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ABSTRACT 

A new design of closely intermeshing co-rotating twin-screw 

compounding extruder, developed at Brunel University, has been utilized 

in the development of quantitative techniques for characterization of 

dispersive and distributive mixing in thermoplastics materials prepared 

by extrusion compounding. Image analysis procedures were used to 

quantify mixing of polypropylene composites containing calcium 

carbonate filler using reflected light microscopy on polished surfaces, 

and transmitted light microscopy of microtomed pigmented sections. 

Stereological statistics have been applied to raw sample data; 

results are discussed in relation to mechanistic phenomena influencing 

particle agglomeration, dispersion and distribution of fillers in 

thermoplastics. 

Dispersive or intensive mixing determined from calcium carbonate 

filled polypropylene specimens showed that processing parameters had no 

significant influence except when filler was added midway along the 

machine although the melting zone was highlighted as having a marked 

effect on the rate of filler dispersion. Premixing of filler and 

polymer introduced additional agglomeration into the filler. A series 

of model experiments were undertaken to assess the influence of 

specific parameters. In this context moisture content emerged as 

having the single most important effect on filler compaction. 

Distributive or extensive mixing of carbon black pigmented 

specimens was very significantly affected by the presence of segmented 

disc elements at the end of the screws. These elements produced more 

than a six-fold increase in distributive mixing in the extrudate. 
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CHAPTER 1 

INTRODUCTION 

Originally, the brief for this research work entitled 'Twin-Screw 

Extrusion Compounding of Plastics' implied a technological study 

involving both material investigation and engineering development. 

However, as the project progressed financial constraints. became more 

acute necessitating a concentration of resources in the area of 

compound analysis. As a result of this change, more emphasis was 

placed on investigations into a wide range of materials for inclusion 

in a polymer matrix. 

This investigation of mixing during extrusion stems from the 

polymer processing industry's desire to lower materials costs while 

enhancing physical properties of end products. The first example of 

this philosophy is to be found with the thermosetting urea formaldehyde 

formulations which employed wood flour as a filler. More recently, 

fibrous fillers have found favour as means of reinforcing polymer 

matrices so that they can compete with metals as engineering materials. 

The great demands required of engineering materials has resulted in a 

mass of research work being undertaken to accurately specify properties 

and to satisfy various official agencies concerned with standards and 

safety. 

Nevertheless, non-reinforcing (extending) fillers in polymers 

remain the higher volume area offering large potential cost savings 

with a carefully chosen polymer/filler combination. The result of 

incorporating extending fillers, is usually some loss of physical 

properties, so ways have been found whereby these- problems can be 

minimized. Two possibilities arise: - (a) the use of composite filler 

systems, viz. fibrous and particulate combined, in the same polymer 

I 



matrix; or (b) the elimination of stress raisers, viz. any 

agglomeration of the particulate filler. 

The use of composite filler systems creates additional 

difficulties because, in order for the fibrous element to be effective, 

the fibre length attrition must not be excessive while the shear stress 

must be sufficient to eliminate gross agglomeration. A pre-dispersed 

masterbatch of the particulate filler, or a higher shear first stage of 

a three stage extruder screw, with downstream feeding of the fibrous 

element will be required for this strategy to be property-efficient and 

then only at a significant cost penalty compared to extended systems. 

Composite systems do, however, prove tenable in demanding engineering 

situations. 

Polymers employed for their aesthetic properties or in non-load 

bearing situations require an extending filler to provide a means of 

displacing expensive polymer while perhaps also pigmenting the matrix. 

The aesthetic nature, together with physical properties, will be 

undermined by agglomeration of the filler: various means exist to 

eliminate these agglomerates: - 

(1) use of pre-dispersed masterbatch systems which require only 

blending and distribution within the polymer matrix; 

(ii) use of shear stresses high enough to disperse all agglomerates 

above a size determined by the severity of specification; 

(iii) use of screen packs to filter out the offending particles; 

(iv) use of surface coatings, applied to the filler during its 

manufacture, which inhibit filler particle-particle 

agglomeration. 

The masterbatch system of filler addition is employed, 

particularly for common fillers, when it is not desirable to handle the 

raw material or if the filler is difficult to disperse on 

non-specialized equipment. A prime example of this type of filler is 
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carbon black which presents formidable handling problems in its raw 

state and requires very high shear rates to achieve acceptable 

dispersion. A masterbatch of pre-dispersed carbon black concentrated 

in a matrix of the same polymer as that in the final product provides a 

route around these difficulties but increases raw material costs. 

Nevertheless, it is particularly cost-effective for low volume 

producers using standard formulations when compared to the capital 

outlay necessary for specialized dispersion equipment. 

It the formulation required has unusual or confidential 

ingredients there are a number of options open to a Polymer Processor. 

Most frequently a Banbury intensive mixer is utilized to produce 

batches of dispersed material for subsequent processing; however, batch 

to batch variation and contamination can arise. More recently the 

twin-screw compounding extruder has been developed for directly 

processing 'difficult to disperse' materials without the need for 

pre-conditioning. 

The main limitation of filtering out any agglomerates larger than 

a specified size is that the filter will inevitably become blocked 

after a period of time. The suitability of a filtering system is 

related to the concentration of particles to be restrained which is 

itself a function of the filler concentration, particle size 

distribution and pore size of the filter. Use of a filter is tenable 

when a cheap method is required and a means of changing the screen pack 

is possible; be it by stopping production periodically or by using 

automatic screen changers. However, high filler loadings preclude the 

use of filters as they become blocked extremely quickly and hence 

inhibit flow in the extruder. 

Application of a coating to the filler during its manufacture 

enables control over the mechanisms which cause agglomeration and, in 

some cases, introduces a binding effect between polymer and filler. 
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Calcium carbonate was selected as the filler medium because it is 

in common use and presents many of the compounding difficulties 

associated with other particulate systems. In approaching these 

difficulties a number of extrusion and material variables were 

investigated. Extrusion energy management emerged early as a major 

controlling factor in shear input and thus inter-particle mechanisms. 

In order that exact control of extrusion temperatures could be achieved 

a water jacket cooling system was developed; this also allowed 

'freezing' of material subsequent to barrel withdrawal and examination 

of specimens from specific screw flight locations. 

Carbon black pigments possess particles up to 1000 times smaller 

than calcium carbonate fillers and so present different challenges. 

Determination of mixture quality in pigment/polymer composites is 

usually concerned with flow, i. e. distributive mixing; any agglomerates 

exceeding a few microns in size should, in most cases, relegate the 

compound to the scrap pile. Similar extrusion variables to those used 

previously were employed as a means of energy control. 

Quantitative analysis of mixing emerged as the most complex 

problem in compound development requiring a quick and accurate analysis 

technique. However, as a consequence of the lack of established 

quantitative techniques for characterizing mixture quality, a 

comprehensive programme was undertaken to evaluate the most suitable 

techniques for quantification of dispersive and distributive mixing. [1l 

The most promising method for examining calcium carbonate 

dispersion appears to be one of the simplest, viz. examination of 

polished surfaces with reflected light. For carbon black, a thin 

microtomed section is produced which is viewed by transmitted light 

microscopy. 

Manual sizing of agglomerates proved totally impractical, 

therefore 'image analysis' was considered as an alternative. After a 
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period of software development this automatic system of 

characterization has proved to be capable of fast, accurate suing of 

high contrast features exhibited by specimens viewed by the integral 

microscope. The calcium-carbonate-agglomeration image analysis 

technique was adapted to allow rapid direct assessment of striations 

within carbon black/polypropylene composite sections. (2) 

For this work a new design of co-rotating twin-screw compounding 

extruder, subsequently designated the Betol BTS40, has been employed to 

process various types of calcium carbonate in a matrix of polypropylene 

homopolymer. The calcium carbonate grades selected differ in their 

origin and particle size distributions whilst several coated grades of 

the former have been studied to examine the role of surface coatings. 

One of the uncoated grades has been processed in nylon to assess the 

effects of a polar matrix. A number of model experiments have been 

undertaken to investigate the influence of preconditioning of the 

filler, viz. pressure and temperature encountered during intensive 

premixing, moisture content of the filler and its particle size 

distribution. An extensive range of processing conditions were 

utilized together with variations in configuration of the screw and 

barrel in order that the effect of applying high shear forces during 

processing could be studied. (3) Each composite of calcium carbonate/ 

polymer was frozen within the barrel of the extruder and representative 

sections removed for characterization. 

For distributive mixing studies it was necessary to-ensure that 

the pigment be adequately dispersed prior to distribution so a carbon 

black masterbatch was employed. Various processing conditions and 

screw/barrel configurations were used to produce an extrudate with a 

very low carbon black concentration that facilitated characterization 

of samples removed from the 'metering' section of the screws after 

having been frozen by crash cooling. 
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CHAPTER 2 

LITERATURE REV IEW 

2.1 TWIN-SCREW EXTRUSION 

2.1.1 Background 

2.1.1.1 Single-screw extrusion 

The process known as 'single-screw extrusion' has been extensively 

investigated and its working well described. [4-7] The single-screw 

extruder consists of a screw rotating in a"closely fitting barrel so 

that if the process material adheres to the screw and slips at the 

barrel surface, there will be no output from the extruder because the 

material rotates on the screw without being pushed forward. Maximum 

output is achieved when the material slips as freely as possible on the 

screw surface whilst adhering as much as possible to the wall. Under 

these circumstances the rotational speed of the screw is greater than 

that of the material which is forced along the extruder by the leading 

edge of the flight. 

The materials employed by the Plastics Industry tend to adhere to 

all internal surfaces in the extruder during processing and can be 

introduced into the extruder in two distinct forms: - (a) as a molten 

feed requiring 'melt extrusion'; or (b) as solid material, viz. 

granules or powder, requiring 'plastifying extrusion'. 

Melt extrusion usually refers to the portion of the screw channel 

which is completely filled with molten material but the term is also 

used to describe feeding already 'molten material into the hopper of a 

machine. In the latter case, some compacting must take place before 

the screw channel is completely filled and true melt extrusion 

commences. When cold polymer granules or powder are fed into an 
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extruder and the material melted down before being extruded through a 

die, the process is known as plastifying extrusion. (7] 

In general, plastifying extrusion requires a single-screw machine 

with a well designed screw which has distinct zones capable of 

performing the following functions: - 

(I) Solids transport zone. In this zone, just beneath the hopper, 

the solid material is conveyed in the form of granules, 

powder, pellets or chips. Since, for continuity reasons, the 

output will be the same as the input, a poor design of the 

solids transport zone will limit the output considerably as 

will an inadequate hopper design; I 

(ti) Compression and melting zone. This zone starts at the point 

where the first liquid forms at the barrel wall and can 

extend along a considerable length to the point at which all 

the material in the cross-section of the channel is molten; 

(iti) Homogenization, metering and pump zone. In the first part of 

this zone the channel volume decreases resulting in a 

transitional section where the polymer is compressed to 

eliminate cavities. In the second part of this zone, the 

metering zone, the melt is transported and homogenized to 

produce the main pressure build-up within the processor. 18) 

Apart from the functions outlined above, it is possible to improve 

single-screw extruder performance by adding refinements to the basic 

screw. [9-11] Specific improvements can be obtained in three main 

areas: -- 

(a) the imposition of compulsive solids pumping enables 

a significantly greater packing of material so that output 

rates are optimised. In order to achieve this extra pumping, 

Kosel 1121 has examined a tapered feed-barrel section while 

Krueger 1131 utilized a grooved feed-screw section; 
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(b) the introduction of a kneading action to generate extra shear 

which can be directed either towards improving the melting 

action by altering the design of the screw or to encouraging 

better dispersion through the use of a barrier-type mixing 

section; [i4-I7] 

(c) an increase in homogeneity within the molten polymer can be 

attained by repeated sub-division of the melt within or after 

the metering section. Gale [18] has tackled the problem with 

a device which comprises of a stator bolted on the end of the 

extruder barrel and a rotor attached to the end of the screw. 

The stator and rotor both have cavities which are intended to 

facilitate sub-division. Other investigators have resorted 

to using special. sections within the existing extruder 

barrel. (19-21] 

Refinements such as these allow the single-screw extruder to 

undertake many tasks, viz. homogenizing freshly polymerized melt, 

compounding of additives and pigments, the production of film, 

sheeting, pipe, cable jacketing, coatings and profiles. However, 

problems remain when processing: - (1) heat sensitive polymers such as 

PVC or cross-linked polyethylene and shear sensitive additives such as 

glass fibres because of the high shear barrier and kneading sections; 

or (tf) highly mineral-filled polymers due to blocking of the screw 

flights particularly in the solids conveying zone. The addition of 

another screw within the extruder barrel was prompted because of the 

difficulties encountered when processing PVC and this gave rise to 

twin-screw extrusion technology. 1223 

2.1.1.2 Twin-screw extrusion 

The main difference between single- and twin-screw extruders lies 

in their mechanisms of transportation. The twin-screw extruder carries 
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the material within the screw flights either by passing it in a 'figure 

of eight' around the two screws or by enclosing it in a 'C-shaped' 

chamber of only one screw so providing a positive pump effect. The 

throughput of a twin-screw extruder is usually dependent on the feed 

rate of material entering the hopper plus screw speed as opposed to a 

single-screw extruder which can normally only be controlled by screw 

speed because of 'flood feeding' at the hopper. While single-screw 

extruders usually require constant cooling to remove excessive shear 

heat, the twin-screw extruder without mixing elements needs heating to 

be applied through the barrel. Back pressure from the die of 

twin-screw extruders has much less influence on any mixing action than 

with single-screw machines thus allowing much easier use of large 

cross-sectional area dies. Some of the advantages put forward for 

twin-screw extrusion of uPVC include: - (a) better control of 

temperature; (b) better mixing action; (c) better removal of entrapped 

air. [23,24) 

However, the twin-screw extruder is not used solely for uPVC 

processing but also for processing other critical materials (i. e. high 

performance polymers and other polymer compounds tailored precisely for 

specific applications). In many of the applications, the high cost of 

the polymer and the correspondingly high selling price of the component 

militates against the higher capital cost of the equipment compared to 

a single-screw machine. General advantages cited are: - (i) a greater 

ease of feeding difficult materials without the need for forced-feed 

units necessary on a single-screw extruder when handling certain 

mixtures; (fi) simpler downstream feeding which reduces the high rate 

of wear in the feed zone; and (iii) a reduction in the problems of 

adding high loadings of materials such as glass and other fibres. 

Lower circumferential screw speeds in twin-screw machines are also 

emphasized as a major factor in wear reduction which otherwise is a 
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calculable overhead incurred in the running of an extruder [25]. The 

twin-screw extruder lends itself more easily to starve-feeding so that 

optimum conditions can be reached for venting without problems of 

material leakage. Intensification of mixing and control of shear can 

be effected at any section along the length of the barrel using a 

variety of different shearing and mixing devices whilst if required the 

direction of shear can also be altered so that back mixing is applied. 

[22] 

2.1.2 Different Fornats 

Of the many different types of twin-screw extruder available, only 

some have positive conveying characteristics and the various twin-screw 

extruders can show considerable differences in their modes of 

operation. The most important variation is 

and non-intermeshing twin-screw extrude 

non-intermeshing the flights of one screw 

channel of the other screw and so they 

semi-closed compartments depriving , them 

characteristics. 

that between intermeshing 

rs. When screws are 

do not protrude into the 

do not form closed or 

of positive conveying 

The degree of intermeshing in intermeshing extruders, can range 

from almost fully intermeshing to almost non-intermeshing with a 

corresponding range in the degree of positive conveying 

characteristics. Nevertheless, fully intermeshing screws are a 

necessary but not sufficient condition for positive conveying. In some 

geometries, even when the screws are fully intermeshing there is very 

little sealing of the screw channels and back leakage into upstream 

channel sections will adversely affect the positive conveying 

behaviour. Positive conveying occurs only when the screw channels are 

closed off so that the material -contained in thevarious channel 

sections is fully occluded. [26] 
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The second discriminating characteristic is the direction of 

rotation: there are only two possibilities, viz. either co- or 

counter-rotating. 

2.1.3 Operating Characteristics 

2.1.3.1 Counter-rotating screws 

For fully intermeshing counter-rotating screws, the compaction of 

the material can be achieved in a number of ways: 

(i) by continuously reducing screw pitch; 

(ii) by stepwise variation of pitches and numbers of screw 

flights; 

(iii) by continuously increasing crest widths; 

(iv) by continuously reducing the external diameter 

and continuously increasing the internal diameter. 

Fully intermeshing counter-rotating screws cannot establish a 

sharp pressure gradient across several screw flights, neither can they 

ensue that air from the individual chambers is expelled completely 

towards the hopper. Accordingly, counter-rotating screws are 

intentionally manufactured with large clearances which forfeits some of 

the advantages of the block flow principle offered by the 

counter-rotating system. 

Counter-rotating plasticating twin-screw models have been 

constructed both for materials which adhere and for those which do not 

adhere to the walls. The so-called 'C-shaped' chamber is established 

and the opposing screw is represented by rollers which close the 

chamber on both sides. In general terms, melting follows 'a broadly 

similar pattern to single-screw extruders: - 

(a) melt film formation on the barrel wall; 

(b) removal of the film by the positive screw flank; 

(c) collection of melt in front of the positive screw flank. '- 
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The opposing screw produces a turning motion in addition to the 

following effects, viz. a melt whirlpool forms in the wedge intake to 

suck in adjacent particles so softening them whilst plasticized 

material is drawn through the calendar gap to gather on the passive 

flank. This calendar effect in counter-rotating screws does not, 

however, always affect more than a fraction of the volume of the 

chamber. A wide clearance will allow a larger amount of the chamber 

volume to traverse the calendar gap but any shearing effect is reduced. 

2.1.3.2 Co-rotating screws 

For fully intermeshing co-rotating extruders the solid material is 

usually compacted by restriction caused by the opposing screw (say the 

right-hand screw). The material has to pass across the right-hand 

screw, the necessary pressure being created by the upstream left-hand 

screw. As co-rotating screws represent a system having an open channel 

in the longitudinal flow direction, the enclosed air can escape in the 

upstream direction without difficulty. In contrast to counter-rotating 

screws it is possible, by correct selection of pitch and rotation 

speed, to ensure that the axial flow zero-shearing stress point is 

constantly kept outside the screw channel meaning that no areas of 

insufficient shearing are formed within the screw channel. Floating 

particles of solid material can be exposed to a far higher shearing 

effect than is possible in counter-rotating screws; a situation that is 

encouraged by higher screw speeds available with the co-rotating 

system. In the wedge area the material is scrapped off and passed to 

the opposing screw with very little calendaring taking place; the 

material being subjected to constant shearing velocities between the 

flanks. (271 

The intermeshing co-rotating extruders can be further subdivided 

into low- and high-speed machines. The low-speed extruders have a 
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closely fitting flight and channel profile which affords them a high 

degree of positive conveyance. However, the small mechanical 

clearances dictate that they run at low screw speeds (generally 10-20 

rpm) to avoid build up of excessive local pressures that could cause 

machine wear. These machines are employed primarily in profile 

extrusion applications. The high-speed co-rotating extruders normally 

have self-wiping characteristics, although this does not mean that the 

flights close off the opposite channels. In fact, in these designs 

there is considerable opportunity for the material to leak back from 

one screw channel into a channel of the other screw: accordingly, these 

machines have a low degree of positive conveyance. The openness of the 

channels means that material is easily transferred from one screw to 

another and pressure generation in the intermeshing region is less 

pronounced. This allows these extruders to run at high speeds (up to 

500rpm). High-speed co-rotating machines are primarily used in 

compounding operations where use is made of the high shear rate and 

frequent reorientation of the material in the extruder. (28-471 
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2.2 MIXING THEORY 

2.2.1 Single-Screw Machines 

Flow analysis methods in single-screw extruders can vary from 

relatively easy calculations with a number of useful simplifications to 

very complex computer programs containing sophisticated algorithms 

which acknowledge the effects of channel curvature, advanced 

non-Newtonian rheology and temperature-dependent material properties. 

Simple analyses generally assume stationary flow of incompressible, 

viscous Newtonian fluid between parallel plates in the pump zone and 

neglect temperature effects; normally plug flow is assumed in the 

solids conveying zone, with the plug confined between two infinite 

parallel plates moving relative to one another. A wide range of books 

are available which guide the reader from the fundamentals of extrusion 

through to rather more complex analyses (4,6,8,48-50] 

Analyses of single-screw extrusion tend to consider either flow 

through the entire machine or concentrate on one portion of the 

process. Paton et al [51] have presented a very complete introduction 

to the principles and mechanics of single-screw extrusion while others 

have carried out holistic studies which attempt to simulate flow and 

processing problems. [52-59) 

Klein & Klein (60,61] have examined the solids conveying zone and 

considered the effects of coefficient of friction (using their own 

design of friction tester), screw surface temperature, thermal 

conductivity of barrel, solids height in hopper and channel depth. 

Kruder and Nunn [62] have applied solids conveying theory in a 

practical situation when processing a variety of materials and found 

that a grooved barrel significantly increased output from the extruder. 

-Maddock (63] has conducted a number of practical experiments which 

were subsequently followed through theoretically by Tadmor (64], 
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Vermeulen et al [65], and finally Edmondson and Fenner [66] who 

developed a theoretical model which allowed more natural movement of 

the solid bed of material. Practical applications of melting theory 

have involved investigations of pressure development by Lindt [67] and 

quantification of stress at the polymer/metal interface by McClelland 

and Chung. [68] Recent reviews of mathematical modeling of melting have 

been undertaken by Elbirli et al [69-7t] but these models still require 

a long list of basic assumptions in order to operate; the most limiting 

being that leakage flows must be neglected,. 

For the homogenizing metering zone, Squires [30] made a 

distinction between one-dimensional or so-called 'simplified' theory in 

which flight edge effects are neglected, and two-dimensional or 

so-called 'exact' theory when they are taken into account. He 

calculated the effects of relative channel depth and curvature in 

relation to melt-pumping rates while Maddock [72] investigated pressure 

development. Janssen et al [73] more recently have experimentally 

determined the radial and tangential temperature profiles at the tip of 

the metering screw. 

An interesting series of papers [74-79] were presented at a 

symposium in th 

papers, by then 

the theory of 

(McKelvey) went 

for any serious 

Kruder and 

e early 1950's entitled 'Theory 

employees of DuPont, afforded 

single-screw extrusion and 

on to write a book [4] which is 

student of extrusion. 

Nunn [80] have considered the 

of Extrusion'. These 

a generous overview of 

one of their authors 

still required reading 

utilization of energy 

within the extrusion process and found that poorly designed screws can 

waste energy in a number of ways: (a) the screw may result in excessive 

overheating of the process material unless operated at a low screw 

speed or make the use of drastic barrel and screw cooling necessary; 

and (b) the screw may give rise to poor mixing/ melting which will 
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limit machine operation to inefficient conditions. Linked with this is 

the problem of screw wear [813 which can result in high machine 

maintenance costs as well as a loss of mixing efficiency; all of which 

could stem from the aforementioned poor screw design. 

2.2.2 Twin-Screw Machines 

2.2.2.1 Counter-rotating 

The theoretical basis of counter-rotating twin-screw extruders is 

dealt with effectively by Janssen [8] and Rauwendaal [50]. However, 

their treatments of the machines are very much aimed at a mathematical 

understanding rather than a practical one. Frankly, these two books 

are of little use in practical day to, day research and preference would 

have to be given to books such as that by Martelli [82] which attempts 

to explain theory in terms which have practical implications. 

Janssen et al [45] developed a model for the output of the pump 

zone of the counter-rotating extruder which investigated the dependence 

of the throughput on the pressure gradient within this zone. Various 

leakage flows were considered but the main three such flows to have 

been identified occur: (a) over the screw flights; (b) between a screw 

flight and the base of the opposite screw; and (c) through the 

tetrahedral gap of the two screws. The first two leakages. which will 

detract from the overall throughput expected from the machine, can be 

calculated analytically whilst the third is quantified empirically. 

Janssen and Smith [83] have concluded, that for good mixing and 

residence time distribution the calendar gap has, to be relatively wide 

but opposing this is the necessity to maintain throughput and heat 

transfer. Maheshri and Wyman [84] analyzed the cross and down channel 

flows in the centre of an idealized leakproof intermeshing extruder. 

They considered the two fluid motions simultaneously and predicted a 

complex path over a number of channel depths. 
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The most investigated aspect of twin-screw machines is the 

fundamental difference between the machines employing counter-rotating 

screws and those having co-rotating screws [26,27,29,32,853. 

2.2.2.2 Co-rotating 

A 30mm diameter fully intermeshing co-rotating twin-screw extruder 

was used by Kao and Allison (86] to determine the residence time 

distribution (RTD) by a stimulus-response technique. They varied three 

processing parameters; throughput, screw speed, and barrel temperature, 

whilst utilizing two different screw profiles; one with four kneading 

elements. The throughput emerged as the most influential variable of 

RTD followed by screw speed; barrel temperature profile played no part 

in varying RTD. Secor [87] states that partially filled twin-screw 

extruders are used very effectively for mixing and surface renewal of 

high-viscosity fluids. The drive power, the heat input to the fluid 

and the cooling requirements are determined by the rate of energy 

input. A simple model for the rate of energy dissipation in twin-screw 

extruders predicts that the power input is proportional to the square 

of the screw speed. Secor found experimentally that the screw speed 

should be raised to the power 1.90. 

Meijer and Elemans [88] agree with my earlier contention that 

theoretical analysis of twin-screw extruders should not emphasize the 

flow in complex geometries but rather should generate results that can 

be directly used. They developed a simple model for hot melt within a 

closely intermeshing co-rotating extruder and expanded it to include 

nonisothermal, non-Newtonian materials so that various parameters (such 

as specific energy and temperature rise during processing) could be 

related to viscosity of the melt, screw geometry and rotational speed. 
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2.3 COMPOUNDING 

2.3.1 Definitions 

In the present context, the term 'compounding' relates not to a 

chemical reaction between two or more constituents but to an intimate 

physical mixing of filler components in a polymer matrix; chemical 

reactions may occur with the use of filler surface coatings. A 

definition of the meaning of the word 'mixing' can be divided into two 

independent categories; they are 'dispersion' or dispersive mixing and 

'distribution' or distributive mixing: 

(i) dispersive mixing - is an operation which reduces 

the agglomerate size of the minor constituent (filler) to the 

possible limit of the ultimate particle size suitable for 

concurrent or future distributive mixing; 

(ii) distributive mixing - is an operation employed to increase 

the randomness of the spatial distribution of one or more 

minor constituents in a major (polymer) matrix with no change 

in the ultimate particle size of the minor constituent. 

(4,18,89] 

Mixing is generally achieved through, a combination of four 

mechanisms, viz. subdivision, initial wetting, dispersion and 

distribution. The first stage of mixing is the breakdown of the filler 

into small particles and these are uniformly distributed amongst and 

around the surface of the polymer grains or granules. Subdivision is 

synonymous with the preblending/premixing step [90] and with the area 

at the beginning of the extruder screws in compounding operations; the 

degree of subdivision is likely to depend on the energy of the process. 

The second stage is initial wetting which is essential to every 

dispersion regardless of quality. As" the calcium carbonate/polymer 

blend reaches the heated sections of the barrel, the polymer fuses into 
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a melt and envelops the filler particles. A minimum requirement is 

that filler and polymer be sufficiently well mixed and have enough 

affinity for each other so they will not separate when further work is 

applied to the system. Nevertheless, there is an appreciable time 

lapse before wetting is complete and during this period the filler is 

liable to compaction, under mechanical compression in processing and 

compounding equipment, which can cause reagglomeration. Surface 

chemistry at the filler/polymer interface is critical as it will affect 

rate and efficiency of wetting. However, the mutual affinity, 

compatibility or wettability of the two materials can be increased 

through a change in the surface characteristics of either or both by 

use of surfactants. Good mixing also depends on the rapidity of 

wetting so that the maximum time is available for the shearing forces 

to break down the filler particles to their final size. 

The third stage is the dispersion of the filler. This involves 

further wetting, the reduction of the filler particles to the smallest 

size possible (under the given conditions of shear), and their intimate 

wetting by the polymer. 

Finally, distributive mixing is needed to achieve homogeneity in 

the final product. Poor distribution can lead to non-uniform additive 

concentration even when the actual dispersion is good.. For example, a 

polymer UV-stabilized with carbon black would degrade if the carbon 

black was perfectly dispersed but not evenly distributed. (28,91-103) 

2.3.2 Equipment 

The compounding of fillers and polymers requires equipment that 

must satisfy several conditions: 

(t) steady state running; 

(ti) reproducibility of processing; 

(iii) ease of cleaning; 
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(iv) adaptability for new formulations. 

For optimum material quality, the equipment should generate 

sufficiently high internal shear stresses to facilitate dispersion of 

additives. Additional requirements are the capacity to expose each 

particle to short and equal stresses whilst enabling exact temperature 

control to regulate and minimize heat history. (99] 

Two types of compounding process arise, viz. discontinuous and 

continuous systems. The original discontinuous system, in most cases, 

refers to Banbury intensive mixers or roll mills. [104,105] Continuous 

compounding systems generally are more economical due to the large 

volume requirements for filled plastics and offer better uniformity of 

product with less batch to batch variation. 

. 
Compounding can adequately be provided by single-screw extruders, 

most of the time, due to advanced screw design techniques [106] and 

special devices that aid in localized and controlled introduction of 

shear. [107-109] A well-known example of a single-screw compounding 

extruder is the 'Transfermix'. This machine is a continuous, variable 

intensive, stepless extensive mixer consisting of a rotor turning 

inside a stator which act as two opposite handed screws. [110] 

Alternative strategies to single-screw extrusion include the use 

of ram continuous extruders [ill] which can be supplemented with 

motionless mixers to achieve improved mixing. [112] 

For difficult mixing situations, twin-screw compounding systems, 

if properly designed, provide maximum process control particularly in 

relation to shear and stock temperature whilst allowing easy removal of 

relatively large quantities of volatiles. [97,99,113,114] Comprehensive 

practical tests, however, are often the only means of determining the 

suitability of a particular mixing machine for a specified plastics 

mixture: most compounding can, at present, probably be classified_as an 

art. [28,115] 
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2.3.3 Applications 

Compounding includes the following extrusion functions: - 

(a) fusion - in order to densify a polymer into a form or shape 

suitable for subsequent processing; 

(b) dispersion - of a pigment in a polymer followed by a 

distributive mixing operation; 

(c) dispersion and distribution - of two different polymers to 

create a new 'alloy'[116,117]; 

(d) dispersion and distribution - of a high molecular 

weight polymer in a virgin stock to reduce the end product 

'gel count';. 

(e) dispersion and distribution - of low temperature resin in a 

matrix of higher temperature melt in order to normalize the 

melt temperature; 

(f) dispersion and distribution - of additives such as fillers, 

reinforcers, stabilizers, plasticizers and lubricants into a 

polymer matrix in order to manufacture a desired 

compound. (44,95,118] 

Compounding equipment, by virtue of its inherent ability to shear 

any viscous material, has been utilized in many varied areas. White et 

al [119,120] have employed a single-screw extruder, to successfully 

process highly-filled wood flour slurries whilst Janssen et al [1211 

have processed self-reinforcing - polymers on a counter-rotating 

twin-screw extruder. 

The use of sophisticated computer control equipment to monitor and 

adjust extrusion parameters is a fast developing aspect. of compounding 

which will allow improved reaction rates to processing fluctuations. 

[122-125] These controls will be increasingly necessary in future to 

enable the processing of engineering materials for. 
-use 

in. critical 
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situations where flaws in components are unacceptable (i. e. military 

and aviation applications). 

2.3.4 Materials 

Fillers used in the plastics industry can be divided into two 

categories; reinforcing and non-reinforcing. Glass, in chopped or 

roving form, is the most common type of reinforcing filler. (126-128] 

Other reinforcing fillers in use are cotton, kevlar and carbon fibres. 

In the second category are fillers such as clay, calcium carbonate, 

talc, woodflour and pigments. Depending on the type of filler 

(reinforcing or non-reinforcing) the compounding process can be 

drastically different. 1129,130] 

Compounding of non-reinforcing fillers usually involves generating 

high shear stresses in order to separate the agglomerates, particularly 

since these fillers normally have very small particle sizes. In 

compounding of reinforcing fillers just the opposite approach is taken: 

low shear compounding is used, in order not to damage the fillers, as 

the main consideration is to uniformly wet the filler, devolatilize and 

discharge. (99,13i-1353 

Polypropylene, the polymer matrix material utilized for this 

study, has a number of properties which make it increasingly popular 

within the plastics industry. These properties include: ease of 

processing; low density (approximately 0.9); reasonable temperature 

performance; good chemical resistance (as discovered later in Section 

3.2.1.1.2 ) and high toughness. Disadvantages are that it exhibits low 

stiffness and low melt strength. These drawbacks can be alleviated by 

the use of a filler medium which will cause improvements in the two 

areas; a number of fillers (namely asbestos, glass, mica and talc) fall 

into this category. However, additional complications arise due to 

sharply increased materials cost, a reduction of impact strength and 
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the health problems particularly for asbestos. A readily available 

alternative is represented by calcium carbonate fillers. (136] 

Calcium carbonate is a polar, reactive substance which is attacked 

by acids; is stable to about 800-900°C; and has a trigonal crystal 

shape which provides little reinforcing action. Calcite is the calcium 

carbonate bearing rock and is found in the form of limestone, marble, 

calc-spar and chalk. The rock is processed by one of the following 

methods [137,138]: 

(i) Beneficiated and ground. This type is by far the most common 

form. The rock is crushed and disintegrated to pass through 

a 100mesh screen (<150um), purified by flotation to remove 

iron and silica, then ground, classified and dried to a 

median particle diameter range from i to 10um; 

(1. ) Dry processed. This is an unpurified, coarser calcium 

carbonate which is suited to less stringent applications such 

as vinyl foam carpet backing and dark floor tiles. It has a 

minimum particle size of 12um with a high proportion of large 

particles, variable colour and is lower in cost than the 

previous method; 

(iii) Precipitated. The calcium carbonate particles resulting from 

chemical reconstitution have a median diameter up to 100 

times smaller than the most common type. This more costly 

variant has a very high purity making it suitable for food 

and pharmaceutical packaging applications. 

Calcium carbonate particulate fillers are in widespread use within 

the plastics industry mainly because of their low cost, lack of 

toxicity during processing and service, improvement of some physical 

properties (a notable exception being tensile strength) and 

pigmentation qualities. (136) it has been established previously that 

particle sizes as high as 40um diameter can improve physical properties 
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in polymers but that particles below 10um were more appropriate, 

particularly those with an average around 3um, for calcium carbonates 

in polypropylene. [139] 

De Souza et al [140] found a variation in physical properties for 

40wt% calcium carbonate/polypropylene compounds which they could only 

account for by reference to the form of the original polymer. 

Compounds utilizing powdered ' polypropylene resulted in tensile 

strengths higher than for polypropylene granules. They also cite 

surface treatment to the filler as a major influence on interfacial 

adhesion (filler/polymer). Significant efforts have been made by other 

workers [126,141,142-145] to establish suitable formulations for 

surface coatings and quantify their effects on compound properties. 

The much improved processability of surface treated calcium carbonates 

appears the generally agreed advantage of utilizing these coatings. 

I 
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2.4 CHARACTERIZATION OF MIXING 

2.4.1 Representative Parameters 

2.4.1.1 Indirect measurement 

Changes in physical properties such as tensile strength [146,147], 

modulus [148-150] or density [151] are frequently used to evaluate the 

degree of mixing. Although these methods have the virtue of being 

relatively quick and straightforward in application, they are not only 

a function of mixture quality but may vary as a result of polymer 

degradation within the matrix during processing. [152] Thus. these 

physical property changes cannot be taken as independent measures of 

mixture quality. 

Other indirect measurement techniques evaluate changes in 

rheological properties [41,153-159], chemical reactions or electrical 

conductivity. [160-162] Whereas these parameters closely approach an 

independent measure of basic mixing, they cannot be said to be 

unrelated to additional variables (e. g. temperature, pressure, polymer 

degradation and contaminants) which will tend to complicate any 

interpretation of results. [28] 

2.4.1.2 Direct measurement 

Direct measurement of mixing can range from the simplest 

inspection by the naked eye for gross defects on a polymer surface to 

highly sophisticated quantitative analysis techniques which view 

particles and agglomerates directly on or through the specimen and 

produce particle size distributions, and other statistical means and 

variances. 

In commercial practice, inspection for colour homogeneity and colour 

comparison for specks, streaks or spots of unmixed filler or resin is 

visual. 1283 These inspections for quality control purposes are 
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regulated by set standards which attempt to make testing at different 

locations comparable. However, an array of test methods, with varying 

criteria for levels of acceptability, exist in many countries. The 

British Standards Institute sets an acceptability level for the mixture 

quality of carbon black pigments for use in polyolefin pipes and 

fittings through BS2782. This standard uses a light microscope at a 

magnification of 100x but specimen thicknesses must necessarily be very 

thin. A number of alternative examination methods for carbon black 

have been proposed [163-166] but none have become universally accepted. 

The only true quantitative measure of mixing is by direct 

evaluation of particle size and the numerical distribution of sizes 

within a population of filler particles in a solid polymer; this can be 

achieved by using light, X-rays or electrons as the imaging 

source. [128,167,168) 

If the specimen under examination is in the form of a thin slice, 

precautions must be undertaken to ensure that the observed particles 

are not superimposed upon one another. Goldsmith 1109] has 

demonstrated, in a practical manner, the theoretical calculations 

necessary to correct for this situation. 

2.4.2 Manual Methods 

The manual method of microscopy is an extremely long and tedious 

process made more so by the need to examine a large proportion of the 

sample in order to reduce sampling errors. [170,171] 

Before the general availability of image analyzers, it was 

necessary to size particles utilizing a graticule eyepiece on a light 

microscope. The particles were compared to each part of the eyepiece 

until a comparison was achieved. [172] It was necessary for the 

investigator to continue collecting the measurements individually until 

a sufficient number ensured that the statistical diameters (or 
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striation thickness for flow studies) were reasonably accurate. 

2.4.3 Automated Methods 

More automated techniques such as microscope-based image analysis 

have reduced the importance of these difficulties by allowing the 

collection of much larger quantities of data in less time with 

improvements in data processing. [168,173-180] 

Alternatively, an image of the specimen can be transcribed into 

the image analyzer through the use of a graphics tablet; this technique 

is particularly applicable for glass fibre studies. 1181,1821 

27 



CHAPTER 3 

EXPERI MENTAL. 

3.1 TS40 TWIN-SCREW COMPOUNDING EXTRUDER 

3.1.1 Background 

The closely-intermeshing co-rotating twin-screw compounding 

extruder, utilized for all the experiments detailed in the following 

sections, originated as a result of a decision taken in the late 1970's 

by the Director of the Science and Engineering Research Council's 

Polymer Engineering Directorate (A. A. L. Challis). Challis considered 

that existing laboratory . compounding extruders at that time could not 

satisfy the demands of processing and design created when they were 

used in academic research projects. Additionally, the desire to 

purchase British equipment for Government funded projects was being 

thwarted by a total lack of domestic laboratory twin-screw extruder 

manufacture. 

Design of the new extruder was entrusted to an ex-GKN Windsor 

consulting engineer (1. Boyne) who guided the programme through the 

manufacturing stages at Gay's (Hampton) Ltd in Middlesex, England to 

delivery of the machine to Brunel University on 26 May 1981. The 

machine required extensive proving trials and, after many 

modifications, met with its output specifications., 

Originally, the remit of my research project was to undertake 

engineering development of the new . 
twin-screw machine and use this as 

the basis for mixing studies. However, financial restraints in the 

early 1980's did not allow full exploitation of potential engineering 

developments to be financed by the PED or Brunel's Dept of Materials 

Technology so marketing rights to the machine were granted, to Gothwin 
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Engineering Ltd in West Molesey, Surrey, England. After a short 

period, the manufacturing and marketing rights were transferred to 

Betol Ltd of Luton, Beds, England who now sell the machine worldwide 

under the designation 'BTS40'. 

3.1.2 Design 

Table 3.1.1 outlines the TS40 extruder specification. The main 

criterion for the design was to produce an extruder which had the 

flexibility to be used as research equipment while exhibiting the 

reliability and cost-effectiveness necessary to make it commercially 

viable. To this end, the main features are: 

(i) modular barrel sections, manufactured from Nitralloy (EN41) 

steel, which are all 4D long, reversible and interchangeable; 

M) modular screw sections with trapezoid-shaped flights and . 

channels which afford the machine strong positive conveying 

characteristics; 

(iii) a horizontal barrel withdrawal facility that fully supports 

the barrel weight as it is removed from the screws, -which 

remain in place. 

A photograph showing the side elevation of the machine, in its 

original form is found in Figure 3.1.1. 
_ 

lt 
. will be noted that the 

barrel shown in the photograph (17: 1 L/D ratio) has 4 heated sections, 

one of which incorporates twin vent ports, and a water-cooled feed 

block with hopper; this arrangement being that used for, most of the 

subsequent experiments, see Figure 3.1.2 for a schematic diagram"of 

this configuration.. Each barrel. section, is bored and treaded to fit-an 

offset-. pressure transducer, and as, each section is reversible there are 

many permutations of pressure measurement-position. - Unfortunately, 

apart.: from during the 
-initial proving trials when. 

_transducers�were 

borrowed, it wasonly possible to monitor pressure at the_barrel head 
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during mixing experiments. The barrel head, manufactured from EN24 

steel, industrial chrome-plated and polished to minimize potential 

points of material degradation, is bored and treaded at 2 points (at 

900 separation) to allow the use of both a pressure transducer and a 

melt temperature probe. 

The screw sections (Figure 3.1.3), also manufactured in Nitralloy 

steel, are nitride hardened, ground and polished to withstand wear 

during the processing of abrasive compounds. The modular screw design 

enables fine tuning of the screw configuration to suit the particular 

characteristics of the polymer or compound to be processed. The 

closely-intermeshing trapezoid-shaped flights and screw channels, and a 

strong positive conveying capability, distinguish the machine from the 

so-called 'self-wiping' co-rotating twin-screw extruder. Figure 3.1.4 

shows the screw configuration employed for later mixing experiments, 

and details of the screw dimensions are found in Figure 3.1.5. 

When the barrel is withdrawn from the screws it is supported on 3 

hardened extending shafts sliding in linear races mounted in the 

machine casing below the barrel. The barrel sections are blind 

dowelled and connected by quick-release taper clamps so providing a 

fast and easy means of removing the barrel sections for investigation 

of mixing within the machine after shock-cooling, Figure 3.1.6. 

3.1.3 Development 

When the TS40 machine was first delivered to Brunel University it 

was of a bare specification without a feeder unit, die or transducers. 

This type of co-rotating twin-screw extruder is designed to be 

operated in the 'metered-starved feeding mode' [55] as opposed to the 

flood-feeding of most single-screw machines; a separate feeder is 

required to dose the material into the hopper. A simple single-screw 

feeder unit was assessed using a number of different polymers and 
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filled compounds. However, this feeder seemed unable to cope 

satisfactorily with mineral-filled compounds because the screw became 

clogged with the material. An alternative design of volumetric dosing 

unit considered was one exhibiting co-rotating twin feeder screws; the 

K-Tron Soder T20. This feeder has 20mm diameter screws with 

'Planetroll' micrometer-variable mechanical speed control and was found 

to deal effectively with heavily-filled mineral compounds to a high 

degree of consistency; it can be seen -on top of the extruder in Figure 

3.1.1. 

The die utilized was one originally belonging to a larger 

twin-screw extruder used for research work within the Dept of 

Materials Technology. A new adaptor plate had to be machined to enable 

this die to fit the barrel head of the TS40 extruder. The mode of 

output for initial trials was in the form of strands which were 

water-cooled and granulated. Later experiments concerned with mixing 

of calcium carbonate compounds made use of an alternative gate profile 

producing an extrudate strip of 75mm x 3mm which was collected unsized 

after water bath cooling. 

As mentioned above, transducers were only used all along the 

machine during the initial proving trials after which a single 

transducer was placed at the barrel head with a melt temperature probe. 

Pressure and output results from the initial proving trials, together 

with the temperature profiles used, are detailed in Table 3.1.2. 

However, a number of problems that arose during-the course of 

these initial proving trials made it necessary to modify the machine. 

Firstly, minor changes were necessary to the internal design of the 

twin vent port inserts where they met the process material at the 

screws. Their initial design resulted in process material being 

partially diverted into the vents and extruded with the-effect that 

throughputs had to be limited. ' 0- 
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Secondly, twin-screw extruders differ from single-screw machines 

in that the latter generate high levels of shear-heat and require not 

only barrel cooling but also screw cooling while the former usually 

have to be heated through the barrel continuously. However, it was 

found that the level of temperature in zones 2 and 4 (corresponding to 

the melting and metering sections of the screws) was much higher than 

the set value (up to 30°C in some cases). In order to rectify this 

situation, new heater bands were installed which featured integral 

cooling channels. A water supply was connected to zones 2&4 and 

regulated by solenoid values directly linked to the barrel temperature 

controllers. Cooling was also added to zones i&3, at a later date, 

so that shock-cooling experiments could be undertaken. 

. Thirdly, it was necessary to machine 0.0051nch from the inside of 

the feed block and 0.0051nch from the diameter: of the feed screws 

because of problems encountered when processing mineral-filled 

compounds. These problems involved serious fluctuations in motor 

current demand and excruciatingly loud screeching noises emanating from 

the feed block. 

As a consequence of these three modifications, there was a 45% 

increase in output of 40wt% calcium carbonate/ polypropylene compound 

from the 13.7kg/hr at a screw speed of 120rpm (quoted in Table 3.1.2) 

to 19.8kg/hr. 

Other modifications included: 

(a) the provision of a hydraulic pump assembly to assist in the 

withdrawal of the barrel after shock-cooling of compound 

within the machine; 

(b) the machining of the root of the screw shaft and spacer rings 

to enable the discs to be split so that 2 pairs could be 

positioned at the end of the second stage of the screws as 

mixing elements while the other 2 pairs remained as melting 
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elements; 

(c) the purchase of a Simon Varifeeder for use when dosing 

granules or during experiments involving the separate feeding 

of polymer and filler. 

Further details of the TS40 extruder have been published 

elsewhere. [183) In previous work, the machine has found application in 

the preparation of heavily filled polymer compounds for specific end 

use requirements including flame-retardant and smoke-suppressing 

thermoplastics formulations [184] and biomedical implant materials 

intended for bone replacement. [185] 

The Betol BTS40 machine, now available, standardizes on the 5 

barrel (21: 1 L/D ratio) configuration, see Figure 3.1.2, which has 

provision for downstream feeding and venting at two positions along the 

barrel. As a further development, the 4 section (17: 1 L/D ratio) 

configuration barrel is now being used for the Brunel 'Osciblend' 

in-line direct blending and injection moulding machine. [186] 
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Table 3.1.1 TS40 co-rotating twin-screw compounding extruder 
specification 

Screw Diameter 

Distance between screw shafts 

Flight depth 

Direction of screw rotation 

Flight pitch (17: 1 L/D) 

Flight pitch (21: 1 L/D) 

Screw speed 

Drive 

Output 

40mm 

35mm 

Smm 

Co-rotating 

Feed 24mm 
Compression 16 & 12mm 
Melting -4 or 2 adjustable elements 

on each screw 
Devolatilization 24mm 
Metering 8,12 or 16mm 
Mixing - zero or 2 adjustable 

elements on each screw 

Feed 24mm 
Compression 16 & 12mm 
Melting -4 adjustable elements on 

each screw 
Feed or Devolatilization 24mm 
Compression 12mm 
Devolatilization 24mm 
Compression 16mm 
Mixing -2 adjustable elements on 

each screw 
Metering 12mm 

10 to 200rpm 

S. SkW dc motor with a base speed of 
1500rpm; 13: 1 reduction gearbox; 
1: 1.73 torque splitting gearbox 

Up to 30kg/hour depending on raw 
materials and die configuration 

Screw length/ diameter ratios (L/D) are from front of feed port 



Table 3.1.2 Processing conditions and results for the initial 
proving trials 

Extrusion material 

1234S 

Temperature Profile (°C) 
Zone I (Set/Indicated) 
Zone 2 
Zone 3 
Zone 4 
Zone 5 

Maximum Output (kg/hour) 
30rpm 
60rpm 
90rpm 

100rpm 
120rpm 
150rpm 
180rpm 

185/189 195/198 190/196 195/199 195/230 
200/204 210/204 195/200 210/212 210/236 
215/220 220/220 200/204 225/228 225/240 
225/239 225/230 205/224 230/249 230/245 
225/229 225/225 210/214 235/238 235/239 

3.1 
7.1 9.3 6.6 7.7 5.2 

10.5 
12.2 
14.7 16.9 11.2 13.7 9.8 
17.4 
23.1 21.0 14.5 19.2 13.6 

Polypropylene powder (ICI-GW522M) 

Pressure (MPa) 60rpm 120rpm 180rpm 

End of Zone 1 0 0 0 
End of Zone 2 0.3 0.6 0.8 
End of Zone 4 2.1 3.6 3.9 
Barrel Head 0.8 1.2 1.2 

I= polypropylene powder (ICI-GW522M); 2= Polystyrene granules (BP-KLP 
C2 Crystal; 3= HD Polyethylene (EP-Rigidex 509201); 4= 40wt% calcium 
carbonate in PP; 5= 60wt% calcium carbonate in PP. 
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Fig. 3.1.1 Side elevation of the TS40 twin-screw compounding 
extruder 
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Fig. 3.1.3 The modular screw sections 

Fig. 3.1.4 Screw configuration used in mixing experiments 
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3.2 DEVELOPMENT OF CHARACTERIZATION TECHNIQUES 

The complete characterization of mixing within any composite 

presents formidable difficulties which are synonymous with counting and 

recording, one by one, the size of each brick in a large building, viz. 

the task is possible but very inefficient both in terms of time and 

effort spent. In a situation such as this the usual course is to adopt 

any number of mathematical 'short-cuts', collectively known as 

statistics, which allow global rules to be applied to the problem. 

For the large building it may be assumed that the investigator 

does not wish to demolish the structure brick by brick merely to 

examine each in turn. In this case the number of bricks may be 

determined by first calculating the average quantity per unit area 

(allowing for windows and doors) and then applying the-measured surface 

area to establish the total number of equivalent bricks. Advantages of 

this procedure are that only the height and width of each wall need be 

measured and automatic allowances are made for cut bricks at corners 

and around openings. The physical characteristics of the bricks may be 

assessed by removing a small number-(not from the bottom! ) as a sample 

for analysis. The analysis may show that all the bricks are the same 

size but it is unlikely; more probably there is a distribution of 

heights, widths and lengths about mean values. Further small samples 

of bricks are analyzed until accumulative mean values remain within 

defined limits after each sample. It is now possible to state firmly 

that a given percentage of the bricks are within a certain range; the 

width of the range will depend on the quality of the bricks analyzed. 

The aforementioned characterization illustrates how the simplest 

of statistical assumptions and manipulations can greatly assist in the 

analysis of a composite structure when tolerances from absolute values 

are - specified. , Microstructural characterization of. filled 

34 



thermoplastics compounds presents one with similar analysis problems to 

those found when examining the building except that the former exists 

as a randomly orientated solid rather than a structured shell. It 

follows that microstructural analysis of a matrix containing particles 

may be based either on assessing the mean number of filler particles 

per unit volume or on particle size distributions and mean particle 

sizes. 

The calculation of the number of filler particles per unit volume 

would only be relevant if filler concentration variations 

(distribution) throughout the solid were of interest in which case the 

standard deviation would be employed. Additionally, an analysis 

investigating the filler particle frequency may be postulated as a 

measure of dispersion but both are flawed because as the particles 

reduce in size the probability of sizes below the examination-method 

resolution limit increases. Thus, the total number of particles 

present would, at some point, peak and then appear to decrease as 

dispersion progresses. 

In the present context of extrusion compounding, the spatial 

distribution of particles is subservient in the presence of filler 

agglomerates because any spatial inhomogeneity can, if necessary, be 

eliminated during subsequent forming operations but only after the 

required dispersion level has been achieved. Therefore, particle size 

distribution analyses were conducted on solid samples selected from 

predetermined positions both within and outside the extruder so that 

valid comparisons were possible between different processing and 

material variables. However, initially it was necessary to consider 

many different methods for characterising mixture quality in order to 

identify the most suitable for this application because of a lack of 

established quantitative techniques. The following sections detail the 

procedures investigated which are reviewed in work already published by 
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the author and co-workers. [il Since image analysis has figured 

prominently as the quantifying tool, its mechanisms both physical and 

statistical are explored in some detail. 

3.2.1 Sample Preparation 

In this section, experiments were undertaken to determine the most 

appropriate preparation technique for transforming calcium carbonate/ 

polypropylene compound samples into a form suitable for subsequent 

examination by microscopy or X-ray characterization procedures. 

Methods considered included isolating the particles from the matrix, 

forming thin films and careful preparation of solid surfaces. 

3.2.1.1 Isolation of the filler 

At first acquaintance, the problem of sample preparation 

methodology appeared to necessitate the removal of the polymer matrix, 

by one means or another, so that the filler particles were exposed for 

subsequent analysis. The isolation of the filler particles would 

thence enable analysis by any number of particle sizing techniques, 

viz. sedimentation, microscopy, sieving, or electrolytic resistivity; 

accordingly, the following techniques were investigated. 

3.2.1.1.1 Ashing of the coupound 

The burning off of the polymer matrix was initially utilized to 

determine the actual filler concentration in given samples taken after, 

processing. A sample of approximately lOg of: the compound was weighed 

accurately into an alumina crucible of a suitable size and 

approximately 4g of the corresponding raw calcium carbonate powder was 

also weighed into a crucible. The crucibles were placed in an electric 

furnace for the ashing procedure but it was necessary to exert caution 

over the level of temperatures used in order to avoid decomposition of 
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the calcium carbonate constituent. After some experimentation, the 

furnace was operated at 250°C for the first hour to allow the most 

volatile portions of the polymer to dissipate without eruption of the 

compound from the crucible. The remainder of the matrix was removed 

at a temperature of 550°C (well below the decompostion temperature 

range for calcite, 725-850°C (187] over a period of four hours and, 

after cooling overnight, the crucibles were removed and weighed 

accurately. Nevertheless, even during this minimal heating cycle the 

raw calcium carbonate powder was found to have lost about lwt%; a 

second phase temperature of less than 550°C left a carbon residue from 

the polymer matrix. The remaining calcium carbonate material had the 

appearance of being compacted and would not flow so negating any 

attempts at analysis. 

As an alternative to the bulk ashing of compound, a thin film was 

pressed from the sample and then ashed between glass microscope slides 

in the furnace using the same temperature regime as above. However, 

the resulting ashed material was too dense to be examined by 

transmitted light microscopy, Figure 3.2.1, while under reflected light 

the material exhibited no surface characteristics of interest. A 

further attempt at refinement involved the ashing of a microtomed 

section but the resulting specimen presented the same examination 

problems as before, Figure 3.2.2. 

3.2.1.1.2 Dissolution of polymer matrix 

In order that the calcium carbonate: filler particles would not 

compact, dissolution of the polymer matrix in solvent was considered. 

A problem immediately encountered was that polypropylene is a very 

solvent-resistant polymer and so a variety of organic solvent systems 

were employed: - 

(1) toluene; 
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(II) o-xylene; 

(iii) n-heptane; 

(iv) diethyl ether/ n-hexane/ n-heptane; and 

(v) diethyl ether/ n-heptane/ methylcyclohexane. 

Samples of the compound were refluxed with each solvent system for 

several hours in a Soxhlet extractor but it appeared that only o-xylene 

had any effect on the polypropylene matrix and then only with several 

fresh charges of solvent. Nevertheless, even this solvent was not able 

to fully remove the matrix material so making very difficult the 

casting of the powder filler for examination. Subsequent microscopic 

analysis showed partial binding of the filler particles effectively 

preventing subsequent analysis of agglomerate structures, Figure 3.2.3. 

3.2.1.2 Thin film formation 

Accepting that isolation of the calcium carbonate filler from a 

polypropylene matrix had proved unsatisfactory, the possibility of 

forming a film thin enough for transmission light microscopy was 

considered. The most simple method available was that of hot pressing. 

3.2.1.2.1 Pressing and bubble formation 

A sample of the compound was placed between polished steel plates, 

heated to approximately 200°C and pressed at 4.3MPa to produce a 

free-flow film. However, the film was found to be too thick for filler 

particle agglomeration assessment. A range of higher pressing 

temperatures were investigated in order that greater flow of the 

compound might be encouraged; the only effect observed was an excess 

scorching of the polymer matrix. 

The production of very thin films has been achieved by using a 

free blowing technique utilized during previous studies concerned with 

pigment dispersion [1881 and as a -quality control technique. [1891 In 
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this case a thin film, produced as detailed above, was clamped around 

its periphery onto a simple design of free-blowing apparatus, Figure 

3.2.4. The apparatus, with the film attached, was heated from above 

for a sufficient time to soften the compound so enabling a dome to be 

blown by air pressure from below. After much trial and error, it was 

possible to produce very thin sections within the film dome which 

permitted examination by transmitted light microscopy. The calcium 

carbonate filler particles could be identified within the polymer 

matrix although it transpired that few filler agglomerates were 

present. The problem was that the larger agglomerates remained at the 

periphery of any blown section; the blown section being composed mainly 

of polymer film. These domes also made the acquisition of a flat 

distortion-free sample difficult because of their tight curvature, 

Figure 3.2.5. Additionally, the pressed film tended to exhibit flaws, 

such as small voids, which repeatedly prevented the formation of a 

large dome. 

3.2.1.2.2 Thin film extrusion 

In place of film "blowing, a low-intensity short L/D ratio 

single-screw extruder was used in order to increase the inter-particle 

distance in the matrix. The compound was mixed with unfilled 

polypropylene so that the ultimate filler concentration in the mixture 

was iOwt%. This mixture was then fed to the low-intensity extruder of 

a laboratory film casting line, Figure 3.2.6 and the extruded tape 

drawn down by approximately 3: 1 so as to further increase particle 

spacing. The resulting tape, Figure 3.2.7, was found to contain large 

clumps (1-3mm diameter) with very few other particles present, 

signifying that the level of distributive mixing imparted by the 

extruder was not sufficient. The use of an extruder exhibiting a 

higher level of mixing intensity was rejected on the grounds that its 
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dispersive mixing contribution would complicate any subsequent 

analysis. 

3.2.1.2.3 Microto. y 

At this stage, a new direction was adopted in respect of producing 

a thin film for analysis by transmitted light microscopy; instead of 

fabricating a thin film, one would be sliced from the original solid. 

The technique for achieving this slicing, known as 'microtomy', is an 

established means of producing thin sections of polymeric materials for 

microstructural analysis. The modus operandi of this technique is very 

much akin to that of the butchers' bacon slicer. However, it is 

possible under favourable conditions to produce slithers of material as 

thin as 5um using a steel-bladed sledge microtome. 

Particular problems arose, however, when trying to section 

polypropylene compounds containing high loadings of the calcium 

carbonate filler. The major drawback was that on cutting through the 

material there was a tendency for poorly bonded filler particles to be 

pulled from the thin specimen. Furthermore, filler particles displaced 

in this manner also, severely damaged the surface remaining on the 

original solid sample causing a drawn, wave-like deformation. Freezing 

of the solid sample down to -200C (below the glass transition 

temperature of the polypropylene matrix) with carbon dioxide gas 

resulted in some reduction in the surface damage, Figure 3.2.8. 

Nevertheless, the steel bladed RAPRA-designed cryomicrotome, Figure 

3.2.9, could not completely prevent filler particle egression from the 

microtomed surfaces. Additionally, examination of the microtomed 

sections by transmitted light microscopy revealed a further complexity, 

viz. some of the remaining filler particles were found to overlap 

making quantitative image analysis very difficult. 
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3.2.1.3 Polished solid surfaces 

A readily available method which allows the observation of 

particles without overlapping effects is the metallurgical technique of 

surface polishing. This technique facilitates a flattening of the 

surface of the compound to such an extent that filler particles are 

contrasted against the almost mirror-finish of the polymer matrix so 

enabling resolution by reflected light microscopy. 

In order to accommodate subsequent polishing and analysis 

procedures, a representative sample was removed from the whole and 

flash moulded, on a hydraulic compression press, at 4.3MPa to form a 

3mm thick disc of 25mm diameter. [190] After encapsulation in polyester 

resin to form a polishing block, excess resin was removed on a 

mechanical sanding belt until the composite became exposed. The block 

was ground by hand on progressively finer emery paper down to 600 grade 

so that each grinding step removed the damage which resulted from the 

previous grade. [191] Polishing was achieved by using diamond pastes 

graded at 6 and Sum while final polishing to lum was performed using a 

mechanical block rotator mounted above the rotary polishing mats to 

give standardized conditions, Figure 3.2.10. This mechanical rotator 

enables concurrent omni-directional polishing of six blocks while a 

fixed number of weights above each block provide a constant inertia. 

In an attempt to further refine the technique, some initial 

samples were etched with dilute nitric acid to dissolve the calcium 

carbonate particles at the surface. However, although etching resulted 

in a very slight improvement in contrast between the matrix and the 

pits left by the calcium carbonate, the outcome did not justify the 

extra procedural effort involved. 
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3.2.2 Sample Examination 

3.2.2.1 Light microscopy 

The use of transmitted light microscopy as an analytical tool is 

obviously limited to the examination of thin films or a layer of 

particles. In both these cases, the possibility of particles 

overlapping to some extent arises; a loose layer of particles could 

nevertheless be further spread out within the field of view. However, 

as already mentioned, it has proved impossible to separate the calcium 

carbonate particles from the polypropylene matrix efficiently enough to 

form a free-flowing powder. 

For examination of the compound polished to a ium finish, a 

reflected light microscope was found to provide clear images of the 

surface containing calcium carbonate agglomerates over a range of 

magnifications; in this case from 60 to 160 times at the eyepiece. A 

magnification of 400 times was available but its usefulness limited at 

this level because the turn polishing lines were visible; it would 

require an additional time-consuming 0.25um polishing stage in order to 

examine 5-7.5um diameter particles. Measurement of sub-5um particles 

involves an unacceptable increase in errors due to blurring of particle 

edges as a result of diffraction effects. [161) 

3.2.2.2 Scanning electron microscopy 

Scanning electron microscopy finds its greatest use in areas of 

study requiring surface magnifications in the high hundreds and low 

thousands. This type of electron microscope can also operate within 

the same range as a reflected light microscope giving an-image with 

enhanced contrast and definition, although the polished compound blocks 

first require modification. The resin of the mounting'block must be 

machined down to enable''it access to the specimen -chamber of the 

microscope. In order to produce an electron charge large enough to 
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generate images, a conducting medium of either gold or carbon is 

splutter-coated onto the compound surface in a vacuum deposition 

apparatus. However, once inside the microscope the specimen surface is 

subjected to a bombardment by high-speed electrons which, because of 

the thermoplastic nature of the matrix, can alter inherent surface 

characteristics after long exposure. Consequently, when the extra cost 

and effort demanded by this technique are taken into account, it does 

not appear to offer any significant advantages over reflected light 

microscopy. 

The only exception is when it is necessary to confirm the 

elemental nature of a surface characteristic. The enabling technique 

is known as 'electron probe microanalysis' and involves a computer 

comparison of the X-ray radiation given out from the specimen, when 

bombarded by electrons, with a database of elemental wavelengths. This 

energy dispersive spectrum analysis allows one not only to identify a 

particular element, in this case calcium within the filler, but also to 

build up an X-ray dot-image of calcium ions detected on the sample 

surface, Figure 3.2.11. Therefore, it is possible to confirm the 

presence of calcium carbonate agglomerates observed by light microscopy 

when the composition of such structures may be in doubt. 

3.2.2.3 Contact  icroradiography 

In principle, this technique is similar to transmitted light 

microscopy in that it requires a specimen thin 'enough to allow the 

passage of radiation. The radiation in this case is not light but soft 

X-rays (i. e. between i-15nm) and detection. of the image is by means of 

a high-resolution emulsion placed beneath the sample. Identification 

of particles depends on a differential between the absorption 

coefficients of the filler and the matrix thereby causing variations in 

emulsion exposure. Previously, this technique has been used 

43 



successfully in studies into short-glass fibre orientation in 

thermoplastics. (192) 

Initially, a thin film specimen was clamped to the emulsion plate 

under a glass sheet, placed in a shielded bag and exposed to X-rays 

using a simple X-ray source. However, not only were the resulting 

images -very faint but on closer examination it was found that 

interference images from the shielding material were overlaid on the 

sample image. As an alternative method, a microtomed section of 

compound was placed in contact with a glass plate coated with a 

fine-grained X-ray sensitive emulsion and the whole installed in an 

electron microscope under vacuum. The X-rays, generated from a cobalt 

foil bombarded by electrons, were then directed onto the sample for a 

controlled time. The exposed plate was subsequently developed into a 

micronegative and viewed through a transmitted light microscope, Figure 

3.2.12. The resulting image presented no apparent advantages over the 

direct transmitted light microscopic examination of thin sections of 

material. 

3.2.2.4 Acoustic microscopy - 

Acoustic microscopy offers an intriguing method of imaging the 

structure of compounds composed of mineral fillers, - in polymers. [193] 

Normally, this technique is utilized in much the same way as the light 

microscope either in a transmitted or reflected mode depending on 

sample thickness. The-sample is immersed in a water bath-so-that an 

acoustic beam can be focussed on the sample through a spherical 

sapphire/water interface and detected below for the transmitted mode or 

above for the reflected mode. The sound received -by-the detector is 

analyzed in respect to beam deflection, absorption and scattering which 

are related to the density and elasticity of materials within the 

sample. The beam source/detector is mechanically moved across and 

44 



along the surface to build up a computer-generated composite image. 

However, any analysis of the polished surface of the calcium carbonate 

filler in a polypropylene matrix proved impossible, Figure 3.2.13, 

because the magnification of the instrument was too low and the 

resolution poor in comparison to optical microscopy. 

This method offers the potential for non-destructive visual 

analysis when high frequency sound is focus 

solid. The resulting image would provide an 

the filler agglomerates in situ allowing 

determination but also shape analysis. 

requires significant development before 

technique emerges. 

3.2.3 Image Analysis 

3.2.3.1 Introduction 

ased below the surface of a 

accurate representation of 

not only individual size 

However, this refinement 

a reliable experimental 

As discussed previously, the author considers that quantitative 

assessment of mixing is best achieved by direct measurement of filler 

agglomeration within the polymer matrix. It was concluded from the 

above review of sample preparation and examination procedures that the 

study of polished composite surfaces using reflected light microscopy 

had most potential as part of a quantitative characterization 

technique. However, the next step involves the determination of 

agglomerate size and frequency - known as quantitative microscopy or 

stereology - which is in itself a daunting task. This task, if it was 

undertaken manually using a graduated eyepiece fitted to a reflected 

light microscope would be extremely tedious, and measurement errors due 

to mental fatigue of the investigator would be potentially large and 

unquantifiable. Accordingly, the need for automatic particle sizing 

equipment arises because of the necessity that- agglomerates be 

quantified with definably low statistical errors. 

45 



In the sections below details are given of how the image analyser 

can effectively measure the areas of particles on a polished specimen 

surface. However, the image analyser only relates these as totals for 

the field under examination in arbitrary' machine-defined units, i. e. 

pixels. An interfaced computer uses its software to calibrate the 

measurements in operator-defined units and allows the determination of 

area size distributions. These distributions are expressed as 

equivalent area spherical diameters, and after statistical analyses to 

correct for sectioning errors at the surface, an average figure - 

number, mean volume diameter (MVD) - together with maximum detected 

particle diameter (Dmax), area traction occupied by detected features 

(AF) and the standard deviation of area fraction (SDat) are derived 

which together describe mixture quality. 

3.2.3.2 Assumptions 

The image seen under a microscope is a two-dimensional 

representation of a three-dimensional object. This image may be that 

projected when a random test section of the object is examined by 

transmitted radiation or a random test surface at a given plane under 

reflected radiation. Thus, any measurements made from this image are 

approximations of the actual parameters assessed. For particle size 

measurement the most widely utilized parameter is 'particle diameter'. 

The particle diameters most frequently measured are (1611: 

(a) Martin's diameter -a randomly positioned straight line 

intersects the particle and the length covering the particle 

is taken as Martin's diameter. 

(b) Feret's diameter - is the maximum diameter between parallel 

planes maintained at a given angle, for all measurements. 

(c) Longest dimension - the maximum Feret's diameter regardless of 

plane orientation. 
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(d) Maximum chord - the maximum Martin's diameter. 

(e) Perimeter diameter - an equivalent spherical diameter 

producing a circle of the same circumference as the measured 

particle. 

(t) Equivalent area spherical diameter - the diameter of a circle 

covering the same area as that of the measured particle. 

All these diameters are dependent on particle orientation when 

determined from a polished surface by reflected radiation; in this case 

statistical corrections have to be employed to allow for the 

possibility of not sectioning a particle at its maximum area, more of 

which follows later. However, of the above diameters, the equivalent 

area spherical diameter is by far the most accurate as it is easily 

measured and takes account of irregularly shaped particles. Also, more 

importantly, the measurement of equivalent area spherical diameters 

allows the use of statistical size distribution analyses which would 

otherwise be inapplicable to irregular shaped particles. 

3.2.3.3 Data acquisition 

The basic principle which lies behind Image Analysis involves 

translating an image into digital code so that data processing can be 

performed, Figure 3.2.14. The image may be entered into an Image 

Analyser system from a variety of sources. For semi-automatic 

analysis, a graphics tablet can be used which requires the operator to 

manually enter data points determined from previously produced 

micrographs. This method of entry makes the accurate determination of 

area data virtually impossible. Automatic analysis utilizes a 

high-resolution television camera which can either view a micrograph or 

be mounted on a microscope to directly view the image of the specimen. 

For this study, an Optomax IV Image Analyser (Hicromeasurements Ltd) 

with a Chalnicon high-resolution camera was connected, via an image 
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Splitter, to a Zeiss light microscope in reflected mode, Figure 3.2.15. 

In addition, the image splitter allowed the attachment of a 35mm camera 

to record interesting features. 

The image analyser equipment consists of the above mentioned 

camera at the sharp end attached to a hardwired image processor which 

forms the main part of the equipment. This image processor displays 

the view seen by the camera on a VDU monitor onto which Is superimposed 

a circular frame depicting the area from which data will be collected. 

The operator can determine the size of this circle to suit specific 

specimen fields. 

Examination of highly polished composite surfaces by the Image 

analyser camera requires very careful alignment of the specimen in 

order that the reflected light is as, even as possible across the field 

of view. This is important as the whole concept of image analysis 

relies on the detection of variations in grey-levels (contrast) 

displayed by the specimen. If large variations In lighting contrast 

across the light polymer matrix surface are present then the detection 

of dark particles on the surface becomes unacceptably inaccurate. 

Small variations can be compensated for by utilizing a 'shade 

correction' feature built into the hardware which changes the contrast 

detection from linear to curved to allow for the usual situation when 

illumination is greater at the centre of a field than at the edges. A 

further control on the image analyser console allows the operator to 

set a limit either above or below which grey-levels of contrast will be 

detected within the circular frame, and features which are in this 

category are highlighted in white on the display VDU. This control Is 

carefully manipulated so that the detected areas exactly match the 

agglomerates (which appear dark under unpolarised light) present on the 

almost white background of the highly polished specimen surface. 

Once the detection area and grey-level have been set the operator 
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can manually initiate a scan of the field of view during which 

'firmware' - dedicated microprocessors within the image analyser - 

measure three parameters of the image field. These parameters are 

the total number of features, total area of the features and the number 

of intersections of the camera scanner lines by detected features. 

This data on its own is of little use for particle size analysis 

because it only applies to the whole field of view and not individual 

features. In order to produce size distributions of the detected 

features, a microcomputer is interfaced to the image analyser to enable 

incremental sizing by software control of the firmware. Details of the 

software and data processing employed are found in the next section. 

3.2.3.4 Data assimilation 

The original software supplied with the interfaced Apple computer 

was found to be of a very generalized nature, so a prerequisite task 

involved the development of an entire suite of programs to measure 

section size distributions, make statistical analyses and to output 

data in a suitable form (See Appendix A for the software listings). 

In order that the image analyser may measure size distributions, 

it is necessary for software to initiate a set number of scans across 

the circular field over a range of size classes. The software allows 

calibration of the image analyser so that measurements are expressed in 

a preferred dimension, other than digital picture points or 'pixels'. 

A standard number of size classes (15) is established by the software 

so that during a size distribution analysis the number of particles and 

their areas disappearing from the totals at each increase in size class 

limit are placed in the preceding size class. In this manner, a 

particle area distribution of raw data is collected over a number of 

fields for each specimen surface. The software simultaneously 

transforms the area data into an equivalent area spherical diameter 
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distribution and stores this raw data to floppy disk for subsequent 

statistical analysis. Additionally, measurements are made of total 

area of examination (At), area fraction of detected particles (AF), 

standard deviation of area fraction (SDat) and the total number of 

Intersections per unit length of the scan line (N/). 

3.2.3.5 Statistical analysis 

The most immediate statistical problem to be tackled during 

subsequent analysis is to consider how to transform a two-dimensional 

image at a random plane through the composite into a three-dimensional 

statistical representation. It will be recognized that particles, in 

this case agglomerates, could have been sectioned at any level of their 

diameter and that different agglomerates will probably be sectioned at 

different levels to produce a range of section diameters. Many 

different approaches have been propounded as mechanisms to correct for 

this situation and these are very effectively reviewed by 

Underwood. 1194,1951 The basic correction which allows for the 

statistical probabilities of sectioning at given fractions of the 

particle diameter is well established but the refinements which 

distinguish between area, diameter and chord distributions and the 

number of size classes supported are numerous, see Table 3.2.1. 

3.2.3.5.1 Sectioning of a single sphere 

As stated above, agglomerates have been measured not by observed 

diameter but rather by observed area which are then transformed into 

equivalent spherical diameters so that theory may be developed along 

the lines applicable to spheres. This approximation of particle shape 

to a sphere is considered insignificant compared to the increased 

accuracy of measurement and vastly increased availability of applicable 

theory. The basic theory that enables analysis of polydispersed 
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systems first involves the consideration of the probabilities of 

sectioning a single theoretical sphere with random planes. The 

probability P(1, j) of the plane crossing the sphere through a given 

slice of height, h, is: 

P(t, j)   h/rmax s (h(! -1) - h(il)/rmax (3.1) 

where i's refer to section diameters and J's refer to particle 

diameters. This probability can be expressed more usefully by 

substituting values of radii instead of height, h: 

P(1,1)   1/rmax [ rmax - r(t-1} rmax - ! III (3.2) 

3.2.3.5.2 Sectioning of polydispersed spheres 

When a polydispersed system is considered, rmax relates to radius 

of each size class of particles which produce a range of radii below 

rmax at the random plane so characterization involves the additional 

problem of unscrambling the sectioned surface features and relating 

them back to the original system of three-dimensional particles. One 

will readily appreciate that although two sectioned particles may 

present the same area at the surface, it is uncertain whether these 

sections originated from particles of the same size or different sized 

particles sectioned at different levels. 

If the average diameter of all the particles is D, then 

statistically the particles will only be cut by the test surface if 

they lie within a distance D/2 above or below the test surface, viz. 

within a volume defined by the area of test surface and average 

diameter, Q. The number of particles, Nv, contained within this volume 

must therefore equal the number of observed particle sections on the 

test surface, Na: 

Nv   Na /Q (3.3) 

Eqn. 3.3 is considered by DeHoff 11961 as representing "one of the 

fundamental relationships of quantitative metallography" and it is from 
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the assumption of this equation that all the following analyses are 

derived. 

For a system of particles which have been divided into a number of 

size classes, Eqn. 3.3 becomes: 

Nv(j) E Na(1, J, ) / D(j) (3.4) 

where the particles in each size class are taken as being the same 

diameter, viz. the mid-point diameter D(j), Nv(j) is the number of 

particles of diameter D(j) per unit volume and Na(i, j, ) is the number 

of sections of diameter D(i) per unit area produced by particles of 

D(J). The equation means that the total number of sections of all 

diameters per unit of surface area, E Na(i. j), produced by particles 
i 

of single diameter D(j) are required. Unfortunately, as mentioned 

above, these quantities cannot be measured directly from the section 

surface. Nevertheless, a quantity that can be determined is 

Zj Na(i, j) which depicts the total number of sections of single size, 

D(i) produced from particles of all diameters. 

The probability M , J) of sectioning a particle of diameter D(j) 

to produce a section of diameter D(i) has been defined in Eqn. 3.2 above 

and the same equation can be expressed in terms of Na(t, j): 

P(i, j) =E Na(t, j, ) /E Na(I, J, ) (3.5) 
Ii 

This equation represents the ratio of the number of sections per unit 

area of one diameter, DID, to the total number of sections per unit 

area. 

Rearranging Egn's 3.4. and 3.5 we may write: 

Nv(j) a; Na(i, J, ) / (P(i, J). D(J)] (3.6) 

Eqn. 3.6 gives a basis on which to progress further towards determining 

the number of particles per unit volume for each size class. Nv(j), so 

enabling the formulation of a three-dimensional size distribution. The 

first term E Na(i, j) can be measured from the test surface or 

calculated, P(J, j) can be calculated using Eqn. 3.2 for a given number 
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of size classes and D(J) is either Dmax or an incremental fraction 

determined by the number of size classes. 

At this point, it would be useful to reiterate that the sections 

observed on the polished surface are possibly derived from any size 

class particles. The maximum measured section, Dmax, must be equal to 

the diameter of the largest particle but the next largest section 

diameter could be derived from either the same sized particle or the 

largest particle. Accordingly, the calculation of the number of 

particles per unit volume in this next largest size class takes the 

number of observed sections of this diameter and subtracts the number 

of sections derived from the largest size class determined by the 

probability calculated in Eqn. 3.2. 

3.2.3.5.3 Schwartz-Saltykov (diameter) analysis 

Of the analysis techniques for determining size distributions by 

diameter and area, detailed in Table 3.2.1, only two allow independent 

calculation of each size class interval and variable number of size 

classes. 

The independent calculation of each size class interval eliminates 

the possibility of errors in the measurement of section diameters 

compounding with each sequential calculation proceeding from the 

largest diameter to the smallest. A variable number of size classes is 

desirable because it allows the analysis to be either very accurate 

using a large number of classes albeit at a time-penalty or a smaller 

number of classes can be specified for faster, less precise 

applications. Additionally, the usual situation is one where the value 

of Dmax is nut known before analysis and if the largest size class is 

over-estimated a number of the size classes will be empty. When this 

occurs, as is the normal circumstance, the analysis must enable 

independent calculation of a smaller number of size classes. The area 
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analysis technique exhibiting these features is that developed by 

Saltykov which unfortunately relates all measurements to the maximum 

section area on a logarithmic scale, so giving extra weight to sections 

as they become progressively smaller which is exactly opposite to that 

required of analyses for agglomeration measurement. The only diameter 

analysis with the above-mentioned features is that named after its 

joint originators, Schwartz-Saltykov. 

The Schwartz-Saltykov (diameter) analysis enables up to 15 size 

classes to be specified, but for reasonable accuracy a minimum of 7 are 

required. The analysis defines a term, which I shall call 't', as the 

ratio of Dmax to the total number of size classes, k. Thus, the first 

size class contains particles of diameter t, the second 28 and so on up 

to the largest diameter, Dmax, which equals ki. Table 3.2.2 details 

the notation used in the Schwartz-Saltykov (diameter) analysis. It 

should be noted that the bottom limit of the first size class, diameter 

M, should be equal to zero because of the manner in which the 

probabilities P(t, J) are calculated (described above and shown in 

detail below) but alternatively it can be set at a small defined 

particle size it account is taken of the error thus generated, see 

Section 3.2.3.6. 

Using the notation from Table 3.2.2, it is possible to write an 

equation giving the total number of sections of the first size class 

per unit area: 

Na(l) =I Na(S, j) 
j 

a Na(1, t) + Na(1,2) +//+ Na(t, j) +//+ Na(J, k) (3.7) 

and for second size class: 

Na(2) -Z Na(2, J) 
.1 

" Na(2,2) + Na(2,3) +//+ Na(2, J) +//+ Na(2, k) (3.8) 

and so on for all the other size classes. 

The probabilities, P(J,! ), that the test surface will intersect 
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particles of various diameters D(j) to produce given section diameters 

D(i) can be calculated using Eqn. 3.2 above. It is then possible to 

establish equations of Nv(j) in terms of Na(f, j) which are substituted 

into Eqn's 3.7,3.8, etc leaving Nv(j) expressed as values of Na(i), 

the observed section diameters. 

The Schwartz-Saltykov (diameter) analysis defines a generalized 

equation to describe Nv(j) in terms of Na(i): 
k 

Nv(j) = 1/0 Z ®(i, j). Na(i) (3.9) 
i-i 

where the coefficients, @(t, j), that appear in Table 3.2.3 have already 

been calculated by Schwartz-Saltykov and are used in the expanded 

working equation Egn. 3.10 below: 

Nv(j) = 1/0 (®(!, J). Na(t} - Q(! +1, j). Na(i+1) -//- @(k, J). Na(k) (3.10) 

where i and j are equal to values between I and k (total number of size 

classes). The total number of particles per unit volume then can be 

calculated: 

Nv 2 Nv(1) + Nv(2) + Nv(3) +//+ Nv()) +//+ Nv(k) (3.11) 

The coefficient ®(i, j) is calculated by first finding P(J, j) from 

Eqn. 3.2. In the case when there are 15 size classes (k = 15). the 

probability of a random test surface cutting particles of radius r(15) 

to produce sections with radii between r(14) and r(15) 1s: 

P(15,15) 1/r(15) . r(15) - r(14) 

= I-1- 0.933 = 0.359 

when substituted into Eqn. 3.6 gives: 

Nv(15) s Na(15,15) / 0.359 D(15) 

s 2.785 Na(15,15) / D{15) (3.12) 

from which Nv(15) can be calculated because Na(15,15) and D(15) are 

known. Na(15,15) can have only originated from particles of D(15) so 

it is equal to Na(15) from an equation similar to Eqn's 3.7 and 3.8. 

lt will be noted that it Egn. 3.12 is rearrangedt 

Nv(15) " 1/D(15) £2.785 Na(15)] (3.13) 
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it closely resembles Eqn. 3.10. The only difference between Egn's 3.13 

and 3.10 is that the denominator in the former is the actual diameter, 

Dmax, of the maximum sized particle while in the latter it is t, which 

is Dmax/k (k is the number of size classes). Therefore, ®(15,15) 

2.785/15 = 0.1857 

The values of 0(14,14) and 0(14,15) are calculated by again using 

Eqn. 3.2. P(14,15), the probability of the random test surface cutting 

particles of radius r(15) to produce sections with radii between r(13) 

and r(14) ist 

P(14,15) = 1/r(15) r(15)- r(13) - r(15) - r(14) 

=1-0.867 - 11 - 0.933 = 0.140 

and by rearranging Eqn. 3.6: 

Na(14,15) x P(14,15). D(15). Nv(15) 

s (0.140 D(J5) x [2.785 Na(15)] / D(15) 

= 0.390 Na(15) (3.14) 

Since Eqn. 3.14 tells us that 39% of the section diameters D(14) are 

derived from particles of diameter D(15) we can state that: 

Na(14,14) = Na(J4) - 0.390 Na(15) 

P04,14), the probability of the random -test surface cutting particles 

of radius r(14) to produce sections with radii between r(13) and r(14) 

iss 

P(14,14) = 1/r(14) /r(14)- r(i3) i-0.9297 = 0.371 

From Eqn. 3.6: 

Nv(14) _ (Na(14) - 0.390 Na(15)] / 0.371 D(14) 

  1/D(15) 12.888 Na(14) - 1.125 Na(15)1 

Thus, 0(14,14) = 2.888/15 " 0.1925 and 0(14,15) _ -1.125/15 = -0.0750 

These calculations of 0(1, j) were only to illustrate how 

Schwartz-Saltykov derived the coefficients; for analysis of particle 

distributions the coefficients can be taken from Table 3.2.3 to 

calculate all values of Nv(j). 
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From Egn. 3. i1 it is now possible to derive a number frequency of 

particle diameters per unit volume, Nv(%), and hence the mean number 

diameter of the three-dimensional particles. A further refinement, 

particularly applicable in the detection of agglomerates, is to derive 

a volume frequency of particle diameters per unit volume, Vv(%), and 

obtain the mean volume diameter (MVD); this is the term l shall use for 

directly quantifying filler agglomeration within the polymer matrix. 

Mean volume diameter can be defined as: 

MVD = 1INv(j) 
. D(J) /ENv(j) (3.15) 

which means that MVD is the diameter whose volume represents the total 

volume of particles per unit volume divided by the total number of 

particles per unit volume. Figure 3.2.16 shows, in the two graphs, the 

effect on the raw data when it is analyzed using the above technique 

and the value of MVD calculated from the Vv frequencies. 

3.2.3.6 Estimation of errors 

Error is defined as "mistake; wrong opinion; transgression; 

deviation from accurate result, observation, etc". [1971 In statistical 

terms, the deviation from an accurate result is the quantity which must 

be defined to enable meaningful comparisons of data. Of course, when 

performing experiments it is unlikely that one would know if the 

result was truly accurate because, if it was the case, the experiment 

would have no originality. Bevington [198] has defined three sources 

of potential error that can arise during experimentst- 

(1) Systematic errors - are reproducible inaccuracies arising from 

flawed technique or equipment for which statistical analysis 

is not generally useful. 

(II) Random errors - result from indefinable quantities within the 

equipment, experimental materials or measurement. These can 

be estimated, it necessary, but require enormous effort for 
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any errors other than the most obvious. 

(!! i) Probable errors - these are the errors judged to have been 

made during measurement of the results and can usually be 

quantified to a high degree. 

The probable experimental measurement error involved in image 

analysis consists of: - (a) the field area visualization error, (b) the 

section sizing error and (c) the error introduced by the 

Schwartz-Saltykov (diameter) analysis. The calculations below are made 

using data from one single experiment which resulted in some of the 

lowest agglomeration levels; these small particles will exhibit the 

largest potential measurement errors. 

The image analyser system digitizes the detected surface features 

into square-shaped 'pixels' which are arbitrary machine units with 

sides of approximately 0.5mm. The square shape of the pixels 

eliminates another possible error due to space which would fall between 

circular pixels. The field area visualization error results from 

the possibility of the nominal circular detection field being 

determined either one pixel narrower or one pixel wider than the actual 

size. The nominal circular field area was equal to 112000sq-um. 

Therefore, as the linear magnification was calibrated as x310, at the 

screen the circular field had a diameter of 12i. 2mm. It the circular 

field is narrower it will have a diameter of 120.2mm. The difference 

in areas of the nominal and narrower fields as a ratio of the nominal 

area expresses the first half of the percentage field area 

visualization error, which is 1.644%. The error for oversizing is 

calculated in the same way and equals 1.657%. Therefore, the field 

area visualization error can be expressed as +/- 1.65%. 

The section sizing error, a result of the machine being able to 

resolve highlighted sections only to +/- 1 pixel, relates to the 

possibility of the detector missing one pixel during measurement or 
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erroneously recording an extra pixel. The mean area of sections 

determined In this experiment was 314.2sq-um, an equivalent area 

spherical diameter of 20um, which at the VDU screen (linear 

magnification at x310) is 30.19sq-mm. A square pixel with sides of 

0.5mm at the VDU screen will have an area of 0.25sq-mm and so that the 

error resulting if one pixel is missed equates as the ratio of the 

pixel area (0.25sq-mm) to the mean section area (30.19sq-mm) and equals 

0.82%. The error resulting if a pixel is mistakenly recorded is the 

same so the section size error is expressed as +/- 0.82%. 

The error introduced by the Schwartz-Saltykov (diameter) analysis 

results from the inability of the image analyser to assess section 

diameters below Sum when using reflected light. In our example the 

maximum size class, in which sections were detected, had a diameter of 

84um. As measurements are determined by area, the error is the ratio 

of the Sum squared to 84um squared expressed as a percentage and is 

equal to +/- 0.17% 

Therefore, the estimated experimental measurement error involved 

in determining sections areas, when utilizing this image analyser, is 

assessed as +/- 2.6%. 
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Table 3.2.1 List of a number of different transformation methods 
for deriving particle size distributions from measured sections 

Method Table of Independent Class 
coefficients calculation interval 
needed? of each class scale 

interval? required 

DIAMETERS 
Wicksell (1925) Yes Yes Dmax/15 
Schell (1931) Yes No Dmax/15 
Schwartz (1934) Yes Yes Dmax/10 
Schwartz-Saltykov Yes Yes Dmax/k(k < 15) 

(1958) 

AREAS 
Johnson Yes No ASTM grain size 
Johnson-Saltykov Yes No Absolute scale, not 

dependent on Dmax 
Saltykov No Yes Absolute scale, based 

on A/Amax (k < 12) 

CHORDS 
Spektor No Yes Continuous, or Dmax/k 
Lord and Willis No Yes Dmax/k 
Cahn and Fullman No Yes Continuous, or Dmax/k 
Bockstiegel No Yes Dmax/k 

Table 3.2.2 Nomenclature used in Schwartz-Saltykov analysis 

Number Particle Number per Section Number per 
of group diameter unit volume diameter unit area 

1 ü Nv1 0 to ü Na 1 
2 2ü Nv2 ü to 2ü Na. 
3 3ü Nv3 2ü to 3ü Na3 

jü Nvj (i - 1)ü to iü Nai 

k kü Nvk (k - 1)ü to k# Nak 



Table 3.2.3 Probability coefficients for Schwartz-Saltykov (diameter) analysis 

Coefficients, @ij 

Nal Nat Na3 Nay Nas Nab Na7 Nag Nag Nalp Nall Na12 Na13 Na14 Na15 

Nv1 +1.0000 0.1547 0.0360 0.0130 0.0061 0.0033 0.0020 0.0013 0.0009 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001 

Nv2 +0.5774 0.1529 0.0420 0.0171 0.0087 0.0051 0.0031 0.0021 0.0015 0.0010 0.0009 0.0006 0.0006 0.0004 

Nv3 +0.4472 0.1382 0.0408 0.0178 0.0093 0.0057 0.0037 0.0026 0.0018 0.0013 0.0010 0.0007 0.0007 

Nv4 +0.3779 0.1260 0.0386 0.0174 0.0095 0.0058 0.0038 0.0027 0.0020 0.0016 0.0012 0.0009 

Nvs +0.3333 0.1161 0.0366 0.0168 0.0094 0.0059 0.0040 0.0028 0.0021 0.0016 0.0013 

Nv6 +0.3015 0.1081 0.0346 0.0163 0.0091 0.0058 0.0041 0.0028 0.0022 0.0016 

Nv7 +0.2773 0.1016 0.0329 0.0155 0.0090 0.0057 0.0040 0.0029 0.0022 

Nv8 +0.2582 0.0961 0.0319 0.0151 0.0088 0.0056 0.0039 0.0028 

Nv9 +0.2425 0.0913 0.0301 0.0146 0.0085 0.0055 0.0039 

Nv 10 +0.2294 0.0872 0.0290 0.0140 0.0083 0.0054 

Nv ll +0.2182 0.0836 0.0280 0.0136 0.0080 

Nv12 +0.2085 0.0804 0.0270 0.0132 

Nv 13 +0.2000 0.0776 0.0261 

Nv 14 +0.1925 0.0750 

Nv 15 +0.1857 

Nv +1.0000 +0.4227 +0.2583 +0.1847 +0.1433 +0.1170 +0.0988 +0.0856 +0.0753 +0.0672 +0.0610 +0.0553 +0.0511 +0.0472 +0.0441 
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Fig. 3.2.2 Transmitted light micrograph of material remaining 

after ashing of microtomed section (x66) 



Fig. 3.2.3 Transmitted light micrograph of material 
remaining after solvent extraction (x33) 

Fig. 3.2.4 Bubble blowing apparatus 
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Fig. 3.2.5 Transmitted light micrograph of part of blown bubble 
(x33) 

Fig. 3.2.6 Extruder of a laboratory film casting line 
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Fig. 3.2.7 Reflected light micrograph of extruded tape 
(x33) 

Fig. 3.2.8 Scanning electron micrographs showing damage to 
microtomed surfaces (x875) 



Fig. 3.2.9 Steel bladed RAPRA-designed cryomicrotome 



Fig. 3.2.10 Mechanical block rotator 
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Fig. 3.2.11 SEM (left) and X-ray dot-image of calcium ions 
detected on the sample surface 
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Fig. 3.2.12 X-ray micronegative (left) viewed through a 
transmitted light microscope compared to 

microtomed section 



Fig. 3.2.13 Specimens viewed by acoustic microscope in reflected 
mode 
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Fig. 3.2.14 Principle components of image analysis 



Fig. 3.2.15 Optomax image analyser, Apple Computer and Zeiss 

microscope 
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Fig. 3.2.16 The effect of processing raw data measured from 
specimen surface (Graph A) using Schwartz-Saltykov (diameter) 
analysis expressed as a particle volume distribution (Graph B). 
Mean volume diameter (MVD) obtained from data in Graph B is 
31.3 µm 
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3.3 DISPERSIVE AND DISTRIBUTIVE MIXING 

3.3.1 Dispersive Mixing 

The dispersive mixing characteristics of the TS40 co-rotating 

twin-screw compounding extruder are examined in the following series of 

experiments. These experiments employ 7 different calcium carbonate 

fillers, 2 different polymer matrices and various processing variables 

whose effects are analyzed by considering samples taken from the 

extrudate and, after removing the barrel, from along the screws. 

3.3.1.1 Characterization of dispersive mixing 

The technique employed for characterization of dispersion in 

calcium carbonate compounds is shown systematically in Figure 3.3.1. 

Solid specimens taken from the extrudate and from the second stage 

of the screws were consolidated in a flash mould by heating at 225°C 

for 2min and pressing for imin at a pressure of 4.3MPa. Semi-solid 

specimens taken from the first stage of the screws were placed in a 

25mm diameter positive mould, heated at 250°C for 2min and pressed at 

4.3MPa for lain resulting in a disc approximately 6mm thick. Calcium 

carbonate raw powder specimens were tumble mixed with PP powder at 

40wt% calcium carbonate, the mixture placed in an alumina crucible and 

heated in a furnace at 250°C. After 10min, the crucible was removed 

from the furnace and positioned on a hot plate while the specimen was 

stirred with a glass rod for 1min. The specimen was then pressed in 

the same way as a semi-solid specimen. 

The time necessary to prepare as above, hand-grind on a range of 4 

grades of emery paper, manually polish at 6 and 3um and remotely polish 

at lum averaged 2hours/specimen. Many specimens required complete 

repolishing due to damage caused by surface contaminants or regrinding 

in addition to repolishing if surface section counts were of a low 
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order. Image analysis by direct reflected light microscopy took 

approximately 45min for a average total count of 30 fields of view. 

3.3.1.2 Premixing conditions 

lt is normal practice to blend or intensively mix loose powder 

additives with powdered polymers before delivering them to the 

extrusion line. The calcium carbonate fillers utilized for these 

experiments came from the commercial range of Croxton & Garry Ltd and 

exhibit different geological origins, applied surface treatments and 

particle size ranges, as shown in Table 3.3.1. For most of the 

experiments, a powdered polypropylene (ICI - GW522M) was selected to 

form the polymer matrix except for a comparative experiment using as 

the matrix a more polar polymer, nylon 6,6 (ICI - Maranyl A100). 

For the following experiments, the majority involve the use of 

premixes containing 40wt% of calcium carbonate filler in the 

polypropylene powder and these have been prepared using a Henschel 

high-speed dry mixer; batches of 2kg were mixed at 3000rpm for 5min. 

Prior to premixing samples of each of the 7 raw calcium carbonate 

powders were taken from the as-delivered bags, as well as samples from 

each calcium carbonate/ polypropylene premix. The compacted material 

remaining on the mixer blades was analyzed for Durcal 2. Each sample 

was prepared as detailed in Section 3.3.1.1 above and characterized by 

image analysis; results are shown in Table 3.3.2. 

3.3.1.3 Material variables 

3.3.1.3.1 Calcium carbonate characteristics 

Each of the 7 calcium carbonate premixes were then processed using 

the TS40 co-rotating twin-screw extruder set up to operate at standard 

processing values, which are shown in 
. 
Table 3.3.3. The premixes were 

starve-fed from the twin-screw volumetric. dosing unit into the hopper 
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of the extruder at the maximum throughput possible in relation to 

machine power capacity and processing stability. On leaving the 

machine the melt was extruded through a 75mm wide by 3mm thick slit die 

into a water bath and this extrudate collected as an unsized strip. 

For Durcal 2, an additional experiment was undertaken whereby the 

machine was stopped after achieving steady-state running conditions and 

the barrel shock-cooled by passing water through the heater elements 

piping. After approximately 30min of cooling, the hydraulic barrel 

withdrawal apparatus was used to carefully remove the barrel and expose 

the screws surrounded by solidified material, Figure 3.1.6. Samples of 

the material were taken from specified positions along the screws for 

subsequent image analysis. 

The samples were prepared as detailed in Section 3.3.1.1 above 

and characterized by image analysis; results are shown in Table 3.3.4 

and graphically in Figures 3.3.2 & 3.3.3. 

3.3.1.3.2 Polymer polarity 

Calcium carbonate filler (Durcal 2) was processed in two different 

polymer matrices; polypropylene (ICI - GW522M) and a more polar 

polymer, nylon 6,6 (ICI - Maranyl A100). Compounds of the nylon 6,6 

matrix were extruded at screw speeds of 120 & 180rpm and compared to 

the polypropylene matrix at the same speeds. Nylon 6,6 granules, dried 

at 100°C in a vacuum oven overnight, were fed from the Simon 

Varifeeder. The calcium carbonate was separately fed from the K-Tron 

Soder feeder at a rate equivalent to 40wt% with the nylon 6,6 fed from 

the Simon Varifeeder. 

The nylon 6,6 compounds were processed at the extruder settings in 

Table 3.3.5 and the polypropylene, compounds as above. ' Samples were 

collected from the extrudate for each variant and analyzed. - Dispersion 

results are detailed in Table*3.3.6 and are included in Figure 3.3.2. 
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3.3.1.4 Processing variables 

3.3.1.4.1 Extruder screw speed 

The 40wt% Durcal 2/ polypropylene premix was processed at screw 

speeds of 60,120 and 180rpm but otherwise extruder settings were the 

same as those described in Table 3.3.3. At each screw speed, the 

extruder was shock-cooled after stable-running had been established 

and, after the barrel was withdrawn, 'samples were taken from the same 

positions along the screws as detailed in Table 3.3.4 

Dispersion results are shown in Table 3.3.7 and Figures 

3.3.3-3.3.5 which show the MVD and Dmax along the screws for each speed 

while Figure 3.3.6 compares the MVD of the 3 screw speeds. 

3.3.1.4.2 Temperature profile 

Barrel temperature profile was varied over 5 ranges; low, normal, 

high, flat and decreasing which are detailed at the foot of Table 

3.3.8. The 40wt% Durcal 2/ polypropylene premix was otherwise 

processed at settings in Table 3.3.3. Table 3.3.8 details the 

dispersion results which are individually related to position of 

sampling along the screw for normal, low and high temperature profiles 

in Figures 3.3.3,3.3.7 and 3.3.8; Figure 3.3.9 compares these 3 

temperature profiles. 

3.3.1.4.3 Position of filler entry 

The twin ports half way along the barrel in its standard 

configuration present the possibility of feeding the filler at this 

point independently of the polymer powder. Two experiments were 

undertaken to investigate this feature; firstly, polymer and calcium 

carbonate were feed separately at the hopper and, after shock-cooling, 

samples taken from along the screws and analyzed, Figure 3.3.10. 
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Secondly, in order to evaluate the effects of the two halves of the 

extruder Durcal 2 calcium carbonate was fed, at a rate equivalent to 

40wt%, into the molten polypropylene at the downstream entry port; the 

machine was shock-cooled and samples taken along the screws for image 

analysis, Figure 3.3.11. These two variables are plotted together with 

the dispersion along the screws for premix fed at the hopper in Figure 

3.3.12 and details are given in Table 3.3.9. 

3.3.1.4.4 Material output 

As stated in Table 3.3.3, the output was maximized in the 

standard extrusion settings of Durcal 2/ polypropylene (at 18.3kg/hr). 

In these experiments, the extruder was operated at 80% and 60% of this 

output value, and samples collected from the extrudate; Table 3.3.10 

details the image analysis dispersion results. 

3.3.1.4.5 Screw/ barrel configurations 

3.3.1.4.5.1 Configuration of metering screw section 

The segmented nature of the extruder screws allows the alteration 

of the profile without resorting to changing the entire screw. This 

set of experiments was intended as an investigation of the influence of 

second-stage metering screw profile on calcium carbonate filler 

dispersion. In addition to the standard 8mm pitch metering screws, a 

set of 12mm and 16mm pitch metering screws were utilized for processing 

40wt% Durcal 2 in polypropylene. Further, two of the melting elements 

were removed from midway along the screws, the second-stage screws 

moved along to fill the gap and these two elements placed at the 

extreme end of the metering section; see lower screw configuration in 

Figure 3.1.5. 

For each configuration, the machine was operated to steady state 

conditions, the screws halted and the barrel shock-cooled before 
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withdrawal of the barrel to obtain samples from the metering screws. 

These samples were assessed by image analysis and the dispersion 

results are detailed in Table 3.3.11 and compared in Figure 3.3.13 

3.3.1.4.5.2 Configuration of barrel sections 

As mentioned previously, the TS40 extruder has the facility to 

operate with more than four barrel sections and so a series of 

experiments were undertaken using the five barrel configuration, see 

lower barrel configuration in Figure 3.1.2. The 40wt% Durcal 2/ 

polypropylene premix was fed at the hopper at low, normal and high 

screw speeds as defined in Table 3.3.7. Additionally, the filler was 

dosed separately into the molten polypropylene at either the first or 

second downstream entry ports. Samples were taken from the extrudate 

for each experiment and dispersion assessed by image analysis, Table 

3.3.12. 

3.3.2 Distributive Mixing 

The distributive mixing characteristics of the TS40 co-rotating 

twin-screw compounding extruder are examined in the following series of 

experiments. These experiments involve first determining the optimum 

pigment loading which compromises between showing significant flow 

lines and allowing sufficient light to pass through the thin section. 

Samples were taken from the extrudate for all experiments and from the 

metering section of the screws, after shock-cooling and barrel 

withdrawal, for a number of the experiments; see Table 3.3.13 for 

detailed sampling locations. 

3.3.2.1 Characterization procedure 

The technique utilized for characterization of distributive mixing 
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of carbon black in a polypropylene matrix is shown systematically in 

Figure 3.3.14. 

Initially, attempts were made to cut thin sections of 

polypropylene extrudate using a conventional steel-bladed sledge 

microtome. It proved extremely difficult to eliminate cutting lines 

while at the same time achieving sections thin enough for examination 

by light microscopy. 

An alternative strategy for cutting thin slices of polymeric 

material is the use of 'glass-knife microtomy'. Glass-knife microtomy 

is a hybrid technique which emulates the ultramicrotome utilized for 

the preparation of electron microscope specimens. It differs mainly in 

that incremental movement of the cutting knife occurs mechanically 

rather that by electrical heating and in its ability to cut sections up 

to several microns thick. The main advantage of glass microtomy over 

the conventional metal-knife technique is that, when cutting marks 

appear, the glass knife can easily be replaced. Thin sections of the 

prepared specimen were mounted on a microscope slide in Canada Balsam 

beneath a cover slip ready for transmitted light microscopy. 

The microscope slide specimens were viewed under the Zeiss 

microscope, in transmitted light mode, which was directly attached to 

the Optomax image analyser described in detail in Section 3.2.3 above. 

After adjustment of microscope functions, such as light source level, 

diaphragm openings and polarizing filters, contrast appeared acceptable 

to the image processor since it was then able to distinguish dark flow 

patterns from the background. The computer software necessary to 

control the image analyser via an IEEE interface was further refined so 

that it operated faster when only measuring 'area fraction of detected 

features' (AF) and 'standard deviation of AF' (SDat); the terms used to 

quantify distributive mixing. (See, Appendix B for image analyser 

program for measurement of distributive mixing) For each specimen an 
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average of 60 fields of view were examined. 

3.3.2.2 Pigment loading 

A problem immediately encountered when initially examining carbon 

black pigmented polypropylene was that no light could pass through 

glass microtomed sections of extruded material. For these initial 

experiments, carbon black masterbatch (Cabot - PP1359 30% by weight 

carbon black) was tumble blended with polypropylene granules (ICI - 

GWM22) in such quantities to produce a final carbon black concentration 

of 2wt%. However, after a range (0.25% to 1.5%) of carbon black 

concentrations were considered, it was concluded that 0.5wt% resulted 

in a suitable compromise and this level of carbon black was utilized 

for subsequent experiments. 

3.3.2.3 Processing variables 

3.3.2.3.1 Extruder screw speed 

The 0.5wt% carbon black/ polypropylene mixture was processed using 

the TS40 co-rotating twin-screw extruder set to operate at standardized 

processing values, which are shown in Table 3.3.14. The preblend was 

starve-fed from the single-screw Simon Varifeeder unit into the hopper 

of the extruder at the maximum throughput possible in relation to 

machine power capacity and processing stability. On leaving the 

machine the melt was extruded through a 6mm diameter rod die, drawn 

down to a 4mm diameter strand and cooled in a water bath. It was 

necessary to reduce the diameter of the strand because the glass knives 

utilized for the microtomy were also 6mm wide and needed to be larger 

than the specimen in order to cut sections satisfactorily. 

The extruder was operated at a range of screw speeds between 30 

and 180rpm both with and without the breaker plate present in the 

barrel head adaptor. Specimens were prepared directly from the 
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extruded 4mm strand using the technique described in Section 3.3.2.1 

above and characterized by image analysis; results are shown in Table 

3.3.15 and Figure 3.3.15. 

3.3.2.3.2 Teaperature profile 

Barrel temperature profile was varied over three of the ranges 

utilized for calcium carbonate - low, normal and high - details of 

which are shown at the foot of Table 3.3.16. The materials were 

otherwise processed at settings in Table 3.3.14 and samples taken from 

each resulting extrudate for analysis. 

3.3.2.3.3 Material output 

Material was processed as previously using 80% and 60% of the 

maximum output value (13. Okg/hr). The extrudate was analyzed in each 

case and results are shown in Table 3.3.17. 

3.3.2.3.4 Configuration of metering screw section 

The same range of extruder metering screw configurations as those 

employed for calcium carbonate, Section 3.3.1.4.5.1 above, were 

utilized to process the O. Swt% carbon black compound. The area 

fraction image analysis results for material extracted from the 

metering screws are shown in Table 3.3.18, individually plotted (AF 

and DDI) in Figures 3.3.16 to 3.3.19 and compared in Figure 3.3.20. 

3.3.2.3.5 Position of pigment entry 

In addition to processing the compound by adding the carbon black 

masterbatch with the polypropylene granules at the feed hopper, 

experiments were undertaken whereby the carbon black was separately 

metered into the downstream vent port. Analysis of material extended 

to the fully filled flights of the metering section; samples being 

68 



accessed by removal of the metering barrel section after halting the 

machine and shock-cooling the barrel jacket, Table 3.3.19 and Figure 

3.3.21, comparison (with Figure 3.3.19) in Figure 3.3.22. 
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Table 3.3.1 Features of the selected calcium carbonate fillers 

Mean 
particle Top Finer 

Geological size cut than Surface 
Trade Name Origin (um) (um) 2um(%) treatment 

Hakuenka CCR Precipitated 0.08 - - Yes(CS) 
Setacarb 13 Calcite (Urgonian) 0.70 3 96 No 
Hydrocarb Crystalline calcite 1.50 7 70 No 

(Urgonian) 
Hydrocarb 95T Crystalline calcite 1.50 7 70 Yes(PT) 

(Urgonian) 
Millicarb Crystalline calcite 3.00 10 35 No 

(Urgonian) 
Durcal 2 Marble (Metamorphic) 3.00 10 40 No 
Omyalene SL Marble (Metamorphic) 3.00 10 40 Yes(PT) 

CS = calcium stearate; PT = proprietary treatment. 

Table 3.3.2 image analysis results for specimens taken from the raw 
powders and premixes for the 7 different calcium carbonates in 

polypropylene powder. 

Image Analysis 

Sample 

Mean volume 
diameter [MVD) 

(um) 

Maximum particle 
diameter [Dmax] 

(um) 

Hakuenka CCR Raw powder 178.0 900 
Premix 194.0 1000 

Setacarb 13 Raw powder 241.0 570 
Premix 253.1 700 

Hydrocarb Raw powder 236.0 975 
Premix - 247.8 1000 

Hydrocarb 95T Raw powder 126.1 450 
Premix 138.7 370 

Millicarb Raw powder 214.0 570 
Premix 231.1 600 

Durcal 2 Raw powder 159.1 370 
Mixer blades 205.8 450 
Premix 168.7 530 

Omyalene SL Raw powder 171.0 700 
Premix 186.4 835 



Table 3.3.3 Standard extruder settings for processing 40wt% 
calcium carbonate filler in polypropylene powder 

Die Type Strip (3mm x 75mm) 

Screw speed 120rpm 

Barrel 4 sections with venting in zone 3 

Screws 17: 1 L/D with 4 melting elements between 
zones 2&3 and 8mm pitch metering screws 

Feed Premix fed at the hopper from K-Tron Soder T20 

Output Maximum possible for stable processing and 
limited by motor current maximum of 20A 

Temperature profile Zone 1= 185 
(° C) Zone 2= 195 

Zone 3= 205 
Zone 4= 215 
Die = 220 

Table 3.3.4 The effect of varying calcium carbonate characteristics 
on the level of dispersion 

Sampling MVD Dmax AF SDaf Df DDI 
PP- position' (um) (um) (%) (%) (%) 

HCCR 1 26.7 96 5.50 2.78 13.8 0.049 
S13 1 31.4 116 6.28 3.92 12.4 0.110 
HY 1 26.7 63 1.47 0.85 10.8 0.004 
H95T 1 22.5 48 3.26 1.72 16.2 0.018 
H 1 19.1 56 5.68 4.59 8.3 0.084 
OSL 1 21.2 64 2.91 2.02 11.4 0.019 
D2 1 24.3 80 4.65 1.63 14.4 0.024 

2 23.7 72 3.16 2.14 14.0 0.022 
3 39.3 238 6.18 1.93 23.3 0.053 
4 93.4 270 9.07 4.07 55.4 0.284 
5 190.0 530 28.69 10.70 112.6 2.361 
6 135.1 490 8.20 6.74 80.1 0.425 
7 153.6 330 7.10 2.83 91.0 0.156 
8 168.7 530 11.26 5.56 100.0 0.482 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.3.3: Sampling position -I 
= extrudate; 2= end of metering (zone 4); 3= beginning of metering 
(zone 4); 4= beginning of zone 3 (after melting elements); 5= end of 
zone 2 (before melting elements); 6= between zones I&2; 7= 
beginning of zone 1; 8= initial feed. 



Table 3.3.5 Extruder settings utilized during nylon 6,6 
processing 

Die Type Rod (6mm diameter) 

Screw speed 120 and 180rpm 

Barrel 4 sections with venting in zone 3 

Screws 17: 1 L/D with 4 melting elements between 
zones 2&3 and 8mm pitch metering screws 

Feed Polymer and filler (40wt%) separately 
fed at the hopper 

Output Maximum possible for stable processing and 
limited by motor current maximum of 20A 

Temperature profile Zone i= 260 
(° C) Zone 2= 265 

Zone 3= 265 
Zone 4= 270 
Die = 280 

Table 3.3.6 The effect of matrix polarity on the level of 
dispersive mixing in the extrudate 

Sampling MVD Dmax AF SDaf Df DDI 
D2- position (um) (um) (%) (%) (%) 

PA-NS 1 9.9 38 10.29 1.64 6.2 0.021 
PA-HS 1 9.4 20 1.33 0.93 5.9 0.002 
PP-NS 1 24.3 80 4.65 1.63 14.4 0.024 
PP-HS 1 22.4 64 3.44 1.19 13.3 0.013 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Tables 3.3.3 and 3.3.5: PA = nylon 
6,6: PP = polypropylene powder: NS = normal screw speed (120rpm): HS = 
high screw speed (180rpm) 



Table 3.3.7 The effect of varying extruder screw speed on the level 
of calcium carbonate dispersion 

Sampling 
PP-D2- position 

MUD 
(um) 

Dmax 
(um) 

AF 
(%) 

SDaf 
(%) 

Df 
(%) 

DDI 

SS 1 29.0 104 6.03 4.20 17.2 0.082 
2 30.2 120 4.77 3.93 17.9 0.060 
3 41.7 180 8.09 4.27 24.7 0.154 
4 64.5 206 14.79 5.47 38.2 0.622 
5 113.8 490 16.56 6.06 67.5 0.772 
6 149.8 800 23.46 6.21 88.7 1.520 
7 184.9 530 13.14 10.28 109.6 1.039 
8 168.7 530 11.26 5.56 100.0 0.482 

NS 1 24.3 80 4.65 1.63 14.4 0.024 
2 23.7 72 3.16 2.14 14.0 0.022 
3 39.3 196 6.18 1.93 23.3 0.053 
4 93.4 270 9.07 4.07 55.4 0.284 
5 190.0 530 28.69 10.70 112.6 2.361 
6 135.1 490 8.20 6.74 80.1 0.425 
7 153.6 330 7.10 2.83 91.0 0.156 
8 168.7 530 11.26 5.56 100.0 0.482 

HS 1 22.4 64 3.44 1.19 13.3 0.013 
2 23.8 64 3.87 2.04 14.1 0.025 
3 37.5 180 6.94 5.02 22.2 0.156 
4 80.7 206 9.31 6.42 47.8 0.460 
5 139.1 570 11.36 7.13 82.5 0.623 
6 175.4 450 14.06 8.51 104.0 0.920 
7 128.4 450 11.48 6.08 76.1 0.537 
8 168.7 530 11.26 5.56 100.0 0.482 

See Nomenclature for explanation of symbols and codes: See foot of 
Table 3.3.4 for sampling positions: Materials processed at standard 
settings, see Table 3.3.3, except: SS = slow screw speed (60rpm): NS = 
normal screw speed (120rpm): HS = high screw speed (180rpm). 



Table 3.3.8 The effect of varying extruder temperature profile on 
the level of calcium carbonate dispersion 

Sampling 
PP-D2- position 

MVD 
(um) 

Dmax 
(um) 

AF 
(%) 

SDaf 
(%) 

Df 
(%) 

DDI 

LT 1 26.8 64 2.63 0.92 15.9 0.008 
2 27.2 66 2.22 2.27 16.1 0.016 
3 45.6 180 4.63 3.20 27.0 0.066 
4 75.1 270 20.09 4.60 44.5 0.711 
5 121.7 530 24.58 5.15 72.4 0.974 
6 137.9 450 15.42 8.60 81.7 1.020 
7 217.0 1000 21.40 10.58 128.6 3.484 
8 168.7 530 11.26 5.56 100.0 0.482 

NT 1 24.3 80 4.65 1.63 14.4 0.024 
2 23.7 72 3.16 2.14 14.0 0.022 
3 39.3 196 6.18 1.93 23.3 0.053 
4 93.4 270 9.07 4.07 55.4 0.284 
5 190.0 530 28.69 10.70 112.6 2.361 
6 135.1 490 8.20 6.74 80.1 0.425 
7 153.6 330 7.10 2.83 91.0 0.156 
8 168.7 530 11.26 5.56 100.0 0.482 

HT 1 26.0 88 4.06 3.03 15.4 0.040 
2 30.2 96 5.06 4.14 17.9 0.068 
3 31.3 132 4.57 3.20 18.6 0.065 
4 82.0 206 4.91 2.53 48.6 0.096 
5 118.1 410 12.56 7.00 70.0 0.676 
6 162.8 600 15.02 6.45 96.5 0.745 
7 301.0 1500 18.36 7.20 178.4 3.051 
8 168.7 530 11.26 5.56 100.0 0.482 

FT 1 39.2 96 6.20 5.16 23.2 0.103 

DC 1 35.5 120- 4.26 4.38 21.0 0.060 

See Nomenclature for explanation of symbols and codes: See foot of 
Table 3.3.4 for sampling positions: Materials processed at standard 
settings, see Table 3.3.3, except: LT = low temperature profile 
(165/175/185/195/200): NT = normal temperature profile (185/195/205/ 
215/220): HT = high temperature profile (205/215/225/235/240): FT = 
flat temperature profile (205): DC = decreasing temperature profile 
(220/215/205/195/185). 



Table 3.3.9 The effect of position and mode of filler addition on 
the level of calcium carbonate dispersion 

Sampling MVD Dmax AF SDaf Df DDI 
PP-D2- position (um) (um) (%) (%) (%) 

PH 1 24.3 80 4.65 1.63 14.4 0.024 
2 23.7 72 3.16 2.14 14.0 0.022 
3 39.3 196 6.18 1.93 23.3 0.053 
4 93.4 270 9.07 4.07 55.4 0.284 
5 190.0 530 28.69 10.70 112.6 2.361 
6 135.1 490 8.20 6.74 80.1 0.425 
7 153.6 330 7.10 2.83 91.0 0.156 
8 168.7 530 11.26 5.56 100.0 0.482 

SH 1 20.6 48 3.28 2.38 12.9 0.025 
2 21.7 56 3.81 3.07 13.6 0.038 
3 42.9 228 6.38 3.31 27.0 0.094 
4 95.0 398 23.61 6.62 59.7 1.202 
5 267.0 1500 16.06 7.33 167.8 2.717 
6 265.5 1000 16.15 11.22 166.9 2.788 
7 261.0 1000 11.00 4.60 164.0 0.778 
8 159.1 370 9.48 5.54 100.0 0.404 

SVi 1 100.2 302 6.86 2.52 63.0 0.133 
2 100.8 430 8.55 3.27 63.4 0.215 
3 521.4 2000 23.17 8.98 327.7 6.402 
4 159.1 370 9.48 5.54 100.0 0.404 

See Nomenclature for explanation of symbols and codes: See foot of 
Table 3.3.4 for sampling positions: Materials processed at standard 
settings, see Table 3.3.3, except: PH = premix fed at hopper: SH = 
filler fed separately at hopper: SV1 = filler fed separately at vent 



Table 3.3.10 The effect of extruder output rate on the level of 
dispersive mixing in the extrudate 

PP-D2- 
Sampling 
position 

MVD 
(um) 

Dmax 
(um) 

AF 
(%) 

SDaf 
(%) 

Df 
(%) 

DDI 

100%0 1 24.3 80 4.65 1.63 14.4 0.024 

80%0 1 27.1 88 3.36 2.47 16.1 0.027 

60%0 1 28.8 96 6.90 5.05 17.1 0.112 

See Nonenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.3.3, except: 100%0 = 
maximum output: 80%0 = 80% of maximum output: 60%0 = 60% of maximum 
output 

Table 3.3.11 The effect of second-stage metering screw profile on 
the level of calcium carbonate dispersion 

PP-D2- 
Sampling 
position 

MVD 
(um) 

Dmax 
(um) 

AF 
(%) 

SDaf 
(%) 

Df 
(%) 

DDI 

8P 1 24.3 80 4.65 1.63 14.4 0.024 
2 23.7 72 3.16 2.14 14.0 0.022 
3 39.3 196 6.18 1.93 23.3 0.053 

12P 1 23.3 56 4.46 2.19 13.8 0.032 
2 23.3 64 5.01 2.38 13.8 0.038 
3 31.9 132 9.57 5.06 18.9 0.212 

16P 1 19.0 48 3.05 0.58 11.3 0.006 
2 20.3 56 2.53 1.49 12.0 0.012 
3 29.4 132 5.90 2.68 17.4 0.071 

8P2D 1 24.5 64 3.16 2.25 14.5 0.023 
2 26.9 56 3.09 1.82 15.9 0.025 
3 28.6 132 6.51 2.09 17.0 0.061 

See Nomenclature for explanation of symbols and codes: See foot of 
Table 3.3.4 for sampling positions: Materials processed at standard 
settings, see Table 3.3.3, except: 8P = 8mm pitch screw: 12P = 12mm 
pitch screw: 16P = 16mm pitch screw: 8P2D = 8mm pitch plus 2 mixing 
elements 



Table 3.3.12 The effect of extruder barrel configuration on the 
level of dispersive mixing in the extrudate 

PP-D2- 
Sampling 
position 

MVD 
(um) 

Dmax 
(um) 

AF 
(%) ' 

SDaf 
(%) 

Df 
(%) 

DDI 

4B-SS-PH 1 29.0 104 6.03 4.20 17.2 0.082 
4B-NS-PH 1 24.3 80 4.65 1.63 14.4 0.024 
4B-HS-PH 1 22.4 64 3.44 1.19 13.3 0.013 

5B-SS-PH 1 25.6 64 4.79 4.60 15.2 0.071 
5B-NS-PH 1 23.6 72 5.49 4.52 14.0 0.080 
5B-HS-PH 1 21.6 48 3.21 1.81 12.8 0.019 

SB-NS-SV1 1 64.9 196 4.07 2.76 40.8 0.050 
5B-NS-SV2 1 113.3 330 5.69 5.99 71.2 0.262 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.3.3, except: 4B =4 barrel 
section configuration : 5B = 5 barrel section configuration: SS = slow 
screw speed (60rpm): NS = normal scr ew speed (120rpm): HS = high screw 
speed (180rpm): PH = premix fed at hopper: SVI = separate feed of 
filler into first vent port: SV2 = separate feed of filler into second 
vent port. 

Table 3.3.13 Position of sampling from the metering screws after 
barrel withdrawal for carbon black compounds 

Position along screws for different pitch 
Dist from 

Position screw tips 
No: (mm) 8mm 12mm 16mm 8mm+2D 

I EXTRUDATE 

2 16mm F. 2 F. 1 F. 1 Betw D. 1-2 

3 48 6 4 3 F. 3 

4 88 11 7 5 8 

5 128 16 10 8 13 

6 160 20 13 10 17 

F= flight number 



Table 3.3.14 Standard extruder settings for processing 0.5wt% 
carbon black pigment with polypropylene granules 

Die Type Rod (6mm diameter) 

Screw speed 120rpm 

Barrel 4 sections with venting in zone 3 

Screws 17: 1 L/D with 4 melting elements between 
zones 2&3 and 8mm pitch metering screws 

Feed Preblend fed at the hopper from Simon 
Varifeeder 

Output Maximum possible for stable processing and 
limited by motor current maximum of 20A 

Temperature profile Zone 1= 175 
(°C) Zone 2= 185 

Zone 3= 195 
Zone 4= 205 
Die = 210 

Table 3.3.15 The effect of varying extruder screw speed, with and 
without a breaker plate present in the barrel head adaptor, on the 

level of carbon black distributive mixing in the polypropylene 
extrudate 

Screw Speed AF SDaf 
PPG-CB- (rpm) (%) (%) 

DDI 

BP 30 1.15 0.68 0.002 
60 2.60 1.44 0.011 
90 3.24 1.84 0.018 

120 3.40 2.23 0.023 
150 5.05 3.77 0.057 
180 5.58 3.63 0.061 

WBP 30 1.76 0.85 0.005 
60 3.37 3.54 0.011 
90 4.78 3.60 0.052 

120 4.28 2.08 0.027 
150 5.75 4.08 0.071 
180 5.93 2.42 0.044 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.3.14: BP = breaker plate 
present: WBP = without breaker plate present 



Table 3.3.16 The effect of varying extruder temperature profile 
on the level of carbon black distributive mixing in the 

polypropylene extrudate 

PPG-CB- 
AF SDaf 
(%) (%) 

DDI 

LT 5.51 2.28 0.038 

NT 3.40 2.23 0.023 

HT 3.99 2.52 0.030 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.3.14, except: LT = low 
temperature profile (165/175/185/195/200): NT = normal temperature 
profile (185/195/205/ 215/220): HT = high temperature profile 
(205/215/225/235/240) 

Table 3.3.17 The effect of extruder output rate on the level of 
carbon black distributive mixing in the polypropylene extrudate 

PPG-CB- 
AF 
(%) 

SDaf 
(%) 

DDI 

100%0 3.40 2.23 0.023 

80%0 2.52 1.09 0.008 

60%0 4.45 3.41 0.046 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.3.14, except: 100%0 = 
maximum output: 80%0 = 80% of maximum output: 60%0 = 60% of maximum 
output 



Table 3.3.18 The effect of second-stage metering screw profile on 
the level of carbon black distributive mixing 

Sampling AF SDaf DDI 
PPG-CB- position (%) (%) 

8P 1 3.40 2.23 0.023 
2 4.19 2.43 0.031 
3 4.81 2.65 0.039 
4 5.84 3.18 0.056 
5 6.29 3.15 0.060 
6 8.35 2.94 0.074 

12P 1 2.82 2.92 0.025 
2 6.15 1.78 0.033 
3 6.63 3.25 0.065 
4 8.01 5.06 0.123 
5 7.98 2.94 0.071 
6 9.01 3.15 0.086 

16P 1 2.98 1.06 0.009 
2 4.46 2.85 0.038 
3 5.88 2.58 0.046 
4 6.38 3.28 0.063 
5 9.48 4.23 0.122 
6 10.17 4.53 0.140 

8P2D 1 0.46 0.34 0.001 
2 1.94 0.76 0.004 
3 3.58 1.76 0.019 
4 6.19 1.68 0.032 
5 7.15 1.72 0.037 
6 8.87 3.30 0.089 

See Noaenclature for explanation of symbols and codes: See Table 3.3.13 
for explanation of sampling position: Materials processed at standard 
settings, see Table 3.3.14, except: 8P = 8mm pitch screw: 12P = 12mm 
pitch screw: 16P = 16mm pitch screw: 8P2D = 8mm pitch plus 2 mixing 
elements 



Table 3.3.19 The effect of position of pigment addition on the 
level of carbon black distributive mixing 

Sampling AF SDaf 
PPG-CB- position (%) (%) 

DDI 

Hopper 
8P2D 1 0.46 0.34 0.001 

2 1.94 0.76 0.004 
3 3.58 1.76 0.019 
4 6.19 1.68 0.032 
5 7.15 1.72 0.037 
6 8.87 3.30 0.089 

Vent 
8P2D 1 4.38 5.14 0.068 

2 5.83 4.84 0.086 
3 9.22 3.32 0.092 
4 10.53 6.43 0.205 
5 11.58 4.53 0.159 
6 14.14 5.29 0.227 

See Nomenclature for explanation of symbols and codes: See Table 3.3.13 
for explanation of sampling position: Materials processed at standard 
settings, see Table 3.3.14, except: 8P2D = 8mm pitch plus 2 mixing 
elements 



MATERIAL 

MOULD SOLID - TOI 
ELIMINATE VOIDS 

MOULD POWDER - TOI 
FORM SOLID 

MOUNT DISC IN RESIN 1 

GRIND SURFACE.. TO 600 MESH 

POLISH SURFACE TO Zum FINISH 

ELECTRON PROBE 
MICROANALYSIS 

REFLECTED LIGHT 
MICROSCOPY 

IIMAGE ANALYSIS 

ISCANNING ELECTRONI 
MICROSCOPY 

Fig. 3.3.1 Outline of characterization of mixing technique for calcium 
carbonate filled specimens 
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MATERIALI 

PREPARE SURFACE USING I 
STEEL-BLADED MICROTOME 

j PLACE NEW GLASS KNIFE IN I 
GLASS MICROTOME 
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IMAGE ANALYSIS 

Fig. 3.3.14 Outline of characterization of mixing technique for carbon 
black pigmented specimens 
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3.4 MODEL EXPERIMENTS WITH PRECONDITIONED FILLER 

As a consequence of observed variations in dispersion found in 

extrudate, with and without premixing of filler and polymer (discussed 

in Section 4.4), a series of experiments were designed to assess the 

importance of filler preconditioning on extrudate mixture quality. 

Parameters identified as being pertinent to the agglomeration of filler 

particles during preprocessing operations were moisture content, 

particle size and surface treatment, coupled with the level of 

temperature and pressure experienced. 

3.4.1 Preconditioning Pressure 

Calcium carbonate (Durcal 2) was dried in a vacuum oven at iOO C 

overnight to ensure no moisture remained. The dried powder was placed 

in the 25mm diameter cylindrical mould of a small hydraulic press and 

thin discs of material were prepared at room temperature using a range 

of consolidating pressures between' 31.5 and 157.5MPa. Polypropylene 

powder was run through the extruder using standard conditions (Table 

3.4.1) and compressed filler powder 'pellets' introduced with the 

polymer feed at the hopper. Separate experiments were also undertaken 

where the filler 'pellets' were added downstream, directly into the 

melt. In both cases, samples were taken from the resulting extrudate 

for subsequent analysis of filler dispersion (Table 3.4.2 and Figure 

3.4.1). 

3.4.2 Calcium Carbonate Moisture Content 

The moisture contents of the calcium carbonate powders, taken 

directly from the bags as supplied, are shown in Table 3.4.3; these 

results were obtained by drying the powders overnight at 100°C. 

Undried Durcal 2 was compacted at a range of pressures between 31.5 and 

70 



157.5MPa and processed by addition at the hopper and vent ports (Figure 

3.4.1). 
Additionally, excess quantities of moisture were added to Durcal 2 

powder and the moisture content verified as above. This moist material 

was compressed at 157.5MPa utilizing a mould temperature of 100°C In 

order that coherent pellets were formed; these pellets were processed 

both by addition at the hopper and vent ports. Image analysis results 

for all these experiments are given in Table 3.4.4. 

3.4.3 Calcium Carbonate Characteristics 

The range of calcites exhibiting different mean particle sizes 

(Setacarb 13, Hydrocarb and Millicarb) together with the marble calcium 

carbonates, one without and the other with surface coating (Durcal 2 

and Omyalene SL) were prepared and processed as in Section 3.4.1 above. 

Results are shown in Table 3.4.5 and graph A of Figure 3.4.2. 

3.4.4 Preconditioning Temperature 

A range of moulding temperatures between 50 and 250°C were used to 

compress predried Durcal 2 at a pressure of 157.5MPa, and the pellets 

were added to the extruder at the hopper and vent ports. Image 

analysis results are found in Table 3.4.6 and graph B of Figure 3.4.2. 
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Table 3.4.1 Standard extruder settings for processing preconditioned 
calcium carbonate filler in polypropylene powder 

Die Type Strip (3mm x 75mm) 

Screw speed 120rpm 

Barrel 4 sections with venting in zone 3 

Screws 17: 1 L/D with 4 melting elements between 
zones 2&3 and 8mm pitch metering screws 

Feed Polymer fed at hopper from K-Tron Soder T20 

Output 12.8kg/hr 

Temperature profile Zone 1= 185 
(°C) Zone 2= 195 

Zone 3= 205 
Zone 4= 215 
Die = 220 

Table 3.4.2 The effects of preconditioning pressure and position 
of filler entry on the dispersion of Durcal 2 pellets in 

polypropylene extrudate 

Entry MVD Dmax AF SDaf DDI 
PP-PD2- position (um) (um) (%) (%) 

31.5MPa Hopper 22.0 52 2.32 1.76 0.006 
63.0 68.0 250 3.57 2.13 0.065 
94.5 97.8 250 2.63 1.51 0.031 

126.0 173.9 410 8.67 4.05 0.270 
157.5 187.9 370 10.47 6.98 0.562 

31.5MPa Vent 115.1 370 5.16 4.13 0.164 
63.0 116.1 410 7.45 12.80 0.734 
94.5 130.5' 570 14.68 6.62 0.748 

126.0 446.9 1500 17.44 8.32 3.348 
157.5 422.1 2000 11.10 5.17 1.766 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.4.1: PP = polypropylene 
powder: PD2 = preconditioned Durcal 2: Filler dried overnight at 100°C 
and pellets formed at RT (23°C) 



Table 3.4.3 Raw powder moisture contents for the 7 different 
calcium carbonates 

Mean Raw Powder 
particle Moisture 

Geological size Surface Content 
Trade Name Origin (um) treatment (wt%) 

Hakuenka CCR Precipitated 0.08 Yes(CS) 1.926 
Setacarb 13 Calcite (Urgonian) 0.70 No 0.347 
Hydrocarb Crystalline calcite 1.50 No 0.159 

(Urgonian) 
Hydrocarb 95T Crystalline calcite 1.50 Yes(PT) 0.686 

(Urgonian) 
Millicarb Crystalline calcite 3.00 No 0.137 

(Urgonian) 
Durcal 2 Marble (Metamorphic) 3.00 No 0.105 
Omyalene SL Marble (Metamorphic) 3.00 Yes(PT) 0.547 

CS = calcium stearate; PT = proprietary treatment. 

Table 3.4.4 The effect of calcium carbonate moisture content and 
position of filler entry on the dispersion of Durcal 2 pellets in 

polypropylene extrudate 

Moisture MVD Dmax AF SDaf DDI 
PP-PD2- (%) (um) (um) (%) (%) 

Hopper 
31.5MPa 0.11 28.7 90 3.03 1.64 0.016 
63.0 98.6 210 4.29 4.00 0.077 
94.5 101.7 250 3.49 2.25 0.060 

126.0 230.2 570 6.55 7.24 0.365 
157.5 387.5 835 8.06 11.14 1.381 
157.5 22.8 567.2 1750 15.55 13.35 6.387 

Vent 
31.5MPa 0.11 132.6 250 6.59 3.01 0.153 
63.0 234.6 450 10.66 . 9.33 0.765 
94.5 312.1 1250 14.24 6.11 2.008 

126.0 402.7 1250 16.07 6.64 2.462 
157.5 509.6 1500 19.46 11.14 5.003 
157.5 22.8 901.8 2000 22.41 6.98 4.813 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.4.1: PP = polypropylene 
powder: PD2 = preconditioned Durcal 2: Filler pellets formed at 100°C 
to dispel residual moisture 



Table 3.4.5 The effect of calcium carbonate characteristics and 
position of filler entry on the dispersion of pellets in 

polypropylene extrudate 

PP- 
MPS 
(um) 

MVD 
(um) 

Dmax 
(um) 

AF 
(%) 

SDaf 
(%) 

DDI 

Hopper 
S13 0.7 226.3 570 12.30 10.13 0.958 
HY 1.5 100.9 212 2.72 2.34 0.049 
M 3.0 147.7 290 4.11 3.38 0.107 
D2 3.0 187.9 370 10.47 6.78 0.562 
OSL 3.0 40.1 114 2.85 2.02 0.019 

Vent 
S13 0.7 461.4 1500 33.62 14.25 11.056 
HY 1.5 151.4 530 12.50 7.23 0.695 
M 3.0 331.8 570 18.15 14.93 2.084 
D2 3.0 422.1 2000 11.17 5.17 1.766 
OSL 3.0 122.8 450 6.32 3.27 0.181 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.4.1: PP = polypropylene 
powder: MPS = nominal mean particle size : Filler dried overnight at 
100°C and pellets formed at 157.5MPa/ RT 

Table 3.4.6 The effects of preconditioning temperature and position 
of filler entry on the dispersion of Durcal 2 pellets in 

polypropylene extrudate 

PP-PD2- 
Entry 

position 
MVD 
(um) 

Dmax 
(um) 

AF 
(%) 

SDaf 
(%) 

DDI 

50°C Hopper 90.0 210 1.52 1.20 0.014 
100 232.2 490 6.06 10.31 0.481 
150 253.3 570 4.04 4.06 0.126 
200 291.5 835 15.51 11.84 2.825 
250 559.4 1500 15.10 8.38 3.856 

50°C Vent 235.7 695 13.52 12.50 2.600 
100 406.3 975 23.77 10.77 3.939 
150 529.4 1500 21.06 10.17 4.943 
200 672.3 1750 26.09 13.75 11.038 
250 529.0 2000 22.97 13.22 9.343 

See Nomenclature for explanation of symbols and codes: Materials 
processed at standard settings, see Table 3.4.1: PP = polypropylene 
powder: PD2 = preconditioned Durcal 2: Filler dried overnight at 100°C 
and pellets formed at 157.5MPa 
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Fig. 3.4.2 The effects of calcium carbonate characteristics and 
position of filler entry (Graph A) and preconditioning temperature 
(Graph B) on the dispersion of Durcal 2 pellets in polypropylene 
extrudate after processing at standard extruder settings (Table 3.3.3) 
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CHAPTER 4 

DISCUSSION 

4.1 CHARACTERIZATION OF MIXING 

The characterization of mixing represents a major component of the 

work undertaken in this study. Apart from the actual characterization 

of samples, the wide-ranging initial search for suitable methods and 

subsequent development of the polishing/image analysis techniques 

involved investigation of the intricacies and subtleties associated 

with the sizing of small particles. 

The most important principle to understand is that measurements 

made in the low-micron range cannot be taken as absolute, even if 

experiment errors are accounted for. The light microscope, when using 

white light (0.6um), has a theoretical minimum quantifiable diameter 

limit of 0.8um. However, this limit only applies to transmitted 

microscopy where silhouettes- are examined. At particle diameters 

below Sum, the reflected light microscope becomes unacceptably 

inaccurate as a result of diffraction effects which tend to blur the 

edges of images. Even above the Sum level, particles or sections are 

not measured precisely and tend to appear larger than their actual size 

under the microscope. [161] When particle sizes are all in the 

sub-micron range, direct methods become scarce; the most obvious one 

being electron microscopy. There are alternative strategies, viz. the 

determination of 'optical densities' which attempts to determine the 

mean diameter of particles from the 'extinction coefficient' which is 

derived from optical density at a range of specimen concentrations. 

11603 

This difficulty in directly measuring sub-5um sections using light 
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made the determination of section sizes for the nylon 6,6 specimens 

extremely laborious because a magnification of x810 had to be utilized. 

The resulting area of the circular detection field was of the order of 

0.02sq-mm compared to the next lower magnification of x310 which had a 

detection field of 0.14sq-mm. Additionally, due to the diffraction 

effects the results will be subject to a wide margin of error. For 

these nylon 6,6 specimens it would have been more appropriate to 

examine them by scanning electron microscopy with the image analyzer 

camera directly attached. However, this set-up was not feasible for a 

limited study although it would be justified in situations where 

section diameters of this order were commonplace. 

Alternatively, micrographs of the specimen surface could be 

produced from the scanning electron microscope VDU and these examined 

using the image analyzer camera with a light board illuminating the 

micrograph from below. Drawbacks of this technique are that it still 

requires significant differentials in contrast between matrix and 

particles for accurate image analysis, and the extra preparation 

procedures necessary to produce scanning electron micrographs represent 

a further increase in the total analysis time for each specimen. 

Figure 4.1.1 shows some scanning electron micrographs and their 

corresponding X-ray spectrum analysis images for Durcal 2, processed at 

standard extruder settings, of specimens taken from positions I to 5 

along the extruder screws. 

The image analyzer, as calibrated for the polypropylene matrix 

experiments, was arranged so that particles below 7. Sum were not 

involved directly in particle size distribution calculations. 

Nonetheless, sections between 5 and 7.5um were counted to enable 

estimates to be made of the statistical inaccuracies which are related 

to the inverse of the square root of the number of sections measured. 

An average 4000 to 5000 particle sections were taken as a reasonable 
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compromise between statistical accuracy and the time involved in 

gathering this quantity of data from the specimen surface. Bearing in 

mind that the measure of dispersive mixing adopted was 'mean volume 

diameter' (MVD), which is suited to agglomeration measurements because 

it tends to emphasize the influence of large features, the effect of 

particles below 5um on volume statistics for the Schwartz-Saltykov 

analysis is considered negligible. 

Fortunately, the usual method of determining size distributions' of 

particles is to fit them in one of a range of size classes. As each 

particle need only be measured sufficiently accurately to fit it into 

one of these classes, it will be appreciated that measurement 

resolution is related to the number of size classes adopted. The 

higher the number of classes the more accurate will be their 

representation of the actual size distribution. However, as the number 

of size classes increases, the size of each incremental class becomes 

smaller and so the accuracy of measurement of the particles being 

studied must increase proportionately. It will be seen that these two 

requirements are contradictory and that another compromise must be made 

in order to balance these two opposing elements. For measurements made 

using the image analyzer in this study a fixed number of size classes 

was adopted so that as particle size distributions became larger the 

size of classes increased, offsetting additional errors of lower 

resolution for large particle sections at high magnifications found by 

Smith. [190] 

The estimated experimental' error calculated in Section 3.2.3.6 

above relates to absolute determination of size by the image analyzer 

without considering the resolution''of the microscope or the statistical 

error due to the number of' particles counted, ' as discussed above. 

However, when size classes are used for distributions the error 

involved can be estimated with more confidence. For the 15 size 
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classes, a particle section will invariably be placed in either the 

correct size class or the one above or below this class and the error 

therefore is +/-3.33% 

It will have been noted in a previous section that for semi-solid 

and powder specimens it was found necessary to press the material in a 

closed compression mould in order to facilitate subsequent polishing 

and analysis procedures. The pressure used in pressing was maintained 

at as low a setting as possible, while a high moulding temperature 

encouraged easy flow within the mould, so as not to influence filler 

dispersion. After pressing of the material into discs, the size of any 

voids still present fell below the sizing limit of the microscope/ 

image analyzer equipment. 

On examining the specimen surfaces, after subsequent grinding and 

polishing of the specimen, it was often discovered that some aggregates 

within the agglomerates had been dislodged from the surface of 

agglomerates during the diamond polishing stage causing serious damage 

to the highly polished polymer surface on their departure. The 

resulting scratch lines made repolishing of specimen surfaces a regular 

occurrence. However, this phenomena resulted in the agglomerates on 

the polymer surface appearing under the microscope as very shallow pits 

similar to having been etched, which enhanced edge definition of the 

agglomerates. 

When high levels of agglomeration were encountered during image 

analysis, it was established that the measurement of surface sections 

in excess of 590um, with the camera , attached to the reflected light 

microscope, became problematic because these sections started to fill 

more than 25% of the circular detection area. Consequently, the number 

of sections decreased markedly so requiring a significant increase in 

the number of fields analyzed. In order to offset this phenomena, 

when sections of this magnitude were discovered on a specimen surface, 
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an additional analysis was undertaken which did not require the 

reflected light microscope. The camera of the image analyzer was 

fitted with a high aperture zoom lens which was able to satisfactorily 

resolve surface sections above 500um. Raw data results from the two 

sources were then merged into one raw section size distribution for 

statistical analysis to allow for the possibility of sectioning 

particles at a plane other than their largest area (Schwartz-Saltykov 

diameter analysis). Examples of some of the worst case views 

encountered for Durcal 2, processed at standard conditions, are shown 

in Figure 4. i. 2 which also indicates the location along the extruder 

screws where each specimen was taken. 

A complementary series of experiments were concerned with 

distributive mixing characterization as this is usually the final stage 

in any mixing process. The assessment of distributive mixing in 

polymer compositions has presented great difficulty, due largely to the 

lack of appropriate and reproducible experimental techniques. [199) 

Direct manual analysis of local mixture quality by microscopy demands 

considerable time and patience from the operator, and interpretation of 

the results is often highly subjective. This latter point is clearly 

illustrated in BS2782: Part 8 (Methods 823A and 823B) 1978 and BS2782: 

Part 11 (Method 1106A) 1983, concerned with methods for assessing 

pigment dispersion in polyethylene, and polyolefin pipes and fittings, 

respectively. These techniques require that thin sections of the 

specimen be examined by transmitted light at 100x magnification. The 

resulting image is then compared with a number of standardized 

micrographs, so that it may be graded for mixture quality. In the 

first-mentioned standard, the worst field of view for each specimen is 

also examined for streaks or smears and rated as better or worse that 

one standard photomicrograph, thus giving a very approximate measure of 

distributive mixing. Comparisons of mixture quality determined by the 
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BS2782 ratings with area fraction (AF) measurements, assigned using the 

Optomax image analyzer, were found to be generally consistent [200] so 

indicating that AF varies in a linear manner with mixing progression. 

In the distributive mixing of two similar viscous liquids which 

undergo laminar flow, the degree of mixing can be assessed from either 

the total interfacial area between the components or, more commonly, 

from their striation thickness. [201] This approach has been adopted by 

many workers in order to quantify distributive mixture quality, often 

from direct measurement of the striation thickness of material streaks 

or flow patterns, using a graduated eyepiece fitted to a microscope. 

Ideally, an average value for striation thickness would be measured 

from a large number of fields of view of the specimen. However, the 

technical difficulties in obtaining meaningful results can be 

formidable, particularly in identifying the positions for striation 

thickness measurement in complex flow fields, and also when attempting 

to distinguish between mixtures of relatively equal uniformity at a 

specified sample magnification. 

A semi-automatic approach, which has been applied to the 

measurement of striation thickness in pigmented polymers, involves the 

use of an optical microdensitometer. [163,199] A specimen prepared in 

the form of a thin film is mounted on a microdensitometer so that a 

finely focused light beam passes through it. By scanning the specimen 

in a direction normal to the light path, the intensity of the 

transmitted beam varies according to changes in optical density, 

determined by the position and thickness of the streaks across the 

width of the specimen. The resulting light transmission traces from 

the microdensitometer can then be analyzed to provide some average 

measure for striation thickness and hence a quantitative measure of 

mixture quality. A principal difficulty of this technique is that as 

mixing progresses, and the striation thickness decreases, the streak 
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width will approach a dimension of the same order as the beam size, so 

that the instrument is eventually unable to distinguish between 

pigmented and unpigmented regions. This limitation in resolving power 

can be partly overcome by using a finer scale of examination, i. e. by 

analyzing photographic negatives of the specimen which have been 

produced using a transmitted light microscope. An example of a 

microdensitometer trace determined from a specimen analyzed in this way 

is shown in Figure 4.1.3. Nevertheless, in spite of the magnification 

used (100x), problems arising from instrument resolution may still be 

apparent, adding to complications resulting from variations in 

microscope lighting across the specimen and density fluctuations 

originating from changes in the negative grain size. 

Carbon black masterbatch was used, for these experiments, at a 

low concentration (O. Swt%) to allow easy visualization of glass-knife 

microtomed sections by transmitted light microscopy. This level of 

carbon black content has also been established as the most useful by 

Smith [1901 who studied a range of concentrations from 0.25% to 3% and 

determined that samples containing 1% or more carbon black were 

difficult or impossible to evaluate using an image analyzer. 

The image analysis of these carbon black specimens was again 

conducted directly via the camera without resort to micrographs; area 

and intercept parameters were selected as the most useful basis for 

calculation of mixing indices. Three indices were selected for 

subsequent feasibility studies: (a) area fraction; (b) standard 

deviation of area fraction; and (c) mean free path. 

Mean free path is calculated from the following equation 11941: 

MFP = (1 - AF) / N! 

where N1 = number of intercepts (N) per unit length 

=N/ circular frame area. 

MFP is a quantity which represents the distance, in three dimensions, 
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which can be travelled through the specimen before encountering another 

feature of interest. However, MFP is a term intended to quantify 

particulate systems in three dimensions, whilst flow patterns 

(striations) tend to exhibit continuous lines in the plane of 

examination. Furthermore, as can be seen from the equation above, the 

calculation of MFP relies on N1, which is a term dependent on 

orientation in non-particulate systems, and thus subject to 

unacceptable errors. 

Therefore, flow lines (striations) were characterized by 

measuring their detected area as a fraction of the area of circular 

detection frame, 'area fraction' (AF) and the standard deviation of AF 

(SDaf). For these quantities to provide a measure of distributive 

mixing they must vary in direct relation to the progress of mixing. It 

is possible to utilize AF measurements of features in cross section to 

quantify distributive mixing of carbon black without recourse to 

allowances for sectioning errors because, unlike agglomerate particles, 

the flow lines (striations) will tend to be mostly two-dimensional. 

Thus, if flow lines are observed within the specimen section it is 

probable that this image is approximately similar, in terms, of area 

fraction, at a plane slightly removed above or the below the original. 

Figure 4.1.4 shows typical fields of O. Swt% carbon black in 

polypropylene for experiment PPG-CB-8P2D at sampling positions I to 6 

along the extruder screws. 

Theoretically, as particle sizes and flow lines get smaller their 

total surface area will remain similar or even increase [171) because 

laminar mixing is specifically intended as a means of increasing the 

magnitude of the polymer/filler interfacial area. However, this effect 

is not shown under the light microscope because as the level of laminar 

mixing progresses the sizes of these features drop below the resolution 

limit and effectively disappear from the area fraction value. This 
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phenomenon relates specifically to the concept of 'scale of scrutiny' 

[92,2021 which Danckwerts [202] originally defined as 'the minimum size 

of the regions of segregation that would cause the mixture to be 

imperfect for the intended purpose' and expressed as either a length, ' 

an area, or a volume. In the case of measurement of agglomerate sizes 

and carbon black flow lines, this quantity will be expressed in terms 

of the 'image magnification' (IM) used during examination of the 

specimens by the light microscope. Necessarily, the magnitude of IM 

must be sufficient to identify imperfections in the mixture which will 

be of interest. 

For calcium carbonate dispersions, the term 'agglomerate' will not 

apply to a particle until its diameter exceeds. the 'top cut' value of 

the material specification because image analysis cannot distinguish 

between a large primary aggregate and an agglomerate composed of 

smaller aggregates. Therefore, the value of IM needs to be large 

enough to enable measurement of particles down to the top-cut value; in 

the case of Durcal 2 this is iOum and IM values used were x310, x224 

and x130. For carbon black distributions, the size of the flow lines 

of interest, for either aesthetic or UV protection, is more than 

adequately assessed at the IM value used for all the experiments 

(x330). 

Area fraction can be said therefore to act as an effective measure 

of the mean level of distributive mixing and is equivalent to the 

'scale of segregation' term introduced by Danckwerts 12021 in that it 

is a measure of the magnitude of unmixed components in an imperfect 

mixture. Linear scale of segregation (S) is defined as the integral of 

the coefficient of correlation (R(r)) between concentrations at two 

points separated by a distance r: 

S J40 R(r) dr (4.1) 
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where R(r) _ (a1 - ä). (a2 (a - ä)2 (4.2) 

and ai, a2 &ä are the actual concentrations of the component of 

interest at points 1&2 distance r apart and the mean concentration 

respectively. 

As a measure of distributive mixing, the value of AF is high when 

striations are prominent and decreases in relation to flow line size. 

A specimen exhibiting ideal mixing, in which striations are all below 

the microscope resolution limit, would give an AF value of zero, 

assuming no pigment agglomerates existed. The last point is worth 

expanding upon because it will be appreciated that AF measures high 

contrast features which include agglomerates. However, analyzes which 

attempt to quantify only distributive mixing in the presence of 

agglomerates ignore the fact that deagglomeration must precede 

distribution. Where agglomerates are present, the value of AF 

represents a measure of the mean level of overall mixing (dispersive 

and distributive). 

It will be noted that area fraction, AF, only measures the mean 

level of mixing; it does not indicate the variation in mixing between 

different areas of the composite material. The standard deviation of 
f 

area fraction (SDaf) does quantify the variation about a mean value of 

AF, measured from all the areas examined. The value of SDaf is 

equivalent to the 'intensity of segregation' term conceived by 

Danckwerts [202] which can be defined simply as [203]: 

I= Sei a. (4.3) 

where the intensity of segregation (I) is the ratio of the measured 

variance (S2) divided by the variance of a completely segregated system 

(o2 ). The intensity of segregation therefore reflects the departure 

of the concentration in the various regions from the mean, but not the 

size -of the regions (2037, and will tend towards zero as the 

distribution of mixing becomes more uniform from field to field whilst 
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remaining a function of 'scale of scrutiny' (IM in these experiments). 

Nevertheless, the value of SDaf when postulated as an independent 

measure of distributive mixing, fails in one critical respect, i. e. 

distributive mixing may be consistently bad throughout a specimen and 

give rise to a relatively low value of SDaf, but a similar value could 

result from better overall distributive mixing exhibiting the same 

area-to-area variation. In other words, SDaf is a function of both AF 

and IM, so if SDaf is related to' these two parameters in a single 

mathematical index the above scenario is negated. 

The product of AF and SDaf combines the mean value of mixing and 

the distribution about the mean to provide a measure of both the 

dispersive and distributive mixing. In order that specimens examined 

at-different magnifications can be compared, the product of AF and SDaf 

is divided by image magnification (IM) and can be expressed as: 

DDI = (AF(%) x SDaf(%)] / IM (4.4) 

where DDI stands for 'Dispersion and Distribution Index'. This index 

remains a function of concentration of filler present in any specimen 

because AF will definitely increase with increasing concentration but 

not necessarily in a linear manner. Therefore, the author considers 

that the DDI quantity should only be utilized to compare specimens of 

the same filler concentration as opposed to others who have defined an 

'Agglomeration Index' (204]: 

AI(%) = AF(%) / Pigment Volume Concentration (4.5) 

with the implied intention of allowing comparisons of mixture quality 

at different pigment concentrations. 

Values of DDI have also been calculated for the calcium carbonate 

filled compounds and are shown in each results table. In these cases, 

AF is measuring the level of agglomeration from the sections of 

agglomerates visible at a random plane through the sample; SDaf is 

measuring the distribution of section areas from field to field. Of 
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course, these sections do not represent the true particle size 

distribution because of sectioning errors and the AF values are not 

corrected. However, if all that: is required is a approximate 

comparison between different samples, say for quality control purposes, 

then this method is of use, especially as cumulative values can be 

displayed on the computer VDU in real-time. For measurements made on 

images that are projected from the actual particle diameters there will 

be no sectioning errors and DDI would be as relevant as it is in the 

measurement of distributive mixing. 
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Fig. 4.1.3 Optical microdensitometer trace from negative of 
micrograph shown above (PPG-CB-BP-120 in Table 3.3.15) 
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4.2 AGGLOMERATION 

4.2.1 Agglomerate Formation and Strength 

Agglomeration is said to occur when aggregates become associated 

because of binding forces within relatively loosely-bonded 

agglomerates. In the case of pigments, primary-particle aggregates are 

formed at much higher compaction stress levels during the course of 

preparation or subsequent -processing due to surface forces, particle 

growth, or even sintering and these aggregates are relatively immune to 

regular polymer processing machinery. The so-called ultimate primary 

particle size, defined as the smallest 'particulate piece of the minor 

component existing in-the system, may range from a few hundredths of a 

micron for most organic pigments up to lum or more for some inorganic 

variants. [205) 

Fine particulate powders have a tendency to agglomerate 

spontaneously in order to reduce both surface area and surface energy, 

whilst also settling- under the influence of gravity. Without a 

physical stabilizing force, the particles will converge until a balance 

of attraction and repulsion Is" reached, but agglomeration will be 

accelerated by-exterior forces such as vibration or compaction. [206) 

As inorganic powders decrease in particle size, the force of 

gravity acting on the particles declines rapidly (by the third power of 

the particle diameter), while natural adhesion forces increase by 

approximately the first. or second power of diameter. When taking lum 

particles as an example, van der Waals' adhesion forces attracting the 

particles together are some six orders of magnitude larger than 

gravitational forces trying to separate them. (207] - 

---In order to form aggregates or agglomerates of inorganic powders, 

the energy input must exceed a value which will result in one of a 
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number of localized bonding phenomena: 

(i) Mechanical bonding 

(ii) Electrostatic 

(iii) Van Der Waals 

(iv) Liquid bridges 

(v) Solid bridges 

These mechanisms of bonding are categorized in terms of increasing 

resultant bonding strength although the initial bonding energy input 

may not be related proportionately. For example, chemical reactions on 

the pigment surface which form solid bridges may require little, if 

any, mechanical energy input apart from surface moisture or 

contaminants. However, the bonds formed will be the most difficult to 

dissociate during polymer processing. 

4.2.1.1 Mechanical bonding 

Mechanical. bonding or interlocking of the calcium carbonate 

particles, which are very approximately spherical, is unlikely to be of 

significance as these forces will be very weak. Bonding of this type 

is more effective when dealing with particles that have surface 

roughness, or those which are fibrous or plate-like. 

4.2.1.2 Electrostatic bonding 

Electrostatic forces originate from accumulated charges generated, 

for example, by repeated impact between adjacent surfaces and these 

forces tend to be greater in conducting rather than non-conducting 

materials. The adhesion force (F) between two conducting spheres of 

radius (R) is given by 

2 
F=e . e, . U. R/2a. (4.6) 

where c =dielectric constant of the gas 

CO = absolute dielectric constant of vacuum 
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ao = distance between the two surfaces in contact (e. g. 0.5nm) 

U= contact potential difference (0 to 0.5V depending on 

materials) 

In non-conductors �the charge may extend into the particle surface to a 

depth of up to lum; conductors only retain this charge in several 

layers of surface molecules. [207] 

4.2.1.3 Van der Waals' forces 

The van der Waals' forces which originate from fluctuating dipoles 

existing in materials are one order of magnitude greater than 

electrostatic adhesion forces between conductors arising from contact 

potential. 

For spherical bodies of radii (R), the van der Waals' adhesion 

force (F) is inversely proportional to the square of the distance (a) 

between their surfaces: 

F= (hw . R) / (16, r . a2) (4.7) 

where hw is the Lifshitz-van der Waals' constant, which varies between 

1eV and 10eV depending on the materials in contact and where distance 

(a) is of the order of 0.5nm. 

4.2.1.4 Liquid-bridge forces 

Liquid-bridge forces are generally about four times larger than 

the van der Waals' forces and will occur in moist agglomerates at a 

level dependent on the degree of liquid saturation in the total pore 

volume of the agglomerate. These forces are discussed in connection 

with the preconditioning of filler experiments in Section 4.2.4 below. 

4.2.1.5 Solid bridges 

Solid bridges can beM formed between particles on crystallizing 

from solution or by sintering, resulting in extremely strong 
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interactive forces. For particles bonded by crystallized salt, the 

strength of the agglomerate is dependent on the conditions present when 

drying occurred. For solid bridges, the first stage of sintering is of 

interest because these will serve to strengthen adhesion forces between 

particles. Welding of point contacts results from localized heating 

during compaction. [208] An example of this phenomena is the case where 

a low melting point material is stored in quantity for a period of time 

after which it is found that particle adhesion has occurred at the 

lower levels of the container. [207] Again, a more detailed appraisal 

of these forces is undertaken in Section 4.2.4 below. 

4.2.2 Influence of Pre. ixing on Filler Agglomeration 

Premixing of a particulate tiller with solid particles of polymer 

is a common precursor to the processing of polymer compounds, as 

previously mentioned. However, it has been found that this stage of 

processing can create agglomerates rather than disrupting them and that 

these highly-impacted agglomerates are transferred to the melt 

processing stage. [170,206) 

Examination of the mixing chamber of the Henschel high-speed mixer 

after the prescribed mixing period had elapsed revealed that premix 

material had compacted onto the mixer blades and, to a lesser extent, 

onto the inner casing. This compacted material was sampled for each of 

the seven different calcium carbonates considered and ashed in a 

furnace as detailed in Section 3.2.1.1.1 above. The levels of calcium 

carbonate found in these samples were surprisingly high, see Table 

4.2.1. 

The powders having the finer initial mean particle size, Table 

3.3.1, exhibited the higher levels of compaction. Further, ashing of 

the premix before use for processing showed that the nominal 40wt% 

calcium carbonate content had been reduced by up to 4% in one case, 
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Setacarb 13; the missing material presumably having remained adhered to 

the inside of the mixer. Image analysis of the material from the mixer 

blades (Durcal 2) revealed a level of agglomeration higher than both 

the initial raw powder samples and the premix as supplied to the 

extruder, Table 3.3.2. 

4.2.3 Effect of Solid 'Dry' Processing 

During the initial period when the calcium carbonate/polymer 

materials have just entered the extruder, the possibility of further 

agglomeration is present. It would occur before the polymer has 

softened, as a result of the material being compressed between a number 

of combinations of'hard surfaces, viz. polymer/polymer, polymer/mixer 

or metal/metal. (206] This solid 'dry' processing stage will vary in 

extent according to the machine variables being employed. The length of 

the screws covered by this phase is related to factors controlling 

speed of melting; these factors include levels of shear and, 

particularly for twin-screw extruders, the extent of barrel jacket 

heating. 

When the filler/polymer powder -enters the extruder through the 

hopper it encounters a hot stationary barrel wall and two cooler 

rotating screw surfaces. In these first few moments, the coefficient 

of friction will be equivalent to that predicted by conventional solid 

friction theory which depends-on normal pressure and the relative speed 

of two slipping surfaces; at the surface velocities encountered in 

twin-screw extruders the effect of screw speed is negligible. £31,491 

During this short period it-is very probable that filler agglomeration 

will occur and that this compaction may extend into the initial stages 

of melting with the polymer film acting as a highly viscous liquid 

binder. Figure 3.3.12 indicates that this prediction actually 

correlates to dispersion levels within the extruder when the'filler is 
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fed separately from the polymer (i. e. there is no premixing stage). 

The area of melting when utilizing both hopper and vent port sourced 

filler, Figures 3.3.10 and 3.3.11, acts as the delineator between 

agglomeration and dispersion characteristics. The vent port feeding of 

filler naturally results in a much higher agglomeration level in the 

final extrudate but it exhibits a dispersion profile which follows 

those incorporating segmented discs. This initial agglomeration trend 

is much less apparent when the machine is fed with premixed material 

particularly when operated at medium to high screw speeds, Figures 

3.3.3 and 3.3.5. The possibility arises that the premixing of filler 

with polymer does serve to intermingle the particles to good effect, in 

the initial stages of extrusion, even if the price is a higher 

agglomeration value in the extrudate. 

4.2.4 Filler Preconditioning Parameters 

Agglomerate formation by powder compaction has been well studied 

and comprises two related mechanisms: rearrangement of particles by 

sliding over one another to produce a close-packed structure, and 

development of enhanced interparticle adhesion forces. 12081 As 

confirmed in connection with the premixing experiments above, 

densification through particle rearrangement depends to a large degree 

on initial particle size. The more finely divided the powder, the 

lower its 'bulk density and the greater the 'opportunity for 

rearrangement. On deformation, the particles are pushed closer 

together providing a stronger, more coherent structure. Voids between 

surrounding particles can be filled by deformation (elastic or plastic) 

or by fragmentation mechanisms; contingent upon the physical 

characteristics of the material under compaction, in addition to the 

magnitude and speed of application of the compressing forces. If 

plastic deformation occurs at the point of contact between two 
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particles, both the surface area of contact and van der Waals' adhesion 

force may increase creating substantially greater interparticle 

attraction. 92073 

Tadmor and Gogos (2031 state that in polymer processing, 

particulate solids are compacted prior to melting inside most 

processing machinery and the performance of these machines is greatly 

influenced by the compaction behaviour of the solids. Compaction of 

the filler powder in an idealized cylindrical mould utilizing a normal 

force (F0) at the top ram will generate a certain normal stress as well 

as a radial stress. Therefore, a portion of the applied force is 

transferred into a residual radial stress which will lessen the force 

(F1) transmitted to the bottom of the mould. Assuming that the wall 

friction is fully  obilized, the ratio of axial/radial stresses and the 

coefficient of friction at the wall are constant; the ratio of applied 

to transmitted force is: 

FO / F1 " exp (Y4! w. K. L) / D) (4.8) 

where f" coefficient of friction of the wall 

K" ratio of radial to axial stresses; independent of location 

L" Initial length of mould 

D  diameter of mould 

During controlled experiments, when irregularly shaped limestone 

particles were subjected to an increasing centrifugal compression 

force, the interparticle adhesion was shown to increase due to particle 

rearrangement and greater surface contact. (2073 

The role played by water in agglomerate formation has received 

considerable attention. (207,2093 The tensile strength of moist 

agglomerates formed into pellets can be determined from the amount of 

liquid saturation (S) which is defined as the ratio of pore volume 

occupied by the liquid to the total pore volume of the pellet. In 

studies with moist limestone particles, measured and calculated values 
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of agglomerate tensile strength have been related to liquid saturation. 

In the capillary state, when liquid saturation is greater than 0.8 

(i. e. note than 80% of the void space between the particles is filled 

with water), the agglomerate is held together by outer pressure because 

a capillary suction pressure (Pk) is formed in the liquid space. The 

theoretical tensile strength of the agglomerate (at) is then given by: 

of   Pk .S (4.9) 

Of greater relevance to the present discussion is the situation 

for moist agglomerates having less than 30% of the void spaces filled 

with water (0 )S)0.3). In this liquid-bridge (pendular) state, a 

theoretical tensile strength can be calculated from the mean value of 

the number of contact points multiplied by the adhesion force component 

in the tensile strength direction: 

at " (1 -c/c). (F*/ x2) (4.10) 

where c" porosity 

x" mean particle diameter 

F* " mean adhesion force transmitted at a contact point, given 

by: 

F* Fh. Y. x (4.11') 

where y" surface tension of the liquid 

Fh "a dimensionless adhesion number. 

Results for calcium carbonate particles show that maximum 

agglomeration tensile strength in the liquid-bridge state is nearly 

three this less than that formed by a capillary liquid mechanism. 

However, compared to 'dry' limestone agglomerates (i. e. dried and then 

conditioned at 55% relative humidity (200C)), liquid-bridge forces 

(S'0.25) increased the maximum agglomerate tensile strength threefold. 

(209) 
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Table 4.2.1 Ashing results for specimens taken from the mixer blades 
for the 7 different calcium carbonates 

Trade Name 
Geological 

Origin 

Mean 
particle 

size 
(um) 

Surface 
treatment 

Mixer 
Blades 

(wt% CC) 

Hakuenka CCR Precipitated 0.08 Yes(CS) 79.7 
Setacarb 13 Calcite (Urgonian) 0.70 No 93.1 
Hydrocarb Crystalline calcite 1.50 No 73.9 

(Urgonian) 
Hydrocarb CST Crystalline calcite 1.50 Yes(PT) 66.8 

(Urgonian) 
Millicarb Crystalline calcite 3.00 No 65.5 

(Urgonian) 
Durcal 2 Marble (Metamorphic) 3.00 No 73.6 
Omyalene SL Marble (Metamorphic) 3.00 Yes(PT) 63.1 

CC   calcium carbonate; CS " calcium stearate; PT = proprietary 
treatment 



4.3 MELTING AND WETTING 

It is significant that dispersion of filler does not occur in a 

uniform, progressive manner along the machine but increases markedly 

through the region just prior to and including the segmented elements, 

located midway along the extruder. Observations on material extracted 

from the screws, after shock cooling and subsequent removal of the 

barrel, indicates that this region coincides with the melting zone for 

the polymer. Hence, there is a strong correlation between fusion of 

the polymer and maximum rate of dispersion of the calcium carbonate 

filler (for example see Figures 3.3.3 to 3.3.5). 

Melting in the compounder occurs over a relatively narrow region 

of the screws, undoubtedly influenced by the fact that for much of the 

first stage the screws are only partially filled with polymer. When 

the screws are filled, the shear rate developed is [82]: 

Y=(i. De .n)/h (4.12) 

where n= screw speed 

h= channel depth 

De2 equivalent diameter of screws and is given by: 

2/*. (ir D- 12 -D h)= 2D - 0.9003 Dh (4.13) 

where D= external diameter of the screws. 

Additionally, there is considerable mechanical energy input during 

passage of material through the segmented discs, which act as partial 

barriers to flow, as evidenced by the considerable overheating that 

occurred in zone 2 of the machine before barrel cooling was 

implemented. It is probable that the observed increase in dispersion 

rate results from the greater shear stresses imposed on filler at the 

interface between molten polymer and compacted feedstock combined with 

the substantial localized shearing that will occur through the 

" segmented discs. Mechanical shear heating will be further enhanced at 

92 



the area of melting due to the coefficient of friction between the 

polymer and other surfaces increasing in magnitude as a function of the 

process temperature; reaching a peak at the polymer melting point. (31] 

Above the polymer melting point, the polymer/metal restraining 

behaviour will be governed by viscous drag, which will give rise to 

melt shearing, and diminishes as the process temperature rises. 

A high barrel temperature profile (each zone increased by 20°C 

from the normal settings) resulted in the area of melting, observed 

after the barrel was withdrawn, having been displaced nearer to the 

hopper end of the machine. This phenomena would be predicted but of 

interest is the corresponding movement of the area of maximum rate of 

dispersion. In this example, the segmented discs have played only a 

minor role in the overall reduction of filler agglomeration; a 

reduction of the viscous shear developed in the lower viscosity melt is 

the probable cause. 

Examination of samples extracted from the extruder after 

processing at a low barrel temperature (20°C below normal in each zone) 

revealed that the onset of melting had again been accelerated. The 

measured throughput, after achieving steady state extrusion, was found 

to be approximately 23% lower than that obtained for the normal 

temperature profile. The increased restriction to the flow presented 

by the segmented discs in this situation may explain the reduction, 

taking into account that the process material had received a lower 

thermal energy input. In order that material could pass the discs, the 

necessary melting energy would have to be provided mechanically by the 

screws; a situation necessitating a greater pressure build-up which, in 

turn, will only be achieved by back-up of compacted material along the 

machine. 

Calcium carbonate filler added to the molten polymer, via the 

downstream entry port, bypasses this zone of high mechanical energy 
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input and consequently the ultimate filler agglomeration in the 

compound is greatly increased (Figure 3.3.11). 

Evidence to support the important role of the melting process in 

polymer mixing has been reported in relation to flow through 

single-screw extruders. [1991 It was shown that less laminar shear 

mixing is evident in the metering zone where the polymer is fully fused 

than in the melting zone where a combination of solid bed and melt pool 

exists. Shearing occurring within the melt film, which links the 

movement of polymer from the solid bed to the melt pool at the rear of 

the channel, was considered to be of particular importance. 

Once the polymer has been thoroughly melted, the resulting melt 

must be able to wet the filler particles as completely as possible. 

The main driving force which causes spreading is defined as t210]: 

F" YSV - YSL - YLV cos Ad (4.14) 

where YSL = surface tension of polymer on filler 

YSV ° surface tension of filler/ vapour interface 

YLV ° surface tension of polymer/ vapour interface 

6d = the dynamic contact angle. 

When spreading ceases, F=0 and [210]: 

YSV YSL YLV COSOs (4.15) 

where gs = the static contact angle achieved after prolonged contact 

times. When 9s is considered to be the contact angle at equilibrium on 

plane solid surfaces, Eqn. 4.15 is known as Young's equation. 

Substituting eqn. 4.15 into eqn. 4.14 gives (2101: 

F= YLV (cos e8 - cos ed) (4.16) 

where F= the effective surface driving force for spreading. 

Initial wetting requires that the pigment and polymer be 

sufficiently well mixed so that no separation occurs when shearing 

takes place during mixing. This stage often controls the whole process 

of mixing and can affect the final mixture quality as a 
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consequence. [211] After dispersion of the filler agglomerates, the 

polymer should envelop all the new smaller particles and replace any 

air at their surfaces. 

A plastics ability to wet-up pigments is partially dependent on 

the presence of polar groups on the surface of a polymer. Therefore, 

polar polymers, such as polyesters and polyamides, will produce better 

dispersions than non-polar polyolefins. (205) The levels of dispersion 

measured in the nylon extrudate experiments (Table 3.3.6/Figure 3.3.2) 

confirm this contention by exhibiting values nearly a third lower than 

corresponding polypropylene matrices. 

Alternatively, the value of surface tension for the polymer/filler 

interface can be reduced by coating with a surfactant which has an 

affinity for the particular polymer. This lowers the filler surface 

energy and enables the polymer to displace the vapour (air) from the 

filler surface because the force balance will be altered in its favour. 

However, coating of the filler surface prior to polymer processing 

introduces another. variable, viz. the coated versions of the calcium 

carbonates employed for this study (Table 3.4.3) exhibited sharply 

higher levels of surface moisture than uncoated equivalents. 
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4.4 DISPERSION 

Dispersive mixing in polymer processing operations involves the 

breakdown of agglomerates or clumps of solid particles in a deforming 

viscous liquid; three principal stages generally being embodied within 

this mechanism. [205,212) 

Firstly, wetting of the particulate component by the polymer melt 

is required and is clearly aided if the compatibility between the solid 

and liquid phases is high or if it is increased by modifications to the 

surface characteristics of the components. 

Secondly, rupture of aggregates or agglomerates is accomplished by 

exposing the mixture to high stress zones in the processing apparatus. 

When the induced internal stresses that result from viscous drag on the 

particles exceed some critical value, agglomerate breakdown will ensue. 

Finally, intimate wetting of the particles should occur by 

replacement of air at the filler-melt interface, but this may become 

increasingly difficult with solid particles of high surface area, which 

may also be porous. Overlap between these three stages of dispersion 

is probable. 

In any compounding operation, such as twin-screw extrusion, an 

essential requirement for effective dispersive mixing is the generation 

of stresses sufficient to exceed the important critical threshold 

value. Additionally, in order to achieve uniformity, it is important 

that all fluid elements should repeatedly pass the high stress zone. 

It is possible to accomplish these requirements through judicious 

design of machinery. The rheological characteristics of the deforming 

liquid phase and degree of cohesion between particles also have an 

important influence on the extent of dispersion. 

An analysis of forces required to break apart agglomerates can be 

made by considering a. single agglomerate, in the form of a rigid 
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dumbbell, consisting of two beads 

connected together and placed in a 

incompressible Newtonian fluid. 1203 

connector, tending to separate the 

orientation and the extent of viscous 

If the two beads are in contact 

of unequal radii (rI and r2) 

homogeneous velocity field of an 

The force, developed in the 

beads depends on the dumbbell 

drag from the surrounding fluid. 

with one another, the maximurt 

separating force (Fmax) is obtained when the dumbbell orientation is 

450 to the direction of shear whilst being proportional to the shear 

stress (P) and the product of rl . r2 : 

Fmax = 3w . u. Y. rl. r2 (4.17) 

where u= melt velocity 

j= shear rate 

The maximum separating force in an elongational flow field occurs 

when the dumbbell is aligned in the direction of flow according to: 

Fmax =6*. P. r1. r2 (4.18) 

where rate of elongation. 

Equations 4.16 and 4.17 implicitly assume that the spheres will 

not affect the flow field and that the dumbbell interaction can be 

neglected. [50] Nevertheless, the inference from this analysis, is that 

less force is required to break apart combinations of larger beads than 

smaller ones and that dispersive mixing is enhanced under conditions of 

high shear stress or increasing rates of elongational flow. Although 

at equivalent deformation rates the separating force developed between 

the beads in elongation flow is double that obtained in shear flow, in 

reality it is generally easier to generate much larger shear rates; 

consequently, this form of flow is usually the predominating mechanism 

for dispersion. 

4.4.1 Material and Processing Variables 

Most experiments were undertaken using the two-stage screw 
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geometry shown at the top in Figure 3.1.5. Unless otherwise indicated, 

the screw pitch in the metering zone was 8mm, although in some 

experiments this was changed to 12 and 16mm. Alternatively, two pairs 

of the segmented mixing discs were introduced into the end of the 

metering zone (bottom screw in Figure 3.1.5). 

Changes in screw geometry within the second stage metering zone 

appear to have little influence on mean volume diameter for the screw 

geometries (Figures 3.1.2 and 3.1.5) and material compositions under 

investigation. Observed differences are shown in Figure 3.3.13, with 

expanded ordinate axis, but these are small and not considered 

significant. Similarly, the adoption of a fifth barrel section and 

extended screws (Figure 3.1.2) did not result in any substantial 

improvement in final dispersion of the filler (Table 3.3.12). Size 

reduction will only occur during dispersive mixing operations when the 

shear stresses developed in the polymer exceed some critical value, 

this being higher than the interparticle agglomerate forces. 

Dispersion therefore becomes more difficult as particle size decreases 

and agglomerate strength increases. At some point, a limiting level of 

dispersion may be reached, dependent both on the conditions of maximum 

shear experienced in the machine and the interparticle adhesion 

characteristics of the filler system. 

lt seems likely that, for the 40wt% calcium carbonate/ 

polypropylene composite considered in this study, the highest levels of 

shear stress occur in the melting zone, as described earlier. The 

subsequent lower levels of shear experienced in the second-stage 

metering zone contribute less. to overall dispersion. Although shear 

stress generated in the melt undoubtedly increases as the screw pitch 

is reduced from 16 to 8mm, these differences are not reflected by 

changes in mean volume diameter; presumably, since shear stress values 

are below the threshold level necessary to cause substantially more 
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dispersion. However, the dispersion index (defined by the mean volume 

diameter, MVD) is not only dependent on the maximum level of-shear 

encountered in the machine, but also on the available time during which 

the agglomerates are exposed to the zone of maximum shear intensity. 

In an ideal mixing operation, sufficient time must be allowed to ensure 

that all agglomerates present pass through the region of greatest 

shear. 

The continuing, but less sudden, increase in filler dispersion 

observed downstream from the melting zone observed for all the 

parameters investigated, suggests that not all agglomerates have been 

exposed to the conditions of high shear existing in this region and 

that these may subsequently break-down to yield a lower overall average 

value of dispersion. It is fortunate that the strength of any 

agglomerates are unlikely to approach that of the solid material; this 

is due to voids being present which will tend to undermine the 

strength, as will cracks. (98]- Figure 4.4.1 shows the structure of a 

Durcal 2 agglomerate viewed by a scanning electron microscope at three 

different magnifications; the structure of the agglomerate in view is 

clearly defined. 

The dispersion (MUD) of samples taken from the extrudate of the 

different calcium carbonate compounds, Figure 3.3.2, indicates that the 

level of agglomeration remains inversely proportional to the initial 

mean particle diameter, as detailed in Section 4.2.2 above. This 

maintenance of the differential between the filler dispersions from one 

end of the extruder to the other, although of a low magnitude, 

suggests that agglomeration of the calcium carbonate during premixing 

does indeed introduce additional compaction. These differences in 

dispersion appear more significant when comparisons of Df (the ratio of 

measured MVD to that of the initial feed) are made for one series of 

calcium carbonates (Setacarb 13, Hydrocarb and Millicarb) whose origins 
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are similar. 

The trend is in marked contrast to one processing variable - 

conventional barrel temperature profile (LT, NT and HT in Table 3.3.8) 

- which exhibited no significant differences in extrudate dispersion. 

A variation of processing temperature could be expected to alter the 

shearing conditions within the extruder, Figure 3.3.9 which compares 

LT, NT and HT illustrates levels of dispersion along the extruder. 

Nevertheless, in spite of these fluctuations, the final dispersions are 

uniform. When the premixing stage was omitted by metering the filler 

and polymer into the extruder hopper separately, the ensuing extrudate 

agglomeration was found to have been lowered from MVD24.3um to 

MVD20.6um (Table 3.3.9 sample codes PP-D2-PH and PP-D2-SH). Thus, a 

series of additional experiments were devised whereby the calcium 

carbonate filler was preconditioned as detailed in Section 3.4 above 

and discussion of the dispersion analysis is in Section 4.4.2 below. 

Preconditioning of the seven different calcium carbonate fillers 

resulted in a level of agglomeration in the extrudate up to 7 times 

higher than when the fillers were premixed and processed as normal. 

However, these results (Table 3.4.5/Figure 3.4.2 Graph. A) do not 

exhibit the same trend as previously, i. e. the level of agglomeration 

for preconditioned filler does not appear related to initial mean 

particle diameter. The filler pellets introduced into the extruder 

during these particular preconditioning experiments had been compacted 

at the highest set pressure (157.5MPa). It is highly probable that 

sintered solid bridges have formed at aggregate interfaces and that it 

is the strength characteristics of these bridges which are now 

influencing dispersion behaviour. 

Final dispersion in the extrudate showed a reduction for each of 

the coated versions (Table 3.3.4/Figure 
. 
3.3.2). For preconditioned 

filler pellets processed through the extruder the differences in 
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dispersion were very significant (Table 3.4.5/Figure 3.4.2). The large 

change in dispersion for coated versions indicates that they were much 

more able to resist agglomeration under the influence of compaction 

pressure and thus justify their additional cost factor. 

4.4.2 Preconditioning of Filler 

lt will be apparent from the previous discussion that, except for 

the position of filler addition to the compounder, operating conditions 

were found to have little influence on overall dispersion at the 

extrudate for the calcium carbonate filler studied. 

Results from the model experiments undertaken to establish the 

role of filler characteristics and extraneous conditions (moisture, 

temperature and pressure) on filler dispersion are shown in Figures 

3.4.1 and 3.4.2. 

Specimen discs of calcium carbonate (Durcal 2), prepared using 

increasing conditions of pressure and temperature, were introduced into 

the compounder either with the polymer feed or into the downstream 

entry port. The extrudate was analyzed, as previously described, to 

assess the breakdown of the filler particles. Figures 3.4.1 and 3.4.2 

show that filler samples prepared using increasing conditions of 

temperature or pressure show less tendency to disperse. For the 

reasons given earlier, this condition is greatly enhanced when filler 

is introduced downstream in to the melt. The presence of moisture is 

also shown to be of great significance in influencing calcium carbonate 

dispersion (Figure 3.4.1). Predried material gave appreciably lower 

values of mean volume diameter when compared with filler containing 

residual quantities of absorbed moisture or when water was deliberately 

incorporated in excess amounts. 

The agglomeration formed by various pressing temperatures is 

detailed in Table 3.4.6/Figure 3.4.2; the pellets which passed through 
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the entire machine (from the hopper) gave similar agglomeration levels 

in the extrudate for the middle temperatures. However, the highest 

pressing temperature produced a very significant jump in agglomeration 

which may be an indication of sintering, effects at the interparticle 

contact points. This experiment (PP-PD2-250) represents the most 

severe preconditioning conditions of temperature and pressure applied 

to the filler. However, the experiment where excess moisture was added 

to the filler before compacting (PP-PD2-157.5-22.8 in Table 3.4.4) 

produced a higher agglomeration level in the extrudate. The presence 

of high moisture levels during compaction therefore appears to be at 

least as significant as-the magnitude of physical factors acting on the 

filler. 
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Fig. 4.4.1 Scanning electron micrographs showing structure of a 
Durcal 2 agglomerate found at the end of the screws 

(position 2) 



4.5 DISTRIBUTION 

Laminar or distributive mixing will tend to increase the spatial 

randomization of particles within a fluid medium without any reduction 

in particle size. It could be suggested 
'that distributive mixing is 

akin to increasing the entropy of the system and that the progress of 

mixing be followed by measurement of this term. (4] However, 

measurements of a directly quantifiable entity, rather than entropy, 

involves assessment of physical effects which result from or closely 

follow the progress of mixing. The most obvious physical attribute of 

a laminar mixture is the array of pigmented flow lines, of varying 

magnitude and frequency,, which will be present within a given element 

of an overall specimen material. 

One of the most widely accepted theoretical terms used to describe 

these features is that of 'interfacial surface area' (100,101,213-217] 

between the polymer matrix and the pigmented flow lines (striations). 

In practice, 'striation thickness' is the actual measurement that can 

be determined from the sample field of view. (89] 

Taking a block of specimen material consisting length (L), width 

(W), and'height (H) with a number (n) of equally spaced striations (4], 

the total interfacial area (A) will be: 

A= 2nLW (4.19) 

Striation thickness (r) is defined as the average distance between 

the centres of adjacent flow lines in the sample and relates total 

interfacial surface area (A) to the total volume of the system (V): 

-V = (L W) (H)- = (A /2 n) . (n r) = 0.5 A r- (4.20) 

For constant volume, two different mixtures can be compared (1023: 

Volume = 0.5 A' r' = 0.5 A" r" (4.21) 

Rearranging Eqn. 4.21, reveals that: 

A" / A' = r' /-r" (4.22) 
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Eqn. 4.22 shows that as the interfacial surface area increases, the 

striation thickness decreases in a proportional manner. 

Many investigators have utilized this relationship to study 

ordered distributive mixing 1102,218-2201; this is relatively simple to 

characterize. The problems arising when measuring these values for 

random distributive mixing, e. g. after extrusion or compounding of 

powders and melts, will be formidable, due to the random size and 

orientation of the flow lines. This results, in part, from the 

continuously reducing size and separation of the striations which 

require an increasing scale, of scrutiny to detect any variations in 

composition. The measurement of striation thickness by light 

microscopy and eyepiece^graticule or the use of a microdensitometer are 

two established methods available to visualize flow, as described in 

Section 4.1 above. The automatic image-analysis-based light microscopy 

technique is a possible solution to these problems of resolution and 

efficiency of data collection. 

4.5.1 Processing Variables 

A number of experiments were undertaken which again utilized the 

normal two-stage screw geometry, shown at the top of Figure 3.1.5.. A 

series of extruder screw speeds between 30 and 180rpm were used to 

process the 0.5wt% carbon black/polypropylene mixture, and the 

distributive mixing values (Table 3.3.15/Figure 3.3.15) determined from 

the extrudate for each of six speeds. The breaker plate, normally 

located in the barrel head adaptor, was removed and a second series of 

experiments were carried out at the, same screw speeds. Comparison of 

the regression lines reveals that the rate of change of, area fraction 

with respect to screw speed remains similar whether or not, the breaker 

plate is present. The area fraction value has merely been displaced to 

a higher, level; this, increase 'being nearly constant in absolute terms 
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regardless of screw speed. The breaker plate might therefore be said 

to contribute a fixed amount of laminar mixing to the melt as it passes 

through independent of screw speed employed. This scenario is highly 

probable as a given element of melt when travelling towards and through 

the breaker plate has no opportunity to do so more than once or in more 

than one manner regardless of the speed it is travelling. Therefore, 

the breaker, plate Increases, the- distributive mixing within the 

extrudate by an amount which would require, an increase in screw speed 

of approximately 45rpm, to compensate for. its absence.. 

Further experiments were-concerned with, the effect. of the screw 

pitch of the final metering;: zone of-. -the- extruder on distributive 

mixing. Four metering. screwý: configurations; ý8mm, 12mm, 16mm and 8mm 

plus 2 segmented discs (designated 8P, 12P, -16P and 8P2D respectively 

in Table 3.3.18) were utilized for -processing and,,, after the machine 

had achieved steady, state running conditions, - 
it was crash-cooled and 

solid material removed from, specified locations along the screws (Table 

3.3.13). Results of image analysis from these specimens are shown 

individually; in Figures 3.3.16 to 3.3.19 and compared-in Figure 3.3.20. 

The most striking . 
feature of the 

� comparison between 
. 
the screw 

configurations is . the grouping, around. an, AF ; value of. 3% for the 8mm, 

12mm and..: 16mm 
_ pitch, -screws, whilst, the-- 8mmr pitch screw with two 

segmented-discs at the extreme end exhibited a value more than 6 times 

less. - 

An. additional: experiment, whereby the carbon. black-masterbatch., was 

dosed into the: molten. polymer-at- the-,, -, vent -,, entry - port at a rate, to 

achieve the same O. Swt% carbon", blackr concentration -in-the extrudate 

(Table 3.3.19/Figures 3.3.21 and 3.3.22), , suggests, that eliminating the 

first stage, -of the extruder-. from-. mixing, shows affixed quantifiable 

change in AF in the same way as the removal of the breaker plate. That 

is, the level of distributive mixing (AF) is displaced approximately 5% 
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higher along the length of the metering zone with the extrudate showing 

a similar increase. It will be noted that in bypassing the first stage 

of the extruder, the carbon black material has not only missed the 

melting region but has also not passed through the first two sets of 

discs (at the end of the first stage). 

4.5.2 Distributive Mixing Contribution of Discs 

Gale [183 considered that, for effective distributive mixing in a 

single-screw extruder, the incorporation of interrupted flights, 

barriers and pins were not completely satisfactory as a means of melt 

reorientation. He stated that the idealized mixing system will need 

the action of a die face cutter to enable reorientation and has 

developed this idea into the Cavity Transfer Mixer (CTM) which can be 

added to the die end of a single-screw extruder. t200,2213 The 

segmented discs as utilized in the intermeshing co-rotating twin-screw 

extruder are considered to act in exactly the manner of a die face 

cutter as they sweep past one another, with the only route for the melt 

to follow being through the six narrow slits in each of the discs. 

This type of segmented disc (Figures 3.1.3 and 3.1.4) has been 

studied by Kosel (12] for use in a single-screw, extruder in comparison 

with other types of screw sections with pin inserts. Segmented discs 

of this sort are the only mixing elements (other than kneading cams for 

high shearing)-that will function effectively'on a twin-screw extruder. 

There are two related problems with barrier designs of mixing element 

[222,223] as invisaged for single-screw extruders: (a) they may not 

intermesh with one another unless slotted like the discs; and (b) as 

they will not have a very close fit between them, as would be needed 

to stop material leakage, the whole concept of a barrier screw element 

is lost. 
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4.5.3 Reorientation within the Twin-Screw Extruder 

Martelli [82) in considering intermeshing co-rotating twin-screw 

extruders, has estimated the magnitude of melt reorientation for the 

same type of trapezoid-shaped screws as the TS40. (2243 He found that 

the material moves around the 'figure of eight' of the two screws at 

about 0.65 of the machine screw speed (n). However, for simplicity in 

calculations of mixing, he approximated this value to 0.5n. As the 

division and merging of material occurs twice on each 'figure of 

eight', the material mixes once every turn of the actual screws per 

minute of residence time. This successive division and merging of the 

material accumulates so that at 20rpm there would be 220 or 

1,048,576 mixings per minute of residence time at a given screw flight 

location. 

However, -an analysis which calculates the mixing received by a 

single element of material is informative. If the single element is 

followed along the, screws of the TS40 extruder, then the number of 

flights of, the screws (ignoring the segmented discs and any conveying 

differences between solid and melt) will be 48 (for the standard screw 

with an 8mm pitch. metering, section -. top of: Figure 3.1.5). Therefore, 

96 divisions of,,. material will occur and the number of accumulated 

mixing events experienced , by this element will be 
, 
296 or 7.9x10 28 

which, together with the reorientating action of the 4 pairs of 

segmented, discs, should ensure sufficient distributive mixing! 

ir 

P--f 
.(z- 
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CHAPTER 5 

CONCLUSIONS 

A wide=ranging investigation of potential sample preparation and 

examination techniques for direct quantitative analysis of dispersion 

and distribution within a polymer matrix revealed that these are best 

allied with image analysis to enable greatly accelerated accumulation 

of data. Consequently, the preparation and examination techniques were 

assessed with this objective in mind. In the case of calcium carbonate 

filled polypropylene, ' the fine polishing of surfaces for examination by 

reflected light microscopy proved-the most satisfactory method whilst 

for carbon black pigmented polypropylene, glass microtomy of sections 

and transmitted light microscopy were selected. Both types of specimen 

were examined using a microscope which was directly interfaced to an 

image analyzer. 

The closely-intermeshing co-rotating twin-screw compounding 

extruder specially developed for use in this study and others at 

Brunel, proved extremely efficient for dispersion in the face of widely 

varied machine parameters, viz. screw speed, barrel temperature profile 

and throughput. 

Dispersive mixing at the extrudate was significantly influenced 

only by adding the calcium carbonate filler at the vent entry port, 

which is not surprising as this eliminates half of the machine'from 

compounding. 

The premixing of calcium carbonate and polypropylene before 

processing appeared to create additional compaction in the filler. A 

series of experiments in which filler was pelletized revealed that the 

moisture level in the filler prior to compaction was a very significant 
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factor in the subsequent dispersion levels at the extrudate. 

Additionally, the compaction pressure and temperature, over the range 

studied, influenced dispersion to a considerable extent. When the 

premixing stage was omitted, the level of agglomeration was found to be 

slightly lower at the extrudate (MVD24.3um reduced to MVD20.6um). 

Distributive mixing was discovered to be influenced more by 

machine parameters particularly the presence of the breaker plate in 

the adaptor head and the imposition of two pairs of segmented discs at 

the end of the metering screws. The presence of the breaker plate was 

calculated to be equivalent to an increase in screw speed of 45rpm. 

When two of the four pairs of segmented discs were transferred to the 

end of the screws, the level of, distributive mixing was found to have 

increased by in excess of six times compared to the standard screw 

configuration. 

/ 

ý. ý_ ,ý,. 
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SUGGESTIONS FOR FURTHER WORK 

1. An investigation of kneading cam elements to introduce additional 

shear for` improved dispersive mixing. These cams should be 

studied because the original slotted discs did not have any 

significant influence on dispersion of calcium carbonate fillers 

within the polymer matrix, after their utilization as melting 

elements. The kneading elements will be most effective when they 

restrict a significant proportion of flow to a high shear region 

at their periphery against the barrel wall; this could be achieved 

by adopting more than the now usual 3-faced elements. However, 

the benefits of restricted flow in terms of dispersion will be 

offset by a decrease in overall material throughput of the machine 

and increased localized wear of both the elements and barrel. 

2. Flow visualization could be achieved by substituting a section of 

the steel barrel wall with a clear rigid polymer (such as PMMA). 

The use of hot polymer melts is obviously impossible so 

alternative ambient-temperature flow materials, which closely 

emulate the original polymer rheological characteristics, must be 

substituted; wall paper adhesive has been suggested. This 

exercise would be an extension of the studies of melt flow already 

undertaken for the TS40 twin-screw extruder. 12241 This study 

involved shock-cooling and careful removal of solidified process 

material for* examination from specific locations around and 

between the screws, after the machine had been dosed with small 

quantities of carbon black masterbatch. 
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3. As mentioned in Section 3.2.2.4 above, acoustic microscopy failed 

to resolve calcium carbonate surface agglomerates at the 

magnifications then available. However, this method of 

examination is potentially very powerful as a means of 

non-destructive three-dimensional analysis because it presents the 

possibility of imaging structures within a solid matrix. This 

technique deserves a significant effort to try and eliminate the 

outstanding problems, viz. the generation of an acoustic beam of 

sufficient intensity and coherence to penetrate the solid whilst 

not being scattered and absorbed to such an extent as to undermine 

the resolution. This examination technique, if realized, in 

combination with computer-controlled image analysis would form an 

extremely efficient quantitative sizing and mixture quality 

assessment method. 
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APPENDIX A 

IMAGE ANALYSER COMPUTER PROGRAMS FOR DISPERSIVE MIXING 

A. 1 Measurement Program 

I0 REM ... MASTER DISKETTE CREATED ON 48K SYSTEM BY J. 61. ESS 

20 REM ... 14Ot4-METALLIC MATERIALSIHAGE ANALYSIS PROGRAM FOR OPTOMAX SYSTE 
H IV 

3O Dt. = CHRX (4): REM CTRL-D 
35 PRINT DX"PR#1": PRINT : POKE - 12528,7: PRINT 0$"PR#©": REM ... SETS P 

RINTER INTENSITY TO MAXIMUM 
40 TEXT : HOME : HTAB 11: PRINT "*** SYSTEM IV *? ý4" 
50 VTAB 8: WAS 2:. PRINT "(I) IMAGE MEASUREMENT PF: OGF: Atl" 
60 VTAB 11: HTAB 2: PRINT "(0) DATA . STATS PROGRAM" 
65 UTAB 14: HTAB 2: PRINT "(S) SURF. AREA OF AGGLOMERATES" 
67 VTAB 17: HTAB 2: PRINT "(F) FIBRE LENGTH (GRAPHICS TABLET)" 
70 UTAS 23: HTAE: 2: PRINT "YOUR CHOICE ":: POKE 49168,0 
80 GET AS: IF At = "I" THEN PRINT "LOADING-I": PRINT DE"RUN MEASUREMENT, 

D1": END 
82 IF A$ = "; 4" THEN HOME : PRINT : PRINT D$"RUN 0. D1": END 
85 IF A$ = "S" THEN PRINT "LOADING. -S": PRINT D$"RUN H/2, D1": END 
87 IF A$ = "F" THEN PRINT "LOADING-F": PRINT D$"RUN F, 01": END 
90 PRINT "LOADING-D": PRINT D$"RUN DATA/STATS, 01": END 

]LONG MERSUREHENT 
]LIST 

IG REM ... HEHSUREt1ENT/ J. W. E. 

20 CLEAR 
3C0 DIM TF'(17), DT(17 ) 
40 TEXT : HOME : HTPB 11: PRINT "*** SYSTEM IV **+" 
500 VTAB 3: HTAS 7: PRINT "IMAGE MEASUREMENT PROGRAM" 
60 VTAB 14: INPUT "INPUT SAt1PLE NAME "; SNE$ 
70 VTAB 16: INPUT "INPUT OPERATOR NAME "; OPRS 
50 A= LEN (SNE$) + LEN (OPR$): IFA > 26 THEN GOTO 40 
SO VTAE, 18: INPUT "INPUT DATE "; DTE$ 
100 05 = CHR$ (4): I1$ = "C? C : '": I2$ = "E--, -, H: ": 13$ = "CH" + CHR$ (85i + ": 

": 14$ = ""': REM ... COtitMAtND STRINGS FOR IEEE INTERFACE 

110 01 = 50: 02 = 250: REM ... TIME DELAYS FOR SYSTEM IV 

120 PRINT : 6OSUB 520: GOSUB 1390: GO SUB 167tß 
130 HOME : PRINT " SYSTEM IV IMAGE MEASUREMENT PROGRAM" 
140 WAS 6: HTAB 4: PRINT "(SPC) TO READ" 
150 VTAB 8: HTAB 4: PRINT "'N' TO CLEAR SCREEN" 
160 UTAB 10: HTAB 4: PRINT "'P' FOR PRINT-OUT" 
170 VTAB 12: HTAB 4: PRINT "'R' TO RECALIBRATE" 
180 UTAB 14: HTAB 4: PRINT "'F' TO FILE" 
190 VTAB 16: HTAB 4: PRINT "'S' FOR HEN SAMPLE" 
200 UTAB 18: HTAB 4: PRINT "'Q' TO QUIT" 
210 FC = O: TF = Q: TA = O: TI = 0: Z = O: TC = 0: S© = 0: S1 = 0: FOR J=1 TO 1 

7: OT(J )=0: NEXT J 
220 WAS 24: HTAB 1: POKE 49168.0 
230 GOSUB 1170: UTAB'23: HTAB 1: CALL - 868: FH =F* CAL: FHT = STR$ (FH 

): FHS = LEFT$ (FH$. 5 ): PRINT FRAME = "; FHS" "UNS" DI Nrt. "; 
240 KB = PEEK (49152): IF KB < 128 THEN 230 
250 KB$ = CHR$ (KB - 128): IF KBS = "0" THEN 

. 
WAS 23: H7 AB 1: CALL - ESt" 

8: PRINT "QUIT - ARE YOU SURE? (Y/N)";: POKE 49168,0 
260 IF KBS = "Q" THEN GET KA$: IF KA$ <> "Y" AND KA3 <> "N" 1HEN bOTU 

260: IF KA3 = "N"THEN GOTO 220 
270 IF KA$ = "Y" THEN TEXT : HOME : PRINT : PRINT DS"EXEC RESET. DI": ENL' 

280 IF KBS = "N" THEN GUT0 130 
293 IF KBX = "S" THEN POKE - 16368.0: RUN 
300 IF KBS = "R" THEN POKE - 16368,0: HOME : GBTO 120 
310 IF KES _ "F" THEN GOTO 1220 
320 IF KB$ = "P" THEN PRINT : PRINT D$"PR#1": PFD = 1: PRINT : PRINT : FRINT 

; PRINT : PRINT : GOT0 340 
3: 0 l'; OSUB 1010: FP = . 7855 * (F - 2) * (CAL ^ 2): TF = TF + FP: NR =A+ CAL 

2: TA = TA + AR: TI=TI+I: TC = TC + C: FC = FC + 1: SO = $0 + AR 1 
FA: S1 =S1 +AR-2/FA-2 

7,35 PA =I E2 *, AR FA: PAS = STP. 1 (PA ): PP$ = LEFT$ (PAr, 4 ): TP = 1E2 * TA 
TF: TPS = SIRS (TP ): TPS = LEFTS. (TPS, 4): GOSUE: 1800 

340 DS5 = STR$ (DS): HOME : PRINT OPR$,: PRINT DIES;: HTAB 35: PRINT 
�.: � DS: F.; 



3513 PRINT SNES;: HTAB 25: PRINT "MAG,. ="t15: PRINT 
360 PRINT "SYSTEM IV IMAGE MEASUREMENT PROGRAM" 
370 PRINT : PRINT " NUMBER OF FIELDS: "FC: PRINT : PRINT "PARAMETER 

THIS FIELD CUMULATIVE" 
380 FA =I NT (FA ): TF =I NT (TF) 
390 VTAB 10: HTAB 1: PRINT "FIELD AREA "FA;: HTRB 26: PRINT TF;: IF PF% THEN 

POKE 36.40: PRINT "SQUARE "UMS 
40C, AR = INT (AR * 1EI + . 5) / 1EI: TA = ItlT (TA) 
410 UTAS: 11: HTAE 1: PRINT "DETECTED "AR;: WAS 26: PRINT TA;: IF PF% THEN 

POKE 36,40: PRINT "SG! UARE "UNS 
430 UTAB 13: HTAB 1: PRINT "AREA FRACT. "PAS;: HTAB 26: PRINT TP$;: IF P 

F% THEN POKE 36,40: PRINT "%: " 
440 IF FC >=2 THEN M1 = TA / TF: Z1 = 1E2 * SG'R (H1 * M1 + (Si -2* t1 

1* S0) / FC): 21S = SIRS (Z1): Z1$ = LEFTS (Z1$. 4) 
450 IF FC >=2 THEN UTAB 14: HTAB 7: PRINT "+-";: HTAB 26: PRINT ZiS 
460 UTAB 16: HTAB 1: PRINT "# I'CPT "I;: WAS 26: PRINT TI 
470 IL =I/ FAIL = INT (IL * 1E6 + . 5) / 1E6: NL = TI / TF: NL = INT (NL 

IE5_+ . 5) / IE5 
480 VTAB 17: HTAB 1: PRINT "tl(L) ": IL;: HTAB 26: PRINT NL;: IF PF%: 

THEN POKE 36.40: PRINT "PER "UNS 
4909 VTAB 19: HTAB 1: PRINT "# FEATLIRES "C;: HTAB 26: PRINT TC 
500 IF PF/ THEN PRINT : PRINT DS"PR#0": PF%: = 0: G0T0 340 
510 GOTO 220 
520 REM ... SET CALIBRATIONS. 
530 CA%: =0 
540 PRINT D$"OPEN CAL DATA. 01": 'PRINT 0$"READ CAL DATA": I14PUT M1$, M25, H3 

#, H4$, M55, M6$, C1, C2, C3, C4, C5. C6, U1S, U25. U3$, U4$, U55, UGS, BL, 1L. NG: PRINT 
D$"CLOSE CAL DATA" 

550 HOME : PRINT "CALIBRATION TABLE": PRINT 
560 INVERSE : HTAB 10: PRINT "MAG. ";: HTAB, 20: PRINT "CAL. FACTOR";: HTAB 

35: PRINT "LINITS": NORMAL 
570 UTAB 5: PRINT "(1)";:. HTAB 10: PRINT tilt;: HTAB 23: PRINT Cl;: HTAB 3 

5: PRINT U1$; "/PF"' 
580, UTAS 7: PRINT "(2)";: HTAB 10: PRINT t12E;: HTAB 23: PRINT C2;: HTAB 3 

5: PRINT U25; "/F'P" 
590 VTAB 9: PRINT "(3)";: HTAB 10: PRINT 113T;: HTAB 23: PRINT C3;: HTAB 3 

5: PRINT, U3t; ""PP" 
600 UTAB 11: PRINT "(4)";: HTAB 10: PRINT M4$;: 'HTAB 23:. PRINT C4;: HTAB 

35: PRINT U45; "/PP" 
610 VTAB 13: PRINT "(5)";: HTAB 10: PRINT 1155;: HTAB 23: PRINT CS;: HTAB 

35: PRINT -U5. t; "/PP" 
620 UTAB 15: 'PRINT "(6>";: HTAB 10: PRINT 116$;: HTAB 23: PRINT C6;: HTAB 

35: -PRINT U'S; "/PP" 
630 UTAEß'19: INVERSE : PRINT "NB";: NORMAL : PRINT " MAKE SURE FRAME IS I 

N 'CIRCULAR' MODE" 
640 VTAB 21: PRINT "TYPE NUMBER FROM 1 TO 6 OR 'CAL'": PRINT 
650 PRINT "YOLIR CHOICE? ";:. GET KE: 3 
660 IF. KB$ =, "1" THEN CAL = C1: UHS ='U 1t: H$ = HIS: RETURN 
670 IF KBS = "2" THEN CAL = C2: 1)H$ = U2$: H$ = M2$: RETURN 
65') IF, KB$ =-"3"'THEN CAL = C3: UN$ = U33: M$ = H3$: RETURN 
690 IF K83 = "4" THEN CAL = C4: UN$ = U4$: MS = M4$: RETURN 
700 IF KB$ = "5" THEN CAL = C5: UN$ = U55: M$ = H5$: RETURN 
710 IF KB$ = "6" THEN CAL = C6: UN3 = U6$: M$ = H6$: RETURN 
720 IF_ K. 6$ <> "C" THEN GOTO 550 
730 HOME : UTAB 2: HTAB 4: PRINT "RECALIBRATION ROUTINE" 

750- UTAB, S: `HTAB 4: 'INPUT "INPUT POSITION NO: "; P 
760 IF'P = 1'THEN UTAB 8: HTAB 4: INPUT "INPUT UtJITS "; UlS: "UTPE: 10: HTAS 

4:, INPUT "INPUT MAG. "; H1$ 
7r0 IF P-= 2 THEN UTAB 8: HTAB 4: INPUT "INPUT UNITS "; U2$: VTAB 10: HTAB 

4: INPUT "INPUT MAG.. "; 12s 
780 IF P =. 37THEN UTAB 8: HTAB 4: INPUT "INPUT UNITS "; L13$: UTAB 10: HTAB 

4: INPUT "INPUT MAG. "; H3X .. 790 IF P ='4 THEN VTAB 8: HTAB 4: INPUT "INPUT UNITS "; U4$: VTAB 10: HTAB 
4: INPUT "INPUT MAG. "; t145 

800 IF�P, = 5 THEN, VTAB 8: HTAB 4: INPUT "INPUT UNITS "; U55: UTAB 10: HTAB 
4: '"INPUT "INPUT MAGG.. "; M5T 

810 IF. P =, 6 THEN VTAB 8: HTAB 4: INPUT "INPUT UNITS "; UG$: UTAB 10: HTAB 
` 

.:. 4:, `INPUT "INPUT'MAib. "; ME"S 
820 UTAB 12: HTAB 4: PRINT "INPUT FRAME HT IN "; 
830 IF"P, =ä1 THEN. PRINT UlS; 
840 IF P ='2THEN PRINT U2$; 
850_ IF P =. 3_THEN -PRINT U3$; -- 860 , IF P=4 THEN. -. PRINT U4$; 
870 IF P=5 THEN . PRINT U5$; 
880 IF P =_6 THEN . PRINT U6$; 
896 INPUT " "; H 

124 



900 UtAB 24: POKE 34,23: PRINT : PRINT D$"PR#3": PRINT I1$ + "00000" + 14 
$: FOR J=1 TO D1: NEXT J 

910 PRINT I1$ + "I" + 14$;: FOR J=1 TO 02: NEXT J 
920 PRINT I2$;: PRINT D$'PR#0": INPUT X. X. X. F: PRINT DS"PR#3": PRINT 1234: 

PRINT D3"PR#0": PRINT 0t"IN#0" 
930 POKE 34.0: CAL =HiF: CAL = INT (CAL * 1E3 + . 5) i 1E3 
940 IF P=1 THEN Cl = CAL 
950 IF P=2 THEN C2 = CAL 
960 IF P=3 THEN C3 = CAL 
970 IF P=4 THEN C4 = CAL 
980 IF P=5 THEN C5 = CAL 
990 IF P=6 THEN CS = CAL. 
1000 GOTO 550 
1010 REH ... READ SYSTEM IV OUTPUT 

1020 VTAB 23: HTAB 1: CALL - 868: PRINT "NORKING.... 0 
1030 FORJ =1 TO (NG. + 2) 
1040 IF J=1 THEN CL = 0: GOTO 1060 
1050 CL = (BL + GS * (J'- 2)) * SC 
1060 AL = (CL - 2) *. 7853482: AL =I NT (AL ): AL -= AL + 1(100010 
1070 UTAB 24: POKE 34,23: PRINT : PRINT D$"PR#3": PRINT I1$ + SIRS (AL) + 

14$: FOR TX =1 TO 01: NEXT TX 
108 PRINT I1$ + "I" + 14$;: FOR TX =1 TO 02: NEXT TX 
1090 PRINT 12$: PRINT DS"PR#0": INPUT AR, CT. IN, FR, DS: PRINT G "PRit3": PRINT 

I3$: PRINT D$"PR#0°: PRINT D$"IN#0" 
1100 TP(J) = CT ' 
1110 IF J=2 THEN A= AR: C = CT: I = IN: F = FR 
1120 NEXT J 
1130 FOR J=1 TO (NG + 2) 
1140 IF J< (NG + 2) THEN TP(J) = TP(J) - TP(J + 1) 
1150 DT(J) = TP(J) + DT(J ) 
1160 NEXT J: POKE 34,0: RETUR14 
1170 REM ... JUST READ FRAME SIZE - IGNORE OTHER OUTPUTS 

1180 UTAB 24: POKE 34.23: PRINT : PRINT D$"PR#3": PRINT US + "00000" +1 
4$: FOR J=1 TO 01: NEXT J 

1180 PRINT I1$ + "I" + I4S;: FOR J=I TO 02: NEXT J 
1200 PRINT 12$: PRINT D$"PR#0": INPUT X. X. X. F: PRINT 0$"PR#3": PRINT I3$: 

PRINT 0$"PR#O": PRINT DS"IN#O" 
1210 PUKE 34,0: RETURN 
1220 REM ... FILE DATA 

1230 HOME : UTAB 3: HTAB 1: PRINT "**PLPCE DATA DISK IN DRIVE '2' AND PRE 
SS <RETURN>";: POKE - 16368,0: WAIT - 16384,128 

1240 VTAB 6: HTAB 1: PRINT "YOUR DATA HILL BE FILED UNDER THE DESCRIPTOR: 
- of 

1250 PRINT DX"PR#1": PRINT "YOUR DATA WILL BE FILED UNDER THE DESCRIPTOR: 
- ": PRINT D3"PR#i+" 

1260 F=1: F$ = STRS (F) 
1270 FL$ = OPR + "/" + SNES ++ FX 
1280 ONERR GOTO 1300 
1290 PRINT CHRS (4)"VERIFY M: "FL$'. D2": F =F+1: FS = STRS (F): GOTO 12 

70 
I. WL1 POKE 216,0: IF PEEK (222) <>6 THEN 1290 
1310 PRINT DS"OPEN M: "FLS: PRINT DX"WRITE t1: "FLT: PRINT E: L: PRINT 7L: PRINT 

UIU: PRINT SNE$: PRINT FC: PRINT TP: PRINT NL: PRINT TF: PRINT NG: PRINT 
SD: FOR J=1 TO (NG + 2): PRINT DT(J): NEXT J: PRINT D3"CLOSE M: "FL3 
: PRINT Ds"LOCK M: "FL$ 

1320 UTAB 9: HTPB 8: PRINT FL$: PRINT D3"PR*1": PRINT : HTAB 8: PRINT FLX 
: PRINT OS"F'R*0" 

1330 FOR J=1 TO 1000: NEXT J 
1380 GOTO 340 
1390 REM ... SET SIZING CALIBRATIONS 

1400 SC =1i CAL 
1410 HOME : HTPB 5: PRINT "EXISTING SIZING CALIBRATIONS" 
1420 UTAB 4: HTAB 1: PRINT "NUMBER OF SIZE CLASSES = "; NG 
1430 UTAB 6: HTAB 1: PRINT "BOTTOM LIMIT = "; BL; UNS 
1440 UTAB 8: HTAB 1: PRINT "TOP LIMIT = "; TL; UN$ 
1450 GS = (TL - 6L) / NG 
1460 UTAB 10: HTRB 1: PRINT "THUS GROUP SIZE _ "; INT (GS * 1E2 + . 5) /1 

E2; UN3 
1470 VTAB 14: HTAB 1: PRINT "USE EXISTING CALIB. (E)" 
1480 VTAB 16: HTAB 1: PRINT "CHANGE CALIB. (C)" 
1450 0$ = CHR $ (4) 
1500 UTAB 18: HTAB 1: PRINT "YOUR CHOICE? 
1510 GET AS: IF AS = "E" AND CA% THEN PRINT "E": GOTO 1610+ 



1520 IF A$ ='"E" THEN PRINT "E": COTO 1660 
1530 HOME : HTAB 5: PRINT "CHANGE SIZING CALIBRATIONS" 
1540 VTRB 4: HTAB 1:. "PRINT "INPUT BOTTOM LIMIT(MIN="; INT (7.5 * CAL * 1E 

1) / IEI; UNS; ")";: HTPB 30: INPUT " "; E: L 
1550 UTAS 6: HTAB 1: PRINT "INPUT TOP LIMIT (MAX="; INT (150 * CAL); UN$; " 

)";: WAS 30: INPUT " "; TL 
1560 VTAB 8: HTAB 1: INPUT "INPUT NUMBER OF SIZE CLASSES "; NG 
1570 IF NG > 14 THEN 6070 1560 
1580 VTAB 20: HTAB 1: PRINT HIS THIS OK? (Y/N)";: POKE 49168,0 
1590 GET AS: PRINT : IF A$ = "Y" THEN COTO 1610 
1600 GOTO 1530 
1610 D$-=' CHR$ (4): PRINT DE"OPEN CAL OATH": PRINT. D$"DELETE CAL DATA": PRINT 

OS"OPEN CAL ORTA": PRINT O$"WRITE CAL DATA" 
1620 PRINT M1$: PRINT M2$: PRINT M3$: PRINT 114$: PRINT M5$: PRINT M6$ 
1630 PRINT Cl: PRINT C2: PRINT C3: PRINT C4: PRINT C5: PRINT CE: 
1640 PRINT U1$: 'PRINT U2$: PRINT U3$: PRINT U4$: PRINT U5$: PRINT U6$ 
1650 PRINT BL: PRINT TL: PRINT NG: PRINT D$"CLOSE CAL DATA" 
1660 POKE' -. 16368,0: RETURN' 
1670 HOt1E-: VTAB 2: PRINT "PLEASE MAKE SURE THE SIZER IS ON 'AUTO'"' 
1680 VTAB 4: PRINT "AND THAT YOU ARE IN 'FULL COUNT' MODE" 
1690 VTRB 23: HTAB 1: PRINT'"PRESS (SPC) TO CONTINUE";., 
1700 GET KBS: RETURN _ 1800 REM ... STANDARD DEVIATION OF. S. A. 

",, ^, 

1810 IF FC =I THEN RETUPN 
1820 D= (PA - TP) ^2 
18302=Z+0 
1840 SO = (Z / FC) - . 5: SD = INT (SD *. 1E3 + . 5) / 1E3 
1850 RETURN 

kF.. 1 
.. os4e 

IL 



A. 2 Statistics Program 

10 REM ... MASTER DISKETTE CREATED ON 48K SYSTEM BY J. tI. ESS 

20 REM ... NON-METALLIC MATERIALSIMAGE ANALYSIS PROGRAM FOR OPTOHAX SYSTE 
M IV 

30 OS = CHRS (4): REM CTRL-0 
35 PRINT DS"PR#I": PRINT : POKE - 12528,7: PRINT DS"PR#8": REM ... SETS P 

RINTER INTENSITY TO MAXIMUM 
40 TEXT : HOME : HTAB 11: PRINT "*** SYSTEM IV ***" 
50 UTAB 8: HTAB 2: PRINT "(I) IMAGE MEASUREMENT PROGRAM" 
60 UTAB 11: HTAB 2: PRINT "(0) DATA & STATS PROGRAM" 
65 UTAB 14: HTAB 2: PRINT "(S) SURF. AREA OF AGGLOMERATES" 
67 UTAB 17: HTAB 2: PRINT "(F) FIBRE LENGTH (GRAPHICS TABLET)" 
70 UTAB 23: HTAB 2: PRINT "YOUR CHOICE ":: POKE 49168,0 
80 GET AS: IF AS = "I" THEN PRINT "LOADING-I": PRINT DS"RUN MEASUREMENT, 

01": END 
82 IF AS = "X" THEN HOME : PRINT : PRINT 03"RUN D, D1": END 
85 IF A$ = "S" THEN PRINT "LOADING-S": PRINT D$"RUN Hi2. D1": END 
87 IF A$ = "F" THEN PRINT "LOADING-F": PRINT 0$"RUN F, D1": END 
90 PRINT "LORDING-D": PRINT D$"RUN DRTA/STATS, D1": END 

]LOAD D 
)LIST 

10 REM ... DATA AND STATS PRODRAM/J. H. E. 

20 CLEAR : 0% = 0: D$ = CHR$ (4) 
25 POKE - 12528,7 

0 TEXT : HOME : HTAB 5: PRINT "*** DATA AND STPTS PROGRAM 
40 UTAB 5: HTAB 5: PRINT "(0) DATA RETRIEVAL" 
50 UTAB 7: HTAB 5: PRINT "(S) STEREOMETRY'STATS" 
60 UTAB 9: HTAB 5: PRINT "(C) COMPARE/COMBINE DATA" 
70 UTAB 11: HTAB 5: PRINT "(T) TRANSFORM SCALES" 
80 UTAB 15: HTAB 5: PRINT "(Q) QUIT" 
90 UTAB 22: HTAB 1: PRINT "YOUR CHOICE? ";: POKE 49168,0: GET KB$ 
100 IF KB$ = "0" THEN CLEAR : GOTO 170 
110 IF KB3 = "S" AND 0% THEN GOTO 570 
120 IF KB$ = "S" THEN VTAB 22: HTAB 1: PRINT "**YOU MUST RETRIEVE YOUR 0 

ATA FROM DISK IN DRIVE '2' FIRST**": FOR A=1 TO 5000: NEXT A: GOTO 
30 

130 IF KB$ = "C" THEN PRINT "LOADING-C": PRINT DS"EXEC RESET. D1": END 
140 IF KBS = "T" THEN PRINT "LOADING-T": PRINT 0$"EXEC RESET, D1": END 
150 IF KOS = "Q" THEN PRINT "QUIT": PRINT D3"EXEC RESET. 01": ENO 
160 GOTO 90 
170 REM ... DATA RETRIEVAL 

180 D% = 1: TEXT : HOME : HTAB 8: PRINT "*** DATA RETRIEVAL " 
190 ONERR GOTO 260 
200 VTAB 6: HTAB 1: PRINT "PLACE DATA DISK IN DRIVE '2'" 
210 UTAB 9: HTAB 1: INPUT "INPUT FILE DESCRIPTOR "; FL$ 
215 UTAB 12: HTAB 1: INPUT "INPUT SAMPLE NAME "; SNES 
220 0$ = CHR$ (4) 
230 PRINT : PRINT DS"VERIFY H: "FLS", 02": POKE 216,0 
240 PRINT DS"OPEN H: "FLS: PRINT 0$"READ H: "FLS: INPUT BL, TL, UNS, FC, TP, ttL, 

TF: PRINT DS"CLOSE H: "FL$ 
250 DIM N(17): GOT0 270 
260 HOME : UTAB 11: PRINT "SORRY-NO SUCH NAHE": FOR I=1 TO 2000: NEXT I 

" GOT0 180 
270 PRINT D$"OPEN H: "FL$: PRINT D$"READ M: "FL$: INPUT X. X, X$, X, X, X, X: FOR 

J=I TO 17: INPUT N(J): NEXT J: PRINT DS"CLOS"E fl: "FLT 
280 DIH S(16), S$(17), SM(16). NU(17), NA(16), D(16), DT(16). VT(16), F(15,15 ) 
290 SI = O: NP =0 
300 HOME : PRINT FLS" HOLDS RAH SIZE DATA AS FOLLOWS: ": PRINT CHR$ (7) 
310 PRINT : PRINT "SIZE CLASS HID SIZE NUMBER": PRINT : GS = (TL 

- BL)' 15 
320 FOR J=1 TO 16 
330 IF J=I THEN S(1) = BL: SI = BL: GOTO 380 
340 IF J= 16 THEN S(16) = TL: 60T0 380 
350 SI = SI + GS 
360 S(J) =Sl 
370 S$(J) = STRS (S(J)): SS(J) = LEFTS (SS(J). 5): S(J) = VAL (Sf(J)) 
380 NEXT J 

127 



390 
400 
410 
420 
430 
440 
450 
460 
470 
481) 
490 
500 
510 
520 
530 
540 
550 

560 
570 

580 
590 

600 

610 

620 

6: 0 
640 
650 

FOR J= 
NP = NP 

NEXT J 
FOR J 

QS = "-" 

2 TO 16 
N(J) 

TO 17. 

IF J=1 THEN SZ(1) = "(" + STR$ (S(1) ): GOTO 480 
IF J= 17 THEN SV 17) _ ">" + SIRS (S(J - 1) ): G0T0 48m 

S3(J) = STRS (S(J - 1)) + Q$ + STRS (S(J)) 
SH(J) = S(J - 1) + (. 5 * GS): St1(J) = INT (SH(J) * 100) / 100 

IF J=1 THEN PRINT S$(1)�N(1): G0T0 510 
IF J= 17 THEN PRINT SS(17)�N(17): G0T0 510 
PRINT SS(J), SH(J). N(J ) 
NEXT J 
PRINT "ALL SIZE DATA IN "UN3" "NP" TOTAL" 
IF PF% THEN PRINT : PRINT : PRINT : PRINT : PRINT D$mPR#0": PF% =0 
PRINT "'P' FOR PRINT-OUT, (SPC)FOR MENU ":: POKE 49168,0: GET KB$ 
IF KB$ = "P"-THEN PRINT : PRINT DS"PR#1": PF% = 1: PRINT : PRINT : PRINT 

SYSTEM IU DATA AND STATS PROGRAM": PRINT : GOTO 290 
IF KBS ="" THEN G0T0 30 
REM ... STEREOMETRY/STATS 

0: = 0: PF% =0 
HOME : UTAB'3: HTAB 1: PRINT "**DO YOU REQUIRE SCHWARTZ-SALTYKOV 

(DIAMETER) ANALYSIS**" 
VTPB 10: HTAB 1: PRINT "THIS ANALYSIS IS OF USE WHEN CROSS- SECTI 
DNS ARE BEING EXAMINED. IT TAKES ACCOUNT OF THE FACT THAT PARTICLE 

DIAMETERS SEEN IN CROSS-SECTION MAY NOT BE THE TRUE DIAMETERS B 
ECAUSE EACH" 
PRINT "PARTICLE COULD HAVE BEEN CUT AT ANY LEVEL OVER ITS HEIGHT 
IN THE THIRD DIMENSION" 
UTAB 222: HTAB 1: PRINT "YOUR CHOICE-YES(Y) OR NO(N)? ";: POKE 49168,0: 

GET KE$ 
IF KB$ = "N" THEN HOME : PRINT "WORKING.... ": GOTO 860 
VTAB 22: HTAB 1: CALL -- 868: PRINT "WORKING.... " 
REM ... SCHHARTZ-SALTYKOV (DIAMETER) ANALYSIS / GROUP SIZE = GS: TOTAL 

FIELD AREA = TF 
FOR J=1 TO 16 

NA(J) = N(J) i TF: REH ... NA(J)=NO. /UNIT AREA 
NEXT J 

J=0 
J=J+1 

IF NA(J) >0 THEN HP =J 
IF J< 15 THEN. GOTO 684 
REM .. CALCULATION OF CORRECTED VALUES 
DATA 1,. 1547.. 036,. 013.. 0061,. 0033,. 002,. 0013.. 0009.. 0006,. &105.. 000CV 
4,. 0». i03,. 0002,. 0001,. 5774,. 1529,. 042,. 0171,. 0087 
DATA . 0051.. 8031,. 0021,. 0015,. 001,. 0009,. 0006,. 0O06,. 0O04,. 4472,. 13c- 
2,. 0408,. 0178.. 0093,. 0057,. 0037,. 0026,. 0018,. 0013 
DATA 001,. 0007.. 0007,. 3779.. 126,. 0386,. 0174,. 0095,. 0058,. 0038,. 01+27, 

. 002,. 0016,. 0012,. 0009,. 3333.. 1161,. 0366,. 0168,. 0094 
DATA . 0059,. 804,. 8028,. 0021,. 0016,. 0013,. 3015,. 1081,. 0346,. 0163,. 00'-1 
1,. 0058,. 0041,. 0028,. 0022.. 0016.. 2773,. 1016,. 0329.. 0155 
DATA . 009,. 0057,. 004,. 0029,. 0022,. 2582,. 0961,. 0319,. 0151,. 01+88.. 1"iuu56 
,. 0039,. 0028,. 2425,. 0913,. 0301,. 0146,. 0085.. 0055,. 0039 
DATA . 2294,. 0872,. 029.. 014,. 0083.. 8054,. 2182,. 0836,. 028,. 0136,. EiOS.. 
2085.. 0804,. 027,. 0132,. 2,. 0776,. 0261,. 1925,. 075.. 1857 
FOR B=I JO 15 
FORJ=BTO 15 
READ A 

F(B. J) =A 
NEXT J,, 
NEXT B: 
FORB= 1., TOHP.;. - FOR J=B TO. HP- 
IF J=B THEN D(J) = NA(J) "* F(B, J): GOTO 820 

D(J) = D(J - 1) - (NA(J) + F(B. J)) 
NEXT J. 

NV(B) = D(HP) / GS 
NEXT B 
FOR ,J= (HP +. 1) TO 16 

NV(J) =0 
-NEXT J 
GOTO 890 , FOR J=2 TO 16 

NV(J) =. N(J)_, 
'NEXT J' 
REM ... DATA ACCUMULATION 
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900 FOR J=2 T0 16 
910 ZN = ZN + NV(J): REM ... ZN=NV TOTAL 
920 Z1 = Z1 + (NV(J) * SH(J)) 
930 Z2 = Z2 + (NV(J) * (SH(J) A 2)) 
940 Z3 = Z3 + (NV(J) * (SH(J) A 3)) 
950 Z4 = Z4 + (NV(J) * (SM(J) A 4)) 
960 NEXT J 
970 ON = Z1 i ZN 
980 DU = (23 i ZN) - . 3333 
990 DOU = Z3 / Z2 
1000 OH = Z4 / Z3 
1010 UR = OW / ON 
1020 SAVR =4* NL 
1030 TP = TP / 100 
1040 MFP = (1 - TP) / NL 
1050 DNS = SIRS (DN): DN$ = LEFTS (DN$, 5) 
1060 DUS = STRS. (DV): DUS = LEFTS (DVS, 5) 
1070 DOVE = SIRS (DOV ): DOV$ = LEFTS (DOV$. 5 ) 
1080 OHS = SIRS (OW): DH$ = LEFTS (DH$. 5) 
1090 UR$ = SIRS (UR): UR$ = LEFTS (UR$. 5) 
1100 SPUR = INT (SAVR * IEG + . 5) / 1E6: SAVR3 = SIRS (SAVR) 
1110 MFPS = SIRS (HFP): MFPS = LEFTS (MFPS, 5) 
1160 FOR J=2 TO 16' - 
1170 DT(J) = INT ((NU(J) i ZN) *I E5 + . 5) /I E3. - REH ... DT(J) = '. (NUMBER 

IN EACH GROUP 
1180 NEXT J 
1190 J=1 
12200 )=J+ 1 
1210 " IF DT(J) >0 THEN LP = SM(J), 
1220 IF J< 15 THEN GOTO 1200 
1230 IF KB$ _ "Y" THEN ' GOTO 1242 
1242. FOR J=2 TO 16 
1243 VT(J) _ (SM(J) - 3) * NV(J): UT(J) = INT ((VT(J) i Z3) * 1E5 + . 5) i 

1E3: NEXT J: REM ... UT(J) = %<VOLUME) IN EACH GROUP 
1250 HOME : PRINT "THE RESULTS FOR "SNES", ARE AS FOLLOWS: -": PRINT CHRS 

. 
(7) 

1260, ' PRINT : PRINT "MID SIZE("UNS")", "%: (NO. FREQ. )";: IF PF*'. ' THEN POKE 3 
6.30: PRINT "%(UOL. FREQ. )" - 1265 PRINT 

1270 FOR J=2 TO 16 
1280 PRINT SH(J). DT(J);: IF PF:: THEN POKE 36.30: PRINT UT(J) 
1285 IF PF% =0 THEN PRINT 
1290 NEXT'J 
1300 IF PF/. THEN PRINT : PRINT : PRINT :. PRINT 03"PR#0": PF: =0 
1310. PRINT :.. PRINT "'P' FOR PRINT-OUT" 
1320 PRINT "(SPC) FOR STEREOHETRIC RESULTS POKE 49168,0: GET KBS 
1330 IF KB$ =, "P", THEN PRINT : PRINT D$"PR#1": PF% = 1: PRINT : PRINT : GOT0 

1250 
. 1340 IF KBE THEN GOTO 1360 

1350 
(HOME 

1310 
1360 THOME : PRINT "STEREOMETRIC RESULTS FOR "SNES" ARE: - ": PRINT : PRINT 

: PRINT CHRS (7) 
1370 PRINT "MEAN NO. PTCL. DIAH. ";: HTAB 27: PRINT DNS" "UNT: PRINT 
1380 PRINT "MEAN UOL. DIAM. ";: HTAB 27: PRINT OV5" "UNS: PRINT 
1390 PRINT "MEAN UOL. /SURF. DIAH. ";: HTAB 27: PRINT OOV5" "UNS: PRINT 
1400 PRINT "MEAN HEIGHT DIAH. ";: HTAB 27: PRINT DWS" "UNS: PRINT 
1410" PRINT "UNIFORMITY RATIO";: HTAB 27: PRINT UR$: PRINT 
1420 'PRINT "SURF. AREA/UOL. RATIO";: HTPB 27: PRINT SAVRS" "UNS"-1": PRINT 

1430 PRINT "MEAN FREE PATH";: HTPB 27: PRINT MFPS" "UNS: PRINT 
1440 PRINT "LARGEST PTCL. DIAM. ";: HTAB 27: PRINT LP" "UNS 
1450 IF PF% THEN PRINT : PRINT : PRINT : PRINT DS"PR#0": PF. =0 
1460 VTPB 22: PRINT "'P' FOR PRINT-OUT. '0' FOR MENU. " 
1470 PRINT "'N' FOR NO. OR 'V' FOR VOL. BAR GRAPH ";: POKE 49168.0: GET KB 

S 
14: 30 IF KBE = "P" THEN PRINT : PRINT OS"PR#1": PF: = 1: PRINT : GOTO 1360 

1490 IF KB. = "N" THEN 
1495 IF KBS = "V" THEN 
1500 IF KB$ = "0" THEN 
1510 -60T0 1460 
L520 REM ... TRANSFER Di 

1530 D$ = CHR3 (4): U$ 
1540 PRINT 

GOTO 1520 
GOTO 1570 
GOTO 10 

PTA TO DISK FOR BAR GRAPH PROGRAM 

= "NUMBER" 



1550 PRINT OS"OPEN GRAPH DATP. DI": PRINT DS"WRITE GRAPH DATA": FOR J= 2 TO 
16: PRINT DT(J): NEXT J: PRINT BL: PRINT TL: PRINT UNS: PRINT SNES: PRINT 
US: PRINT DS"CLOSE GRAPH DATA" 

1560 PRINT D$"RUN GRAPH PLOT. D1": END 
1570 DS = CHRS (4): V$ = "VOLUME" 
1580 PRINT 
1580 PRINT DS"OPEN GRAPH DATA. D1": PRINT, DS"WRITE GRAPH DATA": FOR J= 2 TO 

16: PRINT VT(J): NEXT J: PRINT BL: PRINT TL: PRINT UNS: PRINT SNES: PRINT 
US: PRINT DS"CLOSE GRAPH DATA" 

1600 PRINT DS"RUN G/P. D1": END 

]LOAD G/P 
]LIST 

10 REM ... GRAPH PLOT 

20 D$ = CHR$ (4) 
30 DIM DT(15) 
40 PRINT 03"OPEN GRAPH DATA, 01": PRINT D3"REAO GRAPH DATA": FOR J=1 TO 

15: INPUT DT(J): NEXT J: INPUT BL, TL, LINS, SNE$, U$: PRINT OS"CLOSE CRAP 
H DATA" 

60 FOR J=1 TO 15 
70 IF J =, 1 THEN US = DT(J) 
80 IF DT(J) > US THEN US = DT(J ) 
90 NEXT J 
100J=0 :,. 
110 J=J+ 10: IF US-> J THEN 110 - 120 IF J'> 100 THEN J= 100 
130 US = J: UA = US i 10: K = 150 i VA: L'=, INT (K * VA) 
140 HGR : HCOLOR= 3: HPLOT 9,0 TO 9,150 TO 279,150 
150 FOR J=9 TO 279 STEP 18: HPLOTJ. 150'TO J. 154: NEXT J 
160 FOR J= 150 TO 0 STEP - K: HPLOT 5, J TO 9. J: NEXT J 
170 J=1: XL = 10: ST'= 17 
180 YY =L+ (1 -, DT(J) / US) 
190 IF YY <= L`-,. 1". THEN, 210 
200 GOTO 220 
210 HPLOT XL, 150 TO XL, YY TO XL + ST - 1, YY TO XL + ST - 1.150 
220 XL =, XL +, ST + 1' 
230 J=J+1: IF J<= 15 THEN 180 
240 HOME : VTPB'21: HTPB 1:. PRINT "HOR: "BL" TO "TL" "UNS" VERT: 0 TO "U 

S"%": PRINT CHRS (7) 
250 UTAS 22:. HTPB, 1:, PRINT "'P'. FOR PRINT-OUT, '0' FOR MENU ":: POKE 49166 

8,0:, GET-KE$ 
260 IF KB$, = "Q" THEN PRINT : PRINT CHR$ (4)"EXEC RESET. D1": END 
265"- POKE - 12528,7 - 270 UTAB 1: HTAB 1: PRINT : PRINT DS"PR#1": PRINT : PRINT : PRINT "OPTOMA 

X IV PARTICLE SIZE CLASSIFICATION FOR "SNES: PRINT : PRINT "HORIZONTA 
L SCALE: "BL" T0: "TL" "UN$: PRINT. "VERTICAL SCALE: 0 TO "VS": ("U3")": 

PRINT.:; PRINT " 
275 PRINT DS"PR#0": POKE - 12528,1 

, 280 POKE 6- 12529.255: POKE - 12524,0: PRINT DS"PR#10: PRINT : PRINT CHR$ 
(17): ' PRINT D$"PR#0": POKE - 12506,0 

290 PRINT"D$"EXEC RESET. 01": END 



APPENDIX B 

IMAGE ANALYSER COMPUTER PROGRAM FOR DISTRIBUTIVE MIXING 

10 REM .... MEASUREMENT OF SURFACE AREA OF AG13LOMERATES - J. H. E. 

20 CLEAR 
3º_0 DIM TPi 17). DT(17)' 
40 TEXT : HOME : HTAB 11: PRINT "*** SYSTEM IU **x" 50 UTAB 3: HTAB 5: PRINT "SURFACE AREA OF AGGLOMERATES" 60 UTAB 14: INPUT "INPUT SAMPLE NAME "; SNES 
70 UTAS 16: INPUT "INPUT OPERATOR NAME "; OPRt 80 A= LEN (SNE$) + LEN (OPRS): IF A> 26 THEN GOTO 40 90 UTAB 18: INPUT "INPUT DATE "; DTE3 100 Ds = CHR3 (4): I1S = "C? (: "": 12; = "a? 4: ": I3$ = "PH" + CHRZ (95) + ": 

": I4S = ": REM ... COMMAND STRINGS FOR IEEE INTERFACE 
110 D1 = 50: 02 = 250: REM ... TItF nEI. AvS FOR SYSTEN IV 

120 PRINT : GOSUB 450: GOSUB. 1130: GOSUB 1180 
130 HOME : PRINT " SYSTEM IV IMAGE mc'7SUREHENT PROGRAM" 
140 UTAB 6: HTAB 4: PRINT "(SPC) TO READ" 
150 VTAB 8: HTAB 4: PRINT "'H' TO CLEAR SCREEN" 
160 UTAB 10: HTAB 4: PRINT "'P' FOR PRINT-OUT" 
170 VTAB 12: HTAB 4: PRINT "'R' TO RECALIBRATE" 
180 VTAB 16: HTAB 4: PRINT "'S' FOR HEN SAMPLE" 
190 UTAB 18: HTAB 4: PRINT "'Q' FOR MENU" 
200 FC = O: TF = O: TA = O: TI = 0: Z = Q: FP = 0: MFP = O: TC = 0: 50 = 0: 51 = 0: 

FOR J=1 TO 15: DT(J) = 0: NEXT J 
210 VTAB 24: HTAB 1: POKE 49168.0 
220 GOSUB 1080: UTAB 23: HTAB 1: CALL - 868: FH =F* CAL: FH$ = STR$ (FH 

): FHS = LEFT$ (FHS, 5): PRINT " FRAt1E = ": FHV" "UNI" DIA11.11; 
230 KB = PEEK (49152): IF KB < 123 THEN 220 
240 KB$ = CHR$ (KB - 128): IF KB$ = "Q" THEN UTAB 23: HTAB 1: CALL - 86 

8: PRINT "QUIT - ARE YOU SURE? (Y/N)":: POKE 49168.0 
250 IF KBS = "Q" THEN GET KAX: IF KA$ <> "Y" AND KAS c> "t1" THEN bOTO 

250: IF KA$ = "N" THEN GOTO 210 
260 IF KAS = "Y" THEN TEXT : HOME : PRINT : PRINT 03"EXEC REý"ET, D1": END 

270 IF KBS _ "II" THEN GOTO 130 
280 IF KB$ = "R" THEN GET KB$: HOME : G0T0 120 
290 IF KB3 = "S" THEN POKE - 16368,0: RUN 
300 IF KBS = "P" THEN PRINT : PRINT D$"PR#1": PF% = 1: PRINT : PRINT : PRI147 

: PRINT : PRINT : GOTO 320 
310 GOTO 940 
320 OSS = STR$ (DS): HOME : PRINT OPRS.: PRINT DIES;: HTAB 35: PRINT 

08$ ; "% )" 
330 PRINT SHE$;: HTAB 25: PRINT "MAG. ="Ml: PRINT 
340 PRINT "SYSTEM IV SURFACE AREA MEASUREMENT" 
350 PRINT : PRINT " PUJMBER OF FIELDS: "FC: PRINT : PRINT "PARAMETER 

THIS FIELD CUMULATIVE" 
360 VTAB 10: HTAB 1: PRINT "FIELD AREA "FA;: HTAB 26: PRINT TF;: IF PF%: THEN 

POKE 36.40: PRINT "SQUARE "Utl 
370 VTAB 11: HTAB 1: PRINT "DETECTED "AR;: HTAB 26: PRINT TA;: IF PF% THEN 

POKE'36.40: PRINT "SQUARE "UNS: PRINT 
390 VTAB 12: HTAB 1: PRINT "M. F. P. "FP;: HTAB. 26: PRINT MFP;: IF PF%: 

THEN POKE 36.40: PRINT UN$ 
390 VTAB 13: HTAB 1: PRINT "AREA FRACT. "PA;: HTAB 26: PRINT TP;: IF PF% THEN 

POKE 36,43: PRINT "i": PRINT : PRINT 
400 IF PF%: THEN 420 
410 IF FC =1 THEN 430 
420 VTAB 16: HTPB 1: PRINT "S. O. OF AREA FRACTION = "SD 
430 IF PF% THEN PRINT : PRINT 0S"PR*0": PF:: = 0: GOTO 320 
440 GOTO 210 
450 REM ... SET CALIBRATIONS 
460 CA% =0 
470 PRINT OS"OPEN C-D/2, D1": PRINT 0$"READ C-O/2": INPUT H1$, H23, N3$, M4E, 

H5$. H6S, C1. C2, C3, C4, C5, C6, U1$. U2$, U3t, U4$, U5$, U6$: PRINT DS"CLOSE C- 
0/2" 

480 HOME : PRINT "CALIBRATION TABLE": PRINT 
490 INVERSE : HTAB 10: PRINT "MAG. ";: HTAB 20: PRINT "CAL. FACTOR";: HTAS 

35: PRINT "UNITS": NORMAL 
500 VTAB 5: PRINT "(1)";: HTAB 10: PRINT HIS;: HTAB 23: PRINT C1;: HTAB 3 

5: PRINT U1S; ", PP" 
510 UTAB 7: PRINT "(2)";: HTAB 10: PRINT M2S;: HTAB 23: PRINT C2;: HTAB 3 

5: PRINT U2S; "/PP" 
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520 UTAB 9: PRINT "(3)";: HTAB 10: PRINT M3$;: HTAB 23: PRINT C3;: HTAB 3 
5: PRINT U34; "/PP" 

53U WAS 11: PRINT "(4)";: HTAB 10: PRINT M4$;: HTAB 23: PRINT C4;: HIAB 
35: PRINT U4$; "/PP" 

540 VIAB 13: PRINT "(5)";: HTAB 10: PRINT M5$;: HTAB 23: PRINT CS;: HTRB 
35: PRINT U5$; "/FP" 

550 VTAB 15: PRINT "(6)";: HTAB 10: PRINT M6$;: HTAB 23: PRINT C6;: HTAB 
35: PRINT U6$; "/PP" 

560 VTAB 19: INVERSE : PRINT "NB";: NORMAL : PRINT " MAKE SURE FRAME IS I 
N 'CIRCULAR' MODE" 

570 UTAB 21: PRINT "TYPE NUMBER FROM 1 TO 6 OR 'CAL"': PRINT 
580 PRINT "YOUR CHOICE? ";: GET KBS 
590 IF KB$ = "1" THEN CAL = C1: UN$ = U13: HS = H1$: RETURN 
600 IF KB$ = "2" THEN CAL = C2: UN3 = U2$: H$ = 1123: RETURN 
610 IF KB$ = "3" THEN CAL = C3: UNS = U3S: H$ = M3$: RETURN 
620 IF KB$ = "4" THEN CAL = C4: UNE = U4$: M$ = M4$: RETURN 
630 IF KBS = "5" THEN CAL = C5: UNS = U5$: M$ = M5$: RETURN 
640 IF KB$ = "6" THEN CAL = C6: UN$ = U6$: H$ = M6$: RETURN 
650 IF KB$ <> "C" THEN GOTO 480 
660 HOME : VTAB 2: HTAB 4: PRINT "RECALIBRATION ROUTINE" 
670 CA% =1 
&30 VTAB 6: HTAB 4: INPUT "INPUT POSITION NO: "; P 
690 IF P=I THEN UTAB 8: HTAB 4: INPUT "INPUT UNITS "; Ul$: VTAB 10: HTAE: 

4: INPUT "INPUT MAG. "; M1$ 
700 IF P=2 THEN UTAB 8: HTAB 4: INPUT "INPUT UNITS "; U2$: UTAB 10: HTAB 

4: INPUT "INPUT MAG. "; M2X 
710 IF P=3 THEN UTAS 8: HTAB 4: INPUT "INPUT UNITS "; US$: UTAB 10: HTAB 

4: INPUT "INPUT MAG. "; t13t 
720 IF P=4 THEN UTAB 8: HTAB 4: INPUT "INPUT UNITS "; U4$: VTAB 10: HTAB 

4: INPUT "INPUT HAGS. "; M4X 
730 IF P=5 THEN VTAB 8: HTAB 4: INPUT "INPUT UNITS "; U5$: UTAB 10: HTAB 

4: INPUT "INPUT MAG. "; 115I 
740 IF P=6 THEN VTAB 8: HTAB 4: INPUT "INPUT UNITS "; U6$: VTAB 10: HTAB 

4: INPUT "INPUT MAG. "; MSS 
750 VTAB 12: HTAB 4: PRINT "INPUT FRAME HT IN "; 
760 IF P=1 THEN PRINT Ul$; 
770 IF P=2 THEN PRINT U2$; 
780 IF P=3 THEN PRINT U31; 
790 IF P=4 THEN PRINT U4$; 
800 IF P=5 THEN PRINT U5$; 
810 IF P=6 THEN PRINT U6$; 
820 INPUT " "; H 
830 UTAB 24: POKE 34,23: PRINT : PRINT 0$"PR#3": PRINT I1$ + "8800000" + 14 

$: FOR J=1 TO 01: NEXT J 
840 PRINT I1$ + "I" + 14$;: FOR J=1 TO 02: NEXT J 
850 PRINT 12$;: PRINT DE"PR#0": INPUT X. X. X, F: PRINT DS"PR#S": PRINT 13i: 

PRINT D$"PR#O": PRINT DE"IN#0" 
860 POKE 34,0: CAL =HF: CAL = INT (CAL * IEG + . 5) ' 1EG: CAL$ = STR. 

(CAL) 
870 IF P=1 THEN Cl = UAL (CAL$) 
880 IF P=2 THEN C2 = VAL (CAL$) 
890 IF P=3 THEN C3 = VAL (CAL$) 
900 IF P=4 THEN C4 = VAL (CAL$) 
310 IF P=5 THEN C5 = UAL (CAL$) 
920 IF P=6 THEN C6 = UAL (CAL$> 
930 GOTO 480 
940 REM ... READ SYSTEM IV OUTPUT 

950 AL = 1001300 
560 VTAB 24: POKE 34,23: PRINT : PRINT DE"PR#3": PRINT I1$ + STR$ (AL) + 

14$: FOR TX =1 TO D1: NEXT TX 
970 PRINT I1$ + "I" + I4$;: FOR TX =1 TO 02: NEXT TX 
980 PRINT 12$: PRINT D$"PR#º0": INPUT AR, CT, IN. FR, DS: PRINT DS"PR#3": PRINT 

13$: PRINT 03"PR#00: PRINT DS"IN#0" 
990 FA = . 7855 * (FR - 2) * (CAL - 2): TF = TF + FA: AR = AR * CAL ^ 2: T11 = 

TA + AR: FC = FC +1 
1000 FA = INT (FA): TF = INT (IF) 
1010 AR = INT (AR * 1E1 + . 5) / 1EI: TA = INT (TA) 
1020 PA = 1E2 * AR FA: PA = INT (PA * 1E3 + . 5) / 1E3: TP = 1E2 + TA / IF 

: TP = INT (TP * 1E3 + . 5) / 1E3 
1030 I= IN i FA: TI = TI + IN: NL = TI ' TF 
1040 FP = (1 - (AR i FA)) / I: FP = INT (FP * IE2 + . 5) / 1E2: MFP = (1 - 

TA i TF)) / NL: MFP = ItIT (MFP + 1E2 + . 5) / 1E2 
1050 IF FC =I THEN MFP = FP 
1060 GOSUB 1220 
1070 POKE 34,0: GOTO 320 
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10813 REM ... JUST READ FRAME SIZE - IGNORE OTHER OUTPUTS 

1890 UTAB 24: POKE 34.23: PRINT :. PRINT DS"PR#3": PRINT I1$ + "00000" +I 
43: FOR J=1 TO D1: NEXT J 

1100 PRINT I1$ + "I" + 14$;: FOR J=1 TO 04: NEXT J 
1110 PRINT I2$: PRINT 0$ PRM0": INPUT X, X, X, F: PRINT DS"PR*3": PRINT I3$: 

PRINT D$"PR*G": PRINT DS"iN*00" 
1120 POKE 34,0: RETURN 
1130 IF CA': <>1 THEN RETURN 
1140 DS = CHR$ (4): PRINT : PRINT OS"OPEN C-O'2": PRINT OS"DELETE C-0'2": 

PRINT D$"OPEN C-0/2": PRINT D$"WRITE C-0! 2" 
1150 PRINT HIS: PRINT 112$: PRINT M3$: PRINT M4$: PRINT 1153: PRINT M6$ 
1160 PRINT Cl: PRINT C2: PRINT C3: PRINT C4: PRINT C5: PRINT C6 
1170 PRINT U1#: PRINT U2$: PRINT U31: PRINT U4$: PRINT U5$: PRINT U6$: PRINT 

D3"CLOSE C-D/2": RETURN, 
1180 HOME : UTAB 2: PRINT "PLEASE MAKE SURE THE SIZER IS ON "AUTO"' 
1190 UTAB 4: PRINT "AND THAT YOU ARE IN 'FULL COUNT' MODE" 
1200 VTAB 23: HTAB 1: PRINT "PRESS (SPC) TO CONTINUE"; 
1210 GET KB$: RETURN 
1220 IF FC =1 THEN RETURN 
1230 0 =(PA - TP) A2 
1248Z=Z+D ... 1250 SO = (Z / FC) - . 5: S0 = INT (SD * 1E3 + . 5) i 1E3 
1260 F: ETURN 
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APPENDIX C 

NOMENCLATURE 

At Total area of examination 

AF Area traction of detected features 

BP Breaker plate present in barrel head adaptor 

CB Cabot PP1359 carbon black masterbatch let-down to 0.5% (by 

weight) 

CC Calcium carbonate 

D Arithmetic mean diameter 

Df Ratio of measured MVD to that of the initial feed 

D{i} Section equivalent spherical diameter 

D{j} Particle equivalent spherical diameter 

Dmax Maximum particle diameter 

D2 Durcal 2 

DC Decreasing temperature profile (220/215/205/195/185°C) 

DDI Dispersion and distribution index (= (AF x SDaf]/image mag. ) 

FT Flat temperature profile (205°C) 

H95 Hydrocarb 95T 

HCCR Hakuenka CCR 

HS High screw speed (180rpm)' 

HT High temperature profile (205/215/225/235/240°C) 

HY Hydrocarb 

IM Image magnification 

LT Low temperature profile (165/175/185/195/200°C) 

M MI llicarb 

MVD Mean volume diameter 

Na Observed number of sectioned particles per unit area of field 
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N1 Number of intersections of television scan line per unit 

length 

Nv Calculated number of particles per unit volume of specimen 

NS Normal screw speed (120rpm) 

NT Normal temperature profile (185/195/205/215/220°C) 

OSL Omyalene SL 

P(t, j) Probability of test surface intersecting particles of 

equivalent diameter j to yield sections of equivalent 

diameter i 

PA Nylon 6,6 

PD2 Preconditioned Durcal 2 

PH Calcium carbonate/ polypropylene powder premix fed at hopper 

PP Polypropylene powder 

PPG Polypropylene granules 

S13 Setacarb 13 

SDaf Standard deviation of area traction 

SH Separate feed of filler and polymer at hopper 

SS Slow screw speed (60rpm) 

SVI Separate feed of filler at first vent into molten polymer 

SV2 Separate feed of filler at second vent into molten polymer 

WBP Without breaker plate in barrel head adaptor 

t Refers to sectioned particle diameters 

j Refers to actual particle diameters 

60%0 60% of maximum output 

80%0 80% of maximum output 

100%0 Maximum output 

4B 4 barrel extruder configuration 

5B 5 barrel extruder configuration 
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8P 8mm pitch metering section 

12P 12mm pitch metering section 

16P 16mm pitch metering section 

8P2D 8mm pitch metering section plus 2 mixing elements at end of 

screw 
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