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ABSTRACT 

 

This research programme explores, theoretically and experimentally, a new lift-

system for Vertical/Short Take-off and Landing (V/STOL) Aircraft. It is based upon 

an annular wing wrapped around a centrifugal flow generator, potentially creating a 

vehicle with no external moving parts, reduced vehicle aerodynamic losses 

compared to previous V/STOL technologies and substantially eliminating induced 

drag. It is shown that such a wing works best with a thick aerofoil section, and 

appears to offer greatest potential at a micro-aerial vehicle scale with regard to 

fundamental performance parameter “lift to weight ratio”. Certain efficiency losses 

are encountered mainly occurring from annular flow expansion and problems with 

achieving acceptable blower slot heights. Experimental methods are described along 

with results, and a comparison shows that the experimental values remain below 

theoretical values, partly due to flow asymmetry but possibly also other factors. 

Symmetrical blowing, as initially hypothesised, was found to be impracticable; this 

suggested use of pure upper surface blowing with Coanda effect. The modified 

approach was further explored and proved viable. 

The ultimate goal of this work was to develop an understanding and the facility to 

integrate the annular-wing into a vehicle to achieve controlled powered flight. To 

serve the purpose, issues encountered on current and past V/STOL aircraft are being 

investigated to set a path for further research/development and to validate/justify the 

design of future V/STOL aircraft. Also, presented is a feasibility study where 

different physical scales and propulsion systems are considered, and a turbofan has 

shown to achieve the best performance in terms of Range and Endurance. This 

privilege allows one to accurately study the V/STOL technologies around. 
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Vref approach speed (m/s) 

cv  Rate of climb or climb velocity (m/s) 

v local flow velocity (m/s) 

W  Weight (N) 

0W  gross weight (N) 

my  Radial distance from surface to the point where mu u=  (m) 

m/2y  Radial distance from surface to the point where m/2u u=  (m) 

φ  Area ratio between fan and duct exhaust  

µ dry friction coefficient 

pη  Propulsive efficiency 

α Angle of attack (deg) 

fδ  Flow turn angle (deg) 

Lη  
Lifting efficiency 

tη  
Turning efficiency 

ψ  Azimuth angle (radians) 

ρ air density at sea level 3( 1.225 / )kg m=  
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Chapter 1. Introduction 
 

1.1 General Introduction 

Since the invention of aircraft extensive research has been conducted in the area of 

Vertical/Short Take-Off and Landing (V/STOL) technologies. Aircraft with V/STOL 

capability are highly demanded by “blue light” (military and emergency services) 

operators. This is self-evident: it cuts the need for long runways and reduces the time 

to achieve horizontal flight. The most successful aircraft of this kind is the 

helicopter. However, implementation of the capability in a fixed-wing aircraft has 

been a challenge and rarely been achieved. The BAe Harrier, Bell-Boeing Osprey V-

22 and Joint Strike Fighter F-35 are the most successful fixed-wing aircraft to have 

achieved V/STOL.  

It is clearly the net vertical force during take-off and landing that distinguishes a 

V/STOL aircraft from a conventional aeroplane. To that perspective a new and 

relatively untried strategy is proposed to achieve V/STOL with the wing fixed; the 

approach being is to generate lift from a static-blown-wing whereas in a 

conventional aircraft the wing is propelled through air to produce lift. Figure 1 

presents a schematic layout of the novel static-blown-wing. This static wing 

comprises a ring portion 2 having an aerofoil shaped cross-section. Positioned above 

the centre aperture of the ring portion 2 is a diffuser plate 3, the diffuser plate is 
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1.3 Objectives 

• Generate theoretical models for the wing in hover and translational flight 

modes 

• Perform analysis of the wing based on the models generated and define its 

aerodynamic characteristics 

• Evaluate geometry of the annular wing e.g. inner and outer radii of the 

annulus 

• Design and conduct an experiment to validate and/or improve the theories 

generated 

• Generate and develop ideas to improve aerodynamic efficiency of the wing 

• Carry out an analytical review of past V/STOL capabilities to understand 

specific design criteria for this particular class of aircraft 

• Perform feasibility studies to integrate the annular wing into a useable 

aircraft and establish design rules   

1.4 Novel Research Approach 

Initially, this research task was split into theoretical analysis and experimental tests 

of the wing, and hoping that each validates and helps refine the other. The longer 

term aim has then been to modify the basic wing shape in order to improve its 

aerodynamic efficiency and to develop design rules so that the wing design may be 

utilised in a flyable vehicle. Specifically, the author has set out to follow the road 

map displayed in Figure 3. 

The quest was motivated and complemented by relevant literature survey and has run 

in parallel to other tasks. The novel aerodynamic/mathematical model of the wing is 

initially based on fundamental aerodynamic laws and further developed as necessary. 

The theoretical predictions are made visual by numerical simulations using software 

package MatLab. An experimental setup is designed to support/validate the theories 

generated and, in particular, to investigate the crucial parameters. Once the 

correlation between the theoretical and the experimental results is achieved, the main 

performance parameters (as listed in the road map) and their relationships are 
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been made across a broad range of aircraft design that will assist the technical 

community with on-going research and development of V/STOL technologies. 

• Evaluation of the historical issues associated with achieving non-helicopter 

V/STOL capability and the search for the flying car. 

• First quantitative exploration of annular-blown-wing. 

• Experimentally demonstrated the Coanda effect and flow attachment on 

circular blown wings 

• Designed, manufactured and tested several different blower and wing 

geometries. 

1.6 Thesis Chapter Summary 

• Chapter 2: The chapter collects the background information on blown wings 

that must be understood to a certain extent before embarking on the task of 

evaluating aerodynamic forces acting on the wing. The subsections provide 

with sufficient mathematical tools to solve related problems. 

• Chapter 3: A thorough illustration of the experimental strategy is presented. 

• Chapter 4: A hypothetical flow model for the annular wing is rendered. 

Forces generated are evaluated theoretically and experimentally. Analysis is 

performed and a modification in the initial hypothetical model is proposed. 

• Chapter 5: The proposed upper surface blowing with Coanda effect is 

explored by means of theoretical analysis and experimental testing 

• Chapter 6: Lift enhancement proposals are explored, including the Gurney 

flap and guided vanes. 

• Chapter 7: Historical issues concerned with V/STOL aircraft are explored. In 

light of historical experience the performance of future V/STOL flying cars is 

evaluated and analysed. 

• Chapter 8: Develops the understanding and the facility to achieve controlled 

powered flight at different physical scales. Moving further towards that end, 

several aircraft of varying physical size and capability have been 

conceptualised. 

• Chapter 9: Summarises the crucial findings and concludes the quest.  
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Chapter 2. Literature Survey and Case Study 
 

2.1 Blown Wings 

The literature on blown wings is large but scattered and there exists no standard 

definition of a blown wing. Most often, it has been referred to as a wing with partial 

blowing over the upper surface of a multi element (flaps, slats and tabs) aerofoil. 

However, herein, the blown wing scenario is different: the whole surface area of the 

annular wing is wetted into the blown air. So, what could be learned from previous 

blown wings and how is it relevant to the annular wing under consideration? The 

most common characteristic of blown wings is the ability to divert the flow by large 

angles (~ 90o).  

The science behind blown wings also relates to the Coanda effect [3], which is the 

tendency of a fluid jet to stay attached to an adjacent curved surface that is very well 

shaped. It is this effect which achieves 90 degree thrust deflection. Typically, a 

Coanda wing/flap can divert horizontal engine thrust into vertical lift/thrust at the 

cost of 20 to 30% thrust loss [4] but with substantial increases in lift. 
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A wall jet is a thin jet of fluid blown tangentially along a wall, where the surrounding 

fluid may be either at rest or co-flowing. The wall jet resembles half of a free jet with 

a wall boundary layer imposed, and in most practical applications the wall jet will be 

fully turbulent. Wall jets are thin relative to other dimensions in the flow, and they 

have a greater stream wise velocity than the surrounding fluid [10]. The adjacent 

wall may be either straight or have streamwise curvature. One of the most interesting 

and useful features of the wall jet is the Coanda effect, whereby the jet remains 

strongly attached to a convex surface. As opposed to a curved boundary layer flow, 

the wall jet can resist the adverse pressure gradient associated with convex curvature 

long enough to remain attached for turning angles of greater than 200 degrees [11]. 

In addition to strong attachment, curved wall jets display an increase in their mixing 

with the surrounding fluid compared with straight wall jets. These two properties, 

wall attachment and increased mixing, enable the wall jet to delay separation of an 

external stream from a curved surface. 

Henri Coanda went on producing multiple patents [12,13] utilizing the effect he 

observed and studied to generate propulsion for aircraft. Later, an experiment by 

Von Glahn found that placing curved and flat plates near a nozzle would result in a 

ratio of lift to undeflected thrust of about 0.8-0.9, depending on the total deflection 

angle [14]. Thus a Coanda nozzle could achieve a 90° deflection of the jet-stream 

and result in a vertical lifting force in the order of 0.8 of the undeflected thrust. This 

shows that Coanda nozzles can produce lift as well as maintain thrust.  

Lift is created on the curved surface of a nozzle where the lower pressure regions 

form. Coanda attempted to use this idea with jet engines to generate flow over outer 

curved surfaces of crafts he designed. His patent for a lenticular craft gave an insight 

into the uses of the Coanda effect in the area of aircraft propulsion [15]. The 

generation of this lift principle can also be seen in the upcoming flying-disc/saucer 

hovercraft shown in Figure 6 and Figure 7. These flying vehicles use high speed 

airflow, from a centrifugal fan, over the upper surface of the disc which creates a 

relatively lower pressure region at that surface. This low pressure region creates lift 

and causes the craft to hover. The high speed flow is able to create the low pressure 

region by remaining attached to the craft as it flows around it. 
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description). This indicates that the primary parameters defining any two-

dimensional incompressible Coanda flow are the nozzle slot height and radius of 

curvature. Another crucial characteristic of blown wings is the angle of separation 

which is defined in [32] as ( )/

. 1 9 /8245 391 C f

C f

t r

sep t rθ += − . However, this is most valid for 

flows with high Reynolds number (106) requiring turning beyond 90 degree for 

reverse thrust. Herein, the aim is to generate maximum lift from the annular wing 

with probably 90 degree flow deflection and hence the parameter, .sepθ , will be 

disregarded in the analysis. Reynolds number and pressure differential across the 

flow field are also governing parameters. However, with static surrounding 

conditions (i.e. zero external flow), the value of Reynolds number is not effective at 

large Reynolds numbers [33, 34]. 

The current state-of-the-art predictions are numerical (CFD) methods based on the 

Navier-Stokes equations with the aid of a potential flow panel method [7, 35]. 

However, this is a complicated, high-fidelity model and cannot reasonably be 

implemented at the preliminary conceptual design phase. Low-fidelity models have 

merely changed from those established in [28, 29, 30].  

2.6 Theory of Aerofoil Wing-Sections 

At the start of twentieth century the science of aeronautics took a step forward when 

Ludwig Prandtl showed that the aerodynamic consideration of wings could be split 

into two parts: firstly the study of the section of a wing or aerofoil and secondly the 

modification of such aerofoil properties to account for the complete finite wing. As 

stated by Theodorsen “without the knowledge of the theory of the airflow around 

aerofoils it is well-nigh impossible to judge or interpret the results of experimental 

work intelligently or to make other than random improvements at the expense of 

much useless testing” [36]. Thus in this section the physics of flow around a wing 

section will be explored in order to highlight the relationship between the 

aerodynamic forces and the geometrical properties of standard aerofoil sections e.g. 

thickness distribution, negative/positive camber and mean line. The main objective 

of aerofoil theory is to study and to predict the aerodynamic forces, lift and drag, 

experienced by an aerofoil immersed in fluid flow. 
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An aerofoil is a device that provides reactive force when in motion relative to the 

surrounding airflow and can lift (force vector perpendicular to the flow) or control an 

aircraft in flight. An aerofoil is a superposition of chord line, camber line drawn with 

respect to the chord line and thickness that is measures perpendicular to the chord 

line as can be seen from Figure 16. Typically, an aerofoil is used in lift/thrust 

generating devices such as wings, propellers, turbofans, helicopter rotors, 

compressors, turbines, hydrofoils or windmills. 

Figure 17 shows the upper and lower surface pressure distribution for a typical 

aerofoil at moderate angle of attack. The maximum positive pressure occurs at the 

leading edge also known as the stagnation point and the minimum negative occurs at 

the upper surface typically around 25% of chord. The pressure recovery region is 

where the pressure gradient becomes negative which is associated to the boundary 

layer transition. The lower surface sometimes carries a positive pressure, but at many 

design conditions is actually pulling the wing downward. In this case, some suction 

(negative Cp→ downward force on lower surface) is present near the mid-chord. The 

pressure at the trailing edge is related to the aerofoil thickness and shape near the 

trailing edge. For thick aerofoil the pressure here is slightly positive (the velocity is a 

bit less than the free-stream velocity). For infinitely thin sections Cp = 0 at the 

trailing edge. Large positive values of Cp at the trailing edge imply more severe 

adverse pressure gradients [37]. A more comprehensive illustration of the flow 

pressure, acceleration and velocity is depicted in Figure 18. One of the most 

important points to be noted here is that the flow diverts before the leading edge and 

decelerates till a maximum pressure is reached at the leading edge. 

The performance of an aerofoil is directly related to its geometrical shape. The 

leading edge curvature sets the positive pressure gradient and a reasonable selection 

can give a good region for laminar boundary layer which subsequently gives lower 

drag. Maximum aerofoil thickness sets the location of minimum Cp which 

determines maximum local flow velocity and hence indicates shock formation. An 

adverse pressure gradient near the trailing edge leads to flow separation and 

determines the extent of friction drag. There exist several aerofoil families designed 

to serve specific tasks and the most commonly used one is the NACA 4-Digit series 
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2.7 Summary 

Circular/annular blown-wings are coming into existence to revolve V/STOL 

capabilities e.g. MIRA flying disc and flying saucer. However, a literature review of 

blown wings has revealed that no documented method to predict/evaluate Coanda lift 

is available at the present time. Also, most of the previous work, numerical and 

experimental, on blown wings is particularly concerned with high flow speeds and 

Reynolds number (105-107). Therefore, aerodynamic characteristics of annular wing, 

initially considered with relatively low Reynolds number (103-104), are anticipated to 

be not easily tractable to analytical treatment or solved by current computational 

aerodynamic techniques. For the immediate future any prediction method 

development must be based on experimental data, and hence will lead to, largely, 

empirical methods. Therefore, for a preliminary prediction a method is to be derived 

based on basic/standard aerodynamic principles and complemented by experimental 

testing. The fundamental theory will be based on the aerofoil theory, as illustrated in 

Section 2.6, dealing with flow acceleration and pressure differentials. 

A critical point to be noted here is that much of the work on circulation control, 

upper surface blowing or Coanda effect is primarily based on two-dimensional flow 

scenario. Whereas the fundamental difference between the annular wing and any past 

wing is the three-dimensional effect, the annular flow expansion, as described in 

Section 4.3. Also, the literature is largely concerned with dual flow case, internal (jet 

flow) and external (free stream) whereas the annular-wing initially is concerned with 

singular jet-flow. Therefore, the literature predominately aids in understanding the 

qualitative behaviour of blown wings and hence in the analyses of annular wing 

(Chapter 4) no direct comparisons between the Author’s results and previous results 

are attempted. 
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Chapter 3. Experimental Methods and Apparatus 
 

3.1 Introduction 

It is well known within the technical community of aerodynamic sciences that the 

evaluation of aerodynamic forces on a solid body, particularly with a relatively new 

geometry, is ultimately achieved by wind tunnel experiments. In order to achieve this 

objective an experimental strategy is sought to evaluate the aerodynamic forces 

experienced by the annular wing. The main objective of this experiment is to 

validate, modify and improve the theories generated. The investigation required 

designing and building two experimental rigs for examining different aerodynamic 

phenomena. 

The rig 1 is mainly composed of three parts including a radial-flow generator, 

annular wing and a compact digital-load-cell as shown in Figure 20. The wing sits on 

the load cell with the aid of support arms such that it transmits axial load only, see 

Figure 21. The wing, blower and support arms are held rigid to the load-cell so that 

any movement caused by the aerodynamic loads will not misalign the flow from the 

blower. The load cell measures the aerodynamic loads directly in real time. The flow 
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There are several methods available to measure lift and drag experienced by a wing. 

In this experiment two methods were used to obtain aerodynamic forces: 1) by 

integrating the measured pressure distribution over the surface of the wing section 

and 2) by direct measurement through a mechanical arrangement of a load cell where 

local pressure distribution cannot be measured.  

The lift force can be calculated by integrating, numerically, the pressure around the 

surface of the aerofoil as  

( ) sin( )i i

s

L P P dsθ∞= −               (3.1) 

Where L is the lift force, force perpendicular to the flow direction, ip  is the total 

pressure at location i on the aerofoil surface, P∞  is the free-stream static pressure, 

and iθ is the angle of surface normal to the free-stream flow at each of the traverse 

point as shown in Figure 30. 

Similarly the drag force was calculated as  

( ) cos( ) .i i

s

D P P dsθ∞= −               (3.2) 

3.2 Data Acquisition and Apparatus 

Figure 22 displays the schematic layout of data acquisition plan. The local flow 

velocity over the surface of the model wing is measured by the hot-wire 

anemometer. The local dynamic pressure is deduced with the aid of a pitot tube 

which is connected to a pressure scanner in conjunction with a micro manometer 

(Furness FCO510) with data logging capability. The differential pressure is 

measured between the stagnation pressure and the local pressure. The analogue 

signals are input to an analogue to digital converter which can then display the 

measurements in Lab-view based software.  

The digital USB load cell is self-sufficient and connects directly to the PC which 

displays the data in MatLab (version 7.01) or HyperTerminal in millponds. 
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4. Hot-wire-probe was powered prior to testing for at least 40 minutes for the 

temperature to stabilise across the wire. 

5. The annular wing was held on to the load cell via support arms and levelled 

manually.  

The hot-wire probe was calibrated by a special apparatus provided by the 

manufacturer. The calibration data is presented in Figure 27 that shows the 

difference between the users commanded values (or the input values) and the actual 

measured values. A maximum error recorded was ~2%. The outlet velocity of the 

blower was examined using the hot-wire anemometer at 1 mm longitudinal 

increments. The data recorded by the anemometer is presented in Table 18.The hot-

wire takes measurement at 1000 frames/samples per second (fps) with a low-pass 

filter set at 500 Hz. Figure 28 shows velocity signals recorded by the hot-wire at 

different locations across the vertical axis of the blower. It can be seen that the 

velocity signal fluctuates significantly across its mean value and that the magnitude 

of the fluctuation varies with the location. This indicates that the system produces 

flow that may be high in the turbulence intensity.  

 

Figure 27: Calibration data and chart for hot-wire probe. 

1 2 3 4 5 6 7 8 9 10

Input Values 5.00 6.76 9.13 12.33 16.66 22.51 30.41 41.09 55.51 75.00

Measured Values 4.99 6.84 9.06 12.21 16.67 22.77 30.23 41.51 54.78 75.32
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Figure 28: Velocity signal obtained by hot-wire anemometer at 1000 frames per second. 

3.4 Lift Measurement via Load Cell 

Lift is measured by the load cell directly for different angles of attack and wing-

sections. The load-cell is set to measure prior to any flow through the system fan, as 

the fan is turned on an impulse load is observed and the lift generated by the wing is 

given by the mean amplitude of the impulse sensed. A crucial point to be noted here 

is that the load cell measures at 5 Hz whereas the hot-wire anemometer records at 

1000 Hz. Nevertheless, the load cell at 5 fps should detect any changes in the loads 

transmitted due to variation in outlet velocity. 

Figure 29 shows the signals recorded by the load cell for the NACA-0024 at 12deg 

and it can be seen that the fluctuation amplitude in the signal has reduced 
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significantly as compared to the NACA-0012 at 12deg wing (Figure 147). This is 

because the thicker wing section allows the outlet flow less cross-sectional area to 

fluctuate. This may have increased the frequency of vibration present during the 

tests. However, this effect is irrelevant when calculating the mean aerodynamic lift 

force. 

 

Figure 29: load cell data {Parameters: 12 ,  20 m/s, T 22.3 ,  102.3 kPao o

eff atm atmU C Pα = = = = }. 

Figure 146 depicts the signals recorded by the load cell for different angles of attack 

for the wing-section NACA-0012. From the figures it can be seen that the variation 

in the signal is amplified as the fan is turned on, this is due to the fact that the outlet 

velocity is varying as described above in Figure 28. In order to extrapolate the actual 

lift values the maxima and minima points are labelled and defined as the maximum 

and minimum lift values respectively. The extracted lift values are given in Table 22. 

A similar approach was taken for all the other test cases as shown in Figure 145 to 

Figure 148. 
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The uncertainty analyses, herein, are based on the most reliable and commonly used 

method presented in [46] 

The pressure coefficient PC  is a function of 

( ), ( , ),P i atm atmC f P P P T Uρ∞ ∞= −              (3.3) 

However, here, bias and precision limits for differential pressure ( )iP P∞−  will only 

be used for data reduction. The total uncertainty for each pressure tap is defined as 

{from [46]} 

2 2 2

P P PC C CU B P= +               (3.4) 

where the capital letters U, B and P denote total uncertainty, bias limit and precision 

limit respectively. 

The bias limit for the surface pressure taps is given by 

2 2 2
( ) ( )P i iC P P P PB Bθ

∞ ∞− −=               (3.5) 

where ( )iP Pθ
∞−  is the sensitivity coefficient defined by averaging the individual 

variables as 

( ) 2

2

( )i

P P
P P

i i

C C

X P P U
θ

ρ∞−
∞ ∞

∂ ∂= = =
∂ ∂ −

             (3.6) 

The precision limit for each pressure tap ,PC iP  is given by  

,P

i
C i

tS
P

N
=               (3.7) 

where 2t =  for the number of samples 10N =  and 
PCS  is the standard deviation 

given by  

( )2

1 1

N
k i

i
k

X X
S

N=

−
=

−               (3.8) 
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The data reduction equation for the lift coefficient LC  is given by 

( , , , )L iC f P P U ρ θ∞ ∞= −               (3.9) 

Considering only the bias limits for differential pressure ( )iP P∞−  from the taps, the 

total uncertainty is given by 

2 2 2

L L LC C CU B P= +             (3.10) 

similarly 

2 2 2
( ) ( )L i iC P P P PB Bθ

∞ ∞− −=             (3.11) 

( ) [ ]
2 2

22 2 2
( ) ( ) 2

1 1

2
sin

L i i

k k
L

C P P P P i i
i ii

C
B B B ds

P P U c
θ

ρ∞ ∞− −
= =∞ ∞

   ∂= =   ∂ −   
          (3.12) 

After running several tests, before recording any measurements, precision limits 

were set for all the variables involved in calculating the coefficients, e.g. , ,L D MC C C

Typical Precision limits: 

Angle of attack in degrees 1α → ±  

Non-dimensional Differential Pressure 
( )

0.05iP PP

P P
∞−Δ = → ±  

Non-dimensional air velocity 0.03
m

U
U

∞ → ±   

The precision limits impose a maximum error of approximately 5%±  on all the 

coefficients calculated in the following Chapters. 
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3.9 Summary 

The experimental setup has been designed from scratch to test the unconventional 

wingform. The most critical component was the blower which was designed and 

tested several times to improve the flow quality. Ideally a laminar flow was desired 

but never achieved; it was always turbulent due to annular flow expansion, as 

discussed in the following Chapter. The challenge was to achieve symmetrical flow 

across the vertical axis of the blowers; this often led to adding guided vanes and the 

designs were improved by testing vanes with different geometries. Another 

encounter was the continuously varying lift force detected by the load-cell which 

was due to the highly unstable flow; this was incorporated by extrapolating the mean 

force generated for the corresponding mean flow velocity.  
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Chapter 4. Aerodynamic Characteristics of Simple Annular Wing  
Equation Chapter (Next) Section 1 

4.1 Introduction 

The blown annular wing comprises of two interrelated lift/thrust producing devices 

as shown in Figure 37. These are: a centrifugal compressor/blower and the 

annular/circular wing. The centrifugal compressor also produces axial thrust due to a 

change in linear momentum [47] as the flow is diverted at 90 degrees. Axial thrust 

can be estimated by applying simple momentum theory across the control volume 

channels AB and CD. Centrifugal compressors undergo several energy losses 

including aerodynamic losses, disk friction loss and leakage loss. These losses leave 

a typical centrifugal compressor 80% efficient at optimum flow rate [48]. Therefore, 

the losses must be accounted for when evaluating the overall efficiency of the static-

blown-wing. The axial thrust generated by a centrifugal compressor depends on the 

net flow rate and it can be defined as 

2
0 0

( )d mu
T A U

dt
ρ= =  

(4.1)



 

Figure 37: H

4.2 E

Jet momen

or change

pressure a

length and

1
2

m
Cμ ρ∞

=

Hypothetical la

Effect of B

ntum coeffi

e in flow m

and area In 

d refA  is the 

2
C

ref ref

mU

U A

•

∞

=

ayout of blow

Blower-Sl

ficient Cμ  is

momentum 

this case U

wing surfa

2

21
2 /4

2 C C

C

rt U

U S

π ρ
ρ∞

wn annular-win

lot Height

s a non-dim

from a sou

refU  is taken

ace area. 

ng with symm

t and Jet 

mensional qu

urce with r

n to be the 

metrical blowin

Momentu

uantity spec

reference to

flow veloci

ng. 

um Coeffi

cifying thru

o a fixed d

ity at quarte

41 

 

icient 

ust force 

dynamic 

er chord 

(4.2)



42 

 

From this, it is clear that the jet momentum coefficient  is the driving parameter 

for blown wings. Normally, high velocities generated at the jet-slot-exit require 

specification of certain boundary conditions including the total pressure and total 

temperature of the jet. However, for the current analysis: adiabatic, isentropic, 

inviscid and incompressible flow conditions will be assumed. 

Jet/blower slot height jet  is the main parameter in the powered-lift system under 

consideration. This is because the outlet velocity is proportional to the slot height 

and that the net mass flow rate is also a function of this parameter. This implicitly 

sets out the power coefficient PoC  required for certain flow rate at the jet-slot exit. 

0

3

31
2 /4

2 C C
P

C

rt U
C

U S

π ρ
ρ∞

=  (4.3)

Figure 38 shows how the lift coefficients vary with the slot height at different angle 

of attack. This result is derived from previous experimental work on blown wings. 

This shows that as the slot height increases lift also increases. The net mass flow rate 

will increase provided that the input power is also increased. The stall angle also 

significantly increases as the slot height reduces. This is because the Coanda effect 

gives a thinner jet-sheet which has greater flow attachment. Flow attachment to the 

surface also depends upon the depth of the airflow (or slot height) and the camber 

angle; the thinner the depth of the flow the greater the camber angle, although at the 

expense of some lift force due to lesser amount of airflow blown onto the aerofoil 

[49, 50]. In wind tunnel testing, in order to mimic a wing being propelled through 

static air, (that is slot height →∞), more than 2 chord lengths of working section is 

normally satisfactory [51], otherwise lift will always be less than a standard 

propelled wing. Lift generated by a blown wing is also a function of standard 

parameters, angle of attack and Reynolds number, , as well as the blower slot 

height, tc. 

( , , )L C eC f t Rα =  (4.4)

Cμ

Ct

α eR
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Figure 38: CL-alpha plots of a basic wing section for different blowing slot heights [52]. 

4.3 Static Annular-Wing Pressure Distribution Profile 

The annular wing in static-state or hovering flight mode was first set to be under 

symmetrical blowing which implies that the leading edge is aligned to the centre line 

of the blower outlet. Take an arc-strip of the annulus and draw a control volume 

around it as illustrated in Figure 39. Applying the law of conservation of mass 

(continuity) between the compressor outlet flow and at any arbitrary point along the 

radius gives 

C C C r r rA U A Uρ ρ=  (4.5)

For the incompressible flow,
C rρ ρ=

 

C C
r

r

A U
U

A
 =  

(4.6)

and simplifying further gives 

0 02 1
,  

2 2 '
C C C C r

r
C C C

A U r t U rU
U

rt rt U r r

π
π π

= =  = =
(4.7)
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( )2 3 4max 0.2969 0.1260 0.3516 0.2843 0.1015
0.2x

t
t x x x x x± = − − + −           (4.9) 

The change in angle of attack α was incorporated by transforming the fixed aerofoil 

coordinates, x and y, (origin being the leading edge) into a new set of coordinates, x’ 

and y’ (see Figure 40), and these are defined as the following. 

2 2 1

2 2 1

' 1 (1 ) cos tan
1

' (1 ) sin tan
1

y
x x y

x

y
y x y

x

α

α

−

−

  = − − + +   −  


   = − + +   −   

(4.10)

Figure 40 below illustrates the coordinate transformation methodology. 

 

Figure 40: Coordinate transformation methodology. 

From the local flow velocity distribution the pressure coefficient can be calculated 

using Bernoulli’s equation and, implicitly, the lift on the wing. 

2

2
1P

C

v
C

U
= −  (4.11)

Initially, a symmetrical aerofoil, the NACA-0012/0024, was chosen to allow 

consideration of the local flow around the wing surface. The data for the aerofoil is 

extracted from standard sources e.g. [53] and [54]. 

Figure 41 shows that the local pressure at any point over the surface of the annular 

wingform is lower compared to the rectangular wing. This is because the compressor 
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outlet velocity CU  reduces away from the source. A crucial point to be noted here is 

that the minimum pressure shifts about 10 % of chord length closer to the leading 

edge for the annular wing compared to the rectangular wing. This indicates that the 

centre of pressure will also move forward.  

 

Figure 41: A theoretical comparison of local pressure for rectangular and annular wingforms. 

Figure 42 presents a comparison of different thickness distribution and it shows that 

the loss of dynamic pressure will be significantly lower for a thicker aerofoil section 

such as the NACA-0024. NACA-0012, with annular configuration, loses around 45 

percent of the dynamic pressure and NACA-0024 loses around 30 percent with 

reference to the rectangular wingform. 

This shows that the annular wing lifting efficiency depends upon positioning the 

centre of pressure as close as possible to the leading edge; this can be achieved by 

pushing the maximum aerofoil thickness closer to the leading edge such as by using 

a NACA-0024 section. Furthermore, the non-linearity in the dynamic pressure along 

the radius indicates that the section lift would also be less for the annular wing when 

compared to the rectangular wing i.e. the total lift generated for a certain surface area 

would not be the same for the two wings. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

C
P

x/c

 

 

Rectangular wing

Annular wing

10% peak shift



47 

 

 

Figure 42: Local pressure comparison for different aerofoil thickness. 

4.4 Preliminary Wing Size Evaluation 

The size of the annular wing is deduced by considering the desired lift force 

generated and the structural mass of the wing. Hence, lift to mass ratio, L/M, is the 

proposed design factor to be optimised. Firstly, the lift generated by the annular wing 

needs to be defined and in order to achieve this, lift is assumed to be generated at 

quarter chord based upon flow at that station: 
4

4 4

2c
c c

m
U

r tπρ

•

=   

where m
•

is the mass flow rate and 
4

cU  is the flow velocity at quarter chord. Hence, 

the total effective lift from the annular wing in hover flight is given by 
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( )
2

2 2
0 0

4 4

1

2 2h
c c

m
L R r a

r t
ρ π α

πρ

• 
 = − 
 
 

(4.12)

Substituting 0 0 0 0
0

4

3

4 4c

R r R r
r r

− += + =  into the above equation and simplifying 

gives  

( )
( )

2
2 2

0 0

22

0 0
4

2
.

3
h

c

R rm
L a

t R r

ρ α
ρπ

•
−

=
+

 (4.13)

Subsequently the following relationships may be defined: 

( )

2

2

4

2 2
0 0

2

0 0

1

3

h

h
c

h

L m

L
t

R r
L

R r

•





∝

 ∝


 − ∝
 +

 (4.14)

The first two relationships clearly indicate that the total lift is proportional to the 

mass flow rate square at the quarter chord and that decreasing the thickness would 

increase the total lift. Maximising m
•

is a function of the design, but it is noted that 

typically for a centrifugal compressor the relationship between the mass flow rate 

and the input power is defined as m P
•

∝ . This subsequently allows derivation of the 

relationship between the total lift and the input power as 2
hL P≈  which implies that 

higher the power, the more efficient the lift system becomes. 

The third relationship is a function of wing size and to understand this further the 

function is plotted for a range of inner and outer radii. Figure 43 shows that lift is 

maximised by decreasing the inner radius and increasing the outer radius, which 

simply means that a greater wing surface area produces more lift. This implies that 

design constraints need to be added into the model, including the dominant one 

which is the structural mass. 
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Figure 43: Theoretical lift versus outer radius for different inner radius values. 

It will be assumed that the structural mass of the wing is proportional to the cross-

sectional area at the quarter chord facing the flow times the circumference at the 

quarter chord. 

( )0 0
max 0 0 02

4a

R r
m t r R rπ −  ∝ + − 

 
           (4.15) 

Also, assume that thickness to chord ratio around the annulus is constant and the 

mean chord length is defined as 0 0c R r= − . 

( ) ( )2

0 0 0 03am R r R r ∝ − +                (4.16) 

Thus the design factor comes out to be 

( )
( ) ( )

2 2
0 0

2 3

0 0 0 03

h

a

R rL

m R r R r

−
 ∝

− +
           (4.17) 

Maximising this design factor will then achieve maximum lift for minimum 

structural mass. Figure 44 shows a plot of the design factor versus the inner 

and outer radii and it can be seen that the relationship between them is exponential, 

indicates that the smaller the wing, the higher the /hL m  factor. This is a simplified 

model since it ignores Reynolds number effects at extremes of scale, and also the 

different efficiencies of different sizes of powerplant, but nonetheless gives a good 

first indication of scale effects. 
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Figure 48: Reduction in average radial flow velocity away from blower outlet. 

4.5.2 Local Flow Profile of Annular Wing-Section  

Figure 49 shows the local upper surface velocity distribution over the wing surface 

along the chord length for data acquired experimentally and predicted theoretically 

(Equation 4.8). From the figure it can be seen that the local flow velocity decreases 

after reaching its maximum at 10% of chord length. In comparison to the theoretical 

plot, the experimental values show lower velocities at any point along the chord 

length. This is because in the theory ideal flow conditions, i.e. inviscid, 

incompressible, were assumed and hence residues are expected. For the relatively 

thicker aerofoil, NACA-0024, the local distribution resembles the theoretical curve 

until the maximum as shown in Figure 50. After the maximum the experimental plot 

deviates the theoretical values and re-joins at 50mm chord length. The unexpected 

decrease in flow velocity may be due to turbulence in the outlet flow. 

The investigation of the local flow distribution has shown that the dynamic pressure 

loss over the surface of annular wingform is of significance and hence validating the 

theory. The lift generated by the annular wing is approximately equal to 70% of that 

generated by a conventional rectangular wing. 
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Figure 49: Local flow distribution for NACA-0012{Parameters: . 10.46  m/sL EU = , α = 0, 

0 0.12r m= , 0 0.20R m= }. 

 

Figure 50: Local flow distribution for NACA-0024{Parameters: mean 23 m/sCU = , α = 0, 

0.12or m= , 0.20oR m= }. 

4.5.3 CL-Alpha Plots 

The lift generated by the annular wing with two different aerofoils, measured 

experimentally, is shown in Figure 51 where the mean line corresponds to the mean 

flow velocity and other data points correspond to minimum and maximum flow 

velocities (further explained in Section 3.4). The figure also compares the 

experimental plot to the approximate theoretical plot which is deduced by taking 
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parameters remaining the sameb. An important point to be noted here is that the 

theoretical curve only includes the loss of lift due to annulus flow expansion whereas 

for a blown wing the blowing slot height becomes crucial.  

There is approximately a 16% difference between experimental and theoretical CLmax 

values. This suggests strongly that the stall-angle is significantly higher for the 

annular wingform compared to the rectangular wingform. Possible sources of error 

are that the theoretical calculations did not take into account the loss of lift due to 

blowing slot thickness being much smaller, i.e. h/c << 2 chord lengths. Furthermore, 

the wing with section NACA-0024 at 12° achieves much higher lift compared to 

NACA-0012 at 12° which indicates that the flow attachment is greater. The thicker 

aerofoil receiving the same airflow tends to perform better as the jet stream diverted 

at the leading edge follows a relatively narrow path, so the airflow depth is thinner 

and the Coanda effect is enhanced. This suggests a strong relationship between the 

optimal maximum aerofoil thickness and the optimal blowing slot height. 

Note: Herein, the angle of attack is defined as the angle between the chord line and 

the horizontal, also known as the geometrical angle. This may raise a critical 

question – what is the effective angle of attack? Recalling that the effective angle of 

attack is measured from the orientation where the wing has zero lift [55]. Since the 

source flow from the blower is turbulent/disturbed, it is anticipated the effective 

angle of attack values are somewhat different. Also, the presence of the aerofoil in 

the finite-size blower outlet causes flow curvature and downwash deflection of the 

incident flow. This ultimately effects the lift distribution, hence the “effective” angle 

of attack. However, the particular experimental setup did not allow measuring any 

flow deflection at the inlet; thus the geometrical angle has been assumed to be the 

effective angle of attack for initial comparison. This difference should not matter as 

the critical angle of attack, the stall angle, is not the scope of discussions here. 

Therefore, the linear trendlines drawn at the experimental data, in Figure 51, are set 

to cross the axis at zero. 

                                                 
b The rectangular wing-section data was acquired by Xfoil-6.94 (Software Package) using the 

corresponding input data i.e. Reynolds number, Mach number, viscosity etc.  
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jet flow profile with and without the wing for NACA-0012 wing-section at different 

angles of attack. From this figure it can be seen that lesser flow leaves at the lower 

surface compared to the upper surface this is due to the asymmetry at the inlet as 

shown in Figure 45. Examination of the wake at 0/ 1.91r r =  shows that for all these 

different wing configurations the maximum flow velocity shifts from / 0.1Cy t ≈  to 

just near the surface. From this the flow attachment is apparent and that the Coanda 

effect is present. 

To further investigate the flow attachment the thicker aerofoil, NACA-0024 at 12°, 

was immersed in the flow. The leading edge was aligned at / 0.4Cy t ≈ . The flow 

profile at the upper surface, from / 0Cy t =  to approximately 0.075 Ct  (~1.5 mm) 

away from the surfacec, was measured at different locations, using the hot-wire 

probe. The velocity profiles are plotted in Figure 54 and from this it can be seen that 

the flow immediately after the leading edge tends to follow the aerofoil curvature 

and the maximum flow velocity shifts towards the surface. After reaching a 

maximum the flow velocity starts to decrease, suggesting viscosity is present in the 

flow layers. Furthermore, beyond 0/ 1.5r r =  the flow profile settles and this 

particular profile is generic for wall-jets as described in Section 5.2. 

Now, the next question arises; what happens to a uniform outlet flow unlike the flow 

profile discussed above? In order to conduct an investigation another experimental 

rig is sought as described in Section 3.6 and the analysis follow. 

                                                 
c A precautionary distance of 1.5 mm from the surface was kept to avoid any damage to the extremely 

thin hot wire.  



59 

 

 

Figure 53: NACA-0012 Wake profile at 0/ 1.91r r = measured with hot-wire. 
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4.6 Static Annular-Wing’s Aerodynamic Characteristics with 

Symmetrical Blowing 

Figure 55 shows the slot exit flow profile for the blower at different azimuthal angles 

and distances away from the exit. This shows that this blower has generated a good 

symmetrical flow across its longitudinal axis with a higher degree of uniformity than 

achieved with the annular blower. There is asymmetry in the azimuthal/lateral axis 

of the outlet due to flow attachment at the blower walls; however, this asymmetry 

should have minimal effect on the 2-D aerodynamic characteristics. There is also 

turbulence in the flow; however, again this has significantly reduced as shown in 

Figure 56. Furthermore, the outlet-flow profile is visibly of parabolic form which is a 

typical for free jets issuing from a nozzle. 

 

Figure 55: Outlet flow profile with parabolic best fits from Rig2 setup {Parameters: 20m/smaxU = , 

44mmtC = , 0 0143 mm, 240 mmr R= = 101.2P kPaatm = , 20
o

T Catm = }.. 
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Figure 56: Turbulence intensity profile from blower of Rig 2. 

An arc-wing (NACA-0024) embedded with pressure taps around the surface was 

immersed into the potential flow to examine the pressure distribution around the 

aerofoil. The measured pressure distribution at different angles of attack is presented 

in Table 1 and plotted in Figure 57. The pressure distribution profile is of standard 

form based on thickness distribution; however, the magnitude of local pressure is 

lower than the normal rectangular wingform. 

The pressure around the surface is integrated to obtain the 2-D aerodynamic 

characteristics given in Figure 58.  
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The figure shows, conventionally, that as the angle of attack is increased the lift, 

drag and pitching moment coefficients increase. At zero angle of attack a small 

negative drag force is experienced possibly due to a negative ‘effective’ angle of 

attack as described in Section 4.5.3. Lift increases linearly with drag for the range 0 

≤ α ≤ 14° then the drag rise becomes much steeper. This suggests that an optimum 

value for lift to drag ratio lies within this angle of attack range. 
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Figure 57: Pressure distribution over the surface of arc-wing measured experimentally. 
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Figure 58: 2-D aerodynamic characteristics of annular wing established experimentally. 
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α  0 8 14 22 

y/c x/c s/c beta Cp Cp Cp Cp 

-0.0211 0.003 0.030 162 0.664 0.518 1.541 1.129
-0.04852 0.021 0.038 139 0.6377 0.478 1.474 1.195
-0.07068 0.050 0.044 122 0.1195 0.106 0.690 0.597
-0.09072 0.092 0.057 110 -0.232 -0.0996 0.119 0.172
-0.10654 0.150 0.055 101 -0.677 -0.385 -0.491 -0.199
-0.11498 0.200 0.062 97 -0.677 -0.358 -0.571 -0.279
-0.1192 0.272 0.084 91 -0.597 -0.301 -0.544 -0.252
-0.11603 0.400 0.154 86 -0.411 -0.219 -0.385 -0.193
-0.09177 0.600 0.203 81 -0.199 -0.112 -0.199 -0.090
-0.04958 0.815 0.184 77 -0.029 -0.128 -0.0398 -0.0066
-0.02743 0.905 0.147 76 0.9965 0.8503 0.225 -0.637
0.021097 0.003 0.030 198 0.3853 0.0664 -1.076 -1.873
0.048523 0.021 0.038 221 -0.265 -0.690 -1.621 -2.125
0.070675 0.050 0.044 238 -0.544 -1.0496 -1.660 -1.900
0.090717 0.092 0.057 250 -0.7440 -1.315 -1.767 -1.953
0.10654 0.150 0.055 259 -0.783 -1.355 -1.634 -1.740
0.114979 0.200 0.062 263 -0.6510 -1.116 -1.288 -1.355
0.119198 0.272 0.084 269 -0.438 -0.757 -0.8371 -0.863
0.116034 0.400 0.154 274 -0.2524 -0.438 -0.491 -0.438
0.091772 0.600 0.203 279 -0.0491 -0.172 -0.128 -0.093
0.049578 0.815 0.184 283 -3.752 0.5182 1.5413 1.129
0.027426 0.905 0.147 284 0.6643 0.4783 1.474 1.195

LC 0.071 0.433 0.601 0.701

DC -0.061 0.021 0.132 0.368

MC -0.021 -0.134 -0.156 -0.198
 

Table 1: Experimental data and calculations for arc-wing  
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4.7 The Annular-Wing in Translational Flight Mode with 

Symmetrical Blowing 

Figure 59 shows the annular wing in translational flight, the azimuth angle ψ  is 

measured from the datum in the direction of forward flight. In translational flight the 

wing divides into two halves: one is where the translational velocity is added to the 

compressed flow velocity ( )/ 2 3 / 2π ψ π< < and second half ( )3 / 2 / 2π ψ π< <  

experiences reverse flow where the forward velocity is subtracted from the 

compressed flow velocity. The two halves can also be described as advancing side 

and retreating side. 

 

Figure 59: Plan form view of the annular wing in translational flight. 

The effective flow around the annulus is defined by  

coseff CU U U ψ= +             (4.22) 

whereU is the translational velocity. 

The function of wing section lift can be defined in terms of the azimuth angle as  

[ ] ( )2 2 21 1
cos

2 2F CdL U U R r d aρ ψ ψ α = + −     
         (4.23) 

 

U 

UC ψ = 0,  
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2
2 2 2 2 2
0 0

0

1
( ) 2 cos cos

4F C CL a R r U U U U d
π

ρ α ψ ψ ψ = − + +           (4.24) 

and integrating the function gives the total lift generated by the annulus. 

( )2 2 2 22
4F CL a R r U U
π ρ α  = − +             (4.25) 

The wing will inevitably experience during translational flight a net pitching moment 

due to asymmetric flow across the annulus. Taking moments about a lateral axis 

through the centre of the annulus and the moment arm δ  may be defined as 

0 0 0 03
cos cos

4 4

R r R r
rδ ψ ψ− +   = + =   

   
           (4.26) 

Upon integrating the section lift and taking moments about the center defines total 

pitching moment generated by the annulus as 

[ ] ( )2 2 2 0 031 1
cos cos

2 2 4F C L

R r
dM dL U U R r d Cδ ρ ψ ψ ψ+  = = + −      

       (4.27) 

 

( )( )2 2
0 0 0 0

2
2 2 3

0

1
3 ...

16

        ... cos 2 cos cos

L

C C C

M C R r R r

U U U U d
π

ρ

ψ ψ ψ ψ

 = − + 

 + + 
           (4.28) 

( )( )[ ]2 2
0 0 0 03

8 CM a R r R r U U
π ρ α = − +            (4.29) 

Figure 60 shows the section lift distribution around the annulus and it can be seen 

that the maximum section lift occurs at azimuth angles 0 or 2π and the minimum 

occurs at π where the wing would experience the maximum reverse flow. Section lift 

varies in a cosine wave manner and the total lift is given by the area under the plot. 

The magnitude of lift increases with both the blown-flow velocity and forward 

velocity. The blown-flow dominates even for the translational flight case as it is 

distributed around the annulus uniformly whereas the forward flow loses 

effectiveness at ±π/2. However, the limiting factor in any real vehicle will most 

likely be the pitching moment which is a product of the two velocities. 
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Figure 60: Section lift variation around the annulus at different translational velocities {Parameters: 
025 / , 0.84, 6C LU m s C α= = = , NACA-0024}. 

A case study presented in Section 2.4 has shown that in translational flight mode 

circular blowing around the perimeter must be constrained to an azimuth angle of

5
4ψ π=  for optimum performance. Thus, herein, 5

4ψ π= of perimeter blowing is 

assumed. This leaves the portion of annular wing with 5 11
8 8π ψ π≤ ≤  in the reverse 

flow regime where the maximum reverse flow will be experienced atψ π= . The 

reverse flow scenario is illustrated in Figure 61. 

Investigating the reverse flow case where the annular wing is immersed into the flow 

with trailing edge facing the flow as shown in Figure 62. The pressure profiles for 

different angles of attack are given in Figure 63. From the figure it can be seen that 

the maximum suction pressure, at x/c=0.2, is approximately the same for lower and 

upper surfaces and a change in the angle of attack has minimal effect at this location. 

The maximum pressure difference is experienced at the trailing edge facing the flow 

and 50% of the chord length downstream remains unaffected.  
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Figure 64 shows the lift, drag and pitching moment experienced by the arc wing in 

reverse flow. Approximate linear relationships from the experimental data can be 

derived as: 

0.0046

0.001 0.0793

0.0085

L

D

M

C

C

C

α
α
α

←

←

←

= 
= − + 
= 

           (4.30) 

The wing generates minimal negative lift and relatively higher pitching moment. 

This will imply a nose down resultant moment. 

( )( )
5
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2 2
0 0 0 0

2 2 3
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1
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16

       ... 2 cos 2 cos cosC C C L

M R r R r

U U U U C d
π

ρ

ψ ψ ψ ψ

 = − + 

   × + +  
  


         (4.31) 

 

 

Figure 61: Reverse flow scenario at ψ π= . 
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Figure 64: 2-D aerodynamic characteristics of arc-wing in reverse flow at ψ π= . 

y/c x/c s/c beta Cp Cp Cp 

-0.0211 0.003 0.030 162 -0.35876 -0.32687 -0.24581 

-0.04852 0.021 0.038 139 -0.36407 -0.33484 -0.25777 

-0.07068 0.050 0.044 122 -0.42918 -0.3933 -0.28833 

-0.09072 0.092 0.057 110 -0.4996 -0.46107 -0.36141 

-0.10654 0.150 0.055 101 -0.62184 -0.5966 -0.47834 

-0.11498 0.200 0.062 97 -0.64443 -0.61387 -0.48897 

-0.1192 0.272 0.084 91 -0.57401 -0.54212 -0.43582 

-0.11603 0.400 0.154 86 -0.42918 -0.39065 -0.30561 

-0.09177 0.600 0.203 81 -0.21127 -0.18336 -0.097 

-0.04958 0.815 0.184 77 -0.0093 0.052883 0.147489

-0.02743 0.905 0.147 76 -0.34813 -0.31757 -0.25777 

0.021097 0.003 0.030 198 -0.36274 -0.33218 -0.27239 

0.048523 0.021 0.038 221 -0.42652 -0.38799 -0.32554 

0.090717 0.092 0.057 250 -0.61254 -0.54478 -0.44778 

0.10654 0.150 0.055 259 -0.64975 -0.6245 -0.46373 

0.114979 0.200 0.062 263 -0.578 -0.57135 -0.43051 

0.119198 0.272 0.084 269 -0.41058 -0.44512 -0.32022 

0.116034 0.400 0.154 274 -0.24581 -0.29896 -0.22987 

0.091772 0.600 0.203 279 -0.0186 -0.13022 -0.19532 

0.049578 0.815 0.184 283 -0.35876 -0.32687 -0.24581 

0.027426 0.905 0.147 284 -0.36407 -0.33484 -0.25777 

   
LC

 
-0.008 0.040 0.060 

   
DC

 
0.079 0.072 0.065 

   
MC

 0.006 0.070 0.115 

   
α  0 7 14 

Table 2: Experimental data for arc-wing in reverse flow. 

CL = 0.0046α

CD = -0.001α + 0.0793
CM = 0.0085α
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4.8 Practicality Test 

The annular expansion causes significant turbulence and flow separation due to 

increasing cross-sectional area of the radial-flow generator. The outlet annular cross-

sectional area should be less than or equal to the inlet to avoid a fluctuation across 

the longitudinal axis of the blower. This is because in a typical centrifugal 

compressor the inlet to outlet ratio is in the range of 0.7 to 3.8 [56], leaving a 

minimal blower-slot-height and question - whether a wing-section can be fully 

immersed in the flow with a centrifugal compressor? As shown in Section 4.2 that 

for optimal aerodynamic performance of a blown-wing the slot height should be 

around 60% of chord length. And the performance is also optimised by maximising 

the ratio of wing lift and the jet power. 

To establish whether a centrifugal compressor within the annular-wingform could 

give optimal results, a micro-compressor as in Figure 65 is considered.  Setting the 

slot height of the compressor to 60% chord length, (0.6c=2.4), gives 4mm of chord 

length. These values contradict those calculated by evaluating the optimum annular-

wing performance which states that the chord length should be 67% of the inner 

radius of the annulus.  If diffuser outlet diameter is taken to be the inner diameter, 

then the chord length is 20mm. Thus the compressor-annular-wing lift system may 

not be the optimal solution as yet. However, better performance may be achieved by 

utilising complete upper surface blowing and the Coanda effect.  

From engineering perspective, ultimately, the annular wing will achieve maximum 

lift/thrust by diverting the entire flow, generated by the radial blower, vertically 

downwards for hover flight mode - behaving more like a thrust deflector. Such a 

system, with upper surface blowing only, is likely to suffer large losses from skin 

friction which, nevertheless, is approximately halved compared to a fully wetted 

wing. A modification to the annular wing is proposed and described in Figure 66: 

depicting the annular-wing with flaps attached to the trailing edge that may achieve 

90o flow deflection. The diversion duct coordinates may be adapted from [57] that 

are used for standardised centrifugal compressors thus promoting uniform and 

symmetric outlet flow. To further ensure smooth flow outlet cross-section area has 

been kept the same as the inlet.  
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Chapter 5. Lift Generated by Annular-Wing with Upper Surface Blowing  
It is an observed fact that when a stream or sheet of fluid issues through a suitable 

orifice, into another fluid, it will carry along with it a portion of the surrounding 

fluid, if its velocity is sufficient. Equation Chapter (Next) Section 1 

{Henri Coanda, [59]} 

5.1 Introduction 

Initially, the wing under consideration was of circular/annular form and the radial 

flow, from a centrifugal flow generator, was assumed to be symmetrical over the 

upper and lower surfaces of the wing. However, it has been shown that symmetrical 

blowing for optimal wing size is nearly impossible with the current centrifugal 

compressors available. This suggested a shift/modification in the blowing layout for 

realistic size and compatibility: that is to have pure upper surface blowing with 

Coanda effect, for at least hover flight case. This Section takes the quest further and 

evaluates the efficiency of the proposed annular-Coanda-Wing approach. A 
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The primary parameters that describe the flow are shown in Figure 67. The jet 

emerges from a point source into a fluid at rest and spreads, increasing its width and 

decreasing its velocity due to turbulent diffusion in the jet and friction at the wall. At 

a distance s downstream of the jet exit the longitudinal velocity profile u can be 

expressed as 

( ) ( / )mu u s f y t=               (5.1) 

2

/2

( )
sec ,m

m
m m m

k y yu
h y y

u y y

 −= > − 
             (5.2) 

1 2

2 ,
n n

m
m m m

u y y
y y

u y y

 
    = − <         

             (5.3) 

where mu  is the maximum velocity, occurring at my y= ,  and /2my  is the half width 

of the jet and k is a constant and is defined as 1 1
tanh 0.8814

2
k −  = = 

 
. 

The evaluation of / my y experimentally and numerically yield a band of values 

0.14 / 0.16my y< <  corresponding to 7 6n> >  [60] for a Reynolds number in the 

range of 4 510 10eR< < . 

Flow decay rate over a circular cylinder is a function of surface length s fr δ and the 

turning angle. A best fit of previous experimental data [10] provides: 

1/2

max

(12.7 2.28 )m C
f

s f

u t

U r
δ

δ
 

= − 
  

             (5.4) 

Similarly jet expansion is: 

/2
0.11

1 0.165
fm

s f

y

r

δ
δ

=
−

              (5.5) 
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For 0.5 3fδ< <  where fδ  is in radians. This shows that the surface velocity profile 

is proportional to surface length and flow deflection. The wall-jet deflection is a 

function of surface deflection with flow turning angle [64] which in terms of the 

forces generated can be defined as 

1tan N
f

A

F

F
δ −  

=  − 
              (5.6) 

Where AF  and NF  are the axial and normal forces acting on the convex surface. 

Subsequently, the turning efficiency tη  is defined by 

2 2
N A

t

F F

T
η

+
=               (5.7) 

Where T  is horizontal thrust from the source and tη  is 1 for perfect (theoretical) 

efficiency and 0 for complete blockage. A best fit of previous experimental data [64] 

defines the flow turning efficiency as 

0.0022 f
t e δη −=               (5.8) 

It has been established that the 2-D longitudinal velocity profile of a plane wall-jet is 

similar to a fully attached and developed jet flowing round a circular cylinder [65], 

however, the corresponding decay and jet width spread rate may differ.  

Figure 68 depicts the 3-D flow profile of diffusing wall jet along an adjacent surface; 

the figure enables to understand the qualitative behaviour of wall-jet. From the 

colour contoured figure it can be seen that the flow spreads like arrays of light; the 

red straight line being the jet half width z/t where the maximum flow lies.  
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As this flow follows the path s  it starts to turn at an angle fδ , and experiences 

nonuniform circular motion. Therefore, the flow velocity may be defined in terms of 

the turn rate fd
dt

δ  as 

.f
s s

d
U r

dt

δ
=               (5.9) 

Applying Bernoulli’s principle at locations 1, inside the wall-jet, and 2, outside the 

zero velocity line, as shown gives: 

2
1

1

2 s atmP U Pρ+ =             (5.10) 

This can be re-arranged to give the pressure difference sPΔ  at the surface 

2
1

1

2s atmP P P uρΔ = − = −             (5.11) 

Substituting the turn rate and differentiating with respect to sr , the change in 

pressure at a distance away from the surface is:  

2

fs
s

s

ddP
r

dr dt

δ
ρ  

 = −  
 

            (5.12) 

Total local pressure may be evaluated by integrating across the wall-jet depth as 

/2
2 1.75s m

s

r y
f

s s s

r

d
P r dr

dt

δ
ρ

+ 
Δ = −  

 
            (5.13) 

where the wall-jet depth at a location is taken to be /21.75 my  and /2my  is defined by 

Equation 5.5. 

[ ]{ }
2

2 2
/2

1
1.75

2
f

s s m s

d
P r y r

dt

δ
ρ  

 Δ = − + − 
 

           (5.14) 
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Substituting the annular reduction factor (as defined in Section 4.3) into local flow 

velocity expression: 

0f
s C

d r
u r U

dt r

δ
= =             (5.15) 

0

.
f

C
s

d r
U

dt r r

δ
 =             (5.16) 

and subsequently the pressure difference expression may be written as 

[ ]{ }
2

2 20
/2

1
1.75

2 .s C s m s
s

r
P U r y r

r r
ρ
 

Δ = − + − 
 

           (5.17) 

22
2 0 /21

1 1.75 1
2

m
s C

s

r y
P U

r r
ρ

    Δ = − + −   
     

           (5.18) 

Further simplifying into a non-dimensional quantity PC  as  

22

0 /2

2

1 1.75 1
1
2

s m
P

s
C

P r y
C

r rUρ

  Δ   = = − + −   
     

           (5.19) 

This relationship shows that the local pressure at the upper surface of the annular 

wing depends on the dynamic pressure, convex surface radius and radial distance 

from the blower centreline. A larger curvature radius means larger surface length and 

hence higher flow rate, implicitly giving higher local pressures. Furthermore, 

dynamic pressure loss away from the blower is inevitable due to the increasing 

cross-sectional area. 

5.3.1 Methodology and Solution 

In order to solve Equation 5.23 it is required to evaluate sr  and /2my  respectively. 

Let the convex surface path s be the aerofoil (or wing-section) thickness distribution 

along the chord line at distance x from the leading edge, defined by Equation 4.9 and 

4.10.  
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Now let sr  be the distance from a location ( ', ')x y on the surface to the origin 

defined as ' 0.25,   ' 0x y= =  where ' 0.25x ≥  

2 2' 0.25 'sr x y = − +             (5.20) 

1 ' 0.25
tan

'f

x

y
δ −  − 

 =  
 

           (5.21) 

Substituting the above into Equation 5.5, the wall-jet depth can be evaluated.  

Finally, the radial distance away from the blower is given by 

'or r x= +             (5.22) 

To calculate the forces acting on the annular wing, the blown surface was divided 

into discrete panels, as shown in Figure 71. The Pressure forces were resolved to 

obtain lift and drag, given by: 

( )
1

cos  {per unit span}
i n

N i i i
i

L F s P θ
=

=

= =            (5.23) 

( )
1

sin  {per unit span}
i n

A i i i
i

D F s P θ
=

=

= =            (5.24) 

where iθ  is the angle between the ith panel and the horizontal and is  is the surface 

panel length. 

Thrust generated by the radial-flow generator, is then: 

2
02 C CT r t Uπ ρ=             (5.25) 

where CU  is the free-jet velocity profile. 
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Figure 74: Free-jet velocity profile at distances away from the outlet determined experimentally using 

hot-wire anemometer {Parameters: 48m/smaxU = , 4mmtC = , 102.6P kPaatm = , 25.6oT Catm=  }. 

 

Figure 75: Turbulence intensity from blower. 

 

Figure 76: Non-dimensional wall-jet velocity profile {Parameters: 28m/sum = , ' 1.6r = } 
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Figure 77: Flow profile of wall-jet at different locations along the wing upper surface, determined 

experimentally {Parameters: 48m/smaxU = , 4mmtc = , 102.6P kPaatm = , 25.6oT Catm=  }. 

 

Figure 78: Spread of maximum velocity, jet-width versus chord length. 

The experimental data and theoretical calculations for the pressure coefficient and 

lift force are presented in Table 3 and Table 4. The local pressure coefficient along 

the surface of the wing obtained theoretically and experimentally is plotted in Figure 
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origin at quarter chord and the flow turning angle 0fδ =  with the vertical. Hence, 

from the leading edge to the quarter chord inputs a negative angle into the set of 

equations; therefore the theoretical model becomes valid only beyond quarter chord. 

Furthermore, beyond quarter chord the theoretical pressure values are always higher 

than the experimental values. This is probably caused by the assumption made in the 

model that the flow is conserved within the assumed control volume defined in 

Figure 70.  

 

Figure 79: Pressure coefficient versus chord length acquired experimentally and theoretically using 
panel code method. 

From the pressure plots the lift force is evaluated. The lift to thrust ratio, or lifting 

efficiency, is theoretically 0.45Lη =  and experimentally 0.36Lη = . The relatively 

values suggest that the flow needs further turning to increase the lifting efficiency. 

This is also suggested by Figure 77 where the wall-jet flow at trailing edge is 

deflected at 26 degrees and yet travelling at max~ 0.48U  (Figure 77). In other words, 

the flow deflected just by 26 degrees still possesses significant energy and if turned 

by 90 degrees would substantially enhance lifting efficiency. Furthermore, the 

deflection of 26 degrees at the trailing suggests ~ 0.42Lη =  by referring to Figure 

69. Further losses in lifting efficiency are anticipated to be due to annular flow 

expansion. 

The flow needs further turning for better lifting efficiency, becomes clearer from 

Figure 80: comparing the flow decay rate along the radial axis for free-jet (without 

the wing attached) and wall-jet. For the wall-jet case, maximum flow velocity 
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Now, apply continuity to determine the annular reduction factor 
af  as 
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           (5.32) 

[ ]22 2( )N t t t a CF r t r f Uρπ   = + −             (5.33) 

For the given parameters in Figure 83 the lift is evaluated via three different means 

including  

Theoretical:
 

0.69NF

T
=

 

Experimental: 

Load Cell 0.62 0.01NF

T
= ±  

By impulse measurement using the pitot rake:
 

0.61 0.05NF

T
= ±

 

Figure 83 shows that the addition of the flap turned the flow vertically downwards. 

Mass flux was conserved, the flow velocity was reduced and jet was expanded. In 

comparison to the flow profile recorded for the wing without the flap (Figure 77) the 

maximum flow velocity has reduced from 0.48 to 0.32, and the flow depth increased 

to 4 from 3.4. 

This shows that a flap can enhance wing lifting efficiency. However, efficiency of 

the annular-Coanda-wing is still less than a conventional rectangular blown wing, 

with lifting efficiency in the range of 0.7 0.9tη< < , mainly because of annular flow 

reduction. This can be minimised by reducing the overall wing size or by reducing 

the geometrical parameters 
0r  and

tr . 
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r' = 1.16 r' = 1.36 r' = 1.55 r' = 1.73 r' = 1.84 r' = 1.92 

y u/um y u/um y u/um y u/um y u/um y u/um 
0.00 0.75 0.00 0.76 0.00 0.73 0.00 0.43 0.00 0.21 2.00 0.21 
0.30 0.88 0.30 0.84 0.30 0.78 0.30 0.47 0.60 0.23 3.00 0.25 
0.60 0.97 0.50 0.88 0.60 0.82 0.60 0.50 1.20 0.27 4.00 0.31 
0.90 1.00 0.72 0.90 0.90 0.85 0.90 0.54 1.80 0.31 5.00 0.35 
1.20 1.00 0.85 0.91 1.20 0.86 1.20 0.57 2.40 0.36 6.00 0.41 
1.50 0.97 1.00 0.91 1.50 0.84 1.50 0.60 3.00 0.40 7.00 0.45 
1.79 0.92 1.15 0.91 1.79 0.81 1.79 0.64 3.59 0.43 8.00 0.49 
2.09 0.87 1.30 0.90 2.11 0.78 2.09 0.65 4.19 0.47 9.00 0.51 
2.39 0.79 1.56 0.88 2.39 0.67 4.79 0.51 9.41 0.52 
2.69 0.69 1.80 0.83 2.69 0.69 5.39 0.55 9.77 0.51 
2.99 0.60 2.00 0.79 2.99 0.70 5.99 0.56 10.00 0.52 
3.29 0.49 2.15 0.74 3.29 0.69 6.59 0.56 10.17 0.51 
3.59 0.39 2.50 0.66 3.49 0.69 7.19 0.57 10.29 0.51 
3.89 0.31 3.87 0.67 7.79 0.55 10.66 0.51 
4.19 0.24 4.19 0.65 8.39 0.51 11.00 0.48 

Average 0.79 0.84 0.81 0.61 0.42 0.39 

PC
  

-1 
 

-1.335 -1.245 -0.709 -0.355 
 

-0.35915

Lift 
Experimental 

    1.328 N        

Table 3: Experimental Data for upper surface blowing over NACA-0024 at 12 degrees angle of attack 

{ 3.69T N= , 26.5oT catm= , 101.4P kPaatm= } 

/x c  /y c  'x ' 'y  fδ  
/2 /m sy r / 2my  sr  max/mu U  PC  

0.000 0.000 0.022 0.208 -0.866 -0.083 -0.027 0.321 1.699 

0.005 0.020 0.031 0.226 -0.805 -0.078 -0.026 0.327 1.525 

0.013 0.038 0.042 0.242 -0.747 -0.073 -0.024 0.330 1.384 

0.025 0.052 0.057 0.254 -0.690 -0.068 -0.022 0.329 1.288 

0.050 0.071 0.086 0.267 -0.596 -0.060 -0.019 0.322 1.158 

0.075 0.084 0.113 0.274 -0.511 -0.052 -0.016 0.315 1.044 

0.100 0.094 0.139 0.279 -0.429 -0.044 -0.013 0.306 0.924 

0.150 0.107 0.191 0.281 -0.263 -0.028 -0.008 0.291 0.627 

0.200 0.115 0.241 0.278 -0.090 -0.010 -0.003 0.280 0.232 

0.250 0.119 0.291 0.272 0.090 0.010 0.003 0.273 7.111 -0.245 

0.300 0.120 0.340 0.263 0.274 0.032 0.009 0.273 4.019 -0.743 

0.400 0.116 0.437 0.238 0.622 0.076 0.022 0.293 2.487 -1.463 

0.500 0.106 0.533 0.207 0.909 0.118 0.040 0.338 1.860 -1.609 

0.600 0.091 0.628 0.172 1.126 0.152 0.061 0.400 1.500 -1.415 

0.700 0.073 0.722 0.134 1.285 0.179 0.085 0.475 1.266 -1.147 

0.800 0.052 0.815 0.093 1.403 0.201 0.112 0.557 1.103 -0.910 

0.900 0.029 0.908 0.049 1.494 0.218 0.140 0.644 0.983 -0.724 

0.950 0.016 0.954 0.026 1.533 0.226 0.155 0.689 0.934 -0.649 

1.000 0.003 1.000 0.000 1.571 0.233 0.171 0.734 0.890 -0.585 
Table 4: Theoretical calculations data for the model given in Equation 1.22 {Lift Theoretical

1.662F NN = , 3.69T N= }. 



 

 

Figure 84: 33-D geometry of annular wining prototype
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Chapter 6. Single-Element Aerofoil Lift Enhancement 
 

6.1 Introduction 

A single-element aerofoil section has a fixed geometry with reference to the body 

axes, while a multi-element aerofoil can change its geometrical profile with the aid 

of active flaps, slats and tabs. In general, frequently used single-element aerofoil 

sections, e.g. NACA-0012, NACA-0024 or NACA-2412, generate 2-D LC  values in 

excess of unity at moderate angles of attack. In contrast, the annular wing under 

investigation achieves LC  values significantly less than unity for reasons discussed 

previously. Therefore, herein, single-element aerofoil lift enhancement strategy 

appropriate for the annular wing is sought. Further enhancement may be achieved, if 

desired, by adopting standard multi-element aerofoil sections, e.g. flaps, tabs and 

slats. 
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Figure 89: Measured pressure distribution over the surface of arc-wing with and without Gurney flap 
attached at the lower trailing edge.  
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Figure 90: 2-D aerodynamic characteristics of arc-wing with and without Gurney flap acquired 
experimentally. 
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The circumference at any distance along the radial axis r for each of the guided 

vanes may be defined as 

( ) ( )( )1/222 1
0 0

0

2 tan
2

i

i
r i

Z
C r x Z r x

r x

π −  
= + − + +  +   

           (6.5) 

where i is the corresponding vane i.e. i = 1, 2, 3. 

The local velocity over the surface of the wing with the vanes attached is calculated 

by applying the continuity as 

01

2 ( )
C

i C
r C x

r t
v U

C t t

π 
=  − 

              (6.6) 

where Ct  is the centrifugal fan outlet thickness. 

Figure 94 highlights the change in circumference and the cross-sectional area facing 

the flow, CSFF, along the radial axis for the guided vanes considered. The vanes 

substantially reduce the effective circumference and the CSFF; the circumference 

increases linearly along the radial axis of the annulus without the vanes, the inclusion 

of vanes keep a rather constant circumference along the radius. Figure 95 shows the 

plots of local pressure distribution over the surface of the wing with and without the 

vanes. From the figure it is visible that the local pressure is proportional to the 

circumference and the CSFF. Vane 2 compensates the dynamic pressure loss due to 

the annulus configuration and simulates a rectangular wingform. Vane 1 achieves 

moderate rise in the dynamic pressure whereas vane 3 obtains the highest overall 

dynamic pressure. All three vanes give rise to the maximum local velocity at the 

maximum aerofoil thickness and this is because the aerofoil profile and the vanes 

together create a venturi around the wing; of which the narrowest point occurs at the 

maximum aerofoil thickness i.e. at the quarter chord length. 
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The analysis above demonstrates that the loss of dynamic pressure for the annular 

wing is recoverable by attaching guided vanes to the wing; vane 3 seems to offer the 

best pressure distribution. 

 

Figure 94: Theoretical comparison of variation in cross-sectional area facing the flow and variation in 
circumference for different guided vanes attached. 
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Figure 95: Theoretical comparison of local velocity distribution over the surface of annulus for 
different guided vanes. 

6.4 Summary 

• It has been shown, theoretically and experimentally, that the Gurney flap or 

the proposed guided vanes on an annular wing are capable of enhancing the 

baseline lift. 

• Experimentation has shown that a Gurney flap of size, ~ 4% chord length, 

can enhance the baseline lift coefficient by 34% at zero angle of attack and to 

9% at 22 degree.  

• An increase in lift at lower angles of attack, 0 14α≤ ≤ , does not cause a 

significant rise in drag and the nose down pitching moment has been 

increased by 25% on average which may be beneficial in translational flight 

mode. 

• A mathematical model for three guided vanes with different geometries has 

been developed. 

• All the vanes have shown, theoretically, the capability of enhancing the 

baseline lift and hence overcome the loss of dynamic pressure due to annular 

flow expansion.  
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Chapter 7. An Evaluation of Existing Non-Helicopter V/STOL Capability 
Equation Chapter (Next) Section 1 

7.1 Introduction 

V/STOL refers to Vertical or Short Take-Off and Landing capability, an aircraft that 

can perform either vertical or short take-off or landing is said to inherit V/STOL 

capability e.g. BAE Harrier. The term V/STOL is composed of two other VTOL, 

vertical take-off and landing, and STOL, short take-off and landing. An aircraft with 

insufficient vertical thrust may attempt a short take-off and vertical landing upon 

reducing weight from fuel consumption, this class of aircraft is specifically 

designated by STOVL. 

V/STOL capability cuts the need for long runways and reduces the time to achieve 

horizontal flight: conventional jet aircraft land and take-off with speeds of, around, 

80 to 120m/s and may require runways up to 3,500m in length in some cases – this is 

an expensive infrastructure problem that V/STOL has potential to solve.  
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become compatible. Furthermore, at speed above Mach 1 the thrust required is 

nearly equal to or exceeds the gross weight of the aircraft in level flight – coinciding 

some aspects of the design solutions for V/STOL and supersonic aeroplanes. 

The most prolific V/STOL capable aircraft, so far, is clearly the helicopter; however, 

in level flight the helicopter is inefficient compared to a typical fixed-wing 

aeroplane, with speed and range only between a half or one third (approximately) 

that of the aeroplane. Also, due at-least in part to their greater complexity, 

helicopters demonstrate poorer safety than conventional aeroplanes [94]: with for 

example light conventional aeroplanes suffering a fatal accident rate of 11.7/million 

flying hours, versus 33.5/million flying hours for small helicopter.  The same 

complexity also contributes to a greater cost: for example at time of writing the 

typical hire cost of a Robinson R44 helicopter in the UK is £400/hr or to purchase 

such an aircraft would cost £100-£200,000, whilst a Cessna C172 aeroplane, which 

has similar payload and cruise performance capability, can be rented for about 

£150/hr or purchased for about £30-£100,000 – costs around 30-40% of the cost of 

the helicopter. 

The search for V/STOL capability has provoked research into embedding VTOL 

capability of a helicopter into a conventional fixed-wing aeroplane. However, this 

has rarely been achieved. The author has identified 45 fixed-wing aircraft which 

have attempted to combine V/STOL capability of the helicopter with high forward 

flight speed of a conventional aircraft. Of these 45, only four: the BAe Harrier, Yak-

38, Bell-Boeing V-22 and Joint F-35 Strike Fighter have ventured much beyond the 

prototype stage. Table 6 below presents these 45 aircraft arranged according to their 

propulsion systems.  
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VTO Propulsion Strategy Aircraft Model 

Same Propulsion System for Hover and 

Forward Flight 

Tilt Shaft/Rotor 
Trascendental Model 1G 1

Bell XV-3 2

Tilt Prop 
Curtiss-Wright X-100 3

Curtiss-Wright X-19 4

Tilt Duct 

Doak 16 VZ-4 5

Bell-X22A 6

Nord 500 Cadet 7

Tilt Wing 

Vertol 76 VZ-2 8

Hiller X-18 9

LTV-Hiller Ryan XC-142 10

Canadair CL-84 Dynavert 11

Tilt Rotor 
Bell XV-15 12

Bell Boeing V-22 Osprey 13

Tilt Jet Bell 65 14

Deflected Slipstream 

Robertson VTOL 15

`Ryan 92 VZ-3 Vertiplane 16

Fairchild 224 VZ-5 17

Vectored Thrust 

Bell X-14 18

Hawker P.1127 Kestrel 19

Yakovlev Yak-36 20

BAe Harrier 21

Boeing X-32 22

Tail Sitters 

Lockheed XFV-1 23

Convair XFV-1 Pogo 24

Ryan X-13 Verijet 25

SNECMA C450 26

Separate Power Plant for Hover 

Lift 

+ 

Cruise 

Short SC.1 27 

Dassault Balzac V 28

Dassault Mirage III-V 29

Combined Power Plant for Hover 

Lift 

+ 

Lift/Cruise 

EWR VJ101C 30

Dornier Do 31 31

Lockheed XV-4B 32

VFW VAK 191B 33

Yakovlev Yak-38 34

Yakovlev Yak-141 35

Tip Jets 
McDonnel XV-1 36

Fairey Rotodyne 37

Augmented Power Plant for Hover 

Ejector 
Lockheed XV-4A 38

Rockwell XFV-12A 39

Fan 

Vangaurd Omniplane 40

GE-Ryan XV-5A 41

Lockheed Martin X-35 42

Rotor 

Kamov Ka-22 43

Piasecki 16H-1 44

Lockheed AH-56 45

Table 6: V/STOL aircraft arranged according to their propulsion systems. 
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For cruise-dominated VTOL aircraft – such as may be designed for transport 

purposes, a more severe problem involves thrust matching. If the thrust required for 

vertical flight is provided by the same engines used for cruise, the engines are likely 

to be far too large for efficient cruise. The thrust mismatch will produce great fuel 

consumption and range penalty for a cruise dominated design that uses only the 

vectored thrust of its cruise engines for vertical flight. For this reason many 

conceptual VTOL transport design have incorporated separate “lift engines” used 

during vertical flight. Figure 99 highlights the mismatch between thrust required for 

vertical flight and thrust for horizontal flight for a typical jet V/STOL aircraft. Also, 

the thrust mismatch may further increase with altitude as the thrust required to 

maintain a steady flight at higher altitudes, (~15,000 metres), decreases significantly. 

These are known to be the fundamental problems which must be overcome in a 

VTOL aircraft. 

 

Figure 99: Thrust mismatch for jet V/STOL aircraft at sea level {derived from [95]}. 

In a V/STOL aircraft it becomes necessary to also consider the factors influencing 

the performance for the CTOL and level flight cases. The factors can be evaluated by 

simplified analysis of the ground-roll distance of a landing aircraft and the 

relationship between them is defined by [95]:- 
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rest, tilt rotor, lifting propellers and lifting jet, are significantly less efficient. 

However, this Chapter is concerned with fixed-wing V/STOL aircraft primarily and 

this makes the tilt rotor the best candidate within this class of aircraft.  

 

Figure 101: Weight to power ratio versus disk or wing loading for V/STOL aircraft with different 
propulsion systems {derived from [99]}. 

7.3 Primary Causes of the Aerodynamic Losses 

It is useful to review the main design penalties introduced into the well understood 

conventional aeroplane by the addition of a VTOL capability. During hovering or 

vertical flight the aircraft experiences several aerodynamic losses including 

suckdown, recirculation, hot-gas ingestion, thrust vectoring and reaction control 

system. 

7.3.1 Suckdown and Fountain Lift 

The downwash that keeps the aircraft in a steady state also accelerates the air flow 

around it which pushes downward on the aircraft with a vertical drag depending on 

the whole surface area of the aircraft facing the flow. The critical factors influencing 

the vertical drag are the relative location of the propeller or jet exhaust and the fixed 

wing. If the propeller is directly above the main wing, such as in the Lockheed AH-

56, or the exhaust nozzles are directly under the wing, such as in the Bell 65 ATV, 

then a much larger downward force is exerted by the entrained airflow. 
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7.3.3 Hot-Gas Ingestion 

Hot-gas ingestion is only applicable to jet VTOL aircraft where hot exhaust gases are 

injected back into the engine which increases the inlet temperature and causes a 

significant reduction in thrust. The hot-gas ingestion is very configuration 

dependent, the nozzle arrangement, inlet position, and wing location being important 

variables. Relative head winds could also have a large effect on the magnitude of the 

inlet-air temperatures.  

7.3.4 Thrust Vectoring 

Thrust-vectoring is generally achieved by nozzle-vectoring and the nozzle 

arrangement has a significant effect on the thrust loss. Rectangular nozzle 

arrangements and the side-inlet single nozzle have the highest inlet-air temperature 

rises (up to 111º C) [101]. 

7.3.5 Reaction Control System (RCS) losses 

In hovering flight, an RCS is necessary to aircraft control; this may for example be 

achieved through use of compressed air bleed at the wing tips, nose or tail (e.g. the 

Harrier and Yak-38). Such a system is both heavy in itself, and makes significant 

power demands upon the aircraft. For a rotary-wing aircraft balanced VTOL is 

achieved by a combination of pendular stability and dynamic control via disc angle. 

The net T/W for VTO must obviously exceed 1 in the normal axis, however thrust 

losses must be considered in light of the above. 
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7.4 V/STOL Performance Analysis 

Conventionally, an aircraft’s performance, as whole, is specified by power and thrust 

loading, /P W and /T W . The shorter the take-off distance, the higher the altitude and 

hotter the climate, the bigger the engine to provide enough power, or thrust. 

Specifically, for a V/STOL aircraft the most emphasised parameters, from 

conceptual design to performance analysis, are static thrust-to-weight ratio and wing 

loading[103]. For a CTOL aircraft the general performance equation [104] defining 

the relationship between power, thrust and weight is given by 

p t cP DV Wvη = +                 (7.4) 

where pη  is the propulsive efficiency, tV  the forward target velocity, cv  the rate of 

climb and a  the acceleration of aircraft. This equation, in general, will hold for 

V/STOL aircraft as well by incorporating the different flight modes. Thus the 

analysis below will be based on the parameters given in the equation above. 

Design and performance data has been collected for the aircraft, presented in Table 

6, and tabulated in Table 7 and Table 8, categorised by propulsive class. 

Figure 103 and Figure 104 present thrust and VTO weight chart for jet and the non-

jet V/STOL aircraft respectively in order to highlight the scale of each aircraft. Using 

available technology, jet aircraft tend to be heaviest with weights respectively of 80 

kN compared to 30 kN for other classes. The aircraft are arranged with time scale 

and there seems to be no strong evidence of improvement in terms of thrust to 

weight ratios through the history of V/STOL – presumably because most aircraft are 

designed to a weight which makes full use of the power available. 
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7.5.5 Flying Cars Performance Analysis 

It is visible in the vehicles described above that the most common feature in them is 

the ducted/shrouded fan/propeller. The concept of ducted propellers as a suitable 

propulsive device for many V/STOL applications has been explored for more than 

half a century; the Doak 16 VZ-4 and Bell X-22A are good examples of successful 

application. Ducted fans, or shrouded propellers, hold promise as devices for high 

static thrust propulsion systems. When compared to an isolated propeller of the same 

diameter and power loading, ducted propellers typically produce significantly greater 

static thrust [110]. However, a better efficiency compared to an un-ducted propeller 

is only achieved at relatively lower airspeeds. Ducted fans also offer lower noise, 

uniform loading along the blade span and elimination of the propeller induced tip 

vortices subsequently eliminating induced drag. In addition, the ducted fan system 

offers a supplementary safety feature attributed to enclosing the rotating fan in the 

duct, therefore making it an attractive option for various advanced unmanned air 

vehicle configurations or for small/personal air vehicles as described above. 

The flying cars claim to be V/STOL capable and recalling that V/STOL is composed 

of two separate characteristics: VTOL and STOL. Thus the feasibility study may 

begin by investigating whether these vehicles comply the main condition of VTOL 

capability that is / 1T W > . The thrust required for this flight mode may be evaluated 

by assuming that the aircraft behaves like a flat plate perpendicular to the flow as 

shown in Figure 115. Applying Newton’s second law of motion and assuming sum 

of the forces act through the geometrical centre of the plate/aircraft the following 

relationship is derived. 

F ma=               (7.7) 

req p

W
T D W a

g
− − =               (7.8) 
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ρ
 
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  

           (7.12) 

where φ  is the area ratio between the fan and the exhaust and 0.8P  is 80% of the 

engine power transmitted to the fan since ducted propellers are typically 80% 

efficient(104). Assuming the climb rate of the range 4 10cv≤ ≤  has negligible effect 

the relationship for thrust available may be further simplified as  

[ ]
1

23
3

0.8avaT P d
ρπ
φ

 
 =  

 
.            (7.13) 

From the equation above it can clearly be seen that the thrust available from a ducted 

propeller depends on the fan diameter d and the ratio between the fan disc area and 

the duct exhaust area.  

Figure 116 compares the thrust available to the thrust required to achieve VTOL for 

the flying cars. From the figure it is visible that the Moller M400 and the Mule are 

just capable of providing enough thrust for VTOL. The Dragonfly and the Skyrider 

lack sufficient thrust to overcome the weight and the vertical drag. However, Moller 

and Mule projects are comparably much advanced in reaching their prospective 

goals. Also, nevertheless, the publishers/designers have clearly mentioned that the 

performance estimates are preliminary and subject to change. So the analysis above 

suggests that a higher degree of precision is required for better estimation. 

 

Figure 116: Chart comparing thrust available to thrust required for flying cars. 
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The specifications and flight performance data for the flying cars depicted above are 

presented in Error! Not a valid bookmark self-reference. and plotted in Figure 

117 to Figure 120. These figures compare the flying cars performance to the past, 

relatively, lighter/smaller non-jet V/STOL aircraft. It is perhaps curious that, despite 

a lack of any real track record for any of these projects, they consistently propose 

significantly better performance: as defined by speed, range and payload, per power 

and weight, than previous aircraft. It will be interesting, should any of these projects 

reach fruition, so see the extent to which this claimed performance is ever achieved – 

the author ventures that they may not, although certainly the extensive use of ducted 

fan technology may carry some benefits [115]. 

 

Figure 117: Flying cars specifications. 

 

Figure 118: Range-weight envelope of future flying cars and non-jet V/STOL aircraft. 
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Figure 119: Maximum cruise velocity comparison of future flying cars and non-jet V/STOL aircraft. 

 

 

Figure 120: Power consumption comparison of flying cars and non-jet V/STOL aircraft. 
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7.6 Summary 

The above analytical review of the past V/STOL aircraft based on their performance 

parameters has resulted in useful findings. 

• V/STOL optimisation is best achieved with light-weight vehicles, with low 

wing loading. 

• The V/STOL aircraft may usefully be divided into two categories, i.e. jet and 

non-jet, as there exists a significant performance difference between the two. 

• Non-jet driven V/STOL aircraft acquire better range and consume significant 

less power. 

• Several different propulsive arrangements have been tried on past V/STOL 

aircraft; however, for jet propelled aircraft a clear best solution has yet to 

emerge. 

• An attempt has been made to define relationship between several parameters 

by plotting the data presented in the database and most of it depicted a 

nonlinear relationship.  

• Performance is not linearly related to aircraft weight. 

• Aerodynamic based propulsion systems best serve low speed V/STOL 

aircraft – most of the future V/STOL aircraft are being developed based on 

this fact. The dominant branch of V/STOL “the helicopter” works with an 

aerodynamic solution, that is, Rotary wing.  

• The thrust to weight requirements of a modern fighter aircraft tend towards 

also satisfying the same requirement for V/STOL. 

• Whilst proposed future V/STOL vehicles validate the findings above by 

adopting non-jet propulsion system and keeping the overall size to the 

minimum, most current projects claim performance unlikely to be met by 

comparison with historical data. 
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Aircraft 
VTOW 

(kN) 
Length 

(m) 
b (m) 

Vmax 
(m/s) 

Range 
(km) 

Thrus
t (kN) 

Power Plant T/W 

           

Bell 65 ATV - - - - - 9 (2) Fairchild J-44 (1,000 lb) 0.98 

Bell X-14 19 8 10 77 483 16 (2) AS V8 Viper (1,750 lb) 1.13 

Hawker 
P.1127 
Kestrel 

76 13 7 244 563 49 BS Pegasus (11,000 lb) 1.10 

Yakovlev 
Yak-36  

116 17 7 311 409 98 (2) Soyuz R-27 (11,000 lb) 1.06 

Harrier GR7 138 14 9 296 483 110 Pegasus 11 Mk.103 1.24 

Sea Harrier 
FA2 

117 14 8 328 370 98 Pegasus 11-21 Mk.106 1.16 

BAe/Boeing 
AV-8 Harrier 

138 15 9 296 483 85 
GR.1: RR Pegasus 6 (19,000 
lb) 

1.27 

Boeing X-32 - - - 536 1573 133 
PW F119-SE614 (approx 
30,000 lb vertical) 

1.00 

Ryan X-13 
Vertijet 

32 7 6 156 309 44 RR Avon (10,000 lb) 1.11 

SNECMA 
Coléoptère 

- - - 313 700 34 
SNECMA Atar 101E (7,700 
lb) 

1.16 

Short SC.1 36 8 7 110 241 47 (5) RB.108 (2,130 lb) 1.38 

Dassault 
Mirage V 

- - - - - 77 
(8) RB.108 (2,160 lb) + BS 
Orpheus (5,000 lb) 

1.15 

Dassault 
Mirage III V 

- 16 9 626 463 275 
(8) RB.162-31 (5,400 lb) + 
PW TF30 (18,520 lb) 

1.50 

EWR VJ 
101C 

60 16 7 335 - 88 
(2) RB.145 (2750 lb) + (4) 
RB.145R (3560 lb a/b) 

1.12 

Dornier Do 
31 

269 21 18 202 1802 295 
(2) BS Pegasus 5-2 (15,500 
lb) + (8) RR RB.162-4D 
(4,400 lb) 

1.32 

Lockheed 
XV-4B 

- 10 8 150 - 80 (6) J85-GE-19 (3,000 lb) 1.43 

VFW VAK 
191B 

88 16 6 306 396 94 
RB.193 (10,000lb) + (2) 
RR/MTU RB.162-81 (5,600 
lb) 

1.20 

Yak-38 
Forger 

128 15 7 291 1299 126 
Soyuz R-27V-300 (14,770 lb) 
+ (2) Rybinsk RD-35-36FVR 
(6,725 lb) 

1.13 

Yakovlev 
Yak-141  

191 18 14 536 1400 218 
Soyuz R-79V-300 (30,864 
a/b) + (2) Rybinsk RD-41 
(9,040 lb) 

1.41 

Lockheed 
XV-4A  

- - - - - 29 
(2) PW JT12A-PW-3 (3,300 
lb) 

0.92 

Rockwell 
XFV-12 

87 13 9 671 - 133 
P&W F401-PW-400 (30,000 
lb a/b) 

1.54 

GE Ryan 
XV-5A  

- 13 9 179 - 24 (2) GE J85-GE-5 (2,650 lb) 0.43 

Lockheed 
Martin X-35 

267 15 11 581 1931 191 
P&W F119-SE611 (approx 
20,000 lb vertical) 

1.23 

 

Table 7: Jet V/STOL Aircraft Data {source [116, 117, 118, 119]}.  
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Aircraft 
VTOW 
(kN) 

Length 
(m) 

b 
(m) 

Vmax 
(m/s) 

Range 
(km) 

Thrust 
(kN) 

Power Plant T/W 

           

Transcendental 
Model 1G 

8 7.93 11.58 71 384 2 
Lycoming O-290-A 
(160 hp) 

0.22 

Bell XV-3 21 14.00 9.15 78 890 4 
P&W R-985 radial 
(450 hp) 

0.20 

Curtiss-Wright X-100 16 7.90 8.64 0 -  
Lycoming T53-L-1 
(1,000 shp) 

 

Curtiss-Wright X-19 53 12.83 6.55 200 536 20 
(2) Lycoming T55-
L-7 (2,650 shp) 

0.37 

Doak 16 VZ-4 14 9.75 7.77 103 370 6 
Lycoming YT53 
(860 bhp) 

0.44 

Bell X-22A 66 12.07 11.96 141 716 26 
(4) GE YT58-GE-
8D (1,250 shp) 

0.40 

Nord 500 Cadet  12 6.69 6.08 97 - 5 
(2) Allison T63-A-
5A (317 shp) 

0.40 

Vertol 76 VZ-2 14 - - 94 210 7 
Lycoming YT53-L-
1 (860 hp) 

0.48 

Hiller X-18 147 19.20 14.60 111 736 95 
(2) Allison T40-A-
14 (7,100 eshp) + 
West J34 (3,400 lb) 

0.65 

LTV/Hiller/Ryan 
XC-142 

183 17.70 20.60 185 756 50 
(4) GE T64-GE-1 
(3,080 shp) 

0.27 

Canadair CL-84 
Dynavert 

54 16.34 10.16 144 547 15 
(2) Lycoming T53-
LTC K-4A (1,450 
shp) 

0.28 

Bell XV-15 58 12.83 17.42 153 800 18 
(2) Avco Lycoming 
LTC1K-4K (1,800 
shp) 

0.30 

Bell Boeing V-22 
Osprey 

212 17.50 14.00 154 2200 60 
(2) Allison T406-
AAD-400 (6,150 
shp) 

0.28 

Robertson VTOL - - - - - - 
Lycoming GSO-
480 (340 hp) 

 

Ryan 92 VZ-3 
Vertiplane 

12 - - - - - 
Lycoming T53-L-1 
(1,000 shp) 

 

Fairchild 224 VZ-5 
Fledgling  

18 10.26 9.98 82 - 12 
GE YT58-GE-2 
(1,024 shp) 

0.67 

Lockheed XFV-1 72 11.23 8.36 258 - 21 
Allison YT-40-A-
14 (7,100 eshp) 

0.28 

Convair XFY-1 Pogo 72 10.66 8.43 229 - 23 
Allison YT-40-A-
14 (7,100 eshp) 

0.32 

McDonnell XV-1 24 15.37 7.92 91 400 5 
Continental R-975-
19 radial (550 hp) 

0.18 

Fairey Rotodyne 147 17.90 27.40 95 830 44 
(2) Napier Eland 7 
(2,800 shp) 

0.30 

Vanguard Omniplane 12 - - - - - 
Lycoming O-540-
A1A (850 hp) 

 

Kamov Ka-22 
Vintokryl 

349 27.00 22.50 99 1200 98 
(2) Soloviev D-
25VK (6,500 shp) 

0.28 

Piasecki 16H-1 
Pathfinder 

12 - - 76 1152 5 
P&W Canada 
PT6B-2 (550 shp) 

0.47 

Lockheed AH-56 
Cheyenne 

98 16.66 15.62 109 1971 - 
GE T64-GE-16 
(3,435 lb) 

 

Table 8: Non-Jet V/STOL Aircraft Data {source [120, 121, 122, 123]}. 

Flying Car 
Vmax 
(m/s) 

Range 
(km) 

Length 
(m) 

Wmax 
(kg) 

Payload 
(kg) 

Power 
(kW) 

T/W 
available 

T/W 
required 

Dragonfly  105 1200 4.0 485 204 132 1.04 1.13 
Skyrider 
Macro 172 1482 4.3 850 318 522 1.12 1.15 

Moller M400 161 1207 5.9 1090 340 537 1.15 1.14 

MULE  51 925 5.3 1067 227 559 1.56 1.13 

Table 9: Flying cars specifications and performance data. 
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Chapter 8. Integrating the Annular Wing into a Useable Aircraft - A Feasibility Study  
These airplanes we have today are no more than a perfection of a toy made for 

children to play with. My opinion is we should search for a completely different 

flying machine, based on other flying principles. I consider the aircraft of the future, 

which should have no parts in movement. Equation Chapter (Next) Section 1 

Henri Coanda, 1967

8.1 Introduction 

In fact, V/STOL is the quest here and this section aims to present with conceptual 

design studies for appropriate classes of aircraft to demonstrate the developed wing’s 

usability. The primary goal of the preceding chapters is to develop an understanding 

of controlled powered flight at different physical scales. From this, the obvious next 

stage is to show how flight vehicles with an annular wing could be designed, and to 

investigate their feasibility, focussing on the major components of the wing, 

compressor, powerplant and structures.  
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This is most valid for micro-scale vehicles where low density materials such as 

foams, are feasible. For larger vehicles, typically, most of the volume covered by 

wing surface area is left hollow and the structural weight will be dominated by a spar 

and ribs. However, the shape and lift distribution, combined with an assumption of 

payload primarily being distributed around the main spar, mean that the peak 

structural loads on both the main spar and ribs, will be low: of the order of skin loads 

– in effect we have near 100% structural alleviation, such as typically permits ~2/3 

of wing mass to be disregarded in conventional aeroplane structural approvals [124]. 

So, with a lightweight spar and ribs, the latter being evenly distributed around the 

annulus, the wing may for conceptual design purposes continue to be treated as if it 

is manufactured from a foam-like material of constant density; values for this density 

will be discussed later, but can initially be based upon wing structural density of 

lightweight existing aircraft of a similar scale. 

8.3 Example Vehicle 1: Miniature/Micro UAV  

It appears so far that the annular-wing will be most mass efficient with smallest 

possible overall size. The smallest current class of aircraft are micro aerial vehicles 

(MAV): typically with a maximum dimension of about 150 mm and maximum 

operating speeds of 11m/s [125]. Current MAV development is concentrating upon 

surveillance roles, where larger vehicles are inappropriate (for example inside 

buildings).  

Most MAVs will operate in the Reynolds number range between 103 and 105 (Figure 

124), within this range viscous forces dominate, this can cause sudden increases in 

drag and hence loss of efficiency. However, it is observed in Section 7.1 that VTOL 

capable birds with such low Reynolds numbers fly stably due to their exceptional 

low wing-loadings. This is similarly the case for many current MAVs, such as those 

shown in Figure 123 below, with large wing area and ultra-low body masses (~50g). 
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•  A direct drive propulsion system (which appears to be more efficient than a 

geared propulsion system at the MAV scale). 

•  Propeller efficiencies of 80% or greater (possible due to low Reynolds 

numbers). 

• Electrical propulsion (avoiding the mass penalties of fuel storage and 

transmission systems). 

•  Motor efficiencies of 70% or greater (possible on very small electric 

motors). 

Figure 125 displays some of the common motors used in the miniature aircraft, with 

one small 2-stroke internal combustion engine shown for comparison. The smallest 

available electric motor, the Firefly coreless planetary motor will be chosen for this 

conceptual design. Figure 126 shows a compatible battery and a signal receiver. 

Table 10 provides with specifications of some commercially available propellers for 

small micro-scale aircraft, with an indication of the efficiency following in Figure 

128. In propeller selection at any scale, the relationship between thrust, power and 

size is nonlinear [130] and available design data is limited, so at this stage propeller 

selection will be nominal: this will be the GWS4540 with 114mm diameter giving 

annular size of 187mm. 

The motor will require a compatible power source for which a lithium-ion battery 

with lowest possible mass is selected (as indicated in Figure 127). The battery life, 

and thus vehicle endurance, will subsequently be estimated as: 

 )(_

)(_
)(sec_

WattsnConsumptioPower

JoulesCapacityBattery
ondslifeBattery ≈

 

Noting that the motor may well be operating below capacity to match the propeller 

or performance requirements, thus the power consumption should be factored 

accordingly (e.g. if a 10W motor is running at 7W to match a 7W propeller, then the 

power consumption is 7W, not the 10W motor capacity). 
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Table 11 indicates now the mass of each of the major components. The minimum 

take-off mass (excluding any payload) is approximately 37.2 grammes, indicating 

that for VTOL, at-least 0.40 N thrust (=37.2g x 1.1 = 40.9g at 1g) will be required. 

Now, referring to Table 10 for thrust available the previously selected GWS4540 is 

unsuitable, but the slightly larger GWS4530, generating 0.55 N of thrust (=56g at 

1g) and with a mass of 1.25g [135] appears more suitable. 

Payload and endurance calculations below show that larger power setting achieves 

better payloads and a lower will achieve better endurance – which is intuitively 

correct and consistent with all other scales of aircraft. Therefore, a trade-off may 

occur depending on the exact function of this vehicle. 

Component Specification Mass (grammes) 
Propeller GWS4530 (114mm) 1.2 
Batteries 250mah Lithium Battery 24 

Electric Motor Firefly Coreless Planetary Motor 14 
Structure Foam (1500g/m3) 8 
Avionics 4 Ch Receiver MICROSTAMP 4 4 

Minimum Take-off Mass  37.2 
Table 11: Mass allocation for the primary flight system of MAV. 

So, let us consider briefly the performance and potential mission of this vehicle, then 

the form of it. Let us assume a mass of 37.2g (from Table 11) for the empty vehicle, 

and a 10g payload, giving a gross mass of 47.2g, or weight of 0.463N. Available 

thrust at the propeller’s optimised condition of 7.1W is 0.549N (56g) – an excess of 

18.6% thrust over weight; this is satisfactory for both VTOL and for sustained flight. 

Constructing a power budget for a flight, Table 13 indicates that a mission endurance 

of around 149s: 2½ minutes is potentially achievable; this is short but may fit the 

vehicle for a short term emergency services surveillance mission inside a building 

carrying a micro scale camera/transmitter package. Nevertheless, its hover capability 

will provide a further benefit with clearer image capturing compared to a forward 

moving vehicle. 

For comparison Table 12 below shows a selection of current MAVs in use; it will be 

seen that at a similar size to this study, the Black Widow, which is a successful 

150mm span electric MAV capable of downlinking live colour video from a range of 

1.8 km, and provides a good benchmark, is of a similar size and mass, but has a 

substantially (order of magnitude) better endurance and thus range. This clearly 
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Figure 131: VTOL UAV Data {data source Ref [136]} 

 

Figure 132: VTOL UAV performance Chart. 

So, for the time being, this scale will not be considered further since it offers no new 

lessons not found above for the MAV or in the following sections for larger vehicles. 

8.5 Example Vehicle 3: Flying Car Scale with internal 

combustion engine 

In the light aircraft design community, it has become common practice to design 

aircraft around common and preferred powerplant combinations; this approach will 

also be taken here in selecting the Rotax 914 liquid cooled 4-stroke light aircraft 

engine, and an Airmaster AP332 propeller, shown in Figure 133, this is a constant 

speed propeller specifically developed for Rotax 900 series engines (note: constant 
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8.6 Example Vehicle 4: Large Vehicle with Gas Turbine Engine 

The next and obvious scale here would be a larger vehicle making fuller use of the 

capabilities of gas turbine engine technology. There are three major kinds of gas 

turbine engines: turbojet, turbofan and turboshaft/turbopropeller. This section 

proposes the integration of a high-bypass turbofan engine into an annular wing 

vehicle, a possible configuration for which is shown in Figure 137. The arrangement 

is such that the by-pass flow, or the cold air from the fan, is extracted and blown 

over the annular wing which further deflects the flow vertically downwards. 

Typically, for a turbofan engine around 70% of the thrust is generated by the fan and 

30% from the hot exhaust gases [142]. This derives a new relationship of net 

lift/thrust generated by the annular-turbofan configuration. 

  ( )
Annular Reduc

Thrust from hot-gas impu
tion Factor

Thrust from by-pass fl wse ol

0.3 0.65 0.7net engine engineLift Thrust Thrust= + × ×
  

          (8.1) 

0.76net engineL T ≈                 (8.2) 

The above expression shows that this arrangement, with partial axial flow, achieves 

significantly higher net lift/thrust compared to pure Coanda lift, although from 

operating experience there will be substantial operational concerns – particularly 

those associated with damage to the surface below the aircraft during take-off [143]. 

As shown in Chapter 7 and [144] the thrust to weight ratio for a typical combat 

aircraft is in excess of one, hence, making their propulsion system a suitable design 

starting point for V/STOL applications, although some such aeroplanes with low 

bypass ratios will not suit this application whilst large commercial engines may well 

do. Figure 138 displays specifications of a range of engines used on combat aircraft; 

these engines have a range of bypass ratio from 0.4 to 6.42. The thrust to weight 

ratio of these engines is plotted versus the fan diameter in Figure 139; there exists no 

pattern/relationship, the installed thrust to weight values for these engines range from 

4 to 10 with a mean of 6. 
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The predicted mass budget for this aircraft is given in Table 17 below. 

Component Specification Mass (kg) 
Engine  F108-CF-100 (1.83m diameter) 2093 

Fuel 1000 litres 3000 
Payload  - 
Structure CFRP (1600kg/m3) 1200 
Avionics  250 

Minimum Take-off Mass  6543 

 Payload Fraction % Endurance (mins) 

@T=1.1W 7 56 

@Tmax 36 50 
Table 17, Component mass breakdown for proposed Harrier-like annular-Coanda vehicle 

Whilst this aircraft may have an equivalent weapons carriage role to that of the 

Harrier, it appears unlikely that it will at the current state of technology compare to it 

in terms of manoeuvrability or high speed flight. 

8.7 Performance Summary  

This section has shown that an annular-Coanda wing vehicle is feasible at MAV 

scale, at a single-seat flying car scale if a turboshaft/turboprop (but not internal 

combustion) engine is used, and at a large Harrier-like scale by integrating a large 

high bypass turbofan engine into the annular wing into a new type of combined 

lift/propulsion system. In none of these cases the annular-Coanda wing offers 

performance advantages over existing technology, as defined by range, endurance or 

payload fraction. The advantage then, if it exists, will concern the specific 

characteristics of this wing – that is the combination of VTOL capability, and lack of 

external moving parts of lower/forward surface air intakes. 

The achievable Endurance and Payload performance is evaluated in Figure 142 and 

Figure 143 respectively for a range of take-off mass; each mass corresponds to a 

minimum and an absolute performance value. The maximum values on Endurance 

chart correspond to minimum values on Payload chart. The performance charts 

display two regions, with regard to powerplant, split by an asymptote where the 

flight is not possible at that scale “flying car with internal combustion”. Hence, 



154 

 154

indicating that internal combustion engines are not feasible for medium scale annular 

wing configuration.  

Figure 144 summarises the achievable performance range of different sized vehicles 

that may fall into certain class of aircraft. The net performance is taken as a product 

of endurance and payload fraction for two different thrust settings: 1) thrust required 

for minimum take-off weight and 2) maximum engine thrust available. Several 

crucial finding are derived from the above feasibility study and these are highlighted 

below. 

• For a given class of propulsion, the performance must be evaluated with 

regard to the size/diameter of fan/compressor, particularly because this 

influences vehicle size and thus empty mass. 

• A turbofan engine with high bypass ratio achieves relatively better 

performance range for the Coanda-annular wing configuration 

• Maximum performance is achieved by selecting the engine with maximum 

specified performance parameter, defined above, that includes the fan 

diameter 

• A larger vehicle (>600kg) with turbofan engine achieves significantly higher 

net performance compared to electric powered aircraft. 

 

Figure 142: Endurance profile for different sized aircraft. 
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Chapter 9. Conclusions & Future Work 
9.1 Conclusions 

This report has examined the aerodynamic characteristics of the proposed blown 

annular wing. Basic characteristics, including ,   and L D MC C C  have been established 

by experimentation for hover and translational flight modes. This has resulted in 

several crucial findings, as listed below. 

• The annular wing experiences two major losses in lift: 1) due to annular flow 

expansion 2) relatively smaller blower-slot-height. 

• The annular-wing in this arrangement experiences upper surface flow 

attachment and Coanda effect which is anticipated to increase the stalling 

angle of attack by a factor of about 2.8 compared to a conventional 

rectangular wingform. 

• A further loss of 16% in CLmax value has been observed, suggesting a need for 

further work to modify and expand the theoretical analysis: most likely this 

will need to include the effect of finite blower-slot height but possibly also 

the shear effects. 

• A thicker aerofoil, such as the NACA-0024, achieves greater lift for given 

flow velocity and leading edge angle of attack.  
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There has been found an incompatibility between slot height and wing size for 

symmetrical blowing across the longitudinal axis of the aerofoil as initially 

hypothesised. Symmetrical blowing for optimal wing size is nearly impossible with 

current centrifugal compressors available. This suggested a shift/modification in the 

blowing layout for realistic size and compatibility: that is to have pure upper surface 

blowing and relying upon the Coanda effect to create adhered flow and thus lift.  

Upper surface blowing over annular wing showed that the wing with such blowing is 

capable of generating lift/thrust. The analysis showed that for maximum lift 

efficiency the flow needs further turning that may be achieved by deploying flaps 

around the trailing edge. Experimental investigation showed that 90 degree flow 

deflection can be achieved by addition of a flap. The annular-Coanda-wing with flap 

achieves a lifting efficiency of approximately 61% which may be further enhanced 

by reducing the outer diameter of the blower. 

Two passive lift enhancement devices, the Gurney flap and guided vanes, have been 

explored theoretically and experimentally and have shown certain benefits. The 

Gurney flap on annular wing enhanced the baseline lift by 30% and, actually, 

reduced drag for moderate angles of attack. It also enhances nose down pitching 

moment which is beneficial in translational flight mode. The guided vanes proposal 

has been investigated theoretically; a mathematical model to predict local pressures 

for three different geometries has been developed. All three vanes have shown the 

capability of enhancing the baseline lift by overcoming the loss of dynamic pressure 

due to annular flow expansion. 

Upon establishing that the proposed “annular-blown-wing” configuration is viable, 

the past V/STOL aircraft have been reviewed and analysed with regard to their 

performance parameters. The analytical review found two embedded categories in 

this class of aircraft based on their propulsion systems, i.e. jet and non-jet 

propulsion, and highlighted the significant performance differences between them. 

The performance of a relatively new class of aircraft, the flying cars, was evaluated. 

Among the most crucial findings are: 

• Non-jet driven V/STOL aircraft acquire better range and consume 

significantly less power. 
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• Several different propulsive arrangements have been tried on past V/STOL 

aircraft; however, for jet propelled aircraft a clear best solution has yet to 

emerge. 

• The aerodynamic based propulsion systems best serve low speed V/STOL 

aircraft – most of the future V/STOL aircraft are being developed based on 

this fact. The dominant branch of V/STOL “the helicopter” works with 

aerodynamic solution i.e. rotary wing.  

• The thrust to weight requirements of a modern fighter aircraft tend towards 

also satisfying the same requirement for V/STOL. 

• Whilst proposed future V/STOL vehicles validate the findings above by 

adopting non-jet propulsion system and keeping the overall size to the 

minimum, most current projects claim performance unlikely to be met by 

comparison with historical data. 

In light of the historical experience of V/STOL aircraft a feasibility study has been 

conducted where it is shown that the developed annular-blown-wing can be 

integrated into a flyable vehicle. The centrifugal fan/compressor has been the 

component against which everything else is scaled. Different sizes (MAV to a 

Harrier equivalent) and propulsion have been explored. The best performance in 

terms of range and endurance is achieved by importing a turbofan engine into the 

annular-wing. A larger vehicle, i.e. a Harrier equivalent, with turbofan engine 

achieves significantly higher net performance compared to electric powered aircraft. 

9.2 Future Work 

Whilst an initial investigation of the annular wing is presented here, moving forward 

the following areas are proposed as developments of this work: 

• Test the upper surface blowing with higher turning angles and evaluate the 

optimum turning angle with optimum lifting efficiency 

• From a larger range of experimental data for upper surface blowing over 

the annular wing, improve the theoretical model by including non-ideal 

flow conditions, i.e. viscosity, shear stress and boundary layer profile 
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• Import the annular-wing geometry into a CFD package (i.e. Fluent) to 

generate the fine the fine aerodynamic characteristics and compare with 

the existing experimental results. This may also aid in designing the 

further experiments 

• Design an experiment to test compressibility effects on the upper surface 

of the annular wing. 

• Further explore the turbulence with more specifics, flow velocity direction 

and magnitude; this may be achieved by using a multi-wire probe. 

• Develop theoretical and empirical models to enhance lifting efficiency, 

e.g. circulation control 

• A broader range of Reynolds number needs to be brought into the analysis 

and investigate its effect on the lifting efficiency and the overall vehicle 

performance. This may initially be addressed with the aid of a CFD 

package 

• Investigate and develop optimal aerofoil sections for use on the annular-

wing 

• It has been assumed that uniform or at-least symmetric velocity profiles 

for the flow generator are preferable – this may not be true and could be 

explored further 

• The guided vane proposal presented in Section 6.3 needs to be validated 

by experimental results. Also, the theoretical model should be developed 

further to include different aerofoils sections at a range of angle of attack. 

• It has been established that the annular-wing is most efficient with 

smallest possible overall size with regard to lift/mass design factor. 

However this does not reflect scale effects in available powerplant 

systems. Further work should also explore conceptual or eventually actual 

vehicle designs at a range of scales 

• Finally, design, make and test a radio controlled model to demonstrate the 

developed technology 
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APPENDIX 
 

x = 2 mm x = 5 mm x = 9 mm x = 20 mm x = 50 mm 

Ypos U 
Mean 

U 
RMS 

U 
Mean 

U 
RMS 

U 
Mean 

U 
RMS 

U 
Mean 

U 
RMS 

U 
Mean 

U 
RMS 

0 42.37 7.63 39.49 7.73 37.57 7.90 32.17 8.04 22.75 6.52 
1 44.62 6.23 41.36 6.89 39.39 7.35 33.31 7.81 23.98 6.22 
2 42.94 6.88 40.02 7.80 37.14 8.13 30.71 8.33 23.53 6.24 
3 40.43 8.26 37.49 8.76 33.53 9.12 29.76 8.21 22.92 6.32 
4 38.15 9.34 33.51 9.69 29.93 9.59 26.53 8.14 20.30 6.34 
5 33.30 10.35 29.75 10.52 28.25 9.55 22.85 7.87 21.33 6.32 
6 29.15 11.04 27.25 10.47 25.09 9.74 23.18 8.01 18.59 6.30 
7 28.35 11.65 24.85 10.49 22.83 9.68 18.97 7.34 18.16 6.27 
8 22.17 10.95 22.91 10.41 21.36 9.45 19.22 7.33 16.38 6.00 
9 23.58 10.98 21.95 10.21 19.55 8.87 17.48 7.30 13.89 5.79 
10 21.03 10.56 20.95 9.92 18.45 8.27 13.84 6.65 11.25 5.16 
11 21.43 10.28 19.64 9.35 18.32 8.32 12.83 6.45 10.82 5.00 
12 20.37 9.83 19.14 8.77 18.02 7.99 12.26 6.16 10.06 4.60 
13 17.88 9.08 18.38 8.23 17.54 7.66 11.54 5.84 8.78 4.37 
14 19.77 8.95 17.57 7.77 15.81 7.39 10.90 5.42 7.79 3.80 
15 18.65 8.30 17.27 7.64 13.62 6.95 8.53 4.42 7.11 3.22 
16 18.41 7.51 14.84 7.25 13.20 6.51 7.60 3.84 6.88 3.15 
17 15.15 6.30 12.97 6.21 10.28 5.36 6.29 2.59 5.95 2.35 
18 15.30 6.53 11.88 5.77 8.48 4.23 6.05 2.49 5.62 1.75 
19 9.64 4.19 8.47 4.11 7.43 3.47 5.64 1.92 5.47 1.78 
Average 26.14 8.74 23.98 8.40 21.79 7.78 17.48 6.21 14.08 4.87 
Table 18: Velocity values recorded by hot-wire anemometer at different locations away from blower 
outlet. 
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NACA-0012 NACA-0024 NACA-0012 at 6 deg 

Chord (mm) ./ L EUv  Chord (mm) ./ L EUv  Chord (mm) ./ L EUv  

0 0.9926 0 1.1095 0 1.3387 
1.78 1.0410 1 1.1669 1 1.4290 
2.78 1.0747 2 1.2052 2 1.5151 

3.78 1.0850 3 1.2147 5 1.6043 

4.78 1.0952 5 1.2912 7 1.6226 

7.78 1.1289 6 1.3104 8 1.5806 

9.78 1.1246 7 1.3266 9 1.5484 

11.78 1.1026 9 1.3343 11 1.5161 

13.78 1.0674 10 1.3327 12 1.4366 
15.78 1.0681 11 1.3066 13 1.3796 

7.78 1.0520 15 1.2482 17 1.4484 
18.78 1.0556 17 1.1688 20.4 1.4409 
19.78 1.0622 18 1.1946 23 1.3624 

20.78 1.0615 20 1.0713 27 1.2925 

22.78 1.0087 23 0.9871 31 1.2538 

24.78 0.9889 25 0.9507 33 1.2452 

27.78 0.9706 27 0.9163 35 1.2258 

31.78 0.9537 29 0.9087 37 1.2000 

35.78 0.9647 31 0.8924 39 1.1333 

39.78 0.8885 39 0.8168 49 0.9785 

43.78 0.8577 43 0.7174 52 0.9570 

47.78 0.7917 47 0.7652 56 0.9140 

52.78 0.7712 52 0.7642 60 0.9570 

57.78 0.7316 57 0.7269 64 0.9032 

62.78 0.5454 62 0.7154 68 0.8925 

67.78 0.7038 68 0.6313 72 0.8634 

72.78 0.6305 72 0.6370 76 0.8570 
77.78 0.6451 77 0.6121 80 0.8925 
80.13 0.6715 81 0.5930 82 0.9032 

Table 19: Local flow distribution for different wing sections [Experiment Date: 18/11/2008, 

100.1 kPaPatm = , 20oT catm = ,
31.1604 /air kg mρ = ] 

Experimental Theoretical 

.L EU  (m/s) Lift (kgf) Lift (N) Lift(rect) Lift (annular) 

12 0.03 0.294 1.127 0.789 

15 0.04 0.392 1.761 1.233 

17 0.079 0.775 2.262 1.583 

19 0.1 0.981 2.825 1.978 

21 0.2 1.962 3.451 2.416 

Table 20: Data for NACA-2214 { 99P Kpaatm = , 21.5oT catm = ,
31.1705 /kg mairρ = }. 
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Experimental Theoretical 

.L EU  (m/s) Lift (kgf) Lift (N) Lift(rect) Lift (annular) 

13 0.055 0.53955 1.356287 0.949 

15 0.075 0.73575 1.805708 1.264 

18 0.115 1.12815 2.600219 1.8202 

19 0.16 1.5696 2.897157 2.0280 

21 0.208 2.04048 3.539187 2.477 

Table 21: NACA-0024 [ 101atmP Kpa= , 20atm

oT c= ,
31.2 /air kg mρ = ]. 

Reading 1 Reading 2 

Fan Off Fan On Fan Off Fan On 

Alpha Maxima Minima Maxima Minima Maxima Minima Maxima Minima 

6 0.040 -0.130 -0.419 -1.323 0.120 -0.036 -0.396 -1.225 

9 -0.013 -0.116 -0.820 -1.759 0.018 -0.138 -0.641 -1.635 

12 0.000 -0.116 -1.060 -1.986 -0.013 -0.138 -0.913 -1.839 

15 0.062 -0.125 -0.748 -2.317 -0.031 -0.174 -1.122 -2.369 

Table 22: Maxima and minima values recorded by load cell for NACA-0012@12deg. 

Alpha Lift Minima-1 (N) Lift Maxima 1 (N) Lift mean 1 (N) Lift Minima-2 Lift Maxima-2 
Lift Mean-2 

(N) 
Lift Mean 

(N) 
6 0.289 1.363 0.826 0.360 1.345 0.853 0.8394 

9 0.704 1.746 1.225 0.503 1.653 1.078 1.1513 

12 0.944 1.986 1.465 0.775 1.826 1.300 1.3826 

15 0.999 2.379 1.689 0.948 2.338 1.643 1.6661 

Table 23: Interpolated lift values for NACA-0012@12deg. 

Alpha CL Minima-1 CL Maxima-1 CL Mean-1 CL Minima-2 CL Maxima-2 CL Mean-2 CL Mean

6 0.176 0.187 0.181 0.220 0.184 0.202 0.192 

9 0.429 0.239 0.334 0.307 0.226 0.267 0.300 

12 0.576 0.272 0.424 0.472 0.250 0.361 0.392 

15 0.609 0.326 0.467 0.578 0.320 0.449 0.458 

Table 24: Interpolated CL values for NACA-0012@12deg. 

XFOIL         Version 6.94 

xtrf =   1.000 (top)        1.000 (bottom) 

Mach =   0.050     Re =     0.042 e 6     Ncrit =   7.000 

alpha     CL        CD       CDp       CM    Top_Xtr Bot_Xtr 

3.000   0.4334   0.02381   0.01396  -0.0271  0.7733  1.0000 

4.000   0.5241   0.02387   0.01394  -0.0171  0.6296  1.0000 

6.000   0.6732   0.02844   0.01735   0.0020  0.3137  1.0000 

7.000   0.7501   0.03353   0.02205   0.0082  0.2131  1.0000 

8.000   0.8251   0.04079   0.02974   0.0134  0.1611  1.0000 

9.000   0.8677   0.05185   0.04203   0.0195  0.1354  1.0000 

10.000   0.8681   0.06632   0.05739   0.0250  0.1240  1.0000 

11.000   0.7608   0.09072   0.08233   0.0202  0.1259  1.0000 

Table 25: Data for NACA-0012 wing section [ 102.7atmP Kpa= , 19.5oT catm = , 31.227 /kg mairρ = ]. 
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XFOIL         Version 6.94 

Calculated polar for: NACA 0024 

Mach =   0.050     Re =     0.042 e 6     Ncrit =   7.000 

alpha     CL        CD       CDp       CM    Top_Xtr Bot_Xtr 

   1.000   0.0823   0.05388   0.04365   0.0040  0.6808  0.7789 

   2.000   0.3296   0.05218   0.04187  -0.0142  0.6391  0.8224 

   3.000   0.4330   0.05332   0.04309  -0.0149  0.5899  0.8715 

   4.000   0.5367   0.05528   0.04516  -0.0176  0.5422  0.9219 

   5.000   0.6639   0.05711   0.04710  -0.0251  0.4973  0.9713 

   6.000   0.8182   0.05603   0.04598  -0.0346  0.4574  1.0000 

   8.000   0.3885   0.08981   0.07962   0.0132  0.3923  1.0000 

   9.000   0.3539   0.09888   0.08848   0.0212  0.3670  1.0000 

  10.000   0.3371   0.10938   0.09882   0.0254  0.3441  1.0000 

  11.000   0.3266   0.12136   0.11072   0.0265  0.3252  1.0000 

  13.000   0.3242   0.14850   0.13785   0.0216  0.3218  1.0000 

Table 26: Data for NACA-0024 wing section [ 102.7P Kpaatm = , 19.5oT catm = ,
31.227 /air kg mρ = ]. 

NACA-
0012@6deg 

NACA-
0012@9deg 

NACA-
0012@12deg 

NACA-
0012@15deg 

NACA-
0024@12deg 

Xpos Ypos U Mean U RMS U Mean
U 
RMS U Mean 

U 
RMS U Mean U RMS U Mean U RMS

50 0 16.76 7.21 13.91 6.56 12.44 6.33 10.29 5.78 12.31 6.31 

50 1 18.33 7.20 15.24 7.21 14.05 6.33 11.55 5.88 13.47 6.51 

50 2 19.78 7.44 16.63 7.00 15.31 6.85 12.88 6.13 14.64 6.97 

50 3 21.37 7.28 18.10 7.26 16.89 7.12 14.44 6.43 16.53 7.23 

50 4 22.95 7.21 19.25 7.45 18.46 7.05 15.79 6.84 18.03 7.20 

50 5 23.48 7.09 21.26 7.34 20.58 7.44 16.64 6.85 19.15 7.31 

50 6 24.40 6.84 21.87 7.20 21.05 7.20 18.30 7.46 20.81 7.53 

50 7 24.71 6.23 23.03 7.15 21.91 7.13 20.10 6.58 21.54 7.20 

50 8 24.66 6.39 24.17 6.87 22.90 6.64 20.96 7.02 22.06 7.14 

50 9 24.25 6.16 24.00 6.52 23.27 6.35 21.84 7.04 23.14 6.88 

50 10 22.86 6.58 23.75 6.47 23.41 6.06 22.15 6.61 23.32 6.71 

50 11 20.24 6.54 23.81 6.15 23.20 6.23 22.60 6.42 23.12 6.45 

50 12 11.39 3.75 22.39 6.30 22.37 6.55 22.60 6.22 22.40 6.09 

50 13 10.92 4.10 20.36 6.12 20.20 6.41 22.02 6.47 21.67 6.29 

50 14 11.67 4.21 14.92 4.40 14.31 4.27 20.45 6.47 19.75 6.26 

50 15 11.43 4.25 12.56 4.13 13.90 4.47 17.52 5.80 15.86 6.10 

50 16 10.28 4.19 12.15 4.24 14.10 4.93 14.69 4.01 8.94 3.15 

50 17 9.18 3.75 11.52 4.27 13.42 4.60 16.08 4.89 10.61 3.85 

50 18 8.08 3.45 10.49 4.05 11.81 4.50 15.23 4.97 11.04 3.92 

50 19 7.26 2.98 9.27 3.89 10.67 4.17 14.23 4.83 10.91 3.96 

Average 17.20 5.64 17.93 6.03 17.71 6.03 17.52 6.13 17.47 6.15 
Table 27: Data recorded at 50 mm away from blower outlet , approximately 2 mm in the wake of 
corresponding wing. 
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X = 2mm X = 14mm X = 20mm X = 30mm X = 40mm X = 45mm X = 50mm 

Ypos 
U 
Mean Ypos 

U 
Mean Ypos 

U 
Mean Ypos 

U 
Mean Ypos 

U 
Mean Ypos 

U 
Mean Ypos 

U 
Mean 

0 41 0 37 0 35 0 32 0 22 0 14 0 11 

1 43 1 36 1 35 1 33 1 23 1 15 1 12 

2 41 1 36 1 35 1 34 1 24 1 16 1 13 

3 38 2 35 2 35 2 34 2 25 2 17 2 14 

4 35 2 33 2 35 2 34 2 26 2 17 2 15 

5 32 2 31 2 35 3 32 3 27 3 18 3 16 

6 28 3 27 3 19 3 16 

7 25 4 27 4 20 4 16 

8 23 4 28 4 21 4 18 

9 20 5 28 5 21 5 18 

10 19 5 27 5 22 5 19 

11 17 6 24 6 23 6 20 

12 17 6 23 6 20 

13 16 7 24 7 20 

14 15 7 24 7 21 

15 15 7 23 8 21 

16 15 8 23 8 22 

17 15 8 23 9 22 

18 13 9 23 9 22 

19 9 9 22 10 22 

9 21 10 22 

11 22 

11 21 

12 21 

12 19 

Average 24 35 35 33 26 20 19 
Table 28: Flow profile across upper surface of NACA-0024@12deg 
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Figure 145: Lift force measured with load cell at different blower-outlet flow velocities {Parameters: 

NACA-4412, 12 ,  T 23.4 ,  102.9 kPao o C Patm atmα = = = }.. 
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Figure 146: Lift force measured with load cell for different angles of attack{Parameters: NACA-0012,

 20 m/s, T 20.3 ,  102.7 kPaoU C Patm atmeff = = = }.. 
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Figure 147: Lift force measured with load cell at different blower-outlet flow velocities {Parameters: 

NACA-0012, 12 ,  T 22.3 ,  102.3 kPao oC Patm atmα = = = }.. 
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