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Abstract 

When a fire reaches the point of flashover the hot gases inside the burning room ignite 
resulting in furnace-like conditions. Thereafter, the building frame experiences tem- 
peratures sufficient to compromise its structural integrity. Physical and mathematical 
models help to predict when this will happen. This thesis looks at both the thermal 
and structural aspects of modelling a frame exposed to a post-flashover fire. 

The temperatures in the frame are calculated by solving a 2D heat conduction equation 
over the cross-section of each beam. The solution procedure uses the finite element 
method with automatic mesh generation/adaption based on the Delaunay triangulation 
process and the recovered heat flux. 

With the Euler-Bernoulli assumption that the cross-section of a beam remains plane 
and perpendicular to the neutral line and that strains are small, an error estimator, 
based on the work of Bank and Weiser [9], has been derived for finite element solutions 
to small-deformation, thermoelastic and thermoplastic frame problems. The estimator 
has been shown to be consistent for all finite element solutions and asymptotically ex- 
act when the solution involves appropriate higher degree polynomials. The asymptotic 
exactness is shown to be closely related to superconvergence properties of the approx- 
imate solution in these cases. Specifically, with coupled bending and compression, it 
is necessary to use quadratic approximations, instead of linear, for the compression 
and twisting terms to get a global O(h 2) rate of convergence in the energy norm, some 
superconvergence properties and asymptotic exactness with the error estimator. 
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Chapter 1 

Introduction 

When a building is designed it must meet safety requirements that include provisions for 
fire protection. Although the building as a whole is considered the requirements apply 
to individual structural elements. The assumption is that if the individual elements 
are satisfactory then the whole building should perform at least as well [22]. 

The ultimate method of determining the performance of a structural element is the 
laboratory fire test as laid out in BS476 [1] and IS0834 [3]. Such testing is expensive 
and time consuming. The designer must be pretty sure that the structure will pass the 
test to avoid the repeated costs. Hence the need for physical and mathematical models 
that can help to predict the outcome. Furthermore, assemblies of structural elements 
may be modelled that would be just too impractical to test in the laboratory. As 
computer power increases the structures that can be modelled become more complex. 
The ultimate goal must be an 'all singing all dancing' computer program that simulates 
every aspect of a building's response to a real fire. This is not yet practical and we 
still rely on many mathematical idealogies that simplify the structural problem. 

Always at the forefront of computational modelling has been the finite element method 
with its flexibility to cope with complex geometries and ease of application to any 
system of partial differential equations. Historically, engineers have led the way in finite 
elements, applying the method to a wide variety of thermal and structural problems. 
Meanwhile mathematicians have analysed the performance of the method and, more 
importantly, how to improve the results it provides. Chapter 3 of this thesis describes 
the finite element method and introduces some standard techniques in error analysis 
and error estimation. 

The most important structural aspect of a building is its frame. The performance of 
the frame under the influence of fire exposure will dictate that of the building. The first 
simplification of the overall structural problem is to model the building structurally 
as its skeletal frame loaded with the weight of the walls and floors within. The frame 
is then modelled as an assembly of one-dimensional structures known as beams. The 
behaviour of each beam is governed by its cross-sectional properties, both geometric 
and physical (i. e. temperature and stiffness). It is this frame problem that is the focus 
of this thesis. The mathematical background was largely. covered by Timoshenko [34] in 
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1934 although practical applications were limited until the development of the computer 
later in the 20th century. Since then authors like Berg and Da Deppo [10], Nigam 
[24] and Toridis and Khozeimeh [35] have pioneered the work in computational frame 
analysis. The paper by Toridis and Khozeimeh in 1971 [35] outlines a general finite 
element method for the elastic and plastic analysis of rigid frames under both static and 
dynamic loading. More recently, authors such as Terro [33] and Wang [371 have applied 
the finite element method to fire-exposed frame models. While the models have become 
quite sophisticated, allowing for large deformation and very realistic material models, 
these finite element solution procedures have not benefited from modern mathematical 
developments. 

Essentially, the finite element method performs calculations on a discretization of the 
domain, called a mesh, which, for two-dimensional domains, is a tessellation of poly- 
gons, called elements. The method derives a piecewise polynomial that is continuous 
across the element sides and approximates the solution to the partial differential equa- 
tions such that 

liell < ChP 

where Ilell is a measure of the error in the energy norm, h is a measure of the element 
size, p is the order of the polynomial and C is a constant, independent of h but 
inversely proportional to the smallest element angle [441. Since the error depends on 
h, a way of reducing the error is to reduce the size of the elements. As to where the 
mesh needs smaller elements, users of the finite element method have developed error 
indicators. These are numbers that are computable from the finite element solution 
and approximate Ilell or some other measure of the error such that, globally, 

C, liell < 77:! ý C2 Ilell 

where 77 is the error indicator and C, and C2 are constants. The calculation of 77 is 
performed on an element by element basis in such a way that 

2 
77i 

where n is the number of elements. In this relation the 77j's represent each element's 
contribution to the global error and are used to determine elements that need refining. 
A well known error indicator uses the method of gradient averaging. It compares the 
gradient of the finite element solution with that of a smoother function obtained by 
interpolating the average gradient at the nodes [20]. This smoother gradient function 
is an example of a recovered gradient. An error indicator using an alternative recovered 
gradient method is that of Zienkiewicz and Zhu [43]. Other error indicators have been 
developed based on the difference between the applied forces and those calculated from 
the finite element solution; see, for example, Babuska and Rheinboldt [8) and Bank and 
Weiser [9]. 

The aim of this thesis is to apply some of the recent developments in finite element error 
analysis to fire-exposed frame problems. There are two parts to this class of problem, 
thermal and structural, both of which are covered. The thermal problem is to calculate 
the temperature distribution throughout the frame structure. A typical simplification is 
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to assume that the temperatures are constant in the axial direction of each beam so that 
the temperature distribution is two-dimensional; i. e. across the beam cross-section. 
Hence, the thermal part is the solution of a 2D heat conduction problem for each beam 
in the frame. The finite element method performs heat conduction calculations on 
a mesh of triangular elements as illustrated in Figure 1.1. Reducing the size of the 
elements, while not allowing interior angles to become too small, reduces the error in 
the solution. Error indicators are used to identify elements that need refining. The 
refinement method adopted places new nodes along the element edges ensuring that 
the refined mesh is a Delaunay triangulation of the nodes. This is described in detail 
in Chapter 4 of this thesis. The structural problem is to calculate the deformation of 
the frame due to applied mechanical loads and thermal loads caused by the increase 
in temperature. The finite element method performs calculations on a mesh of one- 
dimensional elements. Again, error indicators are used to identify elements in the mesh 
that need refinement. 

Structural modelling is introduced in Chapter 5. The stress and strain tensors are 
defined and equilibrium equations are derived for an elastic material from their inte- 
gral forms. Chapter 6 describes the thermal effects and derives the heat conduction 
equation. Beam theory, that is used to simplify the structural frame problem, is intro- 
duced in Chapter 7 for thermoelastic frame problems. Equilibrium equations, based on 
Euler-Bernoulli assumptions, are derived from the integral equilibrium equations. A 
finite element method is derived which is shown to be superconvergent at the connect- 
ing nodes, and at mid-points in some cases, for sufficiently high order of polynomial 
approximation. Error estimates are obtained for the finite element frame and a Bank- 
Weiser type error estimator is analysed. This estimator is shown to be asymptotically 
exact for the superconvergent case. This work is extended in Chapter 8 for application 
to thermoplastic frames. 

Figure 1.1 : Typical beam showing the discretized cross-section. 
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Chapter 2 

Mathematical Preliminaries 

2.1 Notation 

Vectors, matrices and tensors 

Vectors and matrices are printed in bold. Their components are printed in normal style 
with subscripts denoting the indices. For example, 

All A12 A13 

A A21 
( 

A22 A23 

) 

A31 A32 A33 

Unless otherwise stated matrices are denoted by capitals and vectors by lowercase char- 
acters. Where possible, expressions involving tensors are written in matrix form. On 
a few occasions where this is not possible the tensor expression is written in compo- 
nent form using the usual index notation where repeated indices imply summation; for 
example 

aii = all + a22 + a33- 

Use of this notation shall be clearly indicated in the text. 

2.1.2 Integrals 

When a vector valued function, f (x), is to be integrated over a general domain, 0, the 
integral is written 

If (x) dx. 
XEO 

In the contexts considered in this thesis, 0cR, 0C RF or QC R3. 
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2.1.3 Hilbert space 

The n dimensional vector space (L2 (0))n is the space of all function vectors defined 

over the domain 0 that are square integrable; i. e. the integral 
fUT 

udx (2.1) 
XEII 

is finite. The one dimensional space, L2, is an example of Hilbert space[18] and is also 
denoted by HO. Smaller Hilbert spaces are defined as those containing functions with 
derivatives in L2. For example, in one dimension, 

Hl = fv: V'EL2}, (2.2) 

H2= IV: V11 E L2} (2.3) 

and, in two dimensions, 

Hl = V: 19V 
1 
av 

EL2 (2.4) 
1 

19X ay 
1 

2 
a2V a2V a2V 

H= aX2' ay2' aXay E L2 (2.5) 

The L2 inner product of two vector functions u and v in (L2 (Q))n is denoted by (u, v)n 
where 

(Ul V)n UTv dx. (2.6) 
XECI 

When the context is clear we will abbreviate (u, v)n by (u, v). 

The L2 norm of a vector function u(x) E (L2 (0))n is denoted fully by IIUIIL, (O) and 
defined via the relation 

12 T UI L2 (0) 
(U 

i U) L2 (0) .. uu dx. (2.7) 
XEn 

In the case u: (a, b) --+ R7, i. e. u is a function of a single variable, the L2 inner product 
and norm are defined by 

b 
(U 

i V) (a, b) UTv dx (2.8) 

IIUI12 
bT 

L2(a, b) := 
Ja 

uu dx. (2.9) 

When the context is clear we will abbreviate IIUIIL2 (0) by IIUIIL2 
. 

The definition (2.7) is 
completely general with the particular form depending on its argument. For example, 
if u has three components, U1, U2 andU3, we may write 

1 12 = IIU, 112 112 112 IUI 
L2 L2 + IIU2 

L2 + IIU3 
L2 
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2.2 Norm inequalities 

The following results are used in Chapter 3. Let uE L2(0,1) with either u(O) =0 or 
u(1) =0 then 

r. IUW1 :5 NO IIUIIIL2 (2.10) 
IlUlIL2 <1 IIUIIIL2 (2.11) 

Proof 

If u(O) =0 then we write 

u(x) dx <I Iu(x)I = If 
0 

lu'(x) I dx (2.12) 
00 

otherwise, if u(l) = 0, we write 

11 
IU(X)l =11, u'(x) dxi < 1.1 

u'(x) 1 dx (2.13) 

In either case 
lu(x)l < fo I u'(x) I dx = (I u'l, 1) (2.14) 

and (2.10) follows using the Cauchy-Schwarz inequality. Equation (2.11) follows by 
writing 

IIUI12 IU(X)12 dx <1 IjUiI12 dx = 12 IjUiI12 (2.15) L2 
00 

L2 L2 

10 10 

2.3 The Dirac delta function 

The analysis in Chapters 3 and 7 uses the Dirac delta function, denoted by 6, which is 
defined by the property that 

00 1f (y)b(y) dy =f (0) (2.16) 

-00 

for all piecewise continuous functions f. For (2.16) to be true for all such functions it 
can be shown that if 6 is to be considered pointwise then 6(y) =0 for all y 54 0 with 
b(O) being infinite. Hence b is not a function in the usual sense. Note that if 71 denotes 
the Heaviside function given by 

10 Y<O (2.17) 
1y>0 
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then ?V also has these properties. Furthermore, as a consequence of (2.16), if xER is 
fixed and f (y) = W(x - y) then 

00 x 
W(x) =I 6(y)H(x - y) dy =f 6(y) dy (2.18) 

-00 -00 

and from this we interpret 6 as the derivative of H which is the conclusion that would 
be obtained when the condition of the fundamental theorem of calculus applies. 

A more general form of (2.16) is obtained by making the change of variable y=z-x 
where x is independent of z. By letting g(z) f (z - x) and noting that f (0) 
f (x - x) = g(x) we have 

00 f 
g(z)b(z - x) dz = g(x). (2.19) 

-00 

2.4 Interpolation 

Analysis of finite element methods makes use of results from interpolation theory. The 
analysis in Chapters 3 and 7 uses a particular result which we derive here. It bounds 
certain derivatives of the interpolation error in the L2 norm using the Peano kernel 
theorem [271 and shows the order of convergence as the interpolation interval, h, is 
reduced. 

Let f be a continuous function over the interval Ixi-i 
, xil and let Ilkf be a polynomial 

interpolant of degree k. For a fixed point x we define the functional L by 

£(f) : --' f (X) - rIkf (X) (2.20) 

and we note that in the case that f is a polynomial of degree <k we have L(f) = 0. 
For a more general function f we have the Taylor series 

1 
f (x) =f (xi-i) + f'(xi-i)(x - xi-i) +... + _f 

(k)(X, 
_1)(X _ X, _, 

)k + Rk(X» (2.21) 

where the remainder, Rk(X), may be written, in integral form, as 

.x 
Rk(X) .. 

Ix (X 
_ Y)kf(k+l) (y) dy (2.22) 

k! xi, 
fx' (X _ Y) 

kf (k+1) (y) dy (2.23) 
2 xi-1 

where 
ok 

(X _ y)k, X, _1 :5y :5X (2.24) (X-j +* 0, x<y< Xi 

Applying C to (2.2 1) and using the remark above we have that 

, C(f) =, C(Rk-j) Vj =0... k. (2.25) 
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From the definition of an integral it can be shown that it is valid to interchange the L 
operator and the integral so that 

L(f) =1 
xi f (k-j+1)(y)Kj (x, y) dy Vj =0... k (2.26) 

j)! 
1, 

j-, 

where 
:= £_«X _ y)k-i'). Kj (X) Y) (2.27) 

The subscript x indicates that the interpolation must be carried out with respect to 
the x variable in Kj(x, y). Equation (2.26) is known as the Peano Kernel theorem 
[271. We may use it to derive bounds for the interpolation error and its derivatives. 
Differentiating (2.26) m times with respect to x we have 

d'L(f) 1 Xi f (k-j+l) (Y) 
a'Kj (x, y) dy Vj =0... k-m. (2.28) 

dx' - (k - j)! 
JXj_j 

OX, 

Application of the Cauchy-Schwarz inequality gives us 

d'L (f 2<1 
1ýamKj 1ý2 

11f (k-j+l) 112 
Vj =0... k 

dx' ax, L2(Xi-I, Xi) 
L2(Xi-I, Xi) 

(2.29) 
/Now, 

with hi xi - xi-1, it can be shown for all the interpolants Hk considered in this 

-3 
aK -k* 

x 
thesis that Kj (x, y) is of order hik ' and is of order hi for M=0... k-j. 
In this thesis we have only the 2 point linear Lagrange interpolant, the cubic Hermite 
interpolant, the 3 point quadratic Lagrange interpolant and the quintic polynomial 
based on the function and derivatives at 3 distinct points. As an example we consider 
the case with the 2 point linear Lagrange interpolant so that k=1 and, with j=0, 

X-y, xi-i: 5y: 5x (2.30) (X -Y)+ :=f0, x<y<xj * 

The linear Lagrange interpolant to this, over the interval Ixi-1 
, xil, is 

1-x- Xi-, ) (xi-, - y) +x- xi-i (xi - y) = (x - y). rI1(X - y)+ =( hi hi 

Hence 
K(x, y) = £«X - y)+) 

0, xi-i :5y :5x (2.32) 
-X, x<y<xi ' 

which shows that Kl(x, y) is of order hi. Differentiating with respect to x we have 

0K1 (x, y) 0, a<y<x 
ex 

ý-17 

x<y<b ' 

which is of order 1. 

(2.33) 
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Using the above information about Kj(x, y) we now integrate (OmK- 2 
with respect 

to x from xi-, to xi to give us 

) 

11 9, rn Kj 1ý2 
2(k-i-m)+l 

Ox' 
L2(Xi-lsXi) 

:5 Chi (2.34) 

Hence 
d', C (f 2 

2(k-j-m)+l Ilf (k j+1) 2 

dxm < Chi 
1IL2(xj-j, 

xj) 
(2.35) 

from which it follows, after integrating dmL (f 2 

over the interval, that 
I 

dx' 

d' (f (X) - rIkf (X) 
2< 

Ch 2(k-i-m+1) Ilf (k-j+l) 112 
Vj = 0... k-m. 

dxm 
(2.36) 

Equation (2.36) shows the relation between hi and f in bounding the interpolation 
error measured in the L2 norm over the interval [xi-1, xj]. We now consider the case 
where [xi-1, xj] is a subinterval of the interval [a, b] CR and obtain a similar result in 
11'42(a, b). Let 

[a, b] = [XOýXll U [X1, X21 U- [Xn-bXn) 

then 

d' ýl2 n ýI d' 
(2.37) 7 jW 

(f (X) - IIkf (X» (f (X) - IIkf (X» 
X L2(a, b) i=l dx' L2(Xi-lpXi) 

< Ch 2(k-i-m+1) 2 
(2.38) (k-j+1) 

Ch 2(k-i-m+1) 11 f (k-j+1) 112 (2.39) 
L2(a, b) 

where h= maxfhi: i=1... m}. Hence we have the result 

Ilkf (X» < Ch k-i-m+l Ilf (k-j+l) Vj, m > 0: m +j: 5 k. 
ýIL2 

11L2 

(2.40) 

This result is used in Chapters 3 and 7 for analysing the error in one-dimensional finite 
element solutions. 
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Chapter 3 

Finite Element Methods 

3.1 Derivation 

In general the finite element method may be applied to any partial differential vector 
equation of the form 

L(u) for xE0 (3.1) 

(subject to certain boundary conditions) by taking the inner product of both sides with 
a test vector v and integrating by parts to give the weak form 

a (u, v) =F (v). (3.2) 

We shall denote the space containing u and v by H. The reformulated problem (3.2) 
has less strict continuity requirements than (3.1). 

The test problem 

In order to introduce the methodology of the finite element method we shall apply it 
the scalar partial differential equation in two space dimensions given by 

-V- (aVu)+bu =f (3.3) 

where the functions a and b satisfy 

0< ao :5 a< al (3.4) 

0< a' < a2 (3.5) 

0< b< bi. (3.6) 

It will be seen in Chapter 6 that (3.3) is the time-discretized heat conduction equation. 
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The function u satisfies (3.3) in the domain Q. With r= rNurD denoting a partition of 
the boundary r, we assume that the boundary conditions are the Neumann condition, 

au 
a5- g, (3.7) 

n 

on IPN and the Dirichlet condition, 
(3.8) 

on IPD- 

In the case that Q c: R and specifically that 0= (0,1) the partial differential equation 
in (3.3) reduces to the ordinary differential equation 

-da 
du 

+bu =f (3.9) j x- ( ix- ) 
and the boundary conditions corresponding to (3.7) and (3.8) reduce to 

du 
u(0) =0 or - aU- 0, 

x 
(3.10) 

x 

Lo 

u(1) =0 or a 
du 

= 0. (3.11) 
dx 

lx=, 

In Chapter 7 it will be seen that, with b=0, the equation (3.9) governs the compression 
of a beam. 

3.1.2 The weak problem 

The weak form of (3.3)-(3.8) is obtained by first taking the inner product of both sides 
of (3.3) with a test function, vEH, where in this case 

H= fv EHl: v=O on IDj, 

We then have 
-4 vV (aVu) dx +4 buv dx =Ifv dx. (3.12) 

XEn XEn XEn 

Using the identity 
V- (vaVu) = aVv - Vu + vV - (aVu) (3.13) 

with the divergence theorem together with (3.7) we obtain 
I 

aVu. Vvdx+ f buvdx =ffv dx +f gv dx. (3.14) 
XEfl X Efl XESI XErN 
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We define the following inner products for u, vEH, fE L2(Q) and gE L2(rN): 

a(u, v)n 
f 

XEfl 

V)n 
f 

XEn 

19) v1rN 
f 

xEr,, 

(aVu - Vv + buv) dx 

fvdx = (f)V)L2(n) 

gvdx =(9, V) L2 (rN) ' 

The weak problem, then, is to find uEH that satisfies 

a(u, v)o = (f, v)n + [9, v]rN 

(3.15) 

(3.16) 

for all v in H. In future, where the domains Q and r are clear from the context, the 
subscripts to the inner products will be omitted. 

3.1.3 Discretization 

Let V be a finite dimensional subspace of H. This means that V is a subspace of H 
that is spanned by a finite number of basis functions. It is defined by a discretization 
of the domain, known as a mesh, and the functions used. In one dimension the mesh 
consists of a line divided into subintervals, known as elements, and a number of points, 
known as nodes, that lie on and between the connecting points between elements. In 
two dimensions the mesh is a tessellation where the elements are polygons. We shall not 
be considering dimensions higher than two. Functions in V are defined in a piecewise 
way and have appropriate global continuity properties. Each node has associated with 
it a degree of freedom and a basis function. Hence any function vEV can be written 
in matrix form as 

v=Nd (3.17) 

where N is a matrix containing the basis functions and d is a vector containing the 
degrees of freedom. For the model problem N is 1xn where n is the number of nodes. 
For problems dealing with vector function spaces there will be more than one degree 
of freedom and basis function for each node. That is, we typically have that N is 
mx (mn) and d is (mn) x1 where m is the number of degrees of freedom per node. 
The basis functions are defined such that 

Ni(xj) = bij (3.18) 

where xj is a node and Nj is its corresponding basis function. Hence the degrees 
of freedom are the function values at the nodes. The functions used are defined for a 
standard element. In one dimension this can be taken as the interval [0,1] or sometimes 
[0, h] where h is the length of the element (in higher dimensions h is a measure of the 
element size). Usually the basis functions are polynomials, the degree of which is 
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determined by the number of nodes within the element. The simplest is for a two 
noded element which is linear and, for the element whose nodes are numbered i and j, 
the two functions are 

Nj(ý) (3.19) 

Nj (ý) (3.20) 

in the case where [0,1] is taken as the standard interval. Note that ý is a local variable 
in this interval. 

For two dimensional problems we shall use triangular elements and the standard element 
will be the right angled triangle with vertices at (0,0), (1,0) and (0,1) in the (C, 77) 
plane (see Figure 3.1). For the element with nodes numbered i, j and k the functions 
are 

Ni 77) =1- ? 7, (3.21) 

Ni 77) = C, (3.22) 

Nk 77) = 77. (3.23) 

The evaluation of integrals over the discretized domain is performed by summing the 
contributions from each element. That is, for any integral we have 

ne 
(. )dx = 1: f (-) dx. 

XE0 '='XEfli 

For the inner products defined in (3.15) we write 
ne 

a(u, v)n =a (u, v) n,, 

ne 
(f) V)n = 

EY 
I 
Oflo 

i=l 
ne 

19) vIr =E 19, vlrinrN 
i=l 

(3.24) 

where ne is the number of elements and IPi is the boundary of Qj. Let nbe be the 
number of boundary elements that make up the Neumann part of the boundary) rN, 
and let each boundary element Of IPN be denoted by rN, i so that 

nbe 
rN U IýN, i- (3.25) 

i=l 

Then we may also write the boundary inner product, [g, v], as 

nbe 
19, 

v] rN, i 
(3.26) 

13 



3.1.4 The finite element problem 

The finite element problem is to find Uh EV that satisfies 
I 

aVUh ' Vv dx +f bUhv dx =ffv dx +f gv dx (3.27) 
XEf2 XEf] X Ef2 - XErN 

for all v in V. The finite element solution may be written as 

Uh = NU (3.28) 

where U is the vector of unknowns. Substituting this into (3.27) gives us 
f 

aBU - Vv dx +f bNUv dx =ffv dx +j gv dx (3.29) 
X Efl XEO XEn XErN 

where B is known as the strain matrix due to early applications in structures (see 
Chapter 5). For our specific problem it is defined as 

B= (VN, VN2 ... VN,, ) (3.30) 

which is of size 2xn when 0E R2. Taking v in (3.29) to be each column of N in turn 
we build 

I 
aB 

T Bdx+ I bN T Ndx U= fNT fdx+ INTg dx. (3.31) 
EfI XEfI XEfI XErN 

This equation may be written as 
KU=F+G (3.32) 

where K is known as the stiffness matrix, F is known as the body load vector and G 
is known as the boundary load vector. This equation is just a linear system which may 
be solved using any method. We use the preconditioned conjugate gradient method 
throughout this thesis. 

3.1.5 Construction 

The integrals are evaluated element by element so that 
ne 

K=EI (aB T B+bN T N) dx (3.33) 
i=lxEnj 

ne 

F=1: 1NTf dx (3.34) 
'='XEfli 

nbe 

G=1: 1NTg dx. (3.35) 
'='XEI'N, 

i 
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y (Xý, YO 

x 

11 

(0,1 

(0,0) 

Figure 3.1: General triangular element and standard triangular element 

Each element area integral is evaluated by the change in variables from (x, y) to (C, 77) 
where C and 77 map x and y onto the standard triangular element (see Figure 3.1). 
Then we may use the relation 

dx abslJl dýd? 7 (3.36) 
XEfli 00 

where J is the Jacobian (matrix) of the mapping from (ý, i? ) to (x, y). Let the nodes 
of the element be denoted anticlockwise by (xi, yi), (X21 Y2) and (X3, Y3). Then the 
mapping from to (x, y) is 

(X)= (Xl )+ (X2 - Xl X3 - Xl (3.37) 
y Yi y3 - Yl y3 - Yl 

The 2x2 matrix involved in (3.37) is the Jacobian matrix and its determinant is 

J :ý IJI (X'2 - XWY3 - Yl) - (X3 - Xl)(Y2 - Yl)- (3.38) 

Given the anticlockwise orientation of (x 1, yj), (X2 
P Y2) and (X3 

i Y3) we will always have 
J>0. Similarly we evaluate the boundary integral by mapping it onto the interval 
[0,11 and use 

dx I dý (3.39) 
xEri 0 

where, if (xj, yj) and (X2 
i Y2) define the boundary element, 

I ---: 
V(-'IC2 

- Xl)2 + (Y2 - Yl )2. (3.40) 
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Hence 

ne 1 1-77 

K= Ef I (aB T B+bN T N) J dýdq, (3.41) 
i=l 00 
ne 

1-17 

F=1: ffN Tf J dý&7, (3.42) 
i=l 00 
nb 

G=1: 1NTgI dý. (3.43) 
i=l o 

When evaluating the element integrals it is helpful to define local vectors and matrices 
where the nodes are numbered 1,2 and 3. Let the local stiffness matrix and the local 
body load vector for the i'th element be denoted by Ki and Fj respectively. These are 
defined as 

1-17 
Ki I (aBTBi + bNiTNi) J dýdqj (3.44) 

00 

Fi NiTf J dCdq, (3.45) 

00 
where Bi and Ni are the local strain matrix, of size 2x3, and local basis function 
vector, of size 1x3, respectively. Similarly let the local boundary load vector for the 
i'th boundary element be denoted by Gi. This is defined as 

I 
Gi NTg I dý. (3.46) 

0 

Since the local strain matrix, Bi, involves partial derivatives with respect to x and y 
we must use the chain rule to write them with respect to ý and 77. Hence 

ON aa QNj ON, 

Bi 
-dKX X 

(Y3-Y1 Y1-Y2) te 
(3.47) 

OLVj a aNj J ON. "I 
XI-X3 X2-Xl) UT 571 

) (-- ) 

lt7 
yy F77- 

Using the linear basis functions defined earlier, we evaluate Bi to be 

Bi =1 
Y3 Yl Yl-Y2) (-l 10=1 (Y2-Y3 Y3 - Yl Yl - Y2 

J 
(Xl 

X3 X2 - XlJ ý-l 0 1) J X3-X2 Xl-X3 X2-Xl)* 
(3.48) 

The element integrals are usually evaluated numerically for convenience. However, if 
the form of a, b, f and g are known then the integrals may be evaluated exactly. 

3.1.6 Storage 

Generally, each node in the finite element mesh connects to only a small number of other 
nodes. Consequently, the global stiffness matrix is very sparse with the majority of 
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off-diagonal locations containing zero. It would be very wasteful of computer memory 
to store the full matrix since most locations would never be addressed. Hence the 
matrix is stored in a compressed form. The algorithm that has been used stores the 
matrix elements in a one dimensional array. Another one dimensional array stores the 
indices where each matrix row begins and another stores the matrix column numbers 
of each matrix element stored. This is known as compressed row storage. 

3.2 Error analysis 

3.2.1 Definitions 

The error in the finite element solution is denoted by the function e and is defined as 

e: -- U- Uh- (3.49) 

In analysing the error we seek bounds for e in terms of the L2 and energy norms. The 
energy norm will be denoted by 11-11, and is defined such that 

Ile112, := a(e, e)n. (3.50) 

When the meaning of 0 is clear from the context of the text the subscript may be 
dropped so that the energy norm is denoted simply by 11-11. 

The analysis that follows serves as an introduction to some of the techniques used in 
analysing the error in the finite element method. Attention is made to one-dimensional 
problems where g=0 since the techniques are required for the frame analysis in 
Chapter 7. Hence, throughout this section, 

Lu = -(au')' =f 
a (u, v) = (f 

, v) (3.52) 

3.2.2 Orthogonality 

The weak solution, u, and the finite element solution, Uh, satisfy 

a(u, v) = (f, v) + [g, v] Vv EH (3.53) 

a(Uh, V) = (flv)+[g)V]VVEV. (3.54) 

Restricting v in (3.53) so that vEV then subtracting (3.54) from (3.53) and substi- 
tuting (3.49) gives us 

a(e, v) =0 for all vEV. (3-55) 
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Hence the error is orthogonal to all functions in the space V with respect to the inner 

product a(., . ). This result will be used time and time again in subsequent analyses of 
finite element methods. It implies that we can write 

a(e, e) = a(e, u - v) (3.56) 

for any v in V. Applying the Cauchy-Schwarz inequality we have 

Ilell :5 Ilu - vil (3.57) 

for any v in V. Hence, in this norm, Uh is the best approximation to u out of all 
functions in the space V. 

3.2.3 Bound for the energy norm 

We may make use of (3.57) to obtain an a priori error bound if we let v= Hu where 
flu is an interpolant to u in V. With this choice we have established, from (3.57), that 

Ilell :5 Ilu - Hull. (3.58) 

In other words, the finite element error, in this norm, is bounded above by the norm 
of the interpolation error. Now, from (3.15) and the assumptions (3.4) and (3.6), 

11U 
_ IIUI12 < al 11(U _ IjUyI12 + bi 11(U 

_ JIU)112 (3.59) L2 L2 

By equation (2.40) 
11(U 

_ JIU)(n) 
11L2 

< Ch p+l-n 11 
U(P+1) 

11L2 

In=0,1,2,... (3.60) 

where n is the order of differentiation and p is the degree of polynomial used in the 
interpolation. Hence 

IIU _ IIUI12 <C 11 
U(P+l) 

IIL2 h2P(l +h 2) 

and, by increasing the constant, 
Ilu - rlull < ChP 

llu(p+') IIL2 

' 

This means that 
Ilell < ChP. 

3.2.4 Bound for the L2 norm 

(3.61) 

(3.62) 

(3.63) 

In deriving an upper bound for the L2 norm of the error we require the following 
theorem: 
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Theorem 3.1 

Let uEH (0,1) satisfy (3.5 1) then 

d'u 
:5C Ilf 1IL2 (3.64) 

dx' 

L2 

for n=0... 2 where C is a constant that depends on the operator L and the space H 
but not the function f. 

Proof 

From (3.4) and (3.52) and using (2.11) we have 

ao Ilu q2 IIUI12 = (f, U) :5 (3.65) L2 
IIAL2 IlUlIL2 11flIL2 IIUIIIL2 

Hence 

Ilu 11IL2 
:5 

vi- 
11flIL2 (3.66) 

ao 
IlUlIL2 :51 IWIL21 (3.67) 

ao 

proving the theorem for n=0 and n=1. To prove the theorem holds for n=2 we 
use (3.51) to write 

Jjau"IIL2 = Ilf - a'u'IIL2 :5 IIfIIL2 + Ila'u'IIL2 (3.68) 

then we use (3.5) to give us 

ao 
d 2U 

+ a2 
du (3.69) -X2 :5 Ilf 1IL2 

IIL2 1ý 

jx 

IIL2 

The proof follows from the fact that the theorem holds for n=1.11 

We now use a technique that is known as the Nitsche trick [14, Page 72] to derive a 
bound for e in the L2 norm. The trick is to let 0EH satisfy 

L(O) = 

Now the L2 norm may be written as 

Ile 112 = (L (0), e) L2 

=a (0, e) 

a(O - v, e) 
110 - vll Ilell 

(3.70) 

(3.71) 
(3.72) 
(3.73) 
(3.74) 
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for any v in V. Applying (3.63) we have 

Ile 112 <C 110 - vII hP. (3.75) L2 - 

We let v= H10 be the piecewise linear interpolant to 0 so that 

Ile 112 <C 110 - H1011 hP. (3.76) L2 - 

Using (3.60) with p=1 and n=1 gives us 

110 - H1011 :5 Ch 110111IL2 (3.77) 

Using Theorem 3.1 we have 
110111IL2 

:5C IlelIL2 (3.78) 

so that, after substituting (3.78) into (3.77), 

110 - H1011 :5 Ch IlelIL2 (3.79) 

Substituting (3.79) into (3.76) and dividing by IlellL2 gives us 

IlelIL2 :5 ChP+l. (3.80) 

3.2.5 Pointwise error bounds and superconvergence 

Let g (x 
, y) belong to H (0,1) 0H (0,1) and, with x fixed, let it satisfy the equation 

Lg(x, y) =-a 
(' ag 

+ bg = 6(y - x) (3.81) 
TY 0Y) 

where 6 is the Dirac delta function. The defining property of 6, that 

CO 6(y - x)f (y) dx =f (x) (3.82) 
-00 

allows us to write 

e (x) = (b (x, . ), e) = (Lg (x, -)) =a (g (x, . ), e) . 
(3.83) 

The function g is commonly known as a Green's function [14, Page 441. Due to the 
orthogonality of the error and the Cauchy-Schwarz inequality we have that 

le(x)l :5 11g(x, -) - lIg(x, -)II Ilell (3.84) 
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where 11g(X, Y) is the interpolant with respect to the y variable. If x is a connecting 
node, xi say, then we may use (3.60) to write 

le(xi)l :5 ChP Ilell. (3.85) 

With (3.63) we have that 
le(xi)l :5 Ch2P. (3.86) 

Recall that the global error, measured by the L2 norm in (3.80), is of order of h(P+'). If 
the degree of polynomial p is greater than one then the pointwise error at the connecting 
nodes converges to zero at a faster rate than that globally. This phenomenon is known 
as superconvergence [14, Page 44]. 

3.3 Error estimation 

The previous section established some results that describe the behaviour of the error 
in the finite element solution with respect to the discretization parameter h. These a 
priori results in no way attempt to actually quantify the error. This section looks at a 
variety of post processing techniques that attempt to measure the error in some way 
based on the calculated finite element solution. Typically, we want to estimate some 
norm of the error such that the estimator, 11611, and the true norm, 11ell, behave in a 
similar way asymptotically; i. e. they converge to 0 as h tends to 0 with the same order 
of h. In other words there exist positive constants C, and C2 such that 

C, liell :5 11611: 5 C2 Ilell. (3.87) 

To measure this behaviour we define the effectivity index to be the ratio of the estimator 
to the norm. If the effectivity index converges to a non-zero value as h tends to 0 then 
the estimator is said to be consistent. Furthermore, if the effectivity index converges 
to 1 then the estimator is said to be asymptotically exact. 

3.3.1 Recovered gradient type estimators 

In a piecewise linear finite element method the gradient of the finite element solution 
is piecewise constant. Hence the gradient function is not defined along element edges 
and at nodal points. Nodal values of the gradient can only be considered as the limit 
as one approaches the node from within an element. In this sense the nodal gradient 
may be considered to be multivalued. A continuous gradient function may be obtained 
by averaging the limiting nodal values and interpolating these average gradients with 
piecewise linear basis functions. This average gradient function is an example of a 
recovered gradient which hopefully is more accurate than the gradient of the finite 
element solution. We may then make the approximation 

IVU - VUhll ýý R_ VUh (3.88) IIVUh 11 
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R 
where VUh denotes the recovered gradient. Kriiek and Neittaanmaki [20] analysed 
this gradient recovery method in 1984 and showed that, for elliptic problems with a 
uniform triangular mesh, 

IIVU _ VURII 2 
h :5 Ch (3.89) 

where C is independent of h. 

Averaging the finite element gradient at the nodes is only sensible if that of the true so- 
lutions is known to be continuous. In a continuum, physical properties such as heat flux 
and stress (which involve both material data and gradients) are assumed to be contin- 
uous. From the finite element method we usually obtain discontinuous approximations 
to these quantities. However, because the underlying quantities are continuous, it is 
intuitively sensible to approximate these by averaging the values generated by the finite 
element method. 

Let us denote by qR and 47R the averaged/recovered heat flux and stress vectors, 
respectively. Typically the recovered heat flux has the form 

qR = NQ (3.90) 

where Q contains the recovered flux values at the nodes and N is a matrix of inter- 
polation functions, usually those used as basis functions in the finite element method. 
Using the averaging recovery method the components of Q, Qj (of length 2 in 2D 
problems), are given by 

1n (k) Qj = qR(Xi) =nE qh (3.91) 
k=1 

(k) where we are assuming that the node xi is on n elements and qh is the finite element 
heat flux in the k'th of these n elements. A variation of this method is to use a weighted 
average according to the element area; i. e. 

n 
q 

(k) Jk h 

Qi: -- qR(Xi) = 
k=l 

n (3.92) 
1: Jk 
k=l 

where Jk >0 is the determinant of the Jacobian matrix relating to the k'th element 
(given by (3.38) for a triangle). 

In 1987 [42] Zienkiewicz and Zhu proposed a stress recovery procedure that requires 
INT ('CrR 

- 17h) dx =0 (3.93) 
XEfl 

where O'h is the stress obtained from Uh- In the context of the heat conduction equation 
this is equivalent to 

INT (qR - qh) dx =0 (3.94) 
XEfl 
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so that, using (3.90), qR may be obtained from 

LNT NdxQ =iNT qh dx. (3.95) 
XEn xEn 

To obtain Q would require the solution of the global system given in (3.95) which 
is a computation as expensive as computing the finite element solution. To simplify 
things and to reduce significantly the computational cost, Zienkiewicz and Zhu used 
the lumped local matrix replacement, for the k'th element say, 

1 1-77 121 1) 1 
(1 0 0) 

Nk Nk Jk dýd? 7 = 24 
1216010 (3.96) 

00 

(1 

12001 

Consequently, the global matrix is diagonal and Q becomes the vector of weighted 
average fluxes given in (3.92). This error estimator, known as the Z2 Error Estima- 
tor, has been widely used and analysed. The paper by Ainsworth et al. in 1989 [4] 

concluded that, while the estimator performs well, it is not necessarily asymptotically 
exact. Rodriguez, in 1994, [28] analysed the estimator for the piecewise linear finite 

element solution of elliptic problems. He proved that, for any regular triangular mesh, 
the estimator is equivalent to the error for the Poisson equation with a homogeneous 
Dirichlet boundary condition. He also proved that the estimator is asymptotically 
exact on subdomains where the solution is smooth and when parallel meshes are used. 

The Z' method has been found to be accurate mainly for linear triangular and quadratic 
quadrilateral elements. For other types of element the ZI method is often poor with 
the effectivity index converging to zero in some cases [6]. For this reason the authors 
proposed, in 1991, another stress recovery procedure that fits a polynomial by the least 

squares method to a number of sampling points over a patch of neighbouring elements 
[41]. The stress is then calculated from the resulting polynomial at the nodal point. 
This process is sometimes known as SuPerconvergent Patch Recovery since, for many 
types of element, the recovered stress values converge at a rate of at least one order 
higher than 'Crh- Generally the estimator is known as the SPR Error Estimator. Let 
the patch be denoted by Qp and the stress over the patch be denoted by ap. This has 
the form 

erp = Pa (3.97) 

where P is a vector of polynomials and a contains the degrees of freedom which are 
found by minimising 

np 2 
F(a) (a(j) 

- Pa) (3.98) h 
j=1 

where np is the number of sampling points. The minimisation of F(a) requires that 

np np 
pT Pa pT T(j) (3.99) 4h 

j=l j=l 
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The recovered stress is then given by 

O-P(Xi)' (3.100) 

In 1992 Zienkiewicz and Zhu [43] presented an integral form of their new method in 
which orp is found by minimising 

F(a) (crh - Pa)2 dx. (3.101) 
XEnp 

This requires that 
pT Pdxa pTcrhdx (3.102) 

XEflp XEf2p 

which, with P=N, is the same as (3.95) except that the integration is performed 
over the patch rather than the whole domain. 

3.3.2 The Bank-Weiser error estimator 

In 1985 Bank and Weiser [9] proposed the following method for obtaining an error 
estimator for the finite element solution of problems in the form of (3.3). The idea is 
to expand a(e, v) in terms of known quantities derived from the data and the finite 
element solution hence obtaining a weak problem in the finite element error, e. The 
aim is to derive a local problem for each element, Qj, so that the estimator can be 
calculated element-wise. Let V be the finite element space and V be a space containing 
higher degree polynomials in which we will approximate the error. Using (3.14) with 
Q replaced by Pi and integration by parts we can write, for any v in V, 

- al9uh, v (3.103) a(e, v)ni = (r, v)ni + [rB) vlrinrN 
[ 

On 

I 

rinrr 

where ri is the set of edges belonging to the i'th element, IPI is the set of all interior 
element edges and the residual quantities, r and rB, are defined as 

rf- L(Uh) elementwise in 0 (3.104) 

rN g-a 
OUh 

edgewise on rN. (3.105) 5n 

The right hand side is denoted by the functional F(v) so that the error satisfies 

a (e, v) oi =F (v) ni. (3.106) 

The local problem is obtained by sharing the jumps in the flux along interior edges 
between the two connecting elements. For each interior edge choose one of the con- 
necting elements to be in and the other to be out. The jump in flux along the edge is 
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then defined as 
a'9uh 

(a2uh (a2uh 
(3.107) 

On 

)j 

On 

)rout 

On 
) 

rin 

and we have 
ne 

a 
allh, 

V] 
ne [(a2uh)j 

(3.108) 
i9n an 'v] 

ririrr i=l 

[ 

rinrl i=l 

By sharing equally the flux jumps between the connecting elements the right hand side 
of (3.106) is 

(v) oi = (r, v) ni + [rN 
, v] ri nrr +1[ 

(a 2-uh ) (3.109) 
2 On 'vl 

rinrr 
* 

An estimate of the error, 6, may now be found by solving the local problem 

(6, v) ni =F (v) ni. (3.110) 

Bank and Weiser proved that 

(1 _ #2) (1 _ Y2) Ile112 < 11611 :5 (1 - C)IIell 

where 0 tends to zero with h and 7 and C are constants less than one. They also give 
a numerical example where the estimator appears to be asymptotically exact in the 
energy norm. Duran and Rodriguez analysed the estimator in 1991 [13]. They proved 
the estimator to be asymptotically exact in the energy norm for regular solutions and 
parallel meshes but showed that it was not so in general. Ainsworth [5] analysed the 
estimator for finite element approximations on quadrilateral meshes and proved that 
it is asymptotically exact in the energy norm for regular solutions provided that the 
degree of approximation is of odd order and that the elements are rectangles. 

3.3.3 The Bank-Weiser error estimator for 1D problems 

For one dimensional finite element problems it is comparatively easier to derive and 
implement the Bank-Weiser error estimator than for two dimensional problems. Let 
7 be a finite element subspace of H that contains higher degree polynomials than V. 
Then, for the element Qj = (xi-1 

, xi) , 
xi 

a (e, v) 
f (aelvl + bev) dx (3.112) 

Xi-i 
xi 

aelv]xx, ' (3.113) 
xi-I + (ae')'v + bev) dx 

xi-I 
[aelvlx., * (3.114) 

Xi_i + (r, v)n, 
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for all v in V. If we choose v to belong to fl, the subspace of V in which all functions 
are zero at xi-, and xi, then we have 

a (e, v) ni = (r, v) n, 

for all v in f7. Hence we can find an approximation to e in 'ý, denoted by 6, by solving 

a (6, v) ni = (r, v) ni (3.116) 

for all v in 'ý. Then, for each element, the error is found by putting 6= IýTk and 
solving 

k. k =P (3-117) 

where 
Xi 

fa i3 T i3 + blýrT IV dx (3.118) 

Xi-i 
Xi AT 

rN dx (3.119) 

Xi-i 
A dN 

(3.120) 
dx 

If V is cubic, for example, it may be spanned locally by 
A 

Nl(x) = (x - xi-1)(xi - x) (3.121) 
N2(x) = (x - xi-1)(xi - x)(2x - xi-1 - xi). (3.122) 

Let us consider the simplest case where V^ is quadratic. Then it may be spanned locally 
over the i'th element by 

N= (x - xi-1)(xi - x) (3.123) 

and k and P become scalars. If a, b and f are constant then 

k=h3a+ bh 2 
(3-124) T( 10) 

=hf-b (ui-1 + ui) (3-125) 
62 

Hence 
F 
7 (3.126) 

K 

and 

h3 f- b (Ui-1 + Ui) 
2 

116112 =kt2 = 
pt 2 

bh 2 (3-127) 
12 

(a+ 
10) 
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3.3.4 Implementation of the Bank-Weiser error estimator 
for 2D problems 

For the linear triangular element we may minimally consider, as the higher order ap- 
proximation of the error, a bilinear function. As basis functions for V, over the standard 
triangular element, we may use 

, ýi (x, y) =e (1 -Z- 77) (3.128) 
A2 (X 

g Y) = e77 (3.129) 

lý3 (x) Y) = 77 (1 -e- 77) (3.130) 

where ý and q are related to x and y by (3.37). To solve (3.110) for all vE 1ý we 
construct 

KE=F (3.131) 

where 

K 
(aj§Ti3 

+ bjýTTIýr) dx (3.132) 
XEf2i 

f 
rlýrT dx +f Slýj dx (3.133) 

XEOi XErinr 

where 
rB, if XE IP 

5 (a au ifxEr, 
(3.134) 

3.4 Numerical experiment 

To investigate the effectiveness of the error estimators discussed we shall apply them 
to the finite element solution to the test problem (3.3) with 

f(xty) = -2a(1-x-y)+ 
b 

X2 (3 - 2x) + y2 (3 - 2y» (3.135) 
6 

g (x, y) =0 (3.136) 

to which the exact solution is 
121 

U(X, Y) =6x (3 - 2x) + ýy(3 - 2y). (3.137) 

This is plotted in Figure 3.2. A succession of 7 uniform triangular meshes are used, 
ranging from 2 to 8192 elements. These are shown in Figure 3.3. We consider three 
cases with a=1 and b= 1) 100 and 10000. The L2 norms of the true error gradient and 
the gradients of the three error estimates are given in Table 3.1 where the estimating 
functions are denoted by ZZ, SPR and BW. They show that the gradient of the true 
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error is converging at a rate of O(h) as expected. The gradient of the Zienkiewicz-Zhu 
estimates, ZZ and SPR, are practically the same as each other and also show O(h) 
convergence. In fact, for the a=b case, the estimates appear to be asymptotically 
exact in the L2 norm. The Bank-Weiser estimate is at least consistent for the b=1 
and b= 100 cases but shows no sign of converging for the b= 10000 case with the 
mesh tried. This suggests a limitation of the Bank-Weiser estimator. 

0. 

0 

1 

Figure 3.2 : 3D plot of the solution to the test problem. 
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ne=2 

ne=32 

ne=512 

ne=4 

ne=128 

ne=2048 

Figure 3.3 : Mesh used to calculate finite element solution to test problem. 
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Table 3.1 : Numerical results comparing three error estimators. 

Case 1: ý=1 
a 

ne h IIVZZII: " L- IIVSPRII: ', L IIVBWI ýLll 
2 1.000000 4.093OOE-2 1.98868E-3 1.98868E-3 2.31421E-2 
4 0.500000 1.15664E-2 8.88582E-4 9.24959E-4 1.32317E-2 

32 0.250000 3.23021E-3 2.40735E-3 2.41513E-3 3.55155E-3 
128 0.125000 8.46949E-4 7.96819E-4 7.96333E-4 9.03527E-4 
512 0.062500 2.15339E-4 2.13155E-4 2.13083E-4 2.28062E-4 

2048 0.031250 5.41305E-5 5.41482E-5 
. 

5.41423E-5 5.72685E-5 
8192 0.015625 1 1.35555E-5 1 -1.35772E-5 I 1.35768E-5 I 1.43417E-5 

Case 2: A= 100 a 

ne h IlVe 112Lýý IIVZZ112L2 JIVSPRII: ', L JJVBWJýL, 
2 1.000000 6.74905E-2 1.47194E-2 1.47194E-2 5.40213E-2 
4 0.500000 1.36366E-2 1.88117E-3 1.91838E-3 3.14193E-2 

32 0.250000 3.78229E-3 2.71821E-3 2.71778E-3 2.07138E-2 
128 0.125000 9.65352E-4 8.24879E-4 8.24059E-4 1.10374E-2 
512 0.062500 2.41431E-4 2.15121E-4 2.15038E-4 3.65515E-3 

2048 0.031250 6.03682E-5 5.42752E-5 5.42690E-5 9.69251E-4 
8192 0.015625 1 1.50958E-5 I 1.35852E-5.1 1.35848E-5 I 2.42867E-4 

Case 3:! = 10000 

ne h IlVell'L', IIVZZII'L,, JIVSPRII: ' Lqý IIVBWII" L2--- 

2 1.000000 8.30971E-2 2.23836E-2 2.23836E-2 1.12878E-1 
4 0.500000 1.84569E-2 3.92410E-3 3.95596E-3 1.74191E-1 

32 
. 

0.250000 5.32167E-3 3.21553E-3 3.20666E-3 6.48174E-1 
128 0.125000 1.63707E-3 1.00957E-3 1-00925E-3 1.51177E-0 
512 0.062500 4.81329E-4 2.72085E-4 2.72066E-4 1.74764E-0 

2048 0.031250 1.15714E-4 6.35947E-5 6.35912E-5 1.56037E-0 
8192 0.015625 1 2.29018E-5 I 1.41625E-5 T 1.41621E--57 T -1.19302E-0 

30 



Chapter 4 

Mesh Generation 

4.1 Introduction 

Although this thesis is concerned with the finite element solutions to frame problems, 
which use one-dimensional elements, two-dimensional meshes are required to discretize 
the beam cross-sections. Since we wish to deal with cross-sections of arbitrary shape 
we require a general method of 2D mesh generation. 

For one dimensional problems generating the mesh is relatively straightforward; one 
has just to decide on the number of elements and then to divide the domain into that 
many intervals. For two dimensional problems the situation is quite complex. However, 
for geometrically simple domains, such as a rectangle, generating a mesh is not much 
more difficult than in one dimension. For example a triangular mesh for a rectangular 
domain may be generated using the following algorithms: 

Generate the nodes 

dx: = w/nx; 
dy: = h/ny; 
for i: = 0 to ny-1 do 
begin 

for j: = 0 to nx-1 do 
begin 

x: = i*dx; 
y: = j*dy; 
Node: = CreateNode(x, y); 
Mesh. AddNode(Node); 

end; 
end; 

Generate the elements 

for i: = 0 to ny-1 do 
begin 

for j: = 0 to nx-1 do 
begin 

nl: = i*(nx+l)+j; 
n2: = nl+l; 
n3: = nl+nx+l; 
n4: = n3+1; 
Element: = CreateElement(nI, n2, n4); 
Mesh. AddElement(Element); 
Element: = CreateElement(nl, n2, n3); 
Mesh. AddElement(Element); 

end; 
end; 

where nx and ny are the number of elements along the base and height, respectively, 
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and w and h are the dimensions of the rectangle. In the algorithm listing object 
oriented notation has been used in which Mesh is an object containing lists of nodes 
and elements. The methods AddNode and AddElement add new nodes and elements 
to the mesh. Nodes and elements are created with the functions CreateNode and 
CreateElement, respectively. 

For more complex geometries some techniques have been developed to map the rectan- 
gular mesh onto the more complicated domain. This approach is difficult to generalise 
for use with arbitrary polygonal domains. The technique that has been adopted here 
is to first define a coarse mesh with nodes only along the polygon sides and then to 
refine each element until some criterion is satisfied. This may be that the number of 
refinements reaches a limit or that the maximum element width is less than a specified 
number. In the later example only elements failing the criterion need to be refined. 
This method is particularly well suited for use with error estimates (Chapter 3) in 
which case the criterion is for the estimated error in the element to be less than a 
given tolerance. Obviously, the finite element solution must be calculated for each 
mesh which may seem wasteful. However, if an iterative solver is used, such as the 
Conjugate Gradient Method, then the solution from each stage may be used as the 
solver's starting vector for the next. This may not be a great saving but, as it is easy 
to implement, it is better to do so than not. 

4.2 The mesh generation algorithm 

The algorithm for generating a 2D mesh is presented here. To illustrate the algorithm 
it is applied to the domain in Figure 4.1a. 
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a) Example domain to be meshed. 

3 

12 

c) Delaunay triangulated nodes. 

i-I 

T12 0 

-1 -9 -2 

e) Final Delaunay triangulation. 

05 07 

6 

b) Domain nodes. 

ý3 

112 51, 

V10 

Figure 4.1 - Example illustrating the mesh generation algorithm. 
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d) Add new domain nodes. 



Step I 

Define the domain and subdomains in terms of polygons. The subdomains define areas 
of different material properties, i. e. the functions a, b, f and g in Section 3.1. Define 
a data structure to store the polygons indexed such that any subdomain has a higher 
index than the domain that surrounds it. The data structure for Figure 4.1a is 

_Polygon 
Index Vertices 

1 (0,0), (100,0), (100,100), (0,100) 
2 (30,50), (50,30), (70,50), (50,70) 

Step 2 

Define the nodes as the vertices of the polygons. Store the nodes in a data struc- 
ture being sure not to include duplicates. Define a data structure that represents the 
polygons in terms of node numbers. The data structures for Figure 4.1a are 

Node Index X y 
1 0 0 
2 100 0 
3 100 100 
4 0 100 
5 30 50 
6 50 30 
7 70 50 
8 50 70 

and these are illustrated in Figure 4.1b. 

Step 3 

_Polygon 
Index Nodes 

1 1,2,3,4 
2 5,6,7,8 

Triangulate the nodes. This requires four sub-steps: 

3.1: Apply the Delaunay triangulation algorithm to the nodes. This is explained in 
the next section. The Delaunay triangulation of the nodes listed in Step 2 is 

'Riangle Index Node Indices 
1 1 6 5 
2 2 7 6 
3 3 8 7 
4 4 5 8 
5 5 6 8 
6 6 7 8 
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which is illustrated in Figure 4.1c. 

3.2: Check that the triangle edges are consistent with the polygon sides. This is done 
using the polygon nodes data structure defined in Step 2. The triangle edges are 
consistent with the polygons if every polygon side is a triangle edge. If the test fails 
then create new nodes at the midpoint of every polygon side that is not an edge in 
the Delaunay triangulation. Update the polygon nodes data structure. In the example 
none of the sides of polygon 1 are triangle edges therefore nodes are added at (50,0), 
(100,50), (50,100) and (0,50). Hence the data structures in Step 2 are modified to 

Node Index X y 
1 0 0 
2 100 0 
3 100 100 
4 0 100 
5 30 50 
6 50 30 
7 70 50 
8 50 70 
9 50 0 
10 100 50 
11 50 100 
12 0 50 

Polygon Index Nodes 
1 1,9,2,10,3,11,4,12 
2 5,6,7,8 

3.3: Add the new nodes to the Delaunay data structure if needed as a result of 3.2. In 
the case of the example, when nodes 9,10,11 and 12 have been added, the new data 
structure is as follows. 

lYiangle Index Node Indices 
1 1 9 6 
2 6 5 
3 5 12 
4 2 10 7 
5 2 7 6 
6 2 6 9 
7 3 11 8 
8 3 8 7 
9 3 7 10 
10 4 12 5 
11 4 5 8 
12 4 8 11 
13 5 6 8 
14 6 7 7 

3.4: Repeat steps 3.2 and 3.3 until the polygons are consistent with the Delaunay 
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triangulation. In the example all polygon sides match triangle edges and so no more 
nodes are needed. The triangulation is complete. 

Step 4 

Identify the elements that need refining and create new nodes along their edges. Add 
the nodes to the Delaunay data structure as in step 3.3 then repeat steps 3.2 to 3.4. 
For the example we will not refine any elements. 

Step 5 

Assign the correct polygon index to each triangle. Each triangle is initially assigned 
a null polygon index (say 0). Starting with the polygon with the highest index a test 
is made on each element (with a null polygon index) to see if it lies inside the current 
polygon. If it does then the element's polygon index is set and the remaining elements 
are tested with the next polygon (in descending order). After the elements have been 
tested with polygon 2 all remaining elements (whose polygon index is null) have their 
polygon index set to 1. 

The test to determine whether an element lies inside a polygon is performed by trian- 
gulating the polygon (using step 3) then testing to see if the centroid of the element 
lies inside any of the polygon's triangles. 

For the example we first triangulate polygon 2: 

Triangle index vertices 
1 (30,50) (50,30) (50,70) 
2 (50,30) (70,50) (50,70) 

Then we test each element to see if it's centroid lies inside one of the elements: 
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Element index Lies inside triangle 
1 _ no 
2 no 
3 no 
4 no 
5 no 
6 no 
7 no 
8 no 
9 no 
10 no 
11 no 
12 no 
13 1 
14 2 

Elements 13 and 14 lie inside polygon 2 and so their polygon indices are set to 2. 
Elements 1 to 12 have their polygon indices set to 1: 

Element index Polygon Index 
1 1 
2 1 
3 1 
4 
5 
6 
7 
8 
9 
10 1 
11 1 
12 1 
13 2 
14 2 

That completes the mesh generation. The next section describes the Delaunay trian- 
gulation process that is used in Step 3. 
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4.3 Delaunay triangulation 

In 1850 Dirichlet proposed a systematic method for the decomposition of a given do- 
main into a set of packed convex polygons. Given a set of points the Dirichlet tesselation 
assigns to each a region that is closer to that point than any other in the set. This 
results in a set of non-overlapping convex polygons covering the entire domain. An- 
other name for this structure, which comes from computational geometry, is a Voronoi 
diagram and the convex polygons are known as Voronoi regions. Let the set of points 
be denoted by 1pi :i=1, ..., n} then the Voronoi region Vi is defined as 

vi= lp: lp-pil < lp-pjl, j: Ai} (4.1) 

Let us consider the two dimensional case. If there are only two points in the set 
then the Voronoi diagram is just a line dividing the plane equally between the points 
(Figure 4.2a). If another point is added then the diagram consists of three lines dividing 
the plane between the three points as shown in Figure 4.2b. The lines meet a point 
called a Voronoi vertex. The three points define a triangle whose sides bisect the 
Voronoi lines at right angles. As more points are added (see Figure 4.2c) more triangles 
are defined with this relation to the Voronoi diagram. The resulting triangulation is 
known as a Delaunay triangulation. It has the property that no defining point of any 
one triangle lies in the circle circumscribing the defining points of any other triangle. 

00 

00 

0 

Figure 4.2a Figure 4.2b Figure 4.2c 

The structure of the Voronoi diagram and Delaunay triangulation may be completely 
described by two lists for each Voronoi vertex; a list of forming points which define the 
Delaunay triangle and a list of the neighbouring vertices. In n dimensions each vertex 
will have n+1 forming points and the same number of neighbouring vertices. 

The algorithm for constructing a Delaunay triangulation for any given set of points is 
a sequential one. Each point is added, one by one, to an existing structure in which 
some Voronoi vertices are destroyed and new ones created to form the new Voronoi 
diagram and Delaunay triangulation. Initially one must create a structure such that 
the Delaunay triangulation encloses all the points of the set. After all points have been 
added to the structure the exterior triangles are removed. As an example consider the 
square in Figure 4.3a. Initially we create a simple Voronoi diagram that surrounds 
the points (Figure 4.3b). We enter the points one by one into the Voronoi diagram 
(Figures 4.3c and 4.3d). Finally the outer hull is removed to leave the triangulation of 
the square (Figure 4.3e). 
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0a 

00 

a) Points to be triangulated. 

c) Voronoi diagram after adding first 
point. 

e) Voronoi diagram with outer hull and 
Voronoi vertices removed. 

b) Initial Voronoi diagram. 

d) Voronoi diagram after adding all 
points. 

Figure 4.3 - Illustration of how the Voronoi algorithm triangulates a square. 
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The details of the algorithm are now presented in six steps. Where necessary object 
oriented pseudo-code shall be used with the following data structures: 

VoronoiPoint 

xf loat 
yf loat 

VoronoiVertex 
FormingPoints array[I.. 31 of integer 
Neighbours array[l.. 31 of integer 
x: float 
y: float 
SquareRadius float 
Tag : integer 
DistanceFrom(px, py) = Sqr(x-px) + Sqr(x-py) 
TestPoint(px, py) = DistanceFrom(px, py) <= SquareRadius 

Triangle 
pl integer 
p2 integer 
p3 integer 

Points array of VoronoiPoint 
Vertices array of VoronoiVertex 
Triangles array of Triangle 

Notes 

The Voronoi vertex property FormingPoints stores the point indices of the three 
forming points. 

The Voronoi vertex property Neighbours stores the vertex indices of the three neigh- 
bouring vertices. 

The VoronoiVertex property SquareRadius stores the square of the radius of the 
circle that circumscribes the three forming points. 

The VoronoiVertex property Tag provides a way of tagging a vertex. It is used in the 
search routine in Step 3 to prevent a vertex being tested more than once. 
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Step 1 

Define the initial structure. This may be defined by four points forming a rectangle 
that encloses all the points that are to be added. 

Voronoi Diagram 

0 

0 

0 

Voronoi Data Structure 

0 

Vertex Forming Points Neighbouring Vertices 
1 1 2 3 0 0 1 
2 1 3 4 1 0 0 

where 0 denotes a null index; i. e. points to no defined vertex. Each triangle edge 
bisects a Voronoi edge that leads to a neighbouring Vertex. For example, vertex 1 
and vertex 2 are neighbours joined by a Voronoi polygon edge. Their forming point 
triangles share a triangle edge from point 1 to point 3 which bisects the Voronoi edge 
at right angles. This is not immediately clear from the diagram as the Voronoi edge 
has zero length. 

f, 
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Step 2 

Add the new point anywhere within the outer rectangle. In the example below point 
number 6 is being added to the data structure after point number 5 has already been 
added. 

Voronoi Diagram 

0 

0 

0 

Voronoi Data Structure 

3 

0 

2 

Vertex Forming Points Neighbouring Vertices 
1 4 1 5 0 3 2 
2 3 4 5 0 1 4 
3 1 2 5 0 4 1 
4 2 3 5 0 2 

Note that this is the Voronoi structure prior to the addition of point 6. 
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Step 3 

Determine all vertices of the Voronoi diagram that must be deleted. These are the 
vertices whose forming points define a circle (passing through each forming point) that 
encloses the new point. In the example illustrated in Step 2 vertex numbers 3 and 
4 are to be deleted. This step involves a search process to identify a starting vertex 
whose circle encloses the new point. Once a starting vertex has been found all the 
other vertices to be deleted can be found by following the neighbouring vertex links. 
The search process to locate the starting vertex follows the neighbouring vertex links 
from an initial vertex, the particular path depending on which neighbouring vertex is 
closer to the new point. 

Pseudo-code 

This is a simple bubble sort routine to sort an array of vertices indices, v, into the 
order of their distance from the new point : 

procedure Swap(a, i, 
begin 

temp a[il 
a[il a(il 
a[il temp 

end 

procedure SortVertices(v) 
begin 

for i1 to 3 do 
d[il := Vertices[v[ill. DistanceFrom(NewPoint. x, NewPoint. y) 

for iI to 3 do 
begin 

if v[il >0 then 
begin 

for j :=1 to 3 do 
begin 

if v[j] >0 and d[j] < d[il then 
begin 

Swap(v, i, j) 
Swap(d, i, j) 

end 
end 

end 
end 

end 

Continued 
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Starting with the last vertex to be created follow the neighbouring vertex links until a 
vertex is found that needs to be deleted. The algorithm recursively calls the procedure 
Search. To ensure a vertex is not searched more than once the Tag property of each 
vertex is set to the current point index : 

global variables 
p: integer 
found : boolean 

procedure Search(v) 
begin 

if not found and v>0 then 
begin 

if Vertices[v]. Tag <> p then 
begin 

Vertices[v]. Tag :=p 
found := Vertices[v]. TestPoint(NewPoint. x, NewPoint. y) 
if found then 

StartingVertex :=v 
else 
begin 

for i :=1 to 3 do nv[il := Vertices[v]. Neighbours[il 
SortVertices(nv) 
for i :=1 to 3 do Search(nv[i]) 

end 
end 

end 
end 

p := Length(Points) 
found := False 
Search(Length(Vertices)) 

Continued 
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Find the other vertices to be deleted by testing every neighbouring vertex and every 
neighbour's neighbouring vertices. To ensure against repeated testing set the Tag 
property of each vertex tested to the current point index : 

SetLength(VerticesToBeDeleted, 1) 
VerticesToBeDeleted[l] :=v 
TestVertexNeighbours(v) 

p Length(Points) 
iI 
while i <= Length(VerticesToBeDeleted) do 
begin 

v := VerticesToBeDeleted[n] 
for j1 to 3 do 
begin 

nv Vertices. Neighbours[j] 
if Vertices(nv]. Tag <> p then 
begin 

Vertices[nv]. Tag :=p 
if Vertices[nv]. TestPoint(Points[pl. x, Points[p]. y) then 
begin 

n := Length(VerticesToBeDeleted) +1 
VerticesToBeDeleted[n] := nv 

end 
end 

end 
inc(i) 

end 
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Step 4 

Create a list of the new vertices including their forming points and one neighbouring 
vertex. Removing the triangle edges that bisect the lines joining neighbouring vertices 
that have been marked for deletion leaves a convex polygon enclosing those vertices. 
The list of new vertices is created by listing the sides of the convex polygon. Each side 
is defined by two points which will be the first two forming points of a new vertex. The 
remaining forming point will be the new one added in step 2. Each side connects to a 
neighbouring vertex. This will be the first neighbour of the new vertex. 

Data for new vertices 

Side Forming Points Neighbouring Vertex 
1 1 2 0 
2 2 3 0 
3 3 5 2 
4 5 1 

Pseudo-code 

Test the neighbours of each vertex in Vert ic esToBeDelet ed to see if they themselves 
are marked for deletion. If a neighbour is not in Vert icesToBeDeleted then create 
a new vertex. The first two forming points are those common to the vertex and the 
neighbour. The other is the new point. The first neighbour of the new vertex is the 
neighbour of the deleted vertex. The new vertex is created and stored in NewVertices: 

For i :=I to Length(VerticesToBeDeleted) do 
begin 

for j :=1 to 3 do 
begin 

v := VerticesToBeDeleted[il 
if not (Vertices[v]. Neighbours[jl in VerticesToBeDeleted) then 
begin 

n := Length(NewVertices) +I 
SetLength(NewVertices, n) 
NewVertices[n]. FormingPoints[l] 
if j=3 then 

NewVertices[n]. FormingPoints[21 

Vertices[v]. FormingPoints[j] 

:= Vertices[v]. FormingPoints[l] 

else 
NewVertices[n]. FormingPoints[21 := Vertices[v]. FormingPoints[j+ 

NewVertices[n]. Neighbours[l] := Vertices[v]. Neighbours[j] 
p := Length(Points) 
NewVertices[n]. FormingPoints[31 :=p 

end 
end 

end 
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Step 5 

Add the new vertices to the vertex list overwriting deleted entries. 

Voronoi Data Structure 

Vertex Forming Points Neighbouring Vertices 
1 4 1 5 0 3 2 
2 3 4 5 0 1 4 
3 3 5 6 2 ? ? 
4 2 3 6 0 ? 
5 1 2 6 0 
6 5 1 6 1 ? 

Pseudo-code 

We will want to know where the new vertices have been stored in Vertices so we will 
store the mapping from NewVertices to Vertices in NewVertexIndices : 

SetLength(NewVertexIndices, Length(NewVertices)) 

First overwrite deleted vertices : 

for i :=I to Length(VerticesToBeDeleted) do 
begin 

v := VerticesToBeDeleted[il 
Vertices[vl := NewVertices(il 
NewVertexIndices[il :=v 

end 

Now create new vertices if necessary : 

for i := Length(VerticesToBeDeleted) +I to Length(NewVertices) do 
begin 

v := Length(Vertices) +1 
SetLength(Vertices, v) 
Vertices[vl := NewVertices[il 
NewVertexIndices[il :=v 

end 
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Step 6 

Update the neighbour links of the new vertices and the vertices that surround them 
by searching for common forming points. 

Voronoi Diagram 

0 

Voronoi Data Structure 

3 

0 

2 

Vertex Forming Point Neighbouring Vertices 
1 4 1 5 0 6 2 
2 3 4 5 0 1 3 
3 3 5 6 3 6 4 
4 2 3 6 0 3 
5 1 2 6 0 4 
6 5 1 6- 4 5 
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Pseudo-code 

Update the neighbours of the surrounding vertices : 

for i :=0 to Length(NewVertices) do 
begin 

v NewVertexIndices[il 
pl Vertices[v]. FormingPoints[l] 
p2 Vertices[v]. FormingPoints[21 
w Vertices[v]. Neighbours[l] 
if w>0 then 
begin 

if Vertices[w]. FormingPoints(l] = pI then 
Vertices[w]. Neighbours[31 :=v 

else if Vertices[w]. FormingPoints[21 = pl then 
Vertices[w]. Neighbours[l] v 

else 
Vertices[w]. Neighbours[21 v 

end 
end 

Complete the neighbours of the new vertices : 

for i :=1 to Length(NewVertices) do 
begin 

v NewVertexIndices(il 
pl Vertices[v]. FormingPoints[21 
p2 Vertices[v]. FormingPoints[31 
jI 
while j <= Length(NewVertices) do 
begin 

if Q <> i) then 
begin 

w NewVertexInices[j] 
qI Vertices[w]. FormingPoints[21 
q2 Vertices[w]. FormingPoints[31 
if (pl = q2) and (p2 = q1) then 
begin 

Vertices[v]. Neighbours[21 w 
Vertices[w]. Neighbours[31 v 

end 
end 
inc(j) 

end 
end 
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Step 7 

Calculate the coordinates and square radius for each new vertex. 

Pseudo-code 

Function VoronoiVertex. CalculateValues 
begin 

X1 Points[FormingPoints[III. x 
x2 Points[FormingPoints[211. x 
x3 Points[FormingPoints[311. x 
Y1 Points[FormingPoints[Ill. y 
y2 Points[FormingPoints[211. y 
y3 Points[FormingPoints[311. y 
x12 xl - x2 
x23 x2 - x3 
y12 yl - y2 
y23 y2 - y3 
cl Sqr(xl) - Sqr(x2) + Sqr(yi) - Sqr(y2) 
c2 Sqr(x2) - Sqr(x3) + Sqr(y2) - Sqr(y3) 
x 0.5 * (cl * Y23 - c2 * Y12) / W2 * Y23 - x23 * Y12) 
y 0.5 * (cl * x23 - c2 * x12) / (Y12 * x23 - Y23 * x12) 
SquareRadius := Sqr(xl-x) + Sqr(yl-y) 

end 

for i :=1 to Length(NewVertices) do 
begin 

v := NewVertexIndices[il 
Vertices[v]. CalculateValues 

end 

Step 8 

Repeat steps 2 to 7 until all points have been added. 
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Step 9 

Remove triangles connected to the initial structure. This may be achieved with a 
function that returns the triangulation of points from the Voronoi Structure. In the 
following example a list of points has been added to a voronoi structure that initially 
has 4 points. Hence a point that has index i has index i+4 in the Voronoi diagram. 

Pseudo-code 

Function GetTriangles 
begin 

For i: = 1 to Length(Vertices) do 
begin 

pl: = Vertices[il. FormingPoints[11-4 

p2: = Vertices[il. FormingPoints[21-4 
p3: = Vertices[il. FormingPoints[31-4 
if pl >0 and p2 >0 and p3 >0 then 
begin 

n := Length(Triangles) +1 
SetLength(Triangles, n) 
Triangles[n]. pl pl 
Triangles [n] . p2 p2 
Triangles[nl. p3 p3 

end; 
end; 

end; 

For applications in finite element modelling we only want triangles inside the polyg- 
onal boundary. An example of how the Delaunay algorithm may result in unwanted 
triangles outside the boundary is illustrated in Figure 4.4. Here, the boundary is given, 
anticlockwise, by nodes 1,2,3,4,5 and 6 but the Delaunay algorithm has created a 
triangle with nodes 5,1 and 6. Fortunately it is easy to test whether or not a triangle 
lies inside the boundary since the nodal order is always anticlockwise. In this particular 
example the first triangle node is 5 and the next is 1. If the triangle was inside the 
boundary then the next boundary node that is also in the triangle would be 1. The 
next boundary node is actually 6 so the triangle does not lie inside the boundary. 
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Pseudo-code 

Let Boundary denoted the list of node numbers on the boundary ordered anticlockwise. 
Let pl, p2 and p3 be the indices of the triangle points. The function returns true if 
the triangle lies inside the polygon boundary : 

function TestTriangle(pl, p2, p3) 
begin 

j := Index0f(Boundary, pl) 
repeat 

if j Length(Boundary) then 
j 

else 
jj+ 

p: = Boundary[j] 
until p=p2 or p=p3 
Result :=p= p2 

end 

4 

5 

3 

Figure 4.4 - Boundary= 11,2,3,4,5,6}. The triangle edge 15,1} does not appear in 
order in Boundary hence the triangle 15,1, Q is not inside the polygon. 
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4.4 A not. e about refining a Delaunay triangula- 
tion 

In the mesh generation algorithm a mesh is generated by adding nodes within elements 
of a coarser mesh. Hence, with respect to the Voronoi diagram of the coarser mesh, a 
starting vertex (determined in step 3) is already known for every point to be added. 
This potentially removes the search process which is of order n2 where n is the current 
number of points. However, since the vertices change after the addition of each point, 
extra work would be required to keep the list 

' of starting vertices consistent with the 
current Voronoi Diagram. This has not been attempted by the author. 
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Chapter 5 

Structural Modelling 

5.1 Introduction 

This chapter serves as an introduction to structural modelling. The physical concepts 
described here are needed in subsequent chapters. In particular, the general integral 
form of the equilibrium equations in (5.31) and (5.32) will be used, in Chapter 7, 
to derive the equilibrium equations governing a beam. Everything contained in this 
chapter is standard and may be found in texts such as Spencer [30], Hunter [16] or 
Oden [25]. The theory presented here gathers together the relevant parts of these texts 
to make this thesis self-contained. 

5.2 Stress 

5.2.1 The stress tensor 

Consider a body, 11 E R3, whose surface, r, is subjected to a force vector, P(x), where 
xE IF. We define the surface traction vector, t(x), at x=pE IP to be 

dP ýx 
t(p) = jr 

=p 

(5.1) 

Let el, e2 and e3 be the base vectors of a rectangular cartesian coordinate system and 
let tj, t2 and t3 be the traction vectors on surfaces that are normal to el, e2 and e3 
respectively. We may then write 

tj alle, + 0'12e2 + 0'13e3 (5.2) 
t2 O'21e, + 0'22e2 + 0'23e3 (5.3) 
t3 O'31e, + 0'32e2 + 0'33e3 (5.4) 
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where the cij's are known as stress components. For a general surface, r, whose normal 
vector at the point p is n the traction is given by 

t= tj -ne, +t2 -ne2+t3 - ne3 (5.5) 

or, in matrix form, 
o- Tn (5.6) 

where o- is known as the Cauchy stress tensor. Later we will show that o- is symmetric 
so that 

an. 

5.2.2 Principal stresses 

(5.7) 

The components of a depend on the chosen coordinate system. Generally, t does not 
act in the same direction as n. When t and n do have the same direction then we can 
write 

an (5.8) 

where a is the magnitude of t. Hence 

an = an (5.9) 

so that a is an eigenvalue of a. The three eigenvalues, call them a,, 0'2 and 0'3, are 
found from 

cr - uIl = 

They are called the principal stresses and are each associated with a principal stress 
direction. In another coordinate system a would become RT aR where R is a proper 
orthogonal tensor. That means that RTR=I and JR1 =1 which imply that 

IR T aR - arIl = IRIlo- - aIlIRI = la - oIl. (5.11) 

This means that the principal stresses are independent of the coordinate system. Ex- 
panding (5.10) we find that the principal stresses are the solutions of 

a3_ J10,2 +120, _13=0 (5.12) 

where 

Il = tr(a) = O'll + 0'22 + 0'33) 

12 
1 (tr(o-)' 

- tr (t7.2)) 
_ or2 _ or2 _ or2 (5.14) 

2 OrllO'22 + 0'22633 + Or330rll 12 23 13 

222 Ol 1L_ 622orl3 _ 0'331712 (5.15) 13 IOl 722633 + 2al2O'230'13 - 0'110'23 
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The quantities 1,, 12 and 13, like the principal stresses, are independent of the coordi- 
nate system and are called invariants of the stress tensor. Since they are independent 
of the coordinate system we can choose the coordinate axes to correspond with the 
principal directions from which the relations can be written in terms of the principal 
stresses. Hence we have 

11 ý-- Ol + 0'2 + 0'3) (5.16) 

I .. 0'10'2 + 0'20'3 + 0'30'li (5.17) 12 "': 

13 ` Ol 0'2 0'3 - (5.18) 

5.2.3 Spherical and deviatoric stress tensors 

The stress tensor may be written as 

(T = cr I+ cr // 

where 

(5.19) 

2o, i I- a22 - 01.1.1 
3 0'12 0'13 

2o,! 22 - o,. Il - all 0'23 (5.20) 
3 

0'13 a23 
21733 - al 1- (722 

CT1 1+ O'ý2 + a33 00 
3 

0* 0++0 (5.21) 

00 all + aý2 + 0'. 13 
3 

When the coordinate directions coincide with the principal directions of stress this 
decomposition simplifies to 

2u, - u2 - u: 3 00 

2ag - u. - a, 0330 (5.22) 

00 2o, 3 - a, - cr, 2 

al + 0.2 + a. 1 00 
3 

all 0 CI + C2 + 0.3 0 (5.23) 
3 

000,1 + U, 2 + U3 
3 

The tensor er" is known as the spherical stress tensor and er' is known as the deviatoric 
stress tensor. The invariants of the spherical stress tensor are denoted by 11", 12" and 
1" and work out to be 311 

Ol + 0'2 + 0'3 :` Il (5.24) 

0'2 + 0'3 )2 12 

2= 
(011+ 

= 41 (5.25) 
33 

(L71 + ý72 + 0'3 )3 13 

=3 (5.26) 
27 T7 
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Similarly the invariants of the deviatoric stress tensor are denoted by 11,12' and 13' and 
are 

11 =o (5.27) 
(Ol 

- 62 )2 + (0'2 
- 0'3 )2 + (t73 

_ 0,1)2 112 
12ý =6 12 - (5.28) 

2 
1 (2ol - U2 - 0'3)(20'2 - 0'3 - ol)(20'3 - Ol - 0'2) LJ2 

+ 
21, 13ý = 

27 
= 13 -3 27 . 

(5.29) 

Clearly 12' is non-positive. Some authors define the second deviatoric stress invariant 
to be non-negative since it is proportional to the distortion energy. Let us define the 
invariant J2 as 

JI 
(Cl 

- 0'2 )2 + (0'2 
- 0'3 )2 + (0'3 

_ 0,1)2 
2 I2ý 

-6 (5.30) 

The stress invariants I, and J2 will be used in Chapter 8, the theory of Plasticity. 

5.3 Equilibrium 

We assume that, for the body to be in equilibrium, the resultant force and the resultant 
couple acting within 0 are zero. There are two kinds of force under consideration. They 
are the surface forces, t, acting through r and the body forces, f, acting throughout 
0. For the resultant force to be zero 

I 
t(x)dx +If (x)dx =0 (5.31) 

XEr XEO 

For the resultant couple to be zero about an arbitrarily chosen origin, o, we require 
that 

f (x - o) x t(x)dx +f (x - o) xf (x)dx (5.32) 
xEr X Ell 

Using the divergence theorem (5.31) and (5.32) may be written, in component form, 
as 

f (ýO-"j 
+ fj) dx =0 (5.33) 

XEO 19xi 
90'rq 

ejpq 

I 
(Xp 

- Op) 

ax, 
+ fq + O'pq dx =0 (5.34) 

XEO 

where eijk denotes the alternating symbol. These equations must hold for any volume 
Q including any of its subregions and so, for equilibrium throughout 0, 

09aij j- fj =0 (5.35) 
19xi 

Upq = Uqp (5.36) 
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for all xEQ. If can be shown [30) that (5.36) also holds for a body in motion and so, 
in general, cr is symmetric. Equations (5.35) and (5.36) are usually combined so that 
the equations of equilibrium are stated as 

aorij +fj =0 (5.37) 
axi 

where it is assumed that o- is symmetric. 

5.4 Strain 

When a body is subjected to forces whilst being partly restrained it is seen to change 
shape. This process is known as deformation. A measure of the deformation is called 
a strain. Physics teaches us that there are two categories of strain: longitudinal and 
shear. Consider the body in question as a cube resting on a smooth surface with a force 
applied evenly over the top face. The cube, which has height h, becomes squashed into 

Ah a cuboid of height h- Ah. The longitudinal strain is defined as -h. Suppose instead 
that the cube is fixed to the surface so that is cannot slide and that a force is applied 
over one of the vertical sides. This time the cube deforms to a parallelopiped; the top 
face having moved a distance u. The shear stain is defined as lf. We refer to these h 
strains as engineering strains. They serve as sufficient measures of the deformation of a 
body under particular loading and restraining conditions. In mathematical modelling 
we require a more general definition of strain describing the way a body deforms from 
one configuration to another. Let us denote by Xi, i=1,2,3, the Cartesian coordinate 
system of the undeformed body and by xi the coordinate system of the deformed body. 
The displacements ui are defined as 

Ui = Xi - Xi. (5.38) 

A possible measure of deformation is the deformation gradient tensor, F, given by 

i9xi aui 
Fij =. +6.. (5.39) jx-j = axi "I 

which gives the unit tensor, I, if all displacements are constant. Since we are concerned 
with the change in the body's shape we should look for a measure that gives I for a 
rigid body motion. This is when the deformation consists of a constant displacement 
and a rotation; i. e. 

x=c+ RX (5.40) 

where c is a constant vector and R is a proper orthogonal tensor (i. e. RTR=I and 
detR = 1). For a deformation of the form (5.40) FQ and so F is not a suitable 
measure. Related to F are the symmetric tensors 

C=F TF (5.41) 
B=FF T (5.42) 
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known as the right and left Cauchy-Green deformation tensors, respectively. These 

are both suitable measures of deformation since C=B=I when x has the form in 
(5.40); i. e. they measure the stretching of the material. A material line segment AX 
deforms to a line segment Ax = FAX which can have a different orientation and a 
different length. The stretching is concerned with the change of length of such line 
segments and for this we note that 

IAX12 = AXTAX = AXT FT FAX = AXTCAX. (5.43) 

For the change in length we have 

IAX12 _ IAX12 = AX(C _ J))AXT = 2AXT EAX (5.44) 

where 
1( aui aui allk 19Uk Eij ý5- + ý7- + --) (5.45) 
2 xj xi axi axj 

is known as the Lagrangian strain tensor. It measures the deformation of a body with 
respect to the initial coordinate system. In the case of small deformation, where F ; ýý I 
and jAxj ; ztý JAXI, we have 

Eij ; ý: s -1 
( Ou' 

+ 
auj )= 

cij (5.46) 
2 9Xj Oxi 

where eij is the infinitesimal strain tensor. Both (5.45) and (5.46) are widely used in 

structural modelling. 

5.5 Constitutive equations for linear elastic isotropic 

materials 

The behaviour of a particular material is governed by its constitutive equations. Such 
equations relate physical properties such as stress, strain and temperature with one an- 
other. In structural analysis we need a constitutive equation to relate stress and strain. 
The structural behaviour of real materials is very complex and it would be difficult to 
formulate equations capable of determining the stress under any given circumstance. 
We content ourselves by using equations that describe ideal materials whose behaviour 
approximate that of real materials. 

Many common engineering materials have the property that they undergo small changes 
of shape when subjected to forces that they normally encounter. They also have a nat- 
ural shape to which they return after forces, that are not too large, are applied and then 
removed. Such material are classed as linear elastic. An ideal linear elastic material is 
one whose stress components may be expressed, using Einstein summation convention, 
as 

O'ij " Cijklfkl (5.47) 
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where Cijkl are components of a fourth order tensor known as the tensor of elastic 
coefficients. Equation (5.47) is the constitutive equation for a linear elastic material. 
If the material is also isotropic, meaning it has the same properties in all directions, 
the elastic coefficients may be expressed in the general form 

Cijkl ..: I\bij6kl + Abik6jl + V60jk (5.48) 

where A, it and v are scalars. Substituting (5.48) into (5.47) gives 
O'ij ---: Abijfkk + Afii + Vl6ji- (5.49) 

Since e is symmetric no generality is lost by writing /. t =v so that 

Cij " Abij6kk + 2/icij. (5.50) 

Equation (5.50) is the constitutive equation for an isotropic linear elastic material. The 
coefficients A and y are known as the Lame coefficients and are material properties. 
This equation is an alternative statement of Hooke's law [34, Page 8]: 

all = Eell + V(a22 + a33) (5.51) 

a22 = EIE22 + V(all + 1733) (5.52) 

a33 = EIE33 + V(all + a22) (5.53) 

612 = 2GE12 (5.54) 

0'13 = WeM (5.55) 

a23 = 2G623 (5.56) 

where E is the elastic or Youngs modulus and v is the Poisson ratio of the material. 
Solving the first three equations for all, 0'22 and 633 we have 

all )E(1-VVV ell) 
622 

(1 + v)(1 - 2v) V1-VV IE22 (5.57) 
0'33 VV1-V 633 

so that the general form of Hooke's law is, in subscript notation, 

orij = 
vE 

-6''fkk 
1 

(5.58) 
(1 + v)(1 - 2v) '3 +1 -+Vcij, 

Comparing with (5.50) we see that 

vE (5.59) 
(1 + v)(1 - 2v) 

G=E (5.60) 
2(l + v)' 

Hence, E and v are related to the Lam6 coefficients by 

E 
3A + 2p 2 

(5.61) 
A+ 

VA (5.62) 
2(A + p)' 
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5.6 Lame equations for equilibrium in a linear elas- 
tic isotropic material 

The Lam6 Equilibrium Equations are derived by substituting (5.46) and (5.50) into 
(5.37). Using Einstein summation convention they are 

a 
(A + M) 

LUk 
+" 

(t, ýU-i )+fi=0 
(5.63) 

19xi 

( 

19Xk 

) 

Dxj 19xj 

for all xEQ. If A and p are constant then (5.63) may be written in vector notation as 

(, \ +U+M, 72U +f= (). (5.64) 

Boundary conditions for (5.63) and (5.64) are of the type 

u(x) = o, xE rc (5.65) 

t (x) =9 (X), xE rT (5.66) 

where rc u IPT 
--` IP and rc nrT ý-- 0- Solutions to the Lam6 equations are generally 

hard to find but we may apply the equations to some simple problems. In the following 
examples all displacements are assumed to occur in the X1X2 plane so that U3 ..: 

0- 

An example of pure shear 

Consider a body of height h that is rigidly fixed at each end so that all displacements 
are zero at X3 =0 and X2 = h. For simplicity we assume that U2 =0 and that ul is 
only a function Of X2. Hence V-u=0 and we have, from (5.63), 

d 2U, fl 

T-+- =0 (5.67) dX2 A 

for 0< 162 <h with the boundary conditions 

U2(O) ---- U2(h) = 0. (5.68) 

If f, is constant then this problem has the solution 

U1 (X 2) ý-- 
fl 

X2(h - X2) (5.69) 
2p 

which is an example of pure shear. Remember that it =G is the shear modulus. The 
shear stress is given by 

dul h 
612 =P TX 

2= 
fi 

( 
ý2 - X2) (5.70) 
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An example of pure tension 

We will assume that the tension is due to the constant body force f2 and that there 
are no applied surface forces. For simplicity we assume that ul =0 and U2 is only a 
function Of X2. Then V(V - u) =0 and we have, from (5.63), 

d2 U2 
* 

f2 
0 (5.71) 

dX2 A+ 2p 

for 0< X2 <h with the boundary conditions 

U2(0) =0 (5.72) 
dU2 

= 0. (5.73) dX2 
X2=h 

This has the solution 
U2(X2) = 

f2X2(2h - X2) (5.74) 
2(A + 21t) 

The stress is given by 
0'22 = (A + 2,, )ý! 2 = f2(h X2)- (5.75) dX2 

If f2 is positive then the stress is positive and the body is in tension. If it is negative 
then the stress is negative and the body is in compression. If the tension had not 
been caused by a body force but instead by a force applied at X2 =h then the Lame 

equations would reduce to 
d2 U2 (5.76) 2 =0 TX2 

so that U2 is linear and the stress is constant. 

5.7 Energy in structural systems 

When forces act within a system and cause components of the system to change, the 
forces are said to have done work. When work is done energy is exchanged between 
the system's components. In a structural system, body (i. e. gravitational) forces act 
throughout the structure and traction forces act on the structure's surface. The result 
is that the structure deforms; i. e. the strain components are altered. Some of the 
energy of this process is stored inside the structure as strain energy. If the forces 
were removed then the strain energy would be used to (at least partly) reverse the 
deformation. The stored energy in a system is known as the potential energy. This 
includes both the strain energy and the energy used to fuel the forces. The work done 
by the forces is equal to a loss in the system's potential energy. In a structural system 
the forces are usually gravitational and work done results in a loss of gravitational 
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potential energy. Hence, in a structural system, the deformation process results in a 
loss of potential energy equal to the gain in strain energy minus the loss of gravitational 
potential energy. For elastic materials the strain energy, U is given by [30] 

1 
aijcij dx 

XEn 

(5.77) 

and the loss in potential energy, V, due to the work done by the surface traction, g, 
and body force, F, is given by 

9T udx+ 
f fT u dx. (5.78) 

x ErT XEII 

The overall loss of potential energy, PE, during the deformation process is 

PE =U-V. (5.79) 

5.8 Finite element solutions to the linear elasticity 
equilibrium equations 

We may obtain a finite element approximation to the Lame equations by first finding 
a weak formulation of (5.63) with the boundary conditions (5.65) and (5.66). This is 
derived by first taking the inner product of (5.63) with a vector function v(x) EH 
where fV 

:VE (Hl(n»3, virc = 01 - 

This gives us 

Using the Green formula 

vi2-0-"j dx + vifi dx = 0. axj 
XE xEn 

I 
-Lo V) dx +f 0'90 dx =f OV)nj dx 

XEfl axj XEf] axj XEr 

and the fact that, since aij = uji, 

Uij 
avi 

=1 orii 
( avi 

. 
avi 1 

uij 2-vi + 2-vi 7; U- -r Uxj 2 uij6ij, oxj 2 xi 

(axj 
exi 

equation (5.81) may be written as 
I 

uijeij(v) dx =i fivi dx +f givi dx. 
XE(I XEfl X ErT 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

(5.84) 
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This may be written in vector notation if we let 

a= (Ol 110'22) 0'33 p 0'12) 0'23 1 0'31 )T (5.85) 

IE = (Elli 6221 633,2el2,2623,21E31 )T. (5.86) 

Hence equation (5.84) may be written as 
I 

a'(u)c(v) dx =f fT v dx +9Tv dx. (5.87) 
XEn XEn XErT 

The weak problem is to find au in H that satisfies (5.87) for all v in H. Remember 
that u is involved through a using (5.50). Using (5.85) and (5.86) the constitutive 
equation may be written as 

cr(u) = DE(u) (5.88) 

where D is the material matrix. Substituting (5.88) into (5.87) gives us 
I 

e'(u)Dc(v) dx =f fT v dx +f9Tv dx (5.89) 
XEn XEO XEr7, 

which is in the general form stated in (3.2). Hence the finite element problem is to find 
Uh in V such that 

f 
CT (Uh)Dc(v) dx =f fvdx+ f 

gv dx (5.90) 
XEII XEfl XErT 

for all Vh in V where V is a finite dimensional subset of H. Any vector in V may be 
written as 

Vh(X) = N(x)U (5.91) 

where U is the vector containing the degrees of freedom and N has the form 

with 

N(x) = [Ni, N2).., N,, ] (5.92) 

Nk(x) = Nk(x) 1 0) (5.93) 

where n is the number of nodes and the Nk's are the basis functions of V. 

To illustrate the finite element method applied to problems of linear elasticity we 
will consider a two dimensional implementation using linear triangular elements. We 

assume that the stress components 0'33,0'13 and 0'23 are zero so that the non-zero stress 
components are given by 

all = Eel, + VO'22 (5.94) 

0'22 = EC22 + VO'll (5.95) 
0'33 = 2GE23- (5.96) 
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Solving for all and 0'22 we have 

O'll E (1 v0 'Ell ) 
=: De 0'22 -j-2 v10 IE22 (5.97) 

0'12 
v00v 21E12 -T-- 

where we have redefined the vectors a and e and the material matrix D for the special 
case of plane stress. For the rest of this chapter the global coordinate variables will be 
denoted by x and y and, within the standard triangular element, the local coordinate 
variables will be denoted by ý and q. Subscripts will denote node numbers. We will 
use a triangular mesh with linear basis functions. In local coordinates, for the i'th 
element, these are given by 

Ni = 1-ý-77 (5.98) 

N2 =ý (5.99) 

N3 = 77. (5.100) 

With the nodes numbered locally 1... 3 the mapping from local to global coordinates 
is given by 

X 77)Xl + ýX2 + 77X3 (5.101) 

Y 77)Yl + ýY2 + 77Y3 (5.102) 

so that the Jacobian determinant, Ji, is given by 

Ji : -- (X2 - Xl)(Y3 - Yl) - (X3 - Xl)(Y2 - Yl)- (5.103) 

After making the change of variables we evaluate the local strain matrix to be 

1( Y2 - Y3 0 Y3 - YI 0 Yl - Y2 0) 
Bi 0 X3 - X2 0 Xl - X3 0 X2 - Xl (5.104) 

X3-X2 Y2-Y3 Xl-X3 Y3-Yl X2 - Xl Yl - Y2 

We are now able to evaluate the local element stiffness matrix and force vectors. For 
simplicity let us assume that the material matrix D and the body force vector f are 
constant over each triangular element. For the local stiffness matrix and force vector 
we have 

1 1-77 

Ki = 
ff BiTDBiJi dýdq 
00 

Fi = 

1-17 
NTf Ji dýd? 7 

f6 

00 

On the boundary the basis functions reduce to 

BiTDBi (5.105) 

f (5.106) 
f 

f 

Nj = (5.107) 

Nk = (5.108) 
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Hence the local traction vector (with nodes numbered 1 and 2) is evaluated, assuming 
g is constant over the boundary element, to be 

11-Z0 
Gi 

01-e 
91X2 - x, lde = 

1X2 
(5.109) =1Z02 

xl (gg) 
' 

All that remains is to apply the boundary conditions on I7C. For the 2D finite element 
solution this is stated as U2i-1 0) 

(5.110) UN 

) (o 

for all points (xi, yi) that lie on rc. This is applied by setting 

K2i-1,2i-1 (5.111) 

KV, 2i (5.112) 
K2i-1, 

p 02 pEf1.. 2n} - ý2i - l} (5.113) 
K2i, 

p 03 p CE {1.. 2n} - ý2i} (5.114) 
F2i-i ' 0 (5.115) 

F2i ' 0 (5.116) 

for all (xi, yi) in 17C. In order to preserve the symmetry of K it is also necessary to set 

Kp, i-i = 0, pEf1... 2n} - {2i - l} (5.117) 

KP, i = 0, pG ýl 
... 2n} - ý2i}. (5.118) 

0 5.9 Numerical example 

Presented here is a numerical example to illustrate the performance of the finite element 
method in solving the Lame equations. 

Consider a rectangular body of width a and height b=1 with a>b (See Figure 5.1). 
The body has an elastic modulus of E= 1000 and is fixed at x=0 and x=a. A body 
force vector of (0, -1) is applied uniformly. The finite element solution was obtained 
using uniform triangular mesh of varying densities for values of a ranging from a=1 to 
a= 64 (See Figure 5.2). As an error indicator the L2 norm of the difference between the 
recovered stress vector and finite element stress vector was calculated. The recovered 
stress vector was obtained using the weighted averaging technique. The results are 
presented in Tables 5.1 - 5.7. For each mesh the central vertical displacement, Uh(22)1 
is shown along with the percentage difference from that obtained with the previous 
mesh. The variables nx and ny are the number of elements along the x and y axes, 
respectively, so that the number of triangular elements, ne is given by 2x nx x ny. 

The error indicator appears to show the expected O(h) behaviour for nx > 64. Con- 
vergence of the Uh(2) value is fairly slow, requiring more than 4000 elements to obtain 2 
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the first significant, figure in the a= 64 case. This particuhir example may be better 

solved using the beam theory described in Chapter 7. 

f= (0, - 1) 

E=1000 

a 

Figure 5.1 : Rectangular body (bealn) '111,11Ysed III 111111wricol example. 
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nx = 8, ny = 2, ne = 32 

nx = 16, ny = 4, ne = 128 

nx = 32, ny = 8, ne = 512 

nx = 64, ny = 16, ne = 2048 

Figure 5.2: Mesh used for the case a=4 showing displacements scaled by 20 
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Table 5.1: a=1 

nx ny ne Uh(O. 5) %change lIffR-O"hllL,, 

2 2 8 -3.125OOE-4 0.1412990 
4 4 32 -3.36081E-4 7.54592 0.1092530 
8 8 128 -3.54122E-4 5.36805 0.0846692 

16 16 512 -3.64604E-4 2.96000 0.0572916 
32 32 2048 -3.68890E-4 1.17552 0.0344721 

Table 5.2: a=2 

nx ny ne U2(1) % change HaR CrhIlL, 
4 2 16 -1.47604E-3 0.4032210 
8 4 64 -1.69420E-3 14.78010 0.3735500 

16 8 256 -1.83988E-3 8.59875 0.2656750 
32 16 1024 -1.89998E-3 3.26652 0.1611320 
64 32 4096 -1.91965E-3 1.03527 0.0916544 

Table 5.3: a=4 

nx ny ne U2 (2) % change IlcrR - O*hllL-2 
8 2 32 -0.917039E-2 1.981260 

16 4 128 -1.180780E-2 28.760100 1.668130 
32 8 512 -1.316920E-2 11.529700 1.042520 
64 16 2048 -1.362870E-2 3.489200 0.578713 

128 32 8192 -1.376230E-2 0.980284 0.311657 
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Table 5.4: a=8 

nx ny ne U2(4) % change 110'R - ahlIL2 

16 2 64 -0.884218E-1 11.19020 
32 4 256 -1.262250E-1 42.747600 8.72099 
64 8 1024 -1.437480E-1 13.882400 5.12059 

4096 -1.492030E-1 3.794840 2.71448 
16384 -1.506940E-1 0.999310 1.40654 

Table 5.5: a= 16 

nx ny ne U2(8) % change 110'R - ffhIlLi 

32 2 128 -1.18210 64.18900 
64 4 512 -1.76900 49.64890 48.48530 

128 8 2048 -2.03113 14.81800 27.84990 
256 j 16 j 8192 j -2.11073 j 3.91900 j 14.51540 
512 1 32 1 32768 1 -2.13197 1.00629 7.39222 

Table 5.6: a= 32 

nx ny ne U2(16) % change HaR - Chllbi 

64 2 256 -1.79966E+l 366.9110 
128 4 1024 -2.73195E+l 51.80370 273.8450 
256 

- 
8 4096 -3.14387E+l 15.07680 156.0470 

751 2. 16 16384 -3.26785E+l 2.98931 80.8208 

Table 5.7: a= 64 

nx ny ne 
, 

U2(32) %change lIffR-ffhllL, 

64 2 256 -2.84404E+2 2088.180 
128 4 1024 -4.33372E+2 52.37900 1550.850 
256 8 

- - 
4096 

- - 
-4.98952E+2 15.13250 880.851 

51F. l 61 6384 1 -5.18624E+2 3.94266 455.01 
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Chapter 6 

Thermal Modelling 

6.1 Introduction 

The important consequence of fire exposure to the building frame is the increase in 
temperature. As a result, the beams in the frame expand causing additional loading if 
the expansion is resisted. Additionally, the beams weaken causing further deformation. 
This chapter introduces the concept of thermal strain and shows that, in a beam, this 
causes both a thermal force and thermal moments. The main part of this chapter 
derives a finite element method for calculating the temperature in the cross-section of a 
fire-exposed beam taking into account the exchange of radiation between internal cavity 
walls. This method, accompanied by the mesh generation algorithm in Chapter 4, 
completes the theoretical background for a computer program to solve the thermal 
part of the fire-exposed frame problem. 

6.2 Thermal expansion 

Most building materials experience some change in shape when their temperature is 
raised. This phenomenon is generally known as thermal expansion since a rise in 
temperature usually causes a positive thermal strain. If the material is isotropic then 
the effect is uniform in all directions and so there are no thermal shear strains. Hence 
thermal strain is hydrostatic for isotropic materials. The common building materials, 
steel and concrete, are assumed to be thermally isotropic. 

When we consider the constitutive equation of a material we relate the stress compo- 
nents, aij, to the strains, cip For an elastic material experiencing no thermal strain we 
have, in terms of Lam6 coefficients, 

O'ij = I\bij(611 + 622 + IE33) + 2p6ij. 

If the material's temperature is raised then it experiences a thermal strain, eth, in each 
direction. This alters the equilibrium state of the material so that the elastic strain 
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components, to which the constitutive equation applies, are found by subtracting the 
thermal strain from the total strain. Hence the thermoelastic constitutive equation is 

Cii = A(Ell + 622 + 633) + 2/, tcij - (3A + 2y)bijfth- (6.2) 

In the vector form used in Chapter 5 we have 

a(u) = DE(u) - t7th (6.3) 

where 47th, known as the thermal load vector, is 

1 E6th 1 
O'th ý-- (3A + 2y)'Eth 

01- 2v 0 (6.4) 

00 
MM 

From Chapter 5 we have that 
f 

a(u)', E(v) dx f fT vdx +f9Tv dx. (6.5) 
XEO XEO XErý 

Substituting for a we have 

IE (U) T fT TT D, E(v) dx vdx+ 
Ig 

vdx+ 
I 

athE(v) dx. (6.6) 
XEfl XEn XErý XEn 

Hence the weak form of the thermoelastic equilibrium equations is 

a(u, v) : -- (f 
i V) + [9) VI + (r: (V)s O'th)- (6.7) 

In the 2D finite element solution procedure the local thermal load vector is given by 
1 1-77 

Qj BTa i thJj dýdq (6.8) 

00 

where 

th -` 
Efth 

(6.9) --2v 1- 
0 

(1) 

If ff th is an element constant then 

Qj = 
ii B74Crth, (6.10) 
2, 

The finite element solution is then found by solving the system 
KU=F+G+Q (6.11) 

where Q is the global thermal load vector found by summing the contributions from 
Qj for each element. 
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6.3 Heat conduction 

Fourier's law for the conduction of heat in a solid, isotropic material is 

-k (VT) (6.12) 

where q is the heat flux vector (rate of heat energy flow), k is the thermal conductivity 
and T is the temperature. The rate of change of heat energy, Q, within a body, 0, 
balances the flow of heat through the surface, r, so that 

1' 
at 

dx +1q- ndx = 0, (6.13) 
XE92 XEr 

where n is the outward-pointing unit vector normal to the surface. Application of the 
divergence theorem and substitution of (6.3) leads to 

aQ 
=V- (kVT). (6.14) 

at 
We assume that the heat energy used for thermal expansion is negligible compared 
with that used to raise the temperature so that 

49Q 
- 

dQ OT (6.15) at dT at 

From physics[7] we have that 
Q 

(6.16) 
dT 

where p is the material mass density and c is the specific heat capacity. Hence we have 
the heat conduction equation 

V- (kVT) = pc 
OT 

(6.17) 
at 

A more rigorous derivation of (6.17) is found in Whitaker [38, Chapter 4]. 

To justify the assumption that the thermal strain energy may be neglected consider this 
equation presented by Johns [171 for heat conduction with linear thermal expansion: 

OT EaTo 0 
V- (kVT) = (pc)o 5t +1- 2v ýjt- (611 + C22 + IE33) (6.18) 

where (pc)o is pc evaluated when there is no thermal strain and To is the initial uniform 
temperature. For beams, IE22 == f33 =-- -vi! 11 with cil = Ea(T - TO) so we have 

V- (kVT) = 
((Pc)o +E2a2T 

OT (6.19) ) 
T, - 
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I 1"I", urc 6.1: ( om , ex 

In it typicol pract, ical applicio ion I'lle qualit'llY /)c will be of I'lle order of IWý w1jelvIIIII, 
E2(12 T will be of the ordei- of' 10 1. flence ille Initial assumption is j 111'stified. ('oil- 

sequently the telliperat'lliv (list riblil'iOll is independent, of the straill. The solut'loll of' 
Hie licat conduction equation requil-es ill(' Specification of boull(I'll. 

,v co II (I IIoII. s. For 

Ina c t, Ica 1 1) ro ble] I is t Ilese are ex press Ioii-; f'O i- fIieIic; i t, fIiix, q(x, iioriii; iItotiesiir f'; i c( 
of* t he bcými. Ali expression of t he form 

q-n=h, - 
(T -- 7'ý, )ý-, a (7 '' -- (G. 20) 

is lised t, o model exposure t'o a post-flashover fire [33]. In (6.20) 1), is t he collvccl ioll 
coefficient, ( is Hui residtaid einissivity, a is IN SlAusliolzinmi mislaid (5.67 x 
10-S IV,, -2K -1 ) aia q is 10, twuwrnt mv of 1W hot ga, s ill Nelvill. Typic; d v; d1les for 
h" and (' 11'sed t'o Illodel fill-nace tvstsl are 25IVm - 2jý, 1 

ý111( I (). ýj . (, S I) (ý(. t i\, (, I ý.. 

Treatment of cavities 

Some bealn designs Include cavitY re"'lolls which require spe(. 1,11 consideration III the 
solid thernial model. For simplicitY We will ignorc the effects of conduction alld cofl- 
vection mid assume that the onl ' N, Ileat exch"Inge is t hat of radi; lt Ion bet wecil I Ilc 

'v 
walLs. III fact, Wickstrom[39] ollIv uses a convect loll Illodel to estilimte Hie mvl.; 1()(' 
gas t ('111perat urv inside the cavity. Whitaker [38, Pages 4,15 150] shows t1ml, fol, ý1 21) 
colivex polYgollal gray body ('11closlire Where the t ('111 perat'llre is ulliforill oil em-11 \v; III 

74 



:1 

Figurc 6.2. Calculiolon of confiouriitimi fitctor betw(vii 

(see Fintre 6.1), the heat, flux throll-11 the J, th w; Ill is givell hy nn 

(6.2 1) 
fj 

( ei ) «, 
Tjt + 

where ej is the emissivity of the 
. 1't'll Nvall, T. j Is t he t villpernt Ilre ()I' t he 

.0 
11 \v; III and 

is the Jklth element, of the inverse of the matrix Xl given bY 

A Ij A. =F jA- - 6jk( I -- (A-) -1 (6.22) 

where F. A. is tile configuration factor given by 

Fjk + LI), L,,,, 
(G. 23) 

2L,, I, 

The quantity Lab is the distance, between point ,,, a and 1) as illust rat cd In Fig Ilre 6.2. 
Although the assumption of uniform wall temperat ure I's rest rict IVO We CMI approximate 
t lie non-uniforin case by partit ioning the Wall. Thl" is 11,11 11ralk, achieved Ill I lic IIIIII c 
element method. 
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6.4 Galerkin finite element method for solving the 
heat conduction equation 

We take the inner product of each side of (6.17) with a function vEH to give us 

vV - (kVT) dx vpc 
OT 

dx. 
Ot 

XEO X Efl 

Using the divergence theorem the left hand side may be integrated to give 

f 
vV - (kVT) dx =f vkVT - n) dx -f kVvVTdx 

XEn XEr XEO 

=-I vq - ndx - 
xEr 

Hence (6.24) may be written as 

kVvVT dx. 
XEQ 

kVvVTdx+ vpc 
OT 

dx + vq - ndx = 0. 11 
Ot 

1 

X ESI XE92 XEr 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

Let V be a finite dimensional subspace of H. This is a space of piecewise polynomials 
with nodes at xi, i=1... n. For the finite element method we choose vEV and 
approximate T with Th E V. The approximation Th may be written as 

Th (x, t) =N (x) T (t) (6.28) 

where N= (Nj, N2, - - -, Nn) is a vector of basis functions and T is the vector containing 
the time-dependent degrees of freedom. We choose v to be each of the components of 
N in turn so that, after substituting (6.28) in (6.27), we have 

TT dT T kB B dx T(t) + pcN N dx +4Nq. ndx=O (6.29) 
Ef2 

IEII 

xEr 

where, in 2D, 
SL1. ON ON iýX`12 ... WX a 

B X1 (6.30) 
19NI 19N aN v2 
OX2 -I... ! ýX 

21 
ýX2 

We define the conductivity matrix, Kk, as 

Kk =f kB TB dx (6.31) 
XEn 
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and the capacitance matrix, C, as 

pcN 
TN dx. (6.32) 

XEn 

Hence (6.29) is written as 

dT T KT+C T+ N q. ndx=O. (6.33) 
tI 

XEr 

The boundary, r, comprises the external surface, r,..,, and the cavity walls, IP,. Hence 
the boundary integral may be written as 

jNTq-n dx =fNTq-n dx +fNTq- ndx. (6.34) 
XEr XEr., X Er. 

Using (6.20) the integral over IP,, becomes 

INTq. 
ndx =INT 

(h, (T - Tq) + ca(T 
4_ Tg4) )dx (6.35) 

X Er.. XEr.. 

INT ht(T - Tg) dx (6.36) 
xEr.. 

where 
2+ T2) ht h, + ca(T + Tg)(T g 

(6.37) 

will be referred to as the total heat transfer coefficient. Replacing T with the approxi- 
mation Th we have, in terms of the degree of freedom vector T, 

INTq-n dx = 

(X 
f htN T Ndx T- fNTT. dx. (6.38) 

XEr., Er., XEr.. 

Let us define the external heat transfer matrix, K., and the external heat load vector, 
Fex) to be 

Kex f htN TN dx (6.39) 
XEr., 

Fex fNTT. dx. (6.40) 
XEr.. 

The integral over r, may be written as sum of the integrals over each cavity, i. e. 
nc 

NT q-ndx=E 
fNTq- 

ndx (6.41) 
XEr. '=' XErc, i 
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where nc is the number of cavities. The integral over each r,, i may be written as the 
sum of the integrals over each wall, i. e. 

nw(i) 
NTq. ndx= ýINTq- ndx (6.42) 

X Erc, i XErc, i, j 

where nw(i) is the number of walls of the i'th cavity. Using (6.21) the integral over 
each r,, ij may be written as 

TT fij nw(i) 
M-1 fik ) 

0, Ti4 A or Ti4 
I kj 

INq. 
ndx= 

fN 
eij 

3+1: ijk 
fik 

dx 
XEr, ij XEr,, i, j 

k=1 

(6.43) 

where cij is the emissivity of the j'th wall of the i'th cavity, Tij is the temperature of 
the j'th wall of the i'th cavity and Mi = [Mijk] is the i'th coefficient matrix as defined 
in (6.22). For the purposes of the finite element method we write the above as 

fNTq-n dx NT yijTij dx -fNT qjj dx (6.44) 

,, i, j 
XErc, j, j XEr. XErc, i, j 

where 

cij Ti3 i lyij 
fij) 

a j, (6.45) 

nw(i) fik ) 
OrTi4 qij E Mi; 1(A (6.46) 

k=l 
1- fik 

k- 

Now we make the finite element approximation 

Tij(t) = N(x)T(t) (6.47) 

which gives us 

fNTq-n dx = 

(, 
f 

-yijN 
T Ndx T- fNT 

qij dx. (6.48) 
X E]Pc, i, j Er,,, i, j xEr,, i, j 

Let us define the cavity heat transfer matrix, K,, and the cavity heat load vector, F,, 
as 

nc nw(i) 
Kc EE I 

i=l i=l XEr,, i, j 

nc nw(i) 

F, EE I 
i=l j=l xErc, i, j 

-yijN TN dx, (6.49) 

NT qij dx. (6.50) 
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The finite element heat equation may now be written as 

where 

dT 
t 

(6.51) KT+Cjt =F 

Kk + Kex + Kc (6.52) 

F� + Fc. (6.53) 

We now have a system of ordinary differential equations in the degrees of freedom of 
the finite element solution which are nonlinear because K and C depend on T. This 
may be solved using any time integration scheme. Zienkiewicz (40, Page 570-575] uses 
a weighted residual approach to derive, for constant K and C, the general recurrence 
scheme 

(c 
+KO Ti= 

C- 
K(i - 0) Ti-i + Fi + Fi-i(1 - 0) (6.54) i-t 

(7t 

where At is the time step length and 0 is a parameter between 0 and 1 which determines 
the specific recurrence scheme. To apply this to fire problems we need to approximate 
the temperature dependent K and C with their averages over the time step. Hence 
the recurrence scheme becomes 

ü 
+k0 Ti= 

ü- k(1 - 0) Ti-i + Fi + Fi-, (l - 0) (6.55) ( it- ( it- 
where 

C(Ti) + C(Ti-1) 
(6.56) 

2 
K(Ti) + K(Ti-1) (6.57) 

2 

Alternatively we could use 

where 

C C(T) (6.58) 
kK (T) (6.59) 

Ti + Ti-i (6.60) 
2 

which requires less computational effort. In either case we have a nonlinear system 
which must be solved iteratively. We shall use 0=1 which corresponds to an Euler 
backwards difference scheme. Hence, in (6.51), we make the substitution 

dT Ti - Ti-i (6.61) i-t At 

79 



and approximate C, K and F with 6, k and Fi, respectively. Finally, we have 

+ Ti = yTi-i + Fi (6.62) 
(At 

t 

or, rearranging in terms of AT = Tj - Ti-1, 

6 
AT = Fi - kTi-1. (6-63) 

6.5 Mesh generation 

We shall use the mesh generation procedure described in Chapter 4 based on a measure 
of the error calculated after the first time step. We may easily implement the Bank- 
Weiser error estimator by first discretizing the time dimension of (6.17) to give us the 
equation to solve in the space domain as 

- V(k - VT) + -ýc T= -ýc To (6.64) 
At At 

where To is the temperature in the previous time step (in this case the initial tem- 
perature). This is the form of the equation for which the Bank-Weiser estimator was 
implemented in Chapter 3 with a=k and b= --. Remember, though, that the error At 
estimator behaved poorly for b >> a so that we must not have 

PC >> k. (6.65) 
At 

In practice pc is about 105 times greater than k and so the Bank-Weiser estimator 
cannot be expected to perform well. Hence the error measure we shall use is 

llq - qhlIL2 

in which we approximate q with the recovered flux qR given by 

qR= NQ 

where the components of Q are given in (3.92). 

6.5.1 Test problem 

(6.66) 

(6.67) 

To demonstrate the error estimator we shall apply it to a test problem in which the 
solution is 

T(x, y, t) = 20 + 100 sin(Ax) sin(Ay) exp(-2a 2, \2t) (6.68) 
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where T is the temperature in degrees Celsius, x and y are between 0 and 1=0.1, 
A=2 and a2=k= 10 

. The initial temperature distribution is then I PC 1000000 

T(x, 0) = 20 + 100 sin(Ax) sin(Äy) (6.69) 

(illustrated in Figure 6.1) and the boundary conditions are 

T(O, y, t) = T(l, y, t) = 20 (6.70) 
T(x, 0, t) = T(x, 1, t) = 20. (6.71) 

The finite element solution has been calculated for a duration of 1 minute using 1,10 
and 100 time steps. The initial mesh was refined four times with zero tolerance so that 
the refinement was uniform. The uniformly refined meshes are shown in Figure 6.2. 
Table 6.1 shows the norms of the true flux error and that estimated after the first 
time step. Figure 6.3 shows adapted meshes obtained using non-zero tolerance values 
for the 10 timestep case. The results illustrate the effectiveness of the recovered flux 
estimator for the finite element solution to heat conduction problems using irregular 
meshes. However, no conclusions can be made regarding consistency or asymptotic 
exactness. 
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.1 

0.1 0 

Figure 6.1 : Initial temperature distribution in test problem 

Initial Mesh First refinement Second refinement 

Third refinement Fourth refinement 

Figure 6.2: Mesh used to analyse the recovered flux error estimator. 
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Table 6.1: Comparison of true flux errors and recovered flux error estimators. 

Elements llq - qhllL, 
2 

ilqR - qhiI2L, > 
(1ý2 

8 2.4800E6 1.5100E6 0.609 
32 0.4760E6 0.4560E6 0.958 
128 0.1360E6 

. 
0.1230E6 0.904 

1 512 1 0.0386E6 1 0.0300E6 1 0. 
One time step (At =I minute) 

Elements jjq - qhIIL JjqR 
- qhll: L-2-- (D 2 

8 3.60OOE6 2.72OOE6 0.756 
32 0.6500E6 0.6590E6 1.010 
128 0.1770E6 0.1680E6 0.949 
512 0.0589E6 0.0428E6 0.727 

Ten time steps (At = 0.1 minute) 

Elements jjq - qhIIL 2,2 JjqR 
- qhII2 L2 41)2 

8 3.80OOE6 2.97OOE6 0.782 
32 0.6820E6 0.711OE6 1.040 
128 0.1830E6 0.181OE6 0-989 
512 0.0472E6 0.0438E6 0.92 

One hundred time steps (At = 0.01 minute) 
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time steps 
tolerance 

nodes 

elements 
112 jjq - qh L2 

112 JjqR 
- qh L2 

, D2 

10 

10000ow/m, 
17 
24 
522E3 

58OE3 

1.110 

time steps = 10 
tolerance = 1000OW/M 2 

nodes = 70 

elements = 108 
112 jjq - qh L2 165E3 
112 JjqR 

- qh L2 = 152E3 
(D2 = 0.921 

time steps 
tolerance 

nodes 
elements 

112 jjq - qh L2 
112 JjqR - qh L2 

, D2 

10 

100OW/. M2 
199 

348 
55.2E3 

50.5E3 

0.915 

time steps = 10 

tolerance = 1001V/M 2 

nodes = 516 

elements = 934 
112 jjq - qh L2 24.9E3 
112 JjqR - qh L2 17.6E3 

4ý2 0.707 

Figure 6.3: Adapted mesh that gives convergence to the specified tolerance after the 
first time step. 
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Chapter 7 

Beam Theory 

7.1 Introduction 

Having calculated, in the previous chapter, the temperature throughout the frame we 
now consider the structural consequences. This chapter uses the general theory of 
Chapter 5 to derive a finite element method for calculating frame deformation. To 
quantify the error in the method, a new error indicator, based on the 1985 paper by 
Bank and Weiser [9], is presented. 

The most important structural aspect of a building is its frame. Generally, this is an 
assembly of slender beams which are loaded with the weight of the building's walls 
and floors. Although a beam is a three dimensional structure its slender nature allows 
the deformation to be approximated in a one-dimensional way in terms of quantities 
associated with an interior line. This is the principle behind all beam theories, the 
most simple of which are based on the Euler-Bernoulli assumption that cross sections 
remain plane and perpendicular to the line after deformation [25]. In the contexts 
considered here this provides a reasonable model for the bending of beams although 
modifications must be added to include the effects of transverse shear (Timoshenko 
beam theory) and warping should they be deemed significant [25], [11]. 

The character of a beam's cross section is incorporated into coefficients that influence 
the beam's resistance to deformation. Under normal conditions a building deforms, 
when loaded, in a linear elastic way. The modulus of elasticity (Young's modulus) is 
temperature dependent and an increase in temperature will usually reduce a beam's 
bending resistance. Furthermore, a heated beam, e. g. in a fire situation, experiences a 
thermal expansion (thermal strain) causing additional internal stress if this expansion 
is restricted in any way. If the loading is continually increased or if the structure is 
continually weakened then a stage will be reached when the internal stresses will exceed 
a yield point and the deformation will become plastic although in this chapter we shall 
consider only the linear elastic response. 

In the context of the linear elastic deformation of beams and frames the purpose of 
this chapter is to describe an error estimator of the Bank-Weiser type (see [9]) which 
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The deformation is approximated iii terms of the x, co- 
ordinate. Any point, x= (X], X2,1ý3), may be written 
as the suin of p=(. rl. 0.0) and r= (0, 

-1'2, xýj). After 
deforination p is mapped to p+u and r is inapped to 
Tr where u is the displacement of the interior fine. and 
T is a rotation inatrix. 

Figure 7.1-. Beam axes. 

can be used to assess the accurac 'v 
of the finite eleinent, soltition to the c(Imitions 

describing the thernioelastic equilibrium of such structures. The main result is to show 
that the estimator, which can be computed eleinent-by-element, is consistent with the 

actual error (as measured in the energy norm) and, for higher de-rees of the piecewise 
polynomials used, the estimator is shown to be asymptotically exm-t. We show that t he 

asYmptotically exact cases correspond to cases where the finite clement, approximat ion 
has certain superconvergent properties. ?n 

To describe the estimator and our beani and frame model the presentation of the chap- 
ter is as follows: In section 7.2 we describe the Euler-Bernoulli beam inodel , md the 

equilibrium equations in a weak forin and we extend this to the case of a frimie sirm. - 
ture. In section 7.3 we then describe finite element approxiniations and, M section 7.4 

we review the a prioH estimates of the error considering the situations (involving dif- 
ferent orders of the pieceivise polynomials used) in which Nve have superconvero-ence 
at, identifiable point,,. The main results of the chapter are then contained in Sec- 
tion 7.5 where we define and analyse the a priorl error estimator. The performance of 
the estimator, for different clegrees of polynomial approxiiiiation, is demonstrated in 

section 7.6. 

7.2 The bean-i and frame model 

7.2.1 Deformation of a beam 

We present licre t he equitl lons which descrihe t lic of' ýl ""Ill"'Ic beilill and Nve 
then extend this to describe a frame structure in the case of rigid Joints. 
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Let x1, X2 and x3 denote coordinates in a cartesian system with bl, b2 and b3 denoting 
the usual base vectors. We consider a beam whose interior line is the part 0< xi <I of 
the xi-axis with (possibly variable) cross-section of area A(xl). In Euler-Bernoulli beam 
theory we have an approximate one-dimensional description of this three-dimensional 
structure involving just the displacements ul, U2 and u3 in the bl, b. and b3 directions 
together with a twist 0 about the interior line. It is convenient in what follows in the 
context of a single beam to gather these 4 scalar quantities together into the vector 

Ul 

u: = 
U2 

with u= u(xl), 0<x, < 
U3 
0 

The purpose of this section is to describe the idealised Euler-Bernoulli deformation and 
to give the system of ordinary differential equations (of length 4) 

L(u) =f (7.2) 

that u must satisfy. Since u now denotes the displacement of the interior line, where 
necessary we shall denote the general displacement vector by ft. 

To describe the equations we need to first describe the beam deformation, the strains, 
the stresses and the forces and moments acting on a cross-section. It is the equilibrium 
of the forces and moments on the cross-section which generates our system (7.2). 

For the deformation of the interior line we have 

xib, --+ (x, + ul)bi + U2b2 + u3b3, (7.3) 

The tangent to the deformed interior line is given by 

ti := (1 + u')bi + u'b 3 122+ ub3 (7.4) 

where ' denotes differentiation with respect to xj. With the usual small deformation 
assumption tj is approximately unit. Material fibres in the cross-section in the starting 
state of the beam in the directions b2 and b3 deform in Euler-Bernoulli beam theory 
to directions in the cross-section perpendicular to the deformed interior line. Hence 
the cross-section undergoes a transformation equivalent to rotations about the X2 and 
X3 axes of angles 02 and 03, respectively. Employing the conventional left handed 
coordinate system with the cork screw rule, these angles are related to the displacement 
derivatives by 

tan 03 
d112 dU2 

1_ 
dul (7.5) 

ds dxl ds 
du 

- tan 02 
dU3 dU3 

1_ 
ds 

1 (7.6) TS a -xi 
( 
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where s=x, + ul (see Figure 7.2). We assume that the angles and displacement 
derivatives are small so that, to first order, 

03 ý 
dU2 

and 02 
dU3 

dxl dxl' 
(7.7) 

Allowing for a twist of small angle 0 around the x, axis the transformation of the 
cross-section is given by 

(0 010 _U3 
(1 03(1 _U12 0 

X2 01 -0 0101) 
(0 ) 

(7.8) U2 10 X2 
I X3 001 U3 01001 X3 

which, to first order, is 

(0 )21) (l 
-ul -U3 

(0) 

X2 u11 -0 (7.9) 2 272 

X3 u101 X3 3 

Hence the transformation matrix is 

-U, -U, 23 
T= (ti t2 W U2 10 (7.10) 

u1 -0 1 

(3 

which, to first order, is orthogonal. The (small) deformation of the beam is hence 
described by 

"71 + ul -U12 -U13 
12 U2 U2 1 -01 X2 (7.11) 

I X3 

(X3 

U3 U3 01 1) 

(0) 

and the displacement field is 

ill Ul - -"62UI2 - X3UI3 
52 U2 - X30 (7.12) 
f13) U3 + X30 

This gives the infinitesimal strains 

I it it IE 11 Ul - --"2U2 - --3U3 

612 
1 

27301 (7.13) 
2 

613 X201- 2 

In Euler-Bernoulli theory it is assumed that 1722 ̀ 0'33 = 0'23 =0 and, in the case of 
a linearly elastic beam containing a (hydrostatic) thermal strain fth, the constitutive 
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X2 

Defonned beam 

U2(xl) '-ý f(S) 

UJ(O)e 
s= xi+ ul(x) oula) 

xi 
Undeformed beam 

Let s be defined as 

S := X1 + 
Uj(xi) 

then the angle between the tangent to the displacement 
curve and the x, axis is given by 

tan 03 
dU2 

ds 
dU2 dxl 
dxl ds 
dU2 

1 
dul 

ý -xi 
( 

ds 

) 

Figure 7.2: Relationship between 03 and the displacements u, and U2- 
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A(x) 1 (X, ) 

Figure 7.3: Beam slice 

equations are 

all = E(ell 6th) 
E 

(T 12 = 2p612 
+ V) 

612 

(T13 = 2pej: 3 fm I+v) 

(7.14) 

where as usual E, ji and v denote Young's modulus, the shear modulms, niid floisson's 
ratio, respectively. 

7.2.2 Equilibriun-i equations 

Consider a section of the beam between the points x, -x and . 1-1 = X, + (ýx. 'I'lw 

surface of the section may be divided into the three regions A(x), ý4(-r+h') 111d F(Xi) 

as shown in Fi--urc 7.3. The beam experiences a body force f throughout the section 
and a surface force g oil r. Applying the force equilibrium equat ion (5.3 1) tot hk bodY 

we have 
X+bT 

t(x) dx + t(x) dx +I P(. l. 1) (tv I=0 (7.15) 
xc. 4(x) x GA(X+bx) x 

where 
p(-vi) =1f (x) dx +1g (x) dx. 

xeA(xi) 

(X+6x) 

(7.16) 
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Application of the moment equilibrium equation (5.32) gives us 
I (x - x1el) x t(x) dx +I (x - x1el) x t(x) dx 

XEA(x) xEA(x+bx) 

x+bx 

+I (xi - x)e, x p(xi) + m(xi) dx, =0 (7.17) 

where 

m(xl)= 
f (x-xlel)xf(x)dx+ f (x-xlel)xg(x)dx. 

XEA(xi) XEr(xi) 

We comment on the vector m below. The traction vector is given by (5.7) with the 
unit normal vector n(x) given by 

U2 xE A(x) 
U 

'3) 

n(x) (7.19) 11xE 

A(x + bx) U2 

UI 

+ 

13) 

Substituting (7.19) into (5.7) gives us, to lowest order, 
,- (0,11) 

, 0'12 xE A(x) 

0'13 
t (X) 

0'12 

0'12 xE A(x + 6x) 
0'13 

Substituting (7.20) into (7.15) and (7.17) we have 

x+bx 

F(x + bx) - F(x) + p(xl) dxl =0 

x+bx 
M(x + bx) - M(x) + öxe, x F(x + bx) +1 m(xl) dxl =0 

x 

where 

F= F2 0'12 dx 

) 

F3 EA 013 
I 0 all 

M=( M2 = 
I 

(X2) 

X 

(u12) 

dx 
M3 X GA X3 0'13 

(7.20) 

(7.21) 

(7.22) 

(7.23) 

X20'13 - X30'12 I( 
X3Crll dx. (7.24) 

XEA --T2Crll 
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Taking the limits as bx tends to zero we have 

dF 
j- +p(x) =0 (7.25) 

x 
dM 
j- + ei x F(x) + m(x) = 0. (7.26) 

x 

It is not usual to include the moment vector m since its effect on a frame structure is 
negligible compared to that of the force vector p. The inclusion of m would only be 
justified in single beam problems of pure torsion or frame problems in which secondary 
effects, such as warping, were being considered. With the assumption that m is zero 
the full equilibrium equations governing a single beam are 

dF, 
+pl(x) = 0 (7.27) jx 

dF2 
+ P2 (X) = 0 (7.28) 

dx 
dF3 

+ P3 (X) = 0 (7.29) 
dx 

dM, 
0 (7.30) 

dx 
dM2 

F3 (X) 0 (7.31) 
dx 

dM3 
+ F2 (x) : - ,: 0- (7.32) 

dx 

The bending equations involving the same force terms are combined to give 

d 2M2 

X2 
+P3(X) --2 

0 (7.33) 
(i 

-X2 

d 2M3 

dx 2 P2(X) = 0- (7.34) 

By defining S, := Fl, S2: = M3, S3: = -M2 and S4: = M, we obtain our system 

-Sit I - Fl' Pi 

L(u) 
S211 - F21 M311 P2 (7.35) 
S311 F31 -M 2" P3 

sl -ml 410 

To show more explicitly the dependence of L on u it is convenient to define 

1 Ul 
'l 

U2 
11 . 

(7.36) 
u3 
01 
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Then, using (7.13), (7.14), (7.23) and (7.24), we have 

s1 
S2 m3 

DB(u) - s3 -M2 
S4 mi 

where 
2 

2 X2 X2 
E(x) 

-X3 X2X3 

XEA 00 

1 

E(X), th 
-x2 dx. 

X3 
XEA 0 

-X3 0 

X2273 0 

X3 3 0 dx 
X2 + X2 9 0 .1 2(l + v) 

(7.37) 

(7.38) 

(7.39) 

If the cross-section is symmetric and the interior line corresponds to the elastic centroid 
then the matrix D is a diagonal matrix. Generally D is not diagonal. 

7.2.3 Boundary conditions 

Specific solutions of (7.35) depend on the specification of boundary conditions that 
relate to the degrees of freedom of the beam; i. e. the displacements, ul, U2 and U3, and 
the rotations, 01,02 and 03. In most practical problems a particular degree of freedom 
is either fixed, in which case the displacement or rotation is zero, or unrestricted, in 
which case its corresponding force or moment is zero. The following table shows the 
possibilities. 

Table 7.1 : Boundary Condition Combinations 

D. O. F. Fixed Not fixed 

Ul Ul =0 F, =0 
U2 U2=0 I F2=-M3=5 

U3 U3 =0 F3 = M2 =0 
01 = U4 01 =0 Ml =0 

02 -U13 
, =0 U3 M2 =0 

_ 03 U12 
. 

U/2 =0 M3 =0 

If the displacements are fixed but the rotations are not then the beam is said to be 
simply supported. If both the displacements and rotations are fixed then the beam is 
said to be rigidly fixed or clamped. 
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7.2.4 Frames 

A frame structure is an assembly of beams each of which is governed by the beam 
equations in a local coordinate system; i. e. the beam lies along the x, axis in the interval 
[0,1]. A rotation matrix, R, maps the local displacements and rotations onto their 
global orientation. The interaction between the beams is governed by joint conditions 
that dictate the continuity of the displacements and rotations and relate the forces 

and moments acting on the joint. Usually it is assumed that the displacements are 
continuous so that, at a joint, 

Ul Ul (W U) 

R(j) UU) Vi, jE joint U2 2 
W 

(U 

U) 
U3 3 

(7.40) 

where the superscripts denote the beam number. If a joint is rigid then the rotations 
are also continuous, i. e. 

W OU) 01 
(i) RU) OU R(') 02 - 2)) ViJ E joint, 

OW U) 

(03 (3) 

(7.41) 

so that the angles between the beams are preserved. In order for the frame to be in 
equilibrium the forces and moments acting at a joint must sum to zero. Hence we have 

E R(')F(')n(') =0 (7.42) 

iEjoint 
E R()M(')n(') =0 (7.43) 

ic-joint 

where n(') is either +1 or -1 depending on the direction of the beam as illustrated 
in Figure 7.4. The rigid joint is a mathematical idealisation that works for most ap- 
plications to building frameworks. Another idealisation is the pin joint in which the 
rotations are allowed to be discontinuous and the moments are zero. In a building 
framework the joints are effectively rigid under normal circumstances. In high temper- 
ature conditions, such as a fire, joints may exhibit semi-rigid behaviour in which the 
rotations are no longer continuous and the moments obey an experimentally derived 
relationship with the angle differences. 

7.2.5 Analytical solutions 

Solutions of (7.35) with any combination of boundary conditions from Table 7.1 may 
be found by direct integration and the solution of a linear system in terms of the beam 

strains (i. e. u', u", u" and 0'). For problems in which the matrix D is diagonal the 123 
full vector equation decouples into 
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Figure 7.4: Equilibrium of joints. The value of n(') is +1 if the beam is pointing towards 
the joint and -1 if it is pointing away. 

_d i - Dil 
ýu1) 

= fl + 
dQ, (7.44) 

x dx dx 
d2 22 U2 d2 Q2 

U- 
x2 

( ) 
D22 

dX2 
+ = f2 iX-2 (7.45) 

d2 22U3 d2 Q3 
ä-X2 

( 
D33 _ dX2 = f3 + 

dx 2 (7.46) 

d 
- 

(D44 d0) 
- = 0. (7.47) ix u x 

Cases where D is constant are relatively easy to solve by direct integration. Three 
such examples are considered here. 

A rigidly fixed beam 

Consider the pure bending problem where f, = f2 =0 with f3 constant and the beam, 
which is of unit length, rigidly fixed at each end. Integrating (7.46) twice gives 

D33 
d2U3 

= 
f3 

x2+ ClX + C2- (7.48) 
dx 22 
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Dividing by D33 and integrating twice more gives 

Using the fact that 

we have the solution 

u3 = 
f3 

x4+ 
C1X3 

+ 
%2 

+ C3X + C4- (7.49) 
24D33 62 

U3(O) = U13(O) = U3(1) = U13(1) =0 (7.50) 

u3 : --- 

fi 
x 

2(X 
_ 1)2. 

24D33 

A simply supported beam 

Consider the same beam but simply supported at each end. Using the fact that 

M11 2 (0) : -- M2 (0) M2 (1) 
---2 M2 (1) : -- 0 (7.52) 

and applying it to (7.46) we have that 

M2(x) = D33 
2 L3X(X 

_ 1). (7.53) 
2 

Dividing by D33 and using 
U3(0) ý-- U3(1) ý-- 0 (7.54) 

gives the solution 
U3(X) 

f3 
X(X - 1)(x 2_x- 1). (7.55) 

24D33 

A simple frame with rigid joints 

Consider now an assembly of three beams in the X1X3 plane, as illustrated in Figure 7.5, 
with an applied continuous vertical force along the horizontal beam. Locally, each beam 
may be mapped onto the [0,1] interval on the x, axis and satisfy equations (7.44) and 
(7.46). If the joints between the beams are rigid then the displacements and rotations 
at the joints are continuous. Also, since the frame is in equilibrium, the resulting forces 
acting on the joint and the resulting moments acting on it must be zero. For this plane 
example this means that, for continuity at the joints, 

(1) (2) (2) 
u, (1) 010 (ul (0» 

, 
(ul (1) 01 

u 
(2)(0) (2)(1) 

, 
(' 00 U3 u3 -1 0 
(1)(1) 00 1) o(2)(0) o(2)(1) 

) 

0222=(00 

(3) 
u 

(13) 
(0) 

u3 (0) 

0(3)(0) 2 
(7.56) 
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X3 

I Xi 

X3 

Each beam is modelled by (7.44) and (7.46) in the local 
co-ordinate systems indicated. 

Figure 7.5: Simple frame with rigid joints before deformation 

and, for equilibrium at the joints, 

F, (u (1)) 01 0) (F 1 
(U(2)) 

F (U(2)) F3(u(')) 10030 

001M2 (U(2)) 0 

( 

M2(U(1)) 

) 

at x=1) atx=O 

(0) 

F1 (U(2» 70ý 
F 3(U(2» -1 00 F3(u(3» ý0) 

M2 (U(2» 001 M2W3» 0 

) 

atx=l 
-(01 

0) ( Fl (u(3» ) 

at x=0 (7.57) 

We assume that the frame is rigidly supported to the ground so that 
(1) (3) 

U1 (0) 
0U (3)(1 0 U 

(31 (0) 3 
0(1)(0) 0 0(3)(1) 0 

(2) 

-= 

(0)I( U21 (1 )(0)- 

(7.58) 

After integrating (7.44) and (7.46) and applying the boundary conditions in (7.58) we 
have 

u 
(1) 

3 
CJX 

2 (7.59) 
(C2X 

+ C3X 

) 

(2) C4X + C5 
u 13X4 + C6X3 + C7X2 + C8X + c9 

(7.60) 

24 

U 
(3) 

= 
C, 1 (X 

clo(x - 1) 
2 

(7.61) 
- 1)3 + C12(X - 1) 

) 
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Figure 7.6: Frame after deformation. Displacements scaled by 50. 

where cl ... C12 are constants to be determined. Application of (7.56) and (7.57) leads 
to a system of twelve equations in the twelve unknowns which may be solved using 
a mathematical computer package, e. g. Mathematica. After obtaining the constant 
values the solution is found to be 

u 
20 00 

2 (7.62) (399-400x)x 
24060 

1-2x 
U(2) 

24060 
x3 x4 1 67x 267,2 (7.63) 

+ io- -oo - Wl 0- - WO 20 10 20 

u 
(3) 2000 

JZZ1)2 -1) ý400x (7.64) 
24060 

and the deformed frame is illustrated in Figure 7.6. 

7.2.6 Weak form for a single beam 

With the equations in the form L(u) =f we can obtain the weak form for a single beam 
equation in the usual way. Using vector/matrix notation the weak form is obtained by 
pre-multiplying by vEH=H, (D H2 0 H3 0 H4 and integrating over the length of the 
beam. We obtain, using integration by parts, 

0 
(7.65) fT vdx 

11 (-SIV1 + S21IV2 + S"V3 - S41V4) dx 10 

013 

+ S3V3 + S4v) dx + end terms (7.66) = 
10 (SIV1 + S2V2 4 

1 

= 
10 B (V)T (DB (u) - Q) dx + end terms (7.67) 

where the end terms are given by 

I11 (7-68) IV2 - S2V2 V3 S3V3 - S0410 end terms = I-SlVl + S2 I+S3 

= -[(Vl V2 V3)F+(V4 -V3 V2 0' 
(7.69) I )Mll 
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Thus we have 

a (u, v) = (f , v) + (Q, B (v)) - [(vi V2 V3)F+(V4 -V31 V21)MIO 
I 

where 
I 

a (u, v) = 
fB (V)T DB(u) dxl 

0 

(f, v) =vTf dxl 
0 
1 

(Q, B (v)) =f B(V)T Q dxl. 

0 

(7.70) 

(7.71) 

Regarding the test space H, the integration by parts requires that H1, H4 C H1 (0,1) 
and H2, H3 cH 2(0' 1). The complete specification of H depends on the boundary 
conditions of the problem being considered which typically involve u, F or M being 
specified at an end, x, =0 or xj = 1. In the case of a single beam we assume that the 
boundary conditions of the problem and the test space H are such that 

[(Vl V2 V3)F+(V4 -V3 V2 
I 1) MIO: -- 0- (7.72) 

Thus to summarize, we have a test space H and we seek a suitable displacement u 
satisfying 

a(u, v) = (f , v) + (Q, B (v)) (7.73) 

for all v 

7.2.7 A rigid frame structure 

For a frame structure consisting of nb beams we have nb vectors, 

U(k) = U(k)(Xl) for 0<x, <1 (k), 

and nb equations of the form 

L (k)(U(k)) 
=f 

(k), 1<k< nb (7.74) 

together with boundary conditions and conditions relating to the joints. For a rigid 
frame the joint conditions are the continuity equations (7.40) and (7.41) and the equi- 
librium equations (7.42) and (7.43). 
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With a (U (k), V (k)), (f (k), V (k) ) and (Q(k), B (k) ) being the quantities corresponding to 
(7.71) for the kth beam, the weak form is obtained by considering 

nb nb 
E(L (U(k)) 

IV 
(k)) 

=E (f (k), 
V 

(k)) 

k=l k=l 

for test vectors V(k), 0<k< nb which satisfy 

VI V4 
(k) 

V1 V4 
R(k) V2 -V 

I= R(j) 3 V2 -V3 
V3 vI V3 v1 2)2 

at the joint between beams k and j. As in the case of a single beam we obtain 

nb nb nb 
E a(u 

(k) 
Iv 

(k)) 1: (f (k), 
V 

(k)) + 1: (Q (k), 
v 

(k)) 

k=l k=l k=l 
nb 

1: [(Vl 
V2 V3 )(k) F (k) +( V4 

k=l 

(7.75) 

(7.76) 

(7.77) 

-vi 1)(k)M(k) 
j(k) 

3 V2 
10 (7.78) 

and from the boundary conditions, continuity conditions and joint equilibrium condi- 
tions this reduces to 

nb nb nb 

E a(u 
(k) 

Iv 
(k)) = 1: (f (k), V (k)) +E (Q (k), V (k)). (7.79) 

k=l k=l k=l 

Thus, with appropriate re-definition of u, v, f and Q and for the test space H and 
with 

nb 
a(u, v) Ea (U (k), 

V 
(k)) 

k=l 
nb 

(f, V) E (f (k), 
V 

(k)) 

k=l 
nb 

(Ql V) 1: (Q (k), V (k)) 
k=l 

we can again express the weak form in the standard way as 

a(u, v) = (f , v) (Q, 

for all v in H. 

(7.80) 

(7-81) 
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7.2.8 A pinned and semi-rigid frame structure 

In the previous subsection we considered a frame whose joints were rigid so that the 
rotations between connecting beams are continuous. This is an idealisation in which 
the joint resists the moments acting upon it. The other extreme is a pin or ball joint 
which does not resist the moments so that, at the joint, 

M(k) =0 Vk E joint. (7.82) 

The rotations are no longer continuous between the beams so that the only continuity 
condition is 

U1 
(k) W 

R U2 R(j) U2 (7.83) (k) 
(U3) U') I (U3 

This is also true of a semi-rigid frame. At a semi-rigid joint each moment is governed 
by an M-0 relation where 0 is the difference between the two angles. If the relations 
are linear then the joint stiffness, k= dm, is constant and dO 

ki (O(k) 
_ O(j)) 

M(k) (k) U) k2(-U3 + U3 Y (7.84) 
(k) 

_ 
U)) I k3(U2 U2 

where kl, k2 and k3 are the joint stiffnesses for the rotations about the xl, X2 and X3 
axes. 

In the case of the pin-jointed frame the weak form is unaltered. However, for semi-rigid 
frames, the weak form now includes the contribution from each semi-rigid joint. Hence 

nb 
(U (k), 

V 
(k)) + (k) 

_(V(k))l (V(k)y M(k) 
I(k) 

a(u, v) :=E 
(a IN 

32 (7.85) 
k=l 

Only solutions to rigid jointed frame problems are considered in this thesis. 

7.2.9 Norms 

Using (7-80) we define the energy and L2 norms respectively as 

llvll = a(v, v)l (7.86) 

3 (7.87) IIVIIL2 
= 

(V)V)l' 

The two norms are related by the inequality 

C2 
, IIB(v)IIL2 < livil :5 C221IB(v)IIL2 (7-88) 
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where 

C, = min min Amin D (k) (X) (7.89) 
I<k<nb O<X<I(k) 

I )l 
I 

C2 = max max) [, \, n,,, 
(D (k) (X)) (7.90) 

I<k<nb O<x<l(k 

where A,,, i,, (D) and A,,, a,, (D) are the smallest and largest eigenvalue of D. Equation 
(7.88) follows from considering the Rayleigh quotient of D and the fact that D is 
symmetric [12, Pages 15-18]. 

For the purpose of bounding the frame displacement vector in the next section we show 
that 

IIVIIL2 
:5C JIB (V)IIL2 (7.91) 

where C>0. Equation (7.91) is analogous to (2.11) and the argument is similar 
although the details are frame dependent. Consider the case where the frame has just 
two beams perpendicular to one another. Beam 1 is vertical and beam 2 is horizontal 
with the joint at x= 14) for beam 1 and x=0 for beam 2. The base of beam 1 is 
clamped so that 

(1) 
Vl V4 ) 

V2 v3 

v3 v1 
=o 2 x= 

and the joint between the beams is rigid so that 

0 0 -1 
(vlý (1) (2) 

vi 0 1 

) 

0 V2 V2 ( ) 
1 0 0 

ý ) 

v3 x v3 

=O 0 0 -1 V4 
(1) (2) 

V4 
0 

( 

1 

) 

0 

( ) 

-vl 

) 

v1 

(- 

1 0 0 V2 x=IM v 2 x=O 

For 0) we have 

(, )(x) Vl 

(1) V2 (X) 

(1) v3 (x) 

v 
(1) (-, ) 

(V3(1», (x) 

(V2(1», (x) 

V j(1) (0) + 
10 x (vil»'(y) dy 

(1)(0)+f x2 
V2 

0 
(v ( »(y) dy 

0 

v3 
0 

(v( »'(y) dy (1)(0)+f 

0 
(1)(0) + 

I'z(v(1»'(y) dy 
0 

V4 
04 

(V( 
1x 

0 0 
1», (0)+ (V(1»it(y) dy 33 

(V( 
1x 

21», (0)+ (v(1»"(y) dy 2 
0 

(7.92) 

(7.93) 

(7.94) 

(7.95) 

(7.96) 

(7.97) 

(7.98) 

(7.99) 

(7.100) 

102 



from which we get, using (7.92) and the same argument as for (2.10), 

1V1 
I I(V(1»iI 1 

L2 

V2(1) 
I 

2 
I(V(l»iI1 

L2 

V3( (X) 1 1(V(1»i 
3 

11 

L2 

V4(1) (X) -ý"l(1) 
I 

4 
I(V(l»iI1 

L2 

(V3(1»'(X) 
1 1(V(1»ii 

31 
1 

L2 

1 1 (V2( YW 1 (V(1»ii 
2 

Now, 

IM 
2f 

IV, (Y)12 I 
vi 

IIL2 
dy 

0 
IM 

IIVI 112 
1 L2 dy 

0 
)2 I, Vi 112 

1 L2 

Similarly, 

1 (1) 1 IV2 12 (, (, )) 2I I(V(1))i 
2 

II 2 

L2 L2 

1 (1) IV3 I 2 I (, (, )) 21 1 (V(1))i 
3I 

2 I 
L2 L2 

(1) IIN I 2 I I I(V(I))i 
4I 

2 I 
L2 L2 

II(V(1))i 
3I 

2 I < 
- 

(, (, )) 21 1( (1))// 
V3 

2 II 
L2 L2 

1)), 
2 

11 (V( I 2 I 
< 
- 

(, (, )) 2I I(V(1)), 1 
2 

112 
L2 L2 

(1) Furthermore, combining the results for V2 and (V2(l))' and similarly for v(1) and (v('))' 33 

we have 

1 (1) 112 (, (, ))4 II(V(1))" 2 IV2 
L2 2 

IIL2 (7.115) 

1 (1) 2 (, (, ))4 II(V(I)),, 2 IV3 IIL2 
3 

IIL2 (7.116) 

Hence we have shown that 

1 (1) vi 1 (7.117) I IIL2 (1(1)) II(V(1))IIIL2 

1 (1) (, (, ))2 II(V(1)),, 1 
V2 

IIL2 

2 
IIL2 

(7.118) 
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1 (1) 
:5 

IV3 II (, (, )) 2 My 11 M II 

L2 L2 

1 (1) 
V4 

1 II (1(1)) 1)y 
4 

ll(v( II 

L2 L2 

3 
1))III II(V( (1(1)) II(V3 1 (9)/III 

L2 / L2 

(V2 (1))III II(V(1)) 1/11 
2 L2 L2 

Hence, from the definition of JIB(v)IIL2' we have 

1 (1) 
:5 ivi 11 (1(1)) JIB(v) IIL2 

L2 

1 (1) 
:5 

IV2 11L2 (, (, ))2 JIB(v) IIL2 

(1) 
:ý 

JJV3 11L2 (, (, ))2 JIB(v) IIL2 

(1) 
:5 

11N 11L2 (1(1)) JIB(v) IIL2 

ll(v('))'Il < 3 
(1(1)) JIB(v) IIL2 

L2 

(V2 < 
(1))III (1(1)) JIB (V)IIL2 

L2 

For V(2) we have 

(2) (X) Vl 

(2) (X) V2 

(2) (X) v3 

(2) (X ) V4 

(V(2»i(X) 
3 

(V(2»t(X) 
2 

(2)(0)+ (j(2) 
(V (2) (y) dy v11 

(2)(0)+ 
(j(2) 

(V(2) V2 
10 

2 )'(y) dy 

(2)(0)+ (j(2) 
(V(2) V3 

10 

3 )(y) dy 

(2)(0)+ 
(1(2) 

(V (2) 
V4 

10 
4 )'(y) dy 

(V(2»t(o) + 
(j(2) 

(V (2) 
3 

10 
3 )"(y) dy 

(V(2»i(0) + 
(j(2) 

(V(2) 
2 

10 
2 )"(y) dy. 

from which we get 

IV(2 (X) 2 IV( ) 
1 

(0) 1 + A/1(2) 
II(V(2))i 

1 
11 

L2 

IV(2)(X)l 
2 

1V (2) 
2 

(O)l + V-1 -(2) 1 1 (V (2) 
2 

11 
L2 

IV(2)(X)l 
3 

IV(2) 
3 

(O)l + Vrl-(2) 
I I(V(2))i 

3 
11 

L2 

IV(2)(X)l 
4 

IV(2) 
4 

(O)l + Afl-(2) 
ý J(V(2)y 

4 
11 

L2 

I(V(2))i(X)l 
3 

I(V(2 
3 

))t(o)l + V-, -(2) II(V(2) 
3 

)"ll 
L2 

I(V(2))t(X)I 
2 

I(V(2 
2 

))t(o)l 
+ Vrl-(2) 

II(V(2)) 
2 

111I 
L2 
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IV(2) (2) (2) (2) (2) 1 (2) In order to eliminate I (O)k IV2 (O)k IV3 (0)1) IN (0)17 IM ) (O)l and KV2 )'(O)l we 
use the rigid joint conditions (7.93) and (7.94) to write 

2 
vi( 

)(0) 
" CllVi( 1) (1(1 

2 
1)( »+ CNV( 1(1» + c13V3(1)(1(1» (7.141) 

(2)(0) 
V2 C2JV(1) (1(1 »+C22V(1)( 

2 
(1)(1(1» 1(1» + C23V3 (7.142) 

(2)(0) 
v3 C3iV1(1) (1(1 »+ C32V2(1)( 1(1» + C33V3(1)(1(1» (7.143) 

(2)(0) 
V4 

1 C41V4( ) (1(1 1 »+ C42(V3( » 1(1(1» + C43(V2(1»1(1(1» (7.144) 
(2»1(0) 

t3 
1 C51 V4( 
) (1 (1 1 »+ C52 (V3( » 1 1 (1 (1» + C53 (V2( » (1» (7.145) 

( (2»t(o) 
t2 

1 C61 V4( 
) (1 (1» + C62 (V3 (1» 1(1(1» + C63(V2(1»1(1(1» (7.146) 

where the Cjj's are constants determined from the orientation of the beams. We have 
shown that 

Ivil)(I('))l C JIB(v)IIL2 (7.147) 

121 (7.148) v( )(1(1))l C JIB(v) 1IL2 

v3 1 (1) (1 (1)) 1C JIB(V)IIL2 (7.149) 

IV44(1)(I('))l C JIB(v) 1IL2 (7.150) 

31 (7.151) l(vo)'(I('))l C JIB(v) 1IL2 

21 (7.152) l(vo)'(1(1))l C JIB(v) 1IL2 

where C is a generic constant. Therefore, 

IVl(2)(O)I :5C JIB(v)IIL (7.153) 
1V (2) (O)l 

2 
2 

C JIB(v)IIL2 (7.154) 
IV(2)(O)l 

3 :5C JIB(v)IIL2 (7.155) 
IV (2) (O)l 

4 :5C JIB(v)IIL (7.156) 
I(V(2))i(O)l 

3 

2 
:5C JIB(v) IIL (7.157) 

I(V(2))i(o)l 
2 

2 

:5C JIB(v)IIL2 (7.158) 

Substituting these results into (7.135)... (7.140) we now have 

IV(2) (X), 
1 CIIB(V)l1L2+ (2) 

IV(2)(X), 
2C IIBMIIL2 + (2) 

IV(2)(X), 
3 CIIB(V)i1L2+ l(2) 

IV(2)(X)l (27) 
4C JIB(V) 11L2 + 

, (V(2»i(x ), 
3C IJB(v)IIL, + �, 

/1(2) 

j(V(2»t(X), 
2 CIIB(v)IIL, +ý'11(2) 

(V(2))/ 
1 

IIL2 

(V(2))i 
2 

IIL2 

(V(2))i 
3 

IIL2 

(V(2))i 
4 

IIL2 

(V(2))n 
3 

IIL2 

(V(2))// 
2 

IIL2 

(7.159) 

(7.160) 

(7.161) 

(7.162) 

(7.163) 

(7.164) 

105 



We know that, from the definition of JIB(v) 1IL27 

II(V(2)yll 
1 JIB(v)IIL2 (7.165) 

L2 

II(V(2)) 
2 

it 11 

L2 JIB(v)IIL2 (7.166) 
II(V(2) 

3 
)"IIL2 JIB(v)IIL2 (7.167) 

II(V(2) 
4 

)1 11 

L2 JIB(v)IIL2 (7.168) 

which may be substituted into (7.159) ... 
(7.164) to giv 

Ivi 2) (X) I<C JIB(v) 1IL2 

IV(2)(X)l <C JIB(v)IIL2 + ý'Il (2) 
2 

IV(2)(X)l :5 CIIB(v)IIL2+Vrl (2) 
3 

IV(2)(X)l :5C JIB(v) 1IL2 
4 

I(V(2))i(X)l <C JIB(v)IIL2 3 

I(V(2))t(X)l :! ý C JIB(v)IIL2 2 

Since 

e 

(7.169) 
II(V(2))t 

2 
IIL2 

(7.170) 
II(V(2) 

3 
)IIIL2 (7.171) 

(7.172) 

(7.173) 

(7.174) 

11 (V(2))1112 
1(2) 

I(V(2))i(Y)12 
1(2) 

C2 112 < 1(2) C2 112 2=f2 dy: 5 JIB(v) L2 dy JIB(v) L. L2 0 

fo 

implying that l(v(2))'(x)l :5C JIB(v)IIL2 with a similar result for I(V(2))I(X)j, we have 23 

V 
(12) (X) 1 1 C IIBMIIL2 (7.175) 
(2) (X) 1 V2 C IIBMIIL2 (7.176) 

IV(2)(X)l 
3 :5C IIBMIIL2 (7.177) 

IV(2)(X)l 
4 :5C JIB(v) 11L2 (7.178) 

1 (V(2»t (X) 1 
3 :5C JIB (V)l1L2 (7.179) 

1 (V(2»i (X) 1 2 :5C JIB(V)l1L2 ' (7.180) 

Finally, upon integrating the above inequalities we have, 

v 
(2) 
1 

IIL2 
C JIB(v) 1IL2 (7.181) 

J (2) 
V2 

IIL2 
C JIB(v) 1IL2 (7.182) 

(2 11 V3 
)IIL2 

<C JIB(V)IIL2 (7.183) 
(2) JIV4 IIL2 

C JIB(v)IIL2 (7.184) 
II(V(2))i 

3 CIIB(v)IIL2 (7.185) 
L2 

II(V(2) 
2 

)IIIL2 C JIB(v)IIL2 (7.186) 
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For each beam we have 
I (k) 2= JIV(k) 2+ 11V(k) 22+ 11 

V 
(k) 2 

)112 v23 
11L2 11L2 11L2 11L2 

+ IIV(k)IIL2 
4 :5C JIB (V 

L2 

so that, for the frame, 

IIVI12 + 
JIV(2)112 

<C JIB(v) 112 
L2 = 

IIV(')II'L2 

L2 L2 

(7.187) 

(7.188) 

That proves (7.91) for the particular frame. For any rigid-jointed frame, provided at 
least one point is clamped anywhere in the frame, the same argument may be used to 
show that there exists a constant C such that 

1 (k) (X) 1 vj :5C JIB(v) 11L2 (7.189) 

for k=1... nb and j=1... 4. Hence (7.91) holds for any rigid-jointed frame. 0 

7.2.10 Bounds for u in the L2 norm 

We seek bounds for the L2 norm of u and its derivatives in terms of the load vector 
and the thermal load vector Q. From (7.81) with v=u we have 

IIUI12 < 
_ 

IIAL2 IlUlIL2 + IIQIIL2 JIB(U)IIL2 (7.190) 

Using (7.88) and (7.91) we then have 

112 "" C Ilf 1IL2 (7.191) C, JIB(u) L2 JIB(U)IIL2+ IIQIIL2 JIB(u)IIL2 

so that 

JIB(u)IIL2 C, cl (7.192) 
c 

IIAL2 +1 IIQIIL2 1 
IIUIIL2 

c2 
Ilf 1IL2 +c IIQIIL2* (7.193) F, cl 

7.3 Finite element approximations 

7.3.1 Definition 

Let V=V, 0 V2 E) V3 0 V4 be a finite dimensional subspace of H. The finite element 
solution, Uh E V, satisfies 

a(Uh, V) = (f, v) + (Q, B(v)) (7.194) 
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for all vEV. The error in the finite element solution is defined as 

or, beam by beam, as (k) (k) (k) 
e- Uh 

In the next section this will be analysed in both the energy norm and the L2 norm. 
The norms are evaluated by summing the integrals over each element of a beam. Let 
a(w(k) 7 V(k))ýIi' IIW(k)jIni' (W(k)'V(k))n, and IIW(k) IIL2pj) denote the contribution of the 
i'th element to a 

(W (k), 
V 

(k)) 
7 

11 W 
(k) III (W (k), V (k) ) and IIW(k) IIL2. Then, if ne(k) is the 

number of elements in the k'th beam, 

a(w 
(k), 

V(k)) = 
ne(k) 

a(w(k), V(k))Oi 

IIW(k)112 = 
ne(k) 

IIW(k)112 
ni 

(W(k), V(k)) = 
ne(k) 

(W (k), 
V 

(k)) 
ni 

IIW(k)112 
L2 

ne(k) 
IIW(k)112 

L2(ni) 

eý U-Uh (7.195) 

(7.196) 

(7.197) 

(7.198) 

(7.199) 

(7.200) 

where 

a(w 
(k) 

Iv 
(k))Oi 

= 

IIW(k)112 
ni 

(W(k), V(k))ni = 

IIW(k)112 
L2 (fli) 

Xi 
IB 

(W(k))T D (k)B (V(k) ) dx 
Xi-i 

Xi fB (W(k))T D (k)B (W(k) ) dx 
Xi-I 

Xi f (W(k))TV(k) dx 
-Ti-i 

xi 
f (w (k))TW(k) dx. 

xi-I 

(7.201) 

(7.202) 

(7.203) 

(7.204) 

7.3.2 Implementation 

Using linear and cubic approximations 

Each beam element is mapped onto the standard element in the interval (0, h) where 
(k) h is the element length. The vector Uh , over the i'th element, takes the local element 

form 
(k) 

= NU(k, i) 
h (7.205) 
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where the local basis function matrix N has the form 

NJ 00000 N2 00000 

N0 
N3 000 N5 0 N4 000 N6 (7.206) 

00 N3 0 -N5 000 N4 0 
-N6 0 

000N, 00000 N2 00 

and the basis functions are 

Ni =1- 
Eh' (7.207) 

X N2 = -1 (7.208) 
h 

N3 = 
(1 

-X2 
2x), (7.209) 

h) 
(1+7 

N4 =2 
(3- 2x (7.210) 

N5 =X1-V (7.211) 
h 

X2 X) 
. N6 

hh 
(7.212) 

The degrees of freedom U(k, i) 
,U 

(k, i) 
and U(k ") are the displacements at x=0 and 

U (k, i) U (k U(k 45 
") and 6 

") are the rotations at x=0 (the negative signs in column 5 and 
(k, i) (k, i) 11 are because 02 = -U'3)' Similarly, U7' to U12 are the displacements and rotations 

at x=h. The derivation of a global system of equations proceeds in a similar fashion 
to that derived in Chapter 3 resulting in a local stiffness matrix Ki and a local force 

vector Fi. An additional consideration here is the orientation of the beam element with 
respect to that of other elements in the frame. To maintain the physical meaning of 
the degrees of freedom at the joints and ensure continuity it is necessary to rotate the 
local degrees of freedom at the joints into a global orientation. In terms of the beam 
rotation matrix R (k) the local degree of freedom vector, U(k i), maps to the global 
degree of freedom vector, U, by the relation 

R (k) 000... 10... oo... 

0R (k) 00 
U(k, i) ... 01... oo... 

00R (k) 00010U 
(7.213) 

000R (k) 
... oo... 01... 

where the position of the I's corresponds to nodes of the i'th element (the other 
elements, indicated by the ..., are 3x3 zero matrices). Hence the local stiffness 
matrix Ki is postmultiplied by the matrix q, (k))T 

where 

R (k) 000 

R (k) 00 

R (k) 

R (k) 
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To assemble the element matrices and element force vectors properly it is also necessary 
to premultiply the local stiffness matrix and the local force vector by k (k); i. e. the 

element matrices that are assembled are iZ(k)Ki (k(k))T. 

Using higher-order polynomials 

The analysis in Chapter 3 illustrated how the accuracy of the finite element method 
relates to the degree of polynomial used to represent the finite element space. Analysis 
in the next section confirms this for finite element frames. It also establishes some 
other results that depend on using at least quadratic approximations for V, and V4. 
We consider here such implementations. Three cases are detailed using cubic, quartic 
and quintic approximations for V2 and V3. 

Using quadratic and cubic approximations 

The degree of polynomial is increased in V, and V4 by adding a node in the centre of 
each element and increasing the local degrees of freedom by 2. Hence U(k ') has 14 com- 
ponents and, with the 5th and 6th components of U(", ') representing the compression 
and twisting at the central node, N has the form 

0 N3 000N, 5 000 N4 000 N6 
(Nl 00900 N7 0 N2 000 

-0 

0 ). 
(7.214) 00 N3 0- N5 00000 N4 0 N6 0 

000 Ni 000 N7 000 N2 00 

The new quadratic basis functions are 
1 

Nj(x) = T2-(2x - h)(x - h), (7.215) 

1 
N2(x) = T2-(2x - h)x, (7.216) 

1 
N7(x) = -T-24x(x - h). (7.217) 

The local degree of freedom vector, U(k, i), is related to the global vector, U, by 

R (k) 0 z z 0 0 (--- 1 0 z z 0 0 

0 R (k) z z 0 0 ... 0 1 z z 0 0 

ZT ZT 1 0 ZT ZT -*ZT ZT 1 0 ZT ZT U(k, i) 
ZT ZT 0 1 ZT ZT ... ZT ZT o 1 ZT ZT 
0 0 z z R (k) 0 ... 0 0 z z 1 0 

0 0 z z 0 R (k) \... 0 0 z z 0 1 
(7.218) 

where z is a3x1 zero vector. In this implementation the degrees of freedom stored 
in U that represent the compression and twisting at the central node are with respect 
to the local orientation of the beam and have no physical interpretation in the global 
frame. 
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Using quadratic and quartic approximations 

Increasing the degrees of freedom per element to 16, with the extra 2 representing the 
bending at the central node, the matrix N has the form 

N1 00000 N7 000 N2 00000 

(7.219) 0 N3 000 N5 0 Ns 000 N4 000 N6 

N00 N3 0 
-N5 000 Na 000 N4 0- N6 0 

000 Ni 00000 N7 000 N2 00 

and the new quartic basis functions are 
1 

)2 N3(x) = -F4(x-h (2x-h)(4x+h), (7.220) 

1 
-x 

2 (2x - h)(4x - 5h), (7.221) N4 (x) j4- 

N5 (x) 
-x(2x - h)(x - 

h)2, (7.222) ý, 3- 
12 

(2x - h)(x - h), (7.223) N6(x) : -- ýix 

N8 (x) =1 -16x 
2x- h)2. (7.224) j4 

The local degree of freedom vector, U(k, i), is related to the global vector, U, by 

(R(k) 0 0 z0 0 1 0 0z 0 0 
0 R (k) 0 z0 0 0 1 0z 0 0 

0 

ZT 

0 

ZT 

1 

ZT 
z0 
1 ZT 

0 
U(k, i) 

ZT 

0 

ZT 

0 

ZT 

1Z 

ZT i 
ZT 

ZT 

ZT 

ZT 
U. 

0 0 z zR (k) 0 0 0 0z 1 0 

0 0 z z0 R (k) 0 0 0z 0 1 
(7.225) 

In this implementation all displacements are represented by degrees of freedom at the 
central node so it would be practical to rotate these onto the global orientation of the 

(k) frame. Hence, by replacing the I in the left hand side with R, the global vector U 
stores all displacements in terms of the global coordinate system. 

Using quadratic and quintic approximations 

Increasing the degrees of freedom to 18 per element N has the form 

, N 0 0 0 0 0 N7 0 0 0 0 0 N2 0 0 0 0 to 

N=( o N ' 0 0 0 A 0 A 0 0 0 A 0 A 0 0 0 
o o N3 0 - N5 0 0 0 N8 0 -Ng 0 0 0 N4 0 -N6 0 
0 0 0 Ni 0 0 0 0 0 N7 0 0 0 0 0 N2 0 0 

(1226) 

where the new quintic basis functions are 
1 

)2(X )2 
, 5(2x -h (7.227) N3(x) =7-h (6x + h), 

ill 



N4 (x) = 
1 

_ W_X2 5 (2x )2 
-h (6x - 7h), (7.228) 

N5 (x) = 
1 

T4-x(2x - )2(X )2' h-h (7.229) 

N6 (X) = 
1 
ý-4 x2 (2x - ýW- )2(X h- h), (7.230) 

N8 (x) = 
1 

16x 2x 
T-4 - h)2, (7.231) 

Nq (x) = 
1 8X2 (2x T4- - h)(x - h)2. (7.232) 

The local degree of freedom vector, U(k, i), is related to the global vec tor, U, by 

R (k) 0 0 0 0 o I o o o o o 

0 R (k) 0 0 0 0 ... 0 1 0 0 0 0 

0 0 1 0 0 0 
U(k, i) 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 0 1 0 0 

0 0 0 0 R (k) 0 0 0 0 0 1 0 

0 0 0 0 R (k) 0 0 0 0 0 1 

U. 

(7.233) 

In this implementation all displacements and rotations are represented by degrees of 
freedom at the central node and it would be practical to map these onto the global 
orientation of the frame. Hence, by replacing the Is in the left hand side with R (k) is) 
the global vector U stores all degrees of freedom in terms of the global coordinate 
system. 

7.3.3 A note about solving the system 

For one dimension problems, a direct method such as Cholesky decomposition is most 
efficient if the nodes can be numbered so as to give a small band width of the matrix 
[291. This is certainly true for a single beam or the frame in Figure 7.5 where the nodes 
could be numbered consecutively. The Cholesky method may only be implemented if 
the full band width of the matrix is stored since the decomposition requires the storage 
of matrix elements between the diagonal and the outer beam which may include entries 
outside of the compressed matrix structure. For a more complicated frame, where more 
than two beams meet at a joint, the Cholesky method cannot be used with compressed 
row storage on the full frame matrix. If a direct solver was to be used then the system 
would need to be decomposed into direct solvable subsystems, typically one per beam, 
involving degrees of freedom at internal nodes then coupled by solving another system 
in the degrees of freedom at the joints. This is difficult to set up in a computer 
program. However, a partial Cholesky decomposition may be used as a preconditioner 
to the Conjugate Gradient method [29] which is easy to implement. If the nodes are 
numbered consecutively along each beam, then the partial Cholesky preconditioner 
notably reduces the number of iterations in the Conjugate Gradient algorithm. 
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7.4 A priori error estimates 

7.4.1 Energy norm estimate 

Without actually calculating Uh there are some basic results that can be deduced about 
the the error, e. Firstly, since 

a (u, v) = (f 
, v) + (Q, B (v)) (7.234) 

a(Uh, V) = (f, v)+(Q, B(v)) (7.235) 

for all vEV, we have the orthogonality relation, 

a(e, v) = 0. (7.236) 

This means that we can write 
Ile112 = a(e, e) = a(e, u- v) (7.237) 

for any vEV. Applying the Cauchy Schwarz inequality and dividing by Ilell gives us 

Ilell < Ilu - vIl. (7.238) 

In particular we may choose v to be the interpolant to u in V. Let us denote the 
interpolant by Ilu. Hence we have the familiar result 

Ilell :ý Ilu - Hull (7.239) 

which means Ilell behaves no worse than the energy norm of the interpolation error. 
Using (7-88) we have, in terms of the L2 norm, 

llell: 5 CIIB(u - IIU)JIL2- (7.240) 

Using the Peano kernel theorem [27] it was shown in Chapter 2 that, for a function 
f (x) interpolated by a piecewise polynomial of degree p, denoted by rIpf (x), 

1-nilf (p+1) 
:5 ChP+ 11L2 (7.241) 

11 
Z 

(f(X) 
- 

ilpf(X» 
ýIL2 

where C is a generic constant and h is the maximum element length. This holds 
provided f (P+l-n) exists within each element. This is certainly true of u hence we can 
express JIB(u - 1, U)IIL2 in terms of h. Let p, denote the order of polynomials in V, 
and V4 and let P2 denote the order of polynomials in V2 and V3. Then, using (7.241), 
we have 

11IL2 (7.242) ll(Ul I'PlUlYIIL2 ChPl IlUl 

11 (U2 ChP2-1 Ilu" (7.243) IlP2U2)"IIL2 
2 

11 
L2 

11(U3 IlP2U3)"IIL2 < Ch P2-1 II U13/l/ L2 (7.244) 
jl(U4 rIPlU4)11IL2 

:5 ChPl lIU1411IL2 (7.245) 
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Hence, to leading order of h, 

where 

so that 

7.4.2 L2 norm estimate 

JIB(u - 1, U)IIL2 < Cht (7.246) 

minlPli P2 - 1} (7.247) 

Ilell :5 Cht. (7.248) 

Using the Nitsche technique [141 we may use (7.246) to obtain an asymptotic estimate 
of the error in the L2 norm. The trick is to let 0EH satisfy 

L (k)(O(k)) 
e 

(k) 
0 (7.249) 

(k) (k) Q(k) where LO is defined as the vector operator equivalent to L with = 0. Then, 

nb 
1 12 (k) (o (k) (k)) 1: (Lo 

e jel L (7.250) 2 
k=1 
nb 

Ea (O(k) e 
(k)) (7.251) 

k=1 
nb 

Ea (O(k) _ V(k) ,e 
(k)) (7.252) 

k=1 
nb 

1: 11ý5(k) 
_ V(k)JJ 

11 
e 

(k) 11 (7.253) 
k=1 

nb Ile (k) 11 CE JIB (, O(k) _ V(k)) 
II (7.254) 
L2 

k=1 
<C 11B(O - V)11L2 11ell (7.255) 

for any vEV. Hence, by equation (7.246), 

1 112 
- 

le L2 < Cht JIB(O - V)lIL2 (7.256) 

Now 

22 112 112 JIB(O 
- v)112L2 = II(Ol - Vl)'IIL2 + 11(02 - V2)111IL2 + 11(03 - V3)" L2 + 11(04 - V4Y L2 

(7.257) 

Since, within an element, vi and V4 must be at least linear and V2 and V3 must be at 
least cubic we can choose v, and V4 to be the linear interpolants to 01 and 04 and 
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choose'V2 and V3 to be the Hermite cubic interpolants to 02 and 03- With these choices 
we have, from (2.40), the following bounds 

11(01 
- 

II10I)IIIL2 ChIl Oil 11 L2 

11 (02 
- 11302) It IIL2 ChIJO"11IL2 2 

11(03 
- I1303)"IIL2 ChI1013"JIL2 

11(04 
- rIlO4)11IL2 ChII01411IL2* 

(7.258) 
(7.259) 
(7.260) 
(7.261) 

These will be used to deduce the error estimate for the general case. For the special 
case of pure bending we will use the higher order bounds 

211 ///IIL2 11 (02 - 11302)"Il L2 Ch 012 

2 110"// 11(03 - I1303)"IIL2 Ch 
3 

11 L2' 

We will show that, for the general case, 

so that 

11011 IIL2 C Ile 1IL2 

I I" 102 1IL2 C Ile IIL2 

11013 //IIL2 C IlelIL2 
1014 1 11IL2 C IlelIL2 

JIB(O - V)IIL2 :! ý Ch IlellL2 ' 

Then, by equation (7.256), 
JjelIL2 < Cht+'. 

For the special case of pure bending where 01 ý 04 =0 we will show that 

I 1/11IL2 C Ile IIL2 1012 

1 //1IIL2 C Ile IlL2 1013 

so that 
IlelIL2 < ChP2+1. 

In order to show (7.264) to (7.267) we define the function ý to be such that 

DB(O). 

Then 
01 

el 
/m 2 e2 

03 e3 

- 
ý4 e4 
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Immediately we have 
F"11 

IIe1IL2 (7.275) 
L2 

jjý ... 11 
2 IlelIL2 (7.276) 

L2 
1ý3 I ///111L2 Ile IIL2 (7.277) 
F4 11 

11 e 
IIL2 (7.278) 

L2 

and, by (7.273), 

1ý11 C Ile 1IL2 

1ý1211 C IleIIL2 

1ý"l 3 C Ile IlL2 

1ý1 1 4 C IlelIL2 

From (7.274), (7.280) and (7.281) it follows that 

.. 1 :5C Ile IIL2 
2 

.. 1 :5C Ile I1L2 
3 

M 
since, for ý2 

1 
ý"(x) 

= e2 2 
x 

ý'2(0) +f e2(y) dy 
0 

xy 
"(O)X + e2(z) dz dy. '(X) '(0) + ý'2 ý'2 ý'2 if 

00 

Putting x=1 into (7.287) gives us 

1 ýII1 (0) 1 loll(O)i + 1011(1)1 212+ 11e211L2 

Cilel1L2 

then, from (7.286), 

1ý`(x)j :5 1ý'(O)j + Jje2llL2 C llelIL2 22 

This implies (7.283). An identical argument for ý3 leads to (7.284). Using (7.273) with 
the knowledge that D is non-singular we can write 

1= ajjý' + aJlf + aJ" (7.291) 123 
02 = aJ' + a22ý11 + a23ý" (7.292) 123 
03 = aJI + a23ý" + aJ11 (7.293) 123 
01=1 4 a44ý4. (7.294) 
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Differentiating (7.294) gives us 

04 = a44ý14 + a4AI 

so that, assuming a44 and a' are bounded, 44 

1041 :5 Clý'41 + Clý'41 

<c 11 
4 

11ý41IL2 
+C 

Pf IIL2 

"C IlelIL2 +C JJB(ý) IIL2 

"C IlelIL2 +C JIB(O)IIL2 

"C IlelIL2 +Clle 1IL2 
* 

Hence, we have 
10"1 :5 Ile IIL2 

4 

from which we deduce (7.267). Similarly, on differentiating (7.291), we have 

lo'll C Pi 
23 

"IIL2 +C 
F/111IL2 

+C 
F"I IIL2 

:5C IlelIL2 1 

due to (7.279), (7.283) and (7.284), which implies (7.267). Differentiating (7.292) gives 
us 

02 a 2ý1 + a22ý 1 
23 3' (7.304) a1201 +112+ a2202 + a2303 + a/ 

Using the previous results of this section and assuming that the aij's and their required 
derivatives are bounded we have 

10'"1: 5 C lie 1IL2 
2 

Hence, along with a similar result for 0'", we deduce (7.265) and (7.266). 3 

For the special case of pure bending (7.304) reduces to 

0 1/1 1/1 1 
= a22ý +a 2ý"2 + a23ý1// + a2A 22231 

// 

Differentiating (7.306) gives us 

If// - 11/1 n ~il -"/I I -"/ I/ -/I 02 = a2202 + 2a' -'" + 2a2303 + a2303 2202 + a2202 + a2303 

(7.305) 

(7.306) 

(7.307) 

All the ý2 and ý3 terms in (7.307) have been shown to be bounded in terms of Ile IIL2' 
Therefore, assuming that the aij's and their required derivatives are bounded, we may 
deduce (7.270). Similarly we deduce (7.271). 
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7.4.3 Pointwise estimates at connecting nodes and joints 

The pointwise estimates described in this section rely on the existence of suitably 
smooth and bounded functions that solve particular frame problems involving the Dirac 
delta function in the load. These functions are similar in concept to Green's functions 
(see, for example, the books by Stakgold [311 and Melnikov [23]) and so are referred to 
as such here. 

We consider the pointwise error, ej()(z), which is the j'th component of the error 
vector in the m'th beam at the point x=z. We define global Green's vector functions 
gT(z, . ), for i=1... 4 and zE (0,1(1)), such that 

ej(') (z) =a (e, gj() (z, -)) i=1... 4. (7.308) 

These are specified beam-wise as g 
ým, k) 

such that 
.7 

nb 
e(m)(z) Za (e(k), gým, 

k) (Z,. » 1 ... 4 (7.309) 
k=l 
nb 

j (k) (k)(gým, k)(Z, : (e 
, 
Lo *»)L2(nk) 

k=l 
nb (k»p(k) (g(m, k) j(k) 

+Z [e(e 
0i=1... 

4 (7.310) 
k=l 

where 
C(V) : -- (Vl V2 V3 V4 -V31 V12 )) (7.311) 

p (k) (V) = 
(k) (V) ) (M 
(k) (V) j 

(7.312) 

(k) and LO is the beam differential operator acting on the k'th beam with no thermal 
load (i. e. Q= 0). For the case where zE (0,1(')) (7.308) holds if 

(k) ým, k) bj(x-z) k=m 
Lo gj (Z) x) = k: hm 

(7.313) 

with rigid joint conditions where bj is a vector whose j'th component is the Dirac delta 
function and other components are zero. For the case where z is at a joint, i. e. z=0 
or z= 1(1), (7.308) holds if 

L (k) 

. jo gým, 
k) (Z, 

.i=0, 
k=l,..., nb (7.314) 

with rigid joint conditions at all joints not corresponding to z. At the z joint we require 
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that 
(bli ) 

(k) -i(k)(g(m, k) (k) 
62j 

Ii )n b3i 

(k)M(k)(g k)) 
t( 

ým 
nM 64j 

kEjoin R0 

0 

where bij is the Kronecker delta function. 

(7.315) 

Regarding the form of g(j"k) it is straightforward to verify that there are 12 independent 
solutions to the homogeneous equation (7.314) (which corresponds to m : 34 k) so that 

9 
ým, k) may be expressed as -7 

12 
ým, k) (Z, X) =Z CýT, 

k)c 
2ýT, 

k)(X) (7.316) 93 1) 13 i=l 

where the CýT, 
k) 's are constants (depending on z) and the a 

(T, k) 's are 12 independent 13 13 

solutions to (7.314). In the m'th beam for the case where 0<z< 1(') j(m'm) may be 9j 
expressed as 

(M, M)(z, E il! ,c j(jm'm) a j(jm'm) x<Z 
gi x) Eý2 

t. 7 ti (7.317) 

=, 
di(jmm)aj(jm'm) (x), z<x :5 l(m) 

where the d ýT, k) 's are more constants. For each z all the constants on all the beams 
V 

are found by applying all the boundary and joint conditions plus jump conditions at 
x=z which may be found by direct integration of bj(x - z). 

Using (7.308) and the orthogonality result in (7.236) we have 

(M) (z) =a (e, g 
ý') (z, .)- ej 

ý3 

for any vEV. Then, using the Cauchy Schwarz inequality, 

le(m)(z)i :5 Ilell 
,) . )-v 11. 

3 
lIgý- 

(7.318) 

(7.319) 

We would like to put V(k) = jjgým, k)(Z,. ) so that we may apply the interpolation result 3 

to g(m, k) (z We can only do this if gj (z, -) is suitably differentiable within an element. 
This is the case when z is a connecting node. We may then deduce that llg3ý`(z 

-) -V 
11 

is of order h'. Hence jej(z)l is of order h2' at connecting nodes for j=1... 4. 

If this convergence rate is faster than the global rate, given by 11ellL., then the solution 
is said to be superconvergent at these points [14, Page 44]. So, for the general case 
where Jje11L2 is order h'+', the finite element method is superconvergent if t>1. 
Considering each component of e individually it is possible that the second and third 
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components converge at the higher (pure bending) rate of hP2+1. Hence we would need 
t>2 to guarantee superconvergence for e2 and e3. However, if it happened that el 
and e4 were zero, the convergence rate at connecting nodes would be h2P2-2 and Jje11L2 

would be order hP2+1. In this case we would need P2 >3 for superconvergence. To 
guarantee superconvergence individually for all components of the error in all cases we 
need p, >2 and p2 > 3. 

7.4.4 Superconvergent derivatives 

We consider here the derivatives of e2 and e3 and show that these are superconvergent 
at the connecting nodes when t>1. We begin by considering, for the j=2 case, the 
derivative of (7.308) with respect to z in the form 

m) nb j(k) De2( (k»T 0 

Z 
(S(k) (g (m, k) (Z, X) B(e 7 

Z az 
2 dx. (7.320) 

k=l 

To justify rigorously why (7.320) is valid we would need to consider precisely the 
properties of 9 

("') (z, x) and specifically we would need to consider all the mixed partial 2 
("')(z, x))/i9z, derivatives. We do not do this here but instead just note that OS(M)(92 

as a function of x, is continuous on the interval (0,1(')) except at x=z where it has 
a jump discontinuity. That is the integrand is not continuous but it is still integrable. 
If the evaluation point is a connecting node then the integrand is a 'smooth' function 

S(k)(g(M, m) of x within each element. This also applies to 3 (z, x)) and so we have, for 
0<Z< 1M I 

(9ej(m) 
= 

nb 
l(k) 

(e(k»T d9 (S(k) (g(�k)(Z, 
x») dx, j=2,3. (7.321) äz- EIB 

- 49z 3 k=l () 

For convenience, let 

(-)(Z) 
=a0 

(-) (Z), ee 3(') (Z) e() (z) e (7.322) 
262 az az 

(m, k) 0 (m, k) (M k) (Z, X) 
0 (M k) 

95 (Z, X) 93 (Z, X), g6 j-92 ' (Z) X) (7.323) 
Oz Z 

then we may write 
ej(m) (z) =a 

(e, gj (z, -)) j=5,6. (7.324) 

Hence, in addition to (7.318) we also have 

ej(') (z) =a (e, gj() (z, -) - v), j=5,6. (7.325) 

As in the j=1... 4 case, by letting v(x) be the interpolant to gý" k) (Z' X) in the x 
variable, we arrive at the conclusion that I e(') I and I e(') I are order h2' at the connecting 56 
nodes. 
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The analysis in the next section requires that, in the case of t=2, the order of 
convergence of e5 and e6 is O(h 4) at the mid-points as well as at the connecting nodes. 
To show this let us consider the mid-point of the m'th element mapped onto the interval 

ýý]. At the mid-point we have 22 

nb (m, k) 
ejm (0) =Za (e, gj (01 .)- V), i=5,6. (7.326) 

k=l 

Let v be the linear interpolant to B (g, (m'm) (0, x)) then 

where 

ej(-) (0) =1 
(O(x) 

- rjo(X»T DB(e(x») dx + O(h 4) (7.327) 
h 
2 

(M m) 0 (x)= B (gj ' (0, x» (7.328) 

and O(x) is the linear interpolant to 0. Now, 

O(x) - rI0(X) 

where 

Hence 

= O(x) -0 
(_h» (1 

_ 
x) + 

(O(x) 
_0 

(h» (1 
+ x) (- 

(1 
22h22 

J+ O(h), h<x<0 
7+ ih) 2- 

(7.329) 
'-x J+O(h), 0<x<h (7 

79 

i= Co+) - 0(0-). (7.330) 

h 
2 

ej (0) = 
'_X 

jT + O(h)] [D(x)B(e(x» - D(-x)B(e(-x»] dx + O(h4). 

(7.331) 

Since Ilell is of order h2 so is B(e(x)) therefore the O(h) term may be taken outside 
the integral and included in the O(h 4) term. Also 

D(x) = D(O) + O(h) (7.332) 

and this O(h) term may also be included in the O(h 4) term. Hence we have 

h 

j(o) = jT 2-7) D(O)B(e(x) - e(-x)) dx + O(h). (7.333) 
2h 

0 
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From the definition of gj it follows that 

0 

D(O)J 
01 

(7.334) 

0 

so that 
h 
2 

ej(0) = jT f( 
-x)(eý(x)-ej(-x»dx+O(h (7.335) 

2h 
0 

By considering interpolants to e2 and e3 we wish to replace the ej(x) - e, (-x) term 
with an expression involving ej(O) and other terms of order no less than h3. Note 
that the choice of interpolating polynomial is not necessarily the same as that used in 

calculating the finite element solution. Considering the Hermite cubic interpolant to 
e2(X) we may write 

e2(X) = e2 
(_ h) 

Nl(x)+e2 
(h) 

N2 (x) + e' 
(_h) 

N3 (x) + e' 
(h) 

N4 (x) +f (x) +0 (h5) 
222222 

(7.336) 

where the basis functions are 

Nl(x) =2 
1)2 (h 
2 

2 

(1 + 1) h m N2(x) = -2 
( 
h 

+. 
l) 2 

22 
(1h 

(7.337) 
N3(x) =h 

1L 
_ 

1) (h 
I 

(1 + 1) 
h2 =-h 1 N4(X) (h +1) *2 

(X-D 
hI 

and the first part of the remainder, f (x), is 

(7.338) 
(P 

-4) 

Since e' (- ýý) and e2 (ý) are order h4 the N3 and N4 terms may be included in the 0 222 
term. Hence we may write 

e2(X) = e2 
(_h ) 

2 
Nl(x) + e2 

(h) 

2 
N2 (x) +f (x) +0 (h5) (7.339) 

e' (x) = e2 
(_ h) 

22 N'(x) + e2 
(h) 

2 
N2(x) +f '(x) +0 (h 4) (7.340) 

(_h 
"(x) = e2 e2 2) 

N"(x) + e2 1 
(h) 

2 
�(x) +f 3) N2 "(x) +0 (h (7.341) 

so that 

-24x hh 3) 
e"(x) - e"(-x) e2 (-) - e2 (- )) +f "(X) 

-f x) +0 (h (7.342) 2222 

(h) h» 4) 
e2 

3 (e2 
e2 + f'(O) + O(h '(0) ý Th 2 

(7.343) 
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Combining (7.342) and (7.343) and observing the f '(0) =0 and f "(x) =f "(-x) we 
have 

e "(x) - e"(-x) 
16x 

e'(0) + O(h 3). (7.344) 2 2 

The same result may be obtained for e3 and so 

- 16x 3), 
ej(x) - ej(-x) = ýýej(0) + O(h j=5,6. (7.345) 

Substituting this result into (7.335) we have 

or 

h 

16 
2 1-x x 4) 

ei(o) l-Tf(2 
h) h 

dx O(h (7.346) 
0 

2 
ej(O) = O(h 4). (7.347) 3 

Hence we may conclude the mid-point error is also of order h4. 

7.4.5 Zero errors at connecting nodes 

If the finite element space V is large enough to contain gj(z, . ), the error component ej 
is zero at the connecting nodes. As an example consider the plane single beam problem 
where the differential operator L is given by 

-ul - aU2 L(u) =M+ 
U/M 

( 
aul 2) 

where a is constant and 

(7.348) 

Ul(0) :' U2(O) ý U12(O) 0 (7.349) 

ul (1) + ault(1) 0 12 (7.350) 

au' (1) + ull(1) =0 12 (7.351) 
"(1) + u"f(1) = 0. au, 2 (7.352) 

The vectors g, = (911,912)) 92 = (921) 922) and g5 = (951) 952) satisfy 

-g" (z, x) - ag ... (z, x) 11 12 =6 (z, x) (7.353) 

a` x) + glill 2 gll(z, 12 (Z X) =0 (7.354) 
" (z, x) - ag' (z, x) -921 22 =0 (7.355) 

' (Z, x) +g... (Z, x) a921 22 =6 (Z, x) (7.356) 
t 

. 
q51 (Z, x) + ag', (Z, x) 52 =0 (7.357) 

-ag5,52 " (Z, x) - g', ' (Z, x) =6 (Z, x) (7.358) 
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where'denotes differentiation with respect to x. After integrating and applying (7.350), 
(7.351) and (7.352) we may combine rows to give us 

where the above are discontinuous at x=z. If z is a connecting node then, within an 
element, 

g1l = linear (7.365) 
912 = quadratic (7-366) 
921 = quadratic (7-367) 
922 = cubic (7-368) 

g5l = linear (7-369) 
952 = quadratic. (7-370) 

V, and V2 are minimally linear and cubic, respectively, and so g, and g5 are represented 
exactly in V. Hence, by (7.318) and (7.325), el and e' are zero at connecting nodes. 2 
Furthermore, e2 is zero at connecting nodes if V, is quadratic. 

7.5 The a posteriori error estimator 

7.5.1 The equations satisfied by the error 

- a 2)gj 
I 
(Z' X) = piecewise constant (7.359) 

- a2)g" (Z' X) = 12 piecewise constant (7.360) 

- a 
2) gI 1 

(Z' X) = 2 piecewise linear (7.361) 

- a 
2)g" (Z' X) 22 piecewise linear (7.362) 

_ a2)g5,1 (Z' X) 5 piecewise constant (7.363) 

- a2)952 (Z, X) piecewise constant (7.364) 

For the i'th element we have, after integrating (7.201) by parts twice, 

a(u, v)n, = (L(u), v)n, +(Q, B(v))n, +[p(U)TC(V)], i_i Vv E H(7.371) 
Xi 

)TC(V)], x, s a(UhsV)fIj = (L(Uh), V)SIj+(Q, B(v))nj+[P(Uh 
Xi_1 

Vv E fY. 372) 

where 
,, 

(V)T: = (Vl V2 V3 V4 v 1). 
-V31 2 (7.373) 

Subtracting (7.372) from (7.371) gives us 
)TC (V) ] 

xx,,, a(e, v)ni = (r, v)ni + [P(e Vv EH xi I 

where r is the residual, 

r: = L(u) - L(Uh) =f- L(Uh)- 

(7.374) 

(7.375) 
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Equation (7.374) gives us a means to calculate, or at least approximate, e since, with 
suitable choices of v and an approximation of P(e), the right hand side may be derived 
from Uh. Furthermore, (7.374) provides a convenient way to evaluate a(e, e)j. Things 

are simplified if we choose v such that e(v) is zero at the connecting nodes. Let 
ft = fti (D ft2 0 ft3 0 ft4 CH be the space containing all such functions. Then we have 

a (e, v) ni = (r, v) ni Vv E H. (7.376) 

We will use (7.376) to find an approximation to e- in some subspace of H. We shall 
denote the approximation by ii. If e is superconvergent at the connecting nodes then 
restricting 6 to the space A would appear justified. Our aim is to bound 11all in terms 
of 11ell; i. e. show that the two are equivalent. 

7.5.2 Some other finite element spaces 

In our analysis we will use other finite subspaces of H which contain higher and pos- 
sibly lower degree polynomials than V. Let us denote these subspaces by V and V, 
respectively. The space V is the smallest finite element space for solving (7.194); i. e. 
E, and V4 are piecewise linear with CO continuity at the connecting nodes and E2 
and V3 are piecewise cubic with C' continuity at the connecting nodes. The space 
contains the finite element solution, Uh E V, that satisfies 

a (Uh, v) = (f ,c (v)) + (Q, B (v)) (7.377) 

for all vEV. Since V contains higher degree polynomials than V there exists a 

, 
8(h) :51 that tends to zero with h, such that 

Ilu - UhIl : 5,3(h) Ilu - UhIl - (7.378) 

We shall be seeking approximations to e in the spacevnH. Let us denote this space 
by 

(7.379) 0f20304 

Any vE7 may be written as the sum of a vj EE and a V2 E f7 where v, is the 
interpolant to v that satisfies 

C(v - VI) =0 at connecting nodes (7.380) 

and "2 is the interpolation error. 

7-5.3 Strengthened Cauchy-Schwarz inequality 

Let vE ý' and let vP be the projection of v in V such that 

a(vp, w) = a(v, w) (7.381) 
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for any wEV. By the usual Cauchy-Schwarz inequality we have that 

la(v, w)l :5 jjvPjjjjwjj (7.382) 

and so we may write 
ja(v, w)l :5 -y(v)jjvjjjjwjj (7.383) 

where 

-Y(V) :_ 
IIVPII 

(7.384) 
11VII 

Hence we have the Strengthened Cauchy-Schwarz inequality that, for any wEL and 
vE ý'j 

a(w, v) :5 -y(h)jjwjjjjvjj (7.385) 

where 
-y(h) := sup f -y(v)} = sup 

V (7.386) 
11 LIV 

1-111 

1- P 

Within an element we can find a vP EK such that 

a(w, vP)ni = a(w, v)nj (7.387) 

for all wEV although it is not unique. However, the norm jjvPjj,, is defined so that 
over the i'th element we can say that 

Ja(u, v)njj :5 -y(h)i Ijulln, lIvII., (7.388) 

where 

and 

Globally, 

, y(h)i = sup If (7.389) FIV IIm 
iivpllni 

(7.390) llvllni 

a(w, v) = Ea(w, v)n, (7.391) 

< Z-y(h)i llwlln, (7.392) 

< (7.393) 

(1: 11W112J12 (1: IIV112i 2 (7.394) 

= -y(h)��, -, 
llwll llvll. (7.395) 

So (7.385) holds with 
-y(h) = maxfy(h)i}. (7.396) 
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In equation (7.389) -y(h)i is actually the square root of the largest eigenvalue of the 

matrix k-lkp where, if (Nj}, j =1... n, is a basis for V, 
Kik = a(Nj, Nk)Oi) (7.397) 

kp =a (1ý; P, ATP)n,. (7.398) jk jk 

This is proven by writing any vEV as 
n 

EcjATj 

j=l 

and using the equivalent definition of y(h)j, 

The projection of b in V is 

so that 

, y(h)i = sup 
llvllni=l 

n 
p=1: ýrp 

cj I 
j=l 

liv p112. = CTkPC. n, 

We wish to find the supremum of Vp 2 subject to the constraint ni 
IIV112. 

0. = cTkc 

Hence we define the function J(c, as 

J(c, it) Jkpc - It(cTkc - 
where [t is a Lagrange Multiplier [12]. When J is maximized 

01 
i9cj 

0 

for j=1... n which leads us to the equation 
(kP - pk)c = 

or 
(k-, kp - ßi)C = 

(7.399) 

(7.400) 

(7.401) 

(7.402) 

(7.403) 

(7.404) 

(7.405) 

(7.406) 

(7.407) 

. -1 .P 
Hence y is one of n eigenvalues of KK If c is the corresponding eigenvector then 

2 

A- 
cTkpc v ni = 'Y (vi) 2 (7.408) 
cTkc 11V1120i 

Hence the supremum of -y(v)i2 is the largest value of ti so that 

-y(h)? = maxti. 13 (7.409) 
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7.5.4 An intermediate error estimator 

In our analysis we will make use of the error estimator, iT E V, defined as 

*6 ` Uh - Uh- (7.410) 

The finite element solutions Uh and Uh satisfy 

" (Uh, V) " (f 
,c 

(v)) + (Q, B (v)) (7.411) 

" (Uh, v) = (f 
,c 

(v)) + (Q, B (v)) (7.412) 

for all vEV. Hence 

a(E, v) = a(Uh - Uhi V) =0 (7.413) 

for all v in V. Furthermore, The true solution u and the finite element solution Uh 
satisfy 

a(u, v) = (f, e(v)) + (Q, B(v) 
a (Uh, V) = (f ,c (v)) + (Q, B (v) 

for all vEV. Hence 

(7.414) 
(7.415) 

a(e - -6, v) = a(u - 11h) V) =0 (7.416) 

for all v in V. It follows from (7.416) that, since EEV, a (e, j) =a (F, E) so that 

11'U11 < 11ell (7.417) 

and 
lie _ jq2 = a(e, e) - 2a(e, 'j) + a(F, j) = Ile 112 _ II-jII2 

. 
(7.418) 

Using (7.378) and (7.417) this gives us 

(1 
-, 8(h)2) 21 Ilell :! ý 11'Ell :5 Ilell. (7.419) 

Hence we have shown that 1JUJI is equivalent to Ilell. 

7.5.5 Another intermediate error estimator 

Since jEV we may write 
T: el +e2 (7.420) 
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where el EK and e2 E ý. Having shown that Ilill is equivalent to Ilell we will now 
show that Ile211 is equivalent to Ilell. Since el EL and VCV so that el E V, we may 
use (7.413) with v= el. This implies that 

Rom (7.421) we have that 

and, from (7.422), we have 

a(j, -E) = a(«U, e2) (7.421) 

a(ei, e2) = -a(ei, ei). (7.422) 

11-ill :5 11e211 (7.423) 

a(ei + e2, ei + e2) (7.424) 

a(e2, e2) - a(ei, ei) (7.425) 

= 11e2 112 _ Ile, 112. (7.426) 

Also, from (7.422), we have, using (7.385), 

a(el, el) = la(el, e2)1 :5 7(h)jjejjjjje2jj, (7.427) 

Combining this with (7.426) we have 
I 

11 Ell ý! (1 
- -y(h)2) 

2 11 
e2 (7.428) 

Combining (7.423) and (7.428) we have 

-I 11-ill < Ile211 
-< 

(1 
-, y(h)2 

)2 11-jIl. (7.429) 

Combining (7.429) with (7.419) gives us 

)2) '21 )2 
-, 3(h Ilell :5 Ile2ll 

-< 
(1 

- -y(h Y Ilell. (7.430) 

7.5.6 Our error estimator 

Definition 

So far we have only considered error estimators which, although computable, may not 
be calculated from the finite element solution, Uh, alone. We now define an estimator 
that depends only on the residual, r, which was defined in (7.375). Let 6E f7 be an 
approximation to e such that it satisfies 

v) ni = (r, v) ni (7.431) 

for all vE 1ý and all i. Then, for the energy norm, we have 
116112i 

n= (r, a) ni. (7.432) 
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ImPlementation 

We may calculate a within the element by expressing it as a linear combination of basis 
function vectors for ý'. Hence it has the form 

a=NE (7.433) 

where 1V is a matrix whose columns are the basis function vectors and E is a vector 
containing the degrees of freedom. Choosing v in (7.431) to be each basis function 
vector in turn will give us a linear system in E. 

Before we can evaluate a we must choose vectors that span ý'. The element basis 
functions for ý', and ý'4 must be of the form 

x(x - h)f (x) (7.434) 

and those for V2 and V3 must be of the form 

X2(X - h)2f (X) (7.435) 

where f (x) is an arbitrary function of x. It makes sense to choose f (x) to be symmetric 
so let us take f (x) to be 

f(X)=l, x- 
h, (x_ h )2 

, .... (7.436) 

Where linear and cubic approximations have been used in V we may use quadratic 
and quartic functions for 'ý. Then, within the standard element (0, h), vE 1ý may be 
written as 

100v VV21 Jýo 
92 01 V, 

IýTlVý + IýTIVI + 1ýW3 + AT4V4 (7.437) 
3oo9, V3 ýVJ 

91 0001 V4 

where 

x (x - h), 
2 (x -h )2. 112 =X 

(7.438) 
(7.439) 

Where quadratic and cubic functions have been used in V we may use cubic and quartic 
functions for f7. Then, within the standard element (0, h), vE 1ý may be written as 

N 0 0 0 N3 v 01 
0 92 0 0 0 0 V2 

(7.440) 
0 0 92 0 0 
0 0 0 91 0 N3 V6 
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where 

lý, (x) =x (x - h), (7.441) 

x'(x - h)', (7.442) 

93(x) = x(x - h) x- 
h) 

. (7.443) 

Where quadratic and quartic functions have been used in V we may use cubic and 
quintic functions for 'ý. Then, within the standard element (0, h), vE f7 may be 
written as 

N, 0 0 0 N3 0 0 0 V1 

0 92 0 0 0 94 0 0 V2 
(7 444) 0 0 92 0 0 0 94 . 0 

0 0 0 Rl 0 0 0 93 V8 

where 

lý, (x) =x (x - h), (7.445) 
92(x) 

= x2(x - h)2, (7.446) 
h) 

, 
N3 (x) =x (x - h) 

(X 
-2 (7.447) 

g4 (X) = X2 (X 
- h)2 x- 

h) 
(7.448) 

2 

Where quadratic and quintic functions have been used in V we may use cubic and 
sextic functions for'ý although quartic functions are used for V^1 and V4 in the numerical 
examples. In this case, within the standard element (0, h), vE 'ý may be written as 

Ni 000 N3 000 N5 000 V1 

v09,0 
00 94 00000 V2 

(7.449) 
00 N2 000 N4 000 N6 0 

000 91 000 93 000 N5 V1 2 

where 

Ni (x) = x (x - h), (7.450) 
lý2(X) = x2(x - h)2, (7.451) 

lý3(X) = 
h) 

, x(x-h) 
(X 

-i (7.452) 

94 (X) = X2(X - h)2 X_ 
h) 
2 

(7.453) 

lý5 (X) = x (x - h) x-h 
)2 

2 
(7.454) 

lý6 (x) = X2(X - h)2 X_h 
)2 

2 
(7.455) 
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Analysis 

The error estimate, a, is calculated on an element by element basis. Globally, because 
e(v) is zero at the nodes, 6 satisfies 

a(, &, v) = (r, v) (7.456) 

IlaI12 = (r, 6) (7.457) 

for all vE 'ý- Subtracting (7.431) from (7.376) we have the orthogonality relation 

a(e - 6, v)nj =0 (7.458) 

for all vE f7. Hence we have 

a(a, 6)ni = a(e, 6)ni :5 Ilell., 11all., 

so that 

(7.459) 

jjýjjn, :5 Ile-11., 
. (7.460) 

Hence 11611., is generally an underestimate for Ilell., and, globally, 11all is an underes- 
timate for Ilell. Now, from (7.458) we have that 

ne ne 

a(6, v) a(a, v)nj a(e, v)nj = a(e, v) (7.461) 

for all vE f7. From (7.413) we have that 

a (e, v) =a (F, v) (7.462) 

for all vEV. Combining the two results gives us 

a (a, v) = a(-&, v) (7.463) 

for all vE ý'. Since e2 is in 1ý we have 

a(ý, e2) = a(F, e2). (7.464) 

Also, since el is in V, 

11, EI12 = a(E, el) + a(U, e2) = a(U, e2) = a(a, e2)- (7.465) 

Using the Cauchy-Schwarz inequality 

IIZF112 = a(, &, e2) 116 e2 (7.466) 
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Substituting for Ile211 using (7.428) and rearranging gives us 

(1- y(h )2)21 ll-&Il !ý III&II. 

Combining (7.467) with (7.419) we have 

II (1 
-, 6(h)2 2 

'y (h) 2) 2 Ilell :5 11all :5 Ilell. 

Hence 11611 is equivalent to Ilell. El 

7.5.7 Consistency and asymptotic exactness 

Conditions for asymptotic exactness 

(7.467) 

(7.468) 

The usefulness of 11611 as an approximation to Ilell depends on the effectivity index, (D, 
which is defined as 

4D 
LIall 

(7.469) 
Ilell 

The estimator is said to be asymptotically exact if (D tends to unity in the limit where 
h tends to zero [9]. Dividing (7.468) by Ilell we have 

11 
-, 8(h )2 2(i (h )2 2< (7.470) 

Hence asymptotic exactness will be guaranteed if, in addition to P(h), we can show 
that -y(h) tends to zero with h. 

The superconvergent case 

Let us return to equation (7.426) which stated that 

We may write Ilel 112 as 

where 

so that 

IIE112 Ile2 112 
_ Ile, 112. (7.471) 

a(ei, ei) = e(h) Ileill 11e211 (7.472) 

Ileill 
TI e2 11 

(7.473) 

)2)-l ((h 2 Ile211 (7.474) 
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Hence, (7.468) becomes 

I (1 
-, 3(h)2) 

21 (1 
- ((h)2) 5 Ilell < 11all :5 Ilell. (7.475) 

Now el is defined solely by the values of U at the connecting nodes (i. e. where C(v) =0 
for vE ý'). Hence el is order h" and the first and second derivatives, el and el', are 
order h2t-1 and h2t-2 . 

From this fact alone B(el) is order h 2t-2 and so is 11eill. Since 
jje211 is order ht it may be concluded that C(h) tends to zero as h tends to zero when 
t>2. Furthermore, when t=2 it has been shown that e' and e' are order h4 at both 23 
the connecting nodes and the mid-points. It follows that j/2 and F3 are also order M 

at these points. Since (el)2 and (el)3 are Hermite cubic interpolants of F2 and F3, the 
derivatives (el)' and (el)' are quadratic interpolants of ; Y2 and F' at mid-points as well 233 
as at connecting nodes. Since T2 and T3 are order V at these points, (el)' and (el)' 23 
are order 0 everywhere and their derivatives are order P, the same as (el)', and (el)'4. 
This leads to the conclusion that B(el) and 11e, 11 are order P for t=2. With t= 2ý 
Ile211 is order h2 and so ((h) tends to zero as h tends to zero. Hence, for finite element 
methods where t> 2) 11ý11 is asymptotically exact. 

It is concluded that, for a general finite element frame, the error estimator is asYmp- 
totically exact whenever quadratic functions are used to represent the compression 
and twisting components of the beams. For special cases where el and e4 are zero, 
quartic functions would minimally be needed to represent the bending components to 
guarantee asymptotic exactness. 

The non-superconvergent case 

The error estimator &= IýIE is found in the i'th element by solving 

a(N1, Ni)n, a(ly2, a(N^ 3, N^ 1)n, a(Ný 4, Ni)q E1 (r, Ni)ni 
a(Ärl, -1ýr2)n, a(ly2, N2)n, a(ÄT3, N2)n, a(1ý74, Är2)n: E2 

- 
(r, N2)n, 

a(Ni, N3)n, a(ly2, N3)fli a(ly3, N3)0, a(ly4, N3)n, E3 - (r, N3)ni 

a(1ýr1,1ýT4)n, a(N2,1ýT4)n, a(N3,1ýT4)9, a(N4,1ýr4)n, E4 (r, Är4)ni 

(7.476) 

Obviously, from the definition of D, we have that a(Nj, N4) =0 for j 54 4 and, since 
D is symmetric, 

a(Nj, Nk)Qj = a(Nk, Nj)n, (7.477) 

for all j and k. Also we observe that 92" is a Legendre polynomial so that 

h 
ff (x)92"dx =0 (7.478) 
0 
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for any linear function f (x). Hence, when D is constant over the element, a(lýrj, Ar2)ni 

and a(ATj, IýWsj, are zero for j=1 and 4. Hence the vector E is found from 

a(ÄT1, 
Äri)n, 0ý (Eiý (r, Njn, (7.479) 

0 a(ÄT4, 
Är4)n, ý E4 )ý( (r, Är4)fl, 

) 

a (ÄT2, ÄT2) 
ni a(Är3 lýr2)n (E2) (7.480) 

a(1ýr E3 N3)ni 'ýr3)92i a(Är3, 
ÄT3)fl, 

22 1 

Substituting El,..., E4 into equation (7.432) we evaluate 

Ilall2i 
n 

)2 
fli 

JýTj 11 2 IIAT4 112 
ni ni 

1 )2 112. )2i 112 ýr2 
0i 

JjAr3 

,+ 

(r, Ar3 
. 

IjAr2 

ni 
1 112 6 112 )2 

ni 

IIN3 
- a(AT2, J 

11ý72 

ni 
6; 

3 fli 

2(r, AT2)ni(r) AT3)nia(AT25 Ar3)f2i 

(7.481) 
112 

i 

112 )2 ' 

n 
IIAT3 

ni -a 
(Ar 2) 

Ar 
3 sli 

We will now work out the value of -y(h)i in order to determine whether or not we can 
expect the error estimator to be asymptotically exact. For wEV and VEV we 
evaluate a (w, V) 0i over an element by writing 

h 

a (w, y)ni = WT 
10 

A(x) dx Y 

where 

A(x) = 

'N, 'DllNl' N, 'Dl2N" 
.2 

N'Dl3N" 1 
.2 

0 
Ng 3"D21 11 N3"D22N" 2 N3"D23N" 2 0 
N3" D31 JýT 11 N3"D32N211 N3"D33 211 

0 

0 0 0 N, DWýrj 

N5"D31N, 1 Q N. 5 
D32N211 N5" D 33Ný 0 

Q N"D2, Nl' 
,5 

N511DUN211 N5"D 23N" 
.2 

0 

N2'Dllgl N2' D 12 
ý2/1 N2D 13 1ý2/1 0 

N4"D2191 N4"D22N" 
.2 

N4"D2 N" 32 0 
N4"D319, N4"D32N211 N4"D339211 0 

0 0 0 N2D44911 

N6"D31N, 1 N6"D32ý2 // N6"D33ý21 0 

, N6"D2191 N6"D22N211 N6"D23N211 0 

(7.482) 

(7.483) 

and W and Y are degree of freedom vectors. For the case where D is constant over 
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the element we may use (7.478) to give us 

A(x) dx 

0 0 0 0, 

2D12 0 0 0 
2D13 0 0 0 

0 0 0 0 

hD31 0 0 0 
hD21 0 0 0 

0 0 0 0 
-2D21 0 0 0 
-2D31 0 0 0 

0 0 0 0 
hD31 0 0 0 
hD21 0 0 0, 

(7.484) 

For the case where D is diagonal, D21 and D31 are both zero so that a(w, v)i is always 
zero and y(h) = 0. If D was a function of x then -f(h) would tend to zero with h. 

For the general case, where D is not diagonal, we need to use (7.386) to evaluate -Y(h). 
We see from (7.484) that 

a(w, y)ni = a(w, lý7jVj)oj: 5, y(Arj)j llwll,, IlArivilli (7.485) 

so that y(h)i =, Y(Arl)i. We find that 

2D2 D22 - 2Dl2Dl3D23 +D2 D33 h3 13 
2 

12 (7.486) 
II(AToplIni 

- (D22D33 
- D23 3 

3 
VI 112 Dilh 

(7.487) 
ni 3 

so that, for constant D, 

jj(, ýTJ)PI12 
D2 D22 - 2Dl2Dl3D23 +D2 D33 

-y(h)2 
13 12 Y2. (7.488) i2 Dii(D22D33 - D23 IIAT, llf2i 

When D is not constant -y(h)i tends to yj as h tends to zero. We conclude that, in the 
limit as h tends to zero, 

I-2< 4ýD < 1. (7.489) Y 

Since -y(h)i does not tend to zero we cannot say whether or not jjý-Jj is asymptotically 
exact. The numerical examples in the next section show that it is not. 
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7.6 Numerical examples 

7.6.1 The case of a single beam 

Using linear and cubic approximations 

A beam of unit length having the material matrix 

10a0 

D0100 (7.490) 
a010 
0001 

where -1 <a<1 experiences a load of 

0 (7.491) 
f(x)) 

- 

0 

This is a 2D problem in the unknown displacements u, and U3 which must satisfy 

dFj 
0 (7.492) 

dx 
d 2M2 

x 
(7.493) - T-F f 

where 

du, d2 U3 
Fi äx +a dX2 (7.494) 

A12 
- 

du, d2 u3 
(7.495) dx dx 2 

The beam is rigidly fixed at x=0 and free from restraint at x=1 so that the boundary 
conditions are 

Ul(0) : -- U3(O) --2 U? 3(O) ý0 

Fl(1) 
---: 

M2(1) --: -- M2 0- f(1) 
(7.496) 
(7.497) 

We will consider two cases; f= -1 and f= -x. The first step to finding the solution 
to this problem is to integrate (7.492) and (7.493) and apply (7.497) to give, for f=-1, 

F, 

Al 2 (X _ 1)2 

(7.498) 

(7.499) 
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and, for f= -x, 
F, =0 (7.500) 

M2 = 
'(X 

_ 1)2(X +2). (7.501) 
6 

The displacements ul and U3 are then found, for f=-1, by solving 

dul 
+a 

2ýU3 
=0 (7-502) 

dx dx2 
du, d 2U3 1 

-a -FX -- jX-2 = (_, _ 1)2. (7.503) 

and applying (7.496). This gives us 

Ul 
a 

-, x(x' - 3x + 3) (7.504) -1- 
a 2) 

u3 = 
-1 

_x 
2(X2 

- 4x + 6). (7.505) i4--(ý 1 --a 2) 

Similarly, for f= -x, the displacements are found by solving 

du, 
+ad2 

U3 
=0 (7.506) 

dx dx 2 

du, d2 u3 1 
-a--- =-X_ 1)2(X 

dx JX-2 6( 
+2) (7.507) 

and applying (7.496) which gives us 

Ul =a _X(X3 - 6x + 8) (7.508) 
24(l - a2) 

U3 = 
-1 

r-, x 2(X3 
_ lOx + 20). (7.509) 

120(l -a) 

Since this is a plane problem with U2 " U4 ý0 the residual components r2 and r4 Will 
be zero. Hence, from (7.481), we have 

12 NI)20, 
+ 

(r, N3)2 
(7.510) ni = jjlýrj Ilf2li jjlýr3j 2 Ini 

Since D is the same for every element we have, from (7.488), that 

)2 a2. -y(h 

Table 7.1 shows values of p112, Ile112 and -V using n elements for a=0.5. They show 
that (D2 tends to 1- y(h)2 which is the lower bound in (7.470). When the load is 
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Table 7.1: Results with a consistent error estimator 

f =-1 
n 

p112 Ile 112 TT-- 

1 6.59722E-3 8.79630E-3 0.75000 
2 1.71441E-3 2.28588E-3 0.75000 
4 4.32671E-4 5.76895E-4 0.75000 
8 1.08422E-4 1.44563E-4 0.75000 
16 2.71214E-5 3.61619E-5 0.75000 
32 

1 
6.78135E-6 9.04180E-6 

, 
0.75000 

f= _X 

n 111ý-112 Ilell' V 
1 1.89931E-3 3.87897E-3 0.74744 
2 6.97354E-4 9.35898E-4 0.74512 
4 1.73723E-4 2.32089E-4 0.74852 
8 4.34084E-5 5.79081E-5 0.74961 

1 

16 1.08510E-5 1.44699E-5 0.74990 
32 2.71269E-6 3.61705E-6 1 0.74997 

constant 41,2 is always 1- -y(h)2 . This can be explained by observing that, from the 
differential equations, 

ej(x) = i- 
a 

a2 
(X - cl) (7.512) 

litt -1 P-3 (--) =1_ 
a2 

(7.513) 

where cl is a constant, independent of the finite element solution. We may integrate 
these expressions and use the fact that el and e' are zero at the nodes to write the 3 
local expressions 

1a X2 2) 
el .. (3 -h_ 

cl (2x - h)] (7.514) 
a2 

1-6 
2 

-1 X2 2) 
_2 (2x (7.515) e3 = -i 

[l (3 -h 
ý2 

- h) 
1-a' 6 

where C2 is a constant that depends on the finite element solution. This constant is 
found, using the orthogonality relation a(e, v) =0 for any vEV, to be A. Hence we 2 

may evaluate 
Ile 112 h5 a2h3 (h - 2c, )21 

(7.516) n' T2-0 +48(1-a2) 
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Using (7.510) we have 

Hence the result 

IlaI12 h5 a2h 
3 (h - 2cl )2 

fli ý T2-0 + 
48(l _ a2) 

116112i = (1 _ a2) lie 112 
n fli * 

Using quadratic and quintic approximations 

A beam of unit length has the material matrix 

0100 
1 u010 
0001 

(7.517) 

(7.518) 

(7.519) 

It is subjected to a load of f= -1 and the same restraint as that in the previous 
example so that the displacement components u, and U3 are found by solving 

du, 1d2 u3 

dx +2 -äx-2 0 (7.520) 

.1 
du, d2 u3 (X _ 1)2 

(7.521) 
2 dx dx 2 2(x+1)* 

This has the solution 

x4 
ul = -(x - 6) + -1n(1 + x) (7.522) 

6 

U3 = -X(X 
2- 9x - 24) -8 (1 + x)ln(1 + x). (7.523) 

93 

The finite element solution and the error estimator were calculated using the spaces V 
and 1ý defined earlier in this example. Table 7.2 shows the values of 118112, Ile112 and 
for n elements. They confirm the asymptotic exactness of 11611. 

7.6.2 Frame examples 

A pIane frame 

The three beams forming the frame in Figure 7.7 each have the non-diagonal beam 
material matrix 2100 

D= (X2 - 2x + 2) 
1200 

(7.524) 
0010 
0001 
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Table 7.2: Results with an asymptotically exact error estimator 

n p112 Ilell' (D 2 

1 1-11135E-3 1.12237E-3 0.9901T 
2 9.38276E-5 9.40836E-5 0.99728 
4 6.51257E-6 6.51722E-6 0.99929 
8 4.19440E-7 4.19516E-7 0.99982 
16 2.64211E-8 2.64223E-8 0.9999T 
32 1.65459E-9 1.65461E-9 0.99999 

Table 7.3: Results with a consistent error estimator 

n Ili; 
-Il 

Ilell 4D 
1 5.877E-3 6.565E-3 0.895126 
2 2.835E-3 3.289E-3 0.862177 
4 1.468E-3 1.699E-3 0.863803 
8 7.444E-4 8.602E-4 0.865386 
16 3.737E-4 4.315E-4 0.865860 
32 1.870E-4 2.160E-4 0.865984 

and are loaded such that the solutions are 

U (k) 
= 10-'exp(k(x - 1)) +a linear function (7.525) 1 

(k) 
= 10-3 eXp U2 (-k(x - 1)) +a cubic function. (7-526) 

The three linear and cubic functions (18 parameters in total) are determined by the 
clamping assumptions at the base nodes (three conditions at each), the continuity 
conditions at the joints (three conditions at each) and the equilibrium conditions at 
the joints (three conditions at each). These are found by setting up and solving a linear 
system on a computer. 

Table 7.3 shows the calculated values of Ilell, 11611 and the effectivity index, qý, where 
linear and cubic approximations are used to calculate the finite element solution and 
quadratic and quartic functions are used to estimate the error using n elements per 
beam. The results confirm that the error estimator is consistent with an effectivity 
index of about 0.8659. This is in agreement with (7.489) since -y? = 0.25 giving 
ID E [VO--. 75,1]. 
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(0a. 0) (2.2.0) 
1(0,2,0) 

T(0,2,1) 1 (2,2,1) 

(0,0,0) 

Figure 7.7: A plane frame. 

A 3D frame 

4(0,0,0) 

Figure 7.8: A 3D frame. 

The eight beams forming the frame in Figure 7.8 each have the non-diagonal material 
matrix 0) 

D= (X2 - 2x + 2) 1410 (7.527) 
1140 
000 4) 

and are loaded such that the solutions are 

" 
(k) 

= 10 -3 exp 
k+a 

linear function (7.528) 1 
(2 

(x - 1)) 

" 
(k) 

= 10-3 exp 
k+a 

cubic function (7.529) 2 
(- 

2 
(x 

(k) 
= 10-3 U3 exp (x - 1) +a cubic function (7.530) 

(k) 
= 10-3 (X _ U4 1)5 +a linear function. (7.531) 

The 8x 12 = 96 parameters associated with these linear and cubic approximations are 
obtained by setting up and solving a system on a computer as in the previous exampIc. 

Table 7.4 shows the calculated values of Ilell, 11ý11 and the effectivity index, (D, where 
linear and cubic functions are used to calculate the finite element solution and quadratic 
and quartic functions are used to estimate the error using n elements per beam. The 
results confirm that the error estimator is consistent with an effectivity index of about 
0.98. This is in agreement with (7.489) since -yj2 = 0.1 giving ID E [VO--. 9,1]. 

Table 7.5 shows the calculated values where quadratic and cubic functions are used 
to calculate the finite element solution and cubic and quartic functions are used to 
estimate the error using n elements per beam. The results confirm that the error 
estimator is asymptotically exact. 

142 



Table 7.4: Results with a consistent error estimator 

n 11611 Ilell 4) 
1 5.614E-2 6.290E-2 0.892627 
2 3.022E-2 3.279E-2 0.921838 
4 1.766E-2 1.838E-2 0.960643 
8 9.503E-3 9.722E-3 0.977422 
16 4.849E-3 4.939E-3 0.981886 

_ 
_32 

2.437E-3 2.479E-3 0.983014 

Table 7.5: Results with an asymptotically exact error estimator 

n 11611 Ilell 4) 
1 5.444E-2 5.672E-2 0.959807 
2 2.053E-2 2.099E-2 0.978454 
4, 6.391E-3 6.427E-3 0.994371 
8 1.702E-3 1.704E-3 0.998578 
16 4.324E-4 4.326E-4 0.999644 

_ 
_32 

1.085E-4 1.086E-4 
1 

0.999911 
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Chapter 8 

Theory of Plasticity 

8.1 Introduction 

It was mentioned in Chapter 6 that, as the temperature riscs, the resistance of a 
structure to deformation decreases. In these circumstances the stresses within the 
structure are more likely to exceed levels within the applicability of the elastic theory 
described so far. The theory of plasticity, introduced in this chapter, models structural 
behaviour past the elastic state. The finite element method, described in Chapter 7, 
is extended to include the plastic response. This chapter completes the theoretical 
background for solving small-strain, fire-exposed, frame problems. 

In a uniaxial tension experiment a material will obey Hooke's law until the stress 
reaches a critical value. At this point the relationship between stress and strain is no 
longer linear. The material is said to have yielded. The critical stress value at which 
yielding occurs is known as the yield stress. Eventually, with increasing strain, the 
stress reaches a constant value. At this point the material cannot resist any further 
loading. If the load is maintained the material will continue to deform and never reach 
equilibrium (until it breaks). This is the plastic state. If the material is unloaded at 
any time then the stress decreases linearly with decreasing strain. Upon reloading the 
stress again increases linearly until it reaches the yield value. This may be a higher 
(or lower) value than before in which case the material has experienced some form of 
hardening (or softening). The plastic theory presented here is based on Chapter 7 of 
Hinton and Owen [26] and Hsu [15]. 

Once a material has yielded its stress state is modelled incrementally; i. e. the increment 
in stress is a function of the increment in strain. It is assumed that an increment in 
strain, de, can be written as the sum of an elastic part, dc,, and a plastic part, dep; i. e. 

de = de� + dep, (8.1) 

The yield criterion for the uniaxial case can be written as 

u- uy(cp) = 0, (8.2) 
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where ay is the yield stress which we have assumed to be a function of the plastic strain, 
ep. The increase in ay due to ep is termed as strain hardening. Alternatively, we could 
assume that ay is a function of the work done to plastically deform the material. In this 
case the increase in ay is termed as work hardening. We will use the strain-hardening 
hypothesis for now and use the work-hardening hypothesis in the next section when 
we consider the multi-axial stress state. 

Under the strain-hardening hypothesis the yield function, Y, is defined as 
(0, ep) =a- av (EP). (8.3) 

It is negative whenever the material is in an elastic state and zero when the material 
has yielded. It can never be positive since the stress cannot exceed the yield stress. 
If the material has yielded then any further increase in strain can only cause a stress 
increment such that the yield criterion holds; i. e. 

dY (du, dep) = 0. (8.4) 

The elastic strain increment, de, is defined as that required to give the equivalent 
stress if the material was still in a linear elastic state, i. e. 

du 
de, 

E. (8.5) 

Hence, by the chain rule, 

dY = 
ey 

du + 
ey 

dep (8.6) 
au aep 

= du - 
2-0'ydep 

(8.7) 
dep 

Ede, 2 - Hdep (8.8) 

where we define the hardening value of the material, H, to be 

._ 
day 

H. - dep 
(8.9) 

For the yield criterion to hold, 

Hdep = Ede, = E(de - dep) (8.10) 

and we have that 
dep 

E 
C. (8.11) 

E+H 

The incremental stress-strain relationship is thus given by 

de de, + dep (8.12) 
dor E 
_T +E+H 

145 



CY 

UY 

Figure 8.1: Stress-strain curve with strain (or work) hardening. 

Re-arranging we have 

du=E 1- 
E 

de. 
E+H) 

As an example, consider an isothermal beam of uniform cross-section subjected to a 
tensile force P at x=1 while being restrained at x=0. The stress-strain curve 
is illustrated in Figure 8.1. It is linear elastic until the yield stress, ay, is reached. 
The load may be thought of as being applied in two stages: pre-yield (elastic) and 
post-yield. During the elastic stage we have 

F(u) = Au(u) = EA 
du 

= P. 
dx 

The force required to cause the beam to yield, Py, is found from 

so that, at the yield point, 

Py = AOy 

du UY 
u-x = TE' 

U (x) x UY 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

where A is the cross-sectional area and ay is the yield stress of the material. During 
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the post-yield stage the increment obeys 

AF = EA 
(1 

-TE 
)d(Au)=P_ 

py. 
+H dx 

This implies that 

d(Au) P-P E 
- -ly 1-- (8.20) 

dx EA 
( 

E+H) 

Au =xP- 
Py 

1--E )-1 (8.21) 
EA 

(E+H 

The final displacement is found by adding Au to uY to give 

U(X) =x 
Ly +P- 

Py 
1-E )-l] 

. (8.22) 
[E 

EA 
( 

E+H 

Experimental data provide us with the relationship between stress and total strain. 
The value of H is derived from this using (8.9) and (8.11); i. e. 

Re-arranging we have 

8.2 General theory 

H= 
duy 

(8.23) 
dep 
duY de 

(8.24) 
de dep 

1+H) 
duy 

(8.25) 
E de * 

E 
do'y 
de (8.26) d'72 

de 

When there is more than one stress under consideration the yield state of the mate- 
rial depends on some function of the stress components. We now employ the work- 
hardening hypothesis so that the yield stress depends on the plastic work which we 
denote by r.. It is defined incrementally as 

dr.: = aT dep, (8.27) 

where cr is a column vector containing the stress components. The yield function takes 
the form 

Y=- (8.28) 
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where a, known as the effective stress, depends on the particular material model. For 
metals it is defined to be consistent with the case of uniaxial tension. When a material 
is in a plastic state an increment in stress produces an increment in the plastic strain 
which is defined in terms of a plastic potential, 0. The relation between dep and 0 is 
the flow rule 

dep = dA 
00, 

(8.29) 
ao- 

where dA is a constant of proportionality to be determined. The Associated Theory of 
Plasticity states that the plastic potential is the yield function, i. e. Y, so that the 
flow rule is 

dep = dA 
OY 

(8.30) 
ea, 

The flow vector, a, is defined as 

so that the flow rule is simply 

ay (8.31) 
acr 

d, EP = dAa. (8.32) 

When the material is in a yielded state any increase in o- or r. must cause a zero 
increment in Y. For the increment in Y we have, from the chain rule, 

dY = 
(0y) T 

da + 
dY 

dn. (8.33) TO- d r, 

From (8.27) and (8.32) we have 

dr. =aT dep = CrT adA. (8.34) 

Euler's theorem on homogeneous functions states that if f (x) is homogeneous and of 
degree n then [26, Page 228] 

x Tof = nf. (8.35) 
Ox 

Using this on Y in (8.28) and the fact that Y=0 during plastic deformation we have 

T T06 
= a a=a 6(cr) = au(n). (8-36) 

Hence (8.34) becomes 

From (8.28) we have 

dr. = oy(n)dA. (8.37) 

OY day 
(8.38) 5 -K. """: d r. 
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Substituting (8.37) and (8.38) into (8.33) we have, during plastic deformation, 

dY =aT da - HdA =0 (8.39) 

where day 
(8.40) 

The value of H will be discussed later. From Hooke's law 

a=D (e - ep) (8.41) 

which may be rearranged to give 

c= D-1a + ep, (8.42) 

The strain increment is obtained using the chain rule with (8.42) to give 

de = dD-1cr + D-ldcr + dEp* (8.43) 

For isothermal applications the dD-1 term will always be zero. Hence we may rearrange 
(8.43) to give 

do, =D (dr: - dep). (8.44) 

Substituting (8.44) into (8.39) gives us 

dY =a TD (dE - adA) - HdA = 0. (8.45) 

Solving for dA we have 

dA aT Dde 
(8.46) 

aT Da+H* 

Substituting (8.46) into (8.32) we have 

dep = 
aa T Dde 

(8.47) 
aTDa + H' 

Substituting (8.47) into (8.44) gives us 

da= D- 
Daa TD 

dE. (8.48) 
(aT 

Da + H) 

We define the elastoplasticity matrix, Dp, to be 

Dep =D- 
Daa TD 

(8.49) 
aT Da + H, 
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The value of H is obtained from uniaxial tests on the material. For the uniaxial case 
we may write 

H= 
00'yoy 

= 
00"y 06PO, 

Y* (8.50) 
0 r. OeP Or. 

From (8.27) we have 
dr. = oy dep 

so that 
H= 

00'y 
(8.52) 

OEP 

which is equivalent to (8.9). The value of H can now be obtained from experimental 
data. For the general case we define an effective plastic strain, Fp, and an effective 
stress, Er, such that 

dr. = adEp. (8-53) 

Now (8.52) becomes 
ao, 

y 
aýp. (8-54) 

The calculation of a depends on the yield condition of the material. This will be 
discussed later. The calculation of Fp is then performed using 

dFp - 
dAa To. 

(8.55) 

With every increment in Fp comes an increment in ay given by 

day = AdFp. (8.56) 

8.3 Thermal effects 

The elastic modulus and the yield stress are both functions of temperature. Further- 
more, when materials are heated, they experience thermal strain. Hence we must 
rewrite (8.28) as 

Y (a) - av (r., T) (8.57) 

so that (8.39) becomes 
dY =aT dcr - HdA - SdT (8.58) 

where 
S- 

OCY 
OT 
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The strain increment (8.43) becomes 

de = dD-lcr + D-ldo- + dep + dEth (8.60) 

where 'Eth is the thermal strain vector so that 

du =D 
(de 

- dep - d6th - dD-lo, ). 

Substituting (8.32) and (8.61) into (8.58) gives us 

aTD (de 
- adA - d'Eth - dD-lo-) - HdA - SdT = 0. (8-62) 

Solving for dA we have 

so that 

aTD 
(de 

- d6th - dD-1u) - SdT 
dA =- 

a7'Da +H 
(8.63) 

du= D- 
DaaTD (dE 

- d'Eth - dD-lo- 
DaSdT 

(8.64) 
aTDa + A) 

)+ 
aT Da+H* 

Rearranging and substituting (8.49), we have 

do, = DepdE - dQ (8.65) 

where 
dQ=D (dCth+ dD-lcr _ 

DaSdT 
(8.66) ep 

)aT 
Da + H' 

8.4 Equilibrium equations 

Prior to any plastic stress increment the body is in equilibrium. For the body to remain 
in equilibrium the stress increment, do-, must satisfy the weak equation 

IE (V) T dadx =f VT df dx +f VT dgdx Vv E H. (8.67) 
XEn XEfI xErN 

Substituting (8.65) we have 

f 
OE(V)T DpoE(du) dx f 

vTdf dx +fvT dg dx +fC (V)T dQdx VVEH. 
XEn XEn XErN XEO 

(8.68) 
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Thne 

Figure 8.2: Typical creep curve 

In practice the infinitesimal increments, du, df, dg and dQ, are replaced by finite 
ones, Au, Af, Ag and AQ where 

AQ = D, p 
(AEth + AadD-l _ 

DaSAT 
+ ") 

a7'Da + 11 

Hence the weak equilibrium equation governing the finite displacement increment, Ati, 
is 

f 
IE (V) T D, p4E 

(A u) dx f 

XEII XEn 

8.5 Creep 

v 
TAf dx+ fv TA 

gdx+ 
f 

4E(V)TA Qdx Vvell. 
xErN XEO 

(8.70) 

Although the creep theory presented here is not used in this thesis, the possible signif. 
icance of creep deformation to a fire-exposed frame justifies its inclusion. This section 
illustrates how creep may be incorporated into the plasticity model. 

Under normal conditions (i. e., normal stresses and temperatures) most building rnate- 
rials deform only in response to an applied load. In such circumstances the deformation 
is instantaneous. However, under exceptional circumstances, like the subjection to a 
high temperature environment, further deformation may occur if the load is maintained. 
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Such behaviour is called creep deformation and is regarded as the time-dependent in- 
elastic deformation of solids. It can be generally considered to consist of three stages: 

Primary creep period: This has a relatively high deformation rate. 

Secondary Creep: This has a much slower and constant growth rate and normally 
occurs at high temperatures. This is also known as steady-state creep. 

Tertiary Creep: This is the most detrimental type of creep deformation as the defor- 
mation rate becomes extremely high and usually results in catastrophic rupture of the 
structure in a very short time. 

These are illustrated in Figure 8.2. For steels at fire-exposed temperatures tile primary 
creep period is short compared with the secondary creep period. Hence, for practical 
purposes, the primary creep period is ignored. 

The creep rate of a material depends on the time since loading, the temperature and 
the stress. A general form for the uniaxial case is 

de, 
=f (a, t, T) = fl (a) f2 (t) f3 (T). (8.71) 

dt 

Various forms of fi(o), f2(t) and f3(T) have been proposed by researchers. Some of 
the commonly used ones are listed in 11su [15]. For fire applications it is assumed that 
the creep rate only depends on the stress and the temperature and so we take f2 
Most models use 

f3(T) = exp 
Q 

(8.72) (ZRT-) 

where 

Q= Activation energy (8.73) 
R= Universal gas constant (8.3lJmoI-1K) (8.74) 
T= Absolute temperature. (8.75) 

The activation energy is, for a given stress, a measure for the temperaturc at which 
the creep becomes significant. Hsu [15] uses Norton's law, 

dec 
,= Ka" exp 

Q 
(8.76) 

dt 
(-RT)' 

where K and n are are material constants. Lie [21,153] uses the Zener-Hollomon law, 

de, 
= Zexp (8.77) 

dt RT) 
Q 

where Z is the Zener-Hollomon parameter which is a measure of the creep rate of a 
material in the secondary creep period at a given temperature. According to Lie [21], 
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for mild structural steel (ASTM A36), 

Q= 
40000K (8.78) 

R 
Z=1.23 x 1016 exp(O. 000427a)h-1,100 <a <- 30ON/inM2 (8.79) 

and, for cold drawn pre-stressing steel (ASTM A421), 

Q= 
30000K (8.80) 

R 
Z=8.21 x 1013 exp(O. 000142a)h-1,135 <a :5 70ON/rrm, 2. (8.81) 

For general multi-axial cases the constitutive laws are expressed in terms of effective 
stress and strain. The two laws become, respectively, 

d -F, 
, Kr exp (8,82) Tt -R2T- 

d-, F, 
T Z(F) exp (8.83) 

t(- -R2T- 

where 7, is the effective creep strain and F is the effective stress. Incremental creep 
strain may be expressed in terms of a plastic creep potential function; Lo 

&0 
de, = d, \50. 

where dA is a positive parameter that depends on the loading history and 1P is the creel) 
potential function (analogous to the plastic potential function in the previous section). 
If 0=Y as before then 

de� = dAa. (8.85) 

If we assume that the creep strain is incompressible then the effective creep strain may 
be defined as [15] 

CT d?, := 
(ýd 

c de, (8.86) 
3 

Substituting (8.85) into (8.86) gives 

dA v"a-T a (8.87) 

so that 

dA dF, (8.88) i 
N/a--Ta 
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The value of d-F, is determined from either Norton's law (8.76) or Zener-11ollomon's law 
(8-77) by integrating over the time increment; i. e. 

t' 
d*F, =f Ku' exp Q) dt Norton, RT 

(8.89) 
d?, = 

tn 
fIZ (F) exp 

4R) dt Zener-Hollomon. 

Following on from the thermal elastoplastic analysis earlier we assume that the total 
strain increment may be expressed by extending (8,60) to 

de = crdD-1 + D-ldu + dep + dEth + d£,. (8.90) 

This modification to the thermal elastoplastic theory only results in changing the (IQ 
term, given in (8.66), to 

dQ = D, j, 
(d'Eth 

+ dD-la + dec - 
DaBdT 

,) a7'Da +A 

8.6 Yield conditions 

The yield condition should be independent of the co-ordinate system employed. Hence 
it may be dependent on the principal stresses, a,, 0'2 and 0'3, and the stress invariants, 
11,12 and 13. Any combination of these will be independent of the coordinate system 
and may contribute to the yield condition. For metals, plastic deformation has been 
shown experimentally to be essentially independent of hydrostatic pressure; i. e. 11. 
Hence the yield condition may be assumed to be a function of the deviatoric stress 
invariants, J2 and J3, only. 

The Tresca yield criterion 

This states that yielding begins when the maximum shear stress reaches a critical value. 
In terms of principal stresses it may be stated as 

imax - 
Ol - 0'3 

(8.92) 
2 

where a, and 0'3 are the maximum and minimum principal stresses, respectively, and 
k is a constant to be determined. For the uniaxial tension case, yielding occurs when 

cry 
=k (8.93) 

so we have that 
67 ý-- 61 - 0'3 - (8.9-1) 
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The von Mises yield criterion 

This states that yielding begins when the distortion energy equals the distortion energy 
at yield in uniaxial tension. The distortion energy is proportional to J2 and so the yield 
criterion is for J2 to reach a critical value. When yielding occurs under uniaxial tension 

a2 J2 " 1/ (8.95) 
3 

and so 
V3 

-721 

The Mohr-Coulomb yield criterion 

Mohr extended the TYesca yield criterion by assuming that yielding depends not only 
on the shear stress but that it also depends on the normal stress acting on the shearing 
plane. This is, in fact, a generalisation of the Coulomb friction failure law w1lich may 
be stated as 

r=c-a,, tan 0, (8.97) 

where r is the magnitude of the shearing stress, a,, is the normal stress (tensile stress 
positive), c is the cohesion and 0 is the angle of internal friction. Note that both c 
and 0 are material properties that are determined experimentally. Molir demonstrated 
that, graphically, (8.97) represents a straight line tangent to the largest principal stress 
circle as shown in Figure 8.3. 

From Figure 8.3 equation (8.97) may be rewritten as 
O'l - 0'3 

COSO =c 
Ol + 0'3 Ol - 0'3 

sin tan (8.98) 
2+ -2 

which simplifies to 
O'l - 0'3 + (Ol + 0'3) sin 0= 2c cos 0. (8.99) 

The key difference between this Yield criterion and the previous two is that yielding 
now depends on the direction of the stress. Let at and ac denote the magnitude of 
the yield stresses for the cases of uniaxial tension and compression, respectively. Then, 
from (8.99), we have 

at (1 + sin 2c cos (8.100) 

ac (1 sin 2c cos (8.101) 

Solving for 0 and c we have 

sin-I a, - at (8.102) (ac 
+ at) 

C 
ra-t C (8.103) 

2 
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z 

Figure 8.3: Mohr circle representation of the Mohr-Coulomb yield criterion 

Hence (8.99) may be written as 

Orl - U3 + 
(Orl + U3) 2a,, at 
cc + at ac + at 

which simplifies to give 
alU, - a3at " act7t- (8.105) 

Then, for the case of uniaxial tension, (8.105) reduces to 

al = at (8.106) 

and, for uniaxial compression, 
- 0'3 = a, - (8.107) 

The Drucker-Prager yield criterion 

An approximation to the Mohr-Coulomb law was presented by Drucker and Prager in 
1952 as a modification of the von Mises yield criterion. The influence of a hydrostatic 
stress component on yielding was introduced by adding an 11 term in the von Miscs 
expression so that the yield criterion is 

aIl + V3-(J2)1 = k. (8.108) 

Now, for uniaxial tension and compression cases, respectively, we have 

at(l+a) =k (8.109) 

orc (1 - a) = k. (8.110) 

157 



Hence 
a, - at (8.111) 
a, + at 
2a, at 

ac + at 

Note that these are related to the Mohr-Coulomb parameters by 

a= sin 0 (8.113) 
k= 2ccoso. (8.114) 

8.7 Application to beams 

In beam theory the only non-zero stress components are all, a12 and a13 so that the 
deviatoric stress tensor is 

2 
all 0'12 a13 

612 1 all 0 

1713 0 lall 
3 

Hence the invariants 11 and J2 are 

all 
1222 J2 5all + 0'12 + 613' (8.117) 

The flow vector may be written as 

so that, using (8.108), 

'A OF Oll OF N 
+ 

amh 

+ 3a (8.119) 
O'll cO 

'12 
0 

ý3 =T2i 30'13 

Recall that the linear elastic constitutive relation between the components of stress 
and strain is 

t711 E 0 0 ei, ) 

U= 012 

( ( 

0 G 
) 

0 
( ) 

f12 De (8.120) 
0,13 0 0 G C13 

and that the relation between beam stresses and beam strains is 
S1 

S 
S2 

XT crdx (8.121) 
S3 

xEA S4 
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where 1 -12 -X3 0 

000 -X3 (8.122) 
(0 

00 X2 

) 

The elastoplastic relation between the stress and strain increments is 

Ao, = DepAC - AQ (8.123) 

so that, for the finite increment in beam stresses, AS, 

AS 
I 

XTAcr dx -I 
XTAQdx (8.124) 

XEA XEA 
I 

XT DepAc dx -f 
XTAQdx (8.125) 

XEA XEA 
f 

XT DepXB(Au) dx -f XTAQ dX. (8.126) 
XEA XEA 

Hence we may write 
AS = DBepB(Au) - QB, (8.127) 

where 
DBep 

f 
XT DepX dx (8.128) 

XEA 

QB f XTAQ dx. (8.129) 
XEA 

The weak incremental equilibrium equation governing a thermoclastic-plastic beam is, 
therefore, 

10 1B 
(V)T DB, pB(Au) dx = 

10 1VT 
Aqdx + fo IB 

(V)TQB dx VvE 11. (8.130) 

The finite element solution is obtained by finding the incremental degree of freedom 
vector, AU that satisfies 

KAU = AF, (8.131) 

where 
L 

KIBT DBpB dx (8.132) 

0 
L 

AF f (N TAq + BTAQB) dx. (8-133) 
0 
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8.8 Data structures for plastic frame analysis 

The evaluation of the plastic beam coefficients matrix involves the numerical inte- 
gration of stress components over the cross section. Hence the stress components 
need to be stored at Gauss points within each triangular element of the cross-section. 
Furthermore, the cross-sectional stresses need to be stored for Gauss points along 
the beam element. Hence the data structure for storing the stress components is 
Stresses(i, j, k, 1, m) where 

i= Beam element number, 1<i :5 nbe (8.134) 

j= Beam element Gauss point number, 1 :5j :5 nbgp (8.135) 

k= Cross-section element number, 1<k< ncse (8.13G) 

1= Cross-section element Gauss point number, 1 :51 :5 ncagp (8.137) 

M= Stress component number, 15 m _< 
3, (8.138) 

where 

nbe = Number of beam elements (8.139) 

nbgp = Number of beam element Gauss points (8.140) 

ncse = Number of cross-section elements (8.141) 

nvsgp = Number of cross-section element Gauss points. (8.142) 

Similarly we define the data structures PlasticStrains(i, j, k, I) to store the efrectivo 
strains and Yieldftresses(ij, k, 1) to store the yield stresses throughout the frame. 
Temperatures may be stored at each cross-section element Gauss point so as to use 
the same data structure type as the stresses and plastic strains. However, since the 
finite element temperature distribution is piecewise-linear, they only need to be stored 
at the cross-section nodes. In many fire applications the temperatures in a particular 
beam only vary across the cross-section and not along the length of the beam. Hence 
the temperatures only need to be stored once for each beam. Using an object oriented 
approach the temperature data structure may be regarded as a property of the cross- 
section and take the form CrossSection. Temperatures(ij) where 

i= Cross-section node number, 1 :5i< ncse (8.143) 

Timestep number, 0 :5j< nts (8.144) 

where nts is the number of timesteps in the finite element temperature calculations. 

8.9 Solution procedure 

Equation (8.131) may be solved using the Tangent Stiffness Method which solves the 
non-linear equation 

K(x)x =F (8.145) 
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using the iteration 

K(xi)(, Ax) = ! P(xi) (8-146) 
Xi+l = Xi + 

Adx (8.147) 

where 
TI(x) -= F- K(x)x. (8.148) 

Initially, the elastic finite element solution is obtained resulting in a displacements 

vector, U. From this the stresses, aij, are calculated at each integration (Causs) 

points and stored in Stre sses (i, j, k, 1, m). The maximum effective stress, amax P is a1SO 
calculated so that the fraction of F that caused first yield, 0, is determined to be 

- 
0111 

. (8.149) 
O'max 

The displacements and stresses at yield are then updated to be 

U= axu (8.150) 

Stresses(i, j, k, l, m) = 8xStresses(i, j, kl, m) Vi, jk, l, m. (8.151) 

The effective plastic strains and the yield stresses are set to 

PlasticStrains(i, j) =0 Vij (8.152) 

YieldStresses(i, i) = av Vi, j. (8.153) 

The remaining load, (1 - P)F, is divided into n load steps of size AF. For each load 
step AU is calculated using the iteration 

K(Ui)AAU = TI [(, AU)i] 
(AU)i+l = (AU)i + AAUI 

where 
!p [(, AU)j] =, AF -I BT (, da)i dx 

XEn 

and, initially, 

AU =0 
StressIncrements(i, j) =0 Vi, j. 

(8.154) 
(8.155) 

(8.156) 

(8.157) 
(8.158) 

The calculation of StressIncrements(i, j) is achieved using (8.65). For the stress 
increment we have, during plastic deformation, 

Ao, =1 du =1D, p de (8.159) 
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which is evaluated by dividing the integral into m steps so that 

1 D, paE (8.160) 
m 

where Ac is evaluated from 

Aell Bl(du) - -2B2(du) - X3B3(du) 
A IE12 -1-IB2(du) 2 

2 
B3(du) 

(AIE13 

12 

If the material has not yielded at a particular point or it is being unloaded (i. e. dA < 0) 
then D, p reduces to D and 

Aa = DAe. (8.162) 

8.10 Error estimation 

After a load increment has been applied the increment to the true displacement, Att, 
and the increment to the finite element displacement, AUh, satisfy 

a(Au, v) = (Aq, v) + (AQ, v] (8.163) 

a(AUhi V) = (Aq, v) + [AQ, v] (8.16-1) 

to within an iteration tolerance. Assuming that the iteration error is negligible com. 
pared with errors due to the finite element mesh the analysis of Chapter 7 may be 
applied to the plastic case. Hence the error estimator defined in Section 7.5.6 may be 
applied with confidence. The only difference in the implementation is in the evaluation 
of the residual vector, r. This is defined as 

q, -Si Uh) 1( 

r 
q2 S2"(Uh) 

(8.165) 
q3 S 131 (U h) 
0- S41 (Uh) 

which requires the derivatives of the stress components. The stresses are stored dis- 
cretely and cannot be calculated exactly from the finite element solution. In practise 
the beam stress vector, dS, is calculated at the gauss points then its derivatives are 
approximated by differentiating a polynomial that interpolates dS at the gauss points. 
Let the interpolation error in r be denoted by e and defined as 

(dSi - NdSl)' 
(dS2 

- IldS2)" (8.166) (dS3 - ridS3)11 

(dS4 - 
TIdS4)' 
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In the definition of 6, we have 

a(a, v)ni = (r, v)ni + (c, v)ni (8.167) 

for all vEV. Following through the analysis in section 7.5.6 we have the bounds 

)2 21-, 
y(h)2 )l Ilell (8.168) C 1161IL2 + (1 

- P(h )' ( :5 11611 :5 Hell +C IlClIL2 
' 

Using the interpolation result in section 2 and the fact that dS is differentiated twice 
we have that, when there are n Gauss points and a corresponding interpolant of degree 
<n-1, 

Ilell :5 Chn-2. (8.169) 

For Ildell to be asymptotically exact 11, E11 must converge to zero at a faster rate than 
Ildell. For the quadratic and cubic finite element method, the fastest that Ildell can 
converge is with order h2. Hence the number of gauss points must be greater than 
4 to guarantee asymptotic exactness. When quartic or quintic functions are used for 
the bending displacements the number of gauss points must be greater than 5 or 6, 
respectively. 

8.11 Numerical examples 

Presented here are three applications of the computational method described in this 
chapter. The first considers a single heated beam which illustrates the combined ther- 
mal effects of expansion and material weakening. The second example considers a 
simple 2D frame loaded at room temperature so that it undergoes clastoplastic de- 
formation. This illustrates how errors occur in the finite element solution due to the 
plasticity and how adaptivity of the mesh reduces the error. The third example consid- 
ers a 3D two storey frame where the ground floor beams and columns are exposed to 
a heating curve. This illustrates the application of the error indicator to fire-exposed 
frame problems. All three examples use the von Mises yield criterion with values of E, 
H and S calculated from the data in Table 8.3. 

8.11.1 A thermoplastic beam 

The simply supported beam of length 1350mm has an applied force of 60810 N at one 
end and is heated underneath as illustrated in Figure 8.4. The measured temperatures 
are given in Table 8.1 and are used as boundary conditions to calculate the complete 
temperature distribution using the thermal properties in Table 8.2. Using the struc- 
tural properties in Table 8.3 the displacement of the beam was calculated for different 
exposure times. The vertical displacement of the midpoint is listed in Table 8.4 and 
plotted in Figure 8.5 for comparison with experimental values [32]. A close match be- 
tween experimental and computational values is shown up to around 24 minutes which 
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is about the time the beam first yields. After this time the computed displacement 
follows a similar path to that in the experiment except that it happens over a shorter 
time. 
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Table 8.1 : Nionsilred felliper; IIIII-es 

Time (inins) T, (OCI) T-, ("( ') 
4 -10.5 2().. l 
8 110.3 . 11. -1 

12 221.0 9: 1. 
20 395.5 23 H) 
24 566.7 3 12.4 
28 632.6 377.0 
32 675.4 '119. ( 
'35 697.7 -137.0 
, 16 7,10.0 IG 1.0 
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Table 8.2 : Thermal properties of steel [36] 

T(*C) k(Wm-'K-') c(Jkg-'K-1) p(kgm-') 
0 52.0 440 7850 

20 52.0 440 7850 
50 51.7 450 7842 

100 51.0 480 7827 
150 50.0 505 7812 
200 48.8 530 7797 
250 47.5 550 7781 
300 46.0 565 7765 
350 44.5 585 7748 
400 42.7 610 7731 
450 41.0 640 7713 
500 39.2 675 7695 
550 37.5 715 7675 
600 35.5 760 7655 
650 33.8 820 7635 
700 32.0 1010 7616 
725 31.0 1600 7608 
735 30.0 5000 7612 
750 28.5 1300 7618 
775 26.0 1010 7622 
800 26.0 810 7626 
825 25.8 730 7627 
850 26.0 685 7622 
875 26.2 660 7611 
900 26.5 650 7599 
950 27.0 650 7574 

1000 27.5 650 7549 
1050 28.0 650 7523 
1100 28.5 650 7500 
1150 29.0 650 7477 
1200 29.5 655 7453 
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Table 8.3a : Structural properties of grade 43A steel for 20"C to 350"C [2] 

Strain % Stress (N/mm') for Various Te mperatures ("C) 
20 50 100 150 200 250 300 350 

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.01 18.4 18.4 18.4 17.3 16.6 15.8 15.6 14.5 
0.02 36.7 36.7 35.7 34.9 33.2 31.9 31.4 29.1 
0.03 55.1 54.1 54.1 53.2 49.7 47.7 46.9 43T 
0.04 73.4 72.4 71.7 70.6 66.3 63.5 62.5 57.9 
0.05 91.8 89.3 90.0 88.2 82.9 79.3 78.0 72.4 
0.06 110.2 109.1 107.4 105.6 99.2 95.4 93.8 87.5'- 
0.07 128.3 126.7 125.7 123.2 115.3 111.2 109.4 101.2 
0.08 146.6 144.8 143.3 141.5 132.3 127.0 125.0 115.8 
0.09 165.0 163.2 161.7 158.9 148.9 143.1 132.1 124.4 
0.10 183.0 181.6 179.0 176.5 165.5 158.9 136.4 129T 
0.12 220.1 217.5 214.7 211.4 198.6 181.8 144.5 138.0 
0.14 255.0 247.1 234.1 225.4 208.1 188.2 152.2 145.9 
0.16 255.0 247.1 238.4 229.5 213.4 193.8 158.9 152.2 
0.18 255.0 247.1 242.3 232.6 217.5 198.4 164.5 157.8 
0.20 255.0 247.1 244.8 234.6 221.1 202.2 169.8 163.2 
0.25 255.0 247.1 246.1 237.7 229.2 208.8 181.3 174.7 
0.30 255.0 247.1 246.1 239.7 233.8 213.9 191.9 184.9 
0.35 255.0 247.1 246.1 241.0 237.4 217.3 199.7 192.8 
0.40 255.0 247.1 246.1 241.7 239.2 219.8 207.1 199.7 
0.50 255.0 247.1 246.1 243.8 241.2 225.4 217.8 210.6 
0.60 255.0 247.1 246.1 244.0 241.7 230.0 225.7 218.5 
0.70 255.0 247.1 246.1 244.3 242.3 233.6 230.9 225.2 
0.80 255.0 247.1 246.1 244.5 242.8 237.4 235.4 231.5 
0.90 255.0 247.1 246.1 244.5 243.0 240.7 238.7 235.6 
1.00 255.0 247.1 246.1 244.9 243.5 242.8 241.2 1 2 3T9-. 77-1 
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Table 8.3b : Structural properties of grade 43A steel for 400"C to 800'C [21 

Strain % Stress (N/mm') for Various Temperatures ('C) 
400 450 500 550 600 650 700 750 800 

0.00 0 0 0 .0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 0.01 

, 
0 0 0 1 13.3 11.7 9.4 6.9 5.6 4.1 2.0 2.0 1.8 

02 0, 0 0 2 26.8 23.5 19.1 13.5 11.5 8.2 4.1 3.8 3.3 
0.03 0 

M 

0 0 3 0 40.0 35.2 28.6 20.4 17.1 12.2 6.1 5.9 5.6 
0.04 0.04 53.3 46.9 38.3 27.0 22.7 16.6 8.2 7.9 7.4 
0.05 0.05 66.8 58.7 47.7 33.9 28.3 20.7 10.5 9.9 9.4 
0.06 0.06 80.1 70.1 57.1 40.7 34.2 24.7 12.5 11.7 11.2 
0.07 0.07 93.3 81.9 66.8 47.4 39.3 28.3 14.5 13.8 13.0 
0.0 8 106.6 93.6 76.2 54.3 45.1 32.9 16.6 15.3 14.0 
0.09 116.8 105.3 85.7 60.9 48.5 36.0 18.6 16.3 14.0 
0.10 121.6 111.7 95.4 67.8 51.3 38.0 20.7 17.3 14.0 
0.12 131.6 118.3 102.3 81.3 56.1 41.3 24.7 19.4 14.3 
0.14 13905 124.7 108.6 87.2 60.7 43.9 26.8 20.4 14.3 
0.16 145.9 130.8 113.5 92.6 64.3 46.2 28.1 21.4 14.5 
0.18 

, 
151.2 135.9 118.6 96.9 67.6 48.2 29.6 22.2 14.8 

0.20 156.3 140.3 122.9 100.0 70.9 50.0 31.1 23.0 15.0 
0.25 167.8 150.2 132.3 105.8 77.3 54.3 34.9 25.0 15.3 
0.30 177.7 158.9 140.3 110.7 82.9 58.4 38.3 27.0 15.8 
0.35 185.9 166.5 146.4 115.5 87.5 62.5 41.1 28.6 16.3 
0.40 192.3 172.9 151.5 119.3 91.3 66.0 43.6 30.1 16.6 
0.50 203.5 183.9 158.6 125.5 96.4 72.2 47.4 32.4 17.3 
0.60 211.4 192.5 165.5 131.8 100.5 77.3 49.5 33.4 17.9 
0.70 219.6 199.9 172.4 137.4 103.8 82.1 50.2 34.2 18.1_ 
0.80 227.5 206.0 177.2 142.0 107.4 85.7 50.5 34.4 18.1 
0.90 232.8 210.9 181.3 145.9 110.2 89.0 51.0 34.7 18.6 
1.00 1 238.4 214.7 184. IT 148.9 111.7 

1 
91.8 

. 
51.3 34.9 18.6 
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Table 8.4 : Tabulated results 

Time (mins) Elastic ElastoPlastic Experimental 
7.5 -3.2 -3.2 -2.4 
20 -10.2 -10.2 -13.2 
24 -14.2 -14.3 
28 -10.7 -10.8 -15.9 
36 +9.2 +12.2 - 14.3 
44 +22.8 +30.1 -4.4 
55 1 +42.4 +60.7 +45.2 
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Figure 8.5 : Graphical results 
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8.11.2 A plastic frame 

The frame illustrated in Figure 8.6 is loaded continually along the horizontal beam so 
that the deformation becomes plastic. Table 8.5 shows the vertical displacements in the 
horizontal beam calculated with the finite element method using the error estimator 
to adapt the mesh. These are illustrated in Figure 8.7. 

X3 

-70000 
1 

X1 

X3 

Figure 8.6 : Plastic frame 

X3 

Xi 

Table 8.5 : Numerical results for plastic frame. 

ne u 
(2) 
3 

(0) u 
(2) (0.5) 3 p112 

3 -0.241 -5.23 7.75E-2 
6 -0.244 -5.61 2. OOE-1 

10 -0.247 -5.78 1.04E-1 
14 -0.251 -5.89 3.92E-2 
18 -0.252 -5.91 3.05E-3 
24 -0.252 _-5.91 

9 89E-4 
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lie 112 = 7.75E-2 

Ile 112 = 1.04E-1 

Ile 112 = 3.05E-3 

Ile 112 = 2. OOE-1 

lie 112 = 3.92E-2 

Ile112 = 2.89E-4 

Figure 8.7 : Adaptive mesh for plastic frame with error estimates 
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8.11.3 A thermoplastic two-storey frame 

The two storey frame, illustrated in Figure 8.8a, is loaded along each horizontal beam 
with a force of 100 kN/m. The ground floor is exposed to a fire such that the gas 
temperature follows the standard BS476 curve [1] so that the ground floor columns 
and beams are exposed as illustrated in Figure 8.9. The deformation of the frame, 
illustrated in Figure 8.8b, is calculated after 3 minutes, just after first yield. Table 8.6 
shows the estimate of the error for each mesh used in the calculation. The first mesh 
consists of one element per beam which is refined where the element contribution to 
p112 is greater than 0.01. L2 

(a) (b) 

Figure 8.8 : Undeformed (a) and deformed (b) frame showing connecting nodes for 
the 24 element mesh. 

INSULATED 

Ak, A., 

-W'W IWr -W 'wr w W'W 

Ak I& ALI 'A, A, 

(a) (b) 

Figure 8.9 : Exposed column (a) and exposed beam (b) in the ground floor. 
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Table 8.6 : Estimates of the error for each frame mesh. 

Elements Nodes DOF HaWL2 
16 28 168 1.38 E+2 
24 44 264 8.62 E+O 
40 76 456 5.39 E-1 
72 140 840 3.37 E-2 
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Chapter 9 

Conclusions 

Modelling the fire-exposed frame has been separated into two decoupled problems. The 
first calculates the temperature throughout the frame then the second calculates the 
displacements due to mechanical loads and to the rise in temperature. Techniques 
required to solve the heat conduction equation, derived in Chapter 6, have been de- 
scribed. These include the fully automatic generation of a triangular mesh for any 
polygonal domain, in Chapter 4, and the calculation of error indicators. 

A 3D model for the deformation of a single beam has been derived in Chaptcr 7 using 
the assumptions that 

beam cross-sections remain plane and perpendicular to the neutral line during 
deformation (Euler-Bernoulli); 

ii) warping effects are negligible; 
iii) strains are small enough to neglect nonlinear terms. 

In the model, the general displacements, f1b fl21 f13, and the beam displacements ul, 
U21 U3 and 0, are related by 

i-L 1 Ul - X2UI2 - X3U3 
fL2 U2 - X30 
U3) U3 + X20 

and the linear infinitesimal strains, 611,1612 and IE13, are related to the displacements by 

ell U11 -'ý241 - X34) 

16 12 X30% (9.2) 

f 13 X201- 
2 

The behaviour of the beam is determined by the constitutive relation of the material 
which relates the components of stress, aij, with the infinitesimal strains and the ther- 
mal strain, Eth. The description of the beam model makes use of equivalent properties 
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that relate to the cross section of the beam. They are the beam displacement vector 

the beam strain vector 

the beam thermal load vector 

Ul 

U- 
U2 

U3 
0 

1 Ui 
11 U2 B(u) il , U3 

oý 

) 

1 

E(x, T)Eth -X2 

xeA 
-X3 

0) 

and the beam stress vector 

alli 

S(U) -X20'11 dx. 
X30'11 

XEA 
X2L713 - X30'12 

The linear constitutive relation for a beam, 

S(u) = DB(u) - 

has been derived from Hooke's law where 
(1 -X2 -X3 

_x 2 
2 X2 X2X3 0 

D= E(x) -X3 X2X3 X33 0 dx. 
xEA x2 +x 2 

0 0 0 

The equilibrium equation 

-sil fl 
14 L(u) 

S121 f2 

S131 f3 Ij 

-S41 

(0 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9-7) 

(9.8) 

(9.9) 

has been derived based on the conservation of linear and angular momentum. The 
beam model has been extended to a frame by assuming that the joints between beams 
are rigid; i. e. 
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i) Displacements and rotations are continuous; 
ii) Resultant forces and moments at a joint are zero. 

The inner product (u, v) has been defined for a frame composed of nb beams to be 

nb 
l(k) 

)T 
v 

(k) dx. (u, v) =I., 
f (U(k) 

k=l 0 

Using this definition, the weak form of the equilibrium equations has been derived, 

a(u, v) = (B(u), DB(v) = (f, v) + (Q, B(v)) Vv E H, (9.11) 

and it has been proven that 

IlUlIL2 
-5 C JIB(u)IIL2 !5 Cl 11flIL2+ C2 IIQIIL2 

1 (9.12) 

where C, C, and C2 are constants. 

A finite element method has been derived for solving the weak equation in a space of 
piecewise polynomial vectors, V. This has been shown to be superconvergent at the 
connecting nodes if quadratic functions are used to approximate the ul and U4 ý-- 0 
displacements and polynomials of degree 3 or higher are used to approximate the U2 
and U3 displacements. An error indicator, 11611 has been derived, based on the work of 
Bank and Weiser [91, to estimate the error in the energy norm, Ilell. The indicator is 
found by solving the local problem 

(ii, v) ni = (r, v) ni Vv E ý' (9.13) 

where f7 contains polynomials of higher order than those in V and on the boundary of 
Qj, i. e. the connecting nodes, 

-II Vl -= V2 : -- V3 =-- V4 : V3 = V2 0 Vv E 

It has been shown that 
I 

1 -, 6(h)2 21 (h)2) 2 Ile 11 :5 11611 
:5 11 e 11 

where, as h tends to zero, fl(h) tends to zero and y(h) tends to a constant so that the 
indicator is consistent. Furthermore, it has been shown that 

(1 
-, 6(h)2 21- C(h)2 )l Ilell :5 11611 :5 Ilell, 

where 
C(h) := 

led 
el E V, e2 E (9.17) Ile2ll 

176 



and j: = el + e2 is the projection of e in VU 'ý. From the superconvergent properties 
of certain finite element solutions it has been shown that Ileill tends to zero with a 
higher order of h than Ile211 [191. Hence, for superconvergent finite element solutions, 
the error indicator is asymptotically exact in that 

Hall 
--+ 1 as h --+ 0. 

Ilell 

The contents of this thesis have been intended to serve as an introduction to solving 
fire-exposed frame problems using finite elements. Future work can build on this by 
refining the beam model described in Chapter 7 (e. g., see references [25] and [11]) and 
the material model described in Chapter 8 to accurately predict the structural response 
using the new error estimator. 
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