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Abstract 

This thesis reports the author's investigation of the effects of the injection of 

specific signals on the intermodulation distortion performance of microwave power am- 

plifiers. Theory, simulation and practical results are presented, analysed and compared. 
The thesis gives the reader background knowledge of power amplifiers and their 

nonlinearities and go on to analyse the phenomena of intermodulation distortion prod- 

uct generation in power amplifiers. The analysis is based on a three-tone test since this 

highlights a second kind of third order intermodulation distortion (IMD3), which are 
in general higher in amplitude than the first kind of IMD3 found in a two-tone test. 

A mathematical analysis and a simulation of a MESFET amplifier are performed. 
It enables the comparison of the performance of IMD cancellation by injection of sig- 

nals whose frequencies are chosen to be first, the second harmonic of the fundamental 

signals, second, the sum of the fundamental signal frequencies and finally the difference 

frequencies of the fundamental signals. 

A practical implementation of the difference frequency technique is then pre- 

sented and practical results are compared to the other two techniques of second har- 

monic injection and the injection of the sum of fundamental frequencies. It is further 

shown that in practise these two techniques may be considered as a single technique. 
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CHAPTER 1. 

INTRODUCTION 

1.1 Introduction 

The information handling capacity of current communication systems is limited 

by nonlinearities in microwave power amplifiers (MPA) used in systems such as satellite 

transponders. 

A nonlinear system can be described as a system in which the output signals 

vary with respect to the phase and amplitude of one or more input vector signals. The 

variation of the signals cannot be described by a simple linear system and therefore 

requires the use of complex nonlinear structures. A typical solid state power amplifier 

output when plotted against the input power is fairly linear in the low signal region, 

and becomes highly nonlinear as the solid state power amplifier (SSPA) is driven to 

saturation in the high signal region. 

Solid state microwave components are all nonlinear. In communication ampli- 

fiers, any nonlinearity in the phase and the amplitude of the voltage transfer function 

must be minimised to preserve the shape and spectrum of the signal. Nonlinearities of 

the microwave transmitter amplifier limit the performance of communication systems 

through undesirable effects such as noise, phase ambiguities, intermodulation distortion 

(IMD) and sideband regrowth resulting in channel interference and reduced spectral 

efficiency. 

There is a necessity in telecommunication systems for the use of amplifiers capa- 
ble of providing large carrier to inband intermodulation distortion ratios (C/I). With 

1 



the growth of subscribers in wireless personal communications systems (PCS) and wire- 

less local loop (WLL), has come the demand for highly efficient, linear amplification of 

complex modulated signals. System designers have to upgrade their systems to avoid 

a violation of the interference standards or a degradation of the system performance. 

Digital modulation for example, relies on accurate transmission of a complex 

vector or symbol. The nonlinearities in the transmitter due to nonlinear elements 

distort these symbols and in turn the emitted signal is disturbed and as a result, 

information may be lost. 

In certain microwave applications, there is a need to obtain high output power 

with low IMD, for example in multicarrier systems, modulated transmitting systems 

and digital systems. A way to achieve this is to use the amplifier at a level far below 

its maximum output capability. Amplifiers are therefore usually backed off several dBs 

from saturation level to ensure a more linear operation. This may be impractical in 

many cases since it leads to poor efficiency, increased running cost and reduced handling 

capacity. 

The fact that most components such as limiting amplifiers, oscillators, doublers 

and mixers rely on the device nonlinearities for their operations, makes IMD an impor- 

tant problem and a real challenge for the designer. The designer's aim is to achieve as 

near ideal operation as possible in the realised device or circuit. Hence, IMD needs to 

be understood and in theory may be eliminated for perfect operation of the devices. 

One such approach to cancel the IMD is to use linearisation techniques. 

Complete circuit analysis of the components requires a nonlinear device model 

and analytic means to extract the circuit behaviour and the cause of the nonlinearities 
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and their effects. A frequency description of the linear circuit is particularly advan- 

tageous at microwave frequencies as elements such as capacitors simply map a phasor 

into a different magnitude and angle. 

The modelling of different devices and their study have shown that the nonlinear 

effects are generally associated with active elements in the circuit. One such element 

contributing to the effects of nonlinearities in the microwave power amplifier (MPA) is 

the Field Effect Transistor (FET). 

1.2 Aims and Objectives of the Research 

In wireless applications such as the global system of mobile communications 

(GSM), personal communications networks (PCN), wireless local loop (WLL) and the 

local multipoint distributed system (LMDS), the system operators have had to up- 

grade their networks from using such architectures as the single channel power amplifier 

(SCPA) of figure 1.1 to the use of multicarrier power amplifier (MCPA) of figure 1.2. 

This upgrading has been introduce to overcome problems such as the increase in ca- 

pacity overload and dropped calls. The approach enables multiple channels or different 

modulation scheme to be processed simultaneously. 

The use of the MCPA, mentioned above requires a power amplifier (PA) capable 

of providing high linearity. This has led to the devising of a number of techniques 

for improving the amplifier's nonlinear characteristics. This report reviews existing 

techniques and develops new ones. 

It deals with a research project investigating the effects of the injection of mul- 

tiple signals of different frequencies on the intermodulation distortion performance of 
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Input 
Transmitter 
Channel 

Transmitter I Multicanier 
Power Amplifier 

Transmitter 2 Combiner u F't1° 
Out, 

F Transmitter n 

Figure 1.. 2: Multicarrier power amplifier schematic for base stations. 

Multicanier 
Power Amplifier 

Output 

4 



microwave amplifiers and its applications to multicarrier amplifier linearisation. The 

concept of frequency injection into an amplifier is first analysed mathematically and 

then the effects of the injected signals on intermodulation performance are analysed 

and presented. The results of the study then enable the implementation of the concept 

in order to eliminate the intermodulation distortion in power amplifiers. 

A clear objective of this report is to first enable the reader to become familiar 

with the nonlinearities of devices and therefore understand the problems of intermodu- 

lation distortion and their generation mechanisms as well as the various ways by which 

these are presently eliminated. New techniques are then introduced to the reader. 

Analysis and practical performance are compared to existing techniques. A predis- 

torter circuit is then designed and its practical performance is presented. 

1.3 Thesis Structure 

Chapter 1 discusses the ever-growing need for efficient power amplifiers for the 

various systems used around the world, which have brought high requirements on the 

linearity of the amplifier. 

The second chapter deals with the problem of device nonlinearities. It first 

presents the power amplifier and describes briefly its use before outlining the source 

of nonlinearities. The nonlinear behaviour of the elements in the device, which are 

the main causes of IMD in circuit and how these are modelled for nonlinear circuits 

analysis, is also presented. 

Chapter 3 introduces the concept of intermodulation. A power series expansion 

analysis of the intermodulation distortion terms is presented. Other mathematical 
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methods used to calculate the IMD are briefly presented and discussed. The techniques 

used for IMD elimination are discussed in chapter 3, with a detailed emphasis on circuit 

design techniques and their effectiveness. 

A study of the second harmonic injection technique is presented in chapter 4, 

where the concept is introduced and analysis results are discussed. A low frequency 

injection technique is introduced and investigated in chapter 4, in the same manner as 

the second harmonic. The effects of the second harmonic and the difference frequency 

injection on multicarrier microwave power amplifiers are compared. Investigation into 

the effects of the injection of a signal, the frequencies of which are the sum of the funda- 

mental frequencies is also analysed in this chapter. The IMD reduction performance of 

all the above mentioned techniques on a power amplifier are presented and compared. 

In chapter 5, a practical implementation of the difference frequency technique 

is described. A new circuit implementation of the difference frequency technique is 

presented and tested. Experimental results using the second harmonic technique are 

also introduced and discussed. The difference frequency circuit techniques can also be 

used for the second harmonic technique. 

In chapter 6, conclusions are drawn on the overall work. Chapter 6 further 

discusses the investigated technique advantages and disadvantages and outlines various 

others method of implementing the difference frequency technique. Further work that 

is relevant to the implementation of the technique for radio frequency and microwave 

frequency communication systems is also highlighted. 
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CHAPTER 2. 

AMPLIFIER NONLINEARITIES & CIRCUIT CHARACTERIZATION 

2.1 Introduction 

The goal of this chapter is to present an introduction to the microwave power 

amplifier and therefore provide an understanding of the issue of power amplifier de- 

vice characterization and modeling. The nonlinear elements associated with the power 

amplifier active devices and their nonlinear behavior are described. 

Although the chapter is centered on the Gallium Arsenide Field effect transistor 

(GaAs FET), as is most of the thesis, other devices are presented, because most of 

the techniques apply equally well to the various types of power devices currently being 

developed with appropriate modifications. 

2.2 High Power Amplifiers 

Power amplifiers (PAs) are used in the transmitting chain of a wireless radio 

system. They are required for amplification in order to provide sufficient power for 

transmission. The amount of output power is dependent on the application ranging 

from milliWatts to Watts. 

The first reported prototype Gallium Arsenide Field effect transistor was re- 

ported by Mead in 1966 [43]. In the middle of the 1970's, the first available GaAs FET 

appeared offering usable gain for amplification up to the X-band (8GHz - 12GHz). 

This was first use for small signal devices and then for power amplification. The first 

announcements of high power GaAs FETs were made simultaneously by Fukula et al [2] 

and Napoli et al [3]. The focus of development shifted to higher power added efficiency 
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and improved distortion qualities as well as to operating frequency and output power. A 

new FET structure was developed by Mimura et al [4], called the High electron mobility 

transistor (HEMT) with superior high frequency characteristics. High power amplifiers 

using HEMT have been designed and reported [5]. Other devices using semiconductor 

heterojunctions, with superior noise figures and gain characteristics, such as the hetero- 

junction bipolar transistor (HBT) have also been reported [6,7]. GaAs FET have been 

enhanced by incorporating heterojunctions in some architecture areas such as indium 

gallium arsenide/ gallium arsenide (InGaAs/GaAs), heterojunction, indium aluminum 

arsenide/ Gallium Arsenide (InAlAs/GaAs) heterojunction, indium phosphide (InP), 

etc. 

Today, GaAs FETs and their derivatives, such as high electron mobility transis- 

tors (HEMTs), have completely replaced diodes in small signal and low noise applica- 

tions. Discrete power GaAs FETs with power outputs ranging from 25W at 4GHz to 

1W at 20GHz and beyond are readily commercially available [44,45]. 

Research on GaAs Monolithic Microwave Integrated Circuits (MMIC) has offered 

advantages such as increased reliability and decreased size and achieves high uniformity 

of performance between samples. Impressive results have been achieved from MMIC 

power amplifiers [1]. Distributed power amplifiers [9,10] have become popular with the 

availability of good quality microwave GaAs FETs, although distributed techniques 

have been used in the design of very broadband amplifiers since 1940. 

The PA is the primary consumer of power in the RF portion of the transceiver 

unit in a wireless system. PAs are characterised by various factors of which the two 

most important are efficiency and linearity. The efficiency is defined by two metrics. 
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The drain collector efficiency, 71, is equal to the power delivered by the load at the 

fundamental frequency, divided by the power drawn from the supply. The power added 

efficiency (PAE) is the difference between the input and output powers divided by the 

supply power. Expressions for efficiency and PAE are: 

P 
77 PDC 

(2.. 1) 

PAE _ (1 - 1' --p-l- = Po�t-Pln (2.. 2) 
G PDC PDC 

Where G, is the gain. 

,,,,, t is the power delivered to the load. 

PP is the dc input power. 

P2, ß is the input power. 

If the PA has a large gain, then 71 = PAE. These factors have to satisfy the 

relevant wireless standards. 

One of the primary considerations in the design of PAs involves trade-offs of 

efficiency and linearity. Power amplifiers are categorised by mode of operation under 

many classes: A, B, C, D, E, F, etc [11,12]. In class A amplifiers, the PA devices operate 

continuously for all of the carrier cycle. For class B operation, the power device operates 

for half the time. Class AB is between class A and class B PA. In class C operation, the 

power device is on for less than half the carrier period so as to improve the efficiency. 

Higher class PAs are distinguished by how often the power device is turned on [13-15], 

which affects the efficiency or by how hard they are driven. 
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2.3 MESFET Principle, Operation and Characterisation 

The GaAs MESFET performs a number of functions, such as amplification and 

switching, for microwave devices, such as low-noise amplifiers, power amplifiers and 

switches [16]. In typical applications, models are used to predict or estimate the per- 

formance information that is not available or easily obtainable by direct measurement. 

The equations describing these models are usually modifications of some analyt- 

ical formulae for the device. The constants in the equations and the values of model 

elements are extracted from the dc pulsed and small signal S-parameter measurements. 

There are clearly two types of models: the numerical and the analytical (an equivalent 

circuit) [17] 
. 

The numerical models can be made much more accurate than the analytical 

models whose parameters are adjusted to match the terminal behaviour of the device. 

There is often a lack of direct correlation between the model parameters and physical 

parameters. 

Numerical models are based on the computer solution of the nonlinear equations 

describing the device physics. The accuracy of these devices is often compromised 

because of the amount of detailed information required on the physics of the device and 

the speed of computation. When these models are applied in the design of MMICs, 

the simulations required large computer resources. They are mainly used by the device 

physicists. The equations are formulated under specific assumptions. 
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Figure 2.. 1: Cross section of a MESFET showing the origin of the small signal 

elements. (symbol key: Co, Cgs, Cgd = output, gate-source & gate-drain 

capacitances , Rg, Rd, Rs, Ro, Ri =gate, drain, source, output & input re- 

sistance, gm. =transconductance) 

2.3.1 Principles and Operation 

The MESFET is a three-terminal device. It consists of two ohmic electrodes 

named the source (S) and drain (D) and an intermediate control called the gate (G). 

The gate of the MESFET is of the Schottky type that is in intimate contact without the 

interfacial dielectric between the metal and the semiconductor. The structure consists 

of a perfectly insulating medium surmounted by an n-type semiconductor active layer 

with uniform doping (figure 2.1) [48]. A Schottky gate is placed between the two ohmic 

surfaces of the active layer. 

When a voltage is applied in the direction to reverse bias the junction between 

the gate and the source, the source and drain are forward biased. The electrons flow 

in the n-type epitaxial layer from the source electrode, through the channel beneath 

11 

S0D 



the gate, to the drain. This will then cause a voltage drop along the channel length 

causing the Schottky barrier to become more reversed biased at the drain end. A 

charge depletion region is created in the channel and will pinch-off the channel against 

the substrate towards the drain end. The height of the charge depletion region will 

increase as the source and gate reverse bias increases. The decrease of the channel 

height in the non-pinched-off region will increase the channel resistance and therefore 

enables the modulation of the drain current Ida by the gate voltage. 

2.3.2 Equivalent Circuit 

The equivalent circuit or analytical model is a simplified and abstract represen- 

tation of the device, which allows the engineer to be able to manage and control the 

design of the circuit. 

The elements in the equivalent circuit are intended to represent the electrical 

behaviour of the physical structure of the device. The elements in the physical structure 

of figure 2.1 showed the origin of the equivalent circuit elements. 

2.3.2.1 Small Signal Equivalent Circuit 

A small signal FET equivalent circuit (figure 2.2) is a subset of the large signal 

FET equivalent circuit, simply because a large signal that is biased at a specific point 

in the I/V range of operation of the device will operate as an accurate small signal 

model [19-22]. 

A small signal equivalent circuit for the MESFET can be represented by lumped 

elements up to 12GHz for the extrisinc FET and up to 14GHz for the intrinsic FET. 

The lumped elements: the gate inductance (L9), the drain inductance (Ld), the source 
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D 

Figure 2.. 2: Small signal equivalent circuit of the MESFET. (symbol key 

Ls, Ld, Lg = source, drain & gate inductances, Rd, R8= drain & source 

resistances) 

inductance (L3), the gate resistance (Rg), the drain resistance (Rd) and the source 

resistance (Re) represent the extrinsic elements. The activity of the FET is determined 

by its maximum frequency of oscillation where the FET becomes passive. 

2.3.2.2 Large Signal Equivalent Circuit 

A large signal refers to the situation where the voltage across the depletion 

capacitance has increased and become a significant fraction of the applied DC gate- 

source voltage [23]. The effect of this is that the relationship between the voltage and 

the amount of output power is broken. Large signal effects can occur in low output 

power FETs when driven hard. 

Large signal operation is usually associated with such undesirable effects as gain 

compression, the generation of harmonics and intermodulation products and amplitude 

modulation to phase modulation (AM-PM). 
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Figure 2.. 3: Large signal equivalent circuit of the MESFET. 

The effects of the large signal will depend on the bias point and the signal 

level. It is well documented that some of the nonlinear elements can be ignored in the 

simulation without affecting the accuracy significantly. A very commonly used large 

signal circuit is represented in figure 2.3 [159]. 

The diodes are included in the model to account for the effect of forward gate- 

source current and gate-drain avalanching, which has to be considered in order to obtain 

accurate simulation. 

The large-signal MESFET models used for circuit design and analysis are em- 

pirical models that incorporate analytical functions to represent the FET nonlinearity 

dependence on the gate-source voltage and the drain-source voltage. These analytical 

expressions do not however have a very close relevance to the physical behaviour of the 

device. 

The transconductance (gm), the drain-gate conductance (Cgd), drain-source con- 
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ductance (Cds), the gate-source conductance (Cgs), the drain-source resistance (rds) 

and the input resistance (ri) are all nonlinear elements. The elements not found in 

the small signal circuit are the nonlinear gate-source capacitance and the gate-drain 

capacitance, which model the forward bias junction conduction. 

The element gm is a highly nonlinear element in the FET and is important in the 

generation of harmonics and intermodulation products. The values of these elements 

in the model are determined by various methods [24-27]. 

2.3.3 Linear Elements 

The linear elements within the model which are considered not to change with the bias 

are: 

a) The series lead inductances: L8, Ld and L9. 

The parasitic inductance models the metal contact pads deposited on the device 

surface. In modern short gate length devices, the gate inductance is usually the largest 

of all. The values of the inductance depends on the type of surface and the feature, 

and therefore change very little under any practical conditions. 

b) The series resistances: R� Rd, and R9. 

The gate resistance, Rg, results from the metallization resistance of the Schottky 

contact. The other resistances are included to account for the contact resistance of the 

ohmic contacts and the bulk resistance leading to the active channel. These resistances 

are considered constant due to the fact that their resistance dependence on the bias 

voltage is small. 

c) The drain-source fringing capacitance Cd3 
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The drain-capacitance accounts for the geometric capacitance effects between 

the source and the drain electrodes. Cd, is not considered bias dependant for the 

purpose of device modelling, as its variation is very small. 

2.3.4 Nonlinear Elements 

Every element of the device depends on various effects. Some have greater effect on 

the device behaviour than others. The nonlinear behaviour is however associated with 

a certain number of elements that have some very important effects that need to be 

taken into consideration when analysing the nonlinear behaviour of devices. The six 

nonlinear elements of the model depend on three internal voltages: the gate-source 

voltage (V93), the drain-source voltage (Vds) and the gate-drain voltage (Vgd) [281. In 

order to accurately simulate the device for large signal nonlinear analysis a number of 

points have to be taken into account which include the drain-source current character- 

istic (Id, ) as it contributes to great distortion. Its pinch-off and saturation effects have 

to be known as well as the forward current of the gate-source Schottky-barrier junction. 

The transconductance and output conductance at microwave frequencies have to be de- 

termined. The terminal impedance over the bandwidth of interest and the gate-drain 

breakdown voltage have to be known. 

2.3.4.1The Nonlinear Current Source 

The nonlinear current source Id9(vd, v9) describe the DC I/V characteristics of the 

MESFET. It is seen as the principal nonlinear element within the MESFET [29-31]. It 

simulates the control of the channel current by voltages applied to the device terminals. 

The I/V characteristics are symmetric about the Vd3 =0 origin. The linearity of the 
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device occurs over a limited range of the drain source voltage. 

The current source and the other important elements such as the bias point, 

the pinch-off and the saturation of the device describe the dc characteristics of the 

MESFET. 

In the linear region of the device a good approximation of the I/V characteristics 

of the current can be modelled by the equation (2.3) 

ý2.. 3) ID, 
aat =0 (2 [Vga 

- VTJ - Vds) (1 + AVds) 

Where 6 is the transconductance. 

V, is the gate-source voltage. 

VTis the pinch-off voltage parameter. 

A is the channel length modulation parameter. 

It is demonstrated that a square law drain current to gate voltage fits the mea- 

sured characteristics of a long gate length FET quite well without being strongly af- 

fected by the doping profile [32,33]. 

In the saturation region the value of Ide is approximately equal to the square 

of the pinch-off voltage. The equation for the drain current modelling the saturation 

region is therefore defined as: 

ID, 
sat =0 (Vg, 

- 
VT)2 (1 + \Vd3) ý2.. 4) 

The term (V98 - VT) is known as the pinch-off voltage (Vp). 

VP = Vys - VT (2.. 5) 
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The pinch-off voltage defines the transition from the linear to the saturation 

region of the device. It is the Drain-Source voltage that extends the depletion layer 

across the channel at the drain end of the gate by removing all free electrons from the 

channel. When Vg, = 0V, then the pinch-off voltage corresponds to Vp = -VT. 

The constant A is a measure of the leakage current that causes the I/V charac- 

teristics to be highly nonlinear in the saturation region. A high value of A corresponds 

to high output conductance and poor saturation. 

The constant ß is the transconductance and is proportional to the ratio of the 

width over the length of the device and is dependent on the electron mobility. 

Since 0 is proportional to the width, W, and inversely proportional to the length 

of the device, L, the current Ida is also proportional to these quantities and dependant 

on the electron mobility, µ,, [34]. 

Id, 
sat = /-tn 

W (2.. 6) 

The equation 2.4 is commonly used as the basis for a simulation of the operation 

of the current model. It illustrates the dependence of the drain current on both the 

drift mobility and saturated drift velocity. 

By introducing equation 2.6 in equation 2.4, it can be seen that the drain current 

is changing nonlinearly with the gate length, L. For long L, the second term becomes 

dominant and Id varies as 1/L. For shorter gate length the current increases rapidly as 

L is reduced rapidly. 

2.3.4.2 The Transconductance 

The transconductance nonlinearity is principally determined by the gate voltage, which 
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controls the depth of depletion in the MESFET. 

Shur et al [34] defined the transconductance to be 

_ 
2Eaµ,, VeatW 

b(F+nVpo+3VsatL) 

The terms in the equation represent: 

Vp,, , the pinch-off voltage. 

b, the channel thickness. 

L, the length of the gate. 

W, the channel width. 

Vest, the electrons velocity saturation. 

s8, is the permittivity of the insulator. 

(2.. 7) 

This equation defined the transconductance according to the physical structure 

of the device. A simple analytic expression is used in the equivalent circuit for circuit 

simulation. This is defined according to the source current on which it is dependent. 

The transconductance in association with the source current can predict the 

gain of the device. The transconductance, g, is of importance for the MESFET, it is 

defined as 

yr, = all (2.. 8) bVy, J Vd, =constant 

The transconductance is significant because it relates to the increase in Id to an 

increase in V., the control voltage of the FET. It is therefore closely related to the gain 

of the device. 

The power series form can represent the voltage dependency of these elements: 

Id = gm1 Vg3 + gm2 gy + gm3Vgs + ... 
(2.. 9) 
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The terms g,,,, 1= äý 
, represent the first derivative of the transconductance in 

respect to the gate-source voltage. 9m2 =d and gm3 = ddV3 
, are the second and third 

derivatives. 

2.3.4.3 The Output Conductance 

The output conductance is in general a function of the drain current and the drain-to- 

source voltage over the saturation region of the bias characteristics. It can be analysed 

as two-dimensional, no-memory nonlinearity. 

go = .f 
(Id) Vds) (2.. 10) 

The expression of the term go can be represented by a simple expression over 

the range for which it depends on the drain voltage alone. This dependency occurs 

in the saturation region of the device and for gate voltages corresponding to the high 

gain amplifier bias conditions. The output conductance of a MESFET in saturation is 

mainly due to three phenomena, which can vary with different models: 

(i)The channel length modulation, which gives a positive conductance that in- 

creases with the channel current [16]. 

(ii)-Leakage current due to electrons being injected into the substrate [34,36] 

(iii)-High field dipole domains formed near the drain, which decreases the output 

conductance. 

The expression of the output conductance takes the simple form: 

9o- (2.. 11) ÖVd,, Vg, =constant 
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The dependence of the conductance on drain current in the saturation region is 

not so strong. The contribution of the nonlinearity to intermodulation is rather small. 

If the above equation 2.11 is solved for Id, the current Id can be expressed in 

terms of Vd9. Expanding the characteristic to a power series form, gives 

Id = 9oiVgs + 9o2 93 + gos gs + ... 
(2.. 12) 

The terms gol, gO2,9o3 again represent the first, the second and third derivative 

of the conductance. 

2.3.4.4 Schottky-Barrier Junctions 

The two components D93 and D9d of figure 2.3 represent Schottky-barrier junctions at 

the source and drain of the channel. The Schottky-barrier junction at the source is 

primarily dependent on the voltage V. The Schottky barrier junction at the drain on 

the other hand is dependent on both the voltage V9d and the current source Id,. 

In Schottky diode contact also known as rectifying, the I/V characteristics de- 

pends on the polarity of the potential applied. 

The current through the contact is given by the relationship [37]: 

Iý = AT2LW exp (q KT) exp (g) (2.. 13) 

With A being the effective Richardson's constant. 

T is the junction temperature in Kelvin. 

L is the contact length. 

W is the contact width. 

VG is the bias applied to the metal side of the diode. 
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V is the build in voltage of the diode and depends on the material used. 

n is the ideality factor (in the range 1.1 -1.2 for good diodes). 

q is the electron charge. 

The equation is very often simplified to 

u IG ̂ ý Ie exp 
(2.. 14) 

The current Is is the saturation current and indicates the magnitude of the gate 

leakage current under reverse bias conditions. 

In small signal analysis, where it is assumed that the voltage V9d is much larger 

than the breakdown voltage, the reverse biased diode (D93 and Dgd) effects are assumed 

to be negligible, and are therefore omitted. This enables the device to be considered as 

linear at a particular point. 

2.3.4.5 Nonlinear Capacitors 

The nonlinear capacitor, C93, associated with the voltage Vg, represents the depletion 

layer at the source. The capacitor C9d, associated with the voltage V9d represents the 

fringing capacitances associated with the drain ends of the channel. Unlike the drain- 

source capacitor Cd3, these capacitors are considered nonlinear because of their great 

dependence on the bias conditions. 

These capacitors, Cgs and Cgd, model the change in the depletion charge with 

respect to the gate-source and the gate-drain voltages, respectively. The gate source 

capacitance is normally larger in quantity than the other capacitances because of the 

fluctuations in the gate-source voltage. 
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2.3.4.6 Parasitic Resistors 

The source and drain resistances are known as the nonlinear elements. The resistor R. 

(figure 2.3) corresponds to the undepleted part of the channel under the gate through 

which the gate-source capacitor charges. The gate and source are separated by an 

ungated channel (as opposed to the drain and source which are separated by the gate 

channel), a doubly implanted region under the source contact and the contact interface 

and metal. This only contributes to the undesired excess resistance. This is a non-ideal 

element that needs to be considered in the design and analysis of the device. This 

phenomenon can be very important and causes a surface potential, which will bend the 

bands up and deplete part of the surface of the free electrons. 

The presence of this resistor has the effect of reducing the applied gate to source 

voltage, V. The effective voltage applied across the source and gate will then be: 

V98,; = V93, =- IDR3 (2.. 15) 

This resistance causes similar effects on the 'Ilansconductance, gm. If gm, e is 

defined " as the transconductance available outside the circuit and the intrinsic internal 

transconductance is defined as 9m, ß , then it can be shown that: 

1 (2.. is) 970 

The effects on the conductance will be such that the effective conductance out- 

side the device will be: 

11 (2.. 17) 9O'e - 9O'= 1-F'gm, iRa-Fgo, iRi 

) 

The drain resistance Rd, which corresponds to the undepleted portion of the 

channel under the gate which the gate-drain capacitor charges, produces similar effects. 
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The effects associated with this resistance are minimised by increasing the doping level 

in the source and drain regions [38,39] or by recessing the gate in the centre of the 

channel in order to thicken the source and drain regions. 

2.4 Device Modelling for Simulation 

The drain current, Ids, is one of the elements that contribute most to the non- 

linearities of the devices. Ids is controlled by the gate-source voltage Vg, and the drain- 

source voltage Vd3 
. 

Various models for the FET have been implemented and are available for the 

simulation of the complex behaviour of the physical device [37-40]. Each one is an 

approximation of the behaviour of the different elements that contribute to the overall 

device. Since the modelling of the changes in the device to the dc supply of the system 

cannot be exact, each model will approximate some parameters more accurately than 

other models. 

The next sections will describe some of the popular models available to the 

designer. The modelling expressions and the advantages of the devices such as the 

Curtice model used in circuit simulation in the work presented in this thesis will be 

described. 

2.4.1 The Curtice Model 

The Curtice model was first proposed by Van Thyl et al [42]. The model was then 

simplified by Curtice [39]. Originally the nonlinear elements represented in the Curtice 

model were the drain source current and the gate -source capacitance. The drain-source 

current is a function of the drain-source and the gate source voltage. 
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The expression for the drain-source current is: 

Ids (Vgs, Vds) _ /3 (V93 
- VTO) 2 (1 + AVds) tann (aVds) 

Where a is a time constant, which represents the electron transit time under the 

gate. 

The first element of the equation 2.18,0 (V99 - VTO)2, is used to model the 

square law behaviour of the drain current in respect to the gate-source voltage. The 

second element is used to model the device output conductance, which is the slope of 

the drain-source current with respect to the drain source voltage. The final element 

of the equation is the hyperbolic tangent used to approximate the drain-current to 

drain-source voltage characteristics observed in the FET [39). The hyperbolic tangent 

is used because it approximates the (Ids - Vd, ) characteristics observed in MESFETs 

and the graph of tanh (aVd9) versus the drain-source voltage illustrates clearly that 

rapid current saturation can be modelled by increasing the coefficient a. Thus giving 

a more consistent numerical analysis of the device. 

For accurate simulation of the FET, the various behaviours of the elements 

(transconductance, output conductance, capacitors, etc. ) must be represented by dif- 

ferent equations. This enables more accurate modelling of the physical structure. 

The gate-source conductance is a function of the intrinsic gate source voltage. 

Differentiating the drain-source current with respect to the voltage V9, and Vd9 directly 

derives the small signal transconductance and the output conductance. 

For the transconductance, 

- 
Ids 

v9, -VTo, 

(2.. 19) 9m - 6V98 
2 
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For the conductance, 

90 =6 Vd. =Q (Vg, - VTO)2 (1 + )Vas) 
cosh2(aVda 

+ß (Vs9 - VTO)2 tann (aVas) 

(2.. 20) 

The Curtice model consists primarily of the voltage controlled current source 

Ids, the gate-source capacitance C93, the gate-drain capacitance Cgd, the drain source 

capacitance Cd3 and the diode Dgs. 

Gate-source capacitance and the gate-drain capacitance are included as nonlin- 

ear elements in the simulation because they are sources of highly nonlinear character- 

istics. The term Cgd is considered to be a function of the intrinsic gate-source voltage. 

The Curtice model uses the capacitance expression derived from the first order semi- 

conductor junction theory applied to a two terminal Schottky diode. 

The expression used for both capacitances is 

I 

Cgs, gd Vgs0, gd0 
L 

VaPPlied 2 (2.. 21) = Vbi 
) 

Vbj is the built-in voltage (typical value is 0.8V). 

Some alternative models to the original Curtice model have evolved to provide 

for the elements ignored in the previous model or in most cases to enable a better 

modelling of the device for better simulation and design. 

The Curtice-Ettenberg model, known as the Curtice cubic model, uses a third 

order polynomial to describe the I/V characteristic of the device [37]. 

The drain current source is represented by 

Id = (A0 + A1V + A2V2 + A3V3) tann (aVd9) (2.. 22) 
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With 

V= Vy, [1 +/2 (Vd30 - Vas)] for Vde >0 (2.. 23) 

Where the voltage Vd80 represents, the voltage at which the coefficients A3, Al, 

A2 and A3 are calculated. 

a is the internal time delay parameter. 

, ß2 is a coefficient for pinchoff change as a function of Vde. 

A0, Al, A2 and A3 are coefficients in the cubic equation. 

The cubic relationship can result in a pinchoff voltage that make either the 

transconductance or the current to be zero. The analysis must therefore include the 

phenomenon of pinch off voltage increase due to Vd8 changes. Since Id., cannot be 

pinched off at large Vd8 due to the gate current produced by the breakdown voltage. 

The following constraint are applied in this model [37]: 

For the Idg 

Vd t-V 
RB 

Vd9>Vg 

Ids= (2.. 24) 

0 Vdq>VB 

where VB is the breakdown voltage and RB is the breakdown resistance. 

For I9, , 

v: e-v j! >V -_ tj 

'gs = (2.. 25) 

0 Vin < Vb: 
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where Vbj is the built in voltage. 

2.4.2 The Statz Model 

The Statz model was originally proposed in 1975 for MOSFET device modelling. It 

offered an improved analytic dc I/V formulation and an improved charge model repre- 

sentation of C93 and C9d as functions of the gate-source voltage and the drain-source 

voltage [38]. 

The simple Statz I/V dc model is represented by 

Ids (V eý Vd3) =[ Q(V9s-VTO)2 1 (1 + AVd3) tanh (aVd, ) (2.. 26) 9- 1+b(V9s+I Vp l) J 

with b, the channel thickness. 

Vp, the pinch-off voltage. 

a and ry are the model parameters. 

2.4.3 The Marteka Model 

The Marteka and Kacprzak model uses a very simple but quite accurate formula to 

describe the dc I/V characteristic of the device [40] 

(2.. 27) Ids (Vga Vds) 
-" 

Ida (1_1 tanh (a») 
- yt 1 

With 

Vgs =Vo +'YVde 

where V is the effective threshold voltage. 

where Ida is the saturation current. 

a and ry are the model parameters. 

Vo is the threshold voltage of an ideal FET. 

(2.. 28) 
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2.5 Conclusions 

Each MESFET model has some specific constraints and inaccuracies, but addi- 

tionally, there are more general limitations related to the fact that equivalent circuit 

models are only convenient approximations of the much more complicated physical 

reality. 

Their uses, even though they do not provide complete accuracy, give an un- 

derstanding of the physical device and a solution to circuit design problems such as 

intermodulation distortion. They will be used in the next chapters. 
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CHAPTER 3. 

INTERMODULATION ANALYSIS & CANCELLATION TECHNIQUES 

3.1 Introduction 

A perfectly linear amplifier would simply amplify the signals at its input. How- 

ever perfectly linear amplifiers do not exist, and nonlinearities will result in additional 

output signals that are the result of mixing phenomena in the amplifier as demonstrated 

in this chapter. 

The characterisation of signal distortion is very important in a communication 

system since the range of signals that can be processed with very high quality determines 

its usefulness. This is dictated by its noise figure or its sensitivity for the lower input 

power limit and by its acceptable level of signal distortion at the upper power limit. 

The means by which the IMD components are characterised and measured, are shown 

in this chapter as well as the various existing techniques devised to reduce the effects 

of these distortions to improve system performance. 

3.2 Intermodulation Distortion Analysis 

Intermodulation distortion occurs in communication systems when the ampli- 

tude and phase components of a transfer function are frequency dependent functions, 

i. e. it may be written as I H(jw) I exp[(jw)] . Intermodulation describes the process by 

which power at one frequency, or a group of frequencies, is transferred to power at other 

frequencies. This process engenders the sum and difference frequency of the original 

signals at the output. 

If the system possesses nonlinear elements, the system cannot be described by 
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Nonlinear 
System 

(a) 

xl 

(b) 

Figure 3.. 1: Diagram of a nonlinear system (a) and its functional expansion 

representation (b). 

a single transfer function as in the linear case. Instead the output is often expressed as 

a nonlinear function of the input. 

The subject of nonlinear functions is one of the more complex domains of mathe- 

matics and circuit theory. Various methods are used in the nonlinear analysis of circuits 

with applications to the study of amplifier intermodulation. Amongst these methods 

are the Volterra series [50-59], power series [60-64] and Taylor series [64,66]. These 

methods, known as frequency domain nonlinear analysis techniques solve the steady 

state response of a nonlinear circuit by operating entirely in the frequency domain. 

They can be used to analyse intermodulation distortions for strongly nonlinear sys- 

tems with multi-tone excitations. Time domains techniques [67] are also used, as well 

as hybrid techniques known as harmonic balance techniques [68-72] which have been 

implemented for computer simulation of nonlinear circuits with multiple inputs. 

The Volterra series, which is an extension of the theorem of convolution from 

linear to nonlinear systems, is used to analyse weakly nonlinear systems with memory. 

A system is said to have memory when the output at the time t depends upon the 
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value prior to that time. In a nonlinear system, the relationship between the input and 

the output cannot be defined by a single function but by a series of functions called 

functionals. The use of the functionals is to extend the analysis for the linear systems to 

nonlinear systems in the frequency domain [65]. The nonlinear system is represented by 

various functions as in Figure 3.1. The nonlinear effects are reflected in the variations 

of the value of the describing function gain with the amplitude of the input signal [55]. 

When the Volterra series is used, the time-dependent output of a linear system 

is defined by: 

00 

y(t) =J h(u)x(t - u)du (3.. 1) 

00 
where h(u) is the impulse response of the linear system. 

In a nonlinear system, the output is defined by a series of functions 

7h(ui)x(t 
y(t) =- ul)dul 

-00 00 00 
+ff h(ul, u2)x(t - ul)x(t - u2)duldu2 

-00-00 
00 00 00 

+fff h(ul, u2, u3)x(t - ul)x(t - u2)x(t - u3)duldu2du3 

-00-00-00 
0-0 00 00 

+.... -f 
ff... f h(ul, u2, ... , un, )x(t 

- ul)x(t - u2) ... x(t - un)duldu2 ... dun 

-00-00 -00 
(3.. 2) 

Where the nth transfer function y�(t) is defined as 

00 00 00 
yn(t) 

ff... f 
h(ul, u2 ... un)2(t - ul)x(t - u2) ... x(t -un)duldu2 ... dun (3.. 3) 

00-00 -00 
The output of equation 3.2 can be rewritten as 
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00 
y(t) _Ey. (t) 

n=1 

(3.. 4) 

The usefulness of the Volterra series is seen when the nonlinear effects of a system 

with an input signal made up of a sum of sinusoidal signals can be predicted [55]. If 

the input is the sum of sinusoidal signals, it can be expressed using Euler's theorem as: 

00 

x(t) =E Ak exp(jwkt) (3.. 5) 
k=1 

where Ak is the amplitude of the k signal. 

fk is the frequency of the k signal with Wk = 2lrfk. 

Putting equation 3.5 into equation 3.4, the system output becomes 

00 00 00 p 
(,; 

y(t) =ff... 
f h(ul, u2 ... un, ) L. 

Ak exp L/Wk(t - u1)1 du1 

-ca -ca -ca k=1 

xE Ak exp [jWk(t - u2)] (ßu2... x 2, Ak exp UWk(t - un)] dun 
k=1 k=1 (3.. 6) 

00 00 00 np 

=ff... f hn(ui)uz, ... ' un) Il E Ak exp [jwk (t - ui)] dui 

-00-00 -00 i=1 k=1 

and then 

pppn 

y(t) =ZE... Z 11 A, exp [jWktl 
kl_ =1 k2=1 k"=1 i=1 

00 00 0o n 
xff... f hn(u1, u2, ... ' U) fl Ak exp UWk(-Ui)]du1 

-00-00 -Co i=1 

The nth dimensional Fourier transform of the nth order impulse response is given 

by 

33 



00 co 00 
Hn(Wl, W21 ... 7Wn) =ff... 

f 
]Zn(ul, u27 ... 7 un) 

-M -00 -00 

x exp U (wlui + w2u2 + ... + wnun)] du1du2 ... dun (3.. 8) 

Using equation 3.3, the system output for the nth order response becomes 

Cp `p 
L. 

pnr 

y (t) 
= L. ... 

Ef Aki exp 
47wkt] 

Hn(jwk1I. 7Wk2, ... 7 
jWkn) 

kl=1 k2=1 kn=1 i=111 

EE... E [fl Ak. 

J 
Hn(jWkl, jWk2o... '3Wkn) 

X eXpW (Wkl +Wk2 +. .. +Wkn)] 
kl=1 k2=1 kn=1 i=1 

(3.. 9) 

Calculation of equation 3.9 gives all the relevant components at the output of the 

system. The nonlinear effects of many communication systems can be predicted with 

an analysis using up to three different frequencies. The use of Volterra series to solve 

the nonlinearity problem of MPA systems is very cumbersome but can be simplified by 

the use of the power series. The next chapter of this report will concentrate on the use 

of the power series to deduce the necessary information to analyse the different IMD 

products of a nonlinear MESFET device. 

In this section, the nonlinearity arising in a system without memory (memoryless 

system), which has its output as an instantaneous response of the input, is investigated. 

In such a case, amplitude and phase nonlinearities can be represented by polynomial 

series to a certain extent. Because the input signals have different frequencies and the 

device behaviour is different at each frequency, there will be a different phase response 

associated with the different frequencies. 
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The Volterra series has been described as a power series but with memory and 

can best represent the nonlinearity analysis [52,651. It is generally used as an extension 

of the power series and is well suited to represent the frequency dependent nonlinearities. 

However, since phase and amplitude can be evaluated in weakly nonlinear systems, then 

for simplicity, this analysis uses a polynomial series to evaluate the IMD products. 

Power series expansion analysis of a nonlinear system is a straightforward and easy 

way to solve nonlinear phenomena in sinusoidally excited nonlinear circuits. 

In the power series, the output relation to the input is represented by a polyno- 

mial function such that the output is expressed as 

N 

y(t) _E knxn(i)Hn 

n=1 

= klx(t) + k2 (x(t))2 + k3 (x(t))3 + ... + kl (x(t))N (3.. 10) 

The first term in the power series is generalised by the first order kernel hl(ul) 

of the first order impulse response in the Volterra series. Similarly, the second term is 

generalised by the second order kernel h2(u1, u2) of the second order impulse response 

y2(t) of the system. The nth term in the power series is thus generalised by the nth-order 

kernel associated with an nth input system of equation 3.2. 

In order to represent the system output spectrum, the harmonic input system 

must be considered . The input signal x(t) is a sum of sinusoids such that 

P 

ý(t) _> Aq cos(wq + Oq) (3.. 11) 
q=1 

Where A. is a complex amplitude coefficient. 
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p is the number of the input sinusoid. 

9q is the phase of the qth sinusoid. 

Wq is the input frequency of the qth sinusoid with Wq = 2ir fq. 

Using exponential functions, the input becomes 

x(t) =Z2 [Aq exp (j (wqt + 9q)) + A9 exp (-j (wqt + 9q))] (3.. 12) 
q=1 

By defining A_4 = A4 and w_4 = -wq. 

If B9=0then, Aq=IAgIexp(jOq). 

The input signal can be written as 

p 
x(t) _2 [Aq exp (jwgt)] (3.. 13) 

9=-p 

The intermodulation components at the output of the system are found by in- 

serting a number of input signals into equation 3.10. Inserting equation 3.13 into 

equation 3.10 gives 

N1n 
y(t) => kn 2 

p> 
Aq CXP (j (3.. 14) W qt) 

n=1 v=-p 

The nth term in the output series can be calculated as 

P 
xn(t) =2 Aas exP (j qlt) 

al=-P (3.. 15) 
ä Asp exP uL 

2t) .. 2L AqN exp (jwgNt) 
92=-P 4n=-P 

Interchanging the order of the summation and the multiplication in equation 
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3.15, it becomes 

xý(t) = 2n ... 
[A91, AQ2, ... , 

A91V) ex W 
(w$1 +Wq1 + ... +W41V) t] 

41=-P 42=-P 9n=-P 

(3.. 16) 

This equation facilitates the calculation of the IMD components associated with 

each order of the nonlinear systems. The overall system output components can be 

found by inserting equation 3.16 into equation 3.10. The output is then 

lv 1 ... [Aql, A4..... AqN] 
y(t) =Z kit 91=-P 92=-P qn=-p 3.. 17) 

n=1 x exp [j (wsl + w41 + ... + w4N) tl 

The system output of equation 3.17 is a simplified version of equation 3.9. The 

coefficients in equation 3.17 are complex numbers whereas the coefficients in equation 

3.9 obtained through a Volterra series expansion are frequency dependent coefficients. 

The phenomena of IMD generation occur when more than one signal is present at 

the input of a nonlinear system. Applying a single input signal to the nonlinear device 

will generate harmonic signals at the output of a nonlinear system. The transfer signal 

is represented by an infinite power series. However, for simplicity in circuit analysis, 

the transfer function of the device is in general written as an expression of the input 

signal to the cubic power. The level of the fifth order IMD are relatively small compare 

to the third order in the calculation and are therefore neglected, it therefore reduces 

the computing power requirements to simulate a three tone test system. 

If the input signal x(t) is a single sinusoid such that 

1 

x(t) _E1 [Aq exp (jWqt)] (3.. 18) 
q=-1 

The system output is expressed using equation 3.10, as 
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N1n 
y(t) =L kn 

L2 
[Aq exp (jWgt)] 

n=1 q=-1 

kl (Ai exp (- jwlt) + Ai exp (jwit)) + k2 (Al exp (- jw2t) + Al exp (jw2t))2 
-2 

.. }..... +k (Ai exp (- jwlt) + Al exp (7wit))N 

(3.. 19) 

and gives 

1 k1A1 exp (-jwit) + k1A1 exp (jwlt) + k2A2 exp (- j2wit) 
y(t) =2 

+k2Ai exp (j2wlt) +"""+ knAi exp (-jNwit) + kNAN exp (jNwit) 

(3.. 20) 

The equation 3.20 shows that when a single frequency sinusoidal signal excites a 

nonlinear circuit, the output response consists of not only the fundamental signal at the 

frequency wl and the dc, but also of the harmonic signal at the harmonic frequencies 

(2w1), (3w1), (4w1) up to the nth harmonic frequency (nwi). In practise, the power 

level of the harmonics will be such that it is negligible at higher orders. Looking at 

the above equation, it is clear that the power level of the harmonic is decreasing with 

higher harmonic order. It shows that an infinite number of signals are generated by 

nonlinear systems. 

Note that using Euler's formula 

Cos (wqt + Oq) =2 [A9 exp (j (wqt + Oq)) + Aq exp (-j (wqt + Oq))] (3.. 21) 

with 0. = 0, equation 3.20 can be rewritten as 
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y(t) = 21 1 
[k1A1 cos (wit) + 2k2A2 cos (2wlt) +"""+ kNAl cos (Nwit)] (3.. 22) 

The process is even more complex when the input includes more than one si- 

nusoid. Two-tone and three-tone intermodulation distortion tests are cases where the 

input consists of two and three input sinusoidal signals respectively. 

Considering, the input signal x(t) is a sinusoid consisting of equi-amplitude 

tones (Ay) at the frequencies (wy) with zero phase, such that 

2 

x(t) _q2 [Aq exp (jwgt)] (3.. 23) 
9=-2 

The output is calculated as 

1Y 21n 

y(t) =E kn [Aq exp (7wgt)] (3.. 24) 
n=1 q=-2 

Evaluation of equation 3.24 and collection of the terms up to the third order, 

gives 
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y(t) = k1A1 exp (-jwlt) + kiA1 exp (jcvit) + 
2k1A2 exp (-jW2t) + 

2k1A2 exp (-jw2t) 

+2k2A1 + lk2Ai exp (-j2w, t) + 2k2Ai exp (j2wit) + k2A1A2 exp (-j (wl - w2) t) 

+k2AlA2 exp (j (w1 - w2) t) + k2A1A2 exp (-j (w1 + w2) t) + k2A1A2 exp (j (wi + w2) t) 

+2k2A2 exp (-j2w2t) + 
Zk2A2 exp (j2w2t) + 

2k2A2 
+ 4k3Ai 

exp (-jwlt) 

+4k3Ai exp (jwlt) + k3Ai exp (-j3wit) + k3Ai exp (j3wlt) 

+2k3A'A2 exP (-j (2w1 - w2) t) + 4k3A2A2 eXP (7 (2w1 - w2) t) + 2k3A2A2 exp (-jw2t) 

+2k3A? A2 exp (. 7w2t) + äk3A? A2 eXP (-. 7 (2w1 +w2) t) + 2k3A2A2 eXP (j (2wi +w2) t) 

+2k3A1A2 exp (-jwlt) + 2k31A2 exp (jwlt) + 4k3A1A2 exp (-j (2w2 - w1) t) 

+4k3A1A2 exp (j (2w2 - wi) t) + 4k3A1A2 exp (-j (2w2 + WO t) 

+4k3A1A2 8XP U (2W2 +W1) t) + 4k3A2 exp (-jCJ2t) + 4k3A3 exp (jW2t) 

+k3A2 exp H W20 + k3A2 exp (jw2t) 

(3.. 25) 

The output signal consists of the components at the dc, the fundamental fre- 

quencies (wl), (w2), the second harmonics (2w1), (2w2) and the third harmonics prod- 

ucts (3w1), (3w2). The output includes also intermodulation products of third order 

(2w1 + w2), (2w1 - W2), (2w2 + w1) and (2w2 - wi). The output spectrum is illustrated 

in figure 3.2 

The order of the harmonic and the intermodulation is determined by the sum of 

the coefficient of the different frequencies. The sum of the magnitude of the coefficients 

is the order of the signal. For example a signal at the frequency (2w2 - w1) is of the 

order 2+1 -11=3. 

Each term in the expression of the third order component is made up of terms 
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Figure 3.. 2: Output spectrum of a two-tone test showing the fundamental 

signals, as well as the second and third order intermodulation distortion 

products. 

whose magnitudes are proportional to Vi',,. The third order signal generated is propor- 

tional to the cube of the input signal (Figure 3.3). The slope of the curve of the third 

order signal will therefore be 3 when the input signal is 1 in the same axis. 

The most important of the IMD products is the third order IMD product (IMD3) 

resulting from the combination of a second order product of one signal with the first 

order product of another to give the signals at the frequencies (2w1-w2) and (2w2-wi). 

The IMD3 components are close to the original signal frequencies and are large in 

amplitude compared to other intermodulation products (Figure 3.2). The second order 

intermodulation products are not very close to the fundamental signal and therefore do 

not cause distortion. 

For a three-tone test, the input is expressed as 

3 

x(t) _2 [A9exp(jwgt)] (3.. 26) 
q=-3 
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Figure 3.. 3: Output power Vs input powers of fundamental and third order 

intermodulation distortion in a power amplifier. 

The output is calculated as 

N3n 

y(t) = kn [Aq exp (. 7wgt)] 3.. 27) 
n=1 

(q=-3 

Evaluation of equation 3.27 is best simplified by calculating terms up to the 

third order as these intermodulations cause greater distortions. The output equation 

to be evaluated is therefore 

1333 
y(t) = 23 kn E [A. exp (9wgt)] 3.. 28) 

n=1 q=1 

The overall output voltage expression at the dc and the fundamental frequencies 
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1S 

Ydctiundýt) =2 (k2Ai + k2A2 + k2A3) 

+ (2k1A1 + 
8k3A3 1424+ 

2k3A1A2 + 2k3A1A3) [exp (-jwlt) + exp (jwit)] 

(3.. 29) 
+ (2k1A2 + 4k3A1A2 + $k3A2 + 4k3A2A3) 

[exp (-jw2t) + exp (jw2t)] 

+ (2k1A3 + 2k3AiA3 + 4k3A2A3 + $k3A3) [exp (-jw3t) + exp (jw3t)] 

Similarly for all second and third order harmonics products, the expression is 

Yhar(t) = 4k2Ai exp (-j2wlt) + 4k2A2 exp (j2wlt) 

exp (-j2w2t) + 1k2A2 exp (j2w2t) +4k2A2 24 

+4 k2A3 exp (- j2w3t) + 4k2A3 exp (j2w3t) 
(3.. 30) 

+8k3Ai exp (-j3wit) + 8k3Ai exp (j3wit) 

+8k3A2 exp (-j3w2t) + 8k3A3 exp (j3w2t) 

+äk3A2 exp (-j3w2t) + äk3A2 exp (j3w2t) 

For all second order IMD products, the output expression is 

YIMD2 (t) = 4k2AiA2 
(eXP [-j (wit + W201 + exp [j (wit + W201) 

+4k2A1A2 (exp [-j (wit - w2t)] + exp E7 (wit - w2t)]) 

+4k2A1A3 (exp [-j (wit + w3t)] + exp Ei (wit + w3t)]) 
(3.. 31) 

+4k2A1A3 (exp [-j (wit - W301 + exp Ei (wit - w3t)]) 

+4k2A2A3 (eXP [-j (wet + w3t)] + exP E7 (w2t + w3t)]) 

+4k2A2A3 (exp [-j (wet - w3t)] + exp Ei (cwt - w3t)]) 
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The expression for all third order IMD products is 

71MD3(t) 
_ 

k3AiA2 (exP [-j (2wlt + w2t)] + exp [j (2wlt + w2t)]) 

+$k3A2A2 (exp [-j (2wlt - w2t)] + exp U (2wlt - w2t)]) 

+$k3A1A2 (exp [-j (2w2t + wlt)] + exp [j (2w2t + wit)]) 

+$k3A1A2 (exp [-j (2w2t - wlt)] + exp U (2w2t - wlt)]) 

+8k3A2A3 (exp L-j (2wlt + w3t)] + exp [7 (2wit + w3t)]) 

+gk3A2A3 (exp (2wlt 
- W3t)] + exp [j (2wlt 

- w3t)]) 

+8k3A2A3 (exp L-j (2w2t + w3t)] + exp U (2w2t + w3t)]) 

+8k3A2A3 (exp [-j (2w2t - w3t)] + exp [j (2w2t - W301) 
(3.. 32) 

+8k3A1A2 (exp [-j (2w3t + wit)] + exp [j (2w3t + wlt)]) 

+gk3A1A2 (exp [-j (2w3t - W101 + exp [j (2w3t - wlt)]) 

+8k3A2A3 (exp [-j (2w3t + w2t)] + exp [j (2L4)3t + w2t)]) 

+äk3A2A3 (exp [-j (2w3t - W201 + exp [j (2w3t - w2t)]) 

+8k3A1A2A3 (exp [-j (wit + W2t - w3t)] + exp [j (wit + w2t - w3t)]) 

+$k3A1A2A3 (exp I-j (wit - wet + w3t)] + exp [j (wit - wet + w3t)]) 

+8k3A1A2A3 (eXP [-j (wit + w2t - wit)] + exp U (wit + W2t - Wit)]) 

+$k3A1A2A3 (exp [-j (wit + wet + w3t)] + exp (j (wit + wet + w3t)]) 

The output signal as shown in the above equations is made up of the fundamen- 

tal and the dc as well as the harmonic signals at the frequencies (2w1), (2w2), (2w3), 

(3w1), (3w2) and (3w3) 
. It also comprises the second order intermodulation products 

(wl ± w2), (wl ± w3) and (w2 ± w3). It also has the third order intermodulation prod- 

ucts (2w1 f w2), (2w1 f w3), (2w2 f w3), (2W2 ± wl), (2w3 ± w1) and (2w3 ± w2), which 

are known as the first kind of third order intermodulation products and the second kind 
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Figure 3.. 4: Output spectrum of a three-tone test showing the fundamental 

signal and second harmonics as well as the second and third order (first kind 

and second kind) intermodulation distortion products. 

of third order intermodulation products are given by (wl + w2 - w3), (wl - W2 + w3), 

(w2 + W3 - w1) and (wi + w2 + wg). 

The most important of the IMD products, as mentioned earlier, are the third 

order IMD products (IMD3) resulting from the combination of a second order product 

of one signal with the first order product of another at the frequencies (2w1 - w2) and 

(2w2 - w1), etc. The IMD3 are close to the original signal frequencies and large in 

amplitude compared to other products. 

The third order intermodulation products are very important because they not 

only fall into the band of interest but have a higher amplitude compared to other 

intermodulation products as shown in Figure 3.4. 

By looking at the coefficients in the power series analysis of the three input sig- 

nals test, it can be seen that the second kind of third order intermodulations generated 

are higher in amplitude than the first kind. They are therefore of greater importance 
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when analysing the effects of the intermodulation in an amplifier. 

The amplitude of the first kind of IMD3 is (3A3k3)/8 and of the power levels in 

the second kind of IMD3 is (3A3k3)/4 with Al = A2 = A3 = A. 

Changing the expression of the amplitude into dBW, the expression of 1st Kind 

of IMD3 

P11MD3 = 20 log (3A3) + 20 log (k3) - 20 log (8) (3.. 33) 

For the 2nd Kind of IMD3 

P21MD3 = 20 log (3A3) + 20 log (k3) - 20 log (4) (3.. 34) 

Since A and k have the same value for both first and second kinds of IMD3, 

equation 3.33 of the 1st kind of IMD3 can be rewritten as 

P11AfD3 = 20 log (3A3) + 20 log (k3) - 20 log (4) - 20 log (2) (3.. 35) 

By comparing equation 3.34 and equation 3.35, it can be seen that the 2nd kind 

of IMD3 is larger in magnitude than the 1st kind of IMD. There is a 6dB difference 

between the 1st and 2nd kinds of IMD3. 

Two-tone tests have been widely used for measuring IMD levels in amplifiers and 

other devices because it is a very simple technique to implement and only two inband 

third order IMDs are generated. The power level of the third order intermodulations 

for a multicarrier system can not be determined by a two-tone test since only the first 

kind of IMD3 is generated. 
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Figure 3.. 5: Measured output spectrum of an amplifier showing the difference 

in intermodulation level of for a two tone (a) and three tone (b) test at the 

same input power level. 

It is clear that the use of more than two tones is needed for a correct measurement 

of the intermodulation levels in an amplifier as shown in figure 3.5. The reduction of 

third order intermodulations in amplifiers requires the reduction of not just the first 

kinds of IMD3 but both kinds of IMD3. This requires a three-tone analysis of the 

amplifier in order to analyse both the first and second kinds of the third order IMD. 

The analysis will concentrate on both kinds of third order IMD and the evaluation of 

the techniques effects on both third order intermodulation products in two-tone and 

three-tone tests. 

3.3 IMD Measurement Techniques 

As stated above, intermodulation distortions are very important because they 

occur as a result of mixing of the fundamental signals and fall within the bandwidth of 
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Figure 3.. 6: Definition of the intercept point. 

interest but are also large in magnitude. They are very difficult to filter since they are 

close to the fundamentals. There are various means by which IMDs are measured. 

The intercept point is defined as the output power level at which the output 

power P2,2_, 1 of the third order intermodulation at the frequency (2w1 - w2) would 

intercept the output power of the input signal at the frequency (w1). Linear operation 

is taken into account for the measurement and extrapolated into higher power regions 

as shown in fig 3.6. The intercept point is a figure of merit for IMD3 suppression. A 

high intercept point clearly means a better suppression of IMD3 in the device. 

The intercept point for a single stage amplifier can be approximated as [12] 
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Figure 3.. 7: Intercept point measurement difference between the first and 

second kind of IMD3. 

IP3 =4 
V9ý1 

3 g�3 
(3.. 36) 

With g�, l and g�z3, the device tranconductance first and third derivative respec- 

tively. 

For a multistage amplifier (two stages), it is defined as 

9mlagmlb 
IP3 =-3 (3.. 37) 

3 gm3agmlb + 29mlagm2agm2a + (9m1a) gm3b 

With gmia, 9m2a, gmsa, gmib, 9m2b, gm3b, the tranconductance first, second and 

third derivative for the first device denoted (a) and the second device denoted (b) 
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respectively. 

The intercept point can be can also be calculated from the signal level in the 

two-tone output spectrum and approximate as [12]: 

I P3 = 
AP 

+ in (3.. 38) 

Where OP is the difference between the output power of the fundamental signal 

(Pfund) and the output power of a third order signal (PIMD3) in dB. 

Pin is the input power level at which the output value is calculated in dB. 

By applying equation 3.39 to a three-tone test with the fundamental frequencies 

(wl), (w2) and (w3) of equal amplitude and using the second kind of IMD at the 

frequency (w1 - w2 + w3), the intercept point can be calculated as 

IP3 = 
P-1 - PJ1-ß., 2+w3 + Ptn (3.. 39) 

2 

Since from equation 3.36, the second kind of IMD3 are 6 dB higher than the 

first kind. Equation 3.40 then becomes 

I P3 = 
Pwl 

2 
2`'n-' 2+ Pm -2 (3.. 40) 

It is shown in this analysis, that the intercept point is degraded by 3dB in a 

three-tone system by the existence of the second kind of IMD3. This is illustrated in 

figure 3.7. 

A well-defined method for measuring the IMD power level is shown in figure 

3.8. Two signals are adjusted to have the same power level and combined before being 
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Figure 3.. 8: Two-tone intermodulation distortion measurement set-up. 

passed through the device under test (DUT). The resulting output signals are detected 

and measured using a spectrum analyser. 

If the transmitted signal has a fluctuating envelope as in a digitally modulated 

carrier with for example binary phase shift keying (BPSK) or quadrature phase shift 

keying (QPSK) as used in CDMA systems, then The amplifier nonlinear output dis- 

tortion is specified in term of the adjacent channel power ratio (ACPR). The adjacent 

channel power (ACP) as illustrated in figure 3.9 is defined as the summation of the 

IMDs terms in the adjacent channel. ACPR is calculated as the power in the adjacent 

channel divided by the power in the channel carrying the modulated signal. The max- 

imum allowable adjacent channel interference (ACI) levels are defined by a specified 

power spectral density masks as specify by the relevant international bodies [160] In 

section 4.10, the techniques developed in this work are shown to significantly improve 

the ACPR (see fig 4.60 on page 153). 
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Figure 3.. 9: Simulated input and output spectrum of an amplifier with a code 
division multiple access input signal at 1.88GHz. 

3.4 Techniques of IMD Reduction 

The amplifier is a nonlinear device, as it basically comprises nonlinear elements, 

which are the cause of the nonlinear effects of the device [76,77]. The use of this 

device in the amplification of multiple signals leads to a number of undesirable effects 

as mentioned earlier, such as intermodulation distortion (IMD), reduced S/N ratio, 

etc. The characteristic of an MPA can be modified to be more linear with various 

techniques. 

In order to reduce the nonlinear effects in the MPA, often the operating point is 

backed off several dBs relative to the saturation point hence reducing its efficiency. Al- 

though the amplifier operates far below its capacity, the improvements on the nonlinear 

behaviour of the device permit to obtain a better output response. This is proven to 
52 

Centre frequency =1.88 GHz Span=5 MHz 



be an easy and effective way of reducing the intermodulation level in power amplifiers. 

The biasing of the amplifier is important for good operation and affects the 

intermodulation behaviour of the device. As mentioned in chapter 2, the nonlinear 

terms in the active device are bias dependent. The choice of a dynamic biasing can 

lead to a reduction in the nonlinear performance of a device and therefore more linear 

operation [78,79]. The FET linearity degrades as the transconductance decreases, so 

correct gate or drain bias can improve the linearity, and therefore the IMD level. 

A linearizer may be used in order to improve the linear behaviour of the MPA. 

A linearizer has to be able to compensate both the amplitude and phase nonlinearity, 

which are sources of distortion. With a linearizer, the efficiency of the MPA can be 

increased since the carrier to IM noise ratio (C/I) can be met at a higher operating 

point. Higher output power level with a low IMD level is desirable. 

There are various ways of improving the linearity of MPAs and these techniques 

can be implemented at different levels of system design, from the device fabrication to 

the circuit and system design. 

3.4.1 Device Fabrication 

3.4.1.1 Ion Implantation 

Detailed studies have been done on the ion implantation process, which show its various 

applications [80]. Ion implantation is widely used throughout industry as part of the 

technology for fabricating electronic devices and integrated circuits. Its use is due to 

several advantages it has over other techniques [80]. 
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The technique of ion implantation entails the bombardment of a material with 

high velocity, positively charged ions produced in a source held at a high dc potential. 

After extraction from the source, the beam is mass analysed and allowed to accelerate 

to the target, which is at earth potential. The ions impinge on the target, penetrate 

some distance and come to rest at a point. This is a function of the ion energy and 

the mass and atomic number of the ion and the target atoms. The application of the 

process to the device is to achieve a high dose for the ohmic contact or a low dose to 

produce the channel of the FET. Further applications of active ion implantation are to 

form resistors and the doped region of the Schottky barrier diode. 

The use of ion implantation in the design process of the device enables the device 

to perform better and therefore be more linear [81,82]. The technique is commonly used 

in industry to fabricate highly linear devices for MPA applications. 

The technique and the process related to it, are beyond the scope of this thesis. 

The devices fabricated under such process will give a more linear process and better 

IMD levels. This work is more concerned with the circuit design techniques that are 

used for the reduction of IMD, rather than the device fabrication itself. 

3.4.2 Linearizer Techniques 

There are various methods by which the MPA characteristic can be improved to a 

more linear characteristic. The ever-growing need for highly linear power amplifiers 

has brought a large number of techniques. Power amplifiers constitute a very impor- 

tant part of the transmitter and therefore are very critical for the linear operation of 

communication systems. 
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Linearisation techniques are divided into various groups. The most widely known 

techniques are presented below. The need for linear amplifiers has brought on the 

application of the linearisation techniques on the overall transmitter with the use of 

digital signal processing (DSP) equipment to control the linearisation process. These 

techniques are briefly introduced in the next sections with appropriate references for 

further reading. 

3.4.2.1 Predistortion Linearizer 

This technique was developed in the early 1970s [83]. The principle is the compensation 

of the amplitude and the phase nonlinearities by distorting the input signals with the 

inverse of the amplitude and phase of the original amplifier response. A basic circuit 

can be seen in figure 3.10(a). 

The linearizer is required to generate both the amplitude and phase inverse 

nonlinearities of the input because the nonlinearities are caused by these two elements, 

which are orthogonal. 

Two approaches are used in the design of the predistortion (PD) circuit. The 

first one uses a single path with an active device, designed such that its amplitude and 

phase characteristics are the opposite of the main amplifier [85-87]. A signal passing 

through a PD will have a phase and amplitude distortion as shown in figure 3.10(b), 

which will be compensated in the main amplifier and therefore cancel the nonlinearities 

of the overall amplifier [148]. 

The second approach relies on the use of two distinctive paths that are combined 

to provide an inverse signal characteristic at the input of the amplifier [84] as shown in 
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Figure 3.. 10: Basic predistortion linearizer circuit diagram (a) and the cor- 

responding phase and amplitude characteristics of the predistorter circuit 

and the amplifier with the output signal characteristic (b). 

figure 3.11. The input signal is divided into two paths: a linear path and a distortion 

path. The distortion path comprises a nonlinear device to generate the distortion and 

an attenuator and phase shifter to adjust the signal amplitude and phase so as to cancel 

the IMD component. The amplitude and phase changes of the signal through that path 

must be correctly adjusted. The configuration has to be suitable for adjustment in 

order to obtain a high signal component isolation. The signals generated are adjusted 

to compensate the third order IMD. The frequencies of the signal to be fed into the 

HPA are mostly chosen to be those of the first kind of IMD3 in the order of (2f, - f2) 

and (2f2 - fl) for a two-tone test. This can lead to the undesired injection of the 

original signals, which are closed to the injected distorted signals therefore increasing 

the level of distortion at the output or reducing the amplifier gain. The design of the 

circuit requires that the frequencies of the injected signals be determined for a clear 
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Figure 3.. 11: Schematic of an active predistortion circuit with phase and 

amplitude equaliser. 

understanding of the requirements for IMD cancellation [150]. 

The predistortion linearizer scheme provides broad frequency and wide dynamic 

range. Many linearizers use Schottky diodes as intermodulation generators [88-921, that 

prove simple and compact and provide a large bandwidth with low thermal sensitivity. 

Schottky diodes are commonly used because they require low forward voltage hence low 

drive requirements. The amplitude and phase adjustment can be controlled by a dc 

bias to reduce the IMD. The use of a Schottky diode as an intermodulation generator 

and the varactor diode as a phase shifter has been investigated with successful IMD 

level reduction. The advance in MIC technology brought circuits using MESFETs and 

varactor diodes [93,94], more recently with more complex elements such as shifters and 

attenuators being implemented [95-100]. A linearizer circuit using an amplifier for the 

generation of the distortion is shown in figure 3.11 where a phase shifter is added to 

account for the phase distortion of the amplifier [149]. 
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The desired linearizer gain expansion and phase advance can be achieved by a 

suitable choice of amplitude and phase of the predistorter component. The optimisation 

of the linearizer depends enormously on the transfer characteristic of the PD device but 

improvement will depend on the value selected for optimisation. The system has been 

shown to achieve an IM reduction of up to 20dB over a 300MHz bandwidth and over 

a wide range of temperatures from 0° - 50° [117]. Toshio et al [102] showed that 10dB 

reduction could be achieved using a cuber linearizer technique. This predistortion lin- 

earizer relies on the use of a cuber circuit in the distortion path of the amplifier. Kumar 

et al presented a PD using a dual gate FET to generate nonlinearities; a 12dB IMD 

reduction was achieved at saturation [100]. In summary, the PD provides broadband 

amplification with IM reduction of between 10dB to 25dB. 

3.4.2.2 Feedforward Linearizer 

This technique uses two MPAs operating in parallel. The main MPA provides most 

of the power [101]. The auxiliary MPA, with a low power, provides the correction 

needed for linear operation of the combined device. Feedforward error control tech- 

niques [103,104] are the basis of this technique. Error is detected, amplified and injected 

after a proper time delay in the forward time stream of the amplifier. This enables the 

cancellation of the distortion over the band of interest. Because the circuit requires 

another MPA, this reduces the efficiency of the system and makes the system more 

complex and costly [105,154]. 

A schematic of the linearizer circuit is shown in figure 3.12. Al is the main 

power amplifier, A2 is the error amplifier, C1, C2, C3 and C4 are directional couplers 
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Figure 3.. 12: Schematic of Feedforward linearizer using the signal cancellation 

loop and the error cancellation loop for the cancellation of IMD. (VA1, VA2 

& VA3 are variable amplifiers, C1, C2, C3 & C4 are couplers). 

and Ti and T2 are delay lines to compensate for the phase shift of Al and A2. 

Amplifiers Al and A2 need not be identical amplifiers with flat gain character- 

istics. The circuit works in the following manner: The input signal is first divided into 

two paths at Cl. The coupler C2 samples the output from the main amplifier Al. The 

sample containing the distortion and noise generated by Al is fed into the coupler C3 

where the original signal is cancelled out, leaving only the distortion and noise. 

The delay line Ti has to match the amplifier Al delay in order to achieve a 

perfect cancellation of the fundamental signal at the coupler C3. The attenuator A 

enables the signal from C2 to be equalised such that a perfect cancellation is obtained 

at C3. 

Delay line 

, T2 

VA2 

Variable 
Phase 

VA3 Shifter 
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Figure 3.. 13: Schematic of a dual loop feedforward amplifier. 

Once the fundamental signal has been cancelled, the remaining signals, the dis- 

tortion and the noise generated by the various components will be amplified in the 

second amplifier A2 (error amplifier). The signal is amplified back to its normal level 

and fed into the coupler C4 to be coupled with the signal coming from the amplifier Al 

which has been delayed by the delay line T2 that matches the delay of A2. The result 

of combining the signal at C4 will create a signal with no distortion or noise. 

The technique is rather interesting since it gives total freedom over the transit 

time limitation. It is in a way similar at the previous PD since a distorted signal is 

required to cancel the amplifier distortion. The MPA2 only amplifies the error signal, 

which contains the intermodulation products and the remains of the signals. Hence, it 

requires less power than the main one(MPA1). The power of MPA2 needs to be such 

that it does not lead to distortion within the device, hence 
, its transfer characteristic 
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Figure 3.. 14: Circuit schematic of an adaptive feedforward linearizer. 

is linear [1521. 

The operation of the circuit depends enormously on the cancellation at the 

couplers C3 and C4 as well as the perfect match in the delay lines [110]. A large 

number of problems can occur with this technique, particularly the loss of gain, if the 

cancellation of the fundamentals is not done properly at C3. At the coupler C4, there 

will be a reduction in the fundamentals and therefore a reduction in the gain. The 

amplification of the distortion signal in the amplifier A2 can result in more distortion, 

in particular if large distortions are created in Al and C2 before being amplified and 

fed into the auxiliary amplifier A2. This is an effective technique that has shown a 

great reduction in the amplifier nonlinearity effects. It is used in such applications as 

the phase array antenna [106] and mobile communication systems [107-109]. 

The feedforwaxd technique requires control of the error phase [111,112]. An 
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important advantage is its independence from the amplitude and phase delay of the 

MPA, which exist in general. The gain bandwidth of the device is consumed within 

the band of interest [113]. The feedforward system in its early conception was shown 

to reduce IMD levels by over 20dB over 20MHz [101-103] and could reach up to 40dB 

with a multistage system as in figure 3.13. 

Although multistage feedforward systems are being implemented [114], thermal 

noise in the system can become a major problem. The multistage system requires 

the use of an additional MPA with the increase in complexity, weight and cost. This 

increases the output loss of the system and the static phase difference of the MPA. 

Improvement to the system linearity can be achieved by the use of complex 

gain and phase adjuster circuits controlled by a signal and error cancellation controller 

[114-115] as shown in figure 3.14. This is known as an adaptive feedforward linearizer. 

The controllers use fast and robust DSP algorithms to adjust the signal in both the 

signal cancellation and error cancellation for maximum cancellation. The adaptive feed- 

forward technique shows greater linearity improvement than conventional feedforward 

systems. 

3.4.2.3 Feedback System 

Feedback is one of the easiest methods of reducing IMD [116]. Feedback requires the 

output to be fedback via an appropriate feedback loop. There are requirements for the 

treatment of time delay and bandwidth involved since the time delay required for the 

technique involves a reduction in the bandwidth. There are different types of feedback 

circuits, varying from the passive feedback [117,118] to the active feedback circuit [120- 
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Figure 3.. 15: Circuit schematic of a basic lossy feedback linearizer. 

123]. 

In early passive circuits, the output is fedback via a simple network of couplers. 

Investigations into the technique have shown that negative feedback produces an IMD 

reduction equal to the amplifier loop gain [116,125]. Feedback circuits are easy to 

implement and use a less complex circuit than other techniques. The intermodulation 

products are fed back via a coupler to the input to obtain a cancellation (figure 3.15). 

There is a need to add an appropriate phase shift to the feedback signal in order to 

achieve the desired effects. 

If many stages were to be cascaded, this obviously increases the overall gain 

of the amplifier but reduces the bandwidth of the circuit and the phase change will 

increase dramatically. 

A feedback of the output signals containing the fundamental and the IMD fre- 

quencies can cause a reduction in the third order IM distortion, but also a reduction of 

the fundamental signal, therefore reducing the overall amplifier gain. By removing the 
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Figure 3.. 16: Circuit schematic of an active feedback amplifier using an active 
feedback circuitry. 

fundamentals from the feedback loop, only the IMD3 will be reduced by the feedback 

at the intermodulation frequencies. The gain of the amplifier will remain unchanged 

since the fundamentals are not fedback. 

Active feedback uses an auxiliary amplifier to feed the signal into the main am- 

plifier [122]. It can be compared to the reinjection amplifier [121] or passive feedback 

system [118]. The operations of active feedback circuits are quite similar to those of 

the active predistortion system because of the use of an auxiliary amplifier. The ac- 

tive feedback circuit provides a low gain loss and better stability of the system. The 

Ballesterros et al active feedback design [121] uses two amplifiers and provides a C/I of 

40dB and an increase of about 55% in the efficiency. The auxiliary amplifier was shown 

to use less power than an auxiliary amplifier used in a feedforward system. A low fre- 

quency feedback with the correct amplitude and phase adjustment showed that a 12dB 

reduction was achieved in practise with a mixer circuit [120]. An adaptive feedback 

circuit which make use of a voltage controlled phase shifter for predistortion purpose, 

shows that the control of the phase and gain can further improve the performance of 
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Figure 3.. 17: Circuit schematic of derivative superposition with FETs of dif- 

ferent width, scaled by the factor kz and offset voltage Vk1. 

feedback circuit [155]. 

When the signal is fedback, although the gain of the amplifier is not reduced, 

the IM produced by the amplifier is fedback at the same time and can cause prob- 

lems [156,157]. The technique is most suited to narrow band applications because the 

changes in the phase shift of the system with the frequency causes a reduction in the 

bandwidth. 

3.4.2.4 Derivative Superposition 

Derivative superposition is a linearisation technique, which combines the derivative 

effects of a number of devices biased at different points to give less distortion at the 

output [126,127]. 

Introduced by Parker et al [126], it consists of connecting a number of FETs in 

parallel as shown in figure 3.17 with different gate lengths and each one operating at a 
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bias point such that the overall linearity of the circuit can be controlled. Webster et al 

[128,129] showed a 10dB to 20dB reduction on small signal third order intermodulation 

for a HEMT amplifier. The application of the technique to power amplifiers was showed 

[130-132] to achieved low distortion with an improved overall efficiency. 

3.4.3 Transmitter Linearisation 

Linearised multicarrier power amplifiers are required within the transmitter for perfect 

transmission. Since mixing phenomena in other transmitter elements such as mixers 

and up converters, generate IMD, these can deteriorate the overall IMD performance of 

the power amplifier and therefore the transmitter. One approach to solving this problem 

is the linearisation of the power amplifier and the transmitter elements. Transmitter 

linearisation techniques provide a reduction in the level of distortion in the transmitted 

signal. These techniques are briefly presented below. 

These techniques fall within two categories: those that are derived from the 

conventional technique described above but make use of modulated signal on the I and 

Q channel to control the process of linearisation. The second type provide a means 

by which an information signal is divided and processed in different paths (amplitude, 

phase, envelope, etc) before been amplified. A less distorted amplified version of the 

signal is reconstructed at the output. 

3.4.3.1 Cartesian Feedback 

The Cartesian feedback linearizer [133] shown in Figure 3.18 takes baseband signals in 

I and Q form and converts these directly into RF signals. The output is converted 

first into baseband frequency, which is filter and adjusted before injection at the input 

66 



Input at 

Figure 3.. 18: Circuit diagram of a cartesian feedback amplifier. 

as baseband signals Ifb and Qfb. The conversion of the signal into RF at the input, 

enable the transmitter to be designed such that the distortions caused by the local 

oscillator and up converting processes are minimised. The input signals I1fz and Qz� 

and the feedback signals are compared. The signals are then adjusted for optimum IMD 

reduction. An increase in the loop gain causes an increase in the IMD performance of 

the technique but can cause degradation in the loop stability. The stability of the loop 

is a problem in feedback system and therefore limits the performance of the system. 

The delay around the loop can cause a reduction in the IMD improvement and the 

overall bandwidth. Various cartesian feedback transmitters have been implemented 

and have shown an improvement of up to 30dB in the linearity [134136]. 

The cartesian feedback [133] technique is a robust version of the polar trans- 

mitter introduced by Petrovic et al [137]. Both techniques achieve reduction in the 
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Figure 3.. 19: Circuit diagram of an adaptive predistortion linearizer. 

intermodulation by means of modulation feedback. The polar loop transmitter uses 

an amplitude and phase correction as opposed to the I and Q quadrature information 

used in the cartesian feedback transmitter. 

3.4.3.2 Adaptive Predistortion 

The adaptive predistortion technique [138-140] as shown in figure 3.19, generates a 

predistorted baseband signal. This operation requires knowledge of the predistorter 

circuit. The distortion can be characterised during a sequence, which sends the base- 

band signal through a transmitter and then demodulates the RF signal down to the 

baseband frequency. Rom the feedback information, a predistorted baseband signal is 

generated for the corrected RF amplifier output [141]. The predistortion elements can 

be implemented using the DSP circuits that generate the transmit signal. 

Predistortion circuits can be implemented in baseband by storing the predistor- 
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Figure 3.. 20: Circuit diagram of the envelope elimination and restoration 

technique also called the Khan technique. 

tion elements using DSP circuits in order to predistort the input stage of the PA. An 

improvement of between 15dB to 25dB was demonstrated in an adaptive predistortion 

system [142,1431. The technique clearly requires a robust signal-processing algorithm 

to improve on the IMD reduction. 

3.4.3.3 Envelope Elimination and Restoration 

Introduced by Khan [144,145], the technique is independent of amplifier type. The 

modulated input signal is divided into two paths consisting of the phase and amplitude 

or envelope information as shown in figure 3.20. The phase modulation information is 

obtained by limiting the signal in a limiter, which enables the proper phase modulation 

of the original signal to be obtained. This signal is amplified in a class C, D, E or 

F amplifier with low distortion. In the other path, the signal envelope is detected, 

amplified and then processed by a modulator. The resulting signal is then used to 
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it 

Figure 3.. 21: Circuit diagram for a linear amplification using nonlinear am- 

plifier transmitter (VCO=Voltage controlled Oscillator). 

modulate the amplified phase modulated component. The result of this is that a less 

distorted amplified version of the signal is obtained at the output. The scheme allows 

for the amplifiers to be used in saturation as both amplitude and phase information 

are amplified separately. 

Although first implemented over half a century ago, the technique is becoming 

popular and can be implemented for use in a wide range of applications. Raab et al 

[1461 have shown recently that intermodulation of -40 dBc can be achieved at saturation 

level with an efficiency of up to 56%. 

3.4.3.4 Linear Amplification with Nonlinear Components 

The linear amplification with nonlinear components (LINC) technique [147] provides 

a bandpass amplification with nonlinear components. A simple implementation of 

the technique is shown in Figure 3.21. The bandpass input signal is separated into 

two constant amplitude, phase modulated signals which are then amplified using high 

efficiency switching amplifiers (Class C, D, E or F) and the output of the two paths 
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are then combined to give an amplified replica of the input signal. The distortions 

engendered in both paths are made to be out of phase and therefore will cancel out. 

The signal component separator used at the input is a complex process that is required 

to produce a constant envelope signal and maintaining the phase and amplitude balance. 

3.5 Discussion 

A different approach for the reduction of IMD level in solid state power ampli- 

fiers (SSPA) is to combine the different existing techniques described in order to create 

a new and perhaps more powerful linearizer. The different techniques described ear- 

Her have various advantages and disadvantages discussed above, which depend on the 

application. 

The techniques can be tailored and combined in stages for various applications 

with reduced IMD levels. McRory et al [117] have shown a combined feedback and 

feedforward circuit, although not classified as such, in which IMD level was reduced 

by an amount equal to the loop gain of the circuit. The reduction was in the order of 

20dB. The undesirable effects of one technique can be reduced or cancelled by another 

technique. Increases in some of these undesirable effects can occur as well. 

The choice of a carefully tailored device and its use in a particular system will 

result in better performance overall. The careful study of the concentration of the 

channel doping profile was made as well as a careful selection of the bias point, which 

resulted in good overall performance on the IMD as the circuit was proven to be more 

linear than conventional circuits [79]. 

A dynamic bias on the drain with an envelope feedback on the gain was realised 
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and improvement of the intermodulation products was achieved [78). However, there is 

clearly a need for further investigation into these techniques. 

3.6 Conclusions 

With the existing techniques discussed, the amplifier's nonlinear operations are 

improved, the effects of the nonlinearities although reduced, are still present and are 

causing the effects described above. The use of a good linearizer is important to the 

operation of communication systems. IMD needs to be cancelled by the use of linearizer. 

The design of the linearizer has to be done with consideration of the complexity of the 

circuit, which can only add to the cost. 

The cancellation of IMD is generally achieved using the techniques presented by 

the interaction between the IMD signals in the MPA with an IMD signal generated. A 

new technique will be analysed which works with signals at higher frequencies (harmonic 

signals) as opposed to the techniques working in the vicinity of the IMD3 frequencies. 

An extension of the technique to the use of the difference frequency will be introduced, 

analysed and its performance evaluated. 

In general, the use of a nonlinear device in the overall circuit is engendering 

harmonic and intermodulation products, which obviously need to be controlled. Most 

of the techniques rely on feeding signals at intermodulation frequencies with an in- 

verse phase and the same amplitude into the amplifier in order to reduce the existing 

intermodulation. 
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CHAPTER 4. 

SIGNAL INJECTION EFFECTS ON POWER AMPLIFIER IMD 

PERFORMANCE 

4.1 Introduction 

A system for the reduction of IMD in high frequency amplifiers is described. 

The technique uses the fundamental nonlinearity of the amplifier to generate the second 

harmonic of the original signal in order to cancel the existing IMD [73,741. The second 

harmonic is injected into the device in order to cancel the third order IMD. In theory 

both second harmonics of the original signals at the frequencies 2fi and 2f2 are injected 

into the amplifier together with the fundamental signals at the frequencies f, and f2 for 

a two input system. The injection of the second harmonic with the appropriate phase 

and amplitude will in theory enable the cancellation of the third order IMD. 

The technique was reported in the literature by Aichitson et al [73]. The tech- 

nique was shown to reduce the IMD3 by 20dB in a two-tone test system with a MESFET 

Power amplifier. The analysis of the technique is extended to a multi-tone system in 

this report. It shows the limitation of the technique as it does not reduce all IMD3 in 

a multi-tone system. Generation of the second harmonic signal at the output of the 

amplifier is accompanied by other harmonics and intermodulation of the second or- 

der. Since intermodulation was reduced by a second order distortion (second harmonic 

signals), the technique is then further extended to the injection of new signals whose 

frequency is the sum of or the difference between the pair of fundamental signals. The 

present work shows that the new technique of difference frequency injection provides 
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better performance than the second harmonic injection technique (second order IMD). 

The combination of the second harmonic and the sum of the fundamental frequencies 

also provides adequate performance for IMD reduction. The analysis and simulated 

performances of all the techniques are presented in this chapter. 

4.2 Theoretical Analysis of the Injection Techniques 

Intermodulation can be attributed to the device's strong or mild nonlinearities. 

In the first case, the input and output signals are such that the waveform is clearly dis- 

torted by the high curvature of the I/V characteristics, and a high IMD is observed. In 

the second case, the signal is so low that the strong nonlinearities cannot be reached, and 

low level IMDs are generated. For small-signal intermodulation distortion behaviour, 

the MESFET Ids current source is generally modelled as a third degree bi-dimensional 

power series, that should include terms dependent on V98 and Vd,, as well as cross terms. 

Usually in the analysis of intermodulation, the cross terms are considered to be zero in 

order to simplify the analysis. This simplification leads to only two separate nonlinear 

sources of IMD, one of which only dependent on V., and the other on Vd3 [79,82]. 

In terms of the required Ids (Vgs, Vds) model extraction procedure, its para- 

meter set is sometimes adjusted to match the Ids which is measured at dc [341. Its 

derivatives are more commonly adjusted by a least square polynomial to fit the ac 

measured transconductance for several values of Vge and Vd5, dependent on the output 

conductance. Ids is by far the most significant element of the FET circuit model that 

contributes to the nonlinear behaviour of the device. 

In computer aided design (CAD) of circuits, the drain current needs to be mod- 
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elled by a mathematical equation which is simultaneously controlled by the intrinsic 

gate-source and drain-source voltages, V99 and Vds, respectively. 

Ids = ,f 
(V9s7 Vds) (4.. 1) 

The nonlinearities of the device are often expressed by a power series in which the 

nonlinear element Ids is considered dependent on two nonlinearities. Nonlinear elements 

such as the transconductance and the output conductance are associated with the 

change in drain-source current, which is a function of the gate-source voltage and the 

drain-source voltage. 

For simplicity in the analysis, a single nonlinear element is used to model the 

IMD. The use of power series representation of the system gives a better characteristic 

of the system output. The power series is very often extended to the third order so as 

to derive the square law nonlinearity and the cubic law nonlinearities of the system. 

4.2.1 Second Harmonic Injection Technique 

Considering the two-tone case where the input signal, Vi., is a sum of two distinct 

sinusoid at the frequencies wl and w2 with amplitudes A,, 
1 and A1,2 respectively, the 

input is expressed as 

2 

Vn =E (A,, COS (Wn, t)) = A, 
1 COS wit) + AW2 COS (W2t) 

n=1 

If the amplifier is modelled by the third order power series with the transcon- 

ductance as the nonlinear element. The amplifier output can be expressed as 

3 

Vau. t = gmk in (4.. 3) 
k-1 
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In general gmo =0 

The resulting signal at the output of the amplifier is given by 

Vout = 9ml (A 
,1 COS (Wit) +'L2 COS (W2t)) + g'm2 Awl COS (Wit) +t2 COS (W2t))2 

+g, (A,, 1 cos (wit) + Aß, 2 cos (w2t))3 
(4.. 4) 

The third order intermodulation term in the overall output expression at the 

frequency (2w1 - w2) is 

Vet = 4g,,,, 3A, 1Aý, 2 cos (2w, - w2) t (4.. 5) 

Similarly, at the frequency (2w2 - w1), the signal is 

v2w2__ ,1= 
2g A 

, 
Aw2 cos (2w2 - w1) t (4.. 6) 

The intermodulation signals at the frequencies (2w1 + w2) and (2W2 + wl) fall 

outside the band of interest and can easily be filtered out. These IM distortions will 

therefore be omitted from the analysis. 

The injection of the second harmonic of the original fundamental signals is per- 

formed with the use of a multiplier, for harmonic generation, and a coupler, for injection 

into the PA. The second harmonic signal can be represented at the frequency (2w1) by 

the following expression 

U2,, 1 = A2,,, cos (2wlt + 02wi) (4.. 7) 

Where A2,,,, is the amplitude of the sinusoid and X2,,, 
1 

is the phase of the signal. 

Similarly at the frequency (2w2), the second harmonic is defined by the following 

expression 

V2wl = A2,, 2 cos (2w2t + 02W2) (4.. 8) 
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Where A2,,, 2 is the amplitude of the sinusoid and 0212 is the phase of the signal. 

The second harmonics of the signals are injected into the amplifier together with 

the fundamental signals. The input signal of the amplifier is then 

22 
V_ (A,, 

n 
cos (wut)) +E (A2, 

n 
cos (2w,, t + 02Wn)) 

n=1 n=1 

The output consists of a large number of signals at various frequencies. The in- 

teraction of the fundamental signals and the injected signals within the device through 

the electron mobility results in the generation of more signals at harmonic and inter- 

modulation frequencies. 

Amongst the signals generated by the injection of the second harmonic, the third 

order intermodulation at the frequencies (2w1 - w2) and (202 - w1) are of particular 

interest. At the frequency (2w1 - w2), the signal is 

V 
1-m2 = 4gm3A, jAu,, cos (2wit - wet) + gm2A2wjA'2 cos (2wlt 

- wet + ¢2wi) 

+2gm3AU, 2A2ý,, A2w2 cos (2w1t - wet + ¢2&4 - 02W2) 
(4.. 10) 

At the frequency (2w2 - w1), the signal is: 

V2w2-L, 
1 = 4gm3AwlAw2 cos (2W2t -wit) + gm2Aw, A2wz cos (2w2t 

- wlt + 02w2) 

-F 2gm3A4, 
lA2w, A 2 cos (2w2t - wit + 02 

2- 
02wi) 

(4.. 11) 

For cancellation of the intermodulation terms, the expression of the signals at 

the frequencies (2w1 - w2) and (2w2 - w1) must be equal to zero. This implies that for 

a two input system with a second harmonic injection, equation 4.10 and equation 4.11 

must be zero. 
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For cancellation of the third order intermodulation at (2w2 - w1), the following 

equation must be solved 

49m3Au, 1Aw2 cos (2w2t - wlt) + 9m2A, A2w2 cos (2w2t - wlt + qS2w2) 
(4.. 12) 

+29m3Aý, 1A2,, IA2,, 2 cos (2w2t - wit + 02W2 - ý2w1ý =0 

The above equation can be simplified by the fact that the third term in the 

equation is very small in comparison to the other terms and can therefore be omitted. 

The above equation then simplifies to 

43 2 9m3Aý, 1A', cos (2w2t 
- wlt) + gm2Aw1A2ý, 2 cos (2w2t 

- wlt + 42W2) =0 
(4.. 13) 

Which translates into the following conditions 

A2w2 _4 
aý2(2 102121= 180° (4.. 14) 4 9m2 

In a similar manner to the above, the conditions for the cancellations of the IMD 

at the frequency (2w1 - w2) are found to be; 

3 Aw 
Aý t 9m3 

- 1800 ._4 
9m2 

Iýü. 

lll 
(4.. 15) 

These conditions will allow a reduction in the level of third order IMD. This can 

be achieved if the phase 02,, 
1 and 02,2 and the amplitude A2,, 

1 and A2,,,, 
1 of the second 

harmonic are appropriately chosen. 

For an two tone test with input signal power of 1W and assuming that gm2 ̂ _ý 0.06 

and 9m3 = 0.016 for the device use, the second order harmonic signal power will be 

112.5mW which is 9.5dB down on the main signal. 

In a three-tone case, the input signal consists of three distinct sinusoidal signals 
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at the frequencies w1, w2 and w3 of amplitude Awl, Awe and Aw3i respectively. 

3 
Vn =E (A,,,, cos (wut)) = Au1 

1 cos (wit) + A,,, 
2 cos (wet) + Aß, 

3 cos (wit) (4.. 16) 

n-i 

Substitution of equation (4.16) into equation (4.3) gives all the relevant frequency 

components at the output of the amplifier. The number of intermodulation products 

of the first kind (product of form (2w7z ± w,,, ), with n and m integers representing the 

different frequencies at the input) has risen to 6. These products generated by the 

interaction between the fundamental frequencies w1, w2 and w3i are. 

_3 TJ 
" 2Wm±Wn - 49m3 

A, 
1Aw2cos(2w1 -w2)t+AW1ACJ2cos(2w1+w2)t 

+AL, 1A2 cos (2w2 - w1) t+ AWIA, 
Z cos (2w2 + wl) t 

+A, 1Au,, cos (2w1 - w3) t+ A, 
1A,, 3 cos (2w1 + w3) t 

+A,, A. 
3 cos (2w3 - wl) t+ AW1AI3 cos (2w3 + wi) t 

+A , 2Aý,, cos (2w2 - w3) t+ Aý2AJ3 cos (2w2 + w3) t 

+Au22A, 3 cos (2w3 - w2) t+ A,, 
2AW3 cos (2w3 + w2) t 

(4.. 17) 

The frequencies of the form (2w,,,, + wn) are not of interest as these intermod- 

ulation products fall outside the band of interest and can be filtered if the difference 

frequency of the input tone is large (valid for less than one octave bandwidth). The 

analysis concentrates on the inband IMD3 product of the form (2wß, - wn). The ex- 

pression of the signal at the frequency (2w1- w2) is 

V2,, 
1-W2 = 4g, A, 

1 
A4, cos (2w1 - w2) t (4.. 18) 

At the frequency (2w1 - w3), the signal is 

v2,, 
l-W3 = 49,,,, 3A21Aý, 3 cos (2w1 - w3) t (4.. 19) 
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Similarly the expression for the other IMD products (2w2 - w1), (2w2 - w3), 

(2w3 - wl) and (2w3 - w2) are of the same form. 

The use of three input signals also generates (as previously mentioned in chapter 

3) a second kind of IMD (product of the form (wm +w,,, - wq), with m, n and q integers 

representing the different frequencies at the input). These are very different from the 

first kind. The expression of the second kinds of IMD3 generated is 

Au, 
1AW2AW3 COS (W3 + W2 - wi) t+ AWlAW2A,,, 

3 COS (w1 + W2 - W3) t 
3 VWm=LW, 

±Wq - 29rn3 

+AW1AWZAW3 COS (w1 
- W2 + W3) t+ AW1AWZAW3 COS (w1 + W2 + w3) t 

(4.. 20) 

The third order signal at the frequencies (wl + w2 - w3), (w1 - w2 + w3), and 

(w2 - wl + Ws) fall in the amplifier operating bandwidth and can not be filtered. The 

signal at the frequency (w1 + w2 + w3) falls outside the bandwidth of interest and can 

be easily filtered. It is therefore omitted from the analysis. 

The expression of the signal associated with the second kind of IMD at the 

frequency (w1 + w2 - w3), is 

_3 VW1+w2-wa 
- 29m3 

(Aw1Aw2AW3 COS (wl + w2 - w3) t) (4.. 21) 

The expressions associated with the other IMD3 products (w1 - w2 + w3) and 

(w3 +w2 - wl) are similar. 

The system is injected with the second harmonic of the fundamental signals 

(2w1), (2w2) and (2w3) with phases O2,, 
1, q land 

02,, 
3 and amplitude A2u, 

1, A2u, 2 and 

A2u, 3 respectively, together with the fundamental signals wl, w2 and w3. 
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The input signal of the system is 

33 
Yn =E 

(A,,, cos (wu, t)) +E (A2c,,,, 
cos 

(2w,,, t + 02,, J ) (4.. 22) 

n=1 n=1 

Substitution of equation (4.22) into equation (4.3) gives all the relevant frequency 

components at the output of the amplifier. The injection of the second harmonic has 

generated additional signals at the same frequencies as those of equation 4.17. 

The output expression of the IMD3 at the frequency (2w1 - w2), is 

V2w1-w2 = 9m2A2w1Aw2 COS (2Wit 
- W2t + 02wi) + 

4gm3A2 
Awe cos (2Wit - W2t) 

+29m3Aw2A2w1A2w2 cos (2cw1t - Wet + 02w1 - 02w2) 

(4.. 23) 

The output expression of the IMD3 at the frequency (2w2 - w1), is 

V 2W2-WI = 9m2JLiA2 ,2 COS (2W2t 
- Wlt + 02W2) + 49m3Aw1A2 cos (2W2t - Wit) 

+29m3A, ý&jIA2W2 cos (2w2t -wit + 02W2 

(4.. 24) 

The output expression of the IMD3 at these frequencies is the same as previously 

calculated in the two-tone case. This implies that if the phase and amplitude of the 

second harmonic signals were appropriately chosen, it would result in a cancellation of 

the IMD3 products. Similar expressions are found for the other first kind of IMDs. 

For the cancellation of third order intermodulation, the second kind of third 

order IMD generated by the three input signals, needs to be investigated. The output 

of the system at these frequencies does not change and no other signals are generated 

at these frequencies. 
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The expression of the signal at the frequency (w1 + w2 - w3), is: 

VVB+w2-L, 3 = 29M3WIAWi&2AW3 
COS (WI + W2 - W3) t (4.. 25) 

This is the same as observed in equation 4.21, without the injection of the second 

harmonic signals. The expression also remains unchanged for the other second kind of 

IMDs at the frequencies (w1 - w2 + w3) and (w3 + w2 - wl). 

This suggests that the injection of the second harmonic does not introduce ad- 

ditional signals, and therefore will not result in the cancellation of the second kind 

of third order IMDs. The study of the third order IMD product cancellation by the 

injection of the second harmonic using the simplified method of power series in a three- 

tone system gives a better understanding of the IM behaviour of the system. Rom 

the above analytical results, it is clear that the injection of the second harmonic will 

not introduce a reduction in the second kind of IMD3 amplitude level but only in the 

amplitude of the first kind of IMD3. 

The cancellation of IMD3 in the amplifier is provided by the mechanism of inter- 

action between the injected signals and the original signals. The above analysis shows 

that the injection of the second harmonic signal (2w1) into the amplifier interact with 

the fundamental signals wi and w2 and causes the generation of extra IMD terms at the 

frequencies (2w1 - w2) and (2w1- w3), through a power series expansion of the second 

order term. The injected second harmonic signal (2w2) interacts with the fundamen- 

tal signals wl and w3 and generates of extra IMD terms at the frequencies (2w2 - w1) 

and (2w2 - w3). The signal (2w1) behaves in a similar way and generates extra terms 

at the frequencies (2w3 - wl) and (2w3 - wi). This analysis clearly shows that the 
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cancellation of all first kind of IMD3 requires the injection of all second harmonics of 

the original signals. The cancellation of the second kind of IMD3 can not occur since 

no extra terms are generated at the frequencies (wl + w2 - w3), (w1 
- W2 + w3) and 

(W3 + W2 - W1). 

The evaluation of the IMD products in a two input system predicts the IMD 

behaviour of the system and gives some hints to the system performance. However, 

it does not fully enable a clear understanding of the overall effect of the IMD for 

multitone input signals. The use of more than two input signals generates a lot more 

IMD products at different frequencies with different amplitudes and gives rise to a more 

complex behaviour. 

In order to understand and appreciate the process of cancellation and see the 

difference between the effects in the two-tone and the three-tone systems, simulations 

of both type of systems need to be performed and compared. The first kind and the 

second kind of third order IMDs are not of the same amplitude and do not behave in 

the same manner and therefore need to be analysed differently. 

4.2.2 Difference Frequency Injection Technique 

The work presented here is an extension of the previous method and is based on the 

injection of signals, whose frequency is the difference in frequency between a pair of fun- 

damental signals. In order to analyse the system performance, the difference frequency 

signal is injected into the system together with the fundamental signals. 

In a two-tone test, the input of the amplifier is made up of the injected signal at 

the frequency (w2 - w1) with amplitude A,,,, and phase, cß, 
21, as well as the fundamental 
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signals w2i and wl with amplitudes A,,, 1 and A412, respectively. The input signal of the 

amplifier is expressed as 

2 
E (1A,, 

n 
COS (Wn. t)) + AJ21 cos (W2t 

- Wit + OW21) (4.. 26) 

n=1 

Substitution of equation 4.26 into equation 4.3 gives all the relevant frequency 

components at the output of the amplifier. 

The interactions between the original signals and the difference frequency signal 

injected result in additional signals at the output. Amongst the signals generated by the 

injection of the difference frequency, the third order intermodulation at the frequencies 

of (2w1 - w2) and (2w2 - w1) are of interest. The expression for all third order IMD of 

the form (2wm ± w, l ) is 

V2(, lmfWn - 9m2AjiA2i cos (2Wit 
- W2t - c5 21) 

+ 9m2A2AW21 COS (2W2t 
- Wlt + 0112m 

+49m3A , jAw2 cos (2wlt - wet) + 4gººý, 3Aj1A,, 2 cos (2wit + wet) 

+49, 
n3A,, lA', cos (2w2t 

- wit) + 49, 
», 3Aý, 1Aýz cos (2w2t + wit) 

+ggm3 
1Aw2i COS (2W2t 

-Wit + 2&, 
21) 

+ 
49m3 

4 
2AW21 COS (2wit 

- W2t + 2qW21) 

(4.. 27) 

From the above equation, the signal at the frequency (2w1 - W2), is expressed as 

V2w1-w2 = gm2&, x., 
21 cos (2wlt 

- wet - OW21) + 4gm3AW1A., 
2 cos (2wlt - wet) 

+49m3A2A 
, 21 

cos (2Wit 
- W2t + 2&, 

21) 

(4.. 28) 

At the frequency (2w2 - w1), the expression is: 

v2w2-wl = 9m2AU)2 21 COS (2W2t 
- Wlt + q5 21) 

+ 4gm3AmlA ý2 cos (2W2t 
- Wit) 

+ggm3A 
1Aw21 cos (2W2t 

- Wit + 2&, 
21) 

(4.. 29) 
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For complete cancellation of the intermodulation terms, the expression of the 

signals at the frequencies (2w1 - w2) and (2w2 - w1) must be equal to zero. This implies 

that for a two input system with an injection of the difference frequency, the expression 

of the third order IM of equation 4.28 and equation 4.29 must be zero. 

At the frequency (2w2 - wi), the following equation is obtained 

9n-,. 2 221 COS (2w2t - Wit + OW21) + 49m3&iA2 cos (2W2t - Wit) 
(4.. 30) 

+49ýn, 3Aw1A2 COS (2w2t - wit + 2q521) =0 

The function exhibits a minimum for particular values of A2,, 
1 and 02,,, 

1 of the 

injected signals. This implies that an appropriate choice of phase and amplitude of the 

injected signals will reduce the third order intermodulations. Similar conditions are 

found for the cancellation of the other IMD3 at the frequency (2w1 - w2) 

Consider a three tone input signal consisting of three distinct sinusoidal signals 

at the frequencies wl, w2 and w3 of amplitudes A,,, A12 and Aß, 
3 respectively. The 

system is injected with signals whose frequencies are the difference in frequencies of 

the pairs of fundamental signals. The injected signals are at the frequencies (w2 - wl), 

(w3 - w2) and (w3 - w1) with different phases &x,, 
21,0132 and 0.31 and amplitudes Aß, 

21, 

A4,32 and A131, respectively. 

The input signal of the system is 

3 
Vn=E ('La COS (W, 

+t)) +4W21 COS (W2t 
- Wlt + Ow21) 

n=1 (4.. 31) 
+ L32 COS (Wet 

- W2t + 0w32) +&31 COS (W3t 
- Wlt + 0131) 

Substitution of equation 4.31 into equation 4.3 gives all the relevant frequency 

components at the output of the amplifier. The injection of the second harmonic has 

generated additional IMD3 signals at the same frequencies as those of equation 4.17. 
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The output signal at the frequency (2w1 - w2) is 

V2LJi-w2 = gm2AjAzi COS 
(2Wlt 

- W2t ý- &'21) 

-} 49m3Aý1A,, 2 cos (2wit - wet) 

+49m3AýsA, si cos (2w1t - wet + 2021) (4.. 32) 

+29'+3"U�$A21AW31 cos 
(2wlt 

- iA%lt - 
0W21 

- 
0W31) 

--29M3"w1j+cý, 31AW32 
cos 

(2wit 
- CJit - 

0W31 + 0W32) 

Similarly, the output signal at the frequency (2w2 - w1) is 

V2(IJ2-Ji = 9m2A2A2i COS (2W2t 
- wlt + &w21) 

W2 cos (2w2t - wlt) ggm3A,, A2 

+4gm3A, 
j'L21 cos (2U)2t - wit + 2&, 

21 
(4.. 33) 

+ 29m34w3AW21A132 cos (2W2t 
- Wlt 1ýý21 - OW32) 

+29'm3ý2Aw31"x+32 COS 
(2W2t 

- Wlt + ýW21 
- 

&W32) 

The expression of the signal at the frequency (2w1 - w2) in equation 4.32 shows 

that four additional terms are generated by the injection of the difference frequency. 

The phase and amplitude of the injected difference frequencies determine the ampli- 

tude and the phase of these new terms. If the phases and amplitudes of the injected 

difference frequency signals were appropriately chosen, it will result in a cancellation 

of the IMD products. A correct choice of phase and amplitude causes the expres- 

sion of the third order IMDs in equation 4.32 and equation 4.33 to cancel each other. 

The cancellation of the other IMD signals at the frequencies (202 - w1), (2W2 - w3)) 

(2w1 - w3), (2w3 - w2) and (2w3 - w1) will occur in a similar manner as for the signal 

at the frequency (2w1 - w2). 
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The injection of the difference frequency signals generates additional IMD3 terms 

of the second kind. 

The expression of the signal at the frequency (W1 + W2 - W3), is 

VW1+WZ-W3 = gm2Aw2Aw3i COS (Wlt + W2t - W3t - OW31) 

+gm2JL1` ̀ x, 32 cos (wit + wet - wit - &W32) 

+29�, 3A, 1Aw2JL3 cos (wit + wet - wit) 
(4.. 34) 

+2gm3&1AL021A31 COS 
(Wlt +W2t 

- Wit +O 

W21 
+ 

TW31) 

+29,, +3AW2AUJ21A132 cos (wlt + wet - wit - &21 -O J32) 
+297R313AW33AW32 COS 

(Wlt +W2t - Wit + 01031 
- `YW32) 

The expression of the signal at the frequency (WI - w2 + w3), is 

Vl1-w2+W3 
- gm2Aw3AW21 COS (Wlt 

- W2t + Wgt - OW21! 

+9m2A1A32 COS (Wlt 
- W2t + W3t - &)32) 

+29, n3A,,,, 
A,, A,,, cos (wit 

- w2t + wit) 
(4.. 35) 

+29m3Aw1'L21AW31 cos (wit 
- w2t + wgt - OW21 + c5 31) 

+3 
29" 

ý] 
W2A'021Aw32 cos 

(W1t 
- W2t + Wit - X21 

+ 
w32) 

+29m$ 
3A 1131AW32 cos (Wit 

- W2t + Wit - OW31 + OW32) 

The expression of the signal at the frequency (W3 + W2 - w1), is 

VCJ3+2-x., 
1 = gm2AU; 

3&21 
COS 

(W3t 
+W2t 

- wlt + &W21) 

+9m2AL, 2Au, 31 cos (wit +wet - wlt -}- Oß, 
31) 

3 +29m3A., lf sf a COS (W3t + W2t - Wlt) 
(4.. 36) 

+29m3&1Al, 21&31 cos (w3t + wet - wlt + Oß, 
21 + Oß, 

31) 
+29m3AW2A, 21Aw32 COS (w3t +wet - wlt + Oß, 

21 + OW32) 

+2gm3 
3A, siAWa2 COS (W3t +W2t - Wit - OW31 - &)32) 
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The injection of the difference frequency signals at the frequencies (wl - w2)7 

(wl - w2) and (wl - w2) leads to interaction with the fundamental signals wl, w2 and 

w3 to generate extra IMD3 terms at the frequencies (2w2 - w1), (2w1 - w2), (2w2 - w3), 

(2w1- w3), (2w3 - w2) and (2w3 - wl) resulting in the reduction of the first kind 

of IMD3. The technique does also generate extra IMD3 terms at the frequencies 

(w1 - w2 + w3), (w1 - w3 + w2) and (w3 - WI + w2). A careful choice of the amplitudes 

Aw21 i Aw32 and Aw31 and phases ¢w21 iO W32 and Ow31 of the injected signals in equation 

4.31 will result in the cancellation of all third order intermodulations. Equation 4.34, 

equation 4.35 and equation 4.36 shows that it exhibits a minimum for specific values of 

the injected signal amplitudes Aw21i Aw32 and Aw31 and phases ¢w21,4w32 and ßw31. 

If the input tone are of the same amplitude and same phase (Aw21 = Aw32 = Aw31 

and 4x. 21 =O W32 = ¢w31), equation 4.34, equation 4.35 and equation 4.36 have two 

variables instead of six and the evaluation of these equations shows that they exhibit 

a minimum for specific value of amplitude and phase. This is demonstrated by the 

simulated results obtained in section 4.6. 

In the two-tone test, the reduction in the third order intermodulation is per- 

formed on the first kind of IMD3. In a multicarrier system the second kind of IMD will 

be present. The technique of difference frequency injection reduces both kinds of IMD. 

The above analysis shows that the injection of the difference frequency signal 

(w2 - w1) into the amplifier interact with the fundamental signals wl and w2 and gen- 

erates extra IMD terms at the frequencies (2w1 - w2) and (2w2 - wl), through a power 

series expansion of the second and third order term. The injected second harmonic sig- 

nal (w3 - w1) interacts with the fundamental signals wl and w3 and generates of extra 
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IMD terms at the frequencies (2w1 - w3) and (2w3 - wl). Similarly, the injection of the 

signal (w3 - w2) generates extra terms at the frequencies (2w3 - w2) and (2w2 - w3). 

Again, it is demonstrated that the cancellation of all first kind of IMD3 by the injection 

of the difference frequency signals, requires the injection of all signals whose frequencies 

are the difference in frequency of the pairs of fundamental signals. 

The injection of the difference frequency signal (w2 - w1) into the amplifier, gen- 

erates extra IMD terms at the frequencies (w2 - wi + w3) and (w1 - w2 + w3) by inter- 

action with the fundamental signals w3i through a second order power series expansion. 

Similarly, the injection of the difference frequency signal (w3 - wi) into the amplifier, 

also generates extra IMD terms at the frequencies (w3 - wl + w2) and (wl - w3 + w2) 

by interaction with the fundamental signals w2. The interaction of the difference fre- 

quency signal (w3 - w2) and the fundamental signals wi generates extra IMD terms 

at the frequencies (w3 - w2 + w1) and (w2 - w3 + wi). These results demonstrate that 

the cancellation of all first and second kind of IMD3 necessitate the injection of all 

difference frequency signals. 

4.2.3 Frequency Summation Injection Technique 

The work presented in this section looks at the effects of the injection of signals whose 

frequency is the sum of the pair of the fundamental signals. These signals are very close 

to the second harmonic signals and are causing some effects on the IMD performance of 

the amplifier. In order to analyse the system performance, signals, whose frequencies 

are the sum of the pair of fundamentals frequencies are injected into the amplifier 

together with the fundamental signals. 
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The input signal of the amplifier for a two-tone input system comprises the 

injected signal at the frequency (w2 + wl) with amplitude A4,21 and phase Oß, 
21, and 

the fundamentals signals w2 and wl with amplitudes A,,, 
1 and Aß,, 

2, respectively. The 

expression for the input is 

2 

Vn= Awn COS (W,,, 
)) + A&, 

&21 COS (W2t +W1t+ ýw2i 
1 

(4.. 37) 

n=1 

A substitution of equation 4.37 into equation 4.3 gives all the relevant frequency 

components at the output of the amplifier. 

The interactions between the original signals and the injected sum of the fun- 

damental frequencies result in additional signals at the output. The overall expression 

for third order IMD of the form (2wm ± wn) is 

V2wj lwn = gm2Aa, 1Aß, 21 COS (2wit + w2t + Ow21) + gn. 2AW2A,,, 21 cos (2w2t + wlt + 1b 
4)21) 

+4g� A, 
IA,,, 2 cos (2wlt - wet) + 49� A, 

1AA)2 cos (2wlt + wet) 

+49m3A1/iýZ cos (2W2t 
-Wlt)+ 49m3 1fýWZ cos (2W2t +Wlt) 

+3g, 3Aw1Aý21 cos (2w2t + wit + 2Owzlý + 
4g n3A(,, 2Aý21 cos (2wit + w2t + 2OW21) 

(4.. 38) 

From the above equation at the frequency (2w1 - w2), the signal is 

Vß,, 1_4,2 =2 4g, 3A21A12 cos (2wit - wet) (4.. 39) 

At the frequency (2w2 - w1), the signal is: 

viz-mai = ggm3Aw, ALd2 cos (2w2t - wlt) (4.. 40) 

The expression of the third order IMD at the frequencies (2w1 - w2) and (2w2 - w1) 

are unchanged when compared to the expressions obtained without the injection of the 
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signals (equation 4.17). This shows that injection of the sum of the fundamental sig- 

nals will not cause a change in these third order intermodulation components because 

no additional terms are generated. Cancellation of the intermodulation distortion by 

adjusting the injected signals (amplitude and phase) will not be possible. 

Considering a three-tone input signal consisting of three distinct sinusoidal sig- 

nals at the frequencies w1, w2 and w3 of amplitudes Awl, Awe and Aw3 respectively. 

The system is injected with signals whose frequencies are the sum of the pairs 

of frequencies of the fundamental signals w1, w2 and w3. The signal are at the frequen- 

cies (w2 + w1), (w3 + W2) and (w3 + w1) with different phases 01121,0w32 and Oß, 
31 and 

amplitudes Aß, 21, Aß, 32 and A,, 31 respectively. 

The input signal of the system is 

3 
2, (A, 

n 
cos (wu, t)) + AUJ21 cos (w2t + wlt + OW21) 

n=1 (4.. 41) 
+'4W32 COS (W3t +W2t + Ow32) + 

3i COS (W3t + Wlt + &)31) 

Substitution of equation 4.41 into 4.3 gives all the relevant IM components at 

the output of the amplifier. The injection of the sum of the fundamental frequency 

signals has generated additional IMD3 terms. 

The expression of the output signal at the frequency (2w1 - w2), is 

,, 1Aw2 
cos (2wlt 

- w2t) 
V2(,, 

1_w2 = 
4gm3A2 

(4.. 42) 
+23gm3A 

1 31 32 COS 
(2wlt 

- w2t + c5 
31 - 

&J32) 

The expression of the output signal at the frequency (2w2 - W1), is 

V 2W2-WI = 
49m3Aw1A, 

2 
cos (2w2t 

- Wlt) 

(4.. 43) 
+29m3AJ2 4W31AW32 cos (2w2t 

- wlt - OUJ31 + OW32) 
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Similar expression are found for the other first kinds of IMD at the frequencies 

(2W2 
- W3), (2w1 

- W3), (2W3 
- W2) and (2w3 - w1). 

The expression in equation 4.42 and 4.43 of the third order IMD at the frequen- 

cies (2w1 - w2) and (2w2 - w1), shows that the injection of the sum of the fundamental 

signals results in the generation of extra terms at those frequencies. This implies that 

if the phase and amplitude of the injected sum of the frequencies of the fundamen- 

tal signals were appropriately chosen, it should result in a cancellation of the IMD 

products. 

The injection of the difference frequencies of the fundamental signals has also 

generated additional IMD terms of the second kind. 

The expression of the IMD signal at the frequency (wl + w2 - w3), is 

Vw1+W2-W3 = gm2 3 21 COS (Wlt +W2t - Wit 'ý- 0W21) 

3 +Z9 
m3 

Aý2Aý3 cos (W1t+ W2t - Wit) A1 

(4.. 44) 
29m3"ýý1AW21'&31 COS (Wit + W2t - W$t + O4721 

W31) 

+2gm3nw2nw21fý, 
ý32 COS (Wit +W2t - Wgt - Cýý21 - &'32) 

The expression of the IMD signal at the frequency at (w1 - w2 + w3), is 

V-1-W2+W3 = 9m2. &, 
2&31 cos(wit - wet +wit + Oß, 

31) 

+3 2gm3A1A2A3 COS (Wit 
- W2t +W3t) 

(4.. 45) 
+2 

29m 
ý., 

si ai COS(W1t - W2t 3ý., 1 + w3i - Wsi + 
jai 

3A 
/ý 

W\ 
+2gm3AW3A, 

31A 32 
CO$(Wlt - W2t +Wit + OW31 

- 
OW32) 
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The expression of the IMD signal at the frequency at (w3 + w2 - WI)) is 

VW3+W2-Wl 
- 9m2A. JiAW32 COS 

(W3t +W2t - Wlt - 45W32) 

f COS (W3t + W2t - Wlt) +29ý, sý., 1ý., 2 s (4.. 46) 

+29m3A., 2&21AW32 cos 
(Wgt +W2t - Wit + OW21 

- &W32) 

297It$ý13'4W31" �32 
COS 

(W3t 
W2t - L!! it - 

OW31 + &W32) 

The generation of extra terms at the frequencies (wl - w2 + w3), (w1 - w3 + w2) 

and (w3 - wl + w2) as expressed in equation 4.44, equation 4.45 and equation 4.46, 

shows that a careful choice of the phase and amplitude of the injected signals, will 

result in a cancellation of the IMD3. The injection of the sum of the fundamentals 

frequencies in a two-tone test shows that there is no reduction on the third order 

intermodulation. The expression of the first kind of IMD3 does not change before and 

after the use of the technique, no extra terms are generated in the expressions. 

In the three-tone test, the injected signals at the frequency (w2 - w1), (w3 - w1) 

and (w3 - w2) interact with the fundamental signals wl, w2 and W3 to generate extra 

IMD3 terms at the frequencies (wl - w2 + w3), (w1 - w3 + w2) and (w3 - wl + w2). It 

results in a reduction of the second kind of IMD3 with an appropriate choice of ampli- 

tudes Aw21i Aw32 and Aw31 and phases gw21, OW32 and Ow31 of the injected signals. 

A cancellation of the first kind of IMD at the frequencies(2w1 - w2), (2w2 - wl), 

(2w2 - w3), (2w1 - w3), (2w3 - w2) and (2w3 - w1) occurs with the injection of the 

sum of the fundamental signals. A careful choice of the amplitudes and phases of the 

injected signals in equation 4.44, equation 4.45 and equation 4.46 results in an overall 

cancellation of all third order intermodulation. It is clear that the reduction in the IMD 

will produce satisfactory results if extra terms are generated in the expression of the 
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IMDs and that these expressions exhibits a minimum for specific values of amplitudes 

A121, A132 and A1,31 and phases 0121, OW32 and Oß, 
31. 

Since the input tones are of the 

same amplitude and phase ( Aw21 = Aw32 = Aw31 and Ow21 = Ow32 = Ow31), it 

can be demonstrated that the equation exhibit a minimum for specific injected signal 

amplitude and phase, as shown in section 4.6. 

It is demonstrated in the above analysis that the cancellation of the first kind 

of IMD3 by the injection of the frequency summation signals does not occur. On 

the other hand, the cancellation of the second kind of IMD can be achieved. The 

injection of the frequency summation signal (w2 +wl) into the amplifier, generates 

extra IMD terms at the frequencies (w2 + wl - w3) by interaction with the fundamental 

signals w3, through a second order power series expansion. Similarly, the injection 

of the frequency summation signal (w3 + w1) into the amplifier, generates extra IMD 

terms at the frequencies (w3 + WI - w2) by interaction with the fundamental signals 

W2. The interaction of the frequency summation signal (w3 + w2) and the fundamental 

signals wl generates extra IMD terms at the frequencies (w3 + w2 - wi). These results 

demonstrate that the cancellation of the second kind of IMD3 required the injection of 

all frequency summation signals. 

4.3 Amplifier Circuit Characteristic 

A simple single stage amplifier is used for the analysis of the intermodulation 

products. The circuit is used to verify the above theory by injecting it with the original 

signals, then adding firstly the sum of the fundamentals, next the second harmonics 

and finally the difference frequency signals. The output signal behaviour at the IMD3 
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Figure 4.. 1: Basic amplifier circuit topology. 

frequencies is presented. The circuit is constructed in a very conventional way which 

is characteristic of many PA circuit used in communication applications. The basic 

approach of the circuit design is represented in fig 4.1, where the nonlinear transistor is 

connected at the input and at the output by matching networks. The device is biased 

by two dc power supplies at the base and the drain. 

The active device model used in this simulation is a MESFET extension of the 

Curtice cubic model 2 discussed in chapter 2 and is shown in figure 4.2 [49,124]. The 

value of the elements describing the model' axe shown in table 4.1. The equation 

describing the model is 

Ids = (Ao + A1V1 + A2V2 + A3V3) tanh [-yVDS (t)] (4.. 47) 

' The default values of the Curtice model are used for the other values of the parameters which are 
not defined in table 4.1. 
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Rd qa 

G 

Rd=Drain resistance R =Gate resistance 
Rs=Source resistance Cgs=Drain source capacitance 
Cgd=Gate-drain capacitance Cgs=Gate-source capacitance 
Le--Gate inductance Ls=Source inductance 
Ld=Drain inductance Rt=Gate-source resistance 
Rds=Drain-source resistance R 2d--Gate-drain resistance 
CRF=Model frequency outpu 
ca acitance 

RC=Model frequency output 
conductance( use with CR 

Figure 4.. 2: Large signal MESFET model used for simulation. 

With 

Ids = VCS (t -'r) [1 + ß2 (VDSO 
- VDS (t)A (4.. 48) 

for VDs >_0 

Where , ß2 is a coefficient for the pinch-off change as a function of VDS. 

VDSO is the value of VDS at which A0, A1, A2 and A3 are evaluated. 

Ao, Al, A2 and A3 are coefficients in the cubic equation. 

Q2 is the hyperbolic tangent function parameter. 

rr is the internal time delay parameter. 

The circuit used for the investigation of the technique is shown in figure 4.3. 

The input of the circuit consists of a hybrid T-section and an m-derived half T-section 
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Name Meaning Unit value 

VBI Built in gate potential V 0.80 
RD Drain ohmic resistance ohm 2.37 

RC Gate resistance ohm 2 
Rg Source ohmic resistance ohm 3.7 
Cs Gate source junction capacitance pF 0.37 
Cd Drain source junction capacitance pF 0.37 
Cda Drain source capacitance pF 0.07 

VBR Gate-drain junction reverse bias breakdown voltage V 5 

IS gate junction reverse saturation current(diode model) A 1.0e - 09 
AF Flicker noise temperature 1 1 
Rd 

ft 

Drain resistance ohm 2.37 

Rd Gate to drain resistance ohm 0.001 

Rin Gate to source resistance ohm 0.0001 
Rda drain to source resistance ohm 1250 

AO Cubic fit Ids coefficient A 007 
Al Cubic fit Ids coefficient A/V 0.12 
A2 Cubic fit Ids coefficient A/V2 0.06 
A3 Cubic fit Ids coefficient A/V3 0.009 

Table 4.. 1: Curtice cubic 30 parameters value and definition. 

(figure 4.4) to provide a wideband match at the input. The input section circuit has a 

90° hybrid network to enable the injection of the fundamentals and injected signals. The 

network is an ideal four-port device that is modelled by the file: hybrid s4p (appendix 

1) 

The circuit configuration is used so that the input bandwidth does not affect the 

overall performance of the circuit. At the output, a series resonant circuit and a trans- 

former are used to provide an optimum load for the amplifier. The circuit performances 

were simulated at various frequencies. The gain and bandwidth of the device, as well 

as the input and output reflection coefficient characteristic over a frequency range of 

5GHz were recorded. The gain and 1dB gain compression point (gcp) of the amplifier 

at 2.5GHz are shown is fig 4.5. The gain is about 5dB over a 5GHz bandwidth. Fig- 

ure 4.6 shows the input (S11) and output (S22) reflection coefficient of the simulated 

amplifier, as well as the forward (S21) and reverse (S12) coefficient of the amplifier. 

The circuit uses a low power device to enable the calculation of IMD in the 

simulator to be made much more easily and with a lesser computing power requirement. 
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Figure 4.. 3: Circuit diagram of the simulated power amplifier. 

The use of a high power device can engender inaccuracies as it requires a great amount 

of computing power. The results obtained with the circuit give a comprehensible and 

accurate amplifier response for intermodulation distortion modeling which can be easy 

to verify experimentally.. 

A single tone simulation is undertaken to observe the output response of the 

amplifier to a sinusoidal signal. The intercept point of the amplifier is calculated (for 

IP measurement technique see section 3.3) and its intermodulation behaviour can be 
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Figure 4.. 4: Circuit diagram of the half m derived Hybrid section of the 

simulated amplifier. 
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Figure 4.. 5: Gain Vs input power of the simulated single stage power amplifier 
with the marker M2 showing the 1dB compression point. 
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Figure 4.. 6: Simulated S-parameters response of the amplifier. 

predicted by using a standard two tone test. Using the configuration of figure 4.7, a 

single signal in connected to one of the inputs of the hybrid coupler while the other 

input is terminated in a 5052 termination. The input power of the amplifier is swept 

between the value of -20dBm and 15dBm, this gives the characteristic of figure 4.8. 

It can be seen that the amplifier characteristic of the fundamental frequency is linear 

up to the saturation point, at around 10dBm power level. For input powers above 

10dBm, the amplifier characteristic reaches saturation and no amplification is obtained. 

Furthermore a drop in the output power will be noticed at higher input power level. 

The output of the amplifier is made up of harmonic signals at various frequencies. 

The power level of the harmonic signal decreases with the harmonic level. Figure 4.8 

also shows the power level of the second, third, fourth and fifth harmonic signals against 

the input signal. 
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Figure 4.. 7: The amplifier schematic diagram showing the fundamentals and 
injected second harmonics input configuration. 
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Figure 4.. 8: Output Vs input power of fundamental signal and harmonics. 
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4.4 Injection Technique Effects in a Simulated Two-Tone Test 

A two-tone test is first performed without the injection of the second harmonic 

signals. The test is performed with two input signals, f, and f2, at the frequencies 

2.5GHz and 2.51GHz. The two signals are combined and passed through the amplifier 

as shown if figure 4.7. The simulation gives the output power shown in figure 4.9 for an 

equi-tone input power of -20dBm. The third order IMD3 components are generated at 

the frequencies 2.49GHz for the signal (2f1 - f2) and 2.52GHz for (2f2 - fl). Signals 

at various frequencies with variable amplitude and phase are then injected into the 

amplifier together with the original signals and their effects on the IMD are observed. 

First the second harmonics of the fundamental signals are injected, then the difference 

frequency signals (difference frequency technique) and finally, the injection of signals 

whose frequency is the sum of the pair of the fundamental signals (frequency summation 

technique) . 

Although the injection of the sum of the frequencies (at the frequency 5.01GHz) 

is realisable in a simulator, it is not however the case in practise as the second harmonics 

of the input signals fall at the frequencies 5.00GHz and 5.02GHz and can not be 

easily separated from the sum of the frequency of the original signals at the frequency 

5.01GHz. If the frequency spacing between the input signals becomes small, it then 

becomes difficult to distinguish the effects of both sum and second harmonic signals. 

In practice, the injection of the second harmonic will result in the injection of the sum 

of the frequency of the fundamental signals and vice versa. Since it was shown that the 

second harmonic reduces the IMD level in a two-tone system, the study was widened 
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Figure 4.. 9: Two-tone simulated output spectrum of amplifier without em- 

ploying the techniques. 

to include these particular signals. Their effects need to be observed and understood. 

Although in theory this can be considered and called a frequency summation technique, 

in practice, the combined effects of both techniques are regarded as one. 

When the second harmonics of the input signals with an arbitrary phase and 

amplitude are injected into the system, a drop in the power level of the IMD3 by 

about 4dB is observed. The optimisation of the circuit phase shifter parameter and the 

amplitude of the second harmonics is performed for optimum phase and amplitude of 

the injected signal in order to achieve a reduction of both IMD3 products. This gives 

the result of figure 4.10. The amplitude of the IMD signals drops by 34dß at the input 

power level of -20dBm. This is a significant improvement on the distortion in the 

amplifier. For a phase shift of about 179.8° and signal amplitude of about -42dBc, a 
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Figure 4.. 10: Two-tone simulated output spectrum of amplifier after injection 

of the second harmonic signals, showing a reduction of IMD3 by more than 

30dB. 

reduction of more than 30dB is achieved on all IMD3. The use of the second harmonic 

in a two-tone test required the injection of both the second harmonic (2fl) of the first 

signal (fa) and the second harmonic (2f2) of the second signal (f2). 

The use of the difference frequency technique on the amplifier required the in- 

jection of a single signal into the amplifier at the frequency (f2 - fl) as opposed to the 

second harmonic technique which required the two harmonic signals at the frequencies 

(2 f 1) and (2f2). The difference frequency signal is injected into the amplifier in a simi- 

Jar way as shown in the circuit of figure 4.8. A decrease of about 3 to 4dBm in the level 

of the IMD3 is clearly noticed. A change in the level of IMD3 occurs instantaneously 

because these signals were close in phase and amplitude to the optimum value required 

for IMD3 cancellation. An optimisation is then performed to reduce the IMD3 for opti- 
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Figure 4.. 11: Two-tone simulated output spectrum of amplifier after injection 

of the difference frequency signal, showing a reduction of IMD3 by more 

than 30dB. 

mum amplifier performance. IMD3 are reduced by more than 30dB as shown in figure 

4.11. This verifies the theory of the IMD reduction by the difference frequency injection 

technique. After optimisation of both techniques for low intermodulation level, it was 

found that both techniques reduce the two third order IMD components found in a two 

tone system as shown in figure 4.10 and figure 4.11. 

The injection of the signals whose frequency is the sum of the two fundamental 

signals results in the injection of a single signal at the frequency (f2 + fl). The injection 

of this signal into the amplifier together with the original signals does not cause a 

reduction in the third order IM3 level. Since there are no additional terms generated 

at the third order IM frequencies as observed in the theoretical analysis, there is no 

improvement on the two intermodulation distortions. This is illustrated in figure 4.12 
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Figure 4.. 12: Two-tone simulated output spectrum of amplifier after employ- 
ing the frequency summation technique, showing no significant reduction 

on the third order IM. 

where the optimisation at the input power level of -20dBm for a reduction of both 

IMD3 fails to give an appreciable reduction of their initial value of figure 4.9. A small 

decrease in the level of the third order IM of less than 1dB is noted. The technique 

does not however reduce the third order intermodulation in a two tone test significantly 

compared to that observed with the other two techniques. 

4.5 Injection Technique Effects in a Simulated Three-Tone Test 

A third input signal at the frequency 2.521GHz is introduced. The third signal 

is shifted by 1MHz to enable all third order IMD products to be clearly seen as shown 

in figure 4.14.. The input signals fl, f2 and f3 of the amplifier are at the frequencies 

2.5GHz, 2.51GHz and 2.521GHz respectively. The simulated test consists of injecting 

different signals and observing the IMD3 performance of the technique in the amplifier. 
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Figure 4.. 13: The simulated amplifier schematic diagram(with Ro = 50Q, and 
L and L1, inductance values, C and C1, capacitor values). 

The performances of the techniques are then compared. 

The three-tone test simulation is performed on the Microwave Design System 

software' (MDS) [49], whereas the previous two-tone simulations were performed on the 

nonlinear circuit simulator Libra3 from EESOF, high frequency design solutions [124. 

Since the simulator models are identical, the simulation results remain identical. The 

decision to move from one CAD software to another was prompted by the possibility 

on the Microwave design software to simulate more than three independent signals. 

The input signals fl, f2 and f3 with the same amplitude and phase are fed into 

the input of the amplifier. The resulting output IMD3 level of the fundamental signals 

and the third order IMDs at -20dBm input power level are shown in figure 4.14. 

Three second harmonics, 2f, 2f2 and 2f3, of the input signals at the frequencies 

2 The Microwave Design System is Hewlett Packard CAD tool for high frequency (microwave and 
RF) circuit design and analysis. 

3 Libra is a nonlinear circuit simulator which is part of Hewlett packard EESOF high frequency 
design solutions. 
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Figure 4.. 14: Three-tone simulated output spectrum of amplifier without em- 

ploying the techniques. 

5GHz, 5.02GHz and 5.042GHz are injected into the system, with the phases 02f, 7 42f2 

and 02 f3 
(02 f, = c2 f2 = 02 f3) and amplitudes A211, A2 fl and A2 f2 (A2 fl = A2 fl = A212), 

respectively. The signals are combined and passed through a phase shifter and atten- 

uator, so as to alter the phase and amplitude of the harmonics in order to achieve a 

reduction in third order IMD levels. A drop in the power level of the third order IMD 

is noticed after optimisation of the phase and amplitude of the injected signals for best 

IMD rejection. The resulting intermodulation signal level after injection can be seen 

in figure 4.15. There is an improvement of over 35dB on the third order IMD in the 

amplifier but only on the first kind of third order IMDs. For a phase shift of about 

181.8° and amplitude of -42.4dBc, a reduction of more than 30dB was achieved. The 

results obtained for the three-tone system are the same as those obtained with the use 
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Figure 4.. 15: Three-tone simulated output spectrum of amplifier after injec- 

tion of the second harmonic signals, showing a reduction in the 1st kind of 

IMD3 of more than 30dB and no reduction in the 2nd kind of IM3. 

of two signals for the first kind of IMD. The second kinds of IMD are not reduced by 

the injection of the second harmonic signals. 

When using the difference technique, the difference frequencies of the input signal 

(f2 - fl), (f3 - fl) and (f3 - f2) at the frequencies 10MHz, 11MHz and 21MHz were 

injected into the amplifier together with the fundamental signals. The output of the 

amplifier shows that with the appropriate phase and amplitude of the injected signals, 

a reduction in the level of IMD3 is achieved. This is shown in figure 4.16 for the third 

order of IMD with an optimisation at the input power of -20dBm. The first and the 

second kind of IMDs are reduced substantially by the technique. This clearly confirms 

the theoretical results obtained previously. The first kinds of IMD are reduced by more 
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Figure 4.. 16: Three-tone simulated output spectrum of amplifier after injec- 

tion of the difference frequency signals, showing a reduction in the 1st kind 

of IMD3 and the 2nd kind of IM3 of more than 35 dB. 

than 30dB and the second kind by more than 30dB as well. 

The injection of the signals whose frequencies are the sum of the fundamental 

signals (f2 + fl), (f2 + f3) and (f3 + fl) at the frequencies 5.01GHz, 5.031GHz and 

5.021GHz, shows that the first kinds of IMD3 are not reduced. On the other hand the 

second kinds of IMD are reduced by more than 30dB. The test is performed at the 

input power of -20dBm ( the input signal have the same amplitude and phase)and 

confirms the theory. Figure 4.17 shows the output spectrum of the system with the 

fundamental signals with a reduction in the second kind of IMDs and no reduction in 

the first kind of third order IMDs (see table 4.2). 

The reduction of the third order intermodulations by the signal injection does 
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Figure 4.. 17: Three-tone simulated output spectrum of amplifier after injec- 

tion of the sum of the fundamental frequencies, showing a reduction in the 

first kind of IMD3 of 5dB and a reduction of the second kind of IM3 of more 

than 35 dB. 

not cause a change in the fundamental signal as shown in figure 4.15 for the second 

harmonic, figure 4.16 for the difference frequency injection and figure 4.17 for the 

injection of the sum of fundamental frequencies. Figure 4.18 shows the fundamental 

signal fi before and after applying the second harmonic injection technique. The signal 

does not change as the technique is applied. Similar results were obtained for the other 

two fundamental signals f2 and f3 and for all three IMD reduction techniques. 

The increase in input power causes a decrease in the level of reduction of the 

intermodulation. This is shown in figure 4.19 where the difference frequency injection 

technique reduces the first kind of IMD3 components at the frequencies (2f, - f2) and 
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mathematical 
expression 

frequency 
(GHz) 

IM level 

without 
injection 

dBm 

IM level 
with 

injection 
of 

second 
harmonic 

(dBm) 

IM level 
with 

injection 
of 

difference 
frequency 

(dBm) 

IM level 
with 

injection 
of 

frequency 
sum 

(dBm) 

Wl 2.5 -17.164 -17.097 -17.89 -17.099 
W2 2.51 -17.162 -17.095 -17.087 -17.097 
W3 2.521 -17.160 -17.093 -17.084 -17.095 

(2wjt -ß, 3t) 2.479 -107.858 -139.061 -141.571 -107.664 
(2&, 1t - We0 2.49 -107.866 -140.707 -144.091 -107.672 
(2W2t -ß, 3t) 2.499 -107.859 -140.431 -143.667 -107.666 
(2W2t - W1 t) 2.52 -107.865 -140.268 -142.83 -107.671 
(2W3t - Wet) 2.532 -107.858 -140.161 -142.879 -107.665 
(2w3t - w1 t) 2.542 -107.856 -138.581 -145.633 -107.662 

(W2t + grit - Wst) 2.489 -101.830 -101.632 -136.792 -136.847 
(., 1t +. st - ß, 20 2.511 -101.834 -101.636 -137.758 -141.747 
(ß., 3t + w2t - Wit) 2.531 -101.832 -101.634 -138.482 -138.15 

Table 4.. 2: Fundamental and third order INM expressions and power levels 

with and without the techniques for a three-tone test at low power level. 
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Figure 4.. 18: Output Vs input power of the fundamental signal (fl) at the 
frequency 2.5GHz before and after injection of the difference frequency sig- 
nals. 
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Figure 4.. 19: Output Vs input power of the intermodulation signals (2f, - f2) 

and (2f1 - fa) at the frequencies 2.49GHz and 2.479GHz before and after 
injection of the difference frequency signals. 

(2f1 - f3) by more than 15dB for input power below -10dBm. Similar results are found 

for the other first kind of IMD3 components at the frequencies (2f3 - fl), (2f3 - f2), 

(2f2 - fl) and (2f2 - f3) (see appendix c). The reduction of the second kinds of IMD3 

is shown in figure 4.20 for the signal (fl - f2 + f3). Similar results are found for the 

signals (11 + f2 - f3) and (fs + f2 - fi). 

The second harmonic injection shows a reduction in the first kind of IMD3 that 

diminishes with increasing input power level. The reduction in the first kind of IMD3 

(2 fl - f2) and (2f2 - f') are shown in figure 4.21. The second harmonic injection does 

not reduce the first kind of IMD as previously demonstrated and it is shown in figure 

4.22 for the signals (fi - f2 + fs). Similar results are found for the signals (fl + f2 - f3) 

and (f3+f2-J1). 

The injection of the sum of the fundamental signal gives similar reduction as 

the difference frequency technique for the second kind of IMD and no reduction on the 
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Figure 4.. 20: Output Vs input power of the intermodulation signal 
(fl - f2 + f3) at the frequency 2.511GHz before and after injection of the 
difference frequency signals. 

first kind of IMD3. The reduction level was further reduced at higher power level. 

At -20dBm input power a reduction of 30dB was obtained with the use of the 

difference frequency technique on both kinds of IMD3. The second harmonic gives a 

30dB reduction on the first kind of IMD3 and the injection of the sum of the fundamen- 

tal frequencies gives a reduction of 30dB on the second kind of IMDs. At -lOdBm, with 

the same optimum phase and amplitude, the reduction in IMD3 is smaller (N 15dß). 

At higher power levels, the reduction does not occur since the nonlinearity of the de- 

vice creates a different phase relation between the input and output signals. This is 

illustrated in figure 4.23 for the second kinds of IMD3 and figure 4.24 and figure 4.25 

for the first kinds of IMD3. The nonlinearity of the amplifier shows that at lower power 

level, the phase relation between the signal is very close with a difference of less than 

1° between the signal at -20dBm input power and -10dBm. This difference in phase 

increases with input power and the linear relation collapses in the high power region 
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Figure 4.. 21: Output Vs input power of the intermodulation signals(2 fl - f2) 

and (2f2 - f') at the frequencies 2.49GHz and 2.52GHz before and after in- 

jection of the second harmonic signals. 

where the change in phase can be up to 180° for an increase of 1dB in power. 

These results clearly show that although a reduction at -10dBm input power 

can be reached with the same optimised phase and amplitude as at -20dBm input 

power, there is a need for a different phase and amplitude adjustment according to 

power levels. At higher power level, the optimum phase of the injected signals needs to 

be very different. The use of different phases and amplitudes for each signal injected in 

the system will therefore give better results. It can be achieved through the careful use 

of a phase and amplitude control for the injected second harmonic, difference frequency 

or the sum of the fundamental signals. 

Phase nonlinearities in the amplifier change with frequency as shown in figure 

4.26. The lowest IMD at the frequency'2.479GHz will have a phase that is very different 

from the phase of the highest third order IMD signals at the frequency 2.542GhIz 

at the output of the amplifier. The difference in phase at the output for these two 
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Figure 4.. 22: Output Vs input power of the intermodulation signal 
(fl - f2 + f3) at the frequency 2.511GHz before and after injection of the 

second harmonic signals. 
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Figure 4.. 23: Output phase variation of the IMD signals (f1 + fz - f3), 
(fi - f2 + f3) and (f3 + f2 - fl) at the frequencies 2.489GHz, 2.511GHz and 
2.531GHz at the output of the amplifier. 
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Figure 4.. 24: Output phase variation of the IMD signals (2f2 - fi), (2f2 - fl) 

and (2f3 - fl) at the frequencies 2.49GHz, 2.52GHz and 2.542GHz at the out- 

put of the amplifier. 
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Figure 4.. 25: Output phase variation of the IMD signals (2f, - f3), (2f2 - f3) 

and (2f3 - f2) at the frequencies 2.479GIHz, 2.499GHz and 2.53GHz at the 

output of the amplifier. 
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Figure 4.. 26: Output spectrum and non-linear phase response of amplifier, 

showing the different IMD and the correspondings phase informations. 

signals is about 1°. This accounts for the disparities in the reduction in level of the 

intermodulation products for a fixed phase of the injected signals. It implies that the 

use of a single phase shifter for the injected signals which provides a similar phase to all 

injected signals, is not an adequate for the reduction of all IMDs simultaneously since 

the phase of each signal is different. 

The use of different phases for each of the difference frequency signals at the 

frequencies (f2 - fl), (fs - ff) and (f3 - f2) shows that the reduction in the IMD 
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level is further improved on both the first and second kind of third order IMDs. The 

improvement of the IMD by the use of different phases for each injected signal is 

related to the fact that the amplifier introduces phase nonlinearities which are frequency 

dependent. Phase variation between the lowest IMD signals and the highest product 

is about 5°. The difference between each third order product of about 1° is significant 

enough to create disparities in the phase requirements for the cancellation of each signal. 

Ideally, an optimum reduction of the IMD3s is obtained by the use of a different phase 

and amplitude for each of the injected signals. 

4.6 Amplitude and Phase Change Effects on Third Order IMD 

The effects of the variation of the phase and amplitude of the injected signals 

on the IMDs are observed around the above optimised values. The tests give an insight 

into the phase effect and amplitude effect on IMD3 levels to enable the derivation of 

the requirements for an effective IMD reduction in the system. A variation of the 

injected signal phase and amplitude is performed in order to study the effect on the 

intermodulation performance of the techniques 

The second harmonic signals are phase shifted using the phase shifter as shown 

in the circuit of figure 4.7. The amplitudes and phases of the signals are simultaneously 

varied. The change in output power of the IMD3 to the amplitude and phase variation 

as shown in figure 4.27 for the third order IMD at the frequency (2f, - f3), exhibits a 

minimum around the value of the phase of 181° and amplitude of -42.5dBc. This shows 

that a reduction of more than 30dB can be achieved. Similar results were obtained for 

other first kind of IMDs at the frequencies (2f, - f2), (2f2 - f3), (2f2 - fl), (2f3 - fl) 

119 



Injeclcdsecund 
hunnunic 

1"". vd dBr1 -30 

-40 

. 26 
0 

-110 

Output p wcr - 12 0 

at 21, -J, ldB) 

130 -- 

-fao 

Figure 4.. 27: Third order IMD (2f1 - f: 3) amplitude variation as a function of 
injected second harmonic signal amplitude and phase. 

and (2h - f2) (see appendix (1). The output power level for the fundamental signals f i. 

f2 and fa remains constant to within ±1(1B with variations of the phases anal iiinI)litudes 

of the injected signals. Figure 4.28 shows the amplitude level of the fill idainel it'll signal 

fi as a function of phase and amplitude of the injected second harm onnic. 

The graph showing the change irn the second kind of ITN1D3 power level sloes 

riot display a single deep rnininiuin, which proves that the SecOI1(l liarinoiiic tecliuic, ue 

does not significantly reduce the second kind of 1 yID3. The results of the variation of 

the amplitude of the signal at the frequency (ft + f2 - f; i) are presented itt figure 4.29. 

Similar results were obtained for the other secoii(l kinds of I\11)3 pit 

(fI - f2 + ß) aIRI (ß + f2 - fl)- 

The first kind of INIDs do not give a significant redliction wit li tlºc injection of 

the sure of the fundamental frequencies, süice the graph of the variation of the power 

level of the first kind of INID does not show aL sigiiific, iiit re. (11I ,t i)ii II lf he signal level. 
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Figure 4.. 28: Third order IMD f, amplitude variation as a function of injected 

second harmonic signal amplitude and phase. 
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Figure 4.. 29: Third order IMD (f 1+ f-2 - f: ) amplitude variation as a function 

of injected second harmonic signal amplitude and phase. 

121 

. LVV 10V 300 

Injcclcducund hanrnroic 
pbn 1&-grc n) 



Injected sum u( the 
tundarncnlal signal 
Irequenciespouer40 

I-I dB, ) 

1000 

-105 
Output power 
nl 21r(, IjBm) 

110 

-115 

Figure 4.. 30: Third order IMD (2f, - f; )amplitude variation as a function of 

injected sum of the fundamental signals amplitude and phase. 

The variation in the signal power level at the frequency (2f, -f j) shown in figure 4.30. 

shows a slight change as the amplitude and the phase of the shin of the fiui(lainentals 

signals are varied. A reduction of 10c1ß can be achieved for a phase of 90° or 270°. 

Similar results are found for all other first kind of IMID3 sigmds, (2f, - f2), (2f. 2 - fi), 

(2f2 - fl), (2f. .i 12) and (2f3 - fr). The injection of the suns of the fundamental 

frequencies shows that the graphs of the variation of the outlntt power level of the 

, second kiiid of IMD3 exhibits minima. This is sliowii in figure 4.31 for the third order 

signal (fi + f2 - f; 3) at the frequency 2.489GHz. Similar results are found for the 

signal (f, - f2 + f: ) and (f j+ f2 -f i) at the frequencies 2.511(; 11 z and 2.531(; I1: j 

respectively. The graph shows a <leel> iriiriüiituiº (iiºore than : (JI3 r('(hl1ct ian) for a 

please of 182° and an amplitude of -36.3dBc of the injected signals. 

Results obtained with the injection of the difference frequency shows that f(), 

the first kinds of INID3 and the second kind of IMID3, itiitiiiua are exhibited aus shown 
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Figure 4.. 31: Third order IMD(fI + f2 - f: ) amplitude variation as a function 

of injected sum of the fundamental signal frequencies amplitude and phase. 

in figure 4.32 and figure 4.33 for the signals (2f i-f: ) and (f i+ fz -f j) rest)ect, ively. 

A phase of 181.6° and amplitude of -42.5dBc is required to reduce the first kind of 

I vID3 signals for the signal (2f, - f3) as shown in figure 4.32. The graph shows ;, 

region for which the level of the interinodulation drops significantly (snore than 30dB). 

Similar results are found for other first kind of IMDs. A phase of 181° and 1111 plitucle of 

-42.5dBc is required for the reduction of the second kind of IMD3 signal (f, + fz - fl) 

of figure 4.33. 

The analysis shows that the signal at the frequeti(! Y (ft - f2 + fa) 1i ia conülple'x 

behaviour as the phase and amplitude of the ilijecterl sigiia1 (-1hairºge (Iii itr 4.34). It 

exhibits various minima. Since the reduction of all other [\, II) oc<cutrs fot, ; jIiuost the 

same please and amplitude, the value of phase sind ani1)lit u(l(' required for the cancel- 

lation of this signal corresponds to the same value as that reýýiiireýl for tlle' cýuýý cllýýt1011 

of . all other third Order IMMDS. It is clear that around the lýii ie ýiýi(l ýýitilýlitiiýle of al)Ollt 
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Figure 4.. 32: Third order IMD (2f1 - f: ) amplitude variation as a function of 

injected difference frequency signal amplitude and phase. 

180.5° and -42.5dBc of the injected signal amplitudes, all third order IMII products 

are reduced by the injection of the difference frequency signals. 

Although there is a reduction in third order INID, t he reduction iu t he signals, 

does not occur for the same phase and amplitude of the injected signals. 'I'lse iiliatie 

and amplitude requirements for the cancellation of each iiiterillodiilatioiº I's IiI1ther ill- 

vestigated in the hext section. The phase and amplitude required for the cý111cºe11aºtioiº 

of IMD3 can then be adjusted for better IMD performance wit li t lieg use of iuore phase 

shifters or attenuators. The simulations performed with the (litfere. tit I ecliiiiqu : ti sh ows 

tliýtit tlic fundamental signals fi, f2 and fs remain anistuut wit liiii -±l(lß. The nut put 

response of the fundamental signal to the variation of t liee l)lºjitie w(l ýuiiplit iul(' of t liee 

injected signal is shown in figure 4.28. A similar results is olýtýiilied wit II t 1w lint Iii 

mental signal for the difference frequency technique and the iiijectioii of th e siuiiin<ýtloll 

frec1iiencies. 
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Figure 4.. 33: Third order IMD(fl + f2 - f3)amplitude variation as a function 

of injected difference frequency signal amplitude and phase. 
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Figure 4.. 34: Third order IMD (fl - f2 + f3 ) amplitude variation as a function 

of injected difference frequency signal amplitude and phase. 
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Fundamental 

input 

power (dBm) 

Injected second 
harmonic input 

power(dBc) 

Injected summation 
frequency input 

power (dBc) 

Injected difference 

frequency input 

power (dBc) 

0 -8 -6 -3.8 
-10 -33.4 -27.4 -31.35 
-20 -42.4 -36.2 -40.8 

Table 4.. 3: Amplitudes of the injected signals for optimum reduction of all 
IMD3. 

4.6.1 Phase Sensitivity of Systems 

The change in power level of the different IMD3 signals is further investigated to de- 

termine the optimum phase for a maximum reduction. The tests are performed with 

constant amplitudes for all injected signals as obtained in section 4.5, after optimum 

reduction of all IMD3 (see table 4.3 for the amplitudes of injected signals). The in- 

jection of the second harmonic with a phase of about 181° causes a drop in the first 

kind of IMD by more than 30dB. This is shown in figure 4.35 at the input power of 

-20dBm for the signal (2f, - f3). Similar results are found for the other second kind 

os IMD3, (2fi - f2), (2f2 -13), (2f2 - fl), (2f3 - fa) and (213 - fi). 

This result is similar to the result previously obtained with optimisation. As 

the phase is changed, the level of IMD will drop slowly and then significantly between 

170° and 190°, where it will have its minimum at about 181°. This clearly shows that 

the injection of the second harmonic in the system causes a reduction in the level of 

the first kinds of IMDs. The results at the input power of -10dBm are similar to 

the results at -20dBrn, showing a reduction in the level of the first kind of IMD by 

more than 30dB. As the input power increases into the nonlinear region, the nonlinear 

effects cause a different behavior whereby the technique does not reduce the first kind 

of IMDs but reduces the second kind of IMDs as shown in figure 4.35 for the signal 
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Figure 4.. 35: Variations in the amplitude of IM term (2 fl - f3) at the frequency 

2.479GHz as a function of injected second harmonic signals phase for input 

power levels of -20dBm, -lOdBm and OdBm. 

(2f, - f3). Similar effects are observed for other first kind of IMD products (2f, - f2), 

(2f2 - f3), (2f2 - fi), (2f3 - f2) and (2f3 - fl) (see appendix e). 

At input power levels below saturation, as illustrated by the results at input 

powers of -20dBm and -10dBm, the technique of second harmonic injection does not 

give an appreciable reduction in the level of the second kind of IMD. In figure 4.36, the 

level of the second kind of IMD Ui + f2 - fs) vary by ±5dB for the entire 3600 phase 

shift. The results of the signal (f i- f2 + f3) and (f 3+ f2 - fl) shows the same effects 

and there is no significant improvement on the IMD. 

The amplitude of the fundamental signals remains constant to within ±1dB with 

the injection of the sum of the pairs of the fundamental signals. The changes in the 

levels of the fundamentals signal fl are shown in figure 4.37 with the second harmonic 

injection. Similar results are found on the fundamental signal power level with the 
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Figure 4.. 36: Variations in the amplitude of IM term (fl + f2 - f3) at the 

frequency 2.489GHz as a function of injected second harmonic signals phase 
for input power levels of -20dBm, -lOdBm and OdBm. 

injection of the sum of the fundamentals frequencies. The drop in the amplitude of the 

fundamentals is observed when the phase of the injected signal is at 900 and 270°. No 

decrease in the fundamental signal level is observed for a phase of between 175° and 

185° where greater reduction in IMD3 power levels is achieved. 

The injection of the sum of the fundamental signals, together with the original 

signals, shows results which are the opposite of those obtained using the second har- 

monic technique. The first kind of IMD3 are not reduced by the technique as shown in 

figure 4.38 for the signal (2f1 - f3). The result of the other signals at the frequencies 

(2f1 - f2), (2f2 - f3), (2f2 - fl), (2f3 
- f1) and (2f3 

- f2) are similar. 

The second kind of IMD products (fl + f2 - fs), (f, - f2 + f3) and (f3 + f2 - fl) 

at the frequencies 2.489GHz, 2511GHz and 2.531GHz are reduced by the injection of 

the sum of the fundamental signals frequencies at low power levels. This is shown in fig- 
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Figure 4.. 37: Variations in the amplitude of the fundamental f, at the fre- 

quency 2.5GHz as a function of injected second harmonic signals phase for 

input power levels of -20dBm, -10dBm and OdBm. 
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Figure 4.. 38: Variations in the amplitude of the IM term (2f, - f3) at the fre- 

quency 2.479GHz as a function of frequency sum of the fundamental signals 
phase for input power levels of -20dBm, -10dBm and OdBm. 
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Figure 4.. 39: Variations in the amplitude of IM term (fi + f2 - f3) at the fre- 

quency 2.489GHz as a function of injected frequency sum of the fundamental 

signals phase for input power levels of -20dBm, -lOdBm andOdBm. 

ure 4.39 for the signal (f1 + f2 - fe)" The increase in input power does create a change 

in the circuit behaviour, which is illustrated by a slight change in phase required for the 

injected signals at which the third order IMD are most reduced. At high power levels 

(Pin = OdBm), the technique of the injection of the sum of the fundamental frequencies 

is reducing the first kind of IMD3 and not the second kind of IMD. The reduction of 

more than 65dB can be achieved with a phase shift of 230° on the first kind of IMDs 

as shown in figure 4.38 for the product (2f1- f3). Similar results are observed for all 

first kind of IMDs. At low power level, The second kind of IMD level drops by only 

10dB with a phase shift of 50° as shown in figure 4.38 for the first kind of IMD. 

From the above results, the combined effects of the injection of the second har- 

monic and the sum of the fundamental signals can result in the reduction of both 

the first and second kind of IMDs. As previously mentioned, at saturation level 
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Figure 4.. 40: Variations in the amplitude of IM term (2f, - f3) at the frequency 

2.479GHz as a function of injected difference frequency signals phase for 

input power levels of -20dBm, -10dBm and OdBm. 

(Pin > OdBm) reduction of the second kind of IMD of more than 50dB is achieved 

by the second harmonic technique while more than 60dB reduction is achieved on the 

second kind of IMD by the injection of the sum of the fundamental signal frequencies. 

A reduction of about 30dB is achieved at low power levels. Reduction of both kind of 

intermodulations can be obtained for the same phase settings at low and high power 

levels. The close proximity of the second harmonic frequencies and the sum of the 

fundamentals frequencies, make their separation difficult to achieve in practice. The 

reduction of IMD by the second harmonic injection as reported in the literature is not 

solely due to that technique but the injection of both the second harmonics and the 

sum of the fundamental signals simultaneously. 

The injection of the difference frequency gives the result shown in figure 4.40 

at the input power of -20dBm, -10dBm and -OdBm for the signal at frequencies 
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Figure 4.. 41: Variations in the amplitude of IM term (fl + f2 - f3) at the 

frequency 2.489GHz as a function of injected difference frequency signals 

phase for input power levels of -20dBm, -10dBm and OdBm. 

(2f, - f3). Similar results are found for the other first kind of IMDs. A reduction of 

more than 50dB at -20dBm input power is achieved. The reduction of the second 

kind of IMD3 is more than 50dB at -20dBm input power as shown in figure 4.41 for 

the product (fl + f2 - f3). This shows that a reduction of more than 50dB can be 

achieved at low power levels on all third order IMD products (both first and second 

kind of IMD3). The variation in the power level of the second kind of IMD signals 

as a function of the phase change of the injected signal shows some slight differences 

between each product. The second kind of IMD3 signals at frequencies ((fl + f2 - f3) 

and (f3 + f2- fl)) have a small variation and then a great reduction around 180° of 

more than 60dB. The middle signal (f3 +fi -f2) at the frequency 2.511GHz will have 

a constant reduction of more than 50dB for a range of phase of between 170° and 190°. 

This is illustrated in figure 4.42. The nonlinear effects at this particular frequency as 
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Figure 4.. 42: Variations in the amplitude of IM term (fi - f2 + f3) at the 

frequency 2.511GHz as a function of injected difference frequency signals 

phase for input power levels of -20dBm, -10dBm and OdBm. 

observed in figure 4.34 cause this particular behaviour. The signal (f3 + f2 - fl) has 

a greater reduction of more than 50dB at 182°, while the signal (f2 + fi - f3) will be 

at about 178°. In theory, the reduction of both kinds of IMD can be achieved with a 

careful choice of the same phase. 

The first kind of intermodulations are reduced by more than 50dB with the 

injection of the difference frequencies. The 50dB reduction occurs with the use of a 

different phase setting of the injected signal. Each IMD3 signal reaches a minimum 

amplitude at a different phase of the injected signal. However, the close proximity 

of the phase associated with each signal does enable the use of a single phase shifter 

for IMD cancellation, producing an adequate reduction in the overall IMD level of the 

amplifier by up to 40dB. 

At higher output levels (in saturation region), the output behaviour of the IMD 
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with the technique of difference frequency injection does becomes rather complex. The 

first kind of IMDs require a completely different phase than the second kind of IMD3 

for reduction of IMD. The comparison of the requirement for the first kind of IMD 

signal (2 fl - f3) and the second kind signal (fl + f2 - f3) in figure 4.40 and figure 4.41 

respectively, shows that, the phase shift required to reduce the first kinds of IMDs signal 

is about 15°. Whereas the phase required for the second kind is of about 345°, because 

the reduction in the second kind of IMD3 occurred with the injected difference frequency 

amplitude of -10dBc as oppose to the-3.8dBc used for the graph of figure 4.41. At 

high power level, with the injected signal amplitude set to -3.8dBc, a reduction in the 

first kind of IMD is obtained. When the injected signal amplitude is set to -10.5dBc, 

a significant reduction in the first kind of IMD was obtained. 

The reduction of the signal (fl - f2 + fa) occurs at two completely different 

phases than those obtained with the other third order signal as shown in figure 4.42. 

The phase is completely different to the phase required for the other two second kinds 

of IMDs (f, + f2 - fs) and (f3 + f2 - fl) 
. These discrepancies are caused by the phase 

nonlinearities in the MESFET device. The phase requirements for IMD cancellation 

will strongly depend on the phase nonlinearity of the device used. 

The injection of the difference frequency signals gives better results with an 

appropriate phase of the injected signal for each individual signals. A reduction of 

more than 60dB for each IMD3 signal can be achieved with the use of different phase 

settings. The use of a single phase to reduce all IMD does not provide similar results. 

Although at low power levels, a reduction of about 40dB can be achieved, at higher 

power level, the strong nonlinearity of the device can prevent the technique form being 
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fully effective. Ideally, the optimum reduction in the level of each IMD3 product requires 

a different phase. 

The signals below the centre frequency of 2.511GHz exhibit their minima for a 

phase of 178.6°, whereas the signals whose frequencies fall above the centre frequency 

exhibit their minima at around 182° at low power level. If two phase shifters are used, 

the reduction of the IMD on either side of the centre can exceed 60dB. The second 

kind of IMD at the frequency 2.511GHz determines the overall reduction level of the 

IMD since this signal can not be further reduced as shown in figure 4.42. 

From the above observation, it is obvious that a change in the phase of the 

injected signal at the input of the amplifier will result in the degradation of the level 

at the output. A reduction of 60dB can only be obtained for a very small range of 

phase. The reduction of the signal (2f, - f3) by 60dB as seen in figure 4.40 is obtained 

with a phase of 178.6°. The degradation of the phase by ±0.5° will cause an increase 

in the IMD by more than 10dB. A reduction of 30dB occurs for a range of phase shifts 

between 177° and 183°. If the phase is set to 180°, degradation in the phase by ±2.5° 

can not cause an increase in the level of IMD and a 30dB reduction is maintained. 

Similar results are observed at low power level for the second harmonic technique and 

the injection of the sum of the fundamental signals. 

The use of a simulator enables the variation of the phase in small step of 0.10. 

Further reduction in the value of the step used for simulation will show that the reduc- 

tion of IMD can reach values greater than 100dB. This is not practicable as it leads to 

high memory requirements and takes a rather lengthy time to complete. In practice, 

the phase required for a reduction of more than 60dB will require a constant phase and 
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Funden ental 
input 

power (dBm) 

Injected second 
harmonic input 

phase (deg. ) 

Injected snm m stion 
frequency input 

phase (deg. ) 

Injected difference 
frequency Input 

phase (deg. ) 

0 251 239 9.2 

-10 182 182 181 

-20 182 182 181 

Table 4.. 4: Phases of the injected signals for optimum reduction of all IMD3 

products. 

needs to be kept to within ±0.01° of its value. 

The fundamental signals fl, f2 and f3 remain constant to within ±1dB with an 

injection of the difference frequency for a phase change of between 0° to 360°. It does 

not affect the operation of the amplifier and its IMD performance. The reduction in 

the fundamental signals levels does not take place at the optimum phase of the IMD3 

as illustrated in figure 4.35 with an injection of the difference frequency signals. These 

results are similar to the results observed with the second harmonic technique and the 

injection of the sum of fundamental signals. 

4.6.2 Amplitude Sensitivity of Systems 

The reduction of the IMD by the injection of signals requires the phase and amplitude 

to be correctly chosen. This section looks at the effects of the amplitude change of the 

injected signal on the intermodulation level. Simulations are performed with constant 

injected signal phases which gave optimum reduction of all IMD3 (see table 4.4). 

With the injected second harmonic amplitude of the order of -42.3dBc, the first 

kind of IMD3 are reduced by about 20dB. This is shown in figure 4.43 for the first 

kind of IMD3 (2fl - f3). Similar results are found for the signals (2f1 - f2), (2f2 - f3), 

(2f2 -f i), (2f3 - f2) and (2f3- fl) (see appendix f). The amplitude of the injected 

signals, which reduces the IMD, is approximately the same at around -42.3dBc for 
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Figure 4.. 43: Variations in the amplitude of IM term (2f, - f3)as a function 

of injected second harmonic signals amplitude for input power levels of 

-20dBm, -lOdBm and OdBm. 

input power of -20dBm and -33.4dBc for input power of -lOdBm. A reduction of 

more than 30dB is achieved at -20dBm input power. An increase of 10dB in the 

level of fundamental input power required a similar increase of 10dB in the level of the 

injected second harmonic signals. As the power level of the injected signals increases 

beyond the required amplitude value, the overall IMD3 level will then start to increase. 

The effects of the injection of the second harmonic signal can be either an increase or a 

decrease in the IMD3 level of the amplifier. The amplitude of the injected signal needs 

to be kept low in order not to increase the IMD3 levels. 

The second kind of IMD3 however remained unchanged regardless of the am- 

plitude of the injected second harmonic signals. This is illustrated in figure 4.44 for 

the signal (fl + f2 - M. Similar results are found for the signals (fl - f2 + f3) and 

(f3 + f2 - fl) respectively at -20dBm and -10dBm input power. As observed previ- 
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Figure 4.. 44: Variations in the amplitude of IM term (fl + f2 - f3) as a func- 

tion of injected second harmonic signals amplitude for input power levels of 

-20dBm, -lOdBm and OdBm. 

ously, the second harmonic injection reduces the second kind of IMD and not the first 

kinds at high power levels. A reduction of more than 15dB is shown in figure 4.44 for 

the signal (f, + f2 - fa). A similar result is observed for both signals (f j- f2 + f3) 

and (f3+f2-fi)" 

The used of the technique of injection of the sum of the fundamental signals 

shows that for input powers of -20dBm and -10dBm, the reduction in IMD levels 

only occurs for the second kind of IMD by 25dB and 15dB respectively (figure 4.45). 

The reduction in IMD3 occurs for an amplitude of the injected signal of -36.3dBc at 

-20dBm and for amplitude of -27.2dBc at -. lOdBm input power. The first kinds of 

IMD are not reduced by the technique. The levels of all first kind of third order IMDs 

remain unchanged before increasing as the injected signal levels are further increased 

above the required optimum reduction value. This is shown in figure 4.46 for the first 
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Figure 4.. 45: Variations in the amplitude of IM term (fl + f2 - f3) as a func- 

tion of the injected frequency sum of the fundamental signals amplitude for 

input power levels of -20dBm, -10dBm and OdBm. 

kind of IMD (2f, - f3). Similar results are found for the other first kind of IMD3. At 

OdBm, reduction of the first kind of IMDs takes place and the input power levels of the 

injected sum of the fundamental signals required for the reduction of the third order 

signal is of the order of -5.7dBc. 

This again shows that by injecting both the second harmonic and the sum of 

the fundamental frequencies at the input of the system, a reduction of all IMD can be 

achieved at low and high input powers. 

The difference frequency injection is more effective in reducing the level of both 

the first kinds and the second kind for the same amplitude of the injected signals of 

-40dBc at -20dBm input power and -31.5dBm at -lOdBc input power. This can 

be observed in figure 4.47 for the first kinds of IMDs (2f1 - f3). Similar results are 

found for the other first kind of IMD3. The change in the power level of the second 

kinds of IMD signal (f, + f2 - f3) is shown in figure 4.48. The maximum reduction of 
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Figure 4.. 46: Variations in the amplitude of IM term (2f, - f3) as a function of 

the injected frequency sum of the fundamental signals amplitude for input 

power levels of -20dBm, -lOdBm and OdBm. 

all the IMD3 products by the difference frequency injection is greater than 30dB. At 

the higher input power of OdBm (close to saturation level) the first kind is reduced by 

injected signals with an amplitude of -10.5dBc whereas the second kind of third order 

are reduced by more than 20dB with an amplitude of injected difference frequency 

signals of -3.4dBc. 

The analysis of the effects of the amplitude of the injected signals on the im- 

provement of the amplifier IMD performance shows clearly, as illustrated in the above 

results, that reduction in the level of the third order intermodulation signals by the 

different techniques can occur at the same amplitude of the injected signal. The sec- 

and harmonic injection technique reduces all first kind of IMD3 at fundamental input 

power of -20dBm, -10dBm and at OdBm for the amplitude of the injected signal 

of -42.3dBc, -33.4dBc and of -3.4dBc respectively. The injection of the difference 

frequency reduces all IMDs signals at input power of -20dBm and -lOdBm for an 
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Figure 4.. 47: Variations in the amplitude of IM term (2f1 - f3) as a function 

of injected difference frequency signals amplitude for input power levels of 

-20dBm, -10dBm and OdBm. 
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Figure 4.. 48: Variations in the amplitude of IM term (fl + f2 - f3) as a func- 
tion of injected difference frequency signals amplitude for input power levels 

of -20dBm, -lOdBm and OdBm. 
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Figure 4.. 49: Variations in the amplitude of the fundamental signal fi as 

a function of injected second harmonic signals amplitude for input power 
levels of -20dBm, -10dBm and OdBm. 

amplitude of injected signal of -40.8dBc and -31.5dBc respectively. The injection of 

the sum of frequencies shows that it reduces the second kind of IMDs at input power 

at -20dBm, -lOdBm and at OdBm for the same amplitude of the injected signal of 

-42.3dBc, -33.4dBc and of -3.4dBc respectively. 

The fundamental signals fl, f2 and f3 at the frequencies 2.50GHz, 2.51GHz 

and 2.521GHz do not change in amplitude. This is shown in figure 4.49 for the signal 

f, with the second harmonic injection technique. Results for the injection of the sum 

of the fundamental signals and the injection of the sum of the difference frequency 

produces similar results. 

4.7 Frequency Spacing Effect on the Techniques' Performances 

Channel spacing in communication systems is defined by various standards. The 

spacing between tones can change the intermodulation level and contribute to greater 
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Figure 4.. 50: Variation of the IM3 term (2f1 - f2) (1st kind) and the IM3 

term (f2 +fj -13) (2nd kind) power levels as a function of tone spacing in a 

three-tone test when using the second harmonic technique. 

distortion [8]. The use of the techniques described earlier provides an improvement 

on the amplifier intermodulation distortion level. The effects of the change in channel 

spacing are studied in this section. The amplifier IMD performance is tested under 

different channel spacing conditions. The injected signals phases and amplitudes are 

kept constant (see table 4.3 and table 4.4 for -20dBm fundamental input power). 

In a three-tone test, the improvement on the intermodulation does not change 

drastically as tone spacing is increased with a constant power level and phase of the 

injected signals at -20dBm input power. The degradation in the intermodulation 

performance of the system is very small and almost non-existent until the tone spacing 

reaches less than 100MHz. The results obtained with the difference frequency are 

similar to the second harmonic injection and the injection of the sum of fundamental 

frequencies. Figure 4.50 shows the change in the level of IMD3 for the first kind of 
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Figure 4.. 51: Variation of the IM3 term (2f1 - f2) (1st kind) and the IM3 

term (f2 +fj- f3) (2nd kind) power levels as a function of tone spacing in a 

three-tone test when using the frequency summation technique . 

IMD products (2 f1- f2) as the tone spacing is changed. The first kind of IMD3 are 

reduced from -107.8dBm (without injection , see table 4.2) to less than -140dBm 

for frequency spacing up to 20MHz but increases thereafter. Similar results are found 

for the other first kinds of IMD3 at the frequencies (2f1 - f3), (2f2 - fs), (2f2 - fi), 

(2f3 - fl) and (2f3 - f2). The second kind of IMD remains unchanged since there is 

no reduction in this signal by the second harmonic injection technique. This is shown 

in figure 4.50 for the product (fl + f2 - f3). Similar results were obtained for the other 

second kinds of IMD3 at the frequencies (fl - f2 + f3) and (f3 + f2 - fl) 

The injection of the sum of the fundamental frequencies shows that the second 

kind of IMDs are reduced from -101.8dBrn (without injection, see table 4.2) down to 

less than -135dBm for frequency spacing below 40Mhhz. A reduction of more than 

30dB is shown in figure 4.51 for the signal at the frequency (fl + fz - f3). Since the 
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Figure 4.. 52: Variation of the IM3 term (2f1 - f2) (1st kind) and the IM3 

term (f2 + fi - f3) (2nd kind) power levels as a function of tone spacing in a 

three-tone test when using the difference frequency technique. 

injection of the sum of the fundamental frequencies does not reduce the first kinds, 

there is no change to the level of the first kind of IMD as shown in figure 4.51 for the 

signal (2f1 - f2). 

The difference frequency reduces both the first and the second kind of IMD and 

these signals are reduced to below -135dBm for frequency spacings between 0.5MHz 

and 20MHz. Beyond this frequency range, the increase or decrease in frequency spacing 

degrades the reduction of IMD. The variation in the level of the first kind of IMD 

product (2f, - f2) and the second kind (fl + f2 - f3) are presented in figure 4.52. 

A 28dB reduction of the third order IMD can be achieved for frequency spacing of 

20MHz. Similar results are observed for all other third order IMDs. 

This analysis shows that the use of a single phase will provide adequate IMD 

cancellation for the technique since the same reduction is obtained for two tone with a 
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difference in frequency of 1MHz or 20MHz. This is particularly useful for systems with 

more than 3 tones. For example a system with 32 tones and a 1.25MHz tone spacing 

will have difference frequency spacings of between 1.25MHz (the first two tones) and 

40MHz (the first and the last tones), thereby operating within a 40MHz bandwidth. 

Cancellation of the IMD3 within the system can be obtained with the same phase 

and amplitude correction settings. Ideally, different settings are required to obtained 

significant cancellation of the IMDs. 

4.8 Effects of Input Power Variations on the Techniques' Performances 

The change in the power level of the fundamental signal causes the degradation 

in the reduction of intermodulation. These changes in fundamental signal amplitude 

occur with time and can lead to different phase and amplitude requirement of the 

injected signals for optimum reduction of third order IMD signals. The difference 

frequency injection technique reduces both kind of IMD3. The reduction performed on 

IMD results from input signals of the same amplitude. The amplitudes of the injected 

signals are changed and the difference frequency injection performance on all IMD is 

then recorded. The test is not performed on the two techniques of second harmonic 

injection and the injection of the sum of the fundamental frequencies, which do not 

reduce all third order IMD. As shown in figure 4.53, as one of the signal amplitude 

increases and decreases by 10dB, there is a change in the third order improvement for 

a difference frequency injection technique. It shows that an increase or decrease in two 

of the fundamental signals by up to 16dB does not cause degradation in the reduction 

of IMD as shown in figure 4.53. The reduction level is constant at 30dB. As the 

146 



10 

0 

-10 

E 

-20 

-$0 

-40 

-60 
0 10 20 s0 40 

Change in input power (dB) 

f Fundamental signal fi   Fundamental signal f2 

*Third order IM ( 2fi fi) 

so 

60 

40 

00 

so 
$w 

10 

0 

Figure 4.. 53: Variation in the intermodulation power level as a function of 

the input power level for a system using the difference frequency technique. 

amplitude change is further increased, the reduction of the IMD will then be gradually 

reduced until the difference in the level of the two signals is 30dB (two tone test) where 

the reduction of IMD, then degrades very rapidly. This clearly shows that if the signal 

amplitude were to be varied by up to 16dB, while and the total input power is kept 

constant, the reduction of IMD remains constant. By combining the second harmonic 

and the sum of fundamental frequencies, similar effects are observed but for a smaller 

range of fundamental signal amplitude changes. 

This clearly demonstrates that the system can be working with the optimum 

IMD improvement by keeping the total input signal power into the amplifier constant. 

The changes in power level of a single signal will change the total input power and 

therefore give a different result. The levels of IMDs are increased significantly and the 

performance of the system deteriorates. 
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Figure 4.. 54: Three-tone simulated output spectrum of amplifier without em- 

ploying the IMD reduction techniques, showing the third and fifth order 
intermodulation . 

4.9 Signal Injection Effects on Higher Order IMD Signals 

The analysis has concentrated on the third order IMD, because they are higher 

in amplitude compared to other IMD products and are the most troublesome. The fifth 

order IMD components also lies within the band of interest and have high amplitude in 

the large signal region. At low power levels, the fifth order IMD (IMD5) components 

are very low in amplitude compared to the IMD3. Figure 4.54 shows the amplifier 

output spectrum with the third and fifth order IMD at -20dBm input power. 

The reduction in the third order IMD does not give a similar reduction in the 

fifth order at the same amplitude and phase of the injected signals. A three-tone test 

is performed with input signals at the frequencies 2.5GHz, 2.51GHz and 2.521GHz. 

The output spectrum of figure 4.55 shows all third order IMD and fifth order IMD at 

the output of the amplifier after employing the technique of second harmonic injection. 
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Figure 4.. 55: Three-tone simulated output spectrum of amplifier after em- 

ploying the technique of second harmonic injection and showing the third 

and fifth order intermodulation. 

The level of all IMD has not been reduced. The reduction in the third order is greater 

since the optimisation is performed on the high third order intermodulation. Similarly, 

the result of the injection of the difference frequencies, shown in figure 4.56, shows a 

reduction in the third order IMD and no reduction in the fifth order IMD. The use 

of the injection of the sum of the signals also shows no reduction in the fifth order 

products for the same optimum phase and amplitude (figure 4.57). 

The reduction in the higher order IMD could be performed by the injection of 

higher order signals associated with the second harmonic signal, the difference frequency 

signals or the sum of the fundamental frequencies for the same amplitude and phase 

required for the reduction of the IMD3. The cancellation of the fifth order IMD requires 

a different phase and amplitude setting. The cancellation of fifth order IMD is required 

for a power amplifier working at saturation level or above. Since the fifth order IMD 
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Figure 4.. 56: Three-tone simulated output spectrum of amplifier after employ.. 
ing the technique of difference frequency injection and showing the third and 
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ploying the technique of frequency summation injection and showing the 
third and fifth order intermodulation. 
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Figure 4.. 58: The amplifier schematic diagram with the fundamentals and 
injected difference frequency predistortion configuration. 

becomes troublesome at high power level, the use of the amplifier below saturation 

typically requires only the cancellation of third order IMD. As a large number of IMD 

components are generated, it is very cumbersome to look at all IMDs. It requires a 

great deals of computer resources and will take quite long time. When dealing with 

such amount of information, it is useful to look at the adjacent channel power (ACP) 

instead of looking at the different IMD signals. ACP is defined as the summation of 

the IMDs terms in the adjacent channel. The envelope of the signal at the output of 

the amplifier needs to be looked at when using complex modulated signals. 

4.10 ACPR Reduction by Difference Frequency Injection 

As discussed previously in section 3.3, the adjacent channel power ratio (ACPR) 

is calculated as the power in the adjacent channel divided by the power in the channel 
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Figure 4.. 59: The amplifier schematic diagram with the fundamentals and 
injected difference frequency feedback configuration. 

carrying the modulated signal. Various modulation schemes are used in communication 

systems. The test presented in this section, are based on the CDMA system used in 

such systems. 

In order to verify the performance of the difference frequency technique, the 

injected signals need to be generated in a nonlinear device before being injected into 

the amplifier or taken at the output of the amplifier and fedback to the amplifier input. 

This can be achieved by the use of a predistortion circuit as shown in figure 4.58 or a 

feedback amplifier circuit as shown in figure 4.59. Simulation results of a predistortion 

circuit based on the amplifier of section 4.3 with a CDMA (IS95) input signal are 

presented in figure 4.59 and figure 4.60. The results show that for an input power of 

OdBm, a 7.5dB improvement on the ACPR by the injection of the difference frequency 

is obtained. The circuit of figure 4.58 requires the use of a nonlinear diode to generate 

the low IM signal, which are then amplified and adjusted (phase and amplitude) for 
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Figure 4.. 60: Amplifier output spectrum of a CDMA IS95 signal with (black) 

and without (grey) the injection of the difference frequency signal. 

optimum ACPR reduction. 

A feedback of the second harmonic causes the injection of the sum of the pairs 

of fundamental frequencies. Since the second harmonic signals and the sum are very 

close, it is difficult and impracticable to separate these signals. A combination of the 

two techniques was reported in the literature with a good IMD performance [73,74] 

although this combination was not identified explicitly. 

The reduction in the fifth order IMD can be associated with higher order IMD 

signals generated by the injection of the difference frequency signals. The simulation 
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was performed with signals up to the third order terms. This limits the number of terms 

generated by the nonlinear process and therefore does not give a complete answer to 

the IMD performance associated with higher order IMD (fifth and seventh order). For 

higher order IMD, a combination of the injection of the second harmonic and high 

frequency second order signals provides the same effects on the fifth order IMD. 

4.11 Summary and Discussion 

Simulation of the technique of second harmonic injection was performed. The 

use of more than two signals is necessary to see the first and second kind of IMD3. The 

technique of second harmonic injection reduces only the first kinds of IMD by up to 

30dB with the use of a common phase and amplitude of the injected second harmonic. 

The use of a different phase shifter and attenuator on each injected signals improves 

the reduction by a further 10dB to a optimum value of 40dB. 

This result shows that the use of this technique in a multicarrier environment 

will not contribute to the reduction of IMD3 or the improvement on related distortion 

such as inter-channel interference. Simulations of the technique of difference frequency 

injection show, as predicted by in theory, that it reduces both the first and second kinds 

of IMD3 by more than 30dB. The reduction is achieved by using a common phase for 

the injected difference frequency signals. The improvement on the level of third order 

IM with the use of frequency summations sum of the fundamentals is achieved only on 

the second kind of IMD by more than 30dB. The first kinds of IMD3 are not reduced 

by the injection of the sum of frequencies. 

A change in the phase of the injected signal was shown to cause an increase in 
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the improvement on the IMD, which was greater than that obtained with the change 

in amplitude. The system is clearly more sensitive to phase changes than amplitude 

changes. The use of the single attenuator will give results which differ from those 

obtained by the use of more attenuators. The use of different phase shifters will cause 

greater reduction of the intermodulation distortion. 

In the analysis, all IMD3s were reduced to the same level by the use of a common 

phase for all injected signals. The use of a different phase shifter for each injected signal 

produces an improvement on the IMD performance of the amplifier by more than 15dB 

for the different techniques presented. It was shown that the reduction of the different 

signals required a specific phase and amplitude setting for each signal. The injected 

signals need to be separated and then their phase set to the phase requirement of each 

signal for optimum IMD cancellation. This will require a single separate phase for 

cancellation of each IMD3 generated at the output. 

At higher power level the reduction of the first kind of IMD3 by the injection 

of the sum of the fundamental signals and the second kind of IMD3 by the injection 

of the second harmonic signals, is caused by the large signal behaviour of the device. 

This result was not predicted by the theory because the theoretical work considered 

a weakly nonlinear device. The overall effects of combining the two techniques does 

however confirm the theory because all IMD3 are reduced. 

4.12 Conclusion 

It was found that a two-tone test of IMDs level fails to show the true amplifier 

IMD performance. A second set of third order IMDs is present when dealing with 
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more than two tones. The second kinds of IMD need to be considered since it con- 

tributes to the potentially high level of IMD. The second kind of IMDs are of the form 

(f,,, + f11- fq) and are 6dB higher than the first kind of IMD, of the form (2f,, - f�) 

when the input signals are of the same amplitude. 

The difference frequency technique shows a reduction on all the third order inter- 

modulation distortions. The reduction can be up to 60dB and sometimes above that, 

this is achieved with different phases and amplitudes for each IMD signal. Reduction of 

more than 30dB on all IMD was achieved. The use of different phases and amplitudes 

on the injected signals, improves the overall results. 

The injection of second harmonic signals shows from the analysis that the second 

kind of IMD cannot be reduced with the same amplitude and phase settings as the first 

kinds. The first kinds of IMDs are reduced by more than 34dB. However, the use of 

different phase setting and amplitude will improve the reduction on the first kind of 

IMD. The use of several phase shifters and attenuators adds to the complexity and the 

cost of the circuit. 

The injection of the sum of the pairs of the frequencies of the fundamental 

signals reduces the second kind of IMD and not the first kind of IMD at low power 

level. At higher power level the opposite phenomenon will take place. Similar results 

were observed with the second harmonic injection technique. Since the injection of 

second harmonics and the sum of the fundamental signals reduce either the first or the 

second kind of IMD and their signal are very close in frequency, a combination of both 

techniques gives very good results. A reduction of more than 30dB is obtained on all 

IMD 
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In all the techniques, the use of individually adjusted phases shifters on each 

injected signal, rather than a single common phase shifter, improves the reduction level 

of IMD products by 10dB to 20dB. This is due to the nonlinear effects of the amplifier, 

which cause a change in phase at different power levels and frequencies. 

Variation of the phase of the injected signals had more impact on the third 

order IMD than changing the amplitude. Greater reduction was obtained with different 

phases whereas the amplitude required to reduce all IMD was almost the same. The 

use of more phase shifters is clearly required for a greater reduction of the IMD. The 

use of a single phase shifter is adequate in a two tone system and acceptable in a three 

tone system. However, for multi-tone (more than 3 tones) applications, more phase 

shifters are clearly required, since the phase difference between the IMDs generated by 

such a system will cause a phase requirement on the injected signal that can not be 

met by a single phase shifter as illustrated by the diagram of figure 4.26. 
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CHAPTER 5. 

PRACTICAL PERFORMANCE OF THE DIFFERENCE FREQUENCY 

TECHNIQUE 

5.1 Introduction 

This chapter deals with the practical implementation of the difference frequency 

technique. A predistortion linearizer using an injection of the difference frequency tech- 

nique is presented. The circuit configuration and design methodologies are described. 

This technique of IMD cancellation performance is then compared to the second har- 

monic technique which can be considered as mentioned in the previous chapter, as a 

combination of the second harmonic injection and the frequency summation (second 

order IM signal) injection techniques. 

5.2 Difference Frequency Linearizer Circuit 

For simplicity and practicality, a predistortion circuit is designed and tested for 

the reduction of IMD in order to verify the theory. The choice in the design is merely 

due to the availability of components and the ease of implementation of the technique. 

The predistortion circuit built is shown in figure 5.1. The circuit is designed 

with a mini-circuit ZL - 2000 amplifier, which is the main amplifier. The device is 

a broadband amplifier, which operates over a bandwidth of 10Mhhz to 2000MHz, 

a typical gain of 21dB and gain flatness of ±1.5dB. The amplifier has a 1dB output 

compression point of +15dBm for frequencies below 1GHz and an IP of +25dBm. The 

noise figure of the amplifier measured on a HP8970B noise figure meter, is typically 

4dB as shown in figure 5.2. The amplifier uses a single 15V supply. The output power 
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Figure 5.. 1: The circuit diagram for experimental implementation of the tech- 

nique at 900MHz. 

variation to input power level for the frequencies of 880MHz and 1MHz are both tested 

on the amplifier and are shown in figure 5.3 and figure 5.4. It shows that the maximum 

output power at the frequency of 880MHz is about 17dBm. 

The predistortion circuit is directly connected to the input of the amplifier. The 

operation of the predistorter is to provide the main amplifier with the fundamental 

signal and the difference frequency signals. The signals at the frequencies 880MHz 

and 881MHz at the input of the predistorter are divided into two paths using the 

Mini-circuit power splitter, which provides two signals of equal amplitude, with 0° 

phase relationship and more than 20dB isolation between the output signals. The 

insertion loss of the power splitter is 3dB (f0.5dB) between input and output ports. 

The fundamental signals are passed through a delay line (main path) and fed 

into a bias tee circuit. The second path is used to generate the difference frequency 
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Figure 5.. 2: Measured noise figure and gain of the mini-circuit ZL-200 ampli- 
fier. 

signal needed for the cancellation of third order intermodulation distortions. The signal 

in this path will pass through a diode detector. The diode detector being a nonlinear 

device will provide all the relevant intermodulation products at its output. This enables 

a separation of the difference frequency signals from the remaining IMD signals by the 

use of a low pass filter (LPF). The use of the signals at the frequencies 880MHz and 

881 MHz generates a difference frequency signal at the frequency 1 MHz. A Mini-circuit 

BLP - 300 low pass filter with a bandwidth of 300MHz is used. The filter exhibits a 

bandpass of DC to 300MHz with a typical 3dB cut-off frequency of 297MHz and a 

return loss of 20dB and 40dB for the stop band of 410MHz to 550MHz and 550MHz 

to 1200MHz, respectively. The maximum power rating of the device is 0.5W. The 

filter cut-off the high frequency portion of the spectrum leaving only the low frequency 
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Figure 5.. 3: Output power Vs input power of the ZFL 2000 amplifier used in 

the measurement at 880MHz. 
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Figure 5.. 4: Output power Vs input power of the ZFL 2000 amplifier used in 

the measurement at 1MHz. 

which contains the difference frequency signal of 1MHz. The signal is then phase 

shifted with a passive phase shifter and its amplitude is adjusted using a variable low 

frequency amplifier. Both circuits are designed to specifications that give the best IMD 

performance and are described below in greater detail. The low frequency path and 

the main high frequency path are combined using a purpose built bias tee, the design 

of which is detailed below. The combined output of the bias tee is then injected into 

the amplifier as shown in figure 5.1. 
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Figure 5.. 5: Circuit diagram of the phase shifter. 

5.2.1 Phase Shifter Design 

The phase shifter is designed to provide a defined phase shift at 1 MHz. The circuit of 

figure 5.5 is used to provide phase shifts between 0° and 180°. Since the operation of 

the device is tuned at the frequency l MHz, the components required to provide the 

phase shift at this frequency can be calculated by using a formula whereby 

2irRC 

With f, the tuned frequency, 

R and C are the output resistor and capacitor respectively. 

(5.. 1) 

Since ff = 1MHz, if the resistance is chosen to be R= 1kg, then C= 159pF. 

A practical value of capacitor of 220pF was used for the experiment after ex- 

perimental test for correct operation of the phase shifter. It provides approximately 

1800 phase shift with zero attenuation. With the potentiometer set to a fixed value, 

the circuit can be treated as a phase equalizer and therefore acts as a phase corrector 
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Figure 5.. 6: Difference frequency signal waveform at the input and output of 
the phase shifter. 

without distorting the gain characteristic of the overall circuit. The waveform of the 

signal before and after the phase shifter can be seen in figure 5.6 where a slight distor- 

tion can be detected on the output signal which is shifted by about 90°. The distortions 

at the output of the phase shifter are caused by impedance mismatch in the low path 

circuit. 

5.2.2 Low Frequency Amplifier Design 

The variable amplifier was designed using the Analog Devices ultralow distortion, wide 

bandwidth voltage feedback Operational Amplifier AD9631. The device provides a 

low noise of -113dBc at 1MHz and -72dBc at 20MHz. The third order intercept 
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Figure 5.. 7: Circuit diagram of the low frequency amplifier using an AD9631 

ultralow distortion, wide bandwidth voltage feedback OP Amp. 

is +46dBm at 25MHz. It has a high input resistance of 500kfl and a low output 

resistance of 0.30. The typical dc supply of the device is ±5V with a quiescent current 

of 17mA. The phase distortion of the device is of the order of 1.10 from DC to 100MHz. 

The inverting amplifier configuration of figure 5.7 was constructed to provide a 

gain of up to 20dB by a careful selection of Rf and Rt (10kf2 & 1kSZ). The value of the 

feedback resistor is critical for optimum dynamic performance of the amplifier. The 

0.1µF and 10µF capacitors are supply decoupling capacitors. 

5.2.3 Bias Tee Design 

The device was designed to provide a connection to the input of the main amplifier 
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for the low frequency signal (f2 - fl) on one hand and for the high frequency signals 

(fl & f2) on the other. The low frequency signal at 1MHz is injected at port 2 and 

is blocked from interfering with the high frequency signal at the other input port 1. 

The high frequency signal is injected at the input port 1 and the signal is blocked from 

interfering with the low frequency path at port 2. 

The circuit of figure 5.8 was used to provide the required characteristics of the 

device. A capacitor was used as a low frequency blocking capacitor, working at fre- 

quencies up to a few megaHertz to stop the difference frequency signals on one side. 

The high frequency was choked using a series inductor and a shunt capacitor to prevent 

a feedback to the low frequency path of the predistorter. 

Microstrip lines were added to the circuit, which was then optimised to achieve 

the desired performance. The width of the microstrip line was calculated using the 

Hewlett Packard LINECALC' software at the frequency of 880MHz. 

The substrate used was the RT/Duroid 5880 by Rogers Corporation with the 

following specifications: 

" The relative permittivity (e,. ) is 2.2. 

" The height of the substrate is 0.81mm. 

" The metal thickness is 0.025mm. 

The measured results of figure 5.9 show that the return loss between port 1 and 

port 2 at 880MHz is about -28.92dB. This reduces the interference caused by the 

1 LINECALC (linear calculation) is an analysis & synthesis program that calculates the electrical 
paramters of single and coupled transmission lines from physical parameters and calculates physical 
parameters from electrical parameters. 
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Figure 5.. 8: Bias tee circuit diagram. 

high frequency in the predistorter low frequency path. 

Figure 5.10 shows the return loss between the input port 2 of the difference 

frequency and the output. At 880MHz the signal is attenuated by 23dB and therefore 

allows the isolation of the high frequency. In figure 5.11, the loss between the input 

port 1 of the high frequency signal shows a -1.14dB return loss and a greater loss at 

lower frequency. Measurement at 1MHz could not be taken on the 1IP8510B Network 

analyser used. The 1MHz operation was tested using a spectrum analyser by means 

of measuring the signal attenuation between the different ports. 
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Figure 5.. 9: Measured input reflection at port 2 and return loss between 

input port 1 and 2 of the bias tee. 

5 .3 
Circuit Design and Measurement. 

Since this predistortion amplifier is not a compact linearizer circuit but made up 

of various subsystems, various precautions need to be exercised for correct operation 

and performance evaluation of the IMD reduction. The circuit of figure 5.12 shows the 

overall system with the signal generators and test equipment used for the evaluation of 

the performance of the system as well as the devices used to enhance the performance 

of the circuit. 

The use of the Dorado circulator Model C- 5002 as an isolator in the circuit 

prevents a complete isolation of the signal generators as this can lead to generation 

of IMD terms within the signal generator. An isolation was also provided before the 

diode detector to avoid the IMD generated in the detector being fed into the amplifier. 

Isolation is required between the bias tee and the main amplifier to reduce the effects 
167 

START 6.05008aOCD GHz 
STOP 1.00aaea000 GHz 



302 lag MAX-' 6-22 1og MAG 

REF 0.0 dB 
iREF 

0.0 dB 
10.0 dB/ A 5.0 dB/ 

_e fe . ýo V . dl_7A19 in 

c 

si 

M 

1ý 

.0 B/ iv 

1 
-- 

Lý J 
START 0.050000000 GHs 
STOP 1.000000000 tis 

2 

Figure 5.. 10: Measured input reflection at port 2 and return loss between 

input port 2 and output port 3 of the bias tee. 
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Figure 5.. 11: Measured output reflection at port 3 and return loss between 

input port 1 and output port 3 of the bias tee. 
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Figure 5.. 12: The circuit diagram and measurement set-up for performance 

test of the technique at 900MHz. 

that are caused by the distortion within the amplifier being fedback into the predistorter 

circuit and therefore disturbing its operation. The circulator operates in the frequency 

range of 820MHz to 960MHz with a minimum insertion loss of -0.4dB and a minimum 

isolation of -20dB as shown in figure 5.13. The circulator tolerates up to 8 Watts. An 

attenuator was used at the output of the low frequency variable amplifier, to enable the 

injected difference frequency signals to be switched on and off. Monitoring of the 1 MhI z 

difference signal was achieved through the used of an oscilloscope. This arrangement 

provided the opportunity to see the difference frequency signals before and after the 

phase shifter and the variable amplifier, to detect any distortions in the operation of 
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Figure 5.. 13: Measured input and output reflection loss of the Dorado circu- 
lator model used in the predistortion circuit set-up. 

the low frequency path. 

For the two-tone test, signals at the frequencies 880MHz and 881MHz were 

provided by a Hewlett Packard signal generator (HP8657A) and a Wavetek 2-2500A 

synthesised signal generator. IMD measurement were made on a Hewlett Packard 

HP8562A spectrum analyser. 

5.4 Difference Fequency Technique Performance 

The experimental investigation of the technique of difference frequency injection 

was performed at various frequencies with different tone spacing. The results of this 

investigation are hereby presented. 

5.4.1 Two-Tone Test 

The two-tone test was performed with two fundamental signals at the frequencies of 
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Figure 5.. 14: Measured output spectrum of a 900 MHz amplifier before (a) 

and after (b) employing the technique for a two-tone test. 
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880MHz and 881MHz. The amplifier output is shown in figure 5.14 without the 

injection of the difference frequency signal at 1MHz. The output spectrum of the 

amplifier after the 1MHz signal is injected, is shown in figure 5.14, where there is 

a reduction of more than 47dB on the two third order IMD signals. The phase and 

amplitude of the injected signal is chosen so as to reduce simultaneously both third 

order IMD terms to the same level, the phase shift needed was around 90°. Greater 

reduction was achieved on each individual third order term by a slight change in the 

phase of the difference frequency signals. The input power level of the signals was 

13dBm. The input power of the difference frequency signals was 9.17dBm. Similar 

results were observed at other power levels. Figure 5.15 shows that the reduction in 

the third order can be accompanied by a reduction in higher order IM terms. It shows 

a reduction of 23dB in the third order IM products and a 30dB reduction in the fifth 

order IM term, with the input power of the fundamentals signals at -20dBm. The 

phase and amplitude relation in the third order and fifth order has to be such that 

the phase shift and amplitude change applied to the injected signals cancel all IMDs, 

which is mostly the case. As the tone spacing is increased or reduced, if the phase and 

amplitude setting of the injected signals are kept constant, degradation in the level of 

IM is clearly noticed. 

5.4.2 Three and Four-Tone Tests 

For the three-tone case, again signals at various frequencies were used and different 

tones spacing were also investigated. The phase and amplitude of the injected signals 

(f3 - fi, f2-f, and f3 - f2) were adjusted so as to reduce all the IMD term to the same 
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(a) 

(b) 

Figure 5.. 15: Measured output spectrum of a 900M//z amplifier before (a) 

and after (b) employing the technique for a two-tone test slxowirng the third 

and fifth IM. 
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Figure 5.. 16: Measured output spectrum of a 900MHz amplifier before (a) 

and after (b) employing the technique for a three-tone test with 1MHz tone 

spacing. 
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(a) 

(b) 

Figure 5.. 17: Measured output spectrurri of a 900MIlz am plifler before (a) 

and after (b) employing the technique for a three-tone test with 7.5Mltz 

tone spacing. 
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level. Figure 5.16 shows the output spectrum before and after injection of the difference 

frequency signals. The input signals are at the frequencies 879.7MHz, 880.8MHz and 

881.7MHz with input powers of -20dBm. The level of these signals was around 

-10.56dBm. The difference frequency signals are at the frequencies 0.9MHz, 1.1MHz 

and 2MHz. The IMD level is reduced by about 10dB. 

The technique can give a reduction of more than 30dB on each individual IMD 

components but an overall 10dB was achieved on all IMD3 simultaneously. A test 

performed with the signals about 8MHz apart shows that the technique works for 

wider bandwidth. The intermodulation products shown in figure 5.17 were reduced 

by more than 15dB on the nearest IMD products to the fundamental and by about 

10dB on the remaining IMD products. The input signals were arbitrarily chosen at the 

frequencies 878.5MHz, 886MHz and 893.5MHz with the three difference frequency 

signals at the frequencies 7.5MHz, 7.5MHz and 15MHz. A 6dB improvement on 

the IMD was obtained for a four-tone system (Pin = -20dBm) with a tone spacing of 

1MHz as shown in figure 5.18. 

The above results confirmed the theory and simulation and show that the tech- 

nique of difference frequency injection reduces all IMD3 in MESFET power amplifiers. 

The use in the three-tone case of the frequency dependent phase shifter designed for the 

two-tone case limited the overall result. Although the phase shifter works for the above 

frequency spacing (8MHz), in the three tone case it is required to works at both the 

1MHz and the 2MHz frequencies and provide the same phase shift. This was not the 

case unfortunately, the phase shifter provided different phases at 1MHz and 2M Hz. 

The choice of the phase shifter designed, was driven by component availability and 
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Figure 5.. 18: Measured output spectrum of a 900MHz amplifier before (a) 

and after (b) employing the technique for a four-tone test. 

177 



cost rather than performance. It was considered acceptable for this proof of principle 

exercise. 

It should be noted that the limitation in the system is also engendered by various 

components such as the phase shifter which can produce a slight decrease in the injected 

signal amplitude because of its fundamental characteristics and if it is not properly 

matched. The low frequency variable amplifier will introduce a phase change associated 

with different frequencies. The phase change introduced by signals which are 1MHz 

apart differs by 3°. These different effects add to the complexity of the system and 

reduce the overall performance of the system. For good system performance, great 

control has to be exercised on the components characteristics and performance. 

5.5 Performance Comparison of the Techniques 

As mentioned earlier, the implementation and practical performance of a two- 

tone system using the second harmonic in a feedback circuit have shown that the 

third order IMD can be reduced by 20dB in a MESFET amplifier [73,74] at 500MHz, 

by 43dB in a HBT amplifier at 830MHz [75] and recently in complex modulated 

signals[35,153]. These results have been confirmed theoretically in this thesis, however, 

the mechanism has been identified as a combination of the second harmonic and the 

sum of the fundamental frequencies. When more than two tones or complex signals are 

used, the resulting reduction in IMD can not be obtained by second harmonic injection 

alone. It requires careful control of both the second harmonic signals and the high 

frequency second order IM signals (the sum of the pairs of the fundamental signals). 

This thesis shows that the use of the difference frequency technique gives an 
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improvement of around 50dB in a two-tone test at 880MHz and up to 17dB in a 

three-tone test at 880MHz in a MESFET amplifier. These results have been published 

[Ml, M2]. 

5.6 Conclusions 

The theory and simulation of the difference frequency technique predicted that 

the third order IMD level of both kinds at the output of the non-linear amplifier could 

be reduced. The prediction was confirmed in practice at 880MHz with a MESFET 

power amplifier and has given 50dB reduction in a two-tone test. The prediction in a 

three-tone simulation was that all third order would be reduced by 35dß. The reduction 

on all IMD3 was also confirmed in practise and a reduction of 10dB was achieved. This 

rather modest result is due to effects such as amplitude modulation to phase modula- 

tion (AM/PM) and amplitude modulation to phase modulation (AM/AM) conversion 

occurring within the nonlinear amplifier. The practicality of the technique for amplifier 

linearisation was clearly shown by the linearizer circuit designed. Results show that 

both the difference frequency injection and the combined second harmonic and sum 

of the fundamental frequency injection techniques can work and reduce all IMD3 in a 

multicarrier amplifier. The latter required the adjustment of both techniques simul- 

taneously for the reduction in the nonlinearities to be effective. The limitation with 

the difference frequency is associated with the heating effects of the transistor by the 

injection of a low frequency signal too close to the self-heating effects of the device 

[8]. This is dependent on the tone spacing as specified in the various communications 

applications standards 
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CHAPTER 6. 

CONCLUSIONS AND FURTHER WORK 

6.1 Introduction 

This chapter summarises the work undertaken by the author. It presents the 

conclusions observed from the work. It shows the benefits of the IMD reduction tech- 

niques and further compares the three techniques. The limitations of the techniques 

are outlined and further work is suggested. 

6.2 Conclusions 

The primary goal of this report was to investigate the effects of the injection of 

multiple signals of different frequencies on the intermodulation distortion performance 

of power amplifiers. From the various results obtained, it is clear that a two-tone test 

does not show the complete intermodulation performance of a real power amplifier. 

Theoretical analysis shows that a two-tone test creates one single kind of third order 

IMD. However, it was found that third order IMD products in a multicarrier amplifier 

(more than 2 tones) occur through two different routes and this gives rise two different 

IMD3 contributions. The second kinds of intermodulation are 6dB higher than the first 

kind if the input tones have the same amplitude. In general, the highest IMD product 

level in a multicarrier is caused by the second kind of IMD. The first kind of IMDs are 

of the form (2f2- fl) and result from the interaction of the two input signals, whereas 

the second kinds are of the form (fl - f2 + f3) and are the result of the interaction 

between three input signals. 

The second harmonic injection technique was shown to reduce the first kind of 
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IMD3 level greatly but does not give a significant reduction of the second kind of IMD3. 

The difference frequency technique, however, reduces both kinds of IMD3 significantly. 

The simulation results given in section 4.5 show a reduction of more than 30dB 

on all third order IMD signals. The injection of the second harmonic signals shows that 

the first kind of IMD3 are reduced by more than 35dB and no reduction is achieved 

on the second kinds. The difference frequency technique removed this limitation of the 

second harmonic injection as demonstrated by simulation results given in section 4.5. 

Reduction of more than 30 dB was achieved on all third order IMD signals. 

The analysis included theoretical and simulated analysis of the injection of sec- 

and order signal whose frequencies are the sum of pairs of the fundamental signals 

(frequency summation technique). The theory shows that the injection of the sum of 

the fundamental frequencies does not reduce the first kind of IMD3 but will reduce the 

second kind of IMD by more than 35dB as seen in the simulated amplifier IMD analy- 

sis of section 4.5. The difference frequency technique therefore achieved better results 

than the second harmonic injection technique or the frequency summation injection 

technique. 

Although, a mathematical expression or a simulator can be used to evaluate the 

IMD performance of an amplifier, this cannot be achieved in a similar manner in prac- 

tice. In practice the second harmonic and the frequency sum of the fundamental signals 

are very close and can not be easily separated. This means that the injection of the 

second harmonic will be accompanied by an injection of the sum of the pairs of the fun- 

damental signals in practice. In the simulation (see section 4.5) the fundamental signals 

at the frequencies 2.5GHz, 2.51GHz and 2.521GHz will have their second harmonics 
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at the frequencies 5GHz, 5.02GHz and 5.042GHz and the sum of the fundamental sig- 

nals will be at the frequencies 5.01GHz, 5.021GHz and 5.031GHz. These frequencies 

are very close and the signals at these frequencies can not be easily separated. The 

combination of these two techniques does reduce all intermodulations. It was shown 

that the combination of second harmonic injection and frequency summation injection 

techniques reduces the first and the second kind simultaneously. Contrary to previ- 

ously published reports in which the injection of only second harmonic is presented as 

a reduction technique for intermodulation, the reduction of IMD is the result of the 

injection of the second harmonic of the fundamental signals and the second order IM 

signals whose frequencies is the sum of the pairs of the frequencies of the fundamental 

signals. 

The use of the technique of difference frequency injection with a simulated 

CDMA input signal shows that a 7.6dB reduction in ACPR, was observed (section 

4.10). 

As shown in section 5.4.1, a practical implementation of the difference frequency 

technique shows a reduction of the order of 50dB for a two-tone test in a MESFET 

power amplifier. A three-tone test gives a measured result at 880MHiz, with a tone 

spacing of 1MHz, of more than 10dB reduction on all IMD3 products (see section 

5.4.2). 

When dealing with a three-tone test, three different frequency signals are needed 

to cancel all components of the intermodulation. The number of second harmonics is 

three and the number of frequency summation signals is also three. For n input tones, 

the number of difference frequency signals required to cancel all IMD3 is a number X 
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is such that 

X= n2 n (6.. 1) 

The number of the second harmonic signals will be a number Y such that 

Y= 2n (6.. 2) 

The number of the frequency summation signals will be a number Z such that 

n-l n Z= 2 
(6.. 3) 

Since the second harmonic and the frequency summation techniques should be 

use in combination, the number of signals which must be injected, is equal to the sum 

of X and Y 

X +Y = 
(n+3 )n 

2 (G.. 4) 

It clearly shows that the second harmonic injection and the summation frequency 

injection techniques require 2n signals more than the difference frequency injection 

technique. The technique will therefore require a greater control of the amplitude and 

phase for adequate cancellation of the IMD3 to occur. However, the requirements of the 

difference technique is a lot less than with the combination of the other two techniques. 

The difference technique can be regarded as a superior technique. 

When dealing with complex signals, the injection of either the second harmonic 

signal and the sum of the fundamental frequencies or the difference frequencies can be 

done by either an injection or a feedback of the low frequency envelope at the difference 

frequency or at the second order frequency. 

183 



1: 2 

Input 11M 

Output 

ifferential 

L) 

Figure 6.. 1: Circuit diagram of a 360° mechanically tuned phase shifter. 

6.3 Further Work 

Although various results were obtained and the investigation shows how the 

techniques performed. Various other parameters affecting the circuit need to be closely 

looked at and implementation can be performed to further enhance the performance of 

the technique of IMD reduction. These different aspects are indicated below. 

6.3.1Frequency Independent Phase Shifter Design 

In the bench test, a simple phase shifter was used for the 1MHz signal. The phase 

shifter was frequency dependent because it was designed for a signal at 1A1 Hz. Whilst 

better designs were known, the availability of the components and the cost of the system 

prompted the choice of the original, simpler phase shifter. While its performance was 

not optimal, it was better shown to be adequate for a proof of principle test. 
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After careful research, a better frequency independent phase shifter with im- 

proved performance was discovered [1191. The circuit is a mechanically tuned fre- 

quency independent phase shifter called a Goniometer (figure 6.1). It could potentially 

improve on the performance of the predistortion linearizer. Although the circuit looks 

fairly simple, the availability of the components for the implementation of the circuit, 

is not straightforward. 

A simulation of the above circuit and a practical implementation of the circuit 

with the predistortion linearizer used previously could be investigated. The phase 

shifter could on the other hand be replaced by a digitally controlled phase shifter which 

would add to the complexity and the cost of the circuit. This improvement on the 

circuit performance could also be investigated. 

6.3.2 Effects of Injection Technique in HBT and Related Devices 

The results presented in this report are mostly related to MESFET power amplifiers. 

The technique can, however, be applied to various devices and amplifier architectures. 

The theoretical analysis shows that the reduction of intermodulation distortion will 

take place in a nonlinear device that has its nonlinear input-output characteristics 

represented by a Volterra series. 

The technique can be applied to other devices using semiconductor lieterojunc- 

tions, with superior noise figure and gain characteristics. Examples include the het- 

erojunction bipolar transistor (HBT) or GaAs FET derivatives such as high electron 

mobility transistors (HEMTs), which are used in small signal and low noise applica- 

tions. The performance of the IMD reduction techniques can also be studied on GaAs 
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FET amplifiers which have been enhanced by incorporated heterojunctions in some 

architecture areas such as indium gallium arsenide/ gallium arsenide (InGaAs/GaAs) 

heterojunction, indium aluminium arsenide/ Gallium Arsenide (InAlAs/GaAs) hetero- 

junction, indium phosphide (InP). 

The use of the techniques on these different devices will cancel the intermodula- 

tion but with perhaps a greater or lesser reduction figure than the 30dB obtained with 

the injection of the difference frequency or the combined second harmonic technique 

and frequency summation technique on a MESFET amplifier. In addition to the results 

obtained in this work, results recently reported on the reduction of IMD by injection 

of the second harmonic in HBT power amplifier were presented. Second harmonic in- 

jection into other amplifiers needs to be investigated as well as the difference frequency 

injection. 

6.3.3 Design of a Compact Predistortion Linearizer Amplifier 

This thesis shows that the technique of difference frequency injection reduces the third 

order intermodulation in a RF or microwave power amplifier. The performance tests 

for the difference frequency technique were performed using a system where by all 

components were individually built and tested separately for adequate characteristics 

and then combined to give a fully working amplifier system. The next logical step is 

the design of a compact amplifier where by all the different components are designed 

as described in chapter 5, and can be put together in a compact circuit. There are 

various challenges to this and they need to be assessed. Various technologies such as 

microstrip, slotline, and band-gap structures can be used and will engender different 

186 



results at microwave frequencies and beyond. An integrated circuit of the amplifier can 

also be considered. 

The use of low and high frequency circuitry is one obvious challenge to the 

design of amplifiers using such techniques. However, it has already been shown both 

by simulation and practical tests that phase shifting and amplitude adjustment of the 

difference frequency can be done at high frequency before generation of the difference 

frequency. This eliminates the need for complex low frequency circuitry and reduces 

the size of the circuit. 

6.3.4 Design of a Compact Feedback Amplifier 

In a similar manner as for the design of the predistortion linearizer, a feedback amplifier 

using the IMD reduction techniques can be achieved. Again the use of complex low 

frequency devices can be eliminated by the use of high frequency devices. Phase shifting 

and attenuation of the amplified fundamental signals at the output can be done at 

higher frequency. The phase and the amplitude can then be adjusted so as to obtain 

the required difference frequency signals and therefore cancel the IMD. The design of 

such an amplifier will need to take into account the application for correct specifications 

of the components for amplifier stability. 

6.3.5 A Predistortion Linearizer with Difference Frequency Injection Controller 

A predistortion circuit which make use of a cancellation controller in the low frequency 

path is proposed (figure 6.2). The design is based on the linearizer circuit built in 

chapter 5. The circuit will improve on the IMD reduction level obtained in chapter5. 

The low difference frequency path is sampled, the amplitude and phase of the signals 
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Figure 6.. 2: A basic predistortion linearizer with difference frequency injec- 

tion amplitude and phase controller. 

are then passed onto a cancellation controller which use this information and the output 

information to adjust the amplitude and the phase of the injected signals. The adjusted 

signals axe then fed into the main amplifier with the fundamentals signals to provide 

lower intermodulation performance at the output of the amplifier. The cancellation 

controller can make use of robust DSP algorithm to provide an adequate adjustment 

for optimum distortion cancellation. The circuit is quite similar to the predistortion 

circuit of figure 5.1. It is enhanced by the improved low frequency circuit controller 

which work in the same manner as in the adaptive feedforward cancellation system. 
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APPENDIX A. 

IDEAL FOUR PORT COUPLER (HYBRID. S4P FILE) 

! Hybrid. s4p 

! S-parameter data file for ideal 4 port 0 degree hybrid 

! Symbol freq. -unit parameter-type data-format keyword impedance-ohms 

#GHZSMAR50 

! freq magS11 magS11 magS12 angS12 magS13 angS13 magS14 angS14 ! 1st line 

! magS11 magS11 magS12 angS12 magS13 angS13 magS14 angS14 ! 2st line 

! magS11 magS11 magS12 angS12 magS13 angS13 magS14 angS14 ! 3st line 

! magS11 magS11 magS12 angS12 magS13 angS13 magS14 angS14 ! 4st line 

000 . 707 -180 . 707 -180 00 

. 707 -180 0000 . 707 -180 

707 -180 0000 . 707 -180 

00 . 707 -180 . 707 -180 00 

210 00 . 707 -180 . 707 -180 00 

707 -180 0000 . 707 -180 

. 707 -180 0000 . 707 -180 

0 0.707 -iso . 707 -iso 00 
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Figure A.. 1: Simulated S-parameters of the hybrid coupler, showing the input 

reflection coefficient at port 2, the coupling between the input port 1 and 
2, the return loss between input port 2 and the output port 3 and 4. 
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Figure A.. 2: Simulated S-parameters of the hybrid coupler, showing the input 

reflection coefficient at port 2, the coupling between the input port 1 and 
2, the return loss between input port 2 and the output port 3 and 4. 
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APPENDIX B. 

CALCULATION OF INTERMODULATION PRODUCTS USING A 

POWER SERIES EXPANSION 

2.1 Power Series Analysis of a Three-Tone System without the Injected Signals 

A calculation of the third order intermodulation distortions of three-tones non- 

linear system is performed in this section. The nonlinear system is represented by a 

power series expansion up to the third order, which clearly enable the calculation of all 

the relevant third order IMD. 

The system input is made of two sinusoid signals at the frequencies wl, w2 and 

w3 with amplitudes Aß, 1, 
A,, 2 and A13 respectively. 

The input is 

41{n = A,, 
1 COS (W1t) + A,, 

2 COS (W2t) +f3 COS P3t) (2.11) 

The amplifier output spectrum is calculated by using a power series expansion, 

such that 

3 
n Vout = 9mnvin 

n=1 
(2.12) 

The calculation is performed using Mathematica01. The following is the input 

file and the output file showing all intermodulation terms at the output of the amplifier 

without the injection of any signals. 

1 Mathematica is a software system and computer language for the use in mathematical applications. Mathematica is a product of Wolfram Reseach, Inc. It can perform operations on functions, manipulate 
algebraic formulas, do calculus, produce two- and three-dimensional graphs and support high-level 
programming language. 
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" Input file 
3 

xl > (A4,, 
k cos[wk]); 

k=1 
3 

x1)n); Y=E (g. /( 
n=0 

TrigReduce[Y] 
TeXSave["no. tex"] 
9 Output file 
Vout =4 (49o +4 cos[wl]A.,, gl +4 cos[w2]Aý,, gl+ 
4 cos[w3]A4,3gi + 2A 2 

j1g2 +2 cos[2w1]A, 192+ 4 cos[wl - w2]A.,, A1,92 +4 cos[wl + w2JA,, l 
A,,, 92+ 

2Aýz92 +2 cos[2w2]A., 92 +4 cos[wl - w3]A,,, 1 
A,,,, g2+ 

4 cos[wl + w3] A, A,, s92 +4 cos[w2 - w3]A, 02A,, g2+ 
4 cos[w2 + w3]Aw, A,,, 

g92 + 2A, 
3g2 +2 cos[2w3]A,, 3g2+ 3cos[wl]A, 

1g3+cos[3w1]A, ig3+3cos[2w1-W2]A2 w1A"293+ 
6 cos[w2] A, 2,1 A,,,, 93 +3 cos[2w1 + w2]A, 1 

AW, 93+ 
6cos[wl]A,,, lAß,, 93+3cos[wl-2w2]A 1AW, 93+ 
3cos[wl + 2w2]Aw1A2 

w, 93 + 3cos[w2]A, 
293 + cos[3w2]A, 293+ 3 cos[2w1 - W3]Aýl Ag3 +6 COS[W3]A, 
1A'393+ 

3 cos[2w1 + w3]A2 wA,,, 3 g3 +6 cos[wl - W2 - w3]AW, A,, 
2 
A,,, 

393+ 
6 cos[wl + W2 - W3]A,, 1A12AII393+ 
6 cos(wl - W2 + w3 A4,, A.,, AW393+ 
6cos[wl +w2 +W3]A(, 1Aw2Aw393+3cos[2w2 -w3]A2 Aß,, 93+ 
6 COS[W3]A. 2A, s93 +3 cos[2w2 + W3]A,, A, 

393+ 
6 cos[wl]A,,,, A, 

393 +3 cos[wl - 2w3]A,,,, Aý993+ 
3 cos[wl + 2W3]A,,, 

1 
A, 

3g3 +6 cos[w2]Aw, A , 
3g3+ 3cos[W2 - 2w3]&, A2 

W393 + 3cos[w2 + 2w3]A1,, Aw3g3+ 

w3g3) 
3 COS[w3]A3 w3g3 

+ COS[3W3]A3 
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2.2 Power Series Analysis of a Three-Tone System with Injected Sum of the F indamentals 

The input system is made of two sinusoid signals at the frequencies wl, w2 

and w3 with amplitudes A,,,, A,,, and Aß, 3 respectively and the sum of the fundamental 

frequency signals at the frequencies (w2 + w1), (w3 + wl) and (w3 + w2) with amplitudes 

Aw21 i 
Aw31 and Aw32 with phases 4W21, ßw31 and 4 w32 respectively. 

The input is 

Vin =fl cos (wit) + A(, 
2 cos (w2t) +A cos (wgt) +A 21 cos (w2 + wlt + 4w21) 

-i-AW31 COS (W3 + Wlt + gW31) + AW32 COS (W3 + W2t + OW32) 

(2.23) 

The amplifier output spectrum is calculated by using a power series expansion, 

such that 

3 
Vout =L 9--Vn 

n=1 
n 

3 Al COS (wit) + Az COS (W2t) + A,,,, 
3 COS (W3t) + AW21 COS (W2 +Wit + 4w21) 

=E 9mn 
n-1 +AW31 COS W3 + Wit -I- ( OW31) + 

JAW32 COS (W3 + W2t + 4W32) 

(2.24) 

The following is the input file and the output file calculation using Mathematica tt 

showing all intermodulation terms at the output of the amplifier with the injected sum 

of the fundamental frequency signals. 
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" Input file 

x1 = (AW21 cos[w2 + W1 + 021])+ 

(A 
, 31 COS[W3 + W1 + 031]) + (AW32 COS[W3 + W2 + 032]); 

3 

x2 = F, (A,,, cos[wk]); 
k=1 
3 

Y= F, (g (xl+x2)"); 
n=O 

TrigReduce[Y] 
TeXSave [" sum. tex" ] 

" Output file 

Vout =4 (49o +4 cos [wi ] A,. 
l gl +4 cos [w2] AW2 91 +4 cos [w3] Awg 91 + 

4cos[wl +W2 +021]AW2191 +4cos[wl +w3+031]Awglgl+ 
4 COS [W2 + W3 + 032]AW3291 +2A, 2 2 

, 92 +2 cos[2w1]AW, 92+ 
4cos[wl - w2]Au,, A,,, 292 +4cos[w1 +w2]A4,1AW2g2+ 
2A 2, g2 +2 cos[2w2]A., 2g2 + 4cos[wl - w3]Aý, IAý, gg2 { 4 COS[wl + W3] A,, 

1 
Aws92 +4 COS ["12 - w3]A112 Aw392+ 

4 COS [W2 + w3]Aw2A,, 392 + 2A, 
gg2 +2 cos[2w3]A, g92+ 4 COS [W2 + 021]A,, AW2192 +4 cos[2w1 + w2 + 0211A,, 

1 
Awu 92+ 

4 cos w1+ 021 ] Aß, 
2 
Aß, 

2 192 +4 cos [w 1+ 2w2 + 021 Aß, 
2 
A,,, 

21 g2+ 
4 cos wl + w2 - w3 + 021]AW3A,, 

2192+ 4 cos[wl + w2 + w3 + 021 A413A'2192+ 
2A22192 +2 cos[2w1 + 2w2 + 20211 A2 

W2192+ 4 COS [w3 + 0311 Awe A,, 92 +4 cos [2w1 + w3 + 031] A, 
1 
A,,, 

1g2 + 
4 cos[wl - w2 + w3 + 031]A 

W2AW3192+ 
4COS wl +W2 +W3 + 031]A,, A, 

3 92+ 
4cos¬wl + 031IAw3A,,, 92 + 4cos(w1 + 2W3 + 031]Ar, 

9A,,,, 3192+ 4 COS[W2 - W3 + 021 - 031]Aw21AW3i92+ 

4cos[2w1 +W2 +W3 +021 +031]AW2 &9192+ 

2A2 92 +2 cos[2w1 + 21.13 + 2031]A, 
3192+ 

4 cos wl - W2 - w3 - 032 A, 
1 
A, 

3292+ 
4c 

IW14 

cos w3 + 0321 A112 A13292 +4 cos f 2w2 + w3 + 0321 k, 
2 
&32 92+ 

4 cos 102 + 032 AWg Aß, 
32 g2 +4 cosltw2 + 2103 + 032 AI13 A, 

3292+ 4COS WI - W3 + 021 - 032]Aw21A'3292+ 
4 cos w1 + 2w2 + W3 + 021 + 0321A1,2, A<., 

3292+ 4Cos Wl - w2 +031 - 032]A, 
s1AW3292+ 

4 cos wl + w2 + 2W3 + 031 + 0321A,,,, Aß,, 
292+ 2A2 92 +2 cos[2w2 + 2w3 + 2032]A2 

3292+ 
3 cos[wl]A, l93 + cos[3wl]AW1g3 +3 cos[2w1- w2]AW1A,,, 293+ 6cos[w2]A2 Au1293 + 3cos[2w1 +w2]AwlAW2g3+ 
6 cos[wl]A ,1 Aß, 93 +3 cos[w1 - 2w2]A,,,, Aý293+ 
3 cos[wl + 2w2]A,, 1 

AW293 +3 cos[w2]AW1g3 + cos[3w2]AW2g3+ 
3 cos[2w1 - w3]AW1A,,, 393 +6 cos[w3]AW1A,, s93+ 
3cos[2w1 +w3]Aw1A1393 +6cos[wl - W2 - W3]A,,, A1,2A'393+ 
6cos[wl +w2 -w3IA,, A12A'g93+ 
6cos[wl -W2 +w31A, 1AW2A"3g3+ 6cos[wl +W2 +w3 A,,, 

1AW3A"3g3+ 3 cos[2W2 - w3]AwzAW3g3 +6 cos[w3]A42jz A'393+ 
3 cos[2w2 + w3]A2, A. 

3g3 +6 cos[wl]A., l 
AW3 g3+ 

3 cos[wl - 2w3]Aw1 A , 
3g3 +3 cos[wl + 2w3]A,, ýA2,, 93+ 

6 cos[w2JA112AIJ393 +3 cos[w2 - 2w3]AI, 2A, 3 93+ 
3 COS[w2 + 2W3] A, 

2 
Aý393 +3 COS[W31A, 393 + cos[3w3]A , 

3g3+ 22 3 cos[wl - w2 - 021]A, 
, 
A112193 +6 cos[wl + w2 + 021]Awl Aß, 

2193+ 
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3 cos[3w1 + W2 + 021]A, 
1Awz, 93+ 

6 COS 021]Awl Awe Aw2193 +6 cos[2w1 + 0211Awý k,, Aw2,93+ 
6 cos[2w2 + 021]Aw Awa AW21 g3+ 
6 cos[2w1 + 2w2 + 021]Awl Aw, Aw21g3+ 
3 cos[w1 - W2 + 021]A2 Aw21g3 +6 cos[wl + w2 + 021]A2 Aw21 g3+ 
3 cos[wi + 3w2 + 0211A , 

2A1121g3+ 6 COS [w2 - W3 + 021IAw1 Aw3Aw2193+ 
6 cos[2w1 + W2 - W3 + 021]Aw1Aw3Aw2193+ 
6 COS [U)2 + w3 + 0211 Awi Aw, AW2193+ 

6 cos[2w1 + W2 + w3 + 021]Aw1A113A , 2183+ 
6 cos[wl - W3 + 021]Aw2Aw3Awalg3+ 
6cos[wi + 2w2 - w3 + 021]A4112Aw3&2193+ 
6COs[wl +W3 +021]Aw2Aw3Aw?. 193 

+6COs[wl +2W2 +W3 +021] 

Aw2A13AW2193 +6 cos[wl + W2 + 021]A2 w3Aw2193+ 
3cos[wl +w2 - 2w3+ 021]A2 Aw2193+ 
3cos[wl +w2 + 2w3 + 021]A2 

W3Aw2193+ 
6cos[wl]Aw1AW2193 + 3cos[wl + 2W2 + 2021]Aw1A 

, 2193+ 
3 cos[3w1 + 2w2 + 2021]Aw1AW71g3+ 
6 COS [w2] Aws Aw2 2 

2193 +3 cos [2w1 + W2 + 2021 ]Aw2 A 
, 2193+ 

3cos[2w1 + 3w2 + 20121]A4J2A2w11g3+ 
6 cos[w3]Aw3 A?, 

21 g3 +3 cos[2w1 + 2w4w2 - W3 + 2021]Aw9A2, 
z193+ 

3 cos[2w1 + 2w2 + w3 + 2021]Aw3A4/21g3+ 
3 cos[wi + w2 + 021]A3 

W2193 + cos[3w1 + 3w2 + 3021]A,,, 
2 93+ 

3 COS[w1 - w3 - 
031]A2 Awsi93 +6 cos[wl + w3 + 031]A, 

1AW3i93+ 
3 cos[3w1 + W3 + 031]A11Aw3193+ 
6 COS[w2 - W3 - 

031]Aw1AwaAwsi93+ 

6cos[2w1 - W2 +w3 + 031]Aw1Aw2Awglg3+ 
6 cos [w2 + w3 + 031 ]Awl Awz Awg193 +6 Cos [2w 1+ w2 + w3 + 0311 

Aw1A12Awg193 +6 cos[wi + w3 + 031]A2 Aw31g3+ 
2 

W2 

2 
Aw3193+ 3 COs [w 

i- 2w2 + W3 + 031 ] A, 

3 COs [wl + 2w2 + w3 + 031]A2 
2 

Awsi 93+ 
6 COS[031]A,,, Aws A1113193 +6 COS [2w1 + 031] Awl A, 

3 
A,,,, 93+ 

6 cos[2W3 + 031]Awl Aw3Aws193+ 

6cos[2w1 + 2w3 + 031]Aw1Aw3Aw3193+ 

6cos[wl - w2 + 031]Aw2Au, 
3Aw9193+ 

6cos[wi +w2+031]Aw2Aw3Awsi93+ 
6 COS wl - w2 + 2w3 + 031 Awe Aw, Awa193+ 
6 cos[wl + w2 + 2w3 + 031 Awe Aw3 Aw31 g3+ 
3 cos[wl - w3 + 031]A 

, 
Aý, 

3i 93 +6 cos[wl + W3 + 031]A2 Awai 93+ 
3 cos[wl + 3w3 + 031]A 

3Aw3193+ 
6 COS[W1 + w2 - W3 + 021 - 0311Aw1Aw21Aw3193+ 
6 cos[wl - w2 + W3 - 021 + 031}Aw, Aw21Aw3193+ 
6COS w1 +w2 + W3 + 021 +031]Aw1Aw21Aws193+ 
6 COS 3w1 + w2 + W3 + 021 + ý131]Awi Awz1 Awsi 93+ 
6c0S 2w2 - W3 + 021 - 031]A12A1121A113193+ 
6 COS w3 - 

021 + 031]Aw2Aw2i Awsi93+ 

6 COS¬2w1 + W3 + 021 + 031]Aw2AW21Aw3i93+ 
6 cos[2w1 + 2w2 + w3 + 021 + 031]Aw, Aw21A 

, 3193+ 
6 Cos[w2 + 021 - 031]Aw3Aw21Aw3193+ 

6cos[w2 - 2W3 + 021 - 0311Aw3Aw21Aw3193+ 

6 cos 2wi + w2 + 021 + 0311& 
3 
Aw21 Aw31 g3+ 

6cos[2w1 +w2 + 2W3 + 021 + 031]A , 3Aw21Aw, 193+ 3 cos[wl + 2W2 - W3 + 2021 - 
031]A2 A113193+ 

6 cos[wi + w3 + 031]Aw, 
l 
A113193+ 

3cos[3w1 + 2w2 +W3 + 2021 + 031]A 
, 21Aw9193+ 
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6 cos[wl]Aw, Au, 
3193 

+3 cos[wi + 2W3 + 2031]Au� Aý31g3+ 

3 cos[3w1 + 2W3 + 2031]Aw1 A , 
3193+ 

6 cos[w2]A,,, Aw3lg3 +3 cos[2wi - W2 + 2w3 + 2031]A'12A' W3193+ 
3cos[2w1 +W2 + 2W3 + 2031]Aw, AW31g3+ 
6 cos[w3]Aw3A , 3193 +3 cos[2wi + w3 + 2031]Aw3AW31g3+ 
3cos[2wi + 3w3 + 2031]Aw3A2 

w3193+ 
6 cos[wi + W2 + 021]Aw21 A, 

3193+ 
3 cos[wi - W2 + 2W3 - 021 + 2VJ31]A"+s, Aý3193+ 

3 cos[3wi + W2 + 2w3 + 021 + 2031]Aw21A, 3193+ 
3 cos[wi + w3 + 031JAý3193 + COS[3w1 + 3W3 + 30311A W3193+ 
3 cos[2w1 - W2 - w3 - 032]A2 

w1Aw3293+ 
6 COS[w2 + W3 + 032]A ,1 Aws293+ 

3 cos[2wi + W2 + w3 + 032]A2 
w, 

Aw3293+ 
6cos[wi - W3 - 

0321Aw1A112Aw3293+ 

6 cos[wi - 2W2 - w3 - 032IAw1 A 
112A'03293+ 

6 cos[wi + w3 + 0321Aw, Awe A 
, 3293+ 

6 cos[Wi + 2W2 + W3 + 032]AwlAw2Aw3293+ 
3 COS[W2 - W3 - 032]Aý2Aca3293 +6 COS[W2 + W3 + 032]Aw2A'+3293+ 

3 COS [3L4)2 + w3 + 032]A2, 
ZAw3293+ 6 cos[wi - w2 - 032JAw1 Aw3Aw3293+ 

6cos{wi - W2 - 20)3 - 
032]Aw1Aw3Aw3293+ 

6 cos [w i+ W2 + O32 ]A1A, 
3 
Aw32 93+ 

6 cos[wi + W2 + 2w3 + 032]Aw1Aw3Aw3293+ 

6 COS [032]Aw2 Aw3 Aw3293 +6 Cos [2w2 + 0321 A 
,2 

Ami AW3293+ 

6 cos [2w3 + 032] A 
,2 

Aw3 Aw32 93+ 
6COS[2W2 + 2W3 + 032]A1d2Aw3Aw3293+ 

3 COS [W2 
- W3 + 0321 A2 Aw3293 +6 COS [W2 + W3 + 032JAr2,, 

3A,,, g293+ 
3 COS[W2 + 3W3 + 032]Aw3Aw3293+ 

6 cos 2wi - W3 + 021 - 032]Aw1Aw21Aw3293+ 
6 COS Jw3 - 

021 + 032]` 
l AW21 A4+3293+ 

6 COS [2W2 + W3 + 021 + 032]A, ß, A, 21 Aw3293+ 
6cos 2wi + 2W2 + W3 + 021 + 032]A,, 

1Aý, 21Aw3193+ 6 cosýwi - W2 - w3 + 021 - 032]A12Aw21 AW3293+ 
6COS W1 + W2 - W3 + 021 

- 032 Aw2Awz1Aw3293+ 

6cosWi + W2 +03 + 021 + 032 Aw, Aw21A103293+ 
6 cos[wi + 3W2 + W3 + 021 + 032JAw2 A 

, 31 
Aw3293+ 

6cos wl + 021 - 032]Aw3Aw21A13293+ 
6 cos Wi - 20)3 + 021 

- 
032)Aw3Aw2iAw3s93+ 

6 cos Wi + 2W2 + 021 + 032 &3Aw21Aw3293+ 
6 COS[wi + 2W2 + 2W3 + 021 + 032]&3A'021 &3293+ 
3 cos[2wi + W2 - W3 + 2021 - 032]&21 &3293+ 
6 COS[W2 + w3 + 032] A , 

21 
&3293+ 

3 COS[2Wi + 3w2 + W3 + 2021 + 032]A , 
21 

&3293+ 

6 cos[2wi - W2 + 031 - 032]A 
, 1Aw31Aw3293+ 

6 COStlw2 - 031 + 032]A,,, A4,31 &3293+ 
6 COS [W2 + 2W3 + 031 + 032]Aw1Aw31Aw3193+ 

6cos 2w1 + W2 + 2W3 + 031 + 0321Aw1A, 
31Aw3793+ 

6 COs 1.11 + 031 
- 

032]A,,, A1031 A 
, 3293+ 

6 cos Wi- 2W2 + 031 - 032 Au, 2 Aw31 &3293+ 
6 COS Wi + 20)3 + 031 + 032 Aw2Aw31 A113293+ 
6COS Wi + 20)2 + 2W3 + 031 + 032]Aw2AI, 

31&3293+ 6 COS wl - W2 - W3 + 031 
- 

032JAw3Aw31 Aw3293+ 

6 COS W1 - W2 + 0)3 + 031 
- 

032Aw3Aw31Aw3293+ 

6 cos Wi + W2 + 0)3 + 031 + 032]13Aw31Aw3293+ 

6 coslwi + W2 + 30)3 + 031 + o32]Aw3Aw31Aw32g3+ 

6cos[2w1 + 021 + 031 - 0321A<., 
21Aw31A, 3293+ 
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6 cos[2W2 + 021 - 031 + 0321Au�1 Aß, 91 A'3293+ 
6 cos[2w3 - 

021 + 031 + 032]A. 
21 

A 
3i 

Aws293+ 

6 COS[2W1 + 2W2 + 2W3 + 021 + 031 + 0321A, 
21 

AW31AW3293+ 

3 cos[2w1 - W2 + w3 + 2031- 032]Aw31 Ac, 
3s93+ 

6COS[w2 + W3 + 0321A2 
W31A'"r3293+ 

3 cos[2w1 + W2 + 3W3 + 2031 + 032]AUJ31 Al 
3293+ 

6 cos[wl]A,, l 
A, 

3293 +3 cos[wl - 2w2 - 2W3 - 2(ý32JAý, 
1A4,3293+ 

3 cos[wl + 2W2 + 2W3 + 2032]A,,, A2'03293+ 
6 cos[w2]A,,,, AUJ3293 +3 cos[w2 + 2w3 + 2032]AI, 

2A, 3793+ 
3 COS[3W2 + 2W3 + 2032]AW2AIJ32g3+ 

6 COS[W3]A,, 3AW2 
2 

3293 
+3 COS[2w2 + W3 + 2032]A, 

3Aw3293+ 
3 COS [2W2 + 3W3 + 20321AL03A, 

3293+ 
6 cos[wl + w2 + 021]Aw21 A2 

W9293+ 
3 cos[wi - W2 - 2W3 + 021 - 20321A , 21 

A, 2ogz93+ 

3 cos[wl + 3w2 + 2w3 + 021 + 20321A4,11A2 W3293+ 6 Cos[w1 + w3 + 031]Aw31 A , 
3293+ 

- 3 cos[wj - 2w2 - w3 + 031 - 2032JAwai A2 

3 cos[wl + 2w2 + 3W3 + 031 + 2032]A,,, 31A2,32g3+ 33 
3293 

+ COS[3w2 + 3W3 + 30321A 
, 3283) 

3 COS[w2 + w3 + 0321AIJ 
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2.3 Power Series Analysis of a Three-Tone System with Injected Second Harmonic 

The system input is made of two sinusoid signals at the frequencies wl, w2 and 

w3 with amplitudes A,,, 
1, 

Aß,, 
2 and A4,3 respectively and their second harmonic at the 

frequencies (2w1), (2w2) and (2w3) with amplitudes A2,,, 
1, 

A2,2 and Aß,, 3 with phases 

02wi) c52W2 and 02,,, 
3 

respectively. 

The input is 

vi,, = Au, l cos (wit) + A, J2 cos (wet) +'L3 cos (wit) + A2,, 
1 cos (2wit + o2,,, 

1) (2.35) 
+A2,, 2 cos 

(2w2 + 02w2) + A213 cos (2w3 + O23,, 
3) 

such that 

The amplifier output spectrum is calculated by using a power series expansion, 

3 
n Vout = 9mnvin 

n=1 
n 

3 vin = AW1 cos (wit) + A12 cos (w2t) + AW3 cos (w3t) + A2,, 
1 cos (2wit + 02, 

x,, 
) 

_E 9mn 
n=i +A2U, 2 cos (2w2 + 02W2) + A2,,,, 3 cos (2w3 + 02,,, 

3) 
(2.36) 

The following is the input file and the output file calculation using Matliematica @ 

showing all intermodulation terms at the output of the amplifier with the injection of 

the second harmonic signals. 
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. Input file 
3 

xl =E (Aw, 
k cos[2wk + 02wk]); 

k=1 
3 

x2 = 2, (A,,, 
b cos[wk]); 

k=1 
3 

Y=F, (g,, (xl + x2)"); 
n=0 

TrigReduce[Y] 
TeXSaue["second. tex" ] 

. Output file 
Vout =4 (49o +4 cos [w 1] Awl gl +4 cos [2w1 + 02w 

1] 
Aw, gl+ 

4COS[w2]Aw291 +4cos[2w2 +02w, ]A,,, 
2g1 

+4COS[w3]Aws91+ 

w1 g2 +2 cos[2w1] AW 
l g2+ 4 COS [2W3 + 02w3 ]Aw391 + 4A2 

4cos[w1 +O2w1]A, 
192 

+4COS[3w1 +02wA, 92+ 

2cos[4w1 +20zw1]Aw192 +4cos[wI -w2]A,,,, A,, 92+ 
4 cos[w1 + w2]Aw, Aw2g2 +4 cos[2w1 - W2 + 02w, ]Aw, Aw, 92+ 
4 cos [2w1 + w2 + 02w1 ]Aw1 Aw292+ 
4 COS [wl - 2W2 - 02wa J Awl Awe 92+ 
4COS[2w1 - 2w2 + 02wi - o2wz]Aw1Awy92+ 
4 cos [w1 + 2w2 + 02"12 ] A,,,, Aw, g2+ 
4 cos [2w1 + 2w2 + 02w + 02w2 ]A,, A12 g2+ 
4A2 g2 +2 cos[2w2]A, 2g2+ 4 COS [W2 + 02W2)A2 +4 cos[3W2 + 02w21AW292+ 
2 cos[4W2 + 202w2 ]A , 

292 
+4 cos[w1 - w3]A,,, I 

A,,, 
3g2+ 

4 cos[wl + w3]Aw, A,,,, 92 +4 cos[2w1 - W3 + 02w1]Aw, Aw992+ 
4 cos[2w1 + w3 + 02w1 ]Awl Awg92+ 
4cos[wl - 2w3 - 02w9]A, 

lAw392+ 4 cos[2w1 - 2w3 + 02wi - 02w3]Awl Aw3g2+ 
4 cos[w1 + 2w3 + 02w9]Ao,., Aw, 

3g2 
+4 cos[2w1 + 2w3 + 02w1 + 02wy] 

Aw 
1 
Aw392 +4 COS [w2 

- w3] Awz Aw3 92+ 

4 cos[w2 + w3]Aw, A,,, g2 +4 cos[2W2 - W3 + 02w2 IAw2 Aw. 92+ 
4 COS [2W2 + W3 + 02w2 ]Aw2 Aw392+ 
4cos[w2 - 2w3 - 02w3 ]Aw2Aw392+ 
4 cos[2W2 - 2W3 + O2 

,2- 
02w3]AW2Aw392+ 

4 cos w2 + 2W3 + 02w9 ]Aw2 A,,, 3g2+ 4cos 2w2 + 2w3 + 02w2 + 02w3]Aw2A"392+ 
4A292 +2 COS [2w3] A2 
4 COS [W3 + 02,1 AW392 +4 cos [3W 

3+ 02103 ] Aw3 g2+ 

2 cos[4w3 + 202w3 ]A 
, 392 +9 cos[wj]A, 1g3+ 

cos[3w1]Aw193 +3 cos[02w1]A3193 +9 COS[2w1 + 02w1]A 
, g3+ 

3 cos[4w1 + 02w1]Aw 93 +3 cos[3w1 + 202w1]A, 
1g3+ 3 cos[5w1 + 202w1 ]A 

l 93 + cos[6w1 + 302,, 1 
]AW 

l g3+ 
3 Cos[2w1 - W21A2 2 + 12 COS[w2]Aw1A,,, 2g3+ 
3cos[2w1 +w2]AW1A,,,, g3 +6cos[wl - W2 +02 , 1]A 

, Aw2g3+ 
6cos[3w1 - W2 + 02w1]A , 

1Aw293+ 6cos[w1 +w2 + 02101]A2 Awzg3+ 
6cos[3wi +w2 +02,1jA 

1A1,, 93+ 
3cos[4w1 - W2 +202w1]Aw1Aw, 93+ 
3 cos [4w1 + W2 + 202wi ]A, 2, 

l 
Aß,, 

2 g3+ 
3cos[2w1 - 2w2 - O2w2]A2 

w1Aw293+ 
6cos[w1 - 2w2 + o2w1 - O2w2]A2 AW293+ 

6 cos[3w1 - 2w2 + o2w1 - o2wz]Aw'i Aw293+ 
3cos[4w1 - 2w2 + 202101 - 02w, ]AW1Aw, g3+ 
12 cos[2w2 + 02102]A, 

1 
Aw2g3+ 
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3 cos[2w1 + 2w2 + 02w2 ]A, 
1 
Awz 9s+ 

6 cos [w l+ 2W2 + 02w, + 02w2 ] Aw Aw2 g3+ 
6 cos[3w1 + 2w2 + 024,1 + 02wz]A 

1 
Aw293+ 

3 cos [4w1 + 2W2 + 20210, + 0210, ] A2 Aw2 93+ 
12 Cos [wl ]A 

,1 Aw293 +3 cos [wl - 2w2] Awl A 
,2 g3+ 

3cos[w1 +2w2]Aw1A10293 + 12cos[2w1 +02wi]A�, A , 
2g3+ 3 cos[2w1 - 2w2 + 02,1 ]Awl A2w293+ 

3cos[2w1 + 2W2 + 02wi ]Aw� A2 
293+ 3cos[wl - 4w2 - 202 , 2]Aw, 

A 
, 2g3+ 3 cos[2w1 - 4w2 + 02111 - 202w2]A ,1 Aý293+ 

6cos[wl - 3W2 - 02w2]Aw, AL2j293+ 
6Cos[wl -w2 -02102]Aw1A , 

293+ 6 cos[2w1 - 3w2 + 0210, - 02w2]Aw, A22 g3+ 
6 cos[2w1 - w2 + o2w1 - 02w2]Aw1A2 

W2g3+ 6cos[w1 +w2 +02 , 21 
Aw1A, 

2 93+ 
6 cos [wl + 3w2 + 02w 

2] 
Awl A2w293+ 

6 cos[2w1 +w2+02wi +02102]AwlA22g3+ 
6 cos[2w1 + 3w2 + o2 

,i+ 
o2w2]Aw1A,?. 93+ 

3 cos [wl + 4W2+ 202102 ]Awl AW 
2 93'x' 

3 cos[2w1 + 4w2 + 0210, + 202w2]Aw1A2w293 +9 cos[w2]A, 2g3+ COS[3w2]Aw3 3 
z93 +3 COS[02w2]AW293 +9 cos[2w2 + O2w2]Aw293+ 

3 COS [4W2 + o2w2]A, 93 +3 cos[3w2 + 202w2]AW293+ 
3cos[5w2 + 202w3]A 

, 2g3 + cos[6w2 + 302w2]A, 
z93+ 3cos[2w1 - w3]A, 2, 

ý1A, 3g3 + 12 COS[w3]Aw1Aw3g3+ 
3 cos [2w1 + W3] A2 

, 
A, g3+ 6 cos[wl - W3 + 02w1 ] AJ1 Aw393+ 

6cos[3w1 - W3 +O2w1]A, 
1Aw393+ 

6cos[wl +103 +02,,, 1]A2 
A,,, 

9g3+ 
6 cos[3w1 + w3 + 02wi ]A� Aw3g3+ 
3cos[4w1 -w3+202101]A, lAwg93+ 3cos[4w1 +w3 +2o2w1]Aw1Aw393+ 
3cos[2w1 - 2W3 - 02w3]A , 

1Aw393+ 6 cos[wi - 2w3 + 02ü; 
1 - O2w3]A2 Aw393+ 

6cos[3w1 - 2w3 + 02wi - 02w3]A, Awg93+ 
3 cos [4w1 - 2W3 + 202,1 - 02wg ]A, 

1 
Awg g3+ 

12 cos[2w3 + O2w3]A2 
I 
Aw393+ 

3 cos[2w1 + 2w3 + 02w3]A2 
40 

w, 
A1393+ 

6 cos[wl + 2w3 + o2w1 + O2w3]A2 
w 

Aw393+ 

6 cos[3w1 + 2w3 + 02wi + 02wg]A Awg93+ 
3cos[4wi + 2W3 + 202 ,+ 02 , 3]A 1 

Aw393+ 
6cos[wl - W2 - 103 Aw1Aw2Awag3+ 
6 cos[wl +W2 - w3]Aw, Awe Aw993+ 
6COS Wl -w2+wg Aw1Aw2Aw393+ 

6 cos wl + w2 + w3]Aw, Aw, Aw3g3+ 
6cos[2w1 - W2 - W3 + 02w1Aw, Aw2A , 393+ 6 cos[2w1 + w2 - w3 + 0210, Awl Awe A,., 

3g3+ 6cos[2w1 -w2+103+0210, AwlAw, Aw393+ 
6 cos[2w1 + w2 + w3 + 02wi Awl Aw3A13g3+ 
6 cos[wl - 2W2 -103 - 02422 Aw1Aw2Aws93+ 
6 cos[w1 - 2w2 + w3 - 02wz Awl Awz Aw993+ 

6 cos[2w1 - 2W2 - W3 + 02 ,- 02w2]A,, AW2 4w393+ 
6coS 2w1 - 2W2 + W3 +O2w, - 

02w2]Aw, Aw2 Aw3 93+ 6 cos w1 + 2w2 - W3 + 02102 Awl Aw2Aws93+ 
6cosw1+2102+W3+02w, ]Aw1Aw, Aw393+ 
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6 cos[2w1 + 2w2 - w3 + 02w, + O2w2]Awl Aw2Aws93+ 
6 cos[2w1 + 2w2 + W3 + O2w1 + 02w2 ] Awi A, oa A, 

393+ 6cos[w1 -w2 - 2w3 - 02wg]Aw1Aw, Aw393+ 
6cos[wI +W2 - 2w3 - 02LO3]Aw1Aw2A4,393+ 
6 cos[2w1 - w2 - 2w3 + 02w1 - o2ws Awl A402A,,, 

393+ 6cos[2w1 + W2 - 2w3 + 02w1 - 02w, ]Aw, Aw, Aws93+ 
6cos[wl - 2W2 - 2w3 - O2w2 - 02w3]A,,, Aw2Aw393+ 
6 cos[2w1 - 2w2 - 2w3 + 02wi - o2w2 - 02w3]A, Jl Awe Aw393+ 
6 COS[wl + 20)2 - 2W3 + 02102 

- 02w3]Awi Aw2Aw393+ 
6 cos[2w1 + 2w2 - 2w3 + 02w1 + 02w2 - 02w3]Awl A112 A, 393+ 6 cos [wl - w2 + 2w3 + 02w3 

, 
Aw2 Aw393+ 

6 COS[w1 + w2 + 2w3 + 02w3]AAwwl Awe Aw3g3+ 

6 cos[2w1 - w2 + 2w3 + 02w1 + 02W31 Aw, Aw, Aw, g3+ 6 COS [2w1 + W2 + 2W3 + 02w1 + O2w3 ] Awl Aw, Aw393+ 
6 cos[wi - 2w2 + 2w3 - 

O2w2 + 02W3] A,,, Aw2Aw393+ 
6 cos[2w1 - 2W2 + 2W3 + 02w1 

- 
O2w2 + 02w3]Awl L2Aw393+ 

6 COS w1+ 2+12 + 2W3 + 02w2 + 02w3 ] Awl &2&993+ 

6 cos 2w1 + 2w2 + 2w3 + 02w1 + 02w2 + 02w, ]Awl Aw, A, 
ß, 993+ 3 COS [2w2 

- W3] A2112 Aw3 93 + 12 cos [w3] Aý3 Aw3 g3+ 
3 COS (2w2 + w3] Aw2 A,, 

393 +6 COS[w2 - w3 + O2w2 ]A 
W2 

A,, 
393+ 6cos[3w2 - w3 + 02w, ]A2 Aý,, 

3g3+ 
6 COS [W2 + W3 + O2w2]Aw A11393+ 
6 cos[3w2 + W3 + 02w2]AI A,, 

393+ 
3 COS [4W2 - w3 + 202w2]A 

, 2Aw393+ 3 cos [4w2 + w3 + 202"12] A1,2 Aw9 g3+ 
3 cos[2w2 - 2w3 - 02w3]A2 A,, 

393+ 
6COS[W2 - 2W3 + O2w2 - 02w3]Aý Awa93+ 
6 COS[3W2 - 2W3 + 02w2 

- 
O2w3]A Aw393+ 

3COS[4w2 - 2w3 + 202,2 - 012w3]AW2A"1393+ 

12 cos [2w3 + O12ws ]A2 
2 

Aw393+ 

3 cos[2w2 + 2w3 + 02w3]A, 
2Aw993+ 6 COS [W2 + 2w3 + 02w, + 02w3]Aw A,,, 

9g3+ 
6 COS [3W2 + 2w3 + O2 

,2+ 
O2w3]A Awg93+ 

3 COS [4W2 + 2W3 + 202W2 + O2w3]A 
,2 

A11393+ 
12 cos[wl]Awl A, 

993 
+3 cos[wl - 2W3]Awi AW393+ 

3 cos[wl + 2W3]Aw1 A , 
3g3 

+ 12 cos[2w1 + O2wi ]A,,, A2 
w393+ 

3 cos[2w1 - 2W3 + 02,1 ]Aw, A, 
393+ 3 cos [2w1 + 2w3 + 02,1 ] Awl AWgg3+ 

3 cos[wl - 4w3 - 202w3]Awl Aß, 
393+ 3 cos[2w1 - 4w3 + 02w1 - 202113]Au, l A, 

g93+ 6 COS[wl - 3w3 
- 

02w3]Aw1A, 
393+ 

6cos[wi - W3 - 
O2w3]Aw1Aw3g3+ 

6 cos[2w1 - 3w3 + O2w1 
- O2w3]Aw1A, 

393+ 
6 cos[2w1 - W3 + 02,1 - 02w3]Aw1 Aw9g3+ 
6 cos [w l+ w3 + O2w3 ] Aw, Aw 93+ 
6 cos[wl + 3w3 + O2w3]Aw1A 

393+ 6 COS [2wi + W3 + 02,1 + 02w3] Awi A2 93+ 

6 cos[2w1 + 3w3 + 02,1 + 02wg]Aw1 A 
,,., 93+ 

3 cos[wl + 4w3 + 202w3]Aw, A2 
393+ 3 cos[2wi + 4w3 + 02,1 + 202w, ]A,,, 

1 Aw3g3+ 
12 cos[w2]Aw2AW393 +3 COS [W2 - 2w3]Aw3A 

, g3+ 
3 COS [W2 + 2w3]Aw2 A, 

393 + 12 cos[2w2 + 02w2 ]Aw2 A2 w393+ 3COS[2w2 - 2w3 + 02w2]A102A2 
w393+ 
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3 cos[2w2 + 2W3 + 02w2 ]A 
,2 AW3g3+ 

3cos[w2 - 4W3 - 202w3]A,, 
2A, 393+ 

3 COS [2W2 - 4w3 + 02w2 - 202W31 A4,2A2,393+ 
6cos[w2 - 3W3 - 02W3]A4,, A2 93+ ld3 
6 cos[w2 - w3 - 024,3]A, �A2 93+ 413 
6COS[2w2 - 3w3 + o2 ,a -0 2W3]&2A , 3g3+ 

w393+ 6 COS [2W2 - W3 + 02w2 - O2w3]AW2A2 
6 COS [W2 +W3 + 02w3]A112A,, g3+ 

6 COS [U)2 + 3w3 + O2,3]A, 
2 

AW393+ 

6 cos[2w2 + W3 + 02W2 + 02W9]A112A2 93+ 
6 cos[2w2 + 3W3 + 02W2 + 02W3]AW, A 

3g3+ 
3 cos [w2 + 4w3 + 202w3 ] A1,, Arg 93+ 
3 COS [2W2 + 4w3 + 02w2 + 202ý, 

3]A1,2 
A2 g3 +9 cos[w3]Aý3g3+ 

cos[3W3]A, 3,., 93 +3 COS[02ws]Aws93 +9 COS[2w3 + Qý2WS]A, 3,, 
s93+ 

3 c0s[4w3 + O2w3]A3 
w393 

+3 cos[3w3 + 2O2W3]A , 
3g3+ 

33 
393 + cos[6w3 + 302w�]Aws93) 3 cos[5w3 + 202w3]AW 
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2.4 Power rsis of a Three-Tone S, with Infected Difference 

The system input is made of two sinusoid signals at the frequencies w1, w2 

and w3 with amplitudes Awl, Awl and Aw3 respectively and the difference frequency 

signals at the frequencies (w2 - w1), (w3 - wi) and (w3 - w2) with amplitudes Aw21, 

Aw31 and AW32 with phases Ow21, Ow31 and OW32 respectively. 

The input is 

vi,,, = Awl COS (wit) + A1,2 COS (W2t) + A, 
3 COS (W3t) + AW21 COS (W2 

- Wit + W20 

+Aw21 cos (w2 
- wit + g5W21) + Aw21 cos (w3 

- wit + Of. '21) 

(2.47) 

The amplifier output spectrum is calculated by using a power series expansion, such 

that 

3 
VOut - 9mnv n 

n=1 

3 A, 
1 COS (wit) + A,, COS (W2t) +'L3 COS (W3t) + AW21 COS (W2 - Wit + 21) 

_E gmn 
n=1 +AW31 COS (W3 

- Wit + OW31) '+' 
AW32 COS (W 

- W2t + OW32) 

(2.48) I 
The following is the input file and the output file calculation using Mathematica @ 

showing all intermodulation terms at the output of the amplifier with the injection of 

difference frequency signals. 
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" Input file 
xi = (A, 

21 cos[w2 - w1 + 02/1])+ 
(Aw3, cos[W3 - Wl + 031]) + (A,,,, cos[W3 - W2 + 0321); 

3 

x2 = (Au,, 
k cos[Wk]); 

k=1 
3 

Y=E (gn(xl + x2)n); 
n=0 

TrigReduce[Y] 
TeXSave["dif. tex"] 
" Ouput file 

Vout = 4(49o +4cos[wl]Au, lgl +4cos[w2JAI, ag1 +4cos[w3]Aý, ggl+ 4 cos[wl - w2 - 0211A12ý91 +4 cos[w1 - W3 - O31]AW�91+ 
4 COS [W2 - w3 - 032]A, 

3291 + 2Aw192 +2 cos[2wi]A , 192+ 4 cos[wl - w2]A,, A"a 92 +4 cos[wl + w2]Al A , a92+ 2Awag2 +2 cos[2w2]A, a92 +4 cos[w1 - w3]A,,, 1 
A,,, 

392+ 4 cos[wl + w3]A,, A4,3g2 +4 cos[w2 - w3]AI, 2Aw392+ 4 cos [w2 + w3] A112Aß, 
392 + 2A2 2 

3 92 +2 cos[2w3] A, 
3 92+ 

4 cos[2w1 - W2 - 021]Aw1A4,2192 +4 cos[w2 + 021A, A112192+ 
4cos[wl - 021]A, 

2A'21g2 +4cos[wl - 2w2 - 0211 A113A'2192+ 
4cos[wi - w2 - W3 - 021]Aw3Awa192+ 
4cos[wi - W2 + W3 - 021]A,,, 

3A12192+ 
2AWa192 +2 cos[2w1 - 2w2 - 2021]Aý, 

a192+ 4Cos 2w1 - W3 - 
031]Aw, AW3192+ 

4 cos w3 + 031]AW, AWg192 +4 cos[wl - w2 - W3 - 031]AW2AWS192+ 
4cos wl +w2 - w3 - 031]A472A'3192+ 
4cos[wl - 031]A,, 

3A. �192 + 4cos[wl - 2w3 - 031]A, 
3A,,, 3lg2+ 4Cos[2w1 - w2 -W3 - 021 - 031]Aw2lAW3192+ 

4cos[w2 - W3 + 021 - ß31]AWalAw9192+ 
2A, 2,31g2 +2 cos[2w1 - 2w3 - 2031] A , 

3182+ 4 cos[wl + W2 - W3 - 032] Aw, A,,, 
3292+ 4 cos wl - w2 + w3 + 032]Aw, Aw32 92+ 

4 cos 2w2 - W3 - 032]AI, 
2A, 3292 +4 COS [U)3 + 0321A1,2A,,, 

3292+ 4 cos w2 - 032]A, 
3A,, 3a92 +4 COS P2 - 2w3 - 0321Ar,, 

3A , 3292+ 4 cos wl - w3 - 021 - 032]Aý, 
21 

AW3292+ 
4 Cos wl - 2W2 + W3 - 021 + 032 A, 

a1Aýsa92+ 4 coS wl + w2 - 2w3 - 031 - 0321A 
W31 

A,,, 
3292+ 4 cos[wi - W2 - 031 + 032]A,, 

3 
A'03292+ 

2A, 
32g2 

+2 cos[2w2 - 2w3 - 2032]AW3292+ 

3 cos[wl]A , 193 + cos[3w1]A31g3 +3 cos[2w1 - w2JAý1Aw293+ 
6 cos[w2]A ,, Aý, ag3 +3 cos[2w1 + w2]AwlAwa93+ 
6 cos[w1]A,,,, A2 

1,293 +3 cos[wl - 2w2]A,,, 
1 
AWa93+ 

3cos[wi + 2w2]A1 AW293 +3 cos[w2JAW293 + cos[3w2]A3,, g3+ 
3 cos[2w1 - w3]Aw1 A,,, gg3 +6 cos[W3]A, 1 

Aý, 
393i- 3 cos[2w1 + w3]Aw1 A, 

393 +6 cos[wi - w2 - w3]A,, 1 Awa A. 
393+ 6cos w1 +w2 - w3JAwlAw2A, s93+ 6 cos w1 - w2 + w3JA4,1 A, a A1,393+ 

6 cos pi + w2 + w3JA, 1 
Awe A, 

393+ 
3 cos[2w2 - W3]AW2 A,,., 93 +6 cos[w3]Awa Aß,, 

393+ 3 cos[2w2 + w3]Awa Aß,, 
993 +6 cos[wi]A,,, 1 

AWS93- 
3 cos[wl - 2w3]A,,, A, 

393 +3 cos[wl + 2w3]A,, AW993+ 
6cos[w2]A., 2A, 393 + 3cos[w2 - 2w3]Aw2Aýgg3+ 
3 COS [W2 + 2w3]A4, a 

Aw393 +3 cos[w3]A , 3g3+ COS[3W3]A393 +6 cos[wl - W2 - O21]A, 
lA112193+ 

3cos[3w1- w2 - 0211Aw, A,, 2193+ 
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3cos[wi +w2 +021]Aü, lA,,, 93 + 6cos[2wi -021]A,,, 1Aw3Awsi93+ 
6cos[2wi - 2w2 - 021]AW1Aw2AW2193+ 
6 cos[021]A4,, A1�Aw, 193 +6 cos[2w2 + 021]A1 a 

A'�A.,, 
193+ 

3 cos[wl - 3w2 - 021]Aý,, A", 
2193+ 

6 cos[wi - w2 - 0211A2 AIJ2193 +3 cos[wi +W2 - 021]A2 Aw2193+ 

6 cos[2wi - W2 - W3 - 021]A 
, 1Aw3A,, 2193+ 

6 cos[2wi - W2 + w3 - 021]A4,1A, �A02193+ 
6cos[w2 - W3 + 021 A4,1A,, 3A, 21g3+ 
6 cos[w2 + W3 + 021 A, �A'13AW2lg3+ 6cos[wi - w3 - 021 Acd2A 

3Aw2i93+ 
6 cos[w1 - 2w2 - w3 - 021]A, 

2A, 3A"2193+ 
6 cos[wl +W3 - O21]Ao2A,, 

3A, 2193 + 6cos[wi - 2w2 +W3 - 021] 

Aw2A113A12193 + 6cos[w1 - w2 - 021]A , 
3A,, 2 93+ 

3 cos[wi - w2 - 2w3 - 0211A, 
3Aw2193+ 

3 cos[wi - W2 + 2W3 - 021]A2 A,, 
21g3+ 

6 cos wi]Aw1 A, 
2193 

+3 cos[wi - 2w2 - 2021]A, 
1 
A, 

21 g3+ 
3cos[3w1 - 2w2 - 2021]A,, Aý, 

lg3+ 
6 COS[w2]Aý, A , 

2193 
+3 cos [2W1 - 3w2 - 2021]Ak�A, 

2193+ 
3cos[2wi - W2 - 2021]A112 A2 g3+ 121 
6COS[W3]A,, 

3 A. 
�g3 + 3cos[2w1 - 2W2 - W3 - 2021]AW3A 2193+ 

3 cos[2w1 - 2w2 +W3 - 20211A103A2 W21g3+ 
cos[3wi - 3w2 - 3021]AW21g3+ 
3cos[wi - W2 - 021]A3 

, X93 
+ 6cos[wi - w3 - 031]A. 

1A, si93+ 
3cos[3w1 - W3 - 031]A3' A13193+ 
3 cos [w1 + w3 + 031]A2 

I 
A"3193+ 

6cos[2wi - W2 - W3 - 
031]A1,1Aw2Am3193+ 

6COS[w2 -103 - 
0311A, 

1A , 2A, +si93+ 
6 COSj`2w1 + W2 - W3 - 031]A,, A112 A 

, 3193 +6 COS[W2 + w3 + 031] 

AW1A1, A'3193 +6 cos[wl - W3 - 031]A2 
W2 

A'31g3+ 
3 cos[wi - 2W2 - 103 - 

0311A2 
W2A,, si93+ 

3 COS[W1 + 2w2 - W3 - 031]A, 
2 
Aw3º93+ 

6 cos 2wi - 031]Aw1A, 
3A,, 3193+ 

6 cos 2wi - 2w3 - 031]A., 1 A,, 3A, 3193+ 6 COS 0131]A,, 
lA., 3Au+s193 

+6 cos 2w3 + 031]A 
,1A,, 3A, +si93+ 

6 cos wi - w2 - 031]A,,,, A,, 
9A,, 31g3+ 

6 COS Wi + W2 - 031]AWA,,, Awsi93+ 
6cos wi - w2 - 2W3 - 

031 A. 
2Aa3Awsi93+ 

6cos[wi +w2 - 2w3 - 
031 A 

, 2Aw3A, +3, g3+ 

3 cos[w1 - 3W3 - 
O31]A, 

3A , 31g3+ 
6COS[Wi-w3 -031]A, 

23A, 
3193+3cos[Wi+W3-031]A, 03A 3193+ 

6cos[Wi - W2 - W3 - 021 - 031]A,, A1021A, sý93+ 6COS 3wi - W2 - W3 - 021 - 031]A, 
1A, 21A, +st93+ 

6 cos wl + w2 - w3 + 021 - 031]A,,, A "12 , Awgi93+ 
6 cos wi - w2 + W3 - 021 + 031 A,, 

1A4, �lA,, 93+ 
6 cos[2wi - W3 - 021 - 031]A'02A 

,2 
Aw3i93+ 

6 COs 2wi - 2w2 - w3 - 021 - 031IAw2Au 
2iAm3i93+ 

6 cos 2w2 - w3 + 021 - 0311 Aw2Aw, 
1 
A4/3193+ 

6 cos W3 - 021 + 0311Aw2 A102 
1 
A,, 

ai g3+ 
6COS 2wi - W2 - 021 - 031]AW3A,, 

21A(, 3193+ 6 Cos 2wi - w2 - 2w3 - 021 - 031]A, 
3Aw21Ac., 3193+ 

6 COS [w2 + 021 
- 

031]A, A , 2ý Aß+3193 +6 COS[W2 - 2w3 + 021 
- 

031 

A113A112 1AJslg3 
+ 6cos[wi - W3 - 031]A2,, 

stA113193+ 

3 cos[3wi - 2w2 - 103- 2021 - 03i]A2 AWglg3+ 
3 cos{w - 2W2 + W3 - 2021 + 0131]Aws1 A113193+ 

6cos[W1]A,,, 
lA, slg3+3cos(wi 

-2W3 - 20311AwlAjsig3+ 
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3 cos[3w1 - 2w3 - 2031]Aw1Aý, 31g3+ 
6 cos[W2]A4,2A2,31g3 +3 cos[2w1 - W2 - 2W3 - 2O31]A , 3A, 3193+ 
3 cos[2w1 + W2 - 2W3 - 2031]AW2A2 

w31g3+ 
6 COS[w3]A�3A2 93 +3 cos[2w1 - 3w3 - 20311A1I3A, 

3193+ 

3cos[2w1 - W3 - 2031]Aw3A2 w31g3+ 
6 cos[wl - W2 - 0211AC, 

21A2,3193+ 
3 cos13w1 - w2 - 2W3 - 021 - 2031}A�21 A2,3193+ 
3 COS [WI +W2 - 2w3 + 021 - 2031JAwa, A2,3193+ 
cos[3W1 - 3w3 - 30311A331g3+ 

3 COS[wi - W3 - 
031]Awsig3 +6 COS [W2 

- W3 - 
032}A , 

1A1113293+ 
3 cos[2w1 + W2 - W3 - 

032]A, 
1Aw3293+ 

3 cos[2w1 - w2 + W3 + 032]A4,1A1+3293+ 
6COS[W1 - W3 - 

032]Aw1A, 
2Awaz93+ 

6cos[W1 + 2W2 - W3 - 032]A 
, 1Aw2Aw3293+ t 6cos[Wl +W3 + 032]AwlAwaAw3293 +6cos[wl - 2w2 + W3 + 0321 

Aw1A�2A, 
3293 +6 cos[w2 - w3 - 032]A, 

2Awss93+ 
3 cos[3w2 - w3 - 032}A2 

W2 A 23293+ 
3 COS [W 2+ W3 + 032]A2402 A 

232 93+ 

6 cos[wl + w2 - 032]A4,, A�3A13293+ 
6 COS[W1 + w2 - 2w3 - O32]A�Am3A"3293+ 
6 cos W1 - w2 + 032]Aw1All3AW3293+ 
6 COS[WI - W2 + 2W3 + O32]Aw1A1,3A�3293+ 

6cos[2W2 - 
032]Aw2AQ, 

3Aw3293+ 
6 Cos[2W2 - 2w3 - 

0132]AW2Aw3AÜ)3293+ 

6 cos[032]AW 2 
A44J3 Aw32 93 +6 cos[2W3 + 032]ALJ2 AÜJ3 A4,32 g3+ 

3 cos[W2 - 3W3 - 0321A2,3A13293+ 
6 COS[w2 - W3 - 

032]A 2 
alA4,32g3 +3 cos[w2 + W3 - 032]A2., 

3A, 293+ 
6cos[2w1 - W3 - 

021 - 
032]Aw1A�, AW3293+ 

6 cos 2W2 - W3 + 021 - 032 Aw1AW2, A , 3293+ 6 cos 2w1 - 2W2 + W3 - 
021 + 032]Aw1 A4021 A, 

3293+ 
6cos W3 + 021 +O32]A, 

1Aý+2, 
A�+3293+ 

6 cos wl - W2 - W3 - 021 - 032]A 
, 2Aw21Aw3293+ 

6 cos wl + W2 - W3 - 021 - 0321AW2A"21Aw3293+ 

6 cos W1- 3W2 + W3 - 021 + 032]Aý2 A'-+21 Awy293+ 

6cos WI - W2 + W3 - 
021 + 0321Aý. 

+2Aý2, 
A4+3293+ 

6cos WI - 
021 - 032]Aw3Awz1Aw3293+ 

6cos W1 -2w3 - 021 - 032 A, 3AW2, 
A"13293+ 

6 cos wl - 2w2 - 021 + 032 Au, 
3A402, 

A�3293+ 
6 cos wl - 2w2 + 2w3 - 021 + 0321A 

j3Aw21 
Awsa93+ 

6 cos[w2 - W3 - 032]A2 
W2, 

Awss93+ 

3 cos[2w1 - w2 - W3 - 2021 - 0321A w1 Aw3293+ 

3 cos[2w1 - 3W2 + w3 - 2021 + 032]Aä 
21Aw32g3+ 6 COS[W2 - 2W3 - 

031 
- 

032]Aw1 Awsi AÜ+3293+ 

6 cos[2wi + W2 - 223 - 031 - 032]AwiA, 
3�Aw3293+ 

6 COS [W2 + 031 - 032] Awl Aw31 Aw32 93+ 

6cos[2w1 - W2 - 
031 +032]A, 

1Aw3, A"13293+ 
6 cos wl - 2w3 - 

031 - 032]Aw2A4O31Aw3293+ 

6 cosiwl + 2w2 - 2w3 - 031 - 032}Aw2Aw3, AW3293+ 
6 cos w1 - 031 + 032]AW2Awsi Aw3193+ 
6 cos w1 - 2W2 - 

031 + 0321 AW2 Aw31 AW3293+ 

6 cos WI + W2 - 323 - 031 - o32]Aw3A, 
$1 

Aw3293+ 

6 cos Wl + W2 - W3 - 031 - 032 Aý+3Aý., 
31Aw3293+ 

6 cos Wl - W2 - W3 - 031 + 032 A, 
3Aw31Aw3293+ 

6 COS wl - W2 + W3 - 031 + 032 Aw3Aw31Aw32g3+ 

6 cos[2w1 - 2w3 - 021 - 031 - 032)A�, 
2, 

A,. 
�Aw3293+ 

6cos[2w2 - 2w3 + 021 - 031 - 032 A'a2IA<,, 
31A&. +32g3+ 
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6cos[2w1 - 2w2 - 021 - 031 +0321 AW21AW31Aw3293+ 
6COS[021 - 031 +032]AW21Aw31Aa3293+ 
6 COS[W2 -W3-0321A 

, 
31 

AL, 
ss 93+ 

3cos[2w1 +w2 - 3w3 - 2031 - 032]A2 A, 3293+ 3COS[2W1 - W2 - W3 - 2031 + 032]AwS1A,, 
3293+ 

2 
W31 

6 COS[wl]Aw1 AW2 2 
3293 

+3 COS[wl + 2w2 - 2w3 - 2032] A,,, A, 
3293+ 

3 cos[wl - 2W2 + 2w3 + 2032]A,, A 
, 3293+ 

6 COS[w2]Aw2 A, 
3293 

+3 COS [W2 
- 2W3 - 2032]AW2 A, 

32g3+ 
3COS[3w2 - 2w3 - 2032]A, 2A , 3283+ 6 COS [w3] A,,., Arg, 93 +3 cos [2w2 - 3w3 - 2032] Aß,, 3 

A, 
g2 93+ 

3 COS[2W2 - W3 - 2032]AlJ3A, 
3293+ 

6 cos[wl - W2 - 0211A 
d2, 

A2 
WSZ93+ 

3cos[wl +w2 - 2W3 - 021 - 2032]AW21A, 
3293+ 

3cos[w1 - 3w2 + 2w3 - 021 + 2032]Aw2IA2 
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APPENDIX C. 

OUTPUT VS INPUT POWER OF THE FUNDAMENTAL SIGNALS 

AND THE IMDS BEFORE AND AFTER EMPLOYING THE 

TECHNIQUES IN A THREE TONE TEST 
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Figure C.. 1: Output Vs input power of 
the fundamental signal (fl) at the fre- 
quency 2.5GHz before and after injec- 
tion of the difference frequency sig- 
nals. 

e 0 

43. 

B 
CC 

L 

8 

I 
0 
ö 
n 

-20. OE+00 Input 15.0E+OOA Po... r (ae. ) 
Q Signal 2fi fi before injection 
x Signal 2f, fi aller injection 
A Signal 2frf, Worn injection 
+ Signal 2f,. f, alter injection 

Figure C.. 2: Output Vs input power of the intermodulation signals (2f, - fz) 
and (2f1 - f3) at the frequencies 
2.49(Hz aDd 2.479QIIz j eforo and af- ter injection of the If erenco fre- 
quency signals. 
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Figure C.. 3: Output Vs input power of 
the intermodulation signal (2f3 - ff) 

and (2f3 - f2) at the frequencies 
2.542GH, z and 2.532GH before and 

erence fre- after injection o tie iff 
quency signals. 

6 
0 
0 

8 

r Y 

8 

0 
e 
In 

ýý"ýfý Input power (dBm) 15. EfHA 

Q Signal fi4iWa before injection 
x Signal fi f2 it after injection 

-20.0E+00 15.0E40A Input power (dDm) 

Q Signal lj j211 before injection 
x Signal A/21) after m edion 

Figure C.. 4: Output Vs input power 
of the intermodulation signals 
(2f2 - fl) and (2f2 - f3) at the fre- 
quencies2.52GHZ and 2.499GHz 
before and after injection of the 
difference frequency signals. 
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Figure C.. 5: Output Vs input 
power of the intermodulation sig- 
nal (f 1- f2 + fs) at the frequency 
2.511GHz before and after injection 
of the difference frequency signals. 
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Figure C.. 6: Output Vs input 
power of the interrnoduilation sig- 
nal (f3 + fz - fi) at the frequen 
2.511GHz before and after injecti 
of the difference; frequency signals. 
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Figure C.. 7: Output Vs input 
power of the intermodulation sig- 
nal (f 1+ f2 - f3) at the frequency 
2.489GHz before and after injection 
of the difference frequency signals. 
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Figure C.. 8: Output Vs input power of 
the intermodulation signals(2f3 - fl) 

and (2f1 - f3) at the frequencies 
2.4790Hz and 2.542GHz before and af- 
ter injection of the second harmonic 
signals. 
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Figure C.. 9: Output Vs input power of 
the intermodulation signals(2 fl - f2) 
and (2f2 - fl) at the frequencies 
2.49(7IJz and 2.52GHz bef re and a[ ter injection of the second harmonic 
signals. 
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Figure C.. 10: Output Vs input 
power of the interinoclulation signal 
(2f3 - j2) and (2f2 -13) at the fro- 
qucncics 2.532611 z and 2.499611 z be- 
fore and after injection of the second harmonic signals. 
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Figure C.. 11: Output Vs input 
power of the intermodulation sig- 
nal (fl - fz + f3) at the frequency 
2.511GHz before and after injection of 
the second harmonic signals. 
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Figure C.. 12: Output Vs input 
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nal (fl + f2 - f3) at the frequency 
2.489Gh z before and after injection of 
the second harmonic signals. 
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2.511 flz before and after injection of the second h arnionic signals. 
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APPENDIX D. 

AMPLITUDE AND PHASE CHANGE EFFECTS ON THIRD 

ORDER INID 

4.1 Second IIatirinoriic Iii jcct iori 'hcchiºiquc 
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Figiirr I).. 1: Third order IMD 
(2j 'I J':, ) attiplituclc variations as 
a function of injected second liar- 

mottic signal amplitude and phase. 
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Fig iii 1).. 2: Third order IN1D 
(. /I -}- f'2 -- f*a) amplitude variation 
as a function of injected second 
harmonic signal amplitude an 1 
p'iatic. 
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Figure D.. 13: Third order IMD 
(2f, - f:; )amplitude variation wsa 
function of injected summa of the funda- 
mental signals amplitude and phase. 
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4.3 I )ifference Frequency Technique 
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Figure D.. 25: Third order INID 
(2f, - f; {) amplitude variatioii as a 
fiizicticii of injected clifferelice fre- 
quency signal amplitude and phase. 
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APPENDIX E. 

PHASE SENSITIVITY OF SYSTEMS 

5.1 Second Harmonic Inject ion Tecliiii(tue 
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5.2 Frequency Summation Technique 
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Figure E.. 13: Variations in the am- 
plitude of the IM term (2f, - f3) at 
the frequency 2.479GHz as a function 
of frequency sum of the fundamental 
signals phase for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure E.. 14: Variations in the ampli- 
tude of IM term (fl + f2 - f3) at the 
frequency 2.489GHz as a function of 
injected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm andOdBm. 
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Figure E.. 15: Variations in the am- 
plitude of the IM term (2f, -12) at 
the frequency 2.49GHz as a function 
of frequency sum of the fundamental 
signals phase for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure E.. 16: Variations in the nunpli- 
tude of IM term (2f2 - f3) at the fre- 
quency 2.499GhIz as a function of in- 
jected frequency sonn of the funda- 
mental signals phase for input power levels of -20dBrn, -lOdBm and OdBm. 
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Figure E.. 17: Variations in the ampli- 
tude of the fundamental fl at the fre- 
quency 2.5GHz as a function of in- 
jected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure E.. 18: Variations in the ampli- 
tude, of the fundamental f2 at the fre- 
quency 2.51GHz as a function of in- 
jected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure E.. 19: Variations in the ampli- 
tude of IM term (fi - fz + f3) at the 
frequency 2.511GHz as a function of 
injected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure E.. 20: Variations in the ampli- 
tude of IM term (2f2 - fl) at the fro- 
quency 2.52GIIx as a function of iii- 
jected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -lOdBm and OdBm. 
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Figure E.. 21: Variations in the ampli- 
tude of the fundamental f3 at the fre- 
quency 2.521GHz as a function of in- 
jected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure E.. 22: Variations in the ampli- 
tude of IM term (fs +f2- fl) at the 
frequency 2.531GHz as a function of 
injected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure E.. 23: Variations in the ampli- 
tude of IM term (2f3 - f2) at the fre- 
quency 2.532GHzas a function of in- 
jected frequency sum of the funda- 
mental signals phase for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure E.. 24: Variations in the nm pli- 
tude of IM term (2f3 - fl) at the fro- 
quency 2.542GHz as a function of in- 
jected frequency sum of the fund. - 
mental signals phase for input power levels of -20dBm, -lOdBm and OdBm. 
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5.3 Difference Frequency Technique 
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Figure E.. 25: Variations in the am- 
plitude of IM term (2f1 - f3) at the 
frequency 2.479GHz as a function 
of injected difference frequency sig- 
nals phase for input power levels of 
-20dBm, -10dBm and OdBm. 
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Figure E.. 26: Variations in the am- 
plitude of IM term (fl + f2 - f3) at 
the frequency 2.489GHz as a function 
of injected difference frequency sig- 
nals phase for input power levels of 
-20dBm, -lOdBm and OdBm. 
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Figure E.. 27: Variations in the ampli- 
tude of the fundamental(2 fl - f2) at 
the frequency 2.49GHz as a function 
of injected difference frequency sig- 
nals phase for input power levels of 
-20dBm, -10dBm and OdBrn. 
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Figure E.. 28: Variations in the am- 
plitude of IM term (2f2-f3) at the 
frcquency 2.499GIIx is it function 
of difference frequency signals Phase for input power levels of -20dBm, 
-1OdBm and OdBm. 
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Figure E.. 29: Variations in the ampli- 
tude of the fundamental fl at the fre- 
quency 2.5GHz as a function of differ- 
ence frequency signals phase for in- 
put power levels of -20dBm, -10dBm 
and OdBm. 
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Figure E.. 30: Variations in the am- 
plitude of the fundamental f2 at 
the frequency 2.51GHz as a function 
of difference frequency signals phase 
for input power levels of -20dBm, 
-10dBm and OdBm. 
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Figure E.. 31: Variations in the am- 
plitude of IM term (fl - fz + f3) at 
the frequency 2.511GIIz as a function 
of injected difference frequency sig- 
nals phase for input power levels of 
-20dBm, -10dBm and OdBm. 
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Figure E.. 32: Variations in the am- 
plitude of IM term (2f2-fl) at the 
frequency 2.52GHz as a function of difference frequency signals phase for input power levels of -20dBm, 
-1OdBm and OdBm. 
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Figure E.. 33: Variations in the am- 
plitude of the fundamentalf3 at the 
frequency 2.521GHz as a function 
of injected difference frequency sig- 
nals phase for input power levels of 
-20dBm, -10dBm and OdBm. 
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Figure E.. 34: Variations in the am- 
plitude of IM term (f3 + f2- fl) at 
the frequency 2.531GHz as a function 
of difference frequency signals phase 
for input power levels of -20dBm, 
-10dBm and OdBm. 
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Figure E.. 35: Variations in the am- 
plitude of IM term (2f3-f2) at the 
frequency 2.532GHz as a function 
of difference frequency signals phase 
for input power levels of -20dBm, 
-10dBm and OdBm. 
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Figure E.. 36: Variations in the ain- 
plitudc of IM term (2f3- fl) at the 
frequency 2.542GIIz as it function 
of injected difference frequency sig- 
nals phase for input power levels of 
-20dBm, -10dBm and OdBm. 
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APPENDIX F. 

AMPLITUDE SENSITIVITY OF SYSTEMS 

6.1 Second Harmonic Injection Technique 
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Figure F.. 1: Variations in the ampli- 
tude of IM term (2fl - f3)as a func- 
tion of injected second harmonic sig- 
nals amplitude for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure F.. 2: Variations in the ampli- 
tude of IM term (fl + f2 - f3) as a 
function of injected second harmonic 
signals amplitude for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure F.. 3: Variations in the ampli- 
tude of IM term (2f, - f2) as a func- 
tion of injected second harmonic si - 
nals amplitude for input power levels 
of -20dBm, -lOdBm and Odßrn. 
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Figure F.. 4: Variations in the am pli- 
tude of IM term (2f2 - f3) its it func- 
tion of injected second harmonic si *- 
nals amplitude for input power levels 
of -20dBm, -lOdBrn and OdEm. 
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Figure F.. 5: Variations in the ampli- 
tude of the fundamental signal fl as a 
function of injected second harmonic 
signals amplitude for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure F.. 6: Variations in the ampli- 
tude of the fundamental signal f2 as a 
function of injected second harmonic 
signals amplitude for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure F.. 7: Variations in the ampli- 
tude of IM term (f2 - fl + f3) as a 
function of injected second Harmonic 
signals amplitude for input power 
levels of -20dBm, -lOdBm and OdBm. 
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Figure F.. 8: Variations in the ampli- 
tude of IM term (2f2 - fl) as a fmnc- 
tion of injected second harmonic si g- 
nals amplitude for input power levels 
of -20dBm, -lOdBm and OdBm. 
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Figure F.. 9: Variations in the ampli- 
tude of the fundamental signal fs as a 
function of injected second harmonic 
signals amplitude for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure F.. 10: Variations in the ampli- 
tude of IM term (f3 + f2 - fl) as a 
function of injected second harmonic 
signals amplitude for input power 
levels of -20dBm, -10dBm and OdBm. 
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Figure F.. 11: Variations in the ampli- 
tude of IM term (2f3 - f2) as a func- 
tion of injected second harmonic sig- 
nals amplitude for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure F.. 12: Variations in the aiupli- 
tude of IM term (2f3 - fl) as a func- 
tion of injected second harmonic si *- 
nals amplitude for input power levels 
of -20dBm, -lOdDm and OdBin. 
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6.2 Frequency Summation Technique 
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Figure F.. 13: Variations in the ampli- 
tude of IM term (2f, - f3) as a func- 
tion of the injected frequency sum 
of the fundamental signals amplitude 
for input power levels of -20dBm, 
-10dBm and OdBm. 
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Figure F.. 14: Variations in the am- 
plitude of IM term (fl + f2 - f3) as 
a function of the injected frequency 
sum of the fundamental signals am- 
plitude for input power levels of 
-20dBm, -lOdBm and OdBm. 

11: 

a 

is 
a 

a 
O 

N 

-00. DE+00 Injected signal power (dDe) 20. QE+OOA 

Figure F.. 15: Variations in the ampli- 
tude of IM term (2f1 - f2) as a func- 
tion of the injected frequency sum 
of the fundamental signals amplitude 
for input power levels of -20dBm, 
-10dBm andOdBm. 

Figure F.. 16: Variations in the anipli- tude of IM terra (2f2 - f3) as it fiuiic- 
tion of the injected frequency suin 
of the fundamental signals amplitude for input power levels of -20dBm, 
-IOdBm and OdBrn. 
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Figure F.. 17: Variations in the am- 
plitude of the fundamental signal fl 
as a function of the injected fre- 
quency sum of the fundamental sig- 
nals amplitude for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure F.. 18: Variations in the am- 
plitude of the fundamental signal f2 
as a function of the injected fre- 
quency sum of the fundamental sig- 
nals amplitude for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure F.. 19: Variations in the am- 
plitude of IM term (fl - f2 + f3) as 
a function of the injected frequency 
sum of the fundamental signals am- 
plitude for input power levels of 
-20dBm, -lOdBm and OdBm. 
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Figure F.. 20: Variations in the ampli- 
tuclc of IM term (2f2 - fl) Its at func- 
tion of the injected frequency sum 
of the fundamental signals amplitude 
for input power levels of -20dBrn, 
-IOdBm and OdBm. 
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Figure F.. 21: Variations in the am- 
plitude of the fundamental signal fs 
as a function of the injected fre- 
quency sum of the fundamental sig- 
nals amplitude for input power levels 
of -20dBm, -10dBm and OdBm. 
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Figure F.. 22: Variations in the am- 
plitude of IM term (f3 + f2 - fl) as 
a function of the injected frequency 
sum of the fundamental signals ain- 
plitude for input power levels of 
-20dBm, -10dBm and OdBm. 
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Figure F.. 23: Variations in the ampli- 
tude of IM term (2f3 - 12) as a func- 
tion of the injected frequency surn 
of the fundamental signals amplitude 
for input power levels of -20dBm, 
-10dBm and OdBm. 
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Figure F.. 24: Variations in the ampli- 
tude of IM term (2f3 - fl) as a func- 
tion of the injected frequency sum 
of the fundamental signals amplitude for input power levels of -20dBrn, 
-100m and OdBm. 
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6.3 Difference Frequency Technique 
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Figure F.. 25: Variations in the am- 
plitude of IM term (2f, - f3) as a 
function of injected difference fre- 
quency signals amplitude for input 
power levels of -20dBm, -10dBm and 
OdBm. 
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Figure F.. 26: Variations in the am- 
plitude of IM term (fl + f2 - f3) as 
a function of injected difference fre- 
quency signals amplitude for input 
power levels of -20dBm, -10dBm and 
OdBm. 
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Figure F.. 27: Variations in the ampli- 
tude of the IM term (2f1 - f2) as 
a function of injected difference fro- 
quency signals amplitude for input 
power levels of -20dBm, -lOdBm and 
OdBm. 
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Figure F.. 28: Variations in the ampli- tude of the IM terra (2f2 - f3) tos 
a function of injected difference fro. 
quency signals amplitude for input 
power leve of -20dBm, -lOdBTn and OdBm. 
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Figure F.. 29: Variations in the ampli- 
tude of the fundamental signal fl as 
a function of injected difference fre- 
quency signals amplitude for input 
power levels of -20dBm, -10dBm and 
OdBm. 
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Figure F.. 30: Variations in the ampli- 
tude of the fundamental signal f2 as 
a function of injected difference fre- 
quency signals amplitude for input 
power levels of -20dBm, -10dBm and 
OdBm. 
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Figure F.. 31: Variations in the am- 
plitude of IM term (fl - f2 + fs) as 
a function of injected difference fro- 
quency signals amplitude for input 
power levels of -20dBm, -10dBm 
andOdBm. 
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Figure F.. 32: Variations in the am- 
plitudc of IM term (2f2 - fl) as it function of injected difference fre- 
quency signals amplitude for input 
power leve911C of -20dBm, -lOdBm and OdBm. 
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Figure F.. 33: Variations in the ampli- 
tude of the fundamental signal f3 as 
a function of injected difference fre- 
quency signals amplitude for input 
power levels of -20dBm, -10dBm and 
OdBm. 
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Figure F.. 34: Variations in the am- 
plitude of IM term (f3 + f2- fl) as 
a function of injected difference fre- 
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APPENDIX G. 

CDMA IS95 SPECIFICATIONS 

Code division multiple access represents the end to end wireless system and 

the necessary specifications that govern its operation. CDMA is a spread-spectrum 

technique which spreads the signal of multiple users with a unique spreading waveform 

assigned to users. The users are allowed simultaneous access to a shared communication 

channel. CDMA IS95 refers only to the air interface specification and is part of the 

north American digital cellular which is a collection of standards covering digital cellular 

systems in the united states. 

IS95 Radio Specifications 

Uplink (handset transmit) 
Dowlink (handset receive) 
Multiple access scheme 
Duplexing scheme 
TR/RX spacing 
Channel spacing 
Radio channels 
Channel bit rate 
Full rate channels per carrier 
Modulation 

Transmit power(mobile unit) 
Full speech channel bit rate 
Cell radius (km) 
Max MS power Average MS power 
Power control 
Speech coding 

824MHz - 849MHz 
869MHz - 894MHz 
CDMA 
FDMA 
45KHz 
1250KHz 
1000 
1.2288Mb/s 
118 users/ch 
pi/4 DQPSK port base 
pi/4 OQPSK base mobile 

3.0Watt 
3.7kb/s 
2-20 
600mal 
600mal 
BS MS 
QCELP 
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posium on Technologies for Wireless Applications, pp. 53-56, Vancouver, Feb 1999. 

[M2] M. Modeste, D. Budimir, R. Moazzam and C. S. Aitchison, " Multicarrier 

IMD Performance Improvement by Difference Frequency Injection", IEEE Postgradu- 
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