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Abstract

A variational problem arising as a model in martensitic phase

transformation including surface energy is studied. It explains the

complex, multi-dimensional pattern of twin branching which is often

observed in a martensitic phase near the austenite interface.

We prove that a Lavrentiev phenomenon can occur if the domain is

a rectangle. We show that this phenomenon disappears under arbitrar-

ily small shears of the domain. We also prove that other perturbations

of the problem lead to an extinction of the Lavrentiev phenomenon.
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1 Introduction

Phase transitions in solids often involve structure on a microscale. In marten-

sitic phase transformation for example this is quite well understood. A com-

mon approach is by elastic energy minimization (see Ball and James [2, 3]

for a geometrically nonlinear theory or Khachaturyan, Shatalov and Roit-

burd [10, 11, 19] for a geometrically linear theory). The stored energies are

typically nonconvex (and not quasiconvex) and so the variational integrals

involved are typically not lower semicontinuous. Therefore the minimum is

not attained. However, there exist minimizing sequences, which involve finer

and finer oscillations describing the microstructure in the solid.

Considering elastic energy alone one is capable of predicting many prop-

erties of the microstructure, for example the layering directions in twinned

patterns or the lattice orientation of the different phases. However, other

features such as lengthscales are still arbitrary. If also interfacial energy is

incorporated into the model these can be determined, too. We consider two

ways to represent interfacial energy. The first is by adding a singular pertur-

bation involving higher order gradients, the second is by essentially adding

the surface area of the interfaces.

In this paper we revisit a model which was introduced and analyzed by

Kohn and Müller [12, 13, 14]. The model is as follows. Minimize

Eε(u) =

∫
RL

u2
x + (u2

y − 1)2 + ε2u2
yy dx dy (1.1)

subject to

u = 0 for x = 0

where

RL = (0, L) × (0, 1).
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The double-well potential u2
x + (u2

y − 1)2 represents elastic energy of the

L

1

Figure 1: A rectangular domain (Ω = RL)

martensite, the preferred values ∇u = (0,±1) being the stress-free states of

two different variants of martensite. The higher-order term ε2u2
yy describes

interfacial energy by singular perturbation. The boundary x = 0 represents

the austenite–twinned-martensite interface. The boundary condition u = 0

for x = 0 refers to elastic compatibility with the austenite phase in the

extreme case of complete rigidity of the austenite.

The variational problem (1.1) is closely related to the following one. Min-

imize

Iε(u) =

∫
RL

u2
x + ε|uyy| dx dy (1.2)

subject to

|uy| = 1 a.e., u = 0 for x = 0.

(The precise class of admissible functions will be introduced in section 2.)

Note that in both formulations (1.1) and (1.2) of the variational problem

the surface terms consider only changes of u in y-direction. To simplify the

presentation other components are neglected since the transition zones or

interfaces, respectively, between the two variants of martensite are expected
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to be essentially horizontal. Our results, in particular Theorem 2.3, remain

valid also without this approximation.

There is no rigorous proof of a relationship between the two formulations

of the problem. For a heuristic connection note that, following Modica [18],∫
x=x0

(u2
y − 1)2 + ε2u2

yy dy ≥
∫

x=x0

2ε|u2
y − 1| |uyy| dy

=

∫
x=x0

2ε|H(uy)y| dy

where H(t) is a primitive of |t2 − 1|. The inequality becomes sharp if εuyy =

±(u2
y − 1), i.e. if in the layer where uy changes between ±1 one has got the

appropriate profile. Note that the unknowns of Iε are the (sharp) interfaces

where uy changes its value between ±1, and 1/2
∫ 1

0
|uyy| dy counts the number

of these changes along the segment x = const, 0 ≤ y ≤ 1. We will present

a striking difference between the two formulations of the problem, namely

that a Lavrentiev phenomenon holds for the “sharp” formulation (1.2) but

not for the “diffusional” one (1.1).

It was shown in [12, 13, 14] that for energy minimization of elastic and

interfacial energy it is not enough to consider only a one-dimensional twinned

pattern. On the contrary, in this situation it is necessary to study complex,

two-dimensional patterns which are asymptotically self-similar. A rigorous

analysis is performed in the context of formulation (1.2) of the variational

problem. See also Schreiber [20] who extended many of the results to the

situation of (1.1).

In this paper we show that for the variational problem (1.2) a “Lavrentiev

phenomenon” occurs. Our main result is as follows. In the class W 1,∞(RL)

there is not even a function possessing finite energy in contrary to the class

H1(RL).

On the other hand, this Lavrentiev phenomenon does not occur if Ω is a
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parallelogram. We prove this explicitly giving an example of a function in

W 1,∞(Ω) having finite energy.

Note that a rectangle is mapped onto a parallelogram by an arbitrarily

small shear. Thus the behavior observed here depends on changes of the

domain in a highly singular way. To our knowledge this example is the

first where such a highly singular behavior of the Lavrentiev phenomenon on

changes of the domain has been observed.

We show that this Lavrentiev phenomenon also vanishes if we consider

the “diffusional” variational problem (1.1) instead of the “sharp” one (1.2).

Furthermore, we prove that if we omit the surface area term in (1.2) and

study the energy functional

Iε(u) =

∫
RL

u2
x dx dy

subject to

|uy| = 1 a.e., u = 0 for x = 0

the Lavrentiev phenomenon also disappears. This shows that the introduc-

tion of surface energy into the model not only captures new physical features

but also changes the problem in a fundamental way thus highlighting the

importance of considering surface energy effects.

A refinement of our results would be question: Is the minimal value the

same for functions chosen in H1 or in W 1,∞? Our results clearly show that

this not the case for a rectangular domain and the “sharp” formulation since

the first is finite, the latter is infinite. We expect that in case the domain is

a parallelogram and/or for the “diffusional” formulation the minimal values

are the same. But to our knowledge these are open questions.

In a general context the term Lavrentiev phenomenon is used to describe

that the value of the minimum of a variational problem increases strictly if
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the admissibility class W 1,p(Ω) is replaced by W 1,q(Ω) where Ω is a bounded

domain and 1 ≤ p < q. Such effects were first observed by Lavrentiev

[15]. There were refinements due to Mania [17] and Ball and Mizel [4]. See

also Cesari [5] and Dacorogna [6]. In these works examples were presented

where the energy of the absolute minimizer is different for the admissibility

classes W 1,q(Ω) and W 1,p(Ω) for some or all p with 1 ≤ p < q. All of the

treatments quoted above assume q = ∞ except for the work of Ball and Mizel

where an example was presented with q = 3. All these studies consider one-

dimensional problems. Connections between the Lavrentiev phenomenon

in higher dimensions and cavitation were studied by Ball [1]. Numerical

computations of the Lavrentiev phenomenon by truncation methods were

recently performed by Li [16].

The Lavrentiev phenomenon is of great physical importance. Very often

in the materials sciences it is important to know the maximum value of the

gradients. If they are too big the approximation of the continuum model to

the lattice model might no longer be valid. Furthermore, big gradients even

on a very small set very often lead to fracture of the body or other effects.

So in this case the model would have to be extended to account for these.

The structure of the paper is as follows. In section 2 we show that for

the “sharp” variational problem (1.2) on a rectangular domain there is no

Lipschitz function with finite energy and that this statement is not true if

the domain is a parallelogram. In section 3 we consider two other changes to

the variational problem, namely studying the “diffusional formulation” and

omitting surface energy. We show that then there exist Lipschitz functions

with finite energy.

We use C to denote generic constants which can vary from line to line.

Acknowledgements. It is a great pleasure to thank Professors J.M.
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2 The “sharp” formulation of the variational

problem

In this section we study the minimization of the model energy

Iε(u) =

∫
RL

u2
x + ε|uyy| dx dy

amongst all functions in the admissibility class

A0 = {u ∈ H1(RL) : |uy| = 1 a.e., uyy is a Radon measure on RL

with finite mass, u = 0 for x = 0}

where

RL = (0, L) × (0, 1).

To get an intuition for the condition that uyy is a Radon measure the

reader may think that uy is = 1 or −1, respectively, on subsets of RL which

are separated by smooth curves. Then for each Borel set A ⊂ RL its distri-

butional derivative satisfies

∫
A

|uyy|(x, y) dx dy = 2 × (length of the interfaces lying in A).
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This is the prototype of the Radon measure in our variational problem.

The theoretical reason for choosing Radon measures is that they have

good compactness properties and guarantee existence of minimizers. For

more background information on Radon measures see for example the monog-

raphy [7].

Kohn and Müller proved in [13] that this problem has a minimizer us-

ing the direct method in the calculus of variations. They also showed the

following result which plays the role of the Euler-Lagrange equation.

Lemma 2.1. (Equipartition of Energy) Let u be a minimizer of Iε on

A0. Then there exists a constant λ (depending on ε, L, and u) such that

∫ 1

0

ε|uyy|(x, y)dy −
∫ 1

0

u2
x(x, y)dy = λ (2.1)

for a.e. x ∈ (0, L).

Furthermore, they derived the following scaling law:

Theorem 2.2. There are constants c, C > 0 such that for ε sufficiently small

cε2/3L1/3 ≤ min Iε ≤ Cε2/3L1/3. (2.2)

We show that if we restrict the admissibility class to the set of Lipschitz

functions

B0 = A0 ∩ W 1,∞(RL)

= {u ∈ W 1,∞(RL) : |uy| = 1 a.e., uyy is a Radon measure on RL

with finite mass, u = 0 for x = 0}

this statement is no longer true. In fact, we prove the following
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Theorem 2.3. If Ω = RL then for all functions u ∈ B0 Iε(u) = ∞.

Remark 2.4. It is easy to see that for all p ∈ [1,∞) the class

{u ∈ W 1,p(RL) : |uy| = 1 a.e., uyy is a Radon measure on RL

with finite mass, u = 0 for x = 0}

contains a function u such that Iε(u) < ∞. An example for this is obtained

by modifying Example 3.1 below such that

θ ∈ (
1
4
, 1

2

)
if 1 ≤ p ≤ 2,

θ ∈ (
2p/(1−p), 1

2

)
if 2 < p < ∞.

Note that ∫
RL

up
x dy dx =

∞∑
i=0

∫ L

x1

∫ 2i

0

(2θ)−piup
x2

−iθi dy dx

=
∞∑
i=0

2−piθ(1−p)i

∫ L

x1

∫ 1

0

up
x dy dx

and the series is convergent if and only if

θ > 2p/(1−p).

Furthermore, note that

∫
RL

ε|uyy| dy dx = ε
∞∑
i=0

∫ L

x1

∫ 2i

0

2i|uyy|2−iθi dy dx

= ε
∞∑
i=0

(2θ)i

∫ L

x1

∫ 1

0

|uyy| dy dx

and the series is convergent if and only if

θ <
1

2
.
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Proof of Theorem 2.3. Assume that there is a constant K > 0 such that

|∇u| ≤ K for a.e. x ∈ RL.

Then we have by the Cauchy-Schwarz inequality

u2(l, y) =

(∫ l

0

1 · ux(x, y) dx

)2

≤
∫ l

0

12 dx ·
∫ l

0

u2
x(x, y) dx.

This implies the following Poincaré inequality

∫ 1

0

u2(l, y)dy ≤ l

∫ l

0

∫ 1

0

|∇u(x, y)|2 dx dy ≤ CK2l2. (2.3)

for all l ∈ (0, L].

Next we use a “zig-zag” inequality which was proved by Kohn and Müller

[13].

Lemma 2.5. Let f ∈ W 1,∞(0, 1). Assume that |f ′| = 1 a.e. and that f ′

changes sign N times. Then

∫ 1

0

f 2 dx ≥ 1

12
(N + 1)−2 =

1

12

(
1

2

∫ 1

0

|f ′′|dx + 1

)−2

.

Lemma 2.5 implies

1

12

(
1

2

∫ 1

0

|uyy(l, y)|dy + 1

)−2

≤
∫ 1

0

u2(l, y)dy. (2.4)

Combining (2.3) and (2.4) we get

∫ 1

0

|uyy(l, y)|dy ≥ CK−1l−1 − 2

where C is independent of K and l. After integration we have

∫ L

0

∫ 1

0

ε|uyy(l, y)|dydl ≥ C

∫ L

0

l−1dl − 2εL = ∞.
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This implies Theorem 2.3.

We now assume that the domain is a parallelogram. To simplify the

presentation assume that the parallelogram has interior angles of π/4 and

3π/4. But note that our method also works for other angles (except for π/2,

of course). Set Ω = {(x, y) : y < x < y + L, y ∈ (0, 1)} =: PL. We consider

1

L

Figure 2: The domain is a parallelogram (Ω = PL)

the variational problem

Iε(u) =

∫
PL

u2
x + ε|uyy| dx dy

amongst all functions in the admissibility class

A0 = {u ∈ H1(RL) : |uy| = 1 a.e., uyy is a Radon measure on RL

with finite mass, u = 0 for x = y, 0 ≤ x ≤ 1}.
Furthermore, define

B0 = A0 ∩ W 1,∞(PL).

The existence theorem of Kohn and Müller [13] applies to this case, too. Now

Theorem 2.3 is no longer true, but we have the following result.

Theorem 2.6. If Ω = PL then there is a function u ∈ B0 such that Iε(u) <

∞.
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Proof of Theorem 2.6. Choose the function u(x, y) = x−y. Then we have

u ∈ H1(PL), uy = −1 on PL, uyy = 0 on PL, and u = 0 if x = y, 0 ≤ x ≤ 1.

This implies u ∈ B0. Finally, we calculate

Iε(u) =

∫
PL

u2
x + ε|uyy| dx dy =

∫
PL

12 dxdy = |PL| < ∞.

3 Other perturbations of the “sharp” formu-

lation of the variational problem

In this section we consider other perturbations of the “sharp” formulation

(1.2) of the variational problem and show that for them the Lavrentiev phe-

nomenon observed in Section 2 disappears, i.e. there are Lipschitz functions

with finite energy.

We first study the “diffusional” formulation (1.1) of the problem, i.e. we

consider the model energy

Eε(u) =

∫
Ω

u2
x + (u2

y − 1)2 + ε2u2
yy dx dy.

The class of admissible functions for Ω = RL is

A1 = {u ∈ H2(RL) : u = 0 for x = 0}

and for Ω = PL

A1 = {u ∈ H2(RL) : u = 0 for x = y, 0 ≤ x ≤ 1}.

In analogy to section 2 we consider how the behavior of the problem changes

by restricting the admissibility class to

B1 = A1 ∩ W 1,∞(Ω).
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We show that the Lavrentiev phenomenon observed in section 2 does not

occur here. To this end for Ω = RL consider the function u = 0. Note that

0 ∈ B1 and calculate

Eε(0) =

∫
RL

12 dx dy = |RL| < ∞.

For Ω = PL the same function and the same calculation as in section

2 provide an example of a function in B1 which has finite energy. We con-

clude that the Lavrentiev phenomenon does not occur for the “diffusional”

formulation of the variational problem.

We finally consider the “sharp” formulation of the variational problem

without surface energy terms on a rectangle (Ω = RL). Our goal is to show

that Theorem 2.3 does not hold. To this end we have to show that there

exists a function u ∈ B0 such that

I0(u) < ∞.

(Recall that

B0 = {u ∈ W 1,∞(RL) : |uy| = 1 a.e., uyy is a Radon measure on RL

with finite mass, u = 0 for x = 0}.)

To give such an example we revisit the microstructure given in the work of

Kohn and Müller [12, 13, 14]. It turns out that this will give the desired

example. However, we will have to choose the scaling parameter θ in the

range 91/2, 1) for which the surface energy would be infinite. But because

we ignore surface energy we are allowed to do so.

Example 3.1. The microstructure is constructed as follows. First intro-
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duce a function ν : [0, 1] × [0, 1/2] → R defined as

ν(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

y if 0 ≤ y ≤ (x + 1)/8,

(x + 1)/4 − y if (x + 1)/8 ≤ y ≤ (x + 3)/8,

y − 1/2 if (x + 3)/8 ≤ y ≤ 1/2.

Then ν is extended antiperiodically in y to [0, 1] × [0, 1] The function ν

0 x

y

1
8

3
8

5
8

7
8

3
4

1
2

1
4

1

1

νy = 1

νy = −1

νy = 1

νy = −1

νy = 1

Figure 3: The function ν

satisfies

|νy| = 1 a.e.,

ν(x, y + 1) = ν(x, y),

ν(0, y) =
1

2
ν(1, 2y),
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∫ 1

0

∫ 1

0

ν2
x + ε|νyy| dx dy =

1

2

(
1

4

)2

+ 8ε.

Now choose θ ∈ (0, 1) and set

xi = θiL, i = 0, 1, . . . .

For x ∈ [x1, L] define

u(x, y) = ν

(
x − x1

L − x1

, y

)
.

Extend u periodically from [x1, L]×[0, 1] to [x1, L]×R. Note that on [x1, L]×
R u satisfies

|u| = 1 a.e.,

u(x, y + 1) = u(x, y),

u(x1, y) =
1

2
u(L, 2y),

∫ L

x1

∫ 1

0

u2
x + ε|uyy| dy dx =

1

32

1

L − x1

+ 8ε(L − x1).

Then continue u to (0, L] × [0, 1] by

u(x, y) = 2−iu(θ−ix, 2iy) if x ∈ [xi+1, xi].

Note that the resulting function is continuous. Obviously u can be extended

continuously to [0, L] × [0, 1] by setting

u(0, y) = 0 for 0 ≤ y ≤ 1.

Note that u ∈ W 1,∞(RL) if and only if θ ∈ [1/2, 1). We calculate the energy

of u as follows

I0(u) =
∞∑
i=0

∫ xi

xi+1

∫ 1

0

u2
x dy dx
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=
∞∑
i=0

∫ L

x1

∫ 2i

0

(2θ)−2iu2
x2

−iθi dy dx =
∞∑
i=0

(4θ)−i

∫ L

x1

∫ 1

0

u2
x dy dx.

The last expression is finite if and only if θ ∈ (1/4, 1). Therefore we have

u ∈ B0 and I0(u) < ∞ if and only if θ ∈ [1/2, 1). This is the desired

counterexample and we conclude that the problem without surface energy

does not exhibit the Lavrentiev phenomenon.
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