

thus be recognized just as the conventional XHTML pages on the first stage before 

further retrieval and processing, without any additional development to the platform. 

Whilst some extra adjustment needs to be done first to a rich media based service 

platform before it is able to render the XHTML based service. This is because there is 

usually no XHTML parsing engine within a rich media platform structure. Moreover 

the extensibility of a browser-based service platform is better than the rich media 

structure does since the browser-based structure is relatively generic and open for any 

additional features, whilst the rich media structure is too specified for the Rich Media 

technologies to accept any reconstruction. 

2) By using a browser-based service platform, the complexity during the MDTV 

service creation can be reduced. As discussed in Chapter 3 when comparing the 

XHTML and Rich Media, with the help of a browser-based MDTV terminal service 

platform, the XHTML based service content is more adaptive to the different terminal 

device screen sizes and resolutions than Rich Media is. The XHTML based service 

contents can thus be created regardless of the layout differences through various 

screen sizes.  

Our proposed MDTV terminal device service platform therefore employs the 

browser-based structure for its basis and with a series of developments especially 
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incorporating MDTV service features (e.g. support to the proposed “ID Event” 

scripting), this proposal aims at producing an enhanced browser-based MDTV service 

platform.  

4.2.2 SERVICE PLATFORM DEVELOPMENT AND DISCUSSION 

Having selected the suitable structure, the actualization of the service platform is then 

the second step of the work. Basically, there are two main ways of implementing the 

service platform under the browser-based structure: firstly, by modifying existing 

commercial mobile web browsers to be proposal specific; secondly, by developing a 

customized XHTML browser-based service platform. 

As mentioned in the Chapter 2, several commercial MDTV implementation solutions 

have been applied the first approach by modifying their proprietary mobile web 

browser solutions and extending the browser with the relevant MDTV features. 

ACCESS NetFront Browser DTV Profile is a good example where the company 

combines its existing mobile web browser solution NetFront Browser with EXPWAY 

FastESG and supports several MDTV transport standards such as DVB-IPDC and 

OMA-BCAST, so that the NetFront Browser is able to become a MDTV terminal 

service platform [90]. However in our case and research, this approach becomes very 

difficult: since on one hand, we would have to gain access and permission to 

proprietary commercial browser solutions, which is mainly available for commercial 

research projects. On the other hand, we would have to redesign the main runtime 

engine of those commercial browsers and structure to a great extent in order to render 

them more efficient for the proposal’s MDTV service specific requirements based on 

XHTML and “ID Event” scripting. Thus this approach is more suitable for a 

commercial development held by the browser’s authoring entity. 

Having not selected the first approach as the solution, the actualization work moves 

onto the second approach that of developing a new service platform for supporting the 

proposed semi-automatic service creation process. The design requirements to such 
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service platform should be clarified as follow: 

 The platform should be able to render the XHTML based MDTV service content 

outputted from the Thesis’s proposed creation process; 

 The platform should be able to render the MDTV interactive applications based 

on the “ID Event” method and also be able to handle the interactions between the 

user and any interactive applications (including XHTML hyperlink applications 

and “ID Event” based applications) 

Firstly, a software development technology should be chosen. Among various popular 

software development technologies such as C, C++, C# and Java, the Java Micro 

Edition is the most suitable selection according to the aim of Thesis’s proposal as well 

as the relative discussions in Chapter 2 and 3. Moreover the MIDP, the core 

technology of Java ME, has been adopted as the basis technology of the proposed “ID 

Event” interaction presentation method. It has thus formed another key component in 

our proposed system along with the other relevant international standards of the 

XHTML and JSR272. Its native functionalities allow not only the involvement of 

XML, XHTML, SVG and other popular elements, but also the design of any complex 

functional mechanism such as an interactive mechanism for a MDTV service. Its 

extensibility by plugging additional functional JSRs or customizing packages in the 

existing system can enhance our proposed system with the newest features and 

technologies. 

4.2.2.1 XHTML based MDTV service rendering discussion 

The first requirement to the service platform development is that the platform should 

be able to render XHTML service pages. An XHTML rendering mechanism should 

then be developed to achieve this functionality. Based on the relative research work, 

we learnt that the XHTML parsing engine (XHTML parser) is the core unit within the 

rendering mechanism that is in charge of parsing the XHTML source code into 

various MDTV service components such as text, images, video and interactive 

applications. To develop a XHTML parser by using Java ME should therefore be the 
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next step. 

In fact, the XHTML was not the first choice as the visual presentation technology in 

the proposed work at the beginning but HTML. Since XML is mostly employed for 

data storing and transporting, we decided to implement HTML at the early stage of 

our project for our service visual presentation solution due to its popularity. Therefore 

the following work was to parse the HTML contents and the choice then was either to 

program an HTML parser from scratch or to find an open-source parser from a 

relative field/project and modify it according to our needs. However the first approach 

required considerable effort on just the basic function of the service browser trying to 

reinvent the wheel. Moreover based on the research on HTML parser in Java ME, we 

concluded that there is no HTML parser in native Java ME API like it exists in Java 

SE Swing. There are a few third-party HTML parsers out but some of them are 

proprietary and most of the other open-source ones are not very reliable and not 

compatible with different version of Java ME, thus are not suitable for customization 

as our project requires. Finally, having realized that there are native and open-source 

third-party XML parsers available for Java ME, it was considered to develop a HTML 

parser based on a XML parser. But another fact that needs considering is that there is 

a gap between XML and HTML because the syntax of HTML is not as strict as XML 

and a XML parser may have difficulty to read the HTML code in a loose syntax. Thus 

a bridge ought to be found between XML and HTML under this circumstance. 

Eventually, a new version of HTML, the XHTML was found with excellent 

presentation ability as HTML, as well as a strict and clean syntax as XML. By 

aggregating both advantages of XML and HTML, the XHTML became our choice. 

Then the following work was led to develop the XHTML parser by extending the 

XML parser and a methodology was then proposed. As illustrated in Figure 4.2, the 

XHTML stream firstly arrives at the XML parser. Since XHTML has the same format 

as XML, the XML parser is then able to process the stream into XHTML code in 

string format. The XHTML code is then forwarded into a XHTML parser. A “string 
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marker” subsystem in the XHTML parser captures the code and marks the elements 

and their attributes to be recognizable to the “element sorter” subsystem. The 

“element sorter” then traverses the marked XHTML code, pulls out all the elements 

and the attributes and eventually saves them for further parsing operations. 

 

Figure 4.2: The integration mechanism between XML parser and XHTML parser 

With this methodology, we firstly tried the native XML parser in Java ME, the SAX 

Parser as the basis but the negative result led us to a giving-up on it, since on several 

instances the tags and their attributes in the XHTML code couldn’t be matched 

properly when the SAX Parser was working on them. Eventually after a series of 

experiments, we implemented the kXML parser as the basis of the XHTML parser. 

The kXML parser is a small pull parser, specially designed for constrained 

environments such as Applets, Personal Java or MIDP devices. The kXML parser is 

licensed under the BSD license [126].  

There are three fundamental XML parser types: the model, push and pull [125].  

 A model parser reads an entire document and creates a representation of the 

document in memory. Model parsers use significantly more memory intensive 

than other types of parsers; 

 A push parser reads through an entire document. As it encounters various parts of 

the document, it notifies a listener object. (For example the SAX Parser); 

 A pull parser reads a little bit of a document at once. The application drives the 

parser through the document by repeatedly requesting the next piece. (For 

example the kXML parser). 

In contrast to push parsers like the SAX Parser, pull parsers like the kXML parser 

make it possible to model the XML processing routines after the structure of the 
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processed XML document. The events processing in kXML are similar to an 

InputStream in Java ME. If a part of the stream requires special handling, the kXML 

parser can simply be delegated to a specialized method by handing over the parser 

[126]. Besides, a pull parser like kXML requires less memory and process resources 

for a parsing work, which is suitable basis for a XHTML browser on a mobile device 

such as a MDTV featured mobile phone. 

Based on the kXML parser, the XHTML parser is eventually built up by developing a 

mechanism that classifies and organizes the different element tags and attributes 

defined in the XHMTL specification. A slight modification is done to the original 

version of kXML source code due to the cache limitation in each pull parsing action. 

With the XHTML parser, the XHTML rendering mechanism was further developed, 

of which the mechanism structure will be stated in the system instruction section. 

4.2.2.2 Interactive application rendering and handling 

As to the second requirement, the service platform should be able to render and 

handle MDTV interactive applications. As presented in Chapter 3, the proposed semi-

automatic MDTV service creation process has defined the XHTML and “ID Event” 

method as the service presentation technologies and Table 3.4 further illustrates the 

details of the various service components presentation solutions. Regarding to this 

definition, the interactive applications can be divided into two types: the Hyperlink 

Event and the “ID Event”. 

Since all the ordinary MDTV service components including audio/video, text, images, 

and the Hyperlink Event are formatted in the form of XHTML code and are finally 

received, parsed and rendered as the XHTML based service pages. The interactive 

event at this stage which is the Hyperlink Event is also handled as a normal XHTML 

element. For the rest of the service components, which is the “ID Event” according to 

the context, it can be pre-embedded to the XHTML based service page by adding the 

corresponding ID attribute to the target element using the proposed service creation 
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tool. Therefore during the service page being parsed in the service platform, the ID 

Events are also pulled out and registered to their target XHTML components. When 

any ID Event is triggered, it is handled by a special functional manager (will be 

discussed in the next section) in the service platform and the client-server interactivity 

implementation mechanism that consists of the service platform and the server is also 

involved. All the implementation process details will be presented along in the data 

flow in the system instruction section. 

4.3 MDTV SERVER IN THE MDTV-CIE 

A client-server mechanism is a sub-system in a MDTV-SIM model for the 

implementation of the MDTV service. The MDTV server supports the application 

model defined in its underlying middleware/software standards and is responsible for 

monitoring events from the client, catching event requests and processing the requests 

and responding back to the client as requested. The signalling and data exchange 

between the client and the server is what enable the interactive MDTV services. As 

mentioned in the previous chapter, this mechanism is commonly used in MDTV 

standards and other relevant commercial service implementations and we would also 

employ it as the MDTV interactive service implementation structure in our proposed 

system. More precisely, the MDTV-CIE forms the client-server mechanism for 

handling the interactive applications in the proposed system architecture (illustrated in 

Figure 2.23). 

The MDTV server (server side of MDTV-CIE) is a part of the proposed solution 

architecture (refer to Figure 3.6 in section 3.31 Chapter 3) but its full implementation 

is current out of the scope of the Thesis’s objective. Thus the implementation of the 

MDTV server in this chapter is only for complementary and testing purposes. The 

server will be developed with necessary functions only to assist the service platform 

to implement the proposed interactivity implementation mechanism in the MDTV-

CIE. More precisely, the MDTV server will be implemented only as the Interactive 
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Service Managing Sever in the current circumstance. 

4.4 MDTV-CIE SYSTEM ARCHITECTURE 
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Figure 4.3: UML Class Diagram of the terminal device service platform 

The MDTV-CIE system is constructed based on the terminal device service platform 

and the interactive service managing server. The terminal service platform consists of 

several functional classes as shown in Figure 4.3. The interactive service managing 

sever is developed in Java SE and its Class Diagram is illustrated in Figure 4.4. 

 
Figure 4.4: Class Diagram of the interactive service managing server 

As illustrated in Figure 4.3, there are totally 12 classes in the client side service 

platform software system. The “BrowserMIDlet” is the main MIDlet class in charge 

of initializing all the components of the service platform; “HomeCanvas” is the main 

assistant class to the “BrowserMIDlet” for retrieving terminal platform’s UI and all of 

the visual elements in the service pages; the “URLInput” is a complementary UI page 

to the “HomeCanvas”; the “VoteClient” assists the “BrowserMIDlet” by making 

connection with interactive service managing server and enabling the data exchange 

between client and server; the “HomeCanvas” further has four aggregation classes, 

the “HttpPlainparser”, “LayoutEngine”, “VideoHandler” and “IDEventHandler”. The 

“VoteClient” has the “Sender” as the aggregation class. There are also three 

composition classes, the “TAGDictionary”, “TAGFactory” and “IDEventFactory”, 

assisting their corresponding supervising classes. On the server side, there are two 

classes in the interactive service managing server: namely the “VoteServer” and 
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“Sender” (see Figure 4.4). The “VoteServer” is the main class that provides server 

side access for interactive applications and data exchange in the client-server 

architecture. The “Sender” acts as the assistant class to the “VoteServer”. The code 

lengths of all the classes in the MDTV-CIE system are shown in Table 4.1. 

Functional Class Source code length (lines) 
BrowserMIDlet 83 

HomeCanvas 501 

URLInput 42 

VoteClient 108 

Sender 48 

HttpPlainparser 318 

LayoutEngine 151 

VideoHandler 122 

IDEventHandler 52 

IDEventFactory 160 

TAGDictionary 387 

TAGFactory 726 

VoteServer 274 

Sender 48 

Total 3020 

Table 4.1: Code length of all the classes in the MDTV-CIE 

 

 

Figure 4.5: MDTV-CIE class functionality diagram 

All the functionalities of the entire MDTV-CIE software system, as stated in its design 
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requirement, are achieved through these classes and the logic and relationship 

between them are depicted in Figure 4.5. 

Command definition of the class functionality diagram in Figure 4.5 is as follow: 

 Call: The command that requires assisting functions or following processing 

functions from other classes; 

 Search: The command that searches in the reference class and classifies the 

temple results for further processing; 

 Trigger: The command caused by interactive events that triggers a series of 

relevant processing threads; 

 Execute: The command that achieves the requested processing and updates the 

service scene in cooperation with rendering and retrieving block. 

An arrow with solid line represents the direct logic flow and its position in a 

processing lifecycle whiles an arrow with a broken line represents the possible logic 

that could initialize the processing lifecycle at the first stage. 

4.4.1 PROPOSED TERMINAL DEVICE SERVICE PLATFORM IN MDTV-CIE 

As illustrated in Figure 4.6, the proposed service platform GUI has two functional 

components: the service content container and the platform functional buttons. The 

service content container includes all the multimedia components (such as text, image, 

video and interactive applications) on the MDTV service page, displays the 

components in a proper layout so as to be ready for further interactions. By selecting 

the relative platform functional buttons, a user can operate the terminal platform (such 

as navigating to the home page of the service or exiting the platform) in order to 

start/stop consuming a certain MDTV service. Thus with the assistant of these two 

GUI components, the user is able to consume MDTV services through the proposed 

terminal device service platform. 

The software architecture of the service platform consists of six functional sections 
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(as illustrated in Figure 4.5): namely the Browser MIDlet, URL Input, Parsing Block, 

Rendering and Retrieving Block, ID Event Manager and Data Exchange Manager. 

 

Figure 4.6: GUI of the proposed terminal device service platform 

4.4.1.1 The Browser MIDlet 

 

Figure 4.7: Three main portals of MDTV service in the MDTV-CIE 

This is the only executable MIDlet of the service platform subsystem. Unlike DMB-
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MATE that the service platform allows multiple application MIDlets running at the 

same time, each of which contains a certain group of MDTV contents including A/V 

and interactive auxiliary service data. Our proposed service platform allows only one 

MIDlet running in the JVM and all the MDTV services and interactive applications 

will be retrieved and consumed through this MIDlet. Having taken the browser-based 

feature, the required MDTV service will be browsed in a web-like form similar to that 

of Internet web services. 

The Browser MIDlet defines the basic GUI including the basic navigating actions of 

the service platform, initializing the interactive mechanism for data exchange between 

the client and server, preparing the service platform to be ready for further MDTV 

service consumption and user interaction. By selecting the “Default service” or 

entering the Uniformed Resource Identifier (URI) of a certain MDTV service in URL 

Input class, the Browser MIDlet retrieves the required service content through either 

the broadcast network or the interactive network. Theoretically when the public 

version of JSR272 is released, the ESG Viewer, which can be selected in the Browser 

MIDlet menu, will be set up as the main portal for the MDTV service within our 

proposed MDTV service platform. Most of the services will be listed in the ESG for 

consumption. In short, the exiting gateways, “Default service” and the URL Input 

assisting class, and the future ESG Viewer are the main three portals of MDTV 

service in the MDTV-CIE. 

4.4.1.2 The URL Input 

This is an assisting class to the Browser MIDlet and is an optional portal of the 

MDTV service. As there is no ESG viewer currently, we designed this class as a 

temporary portal for the purposes of testing. Once entering the URI in the text field 

and pressing the “URLget” button in the menu, the service platform will send a 

request to the interactive server for a specific service. 
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Figure 4.8: URL Input class 

4.4.1.3 The Rendering and Retrieving Block 

 

Figure 4.9: Rendering and Retrieving Block 

The rendering and retrieving block acts as the processing command sender and the 

service retriever in the MDTV-CIE service platform. It receives the service access 

commands and relevant URIs from the three service portals, sends the service code, 

passing tasks to the Parsing Block. It also sends interactive service events and 

processing tasks to the Parsing Block and the ID Event Manager and receives the 

rendered results. There are three main classes in this block: the Home Canvas, Layout 

Engine and Media Handler. Among these, the Home Canvas is the leading class and 
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the other two are the assisting classes. 

The Home Canvas 

The Home Canvas is the core functional class within the service platform. It consists 

of the 2D Navigation Subsystem and Drawing Subsystem. The 2D Navigation 

Subsystem defines the default menu and layout of the service browsing canvas. It also 

defines the key functions, the navigation logic algorithm and incorporates an event 

detector that captures the service events, classifies and passes them to different event 

handlers according to their attributes. There are different types of service events 

which are the Hyperlink Event that belongs to the native XHTML code, and ID Event 

that is a pre-defined MDTV event for local and remote interactivity, such as voting or 

live data feeding. Due to their different attributes, the Hyperlink Event is passed to the 

Parsing Block for further processing and the ID Event is passed to the ID Event 

Manager. The Drawing Subsystem is in charge of receiving the service content and 

rendering it. It also sorts the content elements including their attributes and paints 

these elements on the service browsing canvas with different pre-defined methods; in 

cooperation with the 2D Navigation Subsystem, it repaints the active component as 

the navigating focus is moved. After the navigation subsystem has detected any 

service events, it passes them over to relevant classes for handling. The Drawing 

Subsystem can also receive the service event rendered results and update the scene in 

the canvas as requested. 

The Layout Engine 

The Layout Engine has been treated as a typical component in a general displaying 

mechanism in various kinds of software such as web-browsers and e-mail clients that 

are concerned with marked-up languages (XML, XHTML, etc.) coded content. 

Classic layout engines for web-browsers are: Trident for Microsoft Internet Explorer, 

Presto for Opera, WebKit for Apple Safari and Google Chrome, and Gecko for 

Mozilla [121] [122] [123] [124]. The main difference between these commercial 
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layout engines and the proposed one, is that commercial layout engines normally 

combine the parsing section and actual layout section together, whilst in our proposed 

solution, these are separated into two sections in terms of their functionality, namely 

the Layout Engine and the Parsing Block. The main reason for this separated form is 

that both of layout function and the parsing function still need further development 

and improvement and it is relatively easier to do modifications to each function when 

they are separated. In future work, these two will be merged together to form a 

functional block or class if there is any technical or update requirement. 

The Layout Engine, Media Handler, Home Canvas, and Parsing Block are the 

functional classes for parsing and displaying XHTML based MDTV services in the 

MDTV-CIE, whereas the Layout Engine defines the formatting rules of the element 

displaying layout in the service browsing canvas such as positioning, margin, etc. The 

Layout Engine in our proposed MDTV service platform is a customized, extensible 

layout engine specially developed and optimized for XHTML based MDTV service 

retrieving in the terminal devices with different screen sizes and resolutions. It assists 

the Drawing Subsystem in the Home Canvas to paint the MDTV service elements 

including text, images, A/V, hyperlink and other interactive events in their 

corresponding place and with regards to the different screen features of the MDTV 

terminal devices. Besides, when there is a CSS file available with the XHTML based 

service code, the Layout Engine has also incorporated an interface for an enhanced 

extension to support a CSS template layout mechanism. 

The Media Handler 

Media Handler is developed based on the JSR135 Mobile Media API. It provides 

access to the media codec in the MDTV terminal device and retrieves the 

Audio/Video event elements in the MDTV service. It also defines the media control 

actions including initialize, play, pause and stop that assist the Home Canvas to 

implement the relevant and required interactivities. 



125 

4.4.1.4 The Parsing Block 

The Parsing Block is responsible for parsing all the MDTV service codes in XHTML 

and the initial parsing results are sent to the Rendering and Retrieving Block to be 

displayed. Like as the Layout Engine, the Parsing Block is also a customized parsing 

system that is specially developed following our proposed service presentation 

method based on XHTML and “ID Event” method. This system consists of an XML 

and XHTML Parser, Tag Dictionary and Tag Factory. 

 

Figure 4.10: Parsing Block class diagram 

The XML and XHTML Parser 

As discussed in the previous section, this XHTML parser is developed based on a 

XML parser called kXML. The XHTML parser is in charge of receiving the XHTML 

code stream through an IP network, parsing the code with the help of the kXML 

parser, sorting and rendering the XHTML code in cooperation with the Tag Dictionary 

and Tag Factory, and finally sending the rendered result to the Home Canvas for 

displaying. The whole process of parsing is explained in the following section. 

The Tag Dictionary 

The Tag Dictionary defines all the element tags and attributes that are defined in the 
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XHTML specification as well as the ID Event element tags and attributes. It also 

defines the element sorting algorithm for triggering different parsing methods in the 

Tag Factory. The Tag Dictionary is an assisting class to the XHTML parser. 

The Tag Factory 

The Tag Factory is an aggregation of the parsing method for different types of 

elements in the XHTML service code including plain text, hyperlink text and image. 

It also contains a database for storing parsing results in order to provide processing 

references to the Rendering and Retrieving Block. The Tag Factory is also an assisting 

class to the XHTML parser. 

Data Flow in the Parsing Block 

As illustrated in Figure 4.11, after receiving the XHTML based MDTV service code, 

the Parsing Block starts parsing them.  

1. The XHTML parser calls the XML parser to initially parse the XHTML code 

referring to the syntax of XML. Since the XHTML has the same format as XML, the 

XHTML code is therefore recognizable to the XML parser. All the elements in the 

XHTML code are pulled out and saved as the draft parsing result along with their 

names and attributes;  

2. The XHTML parser then retrieves this draft parsing result and starts the XHTML 

parsing loop. The draft parsing result is firstly traversed for the first round by the 

XHTML parser and the corresponding tag sorters in the Tag Dictionary are called 

according to the element names during the traversal;  

3. The tag sorter in the Tag Dictionary then refers to its tag name definition and calls 

the relevant parsing methods in the Tag Factory for final parsing;  

4. In the Tag Factory, different methods are called and the attributes are pulled out and 
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matched to their corresponding elements;  

5. Every time when an element is parsed, a logic judgment is performed: if the 

element has child elements, all the children are sent back to the XHTML parser and 

the parsing loop starts again from step 2; if there is no child, the element is saved in 

the element database for rendering process.  

6. The XHTML parsing loop repeats until all the child elements are traversed. The 

element database is updated along with the parsing loop. 

 

Figure 4.11: Data flow diagram in the Parsing Block 

4.4.1.5 The ID Event Manager 

The ID Event Manager handles all the ID Events that are pre-defined MDTV events 
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for local and remote interactivity such as voting or live data feeding. When a 

component with an ID Event in the Home Canvas is selected, the event detector 

passes the ID Event element to the ID Event Manager along with its name and 

attributes for further process. The ID Event Manager consists of two classes: the ID 

Event Handler and the ID Event Factory. The ID Event Handler receives ID Event 

elements and calls the event handling method in the ID Event Factory. The ID Event 

Factory defines all the MDTV interactive application execution methods that are 

supported by the service platform. Different application execution methods are called 

according to the ID Event element name and the event execution result are passed 

back to the Home Canvas for relevant scene update. In case there is a need of data 

exchange between the service platform and the interactive service managing server in 

an interactive application, the ID Event Factory calls the Data Exchange Manager for 

assistance. 

 

Figure 4.12: ID Event Manager 

4.4.1.6 The Data Exchange Manager 

The Data Exchange Manager handles the data exchange of an ID Event such as voting 

and live data feeding. It consists of the Data Exchange Client and Sender. When the 

data exchange is required, the Data Exchange Client sets up a connection between 

the interactive service managing server and itself through the MDTV service return 



129 

channel. The Sender is called for sending the interactive request from the client to the 

server. The client passes the replying data back to the Home Canvas for scene update 

like any other ID Events. 

 
Figure 4.13: Data Exchange Manager 

4.4.2 THE INTERACTIVE SERVICE MANAGING SERVER IN MDTV-CIE 

A fully implemented MDTV server is a typical element in the MDTV service as a 

subset provided by the MDTV Service Provider (MSP) through the return channel. 

This server provides the server platform for most of the MDTV interactive services 

such as voting, online gaming, live data feeding, online shopping, user customized 

personal profile, service content download or user-generated content uploading. 

Moreover, the server usually has the customer account administration system that 

processes all customer requests, manages the customer profiles, and provides storage 

for customized contents or preference as well as the billing system. Besides it also in 

charge of transmitting updated data to the client service platform for service 

maintenance and update issues like the ESG update, service platform update. Our 

proposed Interactive Service Managing Server is an initial version of such MDTV 

server with fundamental functions including connection setup, and data exchange and 

a storage mechanism. It is designed as an extensible platform that allows further 

enhancement for different service applications in the future. Currently, the Data 
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Exchange Server is the core functional class in the managing server. 

 
Figure 4.14: Interactive service managing server 

4.4.2.1 The Data Exchange Server 

 

Figure 4.15: The Data Exchange Server 

The Data Exchange Server defines the methods for connection setup and data 

exchange between the MDTV service server and client. It is developed in Java SE and 

designed in the form of a console platform as illustrated in Figure 4.15. When the 

server starts, it monitors any connection requirements from the client service platform 

through the MDTV service return channel and once a requirement is received, an IP 

connection is setup. Through the IP channel, the Data Exchange Server is able to 
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communicate with the Data Exchange Manager in the client service platform for 

handling any ID Event and in turn achieving the MDTV interactive service. Moreover, 

there is a database at the back-end of the Data Exchange Server for temporary or 

long-term data storage such as voting statistic results and user personal profiles. 

4.4.3 SERVICE IMPLEMENTATION DATA FLOW IN MDTV-CIE 

Regarding the service implementation, there are mainly seven user cases during the 

implementation process (as illustrated in Figure 4.16). Moreover within this seven 

user cases, the MDTV service application experiences three statuses: reception and 

storage, running, and updating. 

 

Figure 4.16: UML User Case Diagram of service implementation in MDTV-CIE 

Service application reception and storage in MDTV-CIE 

Once a service URI requirement is sent from the service portal such as the Browser 

MIDlet or URL Input to the MDTV server, or a service option is selected in the ESG, 



132 

the required service application is received in the form of XHTML source code from 

the MDTV server and stored temporarily in the terminal device memory. The service 

application XHTML source code can either be synchronized with the MDTV 

broadcasting A/V stream or can be downloaded from the MDTV server such as the 

Interactive service managing server. 

Service application running in MDTV-CIE 

Then the service portal calls the Parsing Block to parse the XHTML source code and 

the service XHTML source code is parsed into XHTML elements and saved in the 

element database for presentation on the screen. The Rendering and Retrieving Block 

then traverses the element database and paints all the XHTML components including 

text, image, and interactive events along with A/V on the screen scene.  

 

Figure 4.17: UML Data Flow Diagram in the MDTV-CIE 

Through the I/O units such as monitor, keyboard or pointer in the terminal device, 

users can consume the MDTV service by watching the A/V content, reading the 

auxiliary text and image information and interacting with the interactive components 

or applications provided within the service platform. The local interactivity is handled 
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by the 2D Navigation subsystem of the service platform whilst once a remote 

interactive component or application is selected or activated, a logic judgment is 

performed by the event detector in the Home Canvas. The plain Hyperlink Event is 

passed back to the service portal and the service portal sends a relevant URI 

requirement to the Interactive service managing server for further service contents; ID 

Event will be passed to the ID Event Manager where another logic judgment is 

performed to decide whether the event needs a data exchange process. If the event is a 

local application, the ID Event Manager will call the relative program to implement 

the event; if the event requires a data exchange process, the ID Event Manager will 

call the Data Exchange Manager for assistance, which is achieved through the 

communication between the Data Exchange Server subset in the Interactive service 

managing server and the Data Exchange Manager on the service platform. All the ID 

Event rendering results are then passed back to the Rendering and Retrieving Block 

for relevant service scene update such as a voting confirmation message and a live 

data feeding update. 

When the ID Events are passed to the ID Event Manager, the manager will search in 

itself for the event programs corresponding to the event ID. These event programs are 

the applications developed in Java ME especially for the MDTV interactive service, 

and by using our proposed service creation tool, those programs are then either pre-

embedded in the terminal device or downloaded to service platform according to the 

actual MDTV service requirements.  

Service application updating in MDTV-CIE 

The MDTV service application based on the XHTML and ID Event model can be 

updated by sending regular requirements to the Interactive service managing server 

for the latest version. The ID Event Manager in the terminal device service platform is 

updated at the same time if necessary for any additional interactive application 

functionality. The update of the ID Event Manager may require an update process to 

the entire terminal device platform, which may be achieved through either the MDTV 
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service broadcasting or the MDTV return channel. 

4.4.4 TEST THE PROPOSED SERVICE PLATFORM IN NOKIA N95 

Having developed the terminal device service platform through the Table PC based 

emulator, it is necessary to run the software in a real-device environment to assess its 

performance and functionality in practice. 

As one of the biggest mobile phone manufacturers in the world, Nokia has been 

leading the development position of mobile phones with the latest technologies being 

deployed. As the Java ME environment has become popular, Nokia turned out to be 

one of the first few brands that started providing support to it. By now, this support 

has been well developed and deployed among in Nokia series mobile phones. Thus it 

is considered to be suitable and necessary for designers to test any software in Java 

ME within such hardware/software environment. Nokia N95 is a smartphone as part 

of their Nseries portable devices. It was released in 2007 and has been a successful 

product in the nowadays’ mobile phones market with excellent performance and 

powerful functions. Its support to Java ME is also a default configuration and the 

supported Java ME version is MIDP 2.0 and CLDC 1.1. Regarding all these 

aforementioned advantages of Nokia N95, we thus chose it as the real-device test 

platform. 

A validation test of the proposed MDTV terminal service platform has been 

conducted on the Nokia N95 handset. The testing has been conducted locally on the 

mobile phone with all services being accessed locally from the handset file system 

rather than accessing them from the server. The purpose of such test is to run the 

proposed service platform in a real hardware and software environment and evaluate 

the software in terms of performance. The test cases for the interactive applications of 

the service pages that require client/server connection were excluded in this stage. 

Table 4.2 shows the test case steps and the corresponding screenshots. 
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Test on Nokia N95 

Case Design Screenshots Testing 

result 

Step1: Start up 

the service 

platform. 

          
Figure 4.18, 4.19: Main UI of the software 

successful 

Step2: browse 

the service 

pages by 

pressing the 

corresponding 

hyperlinks 

          
Figure 4.20, 4.21: Service pages displayed in the platform 

 

 
Figure 4.22: Service platform running after the screen is switched 

to landscape mode 

Succeeded in 

loading the 

pages but 

failed on 

arranging the 

page layout 

properly. 
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Step3: play and 

stop the video 

program. 

           
Figure 4.23: play and stop video program 

Succeeded in 

playing and 

stopping the 

video but 

failed on 

resizing the 

video to fit the 

service page. 

Testing results evaluation 

The test case has been successfully executed on the Nokia N95 handset. All the result outputs are as 

expected. Issues and errors occurred on two aspects: 

 

1. The duration that the platform has spent on loading the service pages is much longer (about 2 

minutes per page) than it spends in the Java ME emulator on the PC (about 1 second per page). The 

reason of this is considered to be the execution efficiency of the software source code in the N95 

handset environment. Another important reason is because that the security permission of the software 

is low in the handset as the program is not signed and registered. This caused a confirmation message 

popped every time the terminal platform intended to access the local file system, which result in extra 

time spent during the parsing process. 

2. Two errors occurred due to bugs in the layout engine of the service platform.  

Table 4.2: Validation testing of the proposed service platform on the Nokia N95 handset 

4.4.5 COMPARISON AND DISCUSSION 

 



137 

Figure 4.24: Functionality of MDTV-CIE 

The implementation of the MDTV-CIE assists the proposed semi-automatic service 

creation process by rendering the MDTV interactive service created based on the 

XHTML and “ID Event” presentation method through the proposed creation tool; it 

offers the user a platform to interact and consume such MDTV service. Moreover by 

doing this, it further completes the proposed MDTV service creation and consumption 

system as a universal and improved MDTV implementation solution. Regarding to the 

functionality, although the MDTV-CIE components do not perform the functions as 

comprehensively as those relative commercial solutions mentioned in Chapter 2, there 

are still advantages and potential benefits when implementing it in the entire proposed 

service creation and consumption software system:  

Most of the MDTV standards as well as commercial solutions have employed the 

ECMAScript as the basis of their interaction handling mechanism during the service 

creation and they use different technologies such as Rich Media or C during the 

terminal platform development. In contrast in the proposed solution, the service 

platform is developed by using the same technology, the Java ME, as the interaction 

handling method called “ID Event”. At the same time, the proposed solution can 

implement most of the MDTV services and applications as those commercial 

solutions do (will be discussed in Chapter 5). In this case, fewer technologies are used 

whilst the functionality remains the same. This can further result in the relative easier 

service creation and the architecture of the service platform can be relatively simpler 

to design and implement. 

Moreover, the proposed service platform is specially design according to the MDTV 

service implementation requirement and its architecture is simpler than those 

commercial service platforms based on their web browser products. The maintenance 

and update can thus be easier. Moreover, the functionality of such customized service 

platform focuses mostly on what the MDTV service concerns and thus the execution 

of MDTV service/application can be more efficient than aforementioned browser-
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based commercial solutions. 

Summary: 

This chapter further presents the client implementation environment of the proposed 

MDTV service creation and consumption system. As another core component in the 

proposed system, the terminal device service platform has been developed with a 

fully-customized browser-based structure according to the proposal’s requirement. A 

test of such service platform in a real-device environment is conducted after the 

completion of the development work. A few advantages and potential benefits of the 

proposed service platform are briefly discussed in the end when compared with other 

current solutions. 
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5. CHAPTER 5: TEST AND EVALUATION 

5.1  INTRODUCTION AND MOTIVATION 

Having presented and discussed the implementation of the proposed solution for 

MDTV service creation and implementation in chapter 3 and 4, this chapter tends to 

follow the MDTV-SPM model (refer to Fig 2.22) and a software testing procedure to 

conduct a functionality and validation evaluation on our proposed components 

including the semi-automatic service creation tool and the terminal device service 

platform. The motivation for this testing procedure is to evaluate whether each of the 

proposed components is able to work well as integrated software system, whether 

each of the proposed software components is able to achieve their functions, and 

whether these functionalities meet the aim and requirement of the proposed solution. 

Also by conducting this testing procedure, we intend to gain useful test results as the 

reference for further modification and enhancement to the target software in the future 

work. 

However, since we have proposed these two software components only at a prototype 

stage, which mainly focus on the implementation of the basic functionalities 

according to the design requirements, a series of testing cases will be designed and 

implemented only for the qualitative evaluation of the software performance on their 

corresponding functions rather than applying it for every aspect of the software testing 

technologies. The test procedures to be conducted in this chapter aim mostly at 

verifying and validating the target software on the initial level and evaluating them to 

be usable regarding to the requirement of the propose solution. Moreover in the future 

work, when modifications and improvements are done to the proposed components 

according to the testing results gained from this chapter, the comparison testing 

between the proposed components and the relative commercial solutions, the in-depth 

quantitative testing and other necessary testing procedures will then be further 

conducted. 
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Therefore, the aims of this testing section can be further stated as follow: 

 Test the semi-automatic service creation tool to evaluate: if the target software is 

able to work properly as a integrated software without major errors; if the target 

software is able to achieve its functionality to meet its design requirement and 

eventually enable the proposed semi-automatic MDTV service creation process. 

 Testing the terminal device service platform to evaluate: if the target software is 

able to work properly as a integer without major error; if the target software is 

able to achieve its functionality to meet its design requirement and eventually 

render the MDTV interactive service page based on XHTML and “ID Event” 

presentation method. 

 Testing the semi-automatic service creation tool and the terminal service platform 

in the proposed MDTV service creation and consumption system (illustrated in 

Figure 2.23) to evaluate: if these two software components are able to work 

together properly in the system without major error; if these two software 

components can further enable the proposed system to achieve the aim of the 

Thesis. 

5.2 TESTING METHODOLOGY 

According to the software testing principles presented in Chapter 2 and the reference 

software testing level flow diagram illustrated in Figure 2.20, the testing process for 

each software target will start from the component testing level and will be completed 

with the acceptance testing. On each level, the testing case will be designed according 

to the recommended Black-box – White-box testing strategy. Besides, the integration 

testing and the system testing will be conducted manually rather than automatically 

due to the complexity of the proposed system prototype. In short, three test sub-

sections are included according to the test aim: 1) software testing to semi-automatic 

service creation tool; 2) software testing to terminal device service platform; 3) 

integration testing to both of the software targets in the proposed system. 
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5.2.1 TEST AND EMULATION ENVIRONMENT 

All the testing processes are to be implemented within a Desktop PC environment, 

where the hardware and the software configurations are listed in Table 5.1. The 

Eclipse Integrated Development Environment (IDE) v3.30 is the main development 

environment for both of the proposed software. By importing necessary Software 

Development Kit (SDK) such as Java SE and Java ME SDK in our case, developers 

can use this IDE to develop the target software applications visually and conveniently. 

The Eclipse IDE v3.30 is thus chosen as the test execution environment throughout 

the entire test process of this chapter. 

Within the Eclipse IDE, the semi-automatic service creation tool is developed with 

Java SE Development Kit and thus it will be run in Java Virtual Machine (JVM) 

included in jdk 1.6.0 during the testing procedure. Whilst for the terminal device 

service platform that is developed with Java ME Development Kit, an emulator is 

required besides the runtime environment. As a Java ME program usually runs within 

a portable device environment that has different hardware and software configuration 

from a Desktop PC. Thus in order to develop and test a Java ME software application 

in a Desktop PC, the emulator must be used to simulate the hardware and software 

environment of a portable device so as to able to run the application in it and evaluate 

how well the application has been designed. Therefore the emulator included in the 

Java WTK V2.5.2 is utilized to run the terminal device service platform during its 

relevant testing procedures. 

 
Test sections 

Test on semi-automatic 

service creation tool 

Test on terminal device service 

platform 

Hardware 
CPU Intel Pentium Dual-core E5200 2.5GHz 

Memory 2GB 

Software 

Operating System Windows XP sp3; Windows 7 

Runtime Environment Java SE Runtime Environment jre v6 

Development Kit 
Java SE Development Kit jdk 

1.6.0 update 20 

Java ME platform Software 

Development Kit v3.0; 

Java Wireless Toolkit for CLDC 

v2.5.2_01 

Integrated Development Eclipse IDE v3.30 
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Environment 

Assistant software Windows Internet Explorer 7; Windows Wordpad 

Table 5.1: Testing and emulation environment 

5.2.2 TEST CASE DESIGN OF SEMI-AUTOMATIC SERVICE CREATION TOOL 

The aims of the test to the semi-automatic service creation tool are:  

 To evaluate if the target software is able to work properly as a integer without 

major error;  

 To evaluate if the target software is able to achieve its functionality that the 

designer can use it to manipulate and create the MDTV interactive service page 

based on XHTML and “ID Event” presentation method semi-automatically;  

 To evaluate if the target software can enable the proposed semi-automatic MDTV 

service creation process by outputting the XHTML and “ID Event” based MDTV 

interactive service page as well as a new version of the corresponding functional 

class for the proposed terminal device service platform. 

To implement these aims, a series of test cases along with the testing data are then 

designed for different testing levels from component testing to system testing and 

different testing methods including Black-box testing, White-box testing and GUI 

testing. 

 

Figure 5.1: Class Components of the semi-automatic service creation tool 

Testing data  

Here are all the service pages, which will be used during the testing cases on different 
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testing levels (All the figures are the screenshots of the testing service pages viewed 

through Microsoft Internet Explorer 7): 
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Figure 5.2: Testpage1.html: pure plain text page. 

Figure 5.3: Testpage2.html: pure image page. 

Figure 5.4: Testpage3.html: pure hyperlink page. 

Figure 5.5: Testpage4.html: mixed components page (text, image and hyperlink). 

Figure 5.6: Testpage5.html: test page for testing interactive applications. 

Figure 5.7: Testpage6.html: service homepage  

Figure 5.8: Testpage61.html: service portal. 

Figure 5.9: Testpage7.html: multimedia service page with video 

Figure 5.10: Testpage8.html: program guide 

“Testpage5.html” is a plain XHTML service page without any interactive 

application added on in this testing section. 

Component testing 

Since the proposed semi-automatic service creation tool was designed mainly for the 

visual editing of content with most of its functions being implemented through a GUI, 

this software system was thus developed according to its GUI structure. As shown in 

Figure 5.2, the service creation tool system consists of 9 class components: the 

MainFrame, CentrePane, LeftPane, RightPane and the SouthPane as the GUI 

elements and the CloseIcon, IDHandler, Database and TreeTable as the assisting 

components. Since the component testing work on these classes has been done while 

they were being programmed, it can be concluded that the design requirement 

specification (shown in Table 5.2) of the proposed software system has been met as 

expected. 

Class Components Design Requirement 

MainFrame 

(GUI component) 

This is the main software frame that holds all the other GUI components; 

has a menu and includes hotkeys to open and save the target file. 

CentrePane 

(GUI component) 

This is the main editing area that displays a service page as well as its 

source code; it allows a multiple-page display mode; it allows 

conventional page editing and interactive MDTV service configuration; 
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it allows a “drag-and-drop” function from the RightPane. 

CloseIcon 
It assists the CentrePane by providing visual feedback of the “close tab” 

button. 

IDHandler 

It assists the CentrePane by associating with the RightPane to help 

achieve the interactive MDTV service configuration at the back-end; it 

allows the necessary parameter to be input through a pop-up dialogue 

window. 

LeftPane 

(GUI component) 

This is the main project file system that displays all the project files and 

folders in a list format; it allows the use of double-click to open the 

target file; also the file system allows conventional navigation (select, go 

up and down on the list, go into sub directory, etc.) and real-time/ 

manual update. 

RightPane 

(GUI component) 

This is the main interactive application database that displays all the 

available MDTV interactive applications in a list format; All the 

applications in the list are selectable for further operations; it also 

supports display synchronization with Database when there is any 

change in the Database;  the list allows “drag-and-drop” to the 

CentrePane. 

Database 
It assists the RightPane by storing all the available interactive 

application source code. It has an extension function to allow more new 

applications to be stored. 

SouthPane 

(GUI component) 

This is the main service page parameter list that displays all the elements 

and their corresponding attributes in the service page source code; it 

supports display synchronization with the CentrePane when switching 

between different pages as well as when making any modification to the 

page. 

TreeTable 
It assists the SouthPane by providing a modelling mechanism for the 

element display in the list; it provides connection with LeftPane and the 

CentrePane for file synchronization.  

Table 5.2: Design requirement specification for the semi-automatic service creation tool 

Integration testing 

In this section, we chose “bottom-up integration”, which starts integration and testing 

from the lowest level of the system to the upper level, as the integration method. In 

our test case, all the lowest level class components, depicted in Figure 5.1, were then 

integrated with the upper level classes into functional sub-systems and the relevant 

testing procedure was also conducted during the development process. As illustrated 

in Figure 5.1, all the functional sub-systems are: the CentrePane sub-system, the 

LeftPane, the RightPane sub-system, and the SouthPane sub-system. All these sub-

systems will be integrated with the MainFrame to form the complete service creation 

tool system. On this integration level, we design the test cases mainly focusing on the 

interfacing between the different sub systems (shown in Figure 5.11) to ensure they 

can work together properly. The testing cases are designed and listed in Table 5.3. 
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Figure 5.11: Interfaces between sub systems 

 

Testing cases Input Expected output 

Interface 1: 

MainFrame – 

CentrePane 

1. Select “File – Open 

XHTML File…” to get a 

pop-up window, select the 

target XHTML (.html) file 

in the window to open the 

target service page; 

2. Repeat the above 

operation to open anther 

service page. 

1. Service page appears in the CentrePane 

upper frame with all the elements (text, 

images and hyperlinks) displayed; the 

corresponding source code appears in the 

lower frame of CentrePane; A title tab is 

integrated on the top of editing field with 

the target page name on; 

2. When more than one page is displayed, 

they overlap into a tab list format. 

Interface 2: 

MainFrame – SouthPane 

1. Select “File – Open 

XHTML File…” to get a 

pop-up window, select the 

target XHTML (.html) file 

in the window to open the 

target service page; 

2. Repeat the above 

operation to open anther 

service page. 

1. The elements along with their 

attributes’ names and values of the target 

service page source code appear in the 

SouthPane in form of table; A title tab is 

integrated on the top of the editing field 

with the target page name on;  

2. When more than one page is displayed, 

they overlap into a tab list format. 

Interface 3: 

LeftPane – CentrePane 

1. Double click on the target 

XHTML file name in the 

project file list within 

LeftPane to open the target 

service page;  

2. Repeat the above 

operation to open anther 

service page. 

1. The service page appears in the 

CentrePane upper frame with all the 

elements (text, images and hyperlinks) 

displayed; the corresponding source code 

appear in the lower frame of CentrePane; 

2. A title tab is integrated on the top of 

editing field with the target page name on; 

When more than one page is displayed, 

they overlap into a tab list format. 

Interface 4: 

LeftPane – SouthPane 

1. Double click on the target 

XHTML file name in the 

project file list within 

LeftPane to open the target 

service page;  

Repeat the above operation 

to open anther service page. 

2. The elements along with their 

attributes’ names and values of the target 

service page source code appear in the 

SouthPane in form of table; A title tab is 

integrated on the top of editing field with 

the target page name on;  

When more than one page is displayed, 

they overlap into a tab list format. 

Interface 5: 

MainFrame - 

1. Press “Element Mode” 

button on the hotkey bar in 

1. The source code display frame in the 

CentrePane changes from “text mode” 
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CentrePane the MainFrame to enable the 

“element modification 

mode”; 

2. Press “Element Mode” 

button again to disable the 

“element modification 

mode”. 

that displays source code in plain text to 

“list mode” that displays source code in 

an element list format so as to be prepared 

for interfacing with the RightPane; 

2. The source code display frame in the 

CentrePane changes back from “list 

mode” to “text mode” for normal text 

editing.  

Interface 6: 

RightPane – CentrePane 

1. Switch the CentrePane to 

“list mode”; 

2. Select “Stopvideo.java” 

in the interactive application 

list in RightPane; drag the 

selected application and 

move the mouse into the 

source code display frame in 

CentrePane; release the 

mouse left key to drop the 

application on the target 

element in the source code 

element list; 

3. Switch the CentrePane 

back to “text mode”; 

1. The source code display frame of the 

CentrePane changes from “text mode” to 

“list mode; 

2. A dialogue window pops up and asks 

for inputting relevant parameter; After the 

parameter is input, there is a new “id” 

attribute adding to the target element with 

a special interactive application id; 

3. The new “id” attribute remains the 

same in text when the CentrePane 

changes back from “list mode” to “text 

mode”. 

Interface 7: 

CentrePane – SouthPane 

Switch between different 

service pages by selecting 

corresponding tab in the tab 

list on the top of CentrePane 

The corresponding parameter table is 

shown on the front in the SouthPane 

while different target pages are selected in 

the CentrePane. 

Table 5.3: Integration testing level test case design 

System testing 

After the sub components have passed the integration testing, system testing is 

necessary to ensure the software design requirements and functionality requirements 

are met. Therefore according to the Black-box – White-box testing case design 

strategy, the system testing has been designed to be conducted in two sections: 

a) Black-box testing 

We choose Equivalence partitioning as the black-box testing method. The 

functionality requirement of the proposed service creation tool is that the tool is able 

to configure and semi-automatically create the MDTV interactive service pages that 

follow our proposed XHTML and “ID Event” presentation method. Therefore there 

are mainly three elements on an XHTML service page that are available for adding 

interactive applications to. These are: plain text, images, and hyperlinks. Thus we 

divide the input into four partitions: pure plain text XHTML page, pure image 
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XHTML page, pure hyperlink XHTML page and XHTML page with all three types of 

elements mixed. The testing case design is shown in Table 5.4, with the purpose of 

testing whether the functionality requirement is met. 

 

Figure 5.12: Black-box testing 

 

Case 

No. 

Equivalence partitioning 

input 

Expected output 

1 
Pure plain text XHTML page 

(testpage1.html) 

The pure plain text MDTV interactive service page is 

based on the XHTML and “ID Event” presentation 

method; Reconfigured Functional class of the terminal 

service platform as the second output. 

2 
Pure image XHTML page 

(testpage2.html) 

The pure image MDTV interactive service page is 

based on the XHTML and “ID Event” presentation 

method; Reconfigured Functional class of the terminal 

service platform as the second output. 

3 
Pure hyperlink XHTML page 

(testpage3.html) 

The pure hyperlink MDTV interactive service page is 

based on the XHTML and “ID Event” presentation 

method; Reconfigured Functional class of the terminal 

service platform as the second output. 

4 
XHTML page with all three types 

of elements mixed (testpage4.html) 

The integrated MDTV interactive service page is 

based on the XHTML and “ID Event” presentation 

method; Reconfigured Functional class of the terminal 

service platform as the second output. 

Table 5.4: System testing case design by using a Black-box method 

b) White-box testing 

As the design requirements to the components of the proposed service creation tool 

are all listed in Table 5.2, we can thus use the White-box testing method to test 

whether every component or sub-system has met the corresponding design 



149 

requirement. Here we choose Path testing as main white-boxing testing method and 

Loop testing as the secondary testing methods. Since the tool is mainly utilised for 

service creation, we thus choose the service creation process as the main logic path 

for the path testing. A MDTV interactive service page creation requirement has been 

defined firstly (see Table 5.5 and Figure 5.14) and the test case design can be also 

found in Table 5.6. 

 

Figure 5.13: White-box testing 

MDTV interactive service page creation requirement (for testing purpose) 
1. Add “play video” interactive application to Element 1 on “testpage5.html” service page; 

2. Add “stop video” interactive application to Element 2 on “testpage5.html” service page; 

3. Add “request for real time data feed” interactive application to Element 3 on “testpage5.html” 

service page 

4. Add “vote good” interactive application to Element 4 on “testpage5.html” service page 

5. Add “vote bad” interactive application to Element 5 on “testpage5.html” service page 

6. Add “request for vote report” interactive application to Element 6 on “testpage5.html” service page 

Table 5.5: MDTV interactive service page creation requirements (for all the explanations to 

the supporting interactive applications refer to Figure 3.12 in Chapter 3) 
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Figure 5.14: White-box testing requirement 

 

Case 

No. 
Testing Case 

Design 

Requirement 
Expected Implementation 

1 

1. Select “File – Open 

XHTML File…” to get a 

pop-up window, select the 

“testpage5.html” file in the 

window to open the test 

service page; 

2. Double click on the 

“testpage6.html” in the 

project file list within 

LeftPane to open the target 

service page; 

Import XHTML 

service page file. 

1. When selecting “File – Open 

XHTML File…”, a pop-up window 

will appear in the top middle within 

the MainFrame; The tester can 

navigate in the file system within the 

window; when selecting the 

“testpage5.html” file in the window, all 

the relevant content will appear in the 

CentrePane and SouthPane. 

2. The tester can perform conventional 

navigation (up, down, select, go into 

deep folder and etc.) in the project file 

list within the LeftPane; when the left 

mouse button is double clicked on 

“testpage6.html” in the project file list, 

all the relevant content will appear in 

the CentrePane and SouthPane. 

2 

Monitor CentrePane and 

SouthPane while the tester is 

executing the Testing Case 

No.1  

1. Display XHTML 

service page with 

the layout;  

2. Display the 

service page source 

code;  

3. The CentrePane 

1. “testpage5.html” or 

“testpage6.html” XHTML service 

pages appear in the form of web-like 

page with the layout shown in the 

upper frame of CentrePane; 

2. “testpage5.html” or 

“testpage6.html” XHTML service 
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supports multiple 

tab displays that 

each service page’s 

content is 

displayed in a tab 

pane and the tab 

panes overlap 

when there is more 

than one; 

4. Display Service 

page elements and 

attributes in a table; 

5. The SouthPane 

supports multiple 

tab displays that 

each service page’s 

content is 

displayed in a tab 

pane and the tab 

panes overlap 

when there is more 

than one. 

pages’ source code appear in the form 

of plain text in the lower frame of 

CentrePane; 

3. When “testpage5.html” and 

“testpage6.html” are both opened, the 

contents of each page appear in one 

individual tab pane (upper frame for 

the page and lower frame for the 

code); each tab pane has a 

corresponding title and a “close icon” 

and these two tab panes overlap and 

can be switched over; 

4. Elements and attributes of  

“testpage5.html” XHTML service 

pages are displayed in form of table 

list in the SouthPane and so is 

“testpage6.html” service page; 

5. When “testpage5.html” and 

“testpage6.html” are both opened, the 

contents of each page appear in one 

individual tab pane (elements and 

attributes are formed in a table list in 

the tab pane); each tab pane has a 

corresponding title and a “close icon” 

and these two tab panes overlap and 

can be switched over; 

3 

1. Add a new text element 

“new text” with attributes to 

“testpage5.html” from its 

source code in the 

CentrePane; 

2. Modify an existing 

hyperlink element in 

“testpage5.html” by 

changing the name and 

“href” attribute value in its 

source code in the 

CentrePane; 

3. Delete an existing image 

element in “testpage6.html” 

through its source code in 

the CentrePane 

Manipulate 

XHTML page: 

conventional web-

like page editing. 

1. In “testpage5.html” tab pane, the 

screen updates with “new text” 

elements appearing under the default 

layout in the upper frame; 

2. In “testpage5.html” tab pane, the 

screen updates with the target 

hyperlink’s name modified in the 

upper frame; When loading the page 

with Internet Explorer, the hyperlink’s 

name is different from the original 

version and leads to a different link 

page from the original version when 

clicking on the hyperlink; 

3. In “testpage6.html” tab pane, the 

screen updates with the target image 

object disappearing in the upper frame. 

4 

1. Switch the CentrePane to 

“list mode” by pressing the 

“element mode” button on 

the hotkey bar of the 

MainFrame; 

2. Select “Stopvideo.java” in 

the interactive application 

list in the RightPane; drag 

the selected application and 

move the mouse into the 

source code display frame of 

“testpage5.html” tab pane in 

the CentrePane; release the 

mouse left key to drop the 

application on Element 1 in 

the source code element list; 

3. Repeat Step 2 to add 

“PlayVideo.java” interactive 

Advanced 

manipulation to 

XHTML service 

page: Semi-

automatic 

configuration of 

interactive service 

application on UI 

components. 

1. The source code display frame in the 

CentrePane changes from “text mode” 

that displays source code in plain text 

to “list mode” that displays source 

code in an element list format so as to 

be prepared for interactive application 

configuration; 

2. A dialogue window pops up and 

asks for inputting the relevant 

parameter; After the parameter is input, 

there is a new “id” attribute added to 

the Element 1 with a special interactive 

application id; 

3. Same process is repeated for 

Element 2; 

4. Same process is repeated for 

Element 3; 

5. Same process is repeated for 
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application to Element 2 in 

“testpage5.html” source 

code (loop testing); 

4. Repeat Step 3 to add 

“Realtimedata.java” 

interactive application to 

Element 2 in 

“testpage5.html” source 

code (loop testing); 

5. Repeat Step 2 to add 

“voteclient.java” interactive 

application to Element 4, 5 

in “testpage5.html” source 

code (loop testing); 

6. Repeat Step 2 to add 

“votereport.java” interactive 

application to Element 6 in 

“testpage5.html” source 

code (loop testing); 

7. Switch the CentrePane 

back to “text mode” by 

pressing “element mode” 

button on the hotkey bar of 

MainFrame again; 

Element 4, 5; 

6. Same process is repeated for 

Element 6; 

7. The source code display frame in the 

CentrePane changes back from “list 

mode” to “text mode” for normal text 

editing; all the newly-added “id” 

attributes of the Element 1- 6 remain 

the same. 

5 

1. Press the “save” button on 

the hotkey bar in the 

MainFrame when 

“testpage5.html” tab pane is 

on top; 

2. Press the “save” button on 

the hotkey bar in the 

MainFrame when 

“testpage6.html” tab pane is 

on top; 

Save any 

modifications to 

the XHTML 

service page file 

1. All the modifications to 

“testpage5.html” service page are 

saved. Confirmation on saved files 

refers to testing case No.6 and 7; 

2. All the modifications to 

“testpage6.html” service page are 

saved. Confirmation on saved files 

refers to testing case No.6 and 7; 

6 

1. Open file 

“testpage5.html” using 

Windows Notepad and 

check the code according to 

the proposed XHTML and 

“ID Event” presentation 

method and “MDTV 

interactive service page 

creation requirement” in 

Table 5.5; 

2. Load “testpage5.html” 

with the proposed terminal 

service platform and check 

if it can be rendered and if 

all the interactive 

applications work as well as 

the creation requirement; 

3. Open file 

“testpage6.html” with 

Windows Notepad and 

check the code according to 

the proposed XHTML and 

“ID Event” presentation 

method; 

4. Load “testpage6.html” 

with the proposed terminal 

Output MDTV 

interactive service 

page based on the 

XHTML and “ID 

Event” presentation 

method. 

1. The source code of “testpage5.html” 

has been modified according to the 

“MDTV interactive service page 

creation requirement” and the format 

of the source code matches XHTML 

and “ID Event” presentation method;  

2. Functionality testing to all the 

interactive applications refers to the 

testing procedure of the proposed 

terminal service platform in the next 

section; 

3.The source code of “testpage6.html” 

matches XHTML and “ID Event” 

presentation method;  

4. Functionality testing on 

“testpage6.html” service page refers to 

the testing procedure of the proposed 

terminal service platform in the next 

section; 
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service platform and check 

if it can be rendered. 

7 

1. Search for a file named 

“IDEventFactory.java”  in 

the pre-defined output 

folder; 

2. Open the file with 

Windows Notepad and 

check the source code 

according to the XHTML 

and “ID Event” presentation 

method and “MDTV 

interactive service page 

creation requirement” 

shown in Table 5.5 

3. Replace the old version of 

“IDEventFactory.java” in 

the proposed terminal 

service platform project 

folder with this new one; 4. 

Run the service platform in 

the default Java ME 

emulator to check if the 

platform starts to support all 

the newly added interactive 

applications (associating it 

with “testpage5.html”). 

Semi-automatically 

output the 

reconfigured 

functional class of 

the terminal service 

platform based on 

the XHTML and 

“ID Event” 

presentation 

method that 

supports newly 

added interactive 

applications. 

1. By completing testing case No. 5, 

the new version of 

“IDEventFactory.java”, which is the 

database of all the supporting 

interactive applications in the terminal 

service platform, has been generated 

automatically; 

2. The source code of 

“IDEventFactory.java” matches the 

XHTML and “ID Event” presentation 

method and “MDTV interactive 

service page creation requirement”; 

3. Functionality testing to the revised 

terminal service platform refers to the 

testing procedure in the next section. 

Table 5.6: System testing case design by using White-box method 

GUI testing  

Since the purpose of the software’s GUI is to assist the user to achieve the 

functionality of the software, and in order to define the event coverage of the GUI 

testing, which requires all reachable events in a GUI to execute at least once during a 

complete cycle of the test case, we thus set the GUI testing events by choosing the 

events that achieve the functionalities of the software.  Therefore we have chosen 

white-box testing cases as the GUI testing cases and the record-playback technique 

(as explained in Chapter 2) is implemented as follow: 

GUI  Group GUI Component Event Record (Expected Output) 

Menu 

“Open XHTML 

File…” option 

When selecting “File – Open XHTML File…” a pop-up 

window will appear in the top middle within the MainFrame; 

The tester can navigate in the file system within the window; 

when selecting the target file in the window, all the relevant 

content will appear in the CentrePane and SouthPane. 

“Save XHTML 

File…” option 

All the modifications to the target service page are saved. 

Hotkeys 

“Save XHTML 

File” hotkey 

All the modifications to the target service page are saved. 

“Element Mode” 

hotkey 

The source code display frame in the CentrePane changes from 

“text mode” that displays source code in plain text to “list 
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mode” that displays source code in the form of an element list 

so as to be prepared for interactive application configuration; 

The tester can press it again to change the mode back to “text 

mode”. 

LeftPane 
“Select and open 

file” operation 

The tester can perform conventional navigation (up, down, 

select, go into deep folder and etc.) in the project file list within 

the LeftPane; When the left button of the mouse is double 

clicked on “testpage6.html” in the project file list, all the 

relevant content will appear in the CentrePane and SouthPane. 

RightPane 
“Select and drag” 

operation 

The tester can perform conventional navigation (up, down, 

select, go into deep folder and etc.) in the interactive 

application list within RightPane; When the tester selects a 

application by pressing the mouse left button and then holds it 

while he is trying to move the mouse pointer from RightPane to 

CentrePane source code display frame, the whole process is 

allowed to be performed by the software without any error alert. 

CentrePane 

“Drop to the 

element” operation 

By following the “select and drag” option from the RightPane, 

the tester can release the mouse left button when the mouse 

pointer is moved to the target element in the source code frame 

under the “element mode”. 

“Source code” 

manipulations 

Plain editing modes (add and delete) are allowed in the source 

code frame of the CentrePane when it is under the “text mode”. 

“Scroll the editing 

area” button 

The tester can press the “up arrow” to minimize the page 

display frame while maximizing the source code display frame 

within the CentrePane; The tester can press the “down arrow” 

to minimize the source code display frame while maximizing 

the page display frame within the CentrePane. 

SouthPane “Data update” 

manipulation 

The tab switches together with the corresponding tab in 

CentrePane; Parameters update immediately if there are any 

modifications being done to the service page displayed in the 

corresponding tab in the CentrePane. 

MainFrame “Scroll the sizes of 

different pane 

area” 

manipulations 

All the edges between the different panes in the MainFrame are 

drag-able to make other panes more visible. 

Table 5.7: Event records of the GUI 

 

Testing cases GUI testing targets (playback targets) 

Case No.1 

“Scroll the size of different pane areas” of the MainFrame 

“Open the XHTML File…” option of the Menu 

“Select and drag” operation of the LeftPane 

Case No.2 
“Data update” manipulation of the SouthPane 

“Scroll the editing area” button of the CentrePane 

Case No.3 “Source code” manipulations of the CentrePane 

Case No.4 

“Element Mode” hotkey of Hotkeys 

“Select and drag” operation of the RightPane 

“Drop to the element” operation of the CentrePane 

Case No.5 
“Save XHTML File” hotkey of Hotkeys 

“Save XHTML File…” option of the Menu 

Case No.6 Out of the scope of GUI testing 

Case No.7 Out of the scope of GUI testing 

Table 5.8: Event playbacks of GUI testing (Case No. refers to Table 5.6) 
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5.2.3 MDTV SERVICE TERMINAL SOFTWARE PLATFORM TESTING 

The aims of the testing to the terminal device service platform are:  

 To evaluate if the target software is able to work properly as a integrated software 

without major errors;  

 To evaluate if the target software is able to achieve its functionality by rendering 

the MDTV interactive service page based on XHTML and “ID Event” 

presentation method; 

 To evaluate if the target software is able to achieve its functionality by handling 

the interactions between the user and the interactive applications in the service 

page. 

To implement these aims, the test cases along with the testing data are then designed 

for different testing levels and different testing methods. 

Figure 5.15: Class components of the MDTV service terminal software platform 

Testing data  

Here are all the service pages (as shown in Section 5.2.2 on page 140) for which will 

be used during the testing cases on different testing level: 
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Figure 5.2: Testpage1.html: pure plain text page. 

Figure 5.3: Testpage2.html: pure image page. 

Figure 5.4: Testpage3.html: pure hyperlink page. 

Figure 5.5: Testpage4.html: mixed components page. 

Figure 5.6: Testpage5.html: test page for testing interactive applications. 

Figure 5.7: Testpage6.html: service homepage  

Figure 5.8: Testpage61.html: service portal. 

Figure 5.9: Testpage7.html: multimedia service page with video 

Figure 5.10: Testpage8.html: program guide 

“Testpage5.html” is a MDTV interactive service page with interactive 

application added by using the proposed semi-automatic service creation tool. 

Also, the IDEventFactory.java of the terminal platform is also the output of the 

creation tool, along with the “Testpage5.html”. 

Component testing 

As the functional requirement of the terminal service platform is to deliver interactive 

multimedia MDTV services to the end user, two aspects of design requirements are 

set. These are the rendering and retrieval of interactive multimedia MDTV service 

page, and the handling of the interactivities between the MDTV services (locally and 

remotely) and the end user. The thirteen classes that compose the proposed terminal 

service platform are listed in Table 5.9 further with their corresponding design 

requirement descriptions. Since the component testing work on these classes has also 

been done while they were being programmed, it can be concluded that the design 

requirement specification (the details refer to relevant section in Chapter 4) of the 

proposed software system has been met as expected. 

Class Components Design Requirement 
BrowserMIDlet MIDlet class for initializing the terminal service platform. 
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URLInput 

GUI component and input interface that accepts MDTV service 

local/remote URI inputted by end user and calls HomeCanvas for 

actual implementation. 

VoteClient 

Client side for remote interactive applications (such as voting) that is 

in charge of setting up a connection with the remote interactive 

service server. 

Sender 

Assistant class to VoteClient; it is employed for sending interactive 

data from the client side to the server side to help achieve the remote 

interactions. 

HomeCanvas 

Functional class that administrates main processes within the service 

platform including GUI navigation, service page drawing and event 

detecting. 

HttpPlainparser 
Primary service page parser to receive and parse the XHTML and “ID 

Event” based service page. 

TAGDictionary Assists HttpPlainparser by providing a tag dictionary. 

TAGFactory Assists HttpPlainparser by providing tag sorting methods 

EnhancedXMLParser Assists HttpPlainparser by providing an element sorting algorithm. 

VideoHandler 
Assists HomeCanvas by handling operations concerned with video 

media. 

LayoutEngine 
Assists HomeCanvas by providing a page layout processing 

mechanism (supports CSS for further work). 

IDeventHandler 
Assists HomeCanvas by handling all the events on the MDTV 

interactive service page based on “ID Event” method. 

IDEventFactory 
Assists IDeventHander by providing ID events for implementing 

methods. 

Table 5.9: Design requirement specification for the MDTV interactive service terminal 

software platform 

Integration testing 

The integration testing of the proposed service platform also utilises a “bottom-up 

integration” method as illustrated in Figure 5.15. In the first integration loop, all the 

lowest functional classes were integrated to the related upper functional classes to 

form the functional components. These are the parsing component, Media Handler, 

Layout Engine and ID Event Handler. In the second integration loop, the functional 

components integrate with the upper functional classes to form several sub-systems. 

These are the interactive service page administration sub- system (ISPAS), the 

URLInput and Vote Client. All these sub-system assist the BrowserMIDlet to 

complete the service terminal platform. An interface testing (shown in Figure 5.16) is 

designed for the final integration loop to ensure that all the sub-systems are 

interfacing properly within the system. The test case design is listed in Table 5.10: 
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Figure 5.16: Interface testing logic between the different sub systems 

 

Interface testing cases Inputs Expected output 

Interface 1: 

BrowserMIDlet - ISPAS 

Start up the main MIDlet 

“BrowserMIDlet.java” in Java 

ME WTK emulator through 

Eclipse IDE. 

The HomeCanvas, consists of a 

“Menu” button at the right-bottom 

corner and a blank background, is 

shown on top of the screen and is 

set on focus; 

Interface 2: 

ISPAS - URLInput 

Press “Menu” button on the 

emulator’s keyboard, select 

“URLInput” option and press the 

“OK” button on the keyboard. 

The screen refreshes and the 

URLInput is set on focus and on 

top of the screen; The URLInput 

page has a text field available for 

URI input. 

Interface 3: 

BrowserIMDlet – Vote Client 

1. Starts up the demo 

“interactive service server”; 

2. Execute the same input in the 

Interface 1 testing case. 

1. An alert message page pops up 

and asks for the confirmation of 

accessing the interaction network;  

2. When “Yes” is selected, the 

server console detects and affirms 

the connection; the terminal 

platform initializes successfully 

with a data exchange port 

connected to the interaction 

server; 

3. When “No”, is selected another 

alert message page pops up 

showing the error message “client 

run error”; the terminal platform 

initializes successfully without a 

remote connection to the 

interactive service server. 

Interface 4: 

URLInput - ISPAS 

1. Press the “Back” button at the 

left bottom corner of URLInput 

page; 

2. Go to the URLInput page; 3. 

Type 

“http://localhost/testpage5.html” 

in the test field of URLInput 

page; Press the “Menu” button at 

the right bottom corner, select 

the “URLget” and press the 

“OK” button on the keyboard. 

Repeat step 2. 

1. The screen refreshes and the 

HomeCanvas is set on focus and 

on top of screen; 

2. A pop up window comes up 

confirming the use of the 

interaction network if this is the 

first time of trying to access a 

service page remotely; When 

pressing “Yes”, the screen 

refreshes and the “testpage5.html” 

is displayed on the screen with full 

features and proper layout that fits 
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the screen size; When pressing 

“No”, the screen refreshes and a 

blank HomeCanvas is set on top 

of screen available for operation; 

No more further network 

confirmation notice pops up again. 

Interface 5: 

ISPAS – Vote Client 

1. Repeat the Interface 3 testing 

case input; 

2. Repeat step 2 in the Interface 

4 testing case; 

3. Press “vote for good” button 

on the service page 

1. The terminal platform is 

initialized successfully; 

2. “testpage5.html” is loaded 

successfully; 

3. The vote input is sent to the 

interactive service server and 

recorded in a database on the 

server side; the validation of this 

operation refers to a related testing 

case in White-box system testing 

section. 

Table 5.10: Testing case design on Integration testing level 

System testing 

a) Black-box testing 

 

Figure 5.17: Black-box testing 

We have also applied Equivalence Partitioning here as the black-box testing method. 

Here, all the inputs are handled through the GUI of the interactive service terminal 

platform. There are three main types of inputs: the Page Link Input, the Interactive 

Event Input and the Navigation Input. Thus the input partitioning definitions are 

designed as listed in Table 5.11. 

Case 

No. 
Equivalence partitioning input Expected output 

1 

Page Link 

Input 
Local 

Testpage1.html 
Testpage1 loads successfully and is available 

for further operation. 

2 Testpage2.html 
Testpage2 loads successfully and is available 

for further operation 

3 Testpage3.html Testpage3 loads successfully and is available 
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for further operation 

4 

Remote 

Testpage5.html 
Testpage5 loads successfully and is available 

for further operation 

5 Testpage61.html 
Testpage61 loads successfully and is 

available for further operation 

6 

Interactive 

Event Input 

“Play video” application A pre-ordered video appears playing on the 

service page with a proper layout that fits the 

screen size; 

7 “Stop video” application The video stops playing; 

8 
“Request for real time data” 

application 

A ticker appears on the top position of screen 

with live data refreshing every 10 seconds; 

9 

“Vote for good” application An alert message pops up on the screen to 

inform the data has been received; The 

message page disappears after 2 seconds and 

the scene goes back to the previous page. 

validation of this operation refers to next 

input case; 

10 

“Request for vote result” 

application 

An alert message pops up on the screen to 

inform the request has been received; The 

message page disappears after 2 seconds and 

screen refreshes, then a “vote result” service 

page appears on top of screen with the vote 

record received from the last input case; 

11 

Navigation 

Input 

Press “up” on the keyboard 

The green pointing rectangle moves to the 

upper next active component; if the rectangle 

was already on the top first active component, 

the rectangle jumps to the bottom last active 

component; 

12 
Press “Down” on the 

keyboard 

The pointing rectangle moves to the lower 

next active component; if the rectangle was 

already on the bottom last active component, 

the rectangle jumps to the top first active 

component; 

13 Press “Left” on the keyboard 

The pointing rectangle moves to the left next 

active component; if the rectangle was 

already on the top first active component, the 

rectangle jumps to the bottom last active 

component; if the rectangle was already on 

the left-most active component in a line, the 

rectangle will jump to the right-most active 

component on the upper line; 

14 Press “Right” on the keyboard 

The pointing rectangle moves to the right 

next active component; if the rectangle was 

already on the bottom last active component, 

the rectangle jumps to the top first active 

component; if the rectangle was already on 

the right-most active component in a line, the 

rectangle will jump to the left-most active 

component on the lower line; 

15 

Select and press “OK” on 

Hyperlink 1 on 

“testpage7.html” 

The screen refreshes and a new service page 

that the hyperlink 1 is linked to is displayed 

on top of screen and is available for further 

operation. 

Table 5.11: System testing case by using Black-box method 

b) White-box testing 
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Figure 5.18: White-box testing 

In white-box testing, we choose path testing and loop testing as the case design 

methods. As mentioned at the beginning of this section, the two aspects of the 

functional requirement of the terminal service platform are the rendering and retrieval 

of interactive multimedia MDTV service pages, and the handling of the interactivities 

between the MDTV services (locally and remotely) and the end user. Therefore we 

designed the path testing cases according to the implementation logic of these two 

functions. The user requirements are defined for testing purposes in Table 5.12 and 

the testing case design is included in Table 5.13. Here we choose several test page sets 

including the “testpage5.html”, which is an interactive application test page linked to 

the MDTV interactive service sample home page “testpage6.html” and 

“testpage7.html” which is a multimedia service page with video also linked to the 

home page as the test data. All of these pages are MDTV interactive service pages 

outputted from our proposed semi-automatic service creation tool that follows the 

XHTML and “ID Event” presentation method. 

Logic path User requirement 

Logic path 1: 

MDTV interactive service page 

rendering 

To be able to render interactive service pages from a local 

directory. 

To be able to render interactive service pages from a remote 

directory. 

Logic path 2: 

Interactivity between the MDTV 

service and the end user 

To be able to support conventional service page browsing 

(navigation on a page or between different pages). 

To be able to handle any interactive service applications that are 

based on the proposed XHTML and “ID Event” presentation 

method. 

Table 5.12: User requirement to MDTV interactive service terminal platform 
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Case 

No. 
Testing Cases 

User 

Requireme

nt 

Expected Output 

Logic Path 1 possibility 1: 

BrowserMIDlet – ISPAS – URLInput – ISPAS – BrowserMIDlet - ISPAS 

1 

1. Prepare the testing 

service page set by 

copying these pages to 

the local directory: ” 

C:\WTK25\appdb\Medi

aControlSkin\filesyste

m\root1”; 

2. Start up the Browser 

MIDlet; 

3. select the 

“URLInput” option in 

the menu on the right 

bottom of the screen; 

4. Type 

“file:///root1/local/testp

age6.html “ into the text 

field and then select the 

“URLget” option in the 

menu and press the 

“ok” button on the 

keyboard. 

To be able to 

render the 

interactive 

service page 

from a local 

directory. 

1. This test case happens when the service pages 

are firstly received through the broadcast 

network/interaction network and are ready for 

end-user to access. Therefore, here we assume that 

all the service pages are already in the local 

storage unit and the default data storage directory 

of the service platform is as mentioned in testing 

step 1. 

2. A demo sever application is started up and waits 

for connection from the service platform; The 

WTK emulator appears on the screen and the 

Browser MIDlet starts running in the emulator 

and connects to the demo server automatically; 

the service platform is initialized with a blank 

background and with two menu options at the 

emulator screen bottom. 

3. A sub menu list shows up on the screen when 

selecting the menu option; Navigate up and down 

to find the “URLInput” option and the emulator 

scene refreshes by putting the URLInput window 

on top and the components on the URLInput 

window become available for further operation. 

4. The URL appears in the text field while it is 

being input through the keyboard of the emulator; 

When selecting the “URLget” option in the menu, 

the emulator screen refreshes and the target page 

“testpage6.html” is displayed on top of the screen 

with all the components (text, image, hyperlink 

and interactive applications) displayed in a proper 

layout that fits to the emulator screen size; The 

active elements on the page are available for 

further operations. 

Logic Path 1 possibility 2: 

BrowserMIDlet – ISPAS - BrowserMIDlet – ISPAS 

2 

1. Prepare testing 

service page set by 

copying these pages to 

local directory: ” 

C:\Program 

Files\Apache Software 

Foundation\Apache2.2\

htdocs”; 

2. Start up the demo 

server; Start up 

Browser MIDlet; 

3. Select the 

“homepage” option in 

the menu on the right 

bottom of the emulator 

screen. This 

“homepage” option is a 

predefined home page 

To be able to 

render the 

interactive 

service page 

from a 

remote 

directory. 

1. This test case occurs when the service pages 

needs to be requested through the interaction 

network. Therefore, here we set up a demo 

interaction server by using Apache 2.2 and utilize 

the Apache’s default root path as the remote 

storage directory as mentioned in testing step 1; 

2. Same output as in step 2 in case No.1; 

3. The emulator screen refreshes and the target 

page “testpage6.html” is displayed on top of the 

screen with all the components (text, image, 

hyperlink and interactive applications) are 

displayed in a proper layout that fits to the 

emulator screen size; the active elements on the 

page are available for further operations. 
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short cut in our 

proposed service 

platform. By selecting 

this option, a remote 

URL “http://server 

IP/remote/testpage6.ht

ml” of the home page is 

sent to the ISPAS. 

Logic Path 2 possibility 1: 

BrowserMIDlet – ISPAS - BrowserMIDlet – ISPAS – BrowserMIDlet – ISPAS 

3 

1. Start the 

BrowserMIDlet and the 

demo server; Select 

“URLInput” option in 

the menu on the right 

bottom of screen; Type 

“http://server 

IP/remote/testpage6.ht

ml “into the text field 

and then select 

“URLget” option in the 

menu and press “ok” 

button on the keyboard; 

2. Press the “ok” button 

on the page;  

3. Press the “up” 

navigation buttons on 

the emulator keyboard 

ten times; 

4. Press the “down” 

navigation buttons on 

the emulator keyboard 

ten times; 

5. Press the “left” 

navigation buttons on 

the emulator keyboard 

ten times; 

6. Press the “right” 

navigation buttons on 

the emulator keyboard 

ten times; 

7. Navigate to the 

Hyperlink No.1 and 

press the “ok” button;  

8. if a new page 

displayed on top of the 

screen, navigate to any 

hyperlinks on the 

service page and press 

“ok”; 

9. Repeat steps 7, 8 for 

three times by selecting 

different hyperlinks on 

the service pages.  

To be able to 

support 

conventional 

service page 

browsing 

(navigation on 

a page or 

between 

different 

pages). 

1. Service platform is started and connected to 

the demo server; After entering the URL and 

pressing “URLget” in the menu, the screen 

refreshes and the target page “testpage6.html” is 

displayed on top of the screen with all the 

components (text, image, hyperlink and 

interactive applications) displayed in a proper 

layout that fits to the emulator screen size; 

2. The screen refreshes and the 

“testpage61.html” is displayed on top of the 

screen with all the components in a proper 

layout; 

3. The green pointing rectangle moves to the 

upper next active component; if the rectangle 

was already on the top first active component, 

the rectangle jumps to the bottom last active 

component; 

4. The pointing rectangle moves to the lower 

next active component; if the rectangle was 

already on the bottom last active component, 

the rectangle jumps to the top first active 

component; 

5. The pointing rectangle moves to the left next 

active component; if the rectangle was already 

on the top first active component, the rectangle 

jumps to the bottom last active component; if 

the rectangle was already on the left-most active 

component in a line, the rectangle will jump to 

the right-most active component on the upper 

line; 

6. The pointing rectangle moves to the right 

next active component; if the rectangle was 

already on the bottom last active component, 

the rectangle jumps to the top first active 

component; if the rectangle was already on the 

right-most active component in a line, the 

rectangle will jump to the left-most active 

component on the lower line; 

7. The emulator screen refreshes and the target 

page “testpage6.html” is displayed on top of 

screen with all the components (text, image, 

hyperlink and interactive applications) 

displayed in a proper layout that fits to the 

emulator screen size; 

8. The screen refreshes and either 

“testpage6.html” or “testpage7.html” is 

displayed; 

9. The screen refreshes when different 

hyperlinks are selected and the service pages 

related to the hyperlinks are displayed. 
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Logic Path 2 possibility 2: 

BrowserMIDlet – ISPAS – BrowserMIDlet – ISPAS – VoteClient - BrowserMIDlet – 

ISPAS 

4 

1. Start the 

BrowserMIDlet and the 

demo server; Select 

“URLInput” option in 

the menu on the right 

bottom of screen; Type 

“http://server 

IP/remote/testpage5.ht

ml “into the text field 

and then select 

“URLget” option in the 

menu and press “ok” 

button on the keyboard; 

2. if the page is 

displayed properly, 

press Button 2 to play 

video; 

3. Press Button 1 to 

stop playing video; 

4. Press Button 3 to 

request for real time 

data; 

5. Press Button 4 twice 

to vote “good”; 

6. Press Button 5 once 

to vote “bad”; 

7. Press Button 6 to 

request for the vote 

result. 

To be able to 

handle any 

interactive 

service 

applications 

that is based 

on the 

proposed 

XHTML and 

“ID Event” 

presentation 

method. 

1. The service platform is started and connected to 

demo server; After entering the URL and pressing 

the “URLget” in the menu, the emulator screen 

refreshes and the target page “testpage5.html” is 

displayed on top of the screen with all the 

components (text, image, hyperlink and 

interactive applications) displayed in a proper 

layout that fits to the emulator screen size; 

2. A pre-ordered video appears playing on the 

service page with a proper layout that fits the 

screen size; 

3. The video stops playing; 

4. A ticker appears on the top position of screen 

with live data refreshing every 10 seconds; 

5. An alert message pops up on the screen every 

time the button is pressed to inform the request 

has been received; The message page disappears 

after 2 seconds; the screen refreshes and the scene 

goes back to the  “testpage5.html”; the validation 

of this operation refers to the expected output of 

step 7; 

6. An alert message pops up on the screen every 

time the button is pressed to inform the request 

has been received; The message page disappears 

after 2 seconds; the screen refreshes and the scene 

goes back to the  “testpage5.html”; the validation 

of this operation refers to the expected output of 

step 7; 

7. The screen refreshes and a “vote result” service 

page appears on top of the screen with the vote 

result (good: 2, bad: 1) received from the last two 

input cases; 

Table 5.13: System testing case design by using White-box method 

GUI testing 

Here we have designed the GUI test case according to the white-box testing case 

presented in Table 5.13 and the record-playback technique has been implemented as 

shown in Table 5.14 and 6.15: 

GUI Group GUI Component Event record (Expecting output) 

MIDlet Menu 

“Back” command 

The tester can execute this command to go back to 

other optional windows (such as the URLInput) to the 

main platform window (HomeCanvas). 

“Exit” command 
The tester can terminate the platform program and shut 

down the emulator by executing this menu command. 

HomeCanvas 

Menu 

“URLInput” command 
Execute it to go to the “URLInput” window for 

entering the service page URL. 

“Homepage” command Execute it to load the default service page. 

“Prepage” command Execute it to go to the previous service page. 

“ESG Viewer” command 
Execute it to start viewing the ESG and perform 

further operations through the ESG. 
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HomeCanvas 

“General web-like 

navigation” operation 

Allows the user to browse the service page visually 

(see the page components including text, image, 

hyperlink, and video) and interact with the page 

(navigate between hyperlinks on the page and select 

these to go to the target page). 

“Interactive application” 

operation 

Allows the user to navigate between the interactive 

service components within the service page and select 

them to execute the corresponding interactive 

applications. 

URLInput 

“URLget” menu command 

Execute it to load the service page corresponding to 

the URL entered in the text field of the URLInput 

window 

“Text field” manipulation 
Allows the user to enter any service page URL through 

the keyboard. 

Alert 

messages 

“Confirmation for server 

connection” message 

Select “yes” to allow server connection, select “no” to 

refuse. 

Table 5.14: Event record of GUI components 

 

Testing Case GUI testing target (playback targets) 

Case No.1 

Step 1 Out of the scope of GUI testing 

Step 2 Start the demo server and the BrowserMIDlet 

Step 3 The “URLInput” command of the HomeCanvas 

Step 4 

The “Text field” manipulation of the URLInput 

The “Back” command of the MIDlet Menu 

The “URLget” menu command of the URLInput 

Case No.2 The “Homepage” command of the HomeCanvas Menu 

Case No.3 

The “General web-like navigation” operation of the HomeCanvas 

The “Prepage” command of the HomeCanvas Menu 

Case No.4 

The “Interactive application” operation of the HomeCanvas 

The “Exit” command of the MIDlet Menu 

Table 5.15: Event playbacks of the GUI testing (Case No. refers to Table 5.13) 

Client/server testing 

Considering that the server we created is only for assisting purposes, thus the 

Client/Server testing can be merged into the terminal platform white-box testing 

section. More precisely, the Client/Server mechanism can be tested during several 

testing cases that are related to the execution of the remote interactive applications 

(such as require for live data feed, voting, and require for vote result), where the data 

exchange between client side and server side is required. 

5.2.4 INTEGRATION TESTING OF THE SERVICE CREATION TOOL AND THE 
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TERMINAL PLATFORM 

 

Figure 5.19: Interface testing and comparison testing 

Based on the proposed solution requirement, we have developed two pieces of 

functional software during the MDTV service creation and consumption process; and 

two sets of test cases also have been designed separately so as to ensure their 

verification and validation. Moreover, when these two software components are 

integrated in the proposed MDTV service implementation system, there is a need of 

an Integration Testing procedure that would help to ensure they are able to work 

together properly. Regarding to the requirement of the proposed MDTV service 

creation and consumption system, the test aims can be further set as: 

 To evaluate if the semi-automatic service creation and the terminal device service 

platform are able to work together properly within the proposed system without 

major error;  

 To evaluate if these two software components can further enable the proposed 

MDTV service creation and consumption system (illustrated in Figure 2.23) and 

eventually achieve the aim of the Thesis.  

So for the test case design, an interface testing between the semi-automatic service 
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creation tool and the service terminal platform will be conducted as part of the 

integration testing procedure. Besides a comparison testing will be applied as an 

assisting testing method between the terminal platform with the original 

IDEventFactory and terminal platform with the new IDEventFactory outputted from 

the service creation tool. 

Here we take testpage6.html, testpage61.html, testpage7.html, testpage8.html as the 

testing pages. Before the testing cases begin, the default hyperlink relationships 

between these four pages are shown in Figure 5.20. 

 

Figure 5.20: Hyperlink relationships 

The testing case design is shown in Table 5.16: 

Case 

No. 

Testing Case Design Expected Output 

1 
Prepare the testing input. Select “testpage6.html”, “testpage61.html”, 

“testpage7.html”, and “testpage8.html” as the 

testing input. 

2 
Edit four testing service pages according 

to the design requirements presented in 

All the requirements will be met and the four 

modified MDTV interactive service pages 
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Figure 5.21 by using the proposed semi-

automatic service creation tool. 

(“testpage6.html”, “testpage61.html”, 

“testpage7.html”, and “testpage8.html”) based on 

XHTML and “ID Event” presentation method and 

a configured “IDEventFactory.java” will be 

outputted. 

3 
Set the interface input and prepare the 

terminal platform for testing. 

Select four modified service pages as the interface 

input for the proposed terminal service platform; 

No change to the service platform will occur. 

4 

Set the modified “testpage6.html” as the 

input, repeat Case No.3 of the White-box 

testing case design illustrated in Table 

5.13. 

All the case steps will be passed without any 

errors. 

5 

Set the modified “testpage6.html” as the 

input; repeat Case No.4 of the White-box 

testing case design depicted in Table 

5.13. 

Case No.4 will fail: the terminal platform fails to 

handle any new interactive applications added to 

the page through the service creation tool. 

6 

Re-prepare the terminal platform and re-

set the interface input 

Update the terminal platform by replacing the 

original version of the “IDEventFactory.java” 

with the configured “IDEventFactory.java” 

outputted from Case No.2. Keeps the modified 

“testpage6.html” as the input. 

7 Repeat Case No.5 All testing steps will be passed without any errors. 

Table 5.16: Integration testing case design 

The MDTV service creation requirements are shown in Figure 5.21: 

 

Figure 5.21: Design requirement for the proposed service creation tool 
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5.3  TESTING EXECUTION OF THE SEMI-AUTOMATIC 

SERVICE CREATION TOOL 

5.3.1 TEST PREPARATION 

The test preparation information has already been presented in previous sections. For 

the testing environment refer to Table 5.1 and for the test data and test case design 

refer to the descriptions in Section 5.2.2. 

5.3.2 TEST RESULT 

Integration Testing: The Interface testing cases have been successfully executed. 

Interface 3, 4, 5, 6, 7 have had the actual outputs matched with the corresponding 

expected outputs as listed in Table 5.3; Interface 1, 2 succeeded in getting the 

expected outputs when the testing cases were executed in a Windows XP environment. 

However when the testing cases were executed in a Windows 7 environment, 

Interface 1, 2 test case got an exception notice (error) through the Eclipse console 

window instead of the expected outputs. Overall, the software functional components 

of the target software that were tested, interface well with each other. The target 

software has thus passed the integration testing successfully except for the 

compatibility problem with the Windows 7 OS. 

Black-box Testing: The equivalent partitioning input testing method has been 

successfully executed. All the inputs (including testpage1.html, testpage2.html, 

testpage3.html and testpage4.html) have had their actual result outputs matched to 

their corresponding expected outputs as listed in Table 5.4. More precisely, the output 

of each case includes an interactive MDTV service page and a reconfigured functional 

class: the interactive MDTV service page is based on the corresponding original 

XHTML page and presented in the proposed XHTML and ID Event presentation 

method; the reconfigured functional class is to update the proposed service platform 
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to support the newly-added interactive applications on the service page. Therefore, the 

target software has been able to pass the black-box testing successfully with out any 

errors. 

White-box testing: All the testing cases (Case 1 to 7) have been successfully 

executed. All the test cases except Case 1 and Case 2 step 1 have got their actual 

outputs matched to their corresponding expected implementations as listed in Table 

5.6. Through these cases, the proposed semi-automatic service creation tool is tested 

to be capable of assisting the tester achieving the MDTV service creation successfully. 

However the Two main errors that have occurred are: 

1. When Case 1 was executed in a Windows 7 environment, there was an exception 

notice through the Eclipse console window instead of the expected output.  

2. When Case 2 step 1 was executed, testpage5.html was displayed as expected but 

testpage6.html was displayed out of layout (refer to Figure 5.22). However this error 

was not a major problem that may cause crashing the software or the whole white-box 

testing process until completed. 
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Figure 5.22: Failure in displaying testpage6.html in service creation tool 

Besides, all the functionality validation in Case 6 and 7 will be completed in the 

testing procedure to the terminal platform presented in the next section. Overall, the 

target software has passed the white-box testing with two minor errors. 

UI testing result 

Case 

No. 
Target UI Component 

1 

“Manipulate the sizes of different pane areas” of the MainFrame 

 

Figure 5.23 

Evaluation: Successful; the panes in the MainFrame can be easily resized. 

“Open the XHTML File…” option in the File Menu 

 



172 

Figure 5.24 

Evaluation: Successful output; a dialog window pops up in the centre of the MainFrame area, ready 

for file selection and file opening. 

“Select and open” operation of the LeftPane 

 

Figure 5.25 

 

Evaluation: Successful output; a new tab appears in the CentrePane after selecting and double 

clicking an element name in the LeftPane file list. 

“Data update” manipulation of the SouthPane 

2 

 



173 

Figure 5.26: Before manipulation 

 

Figure 5.27: After manipulation 

Evaluation: Successful output; the corresponding parameter updated together with the modifications 

in the CentrePane. 

“Scroll the editing area” button of the CentrePane 

 

Figure 5.28 

 
Evaluation: Successful output; the sizes of the upper frame and lower frame of the CentrePane is re-

sizable  

3 “Source code” manipulations of the CentrePane 
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Figure 5.29 

Evaluation: Successful output; when the source code is verified, both the upper frame in the 

CentrePane and the parameter list in the SouthPane are updated together with it. 

4 “Element Mode” hotkey of the Hotkeys 
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Figure 5.30 

Evaluation: Successful output; by pressing the “element mode” key in the hotkey bar, the source 

code frame in the CentrePane switches between plain text display mode for regular text editing and 

list mode for interactive application editing. The source code remains the same during the switch. 

“Select and drag” operation in the RightPane; “Drop of an element” operation in the CentrePane 

 

Figure 5.31: Drag the application from RightPane to CentrePane and drop on target element 
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Figure 5.32: A dialog window pops up for confirmation 

 

 

Figure 5.33: Another dialog window pops up for relevant parameter after confirmation 
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Figure 5.34: A special ID that based on XHTML and “ID Event” presentation method is added as an 

attribute in the target element 

Evaluation: Successful output; the editor selects an interactive application from the RightPane; this 

can be dragged and dropped to the target element in the service page to implement the interactive 

application configuration. 

5 

“Save XHTML File” hotkey of the Hotkeys 

Evaluation: Successful output; after pressing the “Save XHTML File” in the hotkey bar, all the 

modifications to the target service page according to the XHTML and “ID Event” presentation 

method is saved and a corresponding reconfigured “IDEventFactory.java” for the terminal platform 

update is outputted automatically to the specified directory. 

“Save XHTML File…” option of the File Menu 

Evaluation: Successful output; after pressing the “Save XHTML File” in the Menu bar, all the 

modifications to the target service page according to the XHTML and “ID Event” presentation 

method is saved and a corresponding reconfigured “IDEventFactory.java” for the terminal platform 

update is outputted automatically to the specified directory. 

UI testing result evaluation 
The UI testing cases have been successfully executed together with White-box testing. All the playback 

results match the corresponding recorded expected outputs. Overall, the software has passed UI testing with 

no errors thrown. 

Table 5.17: UI testing result and evaluation 

5.3.3 TEST RESULT EVALUATION 

According to all the test results gained from the above implementation of the test 

cases and the testing process, we are able to evaluate the proposed semi-automatic 

service creation tool as follow: the results of the integration testing and the system 

testing have shown that the components of the proposed software are able to work 

properly with each other or together as an integrated software with minor errors. 

Moreover, the proposed software is tested to have all the functions as required and 

further be able to assist designers manipulating and creating XHTML and “ID Event” 

based MDTV interactive service pages semi-automatically. 

Both of the errors occurred during the testing process do not affect the functionality of 

the proposed software. Also they are considered not originally caused by the author’s 
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design: the first error occurred because the Java SE Swing API does not support well 

to the new file system in Windows 7; the second error occurred because the default 

XHTML parser within the Java SE SDK has bugs and could not render the XHTML 

pages properly sometimes for some unknown reason (those pages were rendered 

successfully in Microsoft Internet Explorer 7). Some extra configuration work for the 

target software is needed to avoid this error. 

5.4 TESTING EXECUTION OF THE MDTV SERVICE 

TERMINAL SOFTWARE PLATFORM 

5.4.1 TESTING PREPARATION 

The testing environment refers to Table 5.1 and the test data and the test case design 

refer to the description in Section 5.2.3. 

5.4.2 TEST RESULTS 

Integration Testing: The interface testing cases have been successfully executed. 

Interfaces 1, 2, 3, 4, 5 have had their actual outputs matched with the corresponding 

expected outputs as listed in Table 5.10. The software functional components are 

therefore tested to interface well with each other and the target software has thus 

passed the integration testing successfully with no errors. 

Black-box Testing: The equivalent partitioning input testing method has been 

successfully executed. All the inputs except for case No.6 have had their actual result 

outputs matched to their corresponding expected outputs as listed in Table 5.11. Errors 

occurred when Case No.6 was executed: although the video was playing normally, the 

video frame was not displayed in the correct position within the service page (refer to 

Figure 5.35). This has caused some of other GUI components of the service page to 

be covered and also the lower part of the video frame was cut off by the bottom edge 

of the screen. As a result, the target software has passed the black-box testing 
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successfully with an error occurring in the layout implementation. 

 
Figure 5.35: Failure on displaying video frame in proper layout 

White-box Testing: Test cases have also been successfully executed. All the actual 

result outputs have matched the corresponding expected outputs listed in Table 5.13 

with the exception of two of which failed: 

1. When the service platform was trying to display the “testpage6.html”, the text 

components were not displayed in the proper layout (refer to Figure 5.36).  

 

Figure 5.36: Failed to display the two text components in proper layout 

2. When the “play video” application in the “testpage5.html” was executed, the 

service platform failed to display the video frame in the proper layout resulting in 

some of the other GUI components on the service page to be covered by it; the video 
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frame does not fit the screen and the lower part of the video frame is cut off by the 

bottom edge of screen (refer to Figure 5.35).  

UI testing result 

Case 

No. 
Target UI Component 

1 

Step 2: Start the demo server and BrowserMIDlet 

 

Figure 5.37 

Evaluation: The demo server starts first and when the BrowserMIDlet starts up and automatically 

connects to the server, the demo server reports that the connection was successful. Successful output as 

expect. 

Step 3 “URLInput” command of the HomeCanvas 
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Figure 5.38 

Evaluation: When pressing the “Menu” option, the menu pops up; after selecting the “1 URLInput”, the 

screen refreshes and the URLInput page is set on top of the screen with the text field ready to be edited. 

Successful output as expected. 

Step 4-1: “Text field” manipulation of the URLInput 

 

Figure 5.39 

Evaluation: The user is able to enter the service URL into the text field. Successful output as expected. 

Step 4-2: “Back” command of the MIDlet Menu 

 

Figure 5.40 

Evaluation: When pressing the “back” option, the screen goes back to the HomeCanvas page 

Step 4-3: “URLget” menu command of the URLInput 
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Figure 5.41 

Evaluation: When pressing the “Menu” option and selecting the “URLInput” after entering the service 

URL, the service page is displayed in the HomeCanvas. Successful output as expected. 

2 

“Homepage” command of the HomeCanvas Menu 

 

Figure 5.42 

Evaluation: After selecting the “HomePage” selection in the menu, the default service home page is 

displayed in the HomeCanvas. Successful output as expected. 

3 “General web-like navigation” operation of the HomeCanvas 
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Figure 5.43: Navigation within the same service page 

 

 

Figure 5.44: Navigation between different service pages 

Evaluation: The navigation order within a page is: left to right and top to bottom. When pressing the 

“up” or “left” button, the navigation rectangle goes to the previous active item; when pressing the 

“down” or “right” button, the navigation rectangle goes to the previous active item. When selecting a 
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hyperlink in a service page, the linked page shows up on the front. Successful output as expected. 

“Prepage” command of the HomeCanvas Menu 

 

Figure 5.45 

Evaluation: When selecting the “PrePage” option in the menu, the scene goes back to the service page, 

which is the one the tester has already browsed before the current page. Successful output as expected. 

4 

“Interactive application” operation of the HomeCanvas 

 

Figure 5.46: Open the interactive application testing page, testpage5.html 
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Figure 5.47: “play video” and “stop video” applications 

 

Figure 5.48: “request for live data feed” application 
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Figure 5.49: Vote applications: “vote good” and “vote bad” 

 

 

Figure 5.50: Vote application – “request for vote report” 
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Evaluation: By conducting operations through the I/O unit of the emulator and the relevant UI of the 

proposed service platform, all six interactive applications based on the XHTML and “ID Event” 

presentation method performed well and their corresponding outputs were the same as expected. Some 

errors occurred on displaying a few service pages (testpage5 and testpage6) during this testing case due 

to the insufficient layout engine of the service platform. 

“Exit” command of MIDlet Menu 

 

Figure 5.51 

Evaluation: Successful output as expected. 

UI testing result evaluation 
All the UI testing cases have been successfully executed. All the UI components worked well as expected and 

the corresponding “playback” outputs have matched the “record” outputs; however an error was caused by a 

bug in the layout engine of the proposed service platform.   

Table 5.18: UI testing result and evaluation 

5.4.3 TEST RESULT EVALUATION 

According to all the test results gained from the above implementation of the test 

cases and the testing process, we are able to evaluate the proposed terminal device 

service platform as follow: the results of the integration testing and the system testing 

have shown that the components of the proposed software are able to work properly 

with each other or together as an integrated software with minor errors. Moreover, the 

proposed software is tested to have all the functions as required and further be able to 

assist the implementation of the semi-automatic service creation process by rendering 

the XHTML and “ID Event” based MDTV interactive service page as well as 

enabling the consumption of such MDTV service for the user. 

However two bugs have been found out during the test. Both of them are considered 
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to be caused by the author’s design although these bugs do not affect too much to the 

software functionality. The first bug was caught when playing the video stream that 

the video frame size was too big to cover most of the other service components 

behind. This is due to a page layout rendering bug in the layout engine of the 

proposed service platform that the video frame size could not be set to fit in the page 

layout properly when there are video components in a service page. The second bug 

was caught when the service platform was trying to display a service page with 

“<div>text</div>” elements. The text in the “<div>” element could not be wrapped to 

fit in the page layout properly and this is considered to be a bug within the layout 

engine again. The layout engine could either not be able to render the position 

attributes of the “<div>” element properly or not be able to wrap the text components 

within the “<div>” element properly. Both of these aforementioned bugs have been 

recorded as the reference for the modification work to the proposed service platform 

in the future. 

5.5 INTEGRATION TESTING OF THE SERVICE CREATION 

TOOL AND SERVICE PLATFORM 

Test Result: All the integration testing cases have been successfully executed. All the 

result outputs have matched the corresponding expected outputs as listed in Table 5.16. 

The service platform is able to render the service pages outputted from the service 

creation tool. If the service platform is not updated with the new version of 

“IDEventFactory.java” outputted from the service creation tool, it could not be able to 

identify and respond to the newly-added interactive applications on those service 

pages. Once the service platform is updated with the new version of the 

“IDEventFactory.java”, it is able to identify those interactive applications on the 

service pages and further respond to the user’s interactions. Overall, the semi-

automatic service creation tool together with the terminal service platform has passed 

the integration testing with no errors. 
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Evaluation: According to result gained from the above integration testing between 

the two proposed software, we can further evaluate as follow: the service platform is 

able to render the MDTV service page outputted from the semi-automatic service 

creation tool; by replacing the original version of the functional class 

(“IDEventFactory.java”) with the new version outputted from the service creation tool, 

the service platform is able to render and handle new interactive applications added to 

the service page. As a result, two software components are able to work with each 

other properly to enable the functionality of the proposed MDTV service creation and 

consumption system and further achieve the Thesis’s aim. 

5.6  ACCEPTANCE TESTING 

The acceptance testing of the proposed service creation tool and service platform is 

necessary since we need to investigate whether the target user requirements are 

satisfied and if the usability of the software meets the target user needs. By 

conducting the acceptance testing, we will be able to evaluate: 

 Whether the semi-automatic service creation tool and the terminal device service 

platform could achieve their functionalities with no major error in practice? 

 How is the usability of these two software components in practice including the 

function and the UI performance? 

We here design a series of acceptance test cases by using Alpha testing methods.  

5.6.1 ALPHA TESTING PREPARATION 

First we defined the principle objectives as follow: 

a) To test if the two proposed software is usable to achieve the relative software 

design requirements; 

b) To test if the users are satisfied with the graphic user interface (GUI) of the two 
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software; 

c) To test whether there are any errors and problems from the users’ perspective; 

d) To test to find out what improvement can be made to software, its functionality and 

GUI, as suggested by the user feedback. 

The test was conducted in a public research student office located in Brunel 

University campus. Since the main strategy of this test is based on a qualitative rather 

than quantitative analysis, 10 persons with different profiles (age and occupations) 

were thus chosen to participate in the test. A Desktop PC was employed and preset as 

the computer environment for the participants to do the test cases. 

Before preparing the test case design and other related documents, an application 

form to the University’s Ethics Committee was submitted to formally apply for the 

permission of launching such test. The University’s Ethics Committee granted my 

application and the ethics approval was then issued to me. Based on the ethics 

approval, a consent form was attached into the test documents for participants and the 

participants were asked to sign the consent form before they started the test procedure. 

All the test documents including the ethics approval, the consent form as well as other 

test documents are included in the Appendix 1. Then the test case was designed as 

follow: 

 In the test procedure, the participants are firstly asked to sit in front of the 

Desktop PC for the test use. The participants are then offered a copy of the test 

document to read. The document includes the consent form and the task 

instruction; 

 The test starts when the participant has read through the consent form and is 

willing to sign on it for his/her participation 

 The participant is asked to read the task instruction and conduct the Task one and 

two by following the steps in the instruction. The entire process is under the 

tester’s observation and the participant is free to ask for help from the tester 
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during the process. The tester completes the observation record as the testing case 

designed during the process; 

 Once the tasks are finished, the participant is asked to finish a questionnaire 

related to the tasks he has conducted. 

 The participant hands in the questionnaire once (s)he finishes it, along with the 

signed consent form. The testing process on this participant is accomplished and 

the whole testing procedure above shall start over for the next participant. 

The task details can be found in the Appendix 2. The testing process observation 

record form for the tester can also be found in the Appendix 2. 

5.6.2 RESULTS AND EVALUATIONS 

5.6.2.1 Demographics 

Criteria Details 

Age range 26-35: 6 participants; 36-45: 3 participants; Unknown: 1 participant 

Gender Male: 9 participants; Female: 1 participants 

Occupation Student: 9 participants; Research Fellow: 1 participant 

Graduation major Mechanical Engineering: 1 participant; 

Electronic and Computer Engineering: 2 participants; 

Material Science: 1 participant; 

Computer Science: 1 participant; 

Wireless Communication: 2 participant; 

Medical science: 1 participant; 

Unknown: 2 participants  

Table 5.19: Participant Profiles 

5.6.2.2 Test result evaluation of Task 1 

Based on the results (refer to Table A in Appendix 3 and Figure 5.52) gained from the 

Alpha Testing Questionnaire of Task 1, we evaluate the semi-automatic service 

creation tool as follow: 

 The majority of the participants think that the target software is useful overall, 

regardless of their experience on the software engineering profession;  

 The majority of the participants feel the target software easy to use in overall but 

3 out of 10 participants had difficulty in manipulating the service page by editing 

the source code and 3 out of 10 participants had difficulty in assigning a function 
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to a UI component. Refer to the corresponding results of question 1, 2 and 3 in 

Phase 1, this reaction tends to be related to their knowledge and experience on the 

corresponding techniques ( such as HTML authoring experience); 

 All the participants are satisfied with the design of the target software GUI and 

the majority of them feel it is easy to learn and use; 

 The majority of the participants think that the target software is useful in assisting 

them to accomplish Task 1 although 4 out of 10 participants think the that 

software was not as effective as they expected during the task; 
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Figure 5.52: Bar chart for the Alpha Testing Questionnaire of Task 1 

Based on the analysis on the Alpha Testing Process Observation Record of Task 1 

(refer to Table A in Appendix 3), we evaluate the proposed semi-automatic service 

creation tool as follows: 

 All the participants were able to use the proposed software to accomplish the 

given task, indicating that the software is usable and able to achieve its design 

requirement; 

 The software GUI is easy to use since participants paused only 3.3 times on 

average due to  difficulty with the GUI and most of the difficulties occurred 

because the participants could not find the “Element Mode” hotkey button; 

 The target software’s performance during the tasks has been acceptable since no 
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errors occurred throughout the entire Task 1 with 10 participants participating but 

the software crashed 2 times out of 10 times of operations; 

5.6.2.3 Suggestions to the proposed semi-automatic service creation tool 

after Task 1 

The participant suggestions were collected throughout the Acceptance Testing 

Questionnaire Phase 1, Question 13 and 14. Most of the participant suggestions for 

Task 1 focus on the GUI aspect. Participants suggest that there should be more 

functional hotkeys on the hotkey bar for participants to execute the functions more 

easily than looking up them in the menu list; Participants also suggest that a help 

function should be added into the software; Besides, a few participants suggested that 

the hotkeys should be designed to be more recognizable among the different GUI 

components so as to make it easier for participants to find these. 

5.6.2.4 Testing result evaluation of Task 2 
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Figure 5.53: Bar chart for Alpha Testing Questionnaire of Task 2 

Based on the analysis on the results (refer to Table B in Appendix 3 and Figure 5.53) 

of the Alpha Testing Questionnaire of Task 2, we evaluated the proposed MDTV 

service platform as follows: 

 All participants think the target software is very good overall and useful in 
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assisting them to perform the required tasks. 

 8 out of 10 of the participants think the software performed very well during Task 

2; more than 5 participants out of 10 think that the service page rendering speed 

of the software is fast; The design of the navigation algorithm within the same 

page is ranked very good by all participants but 6 of them did not give the top 

rank as they were expecting the vertical navigation also available rather than 

merely navigating horizontally. The design of the navigation algorithm between 

service pages was considered to be acceptable by majority of participants but 3 

participants had difficulties with it; this is mainly because the navigation was not 

as direct by simply pressing a button but instead participants had to navigate to 

the specified button first before the button could be pressed. 

 The performance of the interactive applications is considered to be good by all 

the participants. Moreover we can infer from this result that the interactive 

applications based on the XHTML and “ID Event” presentation method are 

acceptable to all participants. 

 9 out of 10 participants think that the GUI is easy to use and all the participants 

commented positive on the GUI overall design. One of the main reason why 6 of 

the participants did not rate “very good” on the GUI design is that some of the 

participants were not used to use the handset emulator software environment; 

most of the participants had to get familiarised with the emulator first before they 

could start using the software to be tested.  

 All the participants that participated in the test expressed very positive views on 

the question of interacting with Mobile TV services/applications if they were 

provided with such services. 

Based on the analysis of the Alpha Testing Process Observation Record of Task 2, we 

evaluate the proposed MDTV service platform as follow: 

 All the participants were able to use the proposed software to accomplish the 

given task, which indicates that the software is usable and able to achieve its 

design requirement; 
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 The software GUI is easy to use since participants paused only 3.4 times on 

average due to difficulty with the GUI and most of the difficulties occurred 

because some of the uses were unfamiliar with the emulator environment and 

some navigation design drawbacks confused the participants during the task. 

 The target software’s performance during the tasks has been acceptable since no 

errors occurred throughout the entire Task 2 but the software crashed 2 times 

during 10 times of operations. 

5.6.2.5 Suggestions to the proposed MDTV service platform after Task 2 

Participant suggestions were collected throughout the Acceptance Testing 

Questionnaire Phase 2, Questions 26 and 27. Two aspects of suggestions are as 

follows: 

1. Improvement Suggestion:  

 the service platform should also support touch screen to receive a better 

participant experience;  

 The navigation system should be further improved to be more convenient to use 

such as supporting the vertical navigation within the same page and make some 

of hotkeys or functional components linked to the keyboard number buttons. 

2. Ideas on new type of interactive application: 

 TV-online shopping; 

 Interactive advertisement; 

 Shopping assistant service such as locating the nearest stores and etc.; 

 RSS feeds. 

5.7 COMPARISON WITH INSTINCT SERVICE CREATION 

PROCESS 

Having conducted a series of testing cases, the two proposed software components 

have been validated against their key functionalities and design requirements. More 

importantly, this further proves that the proposed semi-automatic service creation and 
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consumption system is effective on facilitating the current MDTV service creation in 

practice. In order to present the advantage of the Thesis’s proposal more clearly, a 

comparison between the Thesis’s proposed solution and a practical DTV service 

implementation solution, based on the INSTINCT project (which is the most relevant 

similar to the Thesis’s work), is to be performed as a part of the overall testing. 

According to the different scopes of these two solutions (as discussed in Chapter 3), 

the comparison will mainly focus of the service creation process. 

 
Figure 5.54: INSTINCT project service creation process ([132] Figure3) 
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Figure 5.55: Thesis’s proposed semi-automatic service creation process 

In the INSTINCT project, the service creation process includes two steps (as 

illustrated in Figure 5.54): the front-end for the UI components creation and the back-

end for the interactive components creation.  On the front-end creation segment, the 

designer firstly creates the graphical components by using commercial graphics 

authoring tool such as Photoshop, in order to prepare original materials for the UI 

design. With these graphical components, the designer then uses Macromedia Director 

to design the prototype of the service UI and layout. The project proposed UI 

Generation Tool is then used by the designer to convert the Director formatted service 

UI into a custom XML language designed specifically for that project. On the back-

end creation segment, the designer will utilize the project’s proposed Application 

Generation Tool to further edit the XML formatted service UI by mapping iTV 

applications (e.g. interactive application) to the UI components according to the 

service design requirements. Finally, the Application Generation Tool will assists the 

designer in converting the XML formatted iTV service into the requested format (such 

as HTML format) to finally output the integrated version of the iTV service. 

Comparing the above process with the Thesis’s proposed process (as presented in 

Chapter 3 and tested in Chapter 5), the Thesis’s solution has adopted a similar 

methodology as the INSTINCT solution during the back-end interaction creation. 

However on the front-end UI creation segment, the proposed semi-automatic service 

creation process shows advantages on several aspects: 

The XHTML has been adopted in the proposed creation process instead of the custom 

XML language developed in the INSTINCT project. This is one of the biggest 

advantages when comparing with INSTINCT solution: firstly, as discussed in Chapter 

3, the XML is not suitable for visual presentation and a XML based visual 

presentation technologies usually requires extra parser or rendering engine. Thus in 

the INSTICT solution, a customized XML schema is introduced to assist XML 

achieving the UI generation. However, this customized schema is not compliant well 



198 

to the current DTV/MDTV service implementations and thus additional tools have 

been developed to reformat it to be more compatible to the bearer standards. Extra 

time and effort will have to be conducted in this case especially for all the conversion 

processes. In contrast, the Thesis’s proposed creation process involves widely-adopted 

XHTML technology that is compatible with most of the DTV/MDTV standard. The 

Thesis’s solution strictly follows the syntax in W3C XHTML specification during the 

service creation without creating any additional protocol or schema. Therefore, no 

extra conversion process is needed in the Thesis’s solution and the proposed service 

creation process is thus shorter and less complicated. Secondly, by utilizing XHTML, 

the “Marcomedia Director” step and the “UI Generation Tool” step of the INSTINCT 

solution can be merged and simplified as in the Thesis’s solution. This is because by 

using XHTML authoring tools such as Adobe Dreamweaver and Microsoft 

Expression Web, the designer can do the UI prototyping and UI generation at the 

same time. Moreover, the XHTML authoring is relatively easier than the work based 

on Marcomedia Director due to the popularity of these two kinds of tools. 

Moreover in the INSTINCT project, the relative testing performed on the UI 

generation segment has revealed that the efficiency of the conversion from the 

Director file to the XML file is not as expected. This is due to the Marcomedia 

Director has various functions and the UI prototyping is only a small subset of them. 

Thus the conversion may fail unless specific set of design and authoring rules are 

followed prior to the import of the file in the UI Generation Tool. In other words, the 

designer must ensure his/her design follows specific requirements and guidelines 

when using Marcomedia Director [132]. As to the Thesis’s creation process, the 

XHTML technology is much more familiar to most of the design oriented 

professionals. More importantly, most of the XHTML authoring tools have their main 

focus concentrated on visual design and the W3C XHTML syntax is always followed 

during the service creation. Therefore the designer can employ conventional web 

service design processes and skills without additional attentions to any extra rules 

during the MDTV service creation. 
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In such comparison, the Thesis’s proposed service creation process is therefore more 

efficient and less complicated than the INSTINCT’s process. Several effective 

improvements have been conducted especially during the front-end segment to help 

designers accomplish the design work more easily and conveniently. Additionally 

with the assistant of the proposed client implementation environment including the 

service platform, the Thesis’s proposed semi-automatic service creation and 

consumption solution is thus able to contribute the current MDTV industry field more 

evidently. 

5.8 TEST CONCLUSION 

By conducting a series of software testing procedures, we manage to evaluate the 

proposed software components more comprehensively. Through the component 

testing, integration testing and system testing to the software components, we have 

found the bugs and drawbacks in the target software and relative modifications will be 

done according to these findings. More importantly, these tests have verified that the 

target software components have been designed with solid logic and completed 

functionality. Both of the semi-automatic service creation tool and the terminal device 

service platform have matched their design requirements and further their 

functionality enables the proposed MDTV service creation and implementation 

solution. Through the Acceptance Testing, we managed to test the software 

components in practice and gain feedbacks from users. Such feedback has pointed out 

more problems existing in the software, which are also the valuable reference for 

future work. Moreover at the prototype stage of the proposed solution, the feedback 

has further validated the solutions’ contributions: 

The semi-automatic service creation tool has been considered to be useful during a 

MDTV service creation process. It has been able to help the participants achieve the 

MDTV interactive service page manipulation and creation, regardless their knowledge 

to the MDTV and the software engineering related technologies and skills. This 
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means as long as a designer has the knowledge on how to use computer programs and 

has the basic experience on XHTML authoring, he is able to do the MDTV service 

creation through the proposed tool. The technical demands to the designer are 

therefore reduced and the MDTV service creation process is further simplified. 

Moreover as mentioned in the Thesis’s aim, more design oriented professionals are 

able to get involved more easily and the development of the MDTV service can be 

further encouraged.  

Also through the terminal device service platform, most of the conventional services 

and interactive applications (such live data feeding and voting) have been 

implemented. This in turn means that without using ECMAScript, the proposed 

solution can achieve most of the MDTV applications as the commercial solutions 

could provide. The Java ME based “ID Event” method has thus been proved to be 

effective for presenting MDTV interactive applications. From this aspect, the 

potential benefits (as discussed in Chapter 4) of using Java ME technology and the 

“ID Event” method during the MDTV service implementation are proved. 

Summary: 

This chapter has implemented a series of software testing procedures to the proposed 

software components including semi-automatic service creation tool and the terminal 

device service platform. Bugs and drawbacks have been found through the test and 

will be used as the reference for future work; evaluation based on the test result has 

also been conducted that the proposed software components have been verified and 

validated to be able to achieve their functions to enable the proposed MDTV service 

creation and implementation solution. Moreover such proposed solution is evaluated 

to be able to conduct the Thesis’s aim. 
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6. CHAPTER 6: FURTHER WORK AND CONCLUSION 

6.1  FURTHER WORK 

Based on the implementation of the proposed work and the corresponding test results, 

this section provides a set of discussions regarding improvements that can be made to 

the creation tool and the service platform developed as a part of this Thesis as well as 

some thoughts on future work. 

6.1.1 SEMI-AUTOMATIC SERVICE CREATION TOOL 

Firstly, several modifications to the software GUI are necessary to be conducted as it 

has been concluded by the testing results and evaluation in Chapter 5: 

1. To re-design the hotkey bar by changing the outlook to be easier to recognize and 

by adding more functional hotkeys to improve the user experience and operation 

efficiency;  

2. To update the page editing area in the central pane, to enable the page display frame 

to offer users direct service page manipulation rather than only source code 

manipulation that is currently provided;  

3. To modify the project explorer in the left pane by adding file filtering function to 

prevent users from opening a file in any format other than “.html”. 

Secondly, in order to integrate with the Mobile TV Electronic Service Guide (ESG) 

function better, we consider adding a new function to the creation tool that will 

automatically output the service page metadata file during the service creation process; 

this will facilitate the ESG creation process by allowing the user of our tool to output 

the relevant mobile interactive application service metadata in an automated way and 

in the format that is usually defined in the underlying MDTV transport layer 
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specifications (such as OMA-BCAST and DVB-CMBS). 

Thirdly, we intend to make an enhancement to the XHTML and “ID Event” based 

MDTV service presentation method applied during the proposed service creation 

process. Such enhancement is considered to be conducted by involving SVG as 

assistant technology to Bitmap format that is currently used as the image format in the 

proposed presentation method. In Chapter 3, we have offered a discussion on the 

advantages and disadvantages of using Rich Media during the MDTV service creation 

and we chose XHTML as our proposed technology in the methodology instead of the 

Rich Media solution. Furthermore, in chapter 5, a series of test case results have 

indicated that the XHTML and “ID Event” based presentation method provides as 

good functionality as Rich Media, based on the participant feedback. However, the 

image format, Bitmap, which we apply in our presentation method, has several 

drawbacks: Bitmap is a format of graphics that stores the image as a map of bits, 

which means that the higher resolution of the graphics we demand, the more bits of 

storage medium or bandwidth are needed to store or transmit the graphics. This fact 

affects the performance the service on the MDTV terminal when there is a need of 

higher resolution to the image components on the service page. The page loading 

speed may be slower and the terminal device has to provide more storage space to 

store it and display it. Regarding to this problem, we are considering involving 

Scalable Vector Graphics (SVG) as the assistant graphics format during the proposed 

service creation process in the future work for the following reasons: 

1. SVG is stored as XML code rather than map of bits and therefore less storage 

medium or bandwidth is needed when comparing with Bitmap. Moreover, the higher 

resolution is required, the more capacity will be saved; 

2. SVG is based on XML, which can be integrated in the XHTML code during the 

service creation and transmission process;  

3. SVG graphics complies to different resolution demands, which means that an 
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image in SVG only have to be created once for multiple resolution requirement; 

bitmap graphics on the other hand must be created several times according each 

different terminal resolution to ensure an acceptable visual quality; 

4. More importantly, since the proposed terminal device service platform is developed 

with Java ME which has internal JSRs (JSR226 and JSR287) to support SVG Tiny, it 

is therefore much more convenient now to apply SVG during the proposed service 

creation process. 

6.1.2 THE MDTV SERVICE PLATFORM 

According to the testing results and evaluation presented in Chapter 5, several 

modifications to the MDTV service platform will be conducted: 

1. The navigation system of the platform will be updated to provide more convenient 

navigation user experience: by updating it to support full positioning (vertical and 

horizontal) navigation; updating it to support hotkey operation by linking platform 

functions to MDTV terminal device I/O unit (such as a numbered keyboard);  

2. Since touch screen technology is becoming more and more popular on mobile 

devices, we plan to redesign the software GUI to support touch screen operation in 

order to meet the new user requirement; 

3. Correct the display bugs in the layout engine of the service platform to ensure that 

multiple components can be displayed in a proper layout.  Enhance the layout engine 

to be compliant to multiple screen sizes and resolutions of the MDTV terminal 

devices; 

4. Enhance the XHTML parsing engine to support more XHTML elements and 

attributes. Optimize the XHTML page parsing algorithm to improve the page parsing 

and rendering efficiency so as to shorten the service page loading time on the platform; 



204 

5. As the user requirement to the MDTV service evolves in the future, we plan to 

develop new interactive applications (such as interactive advertisement, internet 

access and wireless communication) to meet the popularity and to enrich the service 

platform aiming at developing an integrated multimedia data exchanging portal for 

the future. 

Other aspects that will enhance the service platform, which are more related to new 

technology and better compatibility, are as follow: 

1. Utilize JSR226 and JSR287 to develop a SVG Tiny rendering sub-system in order 

to integrate SVG Tiny support on the service platform; 

2. When the JSR272 standard is implemented and the relevant version become 

available, we aim to develop the service platform further to integrate it with the 

JSR272 MDTV middleware in order to match the software environment better to the 

MDTV system. This will be conducted by adding a functional sub-system to support 

general MDTV functions described in JSR272 (such as user account management, 

ESG and several more.); 

 

Figure 6.1: MDTV-CIE architecture extended from JSR272 implementation 
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In order to ensure that the proposed solution is compliant with JSR272’s 

implementation (as shown in Figure 2.6 Chapter 2) properly, the MDTV-CIE 

architecture (as shown in Figure 4.1) has been further designed and merged with the 

JSR272 architecture as depicted in Figure 6.1: 

Applications such as an ESG viewer, Media Viewer, PVR and Auxiliary Data 

Services are used to be in a separate form on top of the MIDP + JSR272 platform. 

Considering the MDTV service as an integration, our proposed XHTML browser 

based service platform is built as a service managing centre providing ESG retrieval, 

application execution platform, navigation mechanism, service content parsing, 

playing and displaying content, and an interaction mechanism. Moreover, the service 

platform is made to be extensible for additional functions and new value-added 

applications. Functionally, all the components in the Table below, including LCDUI, 

Media Viewer, Auxiliary Data Services, XHTML Content Renderer, Interactive Event 

Handler and Interactive Service Managing Server, are the key functional units in the 

MDTV-CIE, whereas the other components in the Table below, such as the Value-

added Applications, ESG Viewer and PVR can be treated as further work. 

Function Units Relevant JSR Components Description 

LCDUI JSR118 – MIDP 2.0 

GUI and Navigating mechanism for general 

operations the service contents and applications 

within the browser based service platform. 

Media Viewer 
JSR272 Presentation aspect + 

JSR135 -- MMAPI 

MDTV Audio/Video service contents player and 

controller with the support of MMAPI 

Auxiliary Data 

Services 

JSR272 Broadcast Object aspect 

+ JSR75 

MDTV services that are developed according to 

our proposed XHTML based service application 

model. 

XHTML Content 

Renderer 
JSR118 – MIDP 2.0 

XHTML based auxiliary service contents 

renderer for content parsing, visual presenting. 

Interactive Event 

Handler 
JSR118 – MIDP 2.0 

Catches the interactive service events based on 

our application model and executes them in 

cooperation with Server 

Interactive 

Service Managing 

Server 

Java Standard Edition 
In cooperation with the interactive event handler 

to achieve the interactive services. 

Other Value-

added 

Applications 

Application function dependent 
Further work; MDTV Service requirement 

dependent 

ESG Viewer 
JSR272 ESG, Purchase and 

Service Management aspects 

Further work while awaiting a public release of 

JSR272; Main portal for MDTV service with 

functions of service listing, service purchasing 

and service management. 

PVR JSR272 Recording aspects Further work; In charge of MDTV A/V program 
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recording 

Table 6.1: Function Units in the MDTV-CIE 

3. Further testing on different operating systems (such as Nokia Symbian, Google 

Android and Linux) is also considered to be a part of the future work. The purpose of 

this is to improve the compatibility and portability of the software to different 

hardware environment (such as mobile phones or set-top boxes). 

6.1.3 FURTHER SOFTWARE TESTING PROCEDURE 

When all these modification works are conducted to the proposed system and the 

software components, a series of advanced software testing procedures are planned to 

be implemented. First an advanced usability test will be carried out to the proposed 

semi-automatic service creation process. The test will try to select more participants 

from the practical web service and content design field aiming at evaluating: how the 

participants accept the proposed creation process; if the semi-automatic creation tool 

is really effective on helping them achieve the MDTV service creation; if the semi-

automatic service creation process is effective on involving design oriented 

professionals into the MDTV service creation. Second, a comparison testing will be 

launched between the proposed terminal device service platform and some 

commercial MDTV client service platform solutions, with the purpose to test the 

software’s functionality and performance more quantitatively and in turn evaluate if 

the proposed service platform is robust for implementing the MDTV service 

consumption in practice. 

6.2  THESIS SUMMARY 

Mobile Digital Television has become one of the future media service trends and 

meanwhile mobile interactive applications/services have become more important as a 

key attractive component to the MDTV user. Research institutes as well as 

commercial entities are developing interactive services to be more functional and to 

perform in a more efficient way. However, the results have proved to be still far from 
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promising in some aspects. 

With this background situation, the Chapter 1 of the Thesis firstly conducts a brief 

overview on the Digital TV industry and market focusing on the Mobile Digital TV 

aspects. The Thesis’s aims are then set with regard to cope with the challenges in the 

current situation. Having discussed the different implementation solutions of the 

MDTV service as well as the major MDTV standards, Chapter 2 then highlights the 

application layer of the entire MDTV system, where all the middleware and software 

specifications are defined to provide standardized technical reference to the actual 

creation and implementation of the MDTV service applications. 

The Thesis then presents deep research on different MDTV standard 

middleware/software as well as a series of studies on commercial MDTV service 

solutions. Discussion was then offered on the current MDTV service creation and 

implementations solutions, which leaded to an initial conclusion that there is a need of 

developing a better solution that could cope with the drawbacks of the current 

solutions. Based on the JSR272 MDTV middleware standard, the Thesis then 

proposed a universal MDTV implementation solution with better compatibility and 

adaptability across different underlying network standards. The proposed solution is 

conducted in form of a MDTV service creation and consumption system, of which 

two key components were mainly proposed to be implemented in the Thesis: namely 

the semi-automatic service creation process and MDTV client implementation 

environment. 

Chapter 3 firstly discussed the motivation of proposing the semi-automatic service 

creation process. Moreover through a research on the Application Model, which is 

defined both in MDTV standards and in commercial solutions as a service 

implementation reference, as well as the various MDTV presentation technologies 

currently applied, the methodology was further worked out. The semi-automatic 

service creation process was then implemented by developing a semi-automatic 

MDTV service creation tool with XHTML and Java ME as the basis of the service 
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presentation technologies. The semi-automatic service creation tool provides a more 

efficient interactive service creation platform with less technical demands to the 

designer and further the XHTML and Java ME based presentation method ensure the 

inter-compatibility and open-source characters of the outputted MDTV service 

content. 

In Chapter 4 the MDTV client implementation environment were presented to assist 

the implementation of the proposed semi-automatic service creation process. The 

client side of the environment, namely the terminal device service platform was 

proposed as the other main software components. Based on the research on various 

MDTV client-end solutions, the service platform was then decided to be developed 

based on the browser-based architecture with all the functional components fully 

customized. A discussion on how such client implementation environment could 

contribute to the proposed solution was also conducted within the chapter. 

A series of testing processes have been conducted and the evaluations of the results 

have also been presented in chapter 5 of the Thesis. As a result, both of the proposed 

software components have performed well in all tests with very positive feedback 

from the target audience and through an overall discussion, the proposed MDTV 

service creation and consumption system was further verified to meet the aims of the 

Thesis. Finally in this chapter, based on the testing results, the Thesis presents future 

and further work that will further enhance the proposed system and will advance the 

research in this area. Lastly the summary and the conclusion end this Thesis. 

6.3 LESSONS LEARNED & CONCLUSION 

From the research work in this Thesis, it can be understood more clearly that there is 

need of the high quality of multimedia and interactive applications in the current 

MDTV service market although the current service creation and implementation 

solutions could not satisfy this situation. The current MDTV service implementation 

solutions suffer from several problems: firstly, the current MDTV standards have 
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utilized different presentation technologies during their service creation, resulting in 

their service contents not being inter-compatible with each other. This has caused the 

creation of a same service/application for different bearer standards. Secondly, there is 

lack of open-standard MDTV service implementation solutions that most of the 

current ones are developed under the authority of commercial entities (e.g. 

Streamezzo and EXPWAY). Their proprietary character has resulted in the isolated 

service implementation environment, in which the service creation and maintenance 

are relatively hard and expensive. Thirdly, the Rich Media and ECMAScript based 

presentation technologies, such as OMA-RME and MPEG-LASeR, have dominated 

the current MDTV service creation but there are still several drawbacks when using 

them in practice. For example, the Rich Media based MDTV service GUI is not 

adaptable to mobile devices with different screen sizes and resolutions once created. 

The Rich Media technologies usually requires the use of specified/customized 

authoring tools during the service creation and thus advanced technical knowledge is 

demanded from the designers. As a result, all of these findings have motivated the 

proposal of the new MDTV service creation and consumption solution as presented in 

the Thesis. 

Through the development of the proposed solution, we have learned that to reduce the 

technical demands on the designer is an effective way of encouraging the 

development of the MDTV services in practice. Also the introduction of open-source 

and inter-compatibility characters can further increase the efficiency and meanwhile 

reduce the cost and efforts during the service creation process. Moreover the Rich 

Media and ECMAScript has been proved not only the effective group for presenting 

the MDTV service that the proposed XHTML and Java ME based method has also got 

the ability of implementing most of the popular MDTV services and applications. 

Based on all these lessons learned, the Thesis has been able to propose the solution 

and achieve the contributions. 

The Thesis has proposed a universal MDTV service creation and implementation 
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solution to cope with the problems and defects in the current MDTV industry field. 

Such solution is implemented based on a novel MDTV service creation and 

consumption system, of which the semi-automatic service creation process and the 

client implementation environment are the main sub-systems.  

The semi-automatic service creation process conducts the contribution by facilitating 

the current MDTV service creation and reducing the technical demands during the 

creation. The core software components, namely the semi-automatic service creation 

tool, is developed to assist the designer creating the MDTV service page semi-

automatically and by using this proposed service creation tool, the designer do not 

have to know well on the MDTV service creation technologies and skills to achieve 

the work. Moreover the XHTML and Java ME based service presentation method 

ensures the service contents’ inter-compatibility through various MDTV standards. It 

also helps preventing the proprietary character during the service creation process and 

further enables the involvement of more design oriented professionals into the MDTV 

service development.  

In the client implementation environment of the proposed system, the terminal device 

service platform has been the core contributing component. It is developed based on 

the browser-based architecture aiming at providing service consumption client side 

platform for rendering and handling the MDTV service content outputted from the 

proposed creation tool. In this way the functionality of the proposed MDTV service 

creation and consumption system are fully achieved. Also, the service platform 

achieves in implementing most of the popular MDTV service applications as the 

current commercial solution could provide. This further supports the XHTML and 

Java ME based MDTV service presentation method to be an alternative choice other 

than the Rich Media and ECMAscript based methods. 

Further through a series of the software testing procedure, the two software 

components in the solution have been verified to meet their design requirements and 

validated to be capable of achieving their functionalities in the proposed system. All 
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the aims of the thesis’ are tested to be met. Additionally, the test results and the test 

participants’ comments and advices also motivate the plan of the further modification 

and enhancement work to the software and the proposed system in the future. 

As conclusion, this Thesis has proposed a new MDTV service creation and 

implementation solution. With the hope of implementing the further work, this project 

represents an advanced research and exploration in the MDTV service creation field. 

Summary: 

This chapter presents the future work to the proposed solution and software 

components. The summary provides the review of the Thesis and the conclusion states 

the lesson learned through the research work and finally highlights the contribution of 

the Thesis. 
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VI. Appendix 1: Consent Form 

Letter of Information 

User testing of a Mobile Digital Television service software system 

What is our study about? 

This project is basically in the field of Mobile Digital TV (MDTV), where the Digital 

TV program including audio/visual and auxiliary data services are provided through 

mobile devices (mobile phone, PDA and etc.) to the end user. Regarding to the low 

efficiency and incompatibility of the current MDTV service creation and 

implementation process, this project has proposed a software system aiming at 

improving the creation process. In order to test the software system in a 

comprehensive manner, we decided to organize a testing case with actual users 

involved. 

What will the participation involve? 

If you are willing to participate, you will be asked to do a set of tasks by using our 

proposed software and complete a relevant questionnaire at the end of the tasks. The 

whole process should take approximately 20 minutes of your time. You may refuse to 

participate, refuse to answer any question, or withdraw from the study at any time 

with no penalty. By participating in this study, you are also agreeing that your results 

may be used for scientific purposes, including publication in scientific journals, as 

long as your anonymity is maintained. There are no known risks associated with 

participation in this research. 

If you have any questions now or after the study, please do not hesitate to contact us: 

Thank you, 

 

Moxian Liu 

Email: Moxian.Liu@brunel.ac.uk 

Office Address: 258, Michael Sterling, Brunel University. 

 

This letter is for you to keep 



220 

Consent Form 

 

 

I ____________________________ (please print) have read the attached information 

sheet and discussed the investigation with Moxian Liu who has explained the 

procedures to my satisfaction. I am writing to undergo the investigation, and 

understand that I am free to withdraw at any time without having to give an 

explanation and that doing so will not affect any treatment I may receive. 

 

 

Signed                   …………………………………………… 

Date                     …………………………………………… 

Witness’s Name            …………………………………………… 

Witness’s Signature         …………………………………………… 
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VII. Appendix 2: Participant Document 

User Task Testing  

1. Creation of MDTV interactive service pages by using the proposed semi-automatic 

service creation tool. 

Task tutorial: how to create an interactive service page using the semi-automatic 

service creation tool. 

Step1: feel free to try the GUI components of the software (left-click or right-click the 

mouse on the menus, buttons, windows, etc.); 

Step2: double-click the testpage5 file name in the file list, in the left frame to open the 

target XHTML service page (testpage5); 

Step3: add the “<font>text</font>” element under the first “<p> … </p>” section in 

the source code of the target service page displayed in the lower frame on the central 

pane to edit the page;  

Step4: press the  hotkey on the hotkey bar to change the central pane to 

“element mode”; 

Step5: select an interactive application from the interactive application list in the right 

pane; 

Step6: drag that application from the list and drop on the target element (id = 

“Element 1”) in the source code display area;  

Step7: follow the pop-up message and enter the relevant parameter (ask the tester for 

parameters); 

Step8: repeat Step6 and Step7 to add different interactive applications to Element 2 

(id = “Element 2”) – Element 6 (id = “Element 6”); 

Step9: press the “Element Mode” hotkey on the hotkey bar again to change the central 

pane from “Element Mode” back to “Text Mode”; 

Step10: press “save XHTML file…” hotkey on the hotkey bar to save all the 

modification to the service page; 

Step11: press the “X” figure on the tab in the central pane to close the target XHTML 

service page; 

Step12: check if the output file – IDEventFactory.java is on the desktop. 

2. Browse the MDTV interactive service pages through proposed terminal service 

platform. 
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Task tutorial: how to browse a service page in the terminal platform. 

(Please use the mobile phone emulator keyboards for the following operation) 

Step1: feel free to try out the GUI components (menu, options and etc.); 

Step2: press “menu” and select “homepage” to start browsing the service pages; 

Step3: press  on the service page to move on; when the new service page is 

displayed on the screen, press the navigation button on the emulator keyboard to 

navigate within one service page; 

Step4: press “OK” button on the emulator keyboard when the green navigating 

rectangle is on any hyperlink component/image on the service page so as to navigate 

between multiple service pages;  

Step5: feel free to select the “PrePage” option in the menu to go back to the previous 

page; 

Step6: go to testpage7 (refer to Figure 1), press  to start playing the video program; 

press  to stop the video; press  to vote if you like the program; press  

to vote if you do not like it; 

Step7: press  to go to testpage61 (refer to Figure 1), press  to request the 

vote result report; go back to testpage61, press  to request for live weather data 

feed; 

Step8: go to “menu – URLInput” to start browsing the service page by typing in the 

URL (URL=”http://127.0.0.1/remote/testpage6.html”); press “menu – URLget” to 

load to page. 

Step10: select “Exit” option to exit the service platform. 

                    

Figure 1 
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Acceptance Testing Questionnaire 

User Profile  

Age: 18 – 25, 26 – 35, 36 – 45, 46 – 55, 56 – 65. Gender: Male  /  Female 

Occupation: 

Degree primary subject: 

Phase 1: Semi-automatic service creation tool  

1. Do you have any experience on software programming?                                                                            Yes/No 

 

2. Do you have any experience on HTML/XHTML authoring?                                                                      Yes/No 

 

3. Do you have any experience on graphic/user interface design?                                                                   Yes/No 

 

4. How useful was the software in assisting you to accomplish 

the given task? 

 

Not useful  1  2  3  4  5  Very useful 

 

5. How easy or difficult was it for you for you to get 

familiarised with the Graphical User Interface (GUI) of the 

software? 

Very Difficult  1  2  3  4  5  Very Easy 

 

 

6. How easy or difficult was it for you to use the GUI of the 

software? 

Very Difficult  1  2  3  4  5  Very Easy 

 

 

7. How do you rate the GUI design?        

                 

Very Poor  1  2  3  4  5  Very Good   

8. How easy or difficult was it for you to manipulate the 

service page by editing the source code? 

Very Difficult  1  2  3  4  5  Very Easy 

 

 

9. How easy or difficult was it for you to assign a 

function/application to a User Interface graphic/component? 

Very Difficult  1  2  3  4  5  Very Easy 

 

 

10. How easy or difficult was it for you to use the software?  

Very Difficult  1  2  3  4  5  Very Easy 

 

11. How do you rate the software overall? Not useful  1  2  3  4  5  Very useful 

 

12. How effective is the software in assisting you to 

accomplishing the given task? 

 

 Not effective  1  2  3  4  5  Very effective 

 

13. Do you have any suggestion on improving the functionality of the software? 

 

 

 

 

 

14. Do you have any suggestion on improving the GUI of the software? 
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Phase 2: Terminal service platform 

15. How useful was the software in assisting you to accomplish 

the given task? 

 

Not useful  1  2  3  4  5  Very useful 

 

16. How did the software perform while you were doing the 

task? 

 

Very Poor  1  2  3  4  5  Very Good 

17. How easy or difficult was it for you to get familiarised with 

the GUI of the software? 

 

Very Difficult  1  2  3  4  5  Very Easy 

 

18. How easy or difficult was it for you to use the GUI of the 

software? 

 

Very Difficult  1  2  3  4  5  Very Easy 

19. How do you rate the GUI design? Very Poor  1  2  3  4  5  Very Good 

 

20. How would you rate the rendering of the MDTV service 

page elements (including audio/visual elements) in terms of 

speed? 

 

Very Poor  1  2  3  4  5  Very Good 

 

21. How would you rate the navigation within the same page? 

 

Very Poor  1  2  3  4  5  Very Good 

22. How would you rate the navigation between different service 

pages? 

 

Very Poor  1  2  3  4  5  Very Good 

23. How did the interactive applications perform overall? 

 

Very Poor  1  2  3  4  5  Very Good 

24. How do you rate the software overall? 

 

Very Poor  1  2  3  4  5  Very Good 

25. Would you like to be able to interact with mobile TV 

applications through this or a similar platform? 

Yes / No / Don’t know 

 

 

26. Do you have any suggestion on improving the software? (functionality or GUI) 

 

 

 

 

 

 

 

27. What other interactive applications do you expect from a Mobile TV service? 

 

 

 

 

 

 

 

 

Thank you very much for your patience and feedback! 
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Alpha Testing Process Observation Record by Tester 

 Task 1 Task 2 
 

How many times did the user pause during the task due to difficulty on 

understanding the task? 

  

 

How many times did the user pause during the task due difficulty with the 

GUI of the software? 

  

 

How many times did the user pause during the task due to the software 

crashing? 

  

 

How many errors did the user make while using the software? 

  

 

Could the user finish the tasks? 

 

Yes/No 

 

Yes/No 

 

How long did the user take on each task? 

 

mins 

 

mins 

 

Do the outputs of the user tasks meet the software requirements? 

 

Yes/No 

 

Yes/No 

Curves sample: 
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VIII.  Appendix 3: Acceptance Test Result 

Acceptance Testing Questionnaire Phase 1 

Phase 1 
Participants (p) 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

1 Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

2 No Yes No No Yes Yes Yes Yes No No 

3 No Yes Yes Yes Yes Yes Yes No Yes No 

4 (Rank) 3 5 5 4 4 5 5 4 4 5 

5 (Rank) 2 5 5 4 5 5 4 4 5 4 

6 (Rank) 4 5 5 4 5 5 4 4 4 5 

7 (Rank) 4 4 5 4 5 4 4 5 4 5 

8 (Rank) 2 4 5 5 5 5 5 4 3 2 

9 (Rank) 2 3 5 3 5 5 5 4 4 4 

10 (Rank) 3 4 5 4 4 5 5 5 3 4 

11 (Rank) 4 4 5 4 5 5 5 4 4 5 

12 (Rank) 3 3 5 4 5 4 5 4 3 3 

Alpha Testing Process Observation Record on Task 1 

Criteria p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

Record 1 
9 

times 

12 

times 
5 times 

2 

times 

0 

times 

0 

times 

10 

times 

7 

times 
5 times 11 times 

Record 2 
5 

times 
8 times 4 times 

1 

times 

0 

times 

1 

times 

6 

times 

1 

times 
0 times 7 times 

Record 3 
0 

times 
0 times 0 times 

0 

times 

1 

times 

0 

times 

0 

times 

1 

times 
0 times 0 times 

Record 4 
0 

times 
0 times 0 times 

0 

times 

0 

times 

0 

times 

0 

times 

0 

times 
0 times 0 times 

Record 5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Record 6 8mins 10mins 10mins 9mins 5mins 4mins 7mins 8mins 12mins 12mins 

Record 7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Table A: Test result of Task 1 

 

Acceptance Testing Questionnaire Phase 2 

Phase 5 
Participants (p) 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

15 (Rank) 4 5 5 5 5 5 5 4 4 5 

16 (Rank) 4 5 5 4 5 5 5 5 5 5 

17 (Rank) 4 4 5 4 4 5 4 4 4 4 

18 (Rank) 4 4 5 5 5 5 5 4 4 3 

19 (Rank) 4 4 5 4 5 4 5 5 4 4 

20 (Rank) 5 3 5 5 4 5 4 4 4 4 

21 (Rank) 5 4 5 4 5 4 5 4 4 4 

22 (Rank) 4 3 5 4 5 4 5 4 3 3 

23 (Rank) 4 5 5 4 5 5 5 4 4 5 

24 (Rank) 4 4 5 4 5 4 5 5 4 5 

25  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Alpha Testing Process Observation Record on Task 2 

Criteria p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

Record 1 
5 

times 
7 times 3 times 

1 

times 

0 

times 

0 

times 
9 times 

8 

times 

10 

times 
9 times 
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Record 2 
7 

times 

10 

times 
7 times 

0 

times 

0 

times 

0 

times 
2 times 

0 

times 
0 times 8times 

Record 3 
0 

times 
0 times 0 times 

1 

times 

1 

times 

0 

times 
0 times 

0 

times 
0 times 0 times 

Record 4 
0 

times 
0 times 0 times 

0 

times 

0 

times 

0 

times 
0 times 

0 

times 
0 times  0 times 

Record 5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Record 6 4mins 8mins 10mins 8mins 6mins 3mins 11mins 8mins 15mins 11mins 

Record 7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Table B: Test result of Task 2 


