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Abstract 

Brunel University, Uxbridge; Department of Mathematical Sciences; Yee Jiun 
Yap; Topics in Complex Systems; 2006; Doctor of Philosophy 

Fundamental laws of physics, although successful in explaining many phe- 
nomena observed in nature and society, cannot account for the behaviour of 
complex, non-Hamiltonian systems. Much effort has been devoted to better 

understanding the topological properties of these systems. Neither ordered 
nor disordered, these systems of high variability are found in many areas of 
science. Studies on sandpiles, earthquakes and lattice gases have all yielded 
evidence of complexity in the form of power law distributions. This scale- 
free characteristic is believed to be the hall-mark of complexity known as 
self-organised criticality. Systems in the self-organised critical state regulate 
themselves and are resistant to error and attacks. The aim of this thesis is 

to further current knowledge of complex systems by proposing and analysing 
three models of real systems. Statistical mechanics and numerical simulations 
are used to analyse these models. The first model mimics herd behaviour in 

social groups and encompasses growth and addition. It has been found that 

when the growth rate is fast enough, the group size distribution conforms to 

a power law. When the growth rate is slow, the system runs out of free agents 
in finite time. The second model aims to capture the basic empirical measure- 
ments from hospital waiting lists. This model illustrates how the power law 
distributions found in empirical studies might arise, but also indicates that 
these distributions are unlikely to be caused by the preferential behaviour of 

patients or physicians. The third model is a salary comparison model; the 

salary distributions of most of its variants are power laws. Both mean field 

and 1-d versions of the model are analysed, and differences between the two 

N, ersions are identified by looking at the mean absolute difference between 

the salaries in each version. 
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Chapter 1 

Introduction 

1.1 Complex systems in nature and society 

For thousands of years, philosophers and thinkers have been trying to un- 

derstand the world around us. However, modern scientific studies based on 

hypothesis and supported by experimental evidence only began about three 

hundred years ago, when Isaac Newton introduced the concept of unbiased 

interaction between experimentation and theory in Principia Mathematica. 

This led to subsequent scientific studies and discoveries by other thinkers 

of that time. By the late 19th century, the collective study of nature using 

mathematics was termed 'physics'. 

Physics involves the modelling of the universe using mathematical ex- 

pressions. All subjects under study are definitive and clear; no ambiguity 

exists on whether two masses attract each other and the strength of gravity 

weakens with physical distance. Thus, the behaviour of all matter is clearly 

accounted for by the laws of physics [1,2,3]. In classical mechanics, these 
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CHAPTER 1. INTRODUCTION, 

definitive laws allow one to predict the subsequent outcomes if the initial con- 

ditions are known. For example, if all the initial conditions of a pendulum 

bob raised to a certain height are known, it is possible to predict the velocity 

of the bob at any subsequent time. Although the predictions based on quan- 

tum mechanics are in the form of probabilities and eigenvalues, forecasts are 

still possible. For instance, it is trivial to predict the possible positions of an 

electron around a nucleus given the wave function and the initial conditions. 

However, one might be perplexed if one were to apply the laws of physics 

to complicated systems such as the weather or a price index in the stock 

market. Whilst the laws of physics are very effective in predicting the out- 

comes of linear systems, they tend to fail when applied to more complicated 

nonlinear systems, as was discovered by Edward Lorenz in 1961. Lorenz was 

running a simple weather simulation using a set of nonlinear equations when 

he accidently discovered that two predictions were totaly different despite 

using the same set of equations and similar values of the initial condition. 

The cause of the great difference in the outcome turned out to be the tiny 

difference between the values of the initial state used [4]. This led to subse- 

quent studies of unpredictable systems that are sensitive to initial conditions 

and the eventual establishment of a new discipline known as chaos theory 

[5,6,7]. Systems that display such unpredictability are known as chaotic . 
Ordered systems are deterministic and their future states can be predicted 

using the laws of physics. As an ordered system becomes more and more 

disordered, its entropy becomes higher and higher and when a critical point 

is passed, the system becomes chaotic. However, at precisely the critical point 

the system is partially predictable, and partially not; it tends to exhibit a 
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CHAPTER 1. INTRODUCTION 

power law behaviour [8,9,10], but remains largely unpredictable. Systems 

at this critical point are known as complex systems [11,12,13,14]. These 

systems are characterised by high variability and are commonly referred to 

as being emergent. 

Scientists have now realised that many collective systems show emergent 

characteristics. There have been accounts of many areas of physics where 

the laws of physics, commonly known as reductionist laws, cannot be used 

to predict the outcomes given the initial conditions. For example, there 

have been problems of predicting the outcomes in experiments of solid-state 

physics, despite the fact that the subjects involved are governed by quantum 

mechanics. Even theories in particle physics, such as string theory, are emer- 

gent in nature. In quantum mechanics, although the Schr6dinger equation 

agrees with experiments involving isolated atoms, it cannot be used to ac- 

count for the behaviour of more than ten particles. Thus, whilst many laws 

in physics involve the application of symmetry, many real systems in nature 

appear to be anti-symmetric. 

Truly stable systems only constitute a very small part of the universe, as 

most systems, be they in nature or society, have symmet ry- breaking charac- 

teristics. Such systems are often associated with power laws [10,15] 

F(x) = x'ýý' (1.1) 

where r is some physical quantity, F(j, ) is the probability of obtaining x and 
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CHAPTER 1. INTRODUCTION 

is a constant. Power law distributions are referred to as scale-free since 

F(kx) 
k' 

F(x) 

where k is a constant, is independent of x. Many systems in nature and 

society have been found to exhibit power law behaviour. One such system 

is the solar flares emitted from the sun [161. Observations on the solar flares 

have shown that the energy distribution is a power law with an exponent 

of 1.6. Size distribution of pulsar glitches [17] and intensity distribution of 

x-rays from black holes [18] have both been found to be power law with 

exponents close to unity. Other examples of complex systems in nature 

include metabolic networks of organisms [191, food webs [201 and protein 

networks in biological cells [21]. The World 'Wide Web [22], human sexual 

contact webs [23] and science collaboration [24] networks are just several of 

the many systems in society with power law distributions. On the large scale 

involving the interactions of many elements at critical points, the world can 

be viewed as a network being regulated by an organizational behaviour. This 

behaviour, as we shall see in the later sections, organises the system when 

changes are introduced, causing the system to resist the changes. 

To analyse and understand complex systems, statistical mechanics [25, 

26,271 is used to model certain systems in an attempt to better understand 

their network topologies. Although complex networks have traditionally been 

the territory of graph theory [28,29,301 which focusses on regular graphs, 

random graphs [13,31,32,33] which have no apparent, principles have been 

proposed as the most fundamental realisation of complex systems. Following 

4 



CHAPTER 1. INTRODUCTION 

random graphs, other complex networks [13] were also proposed, including 

small-world [13,34,35,361 and scale-free networks [13,37,38,39]. Each of 

these complex networks is briefly described in the following subsections. 

1.2 Complex networks 

1.2.1 Random graphs 

A graph [13] is defined as a pair of sets G= ýP, El where P is a set of N 

vertices and E is a set of edges that connect any two vertices together. The 

number of edges connected to a vertex is known as the degree of the vertex, 

denoted by k, and the degree of vertex i is denoted by ki. Vertices and edges 

are normally represented by dots and straight lines respectively. A typical 

graph is shown in Fig. 1.1 

Random graphs are graphs where any two vertices are connected ran- 

domly. This is applicable to complex systems since most of them have an 

unknown connection algorithm; the ambiguity causes the connections to ap- 

pear totally random. 

In the Erdo's-Renyi model [31], a random graph consists of N vertices 

connected by n edges chosen from N(N-1) 
possible edges. This gives a to- 2 

N(N-1) 

tal of Cn2 
possible graphs each with n edges and N vertices, where 

N(N-1) N(N-1) I 
C11 2 

N(N 
2 

1) 
. 

is a binomial coefficient. A model equivalent to the 
n! ( 2-- n)! 

random graph is the binomial model [13], defined as a system with N vertices 

initially with each pair of vertices linked with probability p. Consequently, 
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CHAPTER]. INTRODUCTION 

I 

6 

Figure 1.1: Ail example of a graph with a set of vetices P 1,2,3,4,5,61 
and edge set E= ý11,21, ý2,4ý, f3ý41, f4,61ý. 
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CHAPTER 1. INTRODUCTION 

the probability of obtaining a graph Go with n edges is given by 

= pn(l _ P) 
N(N-1) 

-n. P(Go) 2 

In real physical systems where the dimensions are mostly finite, the value 

of p for a system of a fixed size N determines whether a particular property 

A will occur [13]. Following this line of thought, the property A is likely to 

occur when p is greater than a critical value p,. However, many properties 

in complex networks only occur in systems with specific sizes. For instance, 

cycles [13] only appear in graphs with small p and large N, and do not 

occur in smaller graphs with similar values of p. Thus, the parameter p(N), 

defined as the connection probability for a graph with N vertices, is often 

used instead of p when investigating the occurrence of a property A. In 

general, a certain property A will most likely occur in a graph when its p(N) 

is equal to the critical connection probability p, (N). If p(N) > p, (N) as 

N --4 oc, almost every graph with p(N) will have property A. However, if 

p(N) < p, (N), almost all graphs do not possess property A. 

An interesting property of the random graph is its diameter [13], defined 

as the maximal distance between any pair of vertices. If p is not too small, 

random graphs tend to spread since the number of vertices at distance 1 from 

a given vertex is not much smaller than <k >1, where <k >= pN is the 

mean degree of the graph. This spreading causes the diameters of random 

graphs to be small. 

Another interesting property of a graph to study is its degree distribution 
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CHAPTER 1. INTRODUCTIO.: \' 

[13]. The degree distribution of a vertex i, denoted by Pd(ki = k) is given by 

=: CN-lpk(l 
_P)N-1-k Pd (ki -=k) k (1.4) 

where CN-I is the binomial coefficient, and this equation corresponds to a k 

binomial distribution. From Eqn. (1.4) the expectated value of the number 

of vertices with degree k, denoted by E(Xk)7 is 

E(Xk) =: NPd(ki =: k) =: NCN-Ipk (1 
_ P)N-1-k. k 

Consequently, for large N the distribution Of Xk is 

Pn(Xk = r) == exp(-Ak) 
r! 

which is a Poisson distribution with mean value Ak = pN. 

(1.5) 

(1.6) 

Clustering [13,35] is another property frequently [40,41,42] investigated 

in graphs, which measures the degree of clustering in the immediate neigh- 

bourhood of vertex i. The immediate neighbourhood of vertex Z, denoted by 

AI, is defined as 

AIj = jvjj : eij (1.7) 

where uj is a vertex directly connected to vertex i, eij is the edge connecting 

them together and E is the set of edges of the graph. For an undirected 

graph, the clustering coefficient of vertex 1, denoted by Ci, is defined as the 

ratio between the number of edges o, that exist between the vertices in the 

immediate neighbourhood of vertex 1 and the total number of possible edges 
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CHAPTER 1. INTRODUCTION 

ki (k, - 1) 
that can exist between these vertices. Thus, the C, of an undirected 2 

graph is given by 

ci = 
2n, 

_ (1.8) 
ki(k, - 1) 

Similarly, the Ci of a directed graph is 

ci = 
ne 

ki(ki - 
(1.9) 

For a random graph, the clustering coefficient of the entire graph is given by 

the mean degree of the graph over all vertices. Following this, the clustering 

coefficient of random graphsCran iS 

Cran <k> 
N 

From Eqn. (1.10) it is expected that the plot of C,,,, l <k> versus N yields 

a power law with an exponent of -1. However, plots from many real networks 

do not conform to this prediction. This is especially true for large ordered 

lattices where the C,,,, l <k> is independent of N, instead of decreasing 

as N-'. The clustering coefficient of these large ordered lattices is found to 

depend only on the coordination number of the lattice and not its size [351. 

However, the degree distribution of most real networks follows a power 

law instead of the Poisson distribution Eqn. (1.6) applicable to random 

graphs [13]. One way to generate scale-free behaviour in a random graph is 

to force the degree distribution to conform to a power law whilst allowing 

the vertices to be connected randomly. Although this shows how a power 

law degree distribution can be produced, it does not help to explain how 
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CHAPTER 1. INTRODUCTION 

the scale-free phenomenon emerges in a complex system as a result of the 

dynamics of its constituents. This problem is addressed in the following 

subsection where the scale-free model is described briefly. 

1.2.2 The scale-free model 

Instead of aiming at producing a topologically correct network, the scale-free 

model [13] is directed at understanding the dynamics responsible for the scale 

free features seen in many real networks. Thus, in the construction of this 

model, emphasis is placed on searching for the mechanism responsible for the 

power law degree distribution seen in real networks. 

The two features that were introduced to produce a power law degree 

distribution are growth and preferential attachment. In the growth feature, 

there are mo vertices in the system at the initial time step. Then, at each 

subsequent time step, a new vertex is introduced into the system. This new 

vertex is attached to m existing vertices where m< mo. In the preferential 

attachment, the new vertex is attached to vertex i with degree ki with a 

probability fl(ki), where 

rl ki - 
ki 

_. Ej kj (1.11) 

Both of these features are absent in the random graph model and the small- 

world model introduced in the following subsection. 

One way of obtaining the degree distribution is to use the continuum 

theory [37]. In the continuum theory, k, is assumed to be a continuous real 

variable. The change in k, with time is expected to be proportional to the 
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CHAPTER 1. INTRODUCTION 

probability of a vertex being connected to vertex i. Thus, we have 

Oki ki 
at = mll(ki)= MEN- 1 kj j=l 

(1.12) 

where m is the number of edges of new vertices introduced at each time 

step and t is time. The sum in the denominator of Eqn. (1.12) is equal to 

2mt -m since it is over all vertices in the system minus the newly introduced 

one. This gives 
Oki ki 
at 2t -1 

(1.13) 

for large t. With the initial condition that every new vertex is attached to 

,m existing vertices in the system, the solution of Eqn. (1.13) is 

k(t) = rn ( (1.14) 

where t, is the time step at which vertex z is introduced into the system, 

m and 3=1. Thus, the time dependence of the degrees follows the 2 

power law. 

From Eqn. (1.14) the probability that the degree of vertex i at time t is 

smaller than k, denoted by P(ki(t) < k), is given by 

P(ki(t) < k) =P ti >m 
11,3t 

0113 

By adding the vertices to the system at equal time intervals, the probability 

of getting ti, that is, the probability of vertex 7' being chosen to be linked to 

11 
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m new vertices, denoted by P(ti), is 

P(ti) =1 MO +t 

where mo is the number of vertices at the initial time step as defined earlier. 

By substituting Eqn. (1.16) into Eqn. (1.15) we get 

mllot) 
=I- 

Ml/j3t 
(1.17) 

010 010(t + mo) 

The degree distribution is thus given by 

P(k) = 
OP(ki(t) < k) 

- 
2ml/Ot 1 

Ok mo +t 010+1 

For t ----> oc 

P(k) - 2m'1'3k-^' 

where -y = ý' +1=3. This agrees with numerical simulation results of the 

scale-free model in [38]. 

The average path length of a graph is defined as the average number of 

vertices between any two vertices. Empirical studies have shown that the 

average path length of real networks is small. The average path length of the 

scale-free model is smaller than that of the random graph model, indicating 

that the former is more efficient in bringing the vertices close. From data 

plots, the average path length 1 of the scale-free model is found to follow the 

logarithmic form 

I == A log(N - B) +C (1.20) 
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CHAPTER 1. INTRODUCTION 

where A, B and C are constants. However, an analytical explanation for the 

path length of the scale free model is still lacking. 

Besides the path length, there is also no theoretical prediction for the 

clustering coefficient of the scale free model. From simulations, the clustering 

coefficient C,,,,,, of this model is shown to follow the power law CsCale - 

N-0.75. Thus, the clustering coefficient of this model decreases rapidly with 

N, compared to the C,,,, 
--< 

k> N-1 in Eqn. (1.10) of the random graph 

model. 

1.2.3 Small-world networks 

The small-world model, just like the random graph model, is aimed at con- 

structing a topologically correct network. It was observed that many real 

networks have small path lengths like those of random graphs. However, 

the clustering coefficients of these real networks are much larger. The first 

model which successfully captured these features was the Watts-Strogatz 

(WS) model [35]. 

In the WS model, one starts with a regular lattice before initiating a 

random process. Initially, the system consists of a ring lattice with N vertices, 

and each vertex is connected to its first K12 neighbours on each side, giving 

each vertex a total of K neighbours. Then, each edge is randomly reconnected 

with probability p without any facsimile connections or having any vertices 

being connected to themselves, giving a total of pNK12 long-range edges. By 

varying the value of p between zero and unity, one can adjust the degree of 

randomness of the system, and the small-world model interpolates between 

13 



CHAPTER 1. INTRODUCTION 

a regular ring lattice and a random graph. 

Consequently, this model is suitable to represent a social network where 

everyone is connected to some people far away as well as someone close- 

by. Examples of this type of social network includes scientific collaboration, 

familial relationship and worldwide branches of a business group. 

According to the work by Watts and Strogatz [35], when p=0, the aver- 

age path length and clustering coefficient at p, denoted by 1(p) and C,,,,, I(p) 

respectively, are such that 1(0) 
-- N12K and C,,,, 11(0) -- 3/4. For p -+ I 

the model tends towards a random graph with 1(1) - ln(N)/In(K) and 

Csmail (1) - KIN. By looking at the two extremes, it seems that a small 1 

corresponds to a small Csmall 
, and a large 1 corresponds to a large Csmall 

- 
However, the work of Watts and Strogatz [35] has shown that there is a re- 

gion within which the I (p) drops rapidly with p but the Csrnall (P) stays almost 

constant. This results in a small 1 and large C,,,,,,, two features commonly 

seen in real networks. 

In Ref. [34] it was noticed that 1 starts to decrease only when p> 21NK, 

thereby indicating the presence of at least one shortcut. This suggests that 

a p-dependent crossover length N* is present and it has been found that 

1N for N< N* and I- In(N) for N> N*. Barthelemy and Amaral [43] 

conjectured that the characteristic path length is given by 

l(N, p) - N*F (N) (1.21) 
N* 
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where 

F(u) = 
if u<I 

In(u) if u>I 
(1.22) 

The expression for C,,,,, I(p) can be derived by using a slightly different 

definition of C,,,,,,, denoted as (p) [44]. Csmall (P) is defined as the mean 

number of edges between the neighbours of a vertex over the mean number 

of possible edges between those neighbours. To obtain the Csrnall(P), we first 

look at a regular lattice with C,, n,, 11(0). The probability of two neighbours 

which are connected to each other and to a vertex i at p=0 remaining 

connected at p>0 is (I - p)', so that C' - p)'. The small(P) 
Csrnal/(O)(I 

deviation of Csmall(P) from Csmall(p) has been numerically shown to be zero 

as N --- * oo [44]. 

1.3 Error and attack tolerance of complex net- 

works 

Complex networks tend to display a high degree of tolerance against errors 

and attacks made on them [13]. For example, the large global phone-call 

networks are not disrupted by small malfunctions and technical errors in in- 

dividual systems, and biological cells continue to evolve and multiply despite 

some defects in the DNA structures. The tendencies to resist changes in these 

systems are largely due to the presence of redundant connections. However, 

the ability of a network to maintain stability based on topological properties 

would be an interesting topic to pursue. 

An error occurring in a network or an attack made on it can be represented 
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by the removal of one or more vertices from a graph representing the network 

[13]. To investigate the robustness of a system in response to an error or 

attack, some of the vertices of a complex system are removed and the effects 

of' these removals are observed. Initially, the network is connected, and at 

each subsequent time step, a vertex is removed from the system. The removal 

of a vertex results in the loss of all edges connected to it. An illustration of 

the vertex removal is shown in Fig. 1.2. 

vertex 
removal 

Figure 1.2: An illustration of the vertex removal, After the removal of vertex 
A, the network breaks down into two isolated clusters. The path length 
between B and C is five in the undisturbed state, and this increases to eleven 
after the vertex ren-loval. 

One way to ineastire the effects of vertex removal on the slysteni is to 

look at the relationship between the fraction f of the vertices removed and 

CL, the fraction of vertices in the largest cluster. Also, the effects can be 
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measured by looking at how f changes with 1, the average path length of the 

largest cluster. 

For a random graph network the CL decreases as the f increases, and for 

a critical f, denoted by f, the CL drops to zero. The I increases with f and 

reaches a maximum value at f,. The 1 decreases as the f increases beyond 

fc - 
For the scale-free model, although the CL decreases as f increases, the 

former reaches zero at a higher f. Also, the 1 of the scale-free model increases 

at a slower rate than the random graph network. In Ref. [13] it was shown 

that fc tends to unity as the network size increases. Thus, the scale-free 

model is highly resistant to changes and attacks. 

To investigate the effects of an intentional attack on the system, prefer- 

ential vertex removal is applied to the network. In this case where the most 

highly connected vertex is removed from the system at each time step, the 

scale-free model breaks down more rapidly than the random graph network 

due to the dependence of the former on highly connected vertices. 

1.4 Self-organised criticality 

In the previous section, the tendency of complex systems to overcome any 

effects brought on by errors and attacks has been discussed. However, it 

is interesting to know that not only can an unstable complex system resist 

changes, it can do so on its own without any external influences. Although 

at a disordered state, it regulates into a phase which has the same properties 

as those found in the ordered systems at the critical point. Examples include 

17 
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the size distribution of avalanches in the sandpile model [45,46,47] and 

scaling behavior in the lattice gas model [48,49,50]. This inclination of dis- 

ordered systems to form patterns solely through the process of self-assembly 

is commonly referred to as self-organised criticality (SOC) [16,51,52] in 

complexity theory. 

Despite tremendous efforts by scientists to pin down SOC mathematically, 

it still lacks a mathematical formalism. Although much is still unknown 

about complex systems, empirical studies have shown that, the distribution of 

frequency with which events occur in a system at SOC state tends to follow 

a power law. Examples of such systems that display this SOC behaviour 

include the financial markets and hospital waiting lists, both of which will 

be discussed in detail in later chapters. 

An interesting question to ask is what features of a system are required 

in order for it to display SOC. The answer lies in the time scales of the ex- 

ternal and internal dynamical processes [52]. For SOC to occur, the internal 

relaxation process must be much faster than the process of external influ- 

encing. This separation of time scales is due to the presence of threshold 

and metastability in many complex systems. A good example would be the 

pushing of a heavy object lying on the floor. A force is applied to the object 

which slowly builds up over time. When the applied force is smaller than the 

friction between the object and the floor, the object remains stationary. As 

the force on the object builds up, the stress between the bottom of the object 

and the floor increases. Thus, although stationary, the object goes through a 

series of metastable states each corresponding to certain energy levels. The 

friction is the threshold for motion; once the applied force is larger than the 

18 
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friction, the object jerks off along the surface for a short while before stopping 

and remaining stationary again. These metastable states are barely stable 

as a slight application of force can result in the object jerking forward or 

remaining stationary. The relaxation process releases the stress which sends 

vibrations along the interacting surfaces in the same way [53] as tectonic 

plates sending off vibrations during earthquakes, and the distribution of en- 

ergy released during earthquakes has been shown to be power law [10,15] 

which has an exponent of 1, commonly referred to as the C utenberg- Richter 

law [54,55]. In short, SOC behaviour occurs in slowly driven threshold sys- 

tems dominated by interactions. Thus, a constructive definition for complex 

systems would be Slowly Driven Interaction- Dominant (SDIDT) systems [521 

in contrast to SOC, which is a phenomenological definition. 

In disordered networks, just like the two-body system mentioned above, 

threshold and metastability also play a vital role in producing SOC [52]. 

Consider a network of vertices connected by edges. External forces are ap- 

plied randomly to the vertices, and each time a force is applied to a vertex, 

the energy in it starts to build up. A signal can only travel from vertex A to 

vertex B if A and B are connected and the energies of all vertices connected 

between A and B, inclusive of B, are above a certain threshold. Due to 

the error tolerance characteristic of SDIDT systems, the internal dynamics 

of the system will attempt to conserve its original state of relaxation. An 

analogy to this is inertia described in Newton's first law of motion. The 

internal dynamics will stop every time the relaxation process is over. The 

slow driver eventually brings the energies of a portion of the vertices to rise 

above the threshold and a new signal starts to move through the system. 
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Since the driver applies a force to a randomly selected vertex, the path taken 

by the signal is a random walk [56,57]. It is known that in higher dimen- 

sions, random walks are associated with fractals [58,59,60] which displaý 

self- similarity. Since the activated areas are composed of fractals of greatly 

varying sizes, the distribution of relaxation durations are expected to be a 

powerlaw. 

Although power law distributions occur in many complex systems, care 

must be taken when using a power law distribution as the indicative sign that 

a system is at SOC state [52]. To establish that a system is truly at SOC, both 

spatial and temporal quantities must display scale-free characteristics. This is 

because power laws can arise in many systems without any underlying critical 

state. So, both spatial fractals and fractal time series must be identified 

before one can claim that a system is critical. However, spatial fractals are 

hard to detect. In most investigations of systems with spatial structures, the 

size distribution of an e%, ent is measured after triggering the system into an 

avalanche or a self-sustaining chain of events. 

The fact that power law distributions stem from so many seemingly dif- 

ferent systems indicates that the occurrence of SOC is independent of minor 

details. With this principle of universality, one can safely discard all but 

the qualitatively important features when constructing a model of a complex 

system without losing the SOC feature. Besides making it easier to analyse 

the dyiiainics of the interacting agents, a, simplified model also allows one to 

tinderstand the real world intuitively without all the complicated features. 

Thus, all inodels introduced in this thesis are simplified models of the real 

dviiamical svsteins. 
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1.5 Criticality in a cellular automaton: the 

sandpile model 

The concept of self-organized criticality was illustrated in 1988 by Bak, Tang 

and Weisenfeld [45] using a sandpile model. In this paradigm, grains of sand 

are added onto the pile, causing avalanches to occur. Although the model 

is oversimplified and is far from adequate to model the dynamics of a real 

physical sandpile, it possesses the necessary ingredients to capture the essence 

of SOC so commonly observed in real systems. 

Consider a system with a two dimensional grid with coordinates (x, y). 

The number of grains of sand at (x, y) is denoted by Z(x, y). The grains in 

this model are assumed to be cubes of equal sizes which can be stacked on 

top of one another. A grain is added to a randomly chosen site, so that 

Z(X, Y) --ý Z(X, Y) +1 

and this process is repeated over a certain number of time steps. The authors 

of this model proposed that grains of sand at a site will topple once a certain 

arbitrarily set threshold Z, is reached. For instance, if the threshold is set 

to 8, and if the Z of a site (x, y) has reached 9, one grain will move into each 

of the surrounding sites. Consequently, 

Z (x, y) ---> Z (j" y) -4 
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and 

Z(x ± 1, Y) - Z(, T- ± 1, Y) +1 

Z(X, y± 1) --, Z(X, y± 1) +1 

for Z(x, y) > Z, This is illustrated in Fig. 1.3. 'vN'hen the Z of a site at 

the boundary of the pile exceeds the threshold, the grains topple out of the 

system and are no longer considered. 

1 7 5 3 6 2 1 4 
8 4 2 7 1 5 4 2 
3 7 3 5 8 2 7 6 
1 5 4 8 8 8 3 3 
7 1 2 8 7 6 2 6 
2 7 5 1 4 3 5 1 
5 8 6 4 7 6 5 8 
6 4 3 2 6 1 4 3 

mmooll'. 

4ý 

1 71 5 13 16 2 1 4 
8 41 2 17 11 5 4 2 
3 71 3 15 18 2 7 6 
1 51 4 9 8 8 3 3 
7 11 2 8 7 6 2 6 
2 7 5 1 4 3 5 1 
5 8 6 T 7 6 5 

* 
8 

6 4 3 2 6 1 4 3 

--qw 

1 7 151 3 16 2 1 4 
8 4 121 7 11 5 4 2 
3 7 131 6 18 2 7 6 
1 5 151 5 19 8 3 3 
7 11 21 9 7 6 2 6 
2 7 5 1 4 3 5 1 
5 8 6 4 71 6 5 8 1 

.6 
4 3 2 61 11 4 3 

Figure 1.3: An illustration of the sandpile model algorithm. The addition of 
a single grain to a site in the pile causes a series of toppling events. The grey 
boxes correspond to the unstable sites. 

Initially, all sites are stable and no toppling events occur. As time pro- 

gresses, a, single toppling event occurs which does not induce further events 

since the neighbours are unlikely to gain a height exceeding Z,,. As more 
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and more grains are added to the system, the toppling at a site induces 

other toppling events, causing an avalanche. It has been shown that the 

size distribution of the avalanches follows a power law with an exponent of 

approximately 1.1 [16], indicating that the system is at SOC state. This 

should come as no surprise if one recalls from the previous section that the 

ingredients essential for SOC are a threshold and metastability, 

The randomness in the choosing of sites in this model does not affect the 

power law behaviour, and this is an indication that randomness does not play 

a role in the complexity of systems. This fact is important to the analysis of 

all of the models introduced later in this thesis. 

1.6 Structure of the thesis 

The aim of this thesis is to further our knowledge of complexity in nature 

and society by proposing and analysing three models of complex systems. 

The thesis is organized into five chapters. Each chapter from chapters two 

to four contains the description and analysis of a model. 

In chapter two, a herding model of growth and addition is introduced. 

At each time step either (1) with probability p the system grows through 

the introduction of a new agent or (2) with probability I-pa free agent 

already in the system is added at random to a group of size k with rate 

Ak. Two versions of the model, Ak= k and Ak =I are solved and in both 

versions different types of behaviour have been found. When p> 1/2, all 

of the moments of the distribution of group sizes are linear in time for large 

time and the group size distribution follows a power law. NN'lien p= 1/2, the 
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time taken by the system to run out of free agents scales as the square of the 

initial number of free agents in the system. When the p< 1/2, the number 

of free agents runs out in a finite time, and this time is proportional to the 

initial number of free agents in the system. 

In chapter three, a model of hospital waiting lists is introduced. Patients 

entering the system must choose a waiting list to join, based on its length. 

At the same time patients leave the system as they get served. This model 

illustrates how the power law distributions found in empirical studies might 

arise, but indicates that the mechanism causing the power law is unlikely to 

be the preferential attachment of the patients or their physicians. 

In chapter four, a model of salary distributions is introduced. In this 

model, a higher paid individual does nothing but the lower paid individual 

leaves the organisation and is replaced by another, whose salary is picked 

from a power law distribution. The resulting distribution of the salaries has 

been found to be power law with a different exponent. Variants of this model 

have also been used to show that the resulting distribution is dependent on 

the distribution from which the new individual's salary is chosen. It has also 

been found that the exponent of the resulting distribution is dependent on the 

total number of individuals comparing salaries. A mean field version of the 

model is also studied by carrying out numerical simulations. A comparison of 

the two versions is made by looking at the mean absolute difference between 

salaries in each version. 

Conclusions and discussions are presented in the final chapter and possible 

future work proposed. 
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Chapter 2 

Growth and addition in a 

herding model 

2.1 Coherent group reactions in a society 

A 'herd instinct' exists in a large portion of the animal kingdom, from cat- 

tle in the Mongolian deserts to traders in the stock market of Wall Street. 

This "herd instinct" is an inhibitive characteristic in a lot of higher order 

organisms, a force that drives an individual to follow a group either to a 

place or in making some crucial decisions. This behaviour may be due to 

the intention of an individual to identify itself to a group in a certain style, 

but in most cases, this is a survival tactic and is a product of evolution and 

natural selection. For example, a cow is better at defending itself against a 

predator when in a group [61], and a trader follows the decisions of a group 

of traders [62] when he is unsure of his own judgements. 

Since individuals pick groups to follow, there must exist an algorithm 
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for choosing which group to follow. In certain situations, this may be a 

totally random decision, such as in the case of fashion where a person chooses 

which types of clothing to wear. The randomness in this situation is largely 

attributed to the mood of the individual at a particular time, as is nausea in 

the case of mass hysteria. However, in most cases it is a result of carefully 

made decisions based on various factors, especially when it concerns the 

survival of the individual. For example, a cow may choose to follow a larger 

herd as it offers better protection than a smaller one. In the internet, a web 

site is more likely to be attached to a larger web ring as it provides a greater 

pool of web surfers, thereby ensuring its utilisation. Also, an investor chooses 

to follow a certain equity fund with a famous fund manager. 

In recent years, the algorithm of the herding behavior has provided a 

basis for physicists to model various social and natural systems. A successful 

attempt was made by Cont and Bouchaud [62] where a herding model of 

traders in the stock market was introduced. Each trader in this model chooses 

a group to follow and remains in the same group throughout the duration 

of the simulation. This is followed by the Equiluz- Zimmermann model [63] 

which is a kinetic version of the original Cont-Bouchaud model. In this model, 

groups of agents can either coagulate or fragment at each time step. Both of 

these models will be discussed in greater detail in the following subsections. 

Motivated by this work, a herding model with a growth and addition al- 

gorithm is introduced in this chapter. In this model, instead of just having a 

system with a static size, growth is included to better represent population 

growth in certain social networks, such as the herds of nomadic travelers. 

The growth feature depicts the increase in size of the system in the form of 
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births, making it more realistic. The newborn child may choose to follow the 

existing group or any other groups in the system. Each individual is attached 

to a group with a certain probability, and three cases are introduced corre- 

sponding to three different attachment probabilities. This model is described 

in detail in section two. 

2.2 Herding models 

2.2.1 Previous attempts to explain heavy-tails in em- 

pirical studies 

Transactions in stock markets have generated much wealth for many traders 

and is an instrumental part of the economy. It is thus beneficial to study it in 

detail and research has been conducted to try and understand more about the 

dynamics of various aggregate market variables. However, attempts at fitting 

the distributions of stock prices and returns with Gaussian distributions [64, 

65,66] have failed, even after the consideration of heteroskedasticity in the 

data. Applications of fundamental economic variables, including the arrival 

of information, have failed to explain the 'bursts' of volatility. The distinctive 

feature of the plots is a heavy-tail [67,68,69] with large excess kurtosis K, 

defined as 

K= 
p4 

- 01 
(2.1) 

where p4 and a are the fourth central moment [64,70] and the standard 

deviAion of the quantity measured, respectively. The K of a Gaussian dis- 

tribution is zero, but the K of daily returns in the stock market is found to 
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range from 2 to 50 [71,72]. This excess kurtosis indicates a slow decay of 

the daily return distribution and is a result of the large fluctuations of the 

prices. In some cases, the tail takes the form of an exponential decay [73], 

and in others it conforms to a power law [72]. In Ref. [74] two statistics TP 

and TE corresponding to power law and exponential decay were introduced, 

and these statistics were used to test whether a sample tail is power law or 

exponential. 

Various attempts have been made to explain these heavy-tails. Among 

these are some statistical mechanisms proposed to account for the large fluc- 

tuations of the aggregate market variables [75,76,77]. The model in [77] 

made use of the fact that conditional heteroskedasticity leads to an uncondi- 

tional distribution of returns with heavy-tails. The drawback of this model 

is the assumption that the return is conditionally normal. A conditional 

non-normal distribution has been shown to produce better heavy-tails [78]. 

In [751 random variables are drawn from Levy [79,80,81] distributions. 

The problem with this model is that the infinite sample variance is not in 

agreement with empirical data; the latter showed that the sample variance 

remains constant beyond a certain value of sample size. 

Brownian motion was used as a subordinated process in [76] and [82] in an 

attempt to mimic the large fluctuations in the stock prices. The subordinator 

was chosen to be the trading volume and number of trades in [76] and [82] 

respectivelY. Although the randomness associated with Brownian motion 

does resemble the random fluctuations of the stock prices, none of the choices 

for the subordinator gives a normal distribution of increments, suggesting 

Him Brownian motion does not provide a complete explanation for the heavy- 
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tails. 

Following the failure of introducing statistical mechanisms to account for 

the heavy-tails, the existence of a more fundamental market mechanism was 

proposed. In [83] and [84] a model based on the interaction between fun- 

damental traders and noise traders was introduced. Although the computer 

simulation results do yield heavy-tail distributions in the asset return, the 

model is too complicated to be analysed properly, making it difficult to deter- 

mine the specific feature of the model that causes the heavy-tail phenomenon. 

The complexity of this model also prevents any predictions being made that 

can be compared to empirical results. 

2.2.2 Early theoretical studies of herding behavior 

As the search for an explanation of the heavy-tails continues, attention was 

turned to the herding behaviour among traders. It has long been known 

among stock traders that the large price fluctuations is a result of the 'crowd' 

effect of the traders. The empirical evidence of herd behavior in speculative 

markets was reported in a number of articles [85,86,87]. However, this has 

only recently appeared in the economics literature [88,89,90]. 

In [88] and [89], the individuals take turns to make decisions on the trans- 

actions, and the decision of each individual is based on that of the preceding 

trader. This ordering of traders is highly unrealistic since the unordered ac- 

tions of the traders is essential for the fluctuations in the aggregate market 

variables. 

A model based on unordered actions of traders was introduced in [90] 
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where random pairs of agents in the system make the same decision on the 

transaction. However, the plots of aggregate variables do not conform to the 

heavy-tails seen in the empirical studies. This is due largely to the unrealistic 

imitation algorithm where any two agents have the same tendency to make 

the same decision. 

A herding model successful in explaining the heavy-tails seen in the distri- 

butions of aggregate market variables was introduced by Cont and Bouchaud 

in [62]. In this article, it was shown that the return distribution based on the 

model matches the heavy-tail seen in empirical studies, thereby indicating 

a link between herd behaviour and large return fluctuations. This herding 

model is described in the following subsection. 

2.2.3 The Cont-Bouchaud model 

Cont and Bouchaud [621 introduced a system of vertices denoted by i where 

1<i<N, with each vertex representing a trader in a stock market. The 

vertices are grouped into clusters denoted by a where I< oz < n, At 

each time step, the traders can carry out one of three possible actions on 

the single asset of the system: buying, selling or no trading. To imitate the 

herd behavior of the stock market traders, all traders in the same cluster 

make the saine decision. The action of cluster a is represented by 0, which 

takes values of + 1, -1 and 0 corresponding to buying, selling and no trading 

respectively. The price of the asset at time t is denoted by x(t). In that 
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model, the return or price change Ax is assumed to be 

ik 
Ax =-E qaoc, (2.2) 

where W,, is the size of cluster a and A is the amount of excess demand 

required to move the price of the asset by one unit, and k is the total number 

of clusters. The distribution of Ax has been shown to follow a power law 

[621 which agrees with empirical results [91]. 

2.2.4 The Eguiluz- Zimmermann model 

In the Cont-Bouchaud Model described in the previous subsection, all mem- 

bers of a cluster remain in the same group throughout the entire simulation 

process. The topology of the model is thus static and although this may re- 

semble the loyalty of investors to their respective fund managers, it is rarely 

observed in actual financial markets. Investors, unlike loyal subjects in herds 

or tribal clans, are only driven by profits and personal financial successes. 

Thus, a more dynamic model is needed to represent this feature. 

In response to this, a kinetic version of the Cont-Bouchaud Model was 

introduced by Eguiluz and Zimmermann in [63]. This was solved exactly by 

D'Hulst and Rodgers [94] and since then a number of generalised versions 

of this model have been proposed [95,96,97]. This Eguiluz- Zimmermann 

inodel, retains most of the features in the original herding model whilst al- 

lowing the topology of the network to evolve instead of letting it stay static. 

In general, the model is characterised by random information dispersion, co- 

herent group decisions and adjustments of the network in response to the 
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actions of a cluster. 

Consider a system of N vertices representing traders with each vertex 
labeled i where I<i<N. The three possible actions 0i of a trader i are 

buying, selling and no trading, corresponding to Oi - +1 , 0i = -1 and 

0i =0 respectively. At the initial time step, all vertices are not linked i. e. 

they are all isolated, and Oi -0 Vi. At each time step tj, where 1<1< oc, 

one of the vertices is randomly selected. With probability a, the vertex makes 

the same random decision as all the vertices linked to it on whether to buy 

or sell the single asset of the system. At the end of each time step, all links 

between the vertices in the cluster are removed. With probability I-a, the 

vertex remains inactive, i. e., no trading, and it is randomly connected to any 

other vertices in the network. This process is repeated for L time steps. 

Thus, the clustering coefficient ct, defined as the average number of ver- 

tices a vertex is connected to at time ti, will increase so long as a randomly 

selected trader at each time step remains inactive. In fact, no trading activity 

occurs in any part of the network until one cluster decides to carry out actual 

transactions, after which all coalitions in the network are removed. There- 

fore, the averaged clustering coefficient C is controlled by the parameter a. 

For a=1, trading is carried out by one agent at each time step, leaving no 

chance for the formation of clusters. All of the vertices will remain isolated 

throughout the entire simulation process, and no herding behaviour will be 

seen. For o<1, trading rarely happens in the system, and this prolonged 

stMe of inactivity between tradings allows for the build up of large clusters. 

With larger clusters, the order is also significantly bigger ývhen a trading 

decision finally ýirrives, thereby maximising the impact of herding on the 
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market. This extreme scenario occurs when a< O(IIN). Since the param- 

eter a determines the degree of herding behaviour in the system, a 'herding 

parameter' h in terms of a 

(2-3) 

can be defined. When a= 17 h=0 and no herding occurs. For a<1, 

h>0 and herding is observed. Besides indicating the presence of herding 

behaviour, h also allows one to work out the number of edges between any 

two vertices. The latter is important as it concerns the rate of dispersion of 

the information. 

When a selected vertex is inactive, the random linkage formed corresponds 

to random information dispersion in actual financial markets. The linkage 

may bring about the merging of two clusters, and the information is dispersed 

throughout the newly merged cluster. An order is placed to an external 

centralised market maker after a cluster initiates trading . The removal of 

links between vertices after a trading activity is realistic since the information 

which binds the members of a cluster together is useless after a transaction. 

The price index dynamics in this model adopts the update rule in [102]. 

The price index P is such that at time step tl+,, 

P(tl+, ) = P(tl) exp (2.4) 

where s, is the order size of the active cluster at that time step, and A is a 

parameter that controls the size of the update and can be used as a measure 
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of the liquidity of the market. The price return R is given by 

R(tj) = In P(tj) - In P(ti-1) (2.5) 

and from Eqn. (2.4) the price return is proportional to the order size. 

Numerical simulations in [63] have shown that the C increases with h, 

displaying the impact of cluster sizes on the herding activity. The simulations 

have also shown power law decays in the distributions of R for various values 

of h. The exponent of the decay a was found to be 1.5. For values of h 

smaller than a critical value h*, there exists an exponential cutoff, and the 

C for these values of h are also far from C*, the critical C. For h> h*, the 

entire range of R can be fitted with power law, and the C is close to C* 

In addition to that, the probability of getting extremely high returns also 

increases for this range of h. 

Since the return R is dependent on the order size s, a relationship exists 

between the distributions of return and cluster size. Numerical simulations 

have shown that the distribution of cluster size follows a power law with an 

exponent 0=2.5 [631. The distribution of R is equal to the product of 

the distribution of cluster and the probability of getting a cluster which is 

proportional to the cluster size. The probability density of R is therefore 

given by 

_ P(R) ý (2.6) 

Thus, there is a unit difference between the exponents of the return and 

cluster size distributions. 
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2.2.5 Other related models 

In Refs. [98,99] a model based on the kinetics of the order book was proposed 

in which either market or limit bids to buy or sell were made at random. It 

was shown that this model leads to a power law distribution of returns under 

simple assumptions about the kinetics of this process. 

In Ref. [100] a herding model in which, at each time step, either an in- 

coming agent joins an existing group or a group is fragmented into individual 

agents, and the probability of each of these events is fixed. This is a simpler 

version of a model proposed in [101] in which the above steps occur at each 

time step, but with rates determined by the number of individual agents. 

2.3 Introducing growth and addition to a herd- 

ing model 

In an attempt to further the work in [62] and [63], a herding model is in- 

troduced in this chapter which is characterised by two features: growth and 

addition. At each time step, one of two events can happen. With probability 

pa growth event takes place in which an agent is created but remains free 

i. e. remains unconnected. With probability q=I-pa free agent already 

in the systein joins a group of size k Nvith a rate proportional to k, where 

k=Iý2, 
.... The number of groups of size k>1 at time t, denoted by nk (t) i 

evolves like 
dllk(t) 

-q_ [(k - 
I)nk-1 - 

k0k] (2-7) 
dt ýl I 

(t) 
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where M(t) is the number of agents in the system given by 

00 
E knk(t). (2.8) 
k=l 

The first and second terms on the right hand side of Eqn. (2.7) correspond to 

the addition of a new agent to a group of k-I and k respectively. Since the 

probability of an addition event at each time step is q, and the probability 

that an existing agent joining a group of size k-1 is proportional to k-1, 

the product of q, k-I and nk-1 in the first term on the right hand side 

of Eqn. (2.7) corresponds to the increase in the number of groups of size k 

formed due to the destruction of the groups of size k-1. Similarly, in the 

second term, the product of q, k and nk corresponds to the decrease in the 

number of groups of size k due to the formation of a group of size k+1. The 

number of free agents behaves like 

dn 1 (t) ni q -+I dt 'I I (t) 
(2.9) 

The first term of Eqn. (2.9) represents the destruction of free agents by 

addition and the second term describes the arrival of free agents. By summing 

Eqn. (2.7) over all k>I we have 

00 

E[(k - 
I)ok-l 

- knk] 
d k=2 

dt 
E'11'k 

m(t) 
k=2 

( 00 
1: knk - Rk 
k=2 
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qn, 
M(t) 

By defining 
00 

N(t) == Enk(t) 
k=l 

and adding Eqn. (2.9) to Eqn. (2.10) gives 

dN(t) 
dt 

2p - 1. 

Similarly, multiplying Eqn. (2.7) by k and summing over all Al- >I gives 

d Co q Oc 

dt 
1: kTIk (t) 

Al (- 
E [k(A- 

- 
I)Rk-1 

-k nk 

(k=2 

0 
k=2 

qEk2 
nk knk+, ni -k2 nkj 

00 

AIM 
k=2 k=l k=2 

q+ 
ni I, 

(2.13) 
Ai(t) 

and adding it to Eqn. (2.9) we have 

(I ý'l I (t) =A (2.14) 
dt 

Eqn. (2.12) indicates that on average, the number of groups increases by one 

with probability 2p - 1. Eqn. (2.14) represents the fact that the number of 

agents increases by I with probability p. It is obvious from Eqn. (2.12) that 

on average, when p> 1/2 the system is growing, when p= 1/2 the system 

i, s stmic and when p< 1/2 the system decreases in size and runs out of free 

nionon-iers in a, finite time. Each of these cases is analysed separately in the 
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following subsections. 

2.3.1 Case 1: 2 

For large t, the form of Eqns. (2.7,2.9, 2.12,2.14) suggests that for p> 1/2 

the solution for nk is linear in time. In this limit, Eqns. (2.12,2.14) can be 

solved to yield 

N(t) = (2p - I)t (2.15) 

and 

Al(t) = pt 

for large time. By writing 

nk : -- tCk (2.17) 

we find that for k>I 

Ck p [(k -I)Ck-I - 
kCk] (2.18) 

p 

To solve Eqn. (2.18) we first work out an initial condition from Eqn. (2.9). 

From Eqn. (2.9) and using Eqns. (2.16) and (2.17) NN-e have 

cl = -q 
cl ++p 
p 

= p(2p - 1). (2.19) 

An iteration of Eqn. (2.18) shows that 

Ck ----7 
cl (k - 1)! 

(2 + Ipp)(3 + Pp)(4 + 11, P)... 
(k + 1pp) 
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p(2p - 1)(k - 1)! 
(2 + 1pp)(3 + Ipp)(4 + IPP) ... 

(k + Pp) 

p(2p - 1)(k - 1)! 
(2 + 11 p- 

1)(3 + 11 p 
1) (4 + 11 p- 

1)... (k + 11 p- 
p(2p - I)F(k) 

r(k+T-Lý) 

p(2p - 1)F 
(I+I F(k) 

(2.20) 
1-p IF(k +11p 

where 

r(n + 1) = n! (2.21) 

for integer values of n. As k oo 

I 
Ck ' ý7 1-P (2.22) 

This result can be used to model the financial markets. Similar to the 

Cont-Bouchaud Model, one can imagine that, at each time step, an agent is 

randomly chosen, independent of the group kinetic process. The entire group 

to which the selected agent is linked will carry out the actions of buying or 

selling an asset with equal probability. In this way, a group of size k trades 

1xith rate kck. It is assumed that the traded amount is proportional to the 

size of the group. Thus, the distribution of returns R(k) for a commodity, 

which is equivalent to the distribution of the difference between the number 

of buyers and sellers, behaves like 

R(k) - A, ck = p(2p - 1)IF I+I) 
F(k + 1) 

(2.23) 
I-p IF(k+ 

11p)* 
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In the limit k --+ oc we have 

R(k) - k-13 (2.24) 

with 

(2.25) 

The distribution of returns is thus a power law for large k. It is obvious that 

0 can take any value greater than unity for 1/2 <p<1, with as 

p --ý 1/2 and 3 --, oc as p --ý 1. 

2.3.2 Case 2: p=1 2 

When p= 1/2 the size of the system remains static, on average. By having 

an initial condition of N free agents we have 

N(O) =, AI(O) =, n, (O) -= N. (2.26) 

From Eqn. (2.7) and using Eqn. (2.17) we have 

nk 
(k - 

i)nk-lt 
(2.27) 

2N + (I + k)t* 

For small k where k>1, Eqn. (2.27) becomes 

nk-It 
Ilk(t) -2 A` +t 

(2.28) 
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From Eqn, (2.26), n1 (0) = N, so 

ni 
2N 2 

(2.29) 
2N+t 

From Eqn. (2.28) it can be seen that 

nk (t) ni tk-I 
- (2.30) 

(2N + t)k-1 

Substituting Eqn. (2.29) into Eqn. (2.30) gives the full time dependent 

solution 

nk(t) = 2N 2t 

[t + 2N] k (2.31) 

From Eqn. (2.31) it can be seen that iq. grows initially before decaying to 

zero. On average, the system runs out of free agents when ni(t) , 0(1) 

which occurs on the time scales t- O(N 2) 
. This observation is in agreement 

with a simple random walk argument; at time t=0 there are N free agents 

which increases by I with probability 1/2 and decreases, by either I or 2, with 

probability 1/2, The time taken to reach zero free agents is thus expected to 

scale as t- O(N 2). 

From Eqn. (2.31) we have 

N(t) =N (2.32) 

and 

(2-33) 
2 
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For t<N, the number of groups of size k grows like 

nk(t) -Nýt 
ik-1 

(2.34) 
2N 

In the limit N<t< N', nk decays as 

nk "' 
I* 

(2.35) 
t 

In this limit, the r1h moment M, (t), defined by 

00 
M, 1: Vnk M (2.36) 

k=l 

decays as 
t (2.37) 
2 

2.3.3 Case 3: p<1 2 

For p< -' the number of agents in the system increases but the number of 2 

groups of free agents falls, and the system runs out of free agents in a finite 

time. To solve Eqn. (2.9) 
, it is first rewritten as 

dn, ni 
dt =-qN (Nj+V-Pt )+ 

+p 

N 

= -q 
ni + ll +p 

[NT (2.38) 
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where T= (N+") 
- Eqn. (2.38) is then rewritten as N 

dn, 
+ ni 

dt NT 
(2.39) 

1-P I-P 1-P Since exp [In TPTP, by multiplying LHS of Eqn. (2.39) by exp [In TP 
1-P 

and RHS by TP and using the fact that 

d [exp [In T 
exp [In T 

dn, 
+qn (2.40) 

dt dt NT 

Eqn. (2.39) is solved to give 

ni(t) =N 
2(l -p) 2p) 1-1 (1 I+pt) (2.41) 
1+ P-t] pN N 

At t= -r, 

0 (2.42) 

and r is 
N[ lp 

- 11 (2.43) 
p1- 2p 

Therefore, -r1N is the average length of time for the system to run out of free 

agents, and this is shown as a function of p in Figure 2.1. 

In the limit when no new agents are added, p --4 0 and we have 

T= N log 2. (2.44) 

This time is shorter than N since some of the free agents form a dimer 
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Figure 2.1: Average of the time 71N it takes the system to run out of 
monomers, as a function of p. This sirnulation was done with N= 104 

over 107 t ii-ne steps. 

with another monomer, eliminating two free agents in one time step. When 

p -+ 1/2 from below, the average time to run out of free agents diverges as 

I 2N(I - 2p)-2 (2.45) 

The number of diniers, triniers etc... as well as the touil number of agents 

all become zero in finite time, but the time taken to run out of free agents is 

shorter and is thus the most important tiniescale in the system. 
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2.4 Constant coefficient kernel 

It would be interesting to consider the constant kernel version of the model. 

In this version, the rate equation for the system is 

dnk (t) 
--q [nk 1- nk] (2.46) 

dt N(t) - 

for k>I and ni (t) obeys 

dn, (t) 
= -q 

ni + +P. (2-47) 
dt N (t) 

Eqn. (2.46) can be solved by using a method similar to that used in the 

previous section. For p> 1/2 we have 

nk(t) = (2p -1 
)2 

(1 
-P) 

k-I 

t (2.48) 
pk- 

and for p= 1/2, the solution is 

nk (t)= Nt 
k-1 

)! exp 
t (2.49) 

(2N)k-l(k -(- 
-2N 

)' 

When p< 1/2 the system runs out of free agents in time 7- which is given by 

-1-21 

. 
N 1-2plP (2.50) 

1- 2p I-p 

As p-0 Nve have 

-r = N(I - exp[-I]) 
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which, as in the previous version of the model, is less than N because some- 

times two free agents are destroyed in one time step. When P- 1/2 from 

below, Tdiverges logarithmically as 

T- -2N log(l - 2p) (2.52) 

which is slower than the algebraic divergence seen in the linear kernel model 

in the previous section. 

2.5 Comparison with other herding models 

In the the Cont-Bouchaud model, the topology of the network is fixed for 

all time steps. However, our model allows for the population to grow in size 

over time, 

In the Eguiluz- Zimmermann model, the size of the system is fixed for all 

times, a feature shared by the Cont-Bouchaud model. However, unlike the 

former, the agents in our model remain loyal to their respective groups and 

no links are broken. 

Despite these differences, all three herding models produce the heavy tail 

distributions seen in empirical studies. This implies that the herding property 

of these models plays a vital role in generating the heavy tail distributions. 

For a model without any spatial structures, the occurrence of power laws in 

temporal quantities is the sole indicator of SOC behavior. Since all three 

herding models do not have any spatial structures, the power law distribu- 

tions seen in these models imply that these systems, and probably the actual 
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financial markets, are self-similar. 

2.6 Conclusions and discussion 

A kinetic version of the herding model has been introduced which encom- 

passes growth and addition. These two mechanisms allow for the creation of 

new agents as well as the formation of groups of agents. When the growth 

is fast enough the group size distribution conforms to a power law with a 

parameter dependent exponent. When the number of groups of agents does 

not change on average, the time it takes the system to run out of free agents 

scales as the square of the initial number of free agents in the system. When 

the rate of growth is sufficiently slow, the system runs out of free agents in a 

finite amount of time, and this time is shown to be proportional to the initial 

number of free agents in the system. The kinetics for this case do not allow 

the power law group size distribution to develop. This behaviour is seen in 

both the linear and constant kernel versions of the model. 

Comparisons with other herding models have also been made. The heavy 

tails seen in all three herding models, despite their differences, imply that the 

herding property shared by them is the cause of heavy tails seen in empirical 

studies. 

Models in Refs. [63,94, 100] which are mean field in character appear 

to be well suited to model simple processes in social networks. These in- 

clude processes in which an asset is exchanged between people or in which 

groups of people are formed who all share the same asset. The suitability of 

these inodels is in part due to the non-local nature of social interactions in 
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a modern, highly connected world. Processes for which this approach would 

appear relevant range from information or rumour spreading, particularly in 

financial markets, through the take up of the latest craze to epidemiological 

studies of disease and epidemic spread. 

This model is especially relevant to epidemiological studies of disease 

spread due to its growth mechanism. When this model is applied to pop- 

ulation studies, the growth mechanism corresponds to the increase of the 

population size over time, and the addition mechanism corresponds to the 

forming of social groups within which individuals are in contact with each 

other. Probabilistic infection mechanisms, such as those used in standard 

epidemiological models, can be included to mimic disease spreading. In ad- 

dition, this model can also be used as an extension to previous herding models 

discussed earlier. 

An interesting point to note in this work is that this model only displays 

SOC behaviour when p>1. Unlike previous herding models mentioned 2 

earlier in this thesis, this model possesses a growth feature which can be seen 

as a driver similar to the dropping of sand in the sandpile model. Grains of 

sand are dropped at a rate of one per unit time step in the sandpile model, 

and this slow rate is a prerequisite for SOC to occur as mentioned in Chapter 

1. Thus, an interesting feature to investigate is the critical rate beyond which 

no SOC will occur. The herding model introduced in this work is ideal for 

this investigation since the probability of attachment p at each time step is a 

continuous real number. The cutoff p>1 in this work shows that SOC onl,,, 2 

occurs when on average at least one new agent is introduced after two time 

steps, thereby extending below the single grain addition per time step in the 
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sandpile model. Although this has only been found to be true in this model, 

future research on complexity models may include a search for the general 

critical driving rate for SOC to occur. 
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Chapter 3 

Simple models of waiting lists 

3.1 Motivation for modelling hospital waiting 

lists 

Besides having an adequate supply of physicians and medical equipment, 

the efficiency of the healthcare system is also instrumental to the health 

of patients. In particular, the length of waiting lists in hospitals affects the 

treatment rate of patients, and shorter waiting lists reduce the risk of medical 

complications due to prolonged delay for treatment. 

The hospital waiting lists in Northern Ireland are the longest in the coun- 

try despite the region receiving the second largest funding for acute health 

services [103]. The number of inpatients waiting for treatment per 1000 

population in 2004 was 30.04, compared to the 25.87 in Wales and 22.23 in 

England [103]. This figure is lowest in Scotland where the acute health ser- 

vices are the best funded in the country [103]. It was stated in a report [103] 
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by the House of Commons that the under utilisation of operating theatres is 

a cause for the lengthy waiting times. Another cause stated in the report is 

the lack of nurses and beds in the region. 

This problem of long waiting lists causes anxiety and suffering among 

patients waiting for their operations. In response to this crisis, the House 

of Commons called for better theatre management and control. According 

to the report [103], the efficiency of operating theatres can be increased by 

establishing theatre policy and guidelines, and the use of computerised data 

collection systems. 

In attempts to better understand the system of hospital waiting lists, a 

number of studies have been carried out on their length distribution. This 

was shown to be power law in Refs. [104,105]. In Ref. [104], the waiting 

lists for four dermatologists over a six year period were analysed and the 

double log plot of the magnitude of monthly variations of waiting time and 

the frequency of occurrence of this magnitude showed a straight line. In Ref. 

[105] chaos and complexity theories were used to analyse hospital waiting 

list data between 1998 and 2001 and the plots of frequency versus quarter to 

quarter change of waiting times show a power law, independent of surgical 

specialty and hospital location. To support a view that patients or physicians 

prefer shorter waiting lists, it has also been shown that there is a correlation 

between the referral rate to lists and the length of the waiting lists [106]. 

This correlation had a time-lag which is of the order of the time it takes 

information about the length of a list to spread through the system. 

Power law distributions usually signal that a system is self-organising, 

and thus resistant to changes. This implies that, for instance, small changes 
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in the rate at which patients are treated, or the number of consultants, will 

have little effect on the distribution of waiting lists, or on the length of 

the longest list in the system. This question is clearly important to many 

systems, including those in healthcare; can greater efficiency be addressed by 

small changes to the current system, or is a radical overhaul required? 

Similarly, if the distribution is power law, then the average queue length 

and the length of the longest queue are dependent on the value of the expo- 

nent in the power law. It would thus seem to be important to build micro- 

scopic models to examine this system and determine under what conditions 

power laws occur and the dependence of the exponent of the power law on 

other parameters in the system. 

A model of waiting lists which captures the essence of the problem is 

introduced in this chapter. In this model the lists lengthen or shorten as 

patients join the lists to be treated or leave the list after treatment. The 

model illustrates how power-law distributions might arise, but indicates that 

the mechanism is unlikely to be the preferential behaviour of patients or 

their physicians. The difference between this model and those proposed by 

queueing theorists is that in our model there is an infinite number of service 

channels and queue-length dependent rates. This model is based on Queueing 

Theory [107,108,109,110] which is described briefly in the next section. 
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3.2 Queueing Theory and its applications to 

queue modelling 

The purpose of Queueing Theory is to capture the essence of systems of 

waiting lines. The three basic elements present in a typical queueing model 

are the arrival paradigm, the service process and the queue- discipline. In a 

typical model, new agents are created at every time step and select a slot to 

attach to. Agents at one end of the lines are served and leave the system as 

departures. 

The arrival paradigm can be ordered or completely random, depending 

on the nature of the system. In ordered arrivals, agents enter the system at 

a fixed rate A= ý';, where T is the total number of time steps considered 

in the model. An example of such systems is the queueing of printing jobs 

in a printer. However, when the arrival paradigm is totally random, the 

probability that no agent enters the system in the time interval (t, t+ At) 

is I- AAt + o(, At), that one agent enters the system is AAt + o(At), and 

that more than one agent enters the system is o(At), where o(, At) denotes 

quantities that become negligible when compared with At as At --ý 0 

o(At) lim -=0. At, o At 
(3.1) 

The events occurring in the interval (t, t+ At) are independent of any other 

arrival or non-arrival events not overlapping this time interval. If we consider 

the finite interval (t, f+ T), the probability of N arrivals in this interval is a 
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Poisson Distribution 

Pr(N = n) = 
exp (-AT) (AT)' 

(3.2) 

where n= 0) 1) 2,... 

n! 

Of particular importance is the service process in the system which affects 

the rate at which agents leave the system. The two important features of the 

service process are the rate at which agents are being served and the times 

when the service is accessible. The former is influenced by the time taken 

to serve an agent, and is taken to be a random variable X in many models 

where the distribution of X is known. 

The queue-discipline determines how an agent is selected from the queue 

for service. For single capacity systems, an agent is selected for service after 

a service has been completed. The selection process is based either on the 

order of arrival or on a specific classification of the agents. For multi-capacity 

systems, more than one agent can be served when the service is available. 

In some cases, the specific needs of the agents are taken into account. The 

agents in such systems are served by specialised servers and this significantly 

reduces the throughput. For systems without specialisation, three types of 

queue-discipline are frequently used in models. The first is one in which 

agents select the servers in strict rotation. The second and third involve 

agents choosing which queues to join upon arrival and agents forming a single 

queue respectively. The first is a mathematically simple system. However, 

the second and third are more difficult to be analysed using mathematics, 

and the new model introduced in this chapter includes the second type of 
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queue-discipline. 

This concept of arrival, service and queue-discipline of Queuing Theory is 

applied to the new model of hospital waiting lists which is described in detail 

in the following section. Analysis is also carried out to obtain the length 

distribution of the waiting lists. 

3.3 A model of waiting lists with infinite num- 

ber of channels 

In this section, a model with the minimal ingredients to capture the basic 

empirical measurements from hospital waiting lists is introduced. Imagine a 

system in which at time t there are nk waiting lists of length k. Thus, at 

time t there are 
00 
E kRk 

k=l 

(3-3) 

patients waiting in the lists. At each time step, a patient in a list of length k 

is treated with rate Ak and a new patient arrives at the system and joins a 

list of length k with rate Bk. These treatment and arrival events correspond, 

respectively, to the service and arrival elements of the Queueing Theory de- 

scribed in the previous section. A new waiting list of length zero is created 

with rate r. The list distribution nk(t) satisfies the equation 

dok(t) 

dt = 
Ak+l 'Ilk+ 1- Akn k+ Bk-lnk-1 

- 
Bk7lk + r6k, O (3.4) 
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for k=07 11 2, ... where 
Ak 

co 
pak 

_ (3-5) 

k=oaknk(t) 

and 

BAý -00 
qbk (3-6) 

Ek=obknk(t) 

The rate parameters p, q and r can be used to adjust the overall relative 

rates of patient treatment, arrival and of list creation. The time- independent 

functions ak and bk model the rates of leaving and joining a list of length k, 

respectively. The function ak is the service rate in a list of length k, and bk 

controls the propensity of patients to join a list of length k, and models the 

patients' preference to join shorter lists. 

The first term on the right hand side of Eqn. (3.4) is the gain in the 

number of lists of length k after a patient in a list of length k+I has been 

treated. Similarly, the second term is the loss in the number of lists of length 

k after a patient in a list of length k has been treated. The third term 

represents the gain in the number of lists of length k when a new patient 

joins a list of length k-1. The fourth term is the loss term. The final term 

corresponds to the creation of a new list of zero length. 

It is a trivial matter to normalise Eqns. (3.5) and (3.6). For example, 

consider the third term on the right hand side of Eqn. (3.4). The probability 

per time step of a new patient joining a particular list of length k-I is 

p=- 
bk-1 

(3.7) 
EO' bknk 

k=O 

Thus the rate of creating a list of length k by patient arrival is equal to the 
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rate of patient arrival q multiplied by the number of lists of length k-1, 

nk- 1, multiplied by the probability of a patient joining a list of length k-1, 

Eqn. (3.7) above. This product gives Bk-ink-1, which is the third term 

on the right hand side of Eqn. (3.4). The other terms can be derived in a 

similar way. Equations similar to Eqn. (3.4) have been used within the field 

of econophysics [111] and in random growing networks [13]. 

In the following subsections, different values of the parameters p, q, 'r, 

ak and bk are used in order to model the various scenarios relevant to the 

modelling of healthcare systems. In principle, the functions ak and bk can 

take any value , although it is required that AO = ao =0 because a patient 

cannot be removed from a waiting list of zero length. 

3.3.1 Case 1: ak= k and bk =I 

This case corresponds to a situation in which patients join a list at a constant 

rate, independent of its length. At each time step every patient is equally 

likely to be treated and thus removed from a list, irrespective of the length of 

the list the patient is in. This choice of joining and removal rates simplifies 

Eqns. (3.4 - 3.6) considerably. These equations then become 

dnk (t) 
- -P [(k + I)nk+l 

- knk] +q [nk-1 - 71k] + 7'6k, O (3-8) 
dt AI (t) N (t) 

where 
00 

N(t) 1: Ilk(t) (3.9) 
k=O 
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and 
00 

M(t) ý7 knk(t)- (3.10) 
k=O 

Thus, the N(t) evolves like 
dN(t) 

dt 

and the M (t) like 
dM(t) 

dt =q -p. (3.12) 

In this scenario, in the large time limit and when q>p and r>0, the nk 

for all k and the moments N(t) and M(t) are all linear in time. We write 

nk (t) - tSk (3.13) 

where Sk obeys 

Sk ýp [(k +I)Sk+l - 
k8k] +q [Sk-1 

- SkI + 7-6k, O- (3.14) 
q-pr 

This equation is solved using the generating function g(L,; ) which is defined 

by 
00 

g(w) =E ci 
k 

Sk- 
k=O 

(3-15) 

First, Eqn. (3-14) is multiplied through by Wk and summed over all k, giving 

g(w) = 1: p [(k + 1)Sk+lW k- kSkWk] +q 1W k Sk-1 -Wk SkI + r6k oWk 
0', 

k=O qpr 
(3-16) 
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By using the fact that 
dg (Lo) A 

dw 
A"ký -18k 

k=O 

Eqn. (3.16) is reduced to 

g(w) Lj)[- 
p dg q 

g("))] + r. (3-18) 
q-p dw r 

Eqn. (3.18) will be solved for w --4 0 and w -+ 1. For w ---> 0, and by placing 

dg(u)) 
Wk-I 

dw 
k Sk (3-19) 

k=l 

and Eqn. (3-15) into Eqn. (3-18) we have 

00 
kp 

00 
k-1 qk EW Sk :: ý E k, -ý 

Sk -- Sk (3.20) 
k=O P k=l r k=O 

Since 
00 00 

YkWk- lSk= E(k+ I)Wk Sk+l (3.21) 
k=l k=O 

Eqn. (3.20) can be rearranged to give 

Oo 
wk+qk : --: 

c)o 
.kP (k + 1)8k+l- (3.22) Er Y- 

q-p k=O k=O 

By the theorem of identity, if 

00 oc 
E a'c, E b'di (3.23) 
i=O i=O 
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then 

ci = di Vi>0. 

So, by comparing the coefficients of Eqn. (3.22) we have 

(r+q)(q_p) k 
SO 

I 

rp Sk`:::::: 
k! 

Thus, 

(3.24) 

(3.25) 

Sk = so exp 
(r + q)(q - p) (3.26) 

rp 

I 

for w --ý 0. It can be seen from Eqn. (3.26) that for q>p the number of 

lists of size k increases exponentially, and for q<p this list size distribution 

follows an exponential decay. This agrees with the intuition that if the arrival 

rate is greater than the treatment rate, the number of patients waiting for 

treatment is large, and if the patients get treated more quickly than the 

arrival of new patients, the size of the waiting population dwindles. 

For LL) an integrating factor (I - L, )) 
qpV 

eXp q(p-q) W is used to solve pr 

Eqn. (3.18). Multiplying Eqn. (3.18) by this factor gives 

q(p - q) q- p(, 
_ L, )) 

q-2p 
g(W) + (I q-p dg] 

exp Li -p- W) p -1 pr p dw 

q-p 
Ljj LO)q-p 

[qg(w) 
+r]. exp p- (3.27) 

p pr rw 

Since 

exp 
q(p-q) wl Qp"g(, J)l pr 

dw 
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p 
q(p - q) ] -q q- p(l 

_ ýý)q-2pg(Uý) + (I _ ý. ý)q-p 
dgj 

= ex w (I-W)PP -pp- pr pr p dw 
q(p - q) q-p 

U)) 
q-2pg(W) q-p dg 

exp wpp- (3.28) 
pr p dw 

Eqn. (3.27) becomes 

d exp 
q(p-q) W] W)q ppg (Lj) 

pr q-p q(p - q) 
_W) 

qp q 
exp w Tp 

-9(w) + dw p pr 
Ir 

I- wl 
(3.29) 

and integrating gives 

r(q - p) (I g 
p-q 

- w) P exp 
[ qw (q - p)] 

p pr 

x1 
q(l - x)g(x) + p 

qx (p - q) dx exp r2 pr 
r(q - p) p-q 

p exp 
qw 1 

X)-Q-2 (q - p) P exp x dx. 
If I 

p pr w pr 
(3-30) 

In the limit w --4 1 we have 

g(w) , (q - p) (I - w) (3.31) 

so that 

Sk ,k -2 (3.32) 

as k --ý oo. Therefore the distribution of the waiting lists behaves as nk , k-0 

for large k, with 0=2 independent of p, q and r. Thus this scenario gives 

rise to a distribution of waiting lists that is asymptotically power law. 
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3.3.2 Case 2: bk --= I and p=0 

In this situation the patients enter at a constant rate, and new waiting lists 

are created at a constant rate, but no patients are ever treated. In this 

situation Eqn. (3-14) becomes 

kq [Sk-1 - SkI + 7-6k, O. (3.33) 
r 

From induction, it can be seen that 

qk 
'50 +q) 

k-I 
r2 q 

k-2 
r2 

Sk 6k, 
O + 6k 

0+ 
q+rq+rq+rq+r q+r 

+ 
T2 

6k, 
O (3,34) 

q+r 

giving an exponential distribution of waiting lists 

r2qk. 
(3-35) 

q+r q+r 

The number of patients waiting in the lists diverges as q -ý oc. Although 

at first glance this model may seem unrealistic, it represents a situation that 

occurs in many healthcare systems when some sort of crisis occurs and in 

order to deal with this, no elective referrals take place. For instance, this can 

occur when there is a local or national disaster or when there is a winter flu 

epidemic. 
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3.3.3 Case 3: ak =k and bk =I when p=q=I and 

r= 

Here the number of patients in the system is fixed on average, and does not 

grow as in the previous case. Thus a power law is not expected. The rate 

equation for this case is given by 

dnk (t) 
:-I (k + I)nk+l 

- knk] +1 [nk-1 
- nk] (3.36) 

dt M(t) N(t) 

where N(t) and M(t) are given in Eqns. (3.9) and (3.10). In this case the 

nk(t), N(t) and M(t) are all independent of time. In the limit t, oc there 

is a stationary solution 

k 

nk = N(O)- exp[-oz] (3.37) 
k! 

where a= M(O). Thus in this case the length of the waiting lists obeys N(O) 

a Poisson distribution which is a feature of queueing systems with events 

occurring at fixed average rates as described in the previous section. This 

case has shown that once the system stops growing continuously and becomes 

effectively closed, the power laws disappear. 

3.3.4 Case 4: bk 1 and r-0 k+l 

This situation corresponds to the scenario where patients join a waiting list 

with a i-M, e inversely proportional to its length, which is the first case consid- 

ered that directly models the preferential behaviour of patients. Two variants 

of this model are considered. Firstly, a patient is chosen at random and re- 
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moved from the list, so that ak = k. Secondlv, a list is chosen at random and, 

if possible, a patient is removed from the list, so that (Ik for k>0 and 

ao = 0. A simulation of both these models has been performed with 1000 

waiting lists, p=q=I and initially 10 patients on each list. The simulation 

results of both models show that the distribution of the length of the waiting 

lists is very different from power law, and is closer to a Gaussian distribution. 

The mean value of k for ak I remains fixed at 10 patients per list. For 

ak= k, the mean grows linearly with time. Figure 3.1 shows the results for 

the average value of nk against k for 100 samples for the case Ok =k- 

80 

60 

40 

20 

goo. 
55 60 65 70 75 80 85 

k 

Figure 3.1: A graph of nk against k for Case 4 when ak 7-- k. 

90 

3.3.5 Case 5: ak--bk= I for k>O with bo= I andr-O 

This case represents a biased random walk along a semi-infinite chain in 

which ný. (t) is proportional to the probability of finding the walker on site k 
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at time t. Due to this reason, when p>q the systern evolves to a stationary 

distribution with 

nk (00) 
(q )k 

p 
(3.38) 

which is exponential. For p<q the number of patients in the system grows 

with t and the mean length of the lists is (q - p)t. 

3.4 Conclusions and discussion 

A set of models of hospital waiting lists have been introduced, each repre- 

senting a specific scenario in the actual health care system. The results of 

the investigation are surnmarised in Table (3.1). 

Case ak bk p, q and r list distribution 
I k I q>p, r>0 power Law 
2 1 P=0 exponential 
3 k I p =: q, r=0 Poisson 
4 1 and k T=0 Gaussian-like kT, 
5 1 1 r=0 exponential 

Table 3.1: Summary of the models. 

In Ref. [1041 the month to month variation in the length of the waiting 

lists of four dermatology specialists was measured over a six year period. The 

distribution of the fractional change A in the length of the waiting lists, b(A), 

N\, ýis shown to be power law. In the previous section, the number of waiting 

lists of length k at time t wýis considered, and these quantities are relevant 
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via the formula 

Tk 

b(A) Rk(t)Tlk'(t + 1)J A- (3.39) 
T t=l k=l k'=l k1 

When the measurement period is very much longer than the time between 

successive measurements, T>1, and the distribution of waiting list lengths 

is only weakly dependent on time, we can write 

Oo oc k 
b(A) = 1: E nknk'6(A - -)- 

k=l k'=l k' 
(3.40) 

Therefore if we have a power law distribution of waiting lists, nk - k-13, then 

it follows that the distribution of the fractional change is also power law, 

b(A) - A-l', with the same exponent. 

The length of the longest waiting lists can be estimated by assuming that 

these power law distributions are generally valid for hospital waiting lists. In 

particular, if the number of lists of length k behaves like nk , k-,, then the 

number of lists in is related to the length of the maximum list, N,,,, by 

1 
N, 

ax MO-1 - (3.41) 

This formula can be used to estimate Nm,, ý and 0 from real data. There 

are 4349 surgical consultants in England and 'A'ales, and adding the non- 

consultant surgeons, gives a total of, say, m= 5000 surgical waiting lists 

[1121. This suggests that the longest waiting list in England and NVales is 

5000 patients if the exponent 3 is equal to 2 [104,113], and 292 patients if 

2.5 [1051. The longest reported waiting list wcls found to be 1800 patients 
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[114], which would imply that the exponent in the power law is 3=2.14. 

However, a number of variants to the above models are possible. For 

instance, the possibility of patients hopping from list to list or the possi- 

bility of the removal of waiting lists -, Nýith low average length can be intro- 

duced. The former would create a network of waiting lists, allowing for a 

more complicated system. Similarly, each list can be given a different rate to 

allow patients to be treated at different rates in different lists. These addi- 

tions would make the models more realistic and without affecting the overall 

conclusions. Namely, that power laws can arise in some models of waiting 

lists, but when some type of preferential choice is introduced, there are no 

power laws. This observation seems to be in agreement without any basic 

understanding of when power laws arise in complex systems. A power law 

distribution normally indicates that extremal events are much more likely to 

occur than would be expected with an exponential or Gaussian distribution. 

Therefore it seems unlikely that a power law distribution of waiting lists will 

arise as a result of patients' reluctance to join long waiting lists. If power 

laws do exist in hospital waiting lists, then the the mechanisms creating them 

are probably indistinguishable from the random selection of lists by the pa- 

tients. Since the models do not have any spatial structures, these power law 

distributions indicate that these systems of waiting lists are self-organised, 

ýi property that allows the lists to regulate themselves so as to resist any 

attempts at changing them. This explains why the measures taken to reduce 

the length of wýuting lists are always ineffective in the long term. 
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Chapter 4 

Modelling the distribution of 

salaries 

4.1 Comparative models 

In chapter two we have seen the evolutionary trait of herding in higher or- 

der organisms where individuals join up in groups to increase their chances 

of survival. Yet another interesting product of evolution is the act of com- 

parison. Many higher order organisms have the tendency of comparing one 

individual's quant, ity and quality of resources with those of other individ- 

uals. A relati\ýely poorer individual normally tries to gain more wealth to 

catch up with the others. Thus, just like the herd behaviour in chapter two, 

constructive comparison is beneficial to the survival of a species. 

In the following subsections, various models of comparison are described, 

including sorting and mixing, auctions and card comparison in card gaines. 

These are followed by the introduction of three models of salary comparison 
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where employees in companies compare their salaries and the less well paid 

employees take actions in an attempt to improve their salaries. 

4.1.1 Sorting and mixing, segregating and integrating 

In Ref. [115], models of sorting and mixing or segregating and integrating are 

discussed. These models can represent a population which consists of people 

who are responding to each other. The response of one person can trigger 

off another's response which in turn can cause further responses. These indi- 

viduals may be responding to specific characteristics of the population that 

include discrete variables, such as nationality, sex and race, or continuous 

variables such as age, income, height and IQ. In Ref. [115], each of the indi- 

viduals is assigned a certain preference about the population characteristics 

and their response is specified. An individual's response can be taken as the 

departure, joining or rejoining of a population. Ref. [115] discusses some sit- 

uations where this type of behaviour may occur. An example is to consider 

a nursing home where individuals are likely to leave if people are older than 

themselves on average. This results in the departure of younger people which 

increases the average age and this in turn encourages other younger people 

to leave. Eventually only the oldest individuals will remain in the nursing 

home. This is just one example of many. These models can also be related 

to colleges where students may join or leave due to the rank of the college; or 

even sports teams where the joining or departure will depend on the quality 

of the team e. g. number of games won in total. 

Stich models are important as they can mimic real life processes or even 
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artificial situations [115], and the resulting distributions of the latter can be 

useful for two reasons. Firstly, these models can be built on to represent 

a real life situation and secondly, they give a starting point to the type of 

analysis that is required, some of the phenomena to be anticipated and the 

important questions that need to be asked. 

4.1.2 Distribution characteristic comparison in a model 

of auctions 

Recently, a simple model of auctions was proposed by D'Hulst and Rodgers 

[116] which takes the concept of comparing a certain characteristic of a dis- 

tribution and carrying out a specific response. In Ref. [1161, an auction is 

considered as a competition between sellers who compete to attract buyers, 

where the lower price is most appealing. A model is introduced in which 

two players have an infinite set of numbers described by a probability dis- 

tribution. At each time step, these two players bid against each other by 

drawing a number at random from their corresponding distributions. Both 

players then compare numbers and the player with the smaller number wins 

and does nothing, while the player with the larger number replaces his losing 

number with a number chosen at, random from a uniform distribution, and 

this process is repeated at each time step. If both players have identical initial 

distributions, the system reaches a steady state and the probability distribu- 

tion for each pl,, iyer evolves to Li power law with an exponent dependent on 

the number of players. 
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4.1.3 Comparison in Card Games 

An approach similar to the auction model is taken in Ref. [117] where an 

elementary two player card game is studied. ln this model, the players com- 

pare their card at each time step and the holder of the smaller card wins 

and gets both cards. An exact solution is obtained for arbitrary initial con- 

ditions, and similar to the results found in Ref. [116], the system approaches 

a steady state where the card densities are proportional to each other. How- 

ever, both of the players end up with a different number of cards overall and 

it is possible for one player to gain all cards and win. 

4.2 Models of salaries: mean field version 

Motivated by previous models of comparison, new models of salary distri- 

butions are introduced in this chapter. In the first model, two individuals 

(employees) who both work for the same organisation compare salaries. The 

higher paid individual does nothing and remains in the organisation but 

the lower paid individual leaves the organisation and is replaced by another 

whose salary is picked from a power law distribution. This seems realistic 

as an employee who is unhappy with his salary tends to leave and join a 

new organisation. In addition to that, the new individual's salary is chosen 

from a distribution which is power law as the personal income distribution 

is proven to obey a power law distribution [118,119,120]. The mean-field 

version of this model, where any individual can compare their salary to any- 

one else in the organisation, is solved analytically. This model is also studied 

numerically in a lattice form where any individual may only compare salaries 
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with their nearest neighbour. This is more likely as employees in an orgam- 

sation tend to associate only with their close colleagues. Several variations of 

this model are introduced and they are again solved analytically and studied 

using numerical simulations. 

In the following subsections several variants of the mean field version 

of the model are introduced. These are followed by a I-d lattice version of 

Model A. Finally, conclusions are drawn and results are discussed in the final 

section of this chapter. 

4.2.1 Model A 

In this model, two individuals, Aho both work for the same organisation, 

compare salaries at each time step. The individual with the higher salary 

does nothing but carries on as normal, while the individual with the lower 

salary leaves and is replaced by another whose salary is chosen from a power 

law distribution, (-ý - 1)x-^ý, where -y > 1. Thus, the number of individuals 

A(x, t) with salary x>I at time t evolves like 

dA(x, t) 00 'y -1 00 00 A (x, t) A(y, t)dy+ - A(y, t) A(-, t)dzdy. (4.1) 
dt 

ix 
X'Y 1 

ly 

The first term on the right hand side of Eqn. (4.1) corresponds to the de- 

struction of numbers in A(x, t) when one of the two competing individuals 

has the lower salaryx, which results in him leaving. In this term, the product 

of the number of individuals with salary x and the total number of individ- 

tials with salaries greMer than x corresponds to the probability of the loss 

of an individual with salary x. The second term on the right hand side cor- 
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responds to the creation of salary x after one of the individuals has been 

replaced. The fl' A(y, t) fy' A(z, t)dzdy in this term is a constant, and the 

1: 2-1 corresponds to the probability that the newly arriving agent has a salary X'Y 

x. 

Introducing the cumulative probability distribution 

Oc 

F(x, t) =IA (y, t) dy (4.2) 

the salary distribution A(x, oc) can be obtained when the system reaches 

a stationary state. This can be done by rewriting Eqn. (4.1) in terms of 

F(x, oo) to give 

0- 
dF(x) 

F(x) - X'Y 
oo dF(y) 

F(y)dy. (4.3) 
dx 

1, 
dy 

Eqn. (4.3) can be reduced to 

0- 
dF(x) 

F(x) +1 -y -1 (4.4) 
dx '2 x-( 

and by integrating Eqn. (4.4) we have 

1 -ly F(x, oo)= X2 (4.5) 

Thus, we obtain 
-Y -1- (i +-Y) (X, oo) =2X2 (4.6) 

Hence the resulting distribution approaches a power law. This power law 

distribution is obtained as the new individual, who joins the organisation, has 
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his salary picked from a power law distribution. The final salary distribution 

is thus dependent on the distribution from which the new individuals's salary 

is chosen; however the resulting distribution has a different exponent. 

If the new individuals are chosen from an exponential distribution 

-yexp[--y(x - 1)] then by using the same steps as above, it is found that 

the resulting salary distribution is -2 exp[--Y(x-')]. 22 

4.2.2 Model B 

This is a variant of the first model and at each time step, after both individ- 

uals have compared salaries, the individual with the lower salary either with 

probability p leaves and is replaced, or with probability I-p has his salary 

matched to that of the other individual. Consequently, A(x, t) with a salary 

, I- >I at time t evolves like 

dA (., r, t) A (., r, t) 
00 

ý4 (y, t) dy + p2 A (y, t) 00 A (z, t) dz dy 
dt XY1 

fy 

x 

+(I - p)A(x, t) f, A (y, t) dy. (4.7) 

The first term on the right hand side of Eqn. (4.7) corresponds to the de- 

struction of numbers in A(x, t) when one of the two individuals has the lower 

salary, which results in them leaving. The second term on the right hand 

side corresponds to the creation in new numbers in A(x, t) after one of the 

individuals has been replaced with probability p. The third term on the right 

hand side represents the creation of new numbers in A(x, t) when the salary 

of one of the individuals is modified with probability 1-p. 
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Using the same method as that of the previous model, 

F (x, oc) -- 
1p1-I 

+p xl-, y (4.8) 
2-p 

F 

(p - 1), + 

(see appendix C)hence 

(x, oo) = 
(-y 1)px-, (4.9) 

2ý(p - 1)2 + p(2 - p)xl-'y 

Eqn. (4.6) is obtained when p=1. 

4.2.3 Model C 

This is another variation of Model A, however instead of having two individ- 

uals compare salaries, this model has a individuals compare salaries, where 

oz > 1. The individual with the lower salary leaves and is replaced by another 

individual whose salary is chosen from the same power law distribution as 

the previous models. 

The rate equation for this variant of the first model is 

dA(X, t) A(x, t) 
00 A (y, t) dy +2 -- 

1A (y, t) 
(j Oc 

^Y y X 

Using the same method as used in the previous models, 

1--ý 
F(x, oc) =: x cl+l 

a 
A (z, t) dz ) dy. 

(4.10) 

(4.11) 
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(see appendix C)hence 

7- 1 
x 

c+1 
(4.12) 

The resulting distribution is power law and has an exponent which is 

on the number of individuals comparing salaries, and this exponent is a+ 

1. Hence, for all initial salary distributions, the resulting distribution ap- 

proaches a power law with an exponent which is dependent on the number 

of individuals who are comparing salaries. This is a generalised version of 

the first model. 

4.3 Differences between mean field and lat- 

tice models 

A number of simulations have been performed on Model A in which two 

individuals compare salaries. These were compared with a I-d version of 

Model A in which at each time step, an individual is chosen at random, 

and that individual randomly selects his or her neighbours. For this pair of 

individuals, as in the mean field model, the individual with the highest salary 

does nothing whereas the one N, ý, ith the lower salary leaves and is replaced 

wit li ýi new individual Nvhose new salary is selected at random. 

Figure 4.1 shows the salary distribution for Model A in which the new 

inclividuals have a salary selected from a power law with exponent -j = 

The simulation wýis carried out over 108 time steps. From Eqn. (4.6), it can 

be seen that the resultant distribution should have exponent 
+ 1) 

-3 and 22' 
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Figure 4.1: Salary distribution for Model A in which the new individuals 
have a salary selected from a power-law distribution with exponent -ý = 2. 

this is indeed the case, and the line with slope 1.5 fits the data very well. 

In Figure 4.2 the same distribution for the 1-d system is shown, and it is a 

power law with an exponent close to that of the mean field version. 

A comparison between the the mean field and the 1-d model can be made 

by looking at the mean absolute difference between the salaries of traders, 

denoted by <Z>. To do this, we first consider F(z), the distribution of 

the absolute difference between the salaries of two neighbouring individuals. 

F(. x) is given by 

F(z) P(x)P(x -, -)dx + P(x)P(x + z)dx. 
-CXI - 3c 
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Figure 4.2: Salary distribution for Model A oil a I-d lattice in which the 
new individuals have a salary selected from a power-law distribution with 
exponent -y = 2. 

Due to symmetry, Eqn. (4.13) can be written as 

21 CO P(x)P(z + x)dx. (4.14) 
_OO 

This can be used to compute the average value of the absolute difference 

> between the salaries of the two neigbouring individuals. For the case 

with the power law distribution, 

P(X) - 
-ý I 

X'y 

so that 

)dx 

1 x'Y ( 

(4.15) 
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=2 (-y -1 
)2 

1 

dx. 11 
X'Y 

(X + Z)'Y 

To check that Eqn. (4.16) is normalised, the integral 

f 00 
F(z)dz = 2(^ý - 1) 00 1 

dx (4.17) 
oI X2-y-1 

is evaluated. By using 

ýy 1- 
dz (x + z)'-" 0 

10 
(X + Z) -f 

Eqn. (4.17) becomes 

00 
F(z)dz = 

00 2(-y - 
1)2 

00 
dxdz 10 10 1, 

X'Y (X + z)'Y 
1 oo oo 1y-1 

1) -dxdz 0 X-Y (X + )'Y 

2x 1-2"dx 

= 11 (4.19) 

thereby showing that Eqn. (4.16) is normalised. <z> is given by 

00 

Z> = 
10 

zF(z)dz 
100 100 

2(-y - 
1)2 

-dxdz. (4.20) 
0 [x(x + Z)] , 

By using 
Oo Z(ý - 

1) x 2--y 

dz =- 
Jo 

(x + -)-I y-2 

79 



CHAPTER 4. MODELLING THE DISTRIBUTIO. V OF S. AL. ARIES 

Eqn. (4.20) is solved to give 

z 
2(-y - 1) 

(4.22) 
(-y - 2) (2-y - 3) 

where ̂ ý > ý. From the numerical simulation for 11, the < -- > is found to 2 

be 0.259. However, substituting -y = 11 into Eqn. (4.22) gives < -- >= 0.526. 

This is due to the earlier assumption that the salary distribution of the 

individuals is approximately the same as the distribution from which new 

salaries are chosen P(x) = However, as shown in the previous section, XY 
the resultant salary distribution is A(x, oc) = 2ý--' v 

"2'-') 

. Thus, the -ý in 2' 

Eqns. (4.16) to (4.22) should be replaced by -2-+' = 6, giving <- >= 0.278. 2 

The difference between the theoretical and simulation results is due to the 

range of integration assumed in the theory; since the steady state distribution 

is power law, all moments are divergent, so that there must exist an upper 

and a lower cutoff, denoted by x, andX2 respectively, such that the power 

law solution is only applicable for the range x, 'ý'- X "ýý X 2. Thus, < -- > is 

rewritten as 

z>2 
(-ý - 1) X2 

x 2-2-ldx 

-y 2 
fx, 

2X 3-2-y 
x 

3-2-ý 
21 (4.23) 

-y 23- 2-y 3- 2-yj 

From Figure 4.2 it can be seen that X2 - 20, so that the first term of Eqn. 

(4.23) is negligible, and the resultant, value of <z> is only dependent on 

the second term. Although it is difficult to estimate the value of x, from the 

saine figure, one would expect the 'true' value of x, to be close to unity and 
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slightly greater than it. So, an estimated value x=1.010 can be used, giving 

a theoretical <z >= 0.297 which is close to the simulation value 0.259. Note 

that the closer the chosen value of x, to unity, the closer the theoretical value 

to the simulation result. 

For the exponential distribution, 

Oo 

F (z) = 
C, P(x)P(x - z)dx + P(x)P(x + z)dx 

1 0+ 
1 

= 2focP(x)P(x+z)dx (4.24) 

and 

P (x) = 
ýy 

exp[- 
-y(x - 1) ]. (4.25) 

22 

This gives 

2 

-21 00 dx 2 F (z) 
2 exp 2 exp 
2- 

-Y-- 
exp 2 

2 
,y zz- 
2 

eXp 2 (4.26) 

Thus, 
00 -z2 z >= exp- 2 dz (4.27) 

2o 

2 yields <z >= 1.251 ± 0.149. From Eqn. The numerical simulation for -ý =ý 

(4.27), we have <z >= 1.333. Thus, the theoretical prediction agrees 3 

with the simulation result. 
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For the uniform distribution, 

1 
P(x) = ___ 

2\/1-x 

and 

(4.28) 

1L 
F(z) -dx +- 4 

lo 
(1 

- X)2 »., 
dx, 1 (1 

- 
(X 

-24 

lo 
X2 (x +2 

Z» 1 
(4.29) 

so that 

11 
zF(z)dz 

Z dx dz 
10 

40 (1 
- X)l2(I - 

(X 
- Z» 2 

LL1 
+Z dx dz (4.30) 10 

4 
10 

22 (1 
- x)-! (' 

- 
(X + -» -! 

where L is the upper limit for which Eqns. (4.29,4.30) are valid. 

To solve Eqn. (4.30), the Composite Simpson's rule [121,122] 

bba rn-1 m 
f (x)dx 

3f 
(a) +2f (a + 2hi) +4f (a + 2h(i'- 1)) +f (b) 

(4.31) 

is applied, where a and b are the limits of the integral chosen, h= b-a' M is 
2m 

the number of subintervals used, z is an integer and f (x) is the function to be 

integrated. The software Mathematica was used to carry out the iterations, 

and details of these routines are included in the appendix of this thesis. It 

was apparent from iterations that a suitable upper limit is L<0.5. The 

value of < -- > was obtained from iterations using 10000 subintervals and 
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the results show that <z >= 0.303. The numerical simulation of the model 

yield <z >= 0.297 ± 0.025. Thus, the theoretical value falls within the error 

range of the simulation value. 

Table (4.1) summarizes the differences between the average values of z ob- 

tained analytically and a simulation of both the mean-field and I-d systems. 

lattice mean field mean field 
(simulation) (simulation) (theory) 

power law 0.566 ± 0.043 0.259 ± 0.030 0.297 
exponential 2.609 ± 0.181 1.251 ± 0.149 1.333 

uniform 0.433 ± 0.021 0.297 ± 0.025 0.303 

Table 4.1: <Z> for various distributions. 

4.4 Conclusions and discussion 

A mean-field model of salary distributions has been introduced, along with 

several variants of the model. Numerical simulations of the Model A in lattice 

form have also been studied. 

Solutions for the mean field models at steady state have been found. 

Model A is the simplest model where any two individuals, both working 

for the same organisation, compare salaries. The individual with the lower 

pay leaves and is replaced by another whose salary is chosen from a power 

law distribution (-y - I)x--I. Solving this model analytically reveals that the 

resulting salary distribution of the organisation is power law with a different 

exponent. 
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The resulting distributions of all other mean field variants of this model 

are all power law, apart from Model B, which is power law only when p=1. 
This implies that all resulting salary distributions are dependent on the dis- 

tribution from which the new individual's salary is picked. Nevertheless, the 

exponent of the resulting distribution is strongly dependent on the number 

of individuals comparing salaries. This is in agreement with the results from 

Model C, where the resulting distribution has an exponent 1), 

where a is the number of individuals which another is comparing salaries 

with. Thus, the exponent of the resulting distribution decreases because of 

the oz dependence and as a increases, it causes a further decrease in the size 

of the exponent. 

The fact that power laws occur in Models A and C indicate that these 

models are at SOC state, and this can be understood in terms of threshold 

and metastability described earlier in chapter one. In order for SOC to occur, 

there must be a threshold in the system, and in this model, the salary of the 

richer individual serves as a threshold for the poorer individual. However, 

when p=I in Model B corresponding to no action taken by the poorer 

individual, no criticality is observed, and this is due to the absence of actions 

taken when the threshold is reached. 

This work shows that if a total population has a power law salary distri- 

bution then this mechanism, which is basically a comparison and exchange 

process, produces a power law in a sub-population. Consequently this mecha- 

nism is one, possibly one of niany, which might explain the ubiquity of power 

laws in social and economic systems. 

Since these salary models lack any spatial structure, the occurrence of 
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power laws in these models indicates the reluctance of the systems to change 

even when subjected to external driving forces. This is probably a sign of 

the will of nature to preserve the trait of comparison, which should not come 

as a surprise, given the benefits of comparison to survival mentioned in the 

earlier parts of this chapter. 
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Chapter 5 

Summary and outlook 

Motivated by recent advances in complexity research, three models that 

mimic real systems in the financial market, the health care system and salary 

comparison in companies have been proposed in this thesis. The aim of these 

investigations is to further our understanding of complexity so commonly 

found in real systems. 

Recent advances in computer technologies have greatly facilitated the 

work of the research community. As the performance of the microprocessor 

becomes better, many scientific theories of complicated, many-body systems 

can now be tested using numerical simulations. In many cases, researchers 

can even use numerical simulations as a substitute for lengthy calculations. 

This ability to study a system without having to describe it completely using 

mathematical expressions is even more important in the case of complex 

systems where the upshots of a simple algorithm, such as the algorithm of 

the sandpile model [45], are extremely complicated. 

Numerical simulations play a major role in the research done in this thesis. 
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Each study has been carried out using an algorithm that captures the essence 

of the real system. Statistical mechanics has been used to solve the rate 

equations and to compute various quantities. Theoretical results have been 

shown to compare well with numerical simulations. 

In chapter two, a model of herding is proposed which, besides mimicking 

the coherent group reactions in social communities, also encompasses the 

elements of growth and addition. These two mechanisms allow for the gen- 

eration of new agents and the grouping of existing agents in the system. In 

this model, at each time step either [1] with probability p the system grows 

through the introduction of a new agent or [2] with probability 1-pa free 

agent already in the system randomly joins a group of size k with rate Ak. 

Three separate cases have been investigated. When the growth of the system 

is sufficiently fast corresponding to p> 1/2, the group size distribution is 

found to follow a power law with a parameter dependent exponent. When 

the number of groups stays constant corresponding to p == 1/2, the time 

taken by the system to run out of free agents scales as the square of the 

initial number of free agents in the system. When the rate of growth is slow 

enough corresponding to p< 1/2, the system runs out, of free agents in a 

finite amount of time, and this time has been shown to be proportional to 

the initial number of free agents in the system. 

In chapter three, a model of hospital waiting lists is proposed by using 

ideas from Queueing Theory. Patients enter the system and join a list based 

on the length of the latter. At the same time, patients get served and leave 

the svstem. In this model, ok is the service rate in a list of length k and 

bk corresponds to the tendency of a patient to join a, list of length k. The 
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parameters p, q and r are used to adjust the overall relative rates of patient 

departure, arrival and list creation. Five different cases were considered in 

this model. For the case when ak = k, bk = 1, q>p and r=0, the list 

distribution has been found to be a power law. For the case when bk =I 

and p=0, the list distribution is exponential. For the case when ak = k, 

bk =1, p=q and r=0, the list distribution has been found to be a Poisson 

distribution. For the fourth case, the configurations bk = 1/(A, - + 1) and 

r=0 are used. Two variants of this case are considered. It has been found 

that for both ak =- 1 and ak = k, the list distribution is Gaussian-like. The 

mean number of patients for the former variant remains stationary over all 

time, but that of the latter grows linearly with time. For the final case, 

ak =ý 1, bk : -- 1 and r=0, and the list distribution has been found to be 

exponential. This model of hospital waiting lists illustrates how the power 

law distributions found in empirical studies might arise, but indicates that 

the preferential attachment of the patients or their physicians is unlikely to 

be responsible for the occurrence of the power law distribution. 

In chapter four, a model of salary comparison is introduced. An individual 

with higher salary does nothing but the lower paid individual leaves the 

organisat ion and is replaced by another, whose salary is picked from a power 

law distribution. The solution for the mean field version of the model has 

been found, which is a power law with an exponent different from that of 

the distribution from which the salary is picked. Two variants of the model 

were considered. In the first variant, two individuals compare salaries at each 

time step ýmcl the individual Nvith the lower salary either with probability p 

leaves and is replaced, or with probability I-p has his salary matched to 
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that of the other individual. In the second variant, a individuals compare 

salaries instead of fixing at two, where a>1. The individual with the 

lower salary leaves and is replaced by another individual whose salary is 

chosen from the same power law distribution as the previous variants. The 

resulting salary distributions of the mean field version of the second variant 
is power law, but the first variant is power law only when p=I. The 

implication is that all resulting salary distributions are dependent on the 

distribution from which the new individual's salary is picked. However, the 

exponent of the resulting salary distribution is strongly dependent on the 

number of individuals comparing salaries. This agrees well with the results 

from the second variant, where the resulting distribution has an exponent 

-(a + 7)/(a + 1). Therefore, the exponent of the resulting distribution 

decreases because of the a dependence and as the latter increases, it causes a 

further decrease in the size of the exponent. Both mean field and 1-d versions 

of the model have been studied, The two versions are compared by looking 

at the mean absolute difference between salaries in each version. 

The analysis of the three models proposed in this thesis has yielded some 

insights on how certain systems might have worked in the real world. For 

instance, the group size distribution of the herding model in chapter two has 

been shown to depend on the growth rate of the system, and if the growth is 

fa, st, the group size distribution will conform to a power law. If this is applied 

to the real world, a financial market that constantly takes in a large number 

of new traders will be expected to end up with most traders not consulting 

with anyone before making the decision on whether to buy or sell his market 

shares. Even for those who do consult Nývith each other, they mostly do so 

89 



CHAPTER 5. SUMMARY AND OUTLOOK 

in small groups, making knowledge sharing or group loyalty minimal. All 

interesting point to note is that by having most traders consulting in small 

groups, their volumes of transactions are small, and so the decisions of most 

groups do not have a strong impact on the price of the shares. By ha%'ing 

few groups with strong impacts, the system reduces the chance of sudden 

big changes in the stock price, and this feature of resistance to changes is a 

hall-mark of SOC. 

The analysis of the proposed models of hospital waiting list has also pro- 

vided an insight on the healthcare system. In particular, it has shown the 

mechanisms required to keep the length of waiting lists at the minimum. 

From the results in Table (3.1), it seems that the most desirable list distribu- 

tion is the power law corresponding to Case 1. Thus, one way to to keep the 

waiting lists in a hospital short is probably to make sure that a significant 

portion of existing patients are treated before admitting more patients into 

the hospital. Patients on longer lists are treated first, and new patients join 

lists randomly. 

In the model of salary comparison, it had been shown that when lower 

paid patients demand their salaries to match those of their colleagues, most 

of the employees in the entire population end up with very low salaries. The 

number of resultant lowly-paid employees in this case is much higher than 

those of the cases when the lower paid employees leave the company. Thus, 

to ensure a higher-paid population on average, it is probably a good idea 

for the employees to lea\re the company rather than demanding a matching 

salary. 

Power laws are observed in all of the three models proposed in this the- 
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sis, a further implication that fractals are ubiquitous in nature and society. 

Future work on complex systems might suitably involve the identification of 

more self-similar characteristics in the form of power law distributions. The 

search for other properties of complex systems should also continue. How- 

ever, the ultimate goal is probably to develop a mathematical framework 

that establishes a formal definition of complex systems. 

All numerical simulation codes given in the following appendixes are in 

Fortran 77. The algorithms in these programs can be adapted to be used in 

any other programming languages. 
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Appendix A 

Source Code for Chapter 2 

The code given in this appendix is for the herding model in chapter 2. This 

program can be used to simulate case 3 of the herding model. The time 

needed for the simulation is approximately 4 hours. 

integer N, A(10000), Nsteps, sum, k, kk, sumN 

integer x 

real y, z, suml, p, jd, xd 

c The above are the declarations used in this program. The A(10000) is a 

matrix that, records the number of groups of a certain size. In this program, 

a matrix size of 10000 is used. However, the reader is free to choose any size 

he or she pleases. Nsteps corresponds to the number of time steps used to 

simulate the model. sum records the size of the system at any time step. 

sumN records the total size of the system at the end a particular time step. 

suml is used to determine which group size a free agent chooses to attach 

to. p is the probability p used in the thesis. Jd and xcl are the values of -L N 

and p respectively which will be printed onto an output file. 
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do 110 x=1,499 

N=10000 

cN is the total size of the system. 

mran--1001 

c mran is the seed for the random number generator. 

P=0.001*x 

c All values of A(i) are now allocated a zero value. 

do 10 i=1)10000 

A(i)=O 

10 continue 

c And the value of A(I) is given a value of N so that all agents are free 

initially. 

A(I)=N 

sum=N 

Nsteps=10000000 

sumN=O 

c The simulation is now started. 

do 20 j=I, Nsteps 

z=ran(mran) 

lf(z. 1t. p)then 

A(I)=A(1)+l 

sum=sum+l 

c The above statements correspond to the growth feature of the herding 

model. 

else 
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c If a growth feature fails to occur, the addition feature will now be carried 

out. 

A(1)=A(l)-l 

y==ran(mran) 

SUM1=0 

do 40 k=l, sum 

suml=suml+A(k)/real(sum-1) 

if (suml. gt. y) then 

kk=k 

goto 50 

endif 

40 continue 

50 A(kk)=A(kk)-l 

A(kk+l)=A(kk+l)+l 

if(A(l). eq. O)then 

goto 70 

endif 

endif 

do 7 i=1710000 

sumN=sumN+A(i) 

7 continue 

if(sumN. It. 0) then 

goto 70 

endif 

20 continue 
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70 continue 

jd=real (j) /real (10000) 

xd=0.001*x 

c Values of xcl and jd are now printed onto an output file. 

write(2, *)xd, jd 

110 continue 

stop 

end 

95 



Appendix B 

Source Code for Chapter 3 

This is a program for the case 4 simulation mentioned in chapter 3. The time 

need for the simulation is approximately one hour and a half. 

integer A(1000), B(100), t, Al, r3, r4, sum2, Bl, s3, s4, i, j, s5 

real suml, A2, rl, r2, r6, sl, s2, F 

integer consa, consb, k, r5, consc, nsamples, g, C(100) 

real dl, BB, A3, D(100) 

c A(i) is the length of list i. B(i) is the number of lists of 

c length 1. 

c C(i) is used to calculate the total number of lists with length i 

c averaged over the 100 samples used in this program. 

c D(i) is the value of the total number of lists with length i 

c averaged over the 100 samples used in this program. 

mran=1001 

iisamples=100 

Do 13 i=1,100 
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C(i)=O 
13 continue 

Do 10 g=1, nsamples 

c All lists start off with 10 patients. 

Do I i=111000 

A(i)=10 

I continue 

Do 14 J=IJ00 

B(i)=O 

14 continue 

B(10)=1000 

c The list joining and service mechanisms are now started. 

Do 2 t=1110000000 

suml=0.000 

Do 6 k=1799 

Al=k+l 

A2=real (1) /real (A 1) 

A3=B(k)*A2 

suml=suml+A2 

6 continue 

rl=ran(mran) 

r2=rl*1000 

r3=int(r2) 

i-4=43) 

r5z--r4+1 
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r6=real (1) /real (6) 

BB =real (r6) /real (sum 1) 

dl=ran(mran) 

If(d3. It. BB) then 

consa= B(r4) 

If (consa. gt. 0) then 

A(r3)= A(r3)+l 

B(r4)= B(r4)-l 

B(r5)= B(r5)+l 

endif 

endif 

sum2-0 

Do 7 k=11100 

Bl=B(k)*k 

sum2=sum2+Bl 

7 continue 

sl=ran(mran) 

s2=sl*1000 

s3=int(s2) 

s4=A(s3) 

s5=s4-1 

F=real (s3) /real (sum2) 

lf(sl. lt. F)then 

consb=A(s3) 

consc=B(s4) 
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If(consb. gt. 0) then 

If (consc. gt . 0) then 

A(s3)=A(s3)-l 

B(s4)=B(s4)-l 

B(s5)=B(s5)+l 

endif 

endif 

endif 

2 continue 

Do 8 i=17100 

C(i)=C(i)+B(i) 

8 continue 

10 continue 

Do 11 i=17100 

(i) =real (C (i)) /real (nsamples) 

II continue 

Do 5 j=1,100 

write(l, *)D(j), j 

5 continue 

stop 

end 
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Source Code for Chapter 4, 

Mathematica routines and 

derivations of equations 

These are the programs for the Model A simulations mentioned in chapter 

4. The time needed for the simulation is approximately 4 minutes. 

c This is the program for the mean field version of Model A with power 

law distribution. Note that a similar code can be used for other distributions. 

integer t, num(100) 

real trader, money 1, money2, money (1000000) 

integer selectedtrader, passivetrader, uu 

real st, pt, ms, mp, traderl 

real dif, sum, average 

real mn, mnnmnnn 

c The money(1000000) is the matrix for the amount of money for each 
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person. 

mran=1085 

a=0.000000001 

Do 1 i=1)1000000 

money I ==ran (mran) 

money2=(moneyl+aaaa) 1) 

money(i)=money2 

1 continue 

cc Now start the simulation 

Do 2 t=-17100000000 

cc the traders are first selected 

trader=: ran (mran) 

selectedtrader: =int (trader* 1000000) 

trader 1 =: ran (mran) 

passivetrader-int (traderl* 1000000) 

st=selectedtrader+l 

pt-passivetrader+1 

ms=money(st) 

mp=money(pt) 

c Now perform the salary comparison 

If(ms. It. mp) then 

money 1 =ran (mran) 

money2 = (money 1+ a) 

money (st) = money2 

endif 
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If(ms. gt. mp) then 

money I =ran (mran) 

money2= (moneyl +a)** (-l) 

money (pt) =money2 

endif 

2 continue 

sum=0.0 

c Now measure the mean average difference between the salaries of traders. 

Note that the same code is applicable to all other distributions. 

Do 4 i=1,999999 

uu=i+l 

dif= money (i) -money (uu) 

If(dif. 1t. O)then 

dif=-dif 

endif 

sum==sum+dif 

4 continue 

average= real (sum) /real(1000000) 

print*, average 

Do 811 i=1)100 

num(i)=O 

811 continue 

Do 81 i=1,100 

Do 82 j=1,1000000 

mn=money(j) 
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mnn=i*l 

mnnn==(i+l)*l 

If(mn. It. mnnn. and. mn. gt. mnn) then 

num(i)=num(i)+l 

endif 

82 continue 

write (889, *) mnn, num (i) 

81 continue 

stop 

end 

This is the program for the lattice version of Model A with power law 

distribution. 

real trader, money 1, money (1000000) 

real money2, a 

integer selectedtrader, passivetrader, uu 

real st, pt, ms, mp, traderl 

real dif, sum, average 

real mn, mnn, mnnn 

integer t, num(100) 

c Similar to the previous program, except that this is for the power law 

distribution of the I-d version. all other distributions can be adjusted ac- 

cordingly. The time needed for the simulation is approximately 4 minutes. 

mran==1085 

a=0.0000001 

Do i=1,1000000 
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money 1 ==ran (mran) 

money2= (moneyl+a) 

money(i)=money2 

1 continue 

Do 2 t=1)100000000 

trader==ran(mran) 

select edt r ader=: int (trader* 1000000) 

trader I =ran (mran) 

If(trader 1. gt. 0.5) then 

passivet r ader =select edtr ader +I 

endif 

If(trader 1- It. 0.5) then 

passivetrader=selectedtrader- I 

endif 

st -select edtrader+ 1 

pt=passivetrader+l 

ms=money(st) 

mp=money(pt) 

lf(ms. It. mp) then 

money 1 =ran (mran) 

money2=(moneyl+aaaa) 

endif 

If(ms. gt. mp) then 

money 1 =ran (mran) 

money2 - (money 1+ aaaa) 
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money (pt) = money2 

endif 

2 continue 

sum=0.0 

Do 4 i=1,999999 

uu=i+l 

dif= money (i) -money (uu) 

If(dif. 1t. O. O)then 

dif=-dif 

endif 

write(888, *)dif 

sum=sum+dif 

4 continue 

average=real(sum) /real(1000000) 

print*, average 

Do 811 i=1)100 

num(i)=O 

811 continue 

Do 81 i=11100 

Do 82 j=1,1000000 

mn=money(j) 

mnn=i*1.000 

mnnn=(i+l)*1.000 

lf(mn. It. mnnn. and. mn. gt. mnn) then 

num(i)=num(i)+l 
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endif 

82 continue 

write (889, *)num (i) 

81 continue 

stop 

end 

Mathematica routines 

These are the routines used in the iterations for the uniform distribution 

in Chapter 4. The aim of these routines is to obtain a theoretical value of 

<z>. 

The following corresponds to the first term of the LHS of Eqn. (4.29). 

a=0; b 0.999999; m= 10000; h= (b - a) (2 m) 

f [x_] : (0.25) *(( (1 - x) % (- 0.5) )*( (1 x+ z) 0 . 5) 

SumOdd = 0; For [k = 1, k <= m, k ++, Sumodd = Sumodd +f [a +h (2 k- 1) ]; ]; 

Sil- ven= 0; For[k = 1, k <=m-1, k++, Silm ven= Sil- ven+ f [a+h*2*k]; ]; 

NIntegrate [z * (h * (f [a] +4* Sumodd +2* Sum ven +f [b]) / 3), {z, 0,0.999999) ] 

The 'For' loops above sum up the odd and even terms in Eqn. (4.31). 

The following corresponds to the second term of the LHS of Eqn. (4.29). 

a=0; b=0.499999; m= 10000; h= (b - a) / (2 m) 

f [x-] := (0.25) *« (1 -x) A (-0.5» *( (1 -x - z) (-0.5») 

Sumodd = 0; For[k = 1, k <= m, k++, Sumodd= Sumodd+ f [a+h (2k- 1) ]; ] ; 

SumEven= 0; For [k= 1, k<=m-1, k++, Sum ven= Sum ven+f [a+ h*2*k]; ]; 

NIntegrate[z* (h* (f [a]+ 4*SumOdd+ 2*Sum ven+ f (b]) / 3), (z, 0,0.499999}] 

Derivations of equations 

At steady state, Eqn. (4.7) becomes 
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Oo 00 00 

0= -A(x, t)f A(y, t)dy+p'y-lf A(y, t) A(z, t)dzdy 
xI XYI 

fv 

x +(l - p)A(x, t) IA (y, t) dy. (C. 1) 

Substituting Eqn. (4.2) into Eqn. (C. 1) gives 

2p 
(F(x) )2 

_ 
(1 

- p)F(x) -p xl--Y = 0. (C. 2) 
22 

Solving Eqn. (C. 2) leads to Eqn. (4.8). 

At steady state, Eqn. (4.10) becomes 

0= 
-A(x, t) 00 A (y, t) dy a 

+A (y, t) 
XY1 

00 A (z, t) dz) 0' dy. 

(C. 3) 

Substituting Eqn. (4.2) into Eqn. (C. 3) gives 

dF(x) 
(F (x»" =1- 

ýy (C. 4) 
dx X-Y (a + 1) ' 

Integrating Eqn. (C. 4) leads to Eqn. (4.11). 
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