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ABSTR...O\CT 

This thesis investigates a novel scene analysis system that determines 

the identity and the relative positions of unconstr~ined objects 

within a natural three dimensional gr~y scale image. Images may be of 

'block filled' or 'line drawn' occluded shapes. It utilises the 

occluding information to discover the relative depth of objects in the 

scene. The system incorporates associative memories, the N tuple pat-

tern recognition process, movable multiple resolution windows and edge 

detection. The structure and performance of the system and its sub-

systems is reported. The associative memory incorporates a novel 

. recall procedure which has uses outside the application given here. 

The work incorporates ideas from the neurophysiology of the human 

visu~l system to overcome some of the problems encountered. 
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CHAPTER 1 

Introduction 

1. Introduction 

The research reported in this thesis addresses the subject of scene 

analysis. The particular area of study is the recognition of occluded 

objects in two and three dimensional images. The aim of the work is 

the investigation of a scene analysis system which is capable of 

recognising objects in a 'natural' and unconstrained environment, and 

report the relative three dimensional positions of any objects identi­

fied. Emphasis is placed upon the use of occluding information to 

assess the relative depth of objects within the field of view. Furth­

ermore, the system is designed to learn the descriptions of objects by 

example, in that objects that are to be recognised need only to be 

placed in the visual field of the system and the system set to a learn 

mode. 

The desired attributes of the system are as follows. 

The identification of objects present within a scene. That is, the 

assignment of a classification label to every object in a scene. 

The analysis of the scene such that the relative position of all 

objects are given. 

Recognition of objects which may be 'line drawn'- i.e pencil and paper 

sketches, or which may be 'block filled'- i.e present within a 

'natural' scene. 

Objects may be recognised in an unconstrained environment. i.e the 

illumination of the object need not be highly constrained to allow 



successful recognition. Objects may be placed anywhere in the field of 

view of the system, recognition of rotated and scaled objects is pos­

sible by prior teaching. 

Object descriptions are learned by examples. 

The approach taken to the work is primarily at a theoretical level, in 

that the system is not constrained to one particular application. The 

primary objective is an investigation of the use of parallel process­

ing systems that are simple models and approximations to systems which 

are thought to exist in the human nervous system. This has involved 

the use of many ideas from neurobiology and psychology in the design 

of the system, such as distributive memory, edge detection and foveal 

processing. The result has been a new approach to the problems found 

in scene analysis. 

The system has been designed to be readily constructed in hardware, in 

that emphasis has been placed upon the computational restrictions this 

consideration imposes (cost and speed). 

The work has resulted in three main innovations. These are, the gen­

eral approach to occlusion analysis, the design of an affective con­

tent addressable memory, and a novel form of N tuple pattern recogni­

tion for grey scale image data. 

As a result the work is of use in two subject areas. Firstly the prob­

lems of brain sciences - how information may be processed and stored 

in the brain, and secondly the design of a practical vision system. 

The hardware concepts draw upon the N tuple pattern recognition tech­

nique. This has been applied successfully to the recognition of hand 

and type written data and the recognition of parts on a production 

line. The process has been implemented in WISARD, a dedicated pattern 
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recognition system. 

This thesis may be broken up into five main sections, each covered by 

a number of chapters. 

Chapters 2 and 3. 

A review of scene analysis techniques and the N tuple pattern 

recognition process. 

Chapter 4 

An overview of the scene analysis technique to be used to dis­

cover occluding information. 

Chapters 5,6,7 and 8 

A review of associative memories, followed by the design of an 

associative memory suitable for the system proposed in chapter 4. 

Followed by an analysis of the storage properties of the memory. 

Chapters 9,10,11 and 12 

The design of the input processing stages of the recognition sys­

tem, followed by experiments examining the abilities of the system. 

Chapter 13 

The internal description of the scene used by the system and its 

construction. 

This is followed by a concluding chapter which identifies further work 

in the light of what has been achieved. 

3 



CHAPTER 2 

Scene Analysis - A Review 

2. Introduction 

The object of this chapter is to review the approaches to scene 

analysis that are of relevance to this thesis, and to highlight the 

general problems of each approach and their specific problems in rela­

tion to occlusion analysis. Finally, the essential elements of the 

ideal scene analysis system will be identified. 

Previous approaches will be discussed under 3 basic headings. These 

headings are somewhat arbitrary but are convenient in capturing the 

central features of each approach. First there are computational 

approaches which cover work considered to be in the realms of Artifi-

cial Intelligence. Next are pattern recognition approaches fore-

runners of the AI approach, only more mathematical (less symbolic) and 

essentially 'serial'. Finally, there are the parallel approaches 

systems which have been specifically developed to be implemented on 

parallel hardware. The approach taken in this thesis comes under the 

last heading. 

2.1. Computational Approaches 

These approaches have been made by the AI community and are character­

ised by the use of a 'structural description' of objects to be recog­

nised. A 'structural description' is a high level description of a 

shape, usually containing information on the vertices that make up an 

object and their relation to each other. The approach was restricted 

initially to scenes containing only polyhedra (see 

(BodenI977,BradyI981) ) but later extended to more natural scenes not 
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just containing objects with straight edges. To begin with the work 

concentrated on extracting 3-dimensional descriptions from 2-

dimensional scenes (Guzman1968) using geometric constraints applicable 

to 2D views of polyhedra only. The basic idea can be shown by a sim-

pIe example. Consider the cube shown in Fig 2.1. 

Q b 
~---.:...---------

( 

b 
b 

Cube 

Q b 

~ I ~ 
Q 

\ 

b c 

Possable vertices 

= 

= 

( 4 Concave edge 

fuckground 
Boddy of object 

Fig 2.1 

In considering how cubes are made up, it can be seen that only certain 

3D constructions of vertices are possible, i.e those shown in Fig 2.1. 

Each vertex has a set of possible 3D interpretations, i.e vertex 'a' 

in Fig 2.1 can be seen as a corner coming out at you, or a corner 

going in to the page (convex or concave). An initial assessment might 

give both as possible. Similar conclusions can be made about other 

vertices. 

By taking one possible interpretation and applying the rule that an 

edge remains the same 'type' along its length in polyhedral scenes 

(The type of edge is determined by the vertex and can be convex or 

concave) a restriction is placed on what form other vertices can take. 

As a result the image is reduced to a 3D description. The 'cube' in 
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Fig 2.1 can be seen in two ways; as a cube or as a square with 2 sides 

added. 

Note that no descriptions of the objects are needed to 'see' the scene 

in 3D. The use of structural descriptions overcomes the ambiguity as 

in the above example of a cube (i.e. is it a cube or a square with two 

sides ?). If only one interpretation is known to be possible, then 

the scene is constrained to it. Also local searching can be applied 

when expected edges are not clearly defined, through noise etc. Such 

examples of using knowledge of objects in this 'top down' manner is 

found in Shirai (Shirai1973). 

An important aspect of the structural description of objects is their 

position, size and rotation invariance. A description of an object 

can be made by indicating the vertices, edges and edge types relating 

to the shape. This can then be matched to the data derived from the 

image. With this knowledge it would be possible to detect occlusion 

after the object has been matched with its description by finding 

which areas of the object are missing, and discovering if any objects 

are present in these areas. 

Although the general method of occlusion analysis indicated above is 

used in the system developed in this thesis, the process of object 

identification was thought to be too slow and complex and not easily 

applied to 'natural' scenes containing high amounts of noise. A 

further problem was in the acquisition of object descriptions; no fast 

way of deriving a stable description could be made, other than coding 

the three dimensional descriptions by hand. It can be noted here that 

human intervention is one indication of the complexity of problem, the 

apparently simple task of converting the image to a description that 

could be used by a machine could not be done by machine. 
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Another approach to scene analysis has been pursued by Marr (Marr1982) 

and is perhaps a cornerstone in vision research. It typifies the gen­

eral approach made by a large part of the AI community. Most of his 

work has been aimed at making explicit basic parameters present within 

an image so that higher level systems are able to use the information 

in the process of recognition. The compilation of what is termed the 

2 1/2 D sketch is done by extracting information present locally over 

the image, such as brightness, presence of surface discontinuations 

(edges), depth of points, followed by analysis of this to indicate 

motion and surface o~ientation of every point in the scene. The final 

'sketch' is a (very large) set of parameters describing the raw image. 

This process of setting parameters has been well documented, but the 

process of recognition has not been so well defined. 

The following processes are needed before the raw data given by the 

above can be matched to some type of object description. Firstly a 

co-ordinate system needs to be imposed on the shapes present to indi­

cate the relationship between these shapes. If one considers an image 

of a man, this process would define the principal axis, then go on to 

define axis of arms, hands, fingers etc. and the relationship between 

them. This description is then matched to the models in the database. 

Little work has been done on the 'recognition' stages of the theory 

and so conclusions about its abilities cannot be made. What is clear 

is the amount of processing involved , mostly at the low level, in the 

computation of the 2 1/2 D sketch. Convolutions with complex opera­

tors are needed, prompting the development of parallel arrays of 

multi-processor computers to enable processing in real time. 
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2.2. Pattern Recognition Approachs 

The main application of the pattern recognition approach is not to 

'understand' the scene or put it in to context, i.e identify a man 

taking a dog for a walk, but concerns the problem of classification of 

shapes or, more generally 'patterns' i.e. identifying a man and a dog 

within the scene. In some cases of scene analysis it may be unneces-

sary to actually classify objects - only to segment the scene into 

regions belonging to different objects. To do this motion information 

could be used. This point is made to clarify what pattern recognition 

is, i.e. the specific identification of patterns and assignment of a 

label to each object in an image. 

The methods of pattern recognition are reviewed below' giving the 

strengths and weaknesses of each. All the methods described in this 

section are serial processes, i.e. they are designed to be implemented 

on a serial computer with von Newman architecture. The obvious limi-

tation of these serial processes is their speed of operation. In 

large scenes many operations are needed and, unless they are processed 

on multiple processor machines (i.e. parallel processing of serial 

algorithms), they are often extremely slow. If implemented on parallel 

processing machines the cost factor becomes important. More specific 

problems are covered under the descriptions of the individual methods. 

2.2.1. Syntactic Pattern Recognition 

Syntactic pattern recognition is based upon the use of grammars to 

express what an object is. It can be likened to the recognition of 

words in a sentence. We know that for the word 'hello' the letters 

need to be arranged in a particular order, and if their order is dif-

ferent, a different word is present. Similarly if we consider a 
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shape, where the vertices are the letters and the edges indicate the 

order, a grammer can be used to discover what the shape is. For the 

shape shown in Fig 2.2 the sentence 'abcd' can be used to characterise 

the object. Each letter characterises a vertex at a particular orien-

tation, their order of presentation indicating how they are connected 

to form a shape. This string is named a 'grammar' and is used for the 

recognition of the shape (GonzalezI978) ,a number of such grammars for 

the recognition of many shapes being termed a 'language'. Recognition 

is a simple process. The scene is converted into a string, and then 

parsed using the language constructed previously. The classification 

of the shape is given by the grammar that fits the present string. 

This approach has been used by Ullman (UllmannI983) on occluded 

images to decide which objects are present. His application has only 

been applied to ID images. Such images are made up of strings of 

letters representing objects e.g. if two objects were represented 

'ABCDEF' and 'HIJKL' , a possible ID image containing these objects 

would be 'ZZZZHIJABCDEFZZZZ' , where one object overlaps the other on 

a background of Z's. The process is to be applied to 2D images in the 

future. 

The main criticism of the syntactic approach is the problem of reduc-

ing the image to a string ; processes such as thining, edge detection 

and edge tracing have been applied to enable this. Given a noisy 

and/or incomplete object, the process of deriving the string describ-

( 

a b 

Fig 2.2 
Simple object. 
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ing the scene and matching this to the grammars can be complex if not 

impossible - especially in scenes containing many objects. A further 

disadvantage is the difficulty in performing the process in parallel, 

enabling high processing speeds for large images. Since the operation 

is essentially serial only limited parallelism can be applied, mainly 

at the preprocessing stages. 

Furthermore, selection of operators which identify the components mak-

ing up the grammar (i.e such as lines, vertices, etc.) is difficult. 

The approach uses special operators which need to be programmed. Their 

reliability in detecting the features they are designed to recognise 

can only be guaranteed in a restricted environment, although the use 

of adaptable operators, as described in Aleksander and Wilsons paper 

(Aleksander1985) and also in chapter 3, may overcome this problem. 

The strength of the syntactic process is in its ability to analyse 

scene information, i.e it is simple to define a string that describes 

an arch made of blocks (bottom left block, long block on to, bottom 

right block). The representation of an 'arch' would be fairly posi-

tion independent and could be recognised by applying the grammar for 

an arch to a low level set of descriptions of blocks and their posi-

tions. This use of syntactic pattern recognition at a higher level 

would also be fairly straightforward. 

2.2.2. Discriminant Analysis 

This process is based upon the idea of representing the patterns to be 

recognised in feature space, and then separating this space in such a 

way as to allow separation of the classes of object present. The idea 

of a feature space is shown in Fig 2.3. Each shape is plotted in 

feature space depending on the number of vertices and its average grey 
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Fig 2.3 
Feature space representing the shapes shown. 

level. A line can then be drawn between the two 'clusters' of points 

which, if many features are selected and represented, is termed a 

'decision surface'. In the case above, the line can then be described 

in terms of an equation of type '-

d(x) = WI • Xl + W2 • X2 + W3 • I 

Where Xn are the feature variables, and Wn are the weights, adjusted 

so that d(x) > 0 for one cluster, and d(x) < 0 for the other (W3 is 

included to provide classification of shapes which may lie at the ori-

gin if W3 were not included). Thus the pattern can be classed if the 

feature variables are known. For the case above it is quite simple to 

choose a set of weights to satisfy the decision criteria. The problems 

with this process arise when many features are needed to enable a 

decision to be possible. In this case the selection of weight is com-

plicated and it is not possible to determine whether a set of weights 
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can satisfy the decision criteria beforehand (Stonham1985). A further 

problem is found when a linear surface cannot separate the classes of 

shapes and one has to resort to a non linear decision surface. To 

enable the application of a linear decision function to the data, a 

non linear transformation is applied to the feature variables. This 

further complicates the problem in that the selection of the transfor-

mation applied to the data is complex. 

A class of machines known as perceptrons (Rosenblat1958) were 

developed to adaptively discover the weights needed to partition the 

feature space automatically by the presentation of example patterns 

within each class. These machines were based upon a simple model of a 

neuron initially proposed by McCulloch and Pitts (Culloch1943). 

Unfortunately these machines were shown to be unable to solve certain 

classes of problems such as parity, connectedness etc by Minsky and 

Papert (Minsky1969). 

For example, it can be shown (Stonham1985) that these devices will not 

find a solution to the following 'EXOR' problem. 

If d(x) > Wi 1 + Wii 0 + Wiii } class A 

d(x) > Wi 0 + Wii 1 + Wiii } 

d(x) < Wi 1 + Wii 1 + Wiii } class B 

d(x) < Wi 0 + Wii 0 + Wiii } 

No weighting arrangement can satisfy the above equation, where the 

values 1 and 0 relate to feature values. Only by appling binary logic 

with specific N tuple mapping to the problem can it be solved (This is 

covered in chapter 3). A set of patterns relating to the equations 

are given in Fig 2.4. 

In general this method can be slow and unpredictable (the selection of 
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weight and features is difficult), and has the limitations suggested 

above. However, if a solution can be found, simple hardware can be 

used to implement it. It must be pointed out that the n tuple pro-

cessing technique is similar to that used in perceptrons, but is 

dependent on logical rather than linear functions and is covered in 

detail in chapter 3. 

2.3. Parallel Approaches 

This section discusses both 'Pattern recognition' and 'computational' 

approaches that can readily be constructed in a parallel architecture 

machine. That is, the computations required are mainly done on all 

pixels in the image at once, rather than needing to process each pixel 

or group of pixels in turn. 

2.3.1. Fourier Methods 

This recognition approach is interesting because it allows recognition 

of a shape at any orientation or position in the input image, without 

the need for brute force searching processes. Basically, the approach 

extracts the spatial Fourier frequency components of a scene contain-

ing the object to be recognised. The amplitude and phase relationships 

between the Fourier components is recorded. During recognition the 

object is identified by applying filtering at the recorded Fourier 

frequencies over the scene. The result is that the object is enhanced 

within the scene and detection of this 'bright' area results in recog-

nition. 
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The process can be implemented as a fast parallel optical process and 

is used for military applications where speed and simplicity (leading 

to reliability) are important. It suffers from the limitation that it 

only works effectively in simple scenes where only a few objects are 

present(Pinker1985). 

2.3.2. Template Matching 

This is one of the most basic methods of pattern recognition. It is 

based on the use of a 'template' or 'mask' formed from the example 

image. In its simplest form the example image is the template. For 

each shape classification there is a template or set of templates. The 

comparison between a shape in the scene and a template can be as sim-

pIe as finding the Hamming distance between the two images (applied to 

binary images, a measure of the number of bits different between the 

template and the input image), or a more complex match when grey level 

images are used. The best match yields the most likely object in the 

image. In this case a match such as finding the Euclidean distance 

can be used, 

distance 

here Xi and Ai are pixel values in the template and input image 

respectively. This computation can be slow in large images and sim-

plifications are used with correspondingly less reliability, e.g. the 

'City block' distance and the 'square' distance (Stonham1985). 

Problems in template matching relate to the number of computations and 

the storage requirements needed for all the templates. If we assume 

that a 256 by 256 pixel image is used, the number of computations 
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needed to match this against a possible 100 templates of this size is 

in the order of 10
6 

for a binary image, and many more if a grey scale 

image is used. 

Template matching in its simplest form is a linear process. For any 

given template which is matched on one image, the hamming distance of 

the template with the image will increase linearly as the amount of 

noise is added to the image. A non-linear template matching process 

can be constructed which uses more than one template per class at any 

one time. Both templates are applied to local areas of the scene. 

(Both templates are smaller than the total scene size). As the scene 

degrades due to more noise or distortion, each template will be 

effected by differing amounts. Thus the sum of Hamming distance of 

both templates rises non-linearly as the image degrades. It will be 

seen that this process is very similar the N tuple process described 

in chapter 3. 

The process of template matching is very sensitive to the position of 

the object in the input scene. For successful recognition the object 

needs to be in the position it was taught. This either restricts the 

types of images the method can be used on, or requires many templates 

to be used - giving views of objects in all positions and increasing 

the memory used. 

Two recent examples of the application of template matching to recog­

nise occluded objects are given in Turney (Turney1985) and in Berman 

(Berman1985). Both use various methods of optimisation to speed up 

the process and give it position and rotation invariance capability. 

Turney uses the Hough transform (See Turney (TurneyI985) for refer­

ence) as well as a radial template to achieve this, whilst Berman 

resorts to more heuristic processes, such as looking for invariant 
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features to centre the object, then using a shift register technique 

on a radial template to allow rotation independence. Unfortunately 

both are essentially serial approaches, leading to problems in imple-

menting them in parallel hardware. 

2.3.3. N Tuple Methods 

N tuple recognisers will be covered in detail in chapter 3. The 

method is very similar to that used in perceptrons (see above) in that 

a number of individual processing units look at local areas of the 

image and combine their results to form one result. They differ in the 

way the information is processed at each processing unit. In percep-

trons data is processed linearly, whereas in the N tuple method binary 

logic is used at each processing unit. N tupling methods have various 

attributes that outweigh previous methods. Briefly they are memory 

efficient, directly implementable in parallel hardware and therefore 

fast. They are able to solve the recognition problems posed in the 

discussions on discriminant analysis, but are unable to recognise pat-

terns not in the position they were taught. However, they have been 

applied to simple scene analysis problems in the past and have been 

shown to be effective (Dawson1976). 

2.4. Main Aspects of the Scene Analysis System 

This section draws upon the conclusions of the above discussions to 

define the various attributes and features that a scene analysis sys-

tern should ideally contain. 
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2.4.1. Acquisition of Shapes to be Recognised 

Adapting any recognition system to recognise a set of shapes can be a 

time consuming process if the objects are to be manually encoded into 

the system. Humans are able to recognise objects by simply presenting 

the shapes to the viewer. Ideally a recognition system should acquire 

object descriptions in a similar manner. As well as the advantages of 

speed and flexibility, in some circumstances the set of objects to be 

recognised is so large that manually encoding shapes into the system 

may be impossible. A system which is able to create object descrip-

tions independent of human assistance would be able to perform optimi-

sation between any example patterns and those stored in such a way as 

to make recognition very reliable. 

2.4.2. Parallel Architecture 

The use of parallel architecture systems is important in vision where 

large numbers of computations are needed. Normaly images contain at 

least 512 x 512 pixels. To perform even simple operations on the whole 

image would require a very powerful serial processor if the task is to 

be done in a reasonable amount of time. The use of parallel systems 

increases speed whilst reducing cost - although at the cost of machine 

flexibility (Brady1983). Furthermore specific parallel processes 

should be developed, rather than developing serial processes, then 

later on considering implementation in a parallel system. The use of 

this approach is more likely to result in systems that are simpler to 

implement, more cost effective, and work at a greater speed. 
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2.4.3. Position Invariant Recognition 

A system must be able to recognise an object in any given position in 

the input scene, at any rotation and size. Whether this is by an 

active transformation process bonded to a canonical description of a 

shape in memory, or by a more brute force approach of learning all 

views of a given shape, is dependent on implementation considerations 

such as cost, speed and reliability of recognition. 

2.4.4. Object Generalisation 

In most circumstances objects presented for recognition will not be 

exactly like any objects previously entered into the system. To allow 

recognition of shapes outside the set of taught objects,' the system 

must be able to generalise between different pattern sets. This can be 

characterised by an example of two shapes represented in pattern 

space. In discriminant recognition a linear surface partitions the two 

sets of shapes so that objects which lie on either side of the surface 

can be recognised as belonging to one pattern class. Although no exam-

ple class may lie in the same position in the feature space during 

previous teaching as the object being viewed recognition can still be 

successful. This is an example of generalisation and is a very impor-

tant aspect of pattern recognition. 

2.4.5. Recognition Environment 

Ideally, the system should recognise objects independent of lighting 

conditions and variations in the amount of 'noise' present within the 

image. Noise can either be due to other shapes present within the 

input scene, or due to random interference due to electrical distur-

bances, camera optics etc. 
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2.4.6. Input Image Data 

To reduce the cost of implementation, the input image data supplied to 

a recognition system must be as simple as possible, but not so res-

tricted as to prevent recognition of very similar shapes in a scene. 

To recognise any object the system could provide a large amount of 

data about the scene such as colour, grey level data or even stereos-

copic views of the image. However, if the object could be recognised 

using purely binary pixel data the extra information provided to the 

system would be wasted and involve unnecessary cost. The needs of a 

system must be accurately analysed in relation to the task before any 

consideration of the recognition process. 

2.5. Summary 

This chapter has reviewed the area of scene analysis and outlined the 

attributes a recognition system should possess if it is to be success-

ful. 
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CHAPTER 3 

N Tuple Pattern Recognition - An Overview 

3. Introduction 

This chapter describes the N tuple method of pattern recognition, and 

gives an account of its development. 

3.1. N Tuple Fundamentals 

The n tuple principal was first described by Bledsoe and Browning 

(Bledsoe1959) and was originally applied to the recognition of hand 

and type written characters. This application was widely studied in 

the 1960's (Bledsoe1959,Bledsoe1961,Bledsoe1962,Highleyman1960) , dur­

ing the 1970's and 80's studys concentrated on its use in scene 

analysis (Dawson1976), and face recognition (Stonham1986,Wilkie1983). 

The description of the N tuple process that follows will be theoreti­

cal, an account of the formal analysis will be given later. The N 

tuple process described here is that originally given by Bledsoe and 

Browning (Bledsoe1959), and remains the predominant method used. 

The method can be broken down into 2 distinct processes, the first 

being 'teaching' or evolving operators to respond to a class of pat­

terns, the second being 'testing' or recognition of an unknown pat­

tern. Similarly the structural aspects of the process can also be bro­

ken into distinct areas, the N tuple sampling, and subsequent logical 

processing. 

Consider the scene in Fig 3.1 containing a single square, N tuple sam­

pling consists of selecting a set or tuple of N small regions from the 

scene. If the scene had been processed with a television camera and 
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Fig 3.1 
Example of one 4-tuple (A - D) 

sample from an image. 

then converted to pixels, each pixel with a value of 1 or 0, an N 

tuple sample would then be a group of pixels from the scene. Many 

such tuples are sampled from the scene and the way in which the sam-

pIes are taken is important and is termed the 'mapping' of the sam-

pIes. For now a simple random mapping can be considered where each 

pixel is randomly selected from the scene, with the requirements that 

no one pixel is selected for more than one N tuple. Fig. 3.1 illus-

trates the selection of 4 pixels for one tuple. 

The values of each N tuple can be represented in the form of binary 

logic. If pixel A is white it is written A, if it is dark as -A. For 

the sample shown n fig 3.1 the tuple the tuple can be written as 

-A.B.-C.D • This indicates that pixels BAND D are white AND, A AND C 

are dark. The logical relationship between the pixels has therefore 

been described formally. Other N tuple samples taken from the scene 

will give different logical expressions. For instance, 

I.-J.K.L 

The pattern in figure 3.1 is only one example of a square. If all 

squares are to be recognised we need to record all the functions they 

produce. A second set of N tuple samples for another example of a 
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square may be, 

-A.-B.C.D 

-E.F.G.-H 

I.-J.-K.L 

These logic terms can then be grouped with the previous set in the 

following manner, 

-A.B.-C.D + -A.-B.C.D = tuple 1 

-E.F.-G.H + -E.F.G.-H = tuple 2 

I.-J.K.L + I.-J.-K.L = tuple 3 

A set of logical functions has now been created which describe the 

class of objects known as a square. To recognise a given square the 

image can be broken up into N tuple samples as above and the functions 

previously produced applied. Each function that is satisfied is 

counted giving a response for that pattern. On its own this response 

can be viewed as a measure of how well the image fits the known 

objects. Normally it is necessary to say whether an image contains 

one of a set of objects or is one of a class of shapes. To do this a 

circle, say, can be presented to the system and the logical functions 

built up as before. These functions would be separate from those pro­

duced for the square although they would be generated using the same 

mapping for the N tuple samples. 

A typical set of functions for a circle may be, 

A.-B.C.-D + -A.-B.C.D = tuple 1 

-E.F.G.-H + -E.-F.-G.H = tuple 2 

I.J.-K.-L + I.-J.K.L = tuple 3 

During testing on an unknown shape, these functions and those for the 
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square would be applied to the scene and the number of functions 

within each group (circle or square) which match the input scene 

counted. The group with the highest number of matching functions 

indicates the class to which the shape belongs. 

For instance, an input image may contain the following samples, 

A.-B.C.-D = tuple 1 

-E.F.-G.H = tuple 2 

I.J.-K.-L = tuple 3 

This group contains two terms present in the circle group of functions 

and one term present in the square group of functions. Thus the input 

image is more like a circle than a square. 

The power of this method of pattern recognition is its ability to gen-

eralise, that is, the ability to recognise a pattern as one of a par-

ticular class of shapes, even if the system has not been set up to 

recognise that exact shape. For instance, the set of functions which 

was constructed from the two examples of a circle can be used to 

recognise a generalised set of 8 shapes. This can be shown by taking 

one minterm from each of the three functions for the circle, i.e 

A.-B.C.-D = tuple 1 

-E.-F •. G.H = tuple 2 

I.-J.K.-L = tuple 3 

These can be used to recognise a circle even though no circle has 'been 

presented which contains these functions. In general, the size of the 

generalisation set, IGAI, is given by 

where K, = the number of subpatterns seen by the j'th N tuple sample 
J 
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during teaching. 

It can be seen that the more N tuple samples that are taken from the 

scene, the larger the generalisation set. This is looked at in more 

detail below. 

For more details on the generalisation properties of the method see 

Stonham (Stonham1985). 

3.1.1. N Tuple Processing and the EXOR Problem 

In chapter 2 it was stated that the N tuple method is able to solve 

the EXOR problem which could not be solved using a linear classifier. 

The problem surrounds the need to partition a feature space as shown 

in Fig 3.2, so that A and B lie in one classification and C and D lie 

in another. It was shown in chapter 2 that no linear surface can be 

drawn that satisfies this criterion. 

To explain how the N tuple method may be used to solve this problem 

consider the set of example images shown in Fig 3.3. Each image is 

made up of two regions which can be either black or white. The labels 

for each image match those for the ones given in the feature space 

xc 

x 
a 

xb 

x axis = light intensity of left block of shapes in fig 3.3 
y axis = light intensity of right block of shapes in fig 3.3 

Fig 3.2 
Feature space representation of the shapes 

shown in Fig 3.3. 
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Example images for classification. 

graph above. Using a specific simple mapping of tuples from a single 

decoder and two simple discriminators, the problem can be solved. Fig 

3.4 shows the arrangement of the N tuples. The discriminators, DO for 

class 1 and Dl for class 2, are shown after teaching on the patterns 

given above. It can be seen that on presentation of pattern A output 

(ii) from the decoder will be activated. This will recall the associ-

ated location in the discriminator. In Dl a 0 is stored and in DO a 1 

is stored. Thus discriminator DO fires maximaly indicating class 1 is 

present on the input. Conversely, if pattern C is placed on the input 

array, location (i) will be accessed in both discriminators. Since 

location (i) is only at 1 in discriminator Dl, the system will indi-

cate the pattern belongs to class 2. 

" 1 
o 

1----10 

Decoder 

o 
1 
1 
o 

Response 

Fig 3.4 
N tuple arrangment to solve the EXOR problem. 
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The system above has effectively learned the following logical func-

tions, 

D1 = p.q + p.-q 

where p and q are labels for the separate areas in the input array 

shown in fig. 3.3. 

The mapping of the tuples within the input scene is of primary impor-

tance in this case. If the tuples are not placed so that at least one 

line from one tuple falls in to region p, and another line from the 

same tuple into region q, the patterns will not be discriminated since 

the logical functions shown above will not be possible. 

3.2. Implementation of The N Tuple Method 

The N tuple pattern recognition method has recently been implemented 

in dedicated hardware, see (Wilkie1983,Aleksander1984) and Aleksander, 

Thomas and Bowden (Aleksander1984). The system, WISARD, is a parallel 

implementation of the N tuple pattern recognition method using random 

access memories (RAMS) to record and compute the logical functions. To 

understand how this implementation works consider the diagram in Fig 

3.5. 

This illustrates the basic elements of the N tuple method as used in 

WISARD. A 2 x 2 bit input array is shown. The lines A and B form one N 

2 
tuple sample which feeds a device capable of computing all 2 logical 

functions the tuple can take. This decoder SO and a second decoder Sl 

with separate sets of input lines from the scene, temporarily record 

the functions computed in an array T. The output lines from decoder SO 

compute the following functions, 
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Fig 3.5 

DO 

Basic N-tuple process 

a = A.B 

b = A. -B 

c = -A.B 

d = -A. -B 

D1 

Th two arrays DO and DI are used to record the state of the array T 

after each presentation of a pattern in the input array. DO and DI are 

termed 'discriminators' because they are each assigned to one class of 

shape. There are normally as many discriminators as classes of shape 

to be recognised. 

3.3. Teaching 

Teaching the system to recognise a set of shapes proceeds as follows. 

Here 2 classes of shapes 'i' and 'j' are considered. An example of 'i' 
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is placed on the input array and the functions produced by the 

decoders placed in the array T. This array is then logically OR'ed 

with the array DO (assigned to class i) and the result placed back in 

DO. This has effectively recorded the logical functions which relate 

to the present patterns. Other examples of class i may be placed on 

the input array and the data set up in T is again OR'ed with the pre­

vious data in DO. Patterns in class j are taught in the same way but 

now selecting Dl to record the decoder states. Teaching is complete 

when all patterns have been presented. 

3.4. Testing 

Recognition of unknown patterns is termed 'testing'. This process 

proceeds in the same way as teaching, up to the point of creating the 

array T. Once this is created it is AND'ed with each discriminator DO 

and Dl to discover which logical functions match those previously 

presented. The result of AND'ing T with DO is a vector with a number 

of bits set, where each bit indicates a match with a function set up 

during teaching. The number of bits set to 1 in this vector is summed 

and given as a response Cl. A similar process is performed on Dl to 

give a response, C2. To decide which pattern is present on the input, 

the highest response is chosen. 

3.5. Hardware Implementation 

In the system described above the decoders and discriminators can be 

implemented using a commonly available random access memory (RAM). 

This device contains the necessary decoder, which computes the logic 

functions of each N tuple sample, and the storage elements needed to 

record them. In the simple case shown in Fig 3.6, one RAM is used for 

each N tuple sample. This shows the discriminators and decoders 
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Fig 3.6 
N Tuple method as implemented in RAM's 

incorporated into the RAMS. Only one discriminator is shown. The 

data output lines are summed to produce a response. All RAMs have 

their data inputs set to 1, so that during teaching a bit is set to 1 

at the location addressed by the address lines. A teach or test is 

selected by activation of the read/write lines on the RAMS. 

The ability to implement the N tuple method in the form of RAM's has 

enahled the design of systems capable of teaching and testing at 12 

operations per second (Aleksander1984). 

3.6. Effects of Varying the Size of N 

First let us look at the case where N = 1. When this is done the input 

image is effectively reproduced on the input array in fig. 3. 7 During 

testing, the process of AND'ing the input image with the memory is 

effectively a template or mask matching process (Stonham1985). The 

response from a discriminator will indicate how well the input image 

matches the stored representation (as shown in Fig 3.7). 
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Teaching and testing when N = 1 

The problem with setting N to 1 can be shown by an example where a Q 

and an 0 are to be recognised. If many examples of these shapes are 

presented, the effective template in the memory will be blurred as 

shown in fig 3.8 • This will prevent Q or 0 being discriminated since 

both patterns would cause the same response on the discriminator out-

puts. To overcome this problem one possible solution is to use one 

discriminator for each example of a letter. This process would reduce 

the method to a nearest neighbour recognition process. Although this 

is effective as a pattern recognition process, it requires large 

amounts of memory to save all the templates and lacks the generalisa-

tion abilities of the N tuple method. 

'0' 'Q' 

Fig 3.8 
Blurred 'Q' and '0' 
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If we now consider the case where N equals the size of the image (S) 

another problem arises. We now have 2
S 

functions possible on this sin-

gle N tuple sample. If the image is of 1000 pixels, the amount of 

storage needed defeats most practical systems. Furthermore, the effect 

of setting N = S is that images need to be exactly the same as taught 

to allow successful recognition. In this form the N tuple method is 

the same as a library search (Kohonen1977). Here the image is treated 

as if it were a long binary number, which is used as an address to a 

location in the memory that contains a flag to whether the pattern has 

occurred before. Normally hash coding etc. can be used to reduce the 

storage problem but the lack of generalisation and speed is still a 

problem. 

Therefore, at the extremes of N, recognition is limited normally N is 

set to a value inbetween these two extremes. The exact effects of 

various sizes of N have been studied in detail (see 

Bledsoe1959,Bledsoe1961,Bledsoe1962,Ullman1969). The general effect is 

shown in Fig 3.9. For low N tuple sizes little teaching is required 

to obtain maximum possible recognition ability. As the N tuple size 

increases more teaching is needed to obtain maximum recognition suc-

cess. Therefore as general rule, the higher the N tuple size, the 

100 R: Recognition success (eta) 
N : N tuple sample size 
a - e : Increasmg arrounts 

of teaching 

Fig 3.9 
Recognition Success for different sizes of N. 
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higher the recognition success but at the cost of more training. 

The concept of saturation is important here. With low N tuple sizes 

all possible functions on all N tuple samples can be produced by the 

presentation of a small number of patterns for teaching. It follows 

from the discussion on generalisation that this reduces the specifi-

city of the system to recognise only the patterns taught. This effect 

is known as saturation as it causes all locations within the memory of 

the hardware system to be set to 1. 

3.7. Relationship of RAM's with Neurons 

The RAM as used in the N tuple method has many features in common with 

neurons present in the nervous system (Aleksander1983). . At a simple 

level a neuron is an adaptive processor receiving a variety of stimuli 

on its afferent fibres (dendrites), processing these to produce an 

efferent response (see Fig 3.10). 

In a similar way the RAM used in the N tuple method receives a set of 

inputs (address lines) and produces a response which is adapted by 

teaching (See Fig 3.11). However, neurons process linear values and 

probably function more like an adaptive linear discriminator (Ston-

ham1986). 

R 

R = f(plq.r,~t) 

Fig 3.10 
Typical Neuron 
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Fig 3.11 
Typical RAM. 

The N tuple process has other similarities with the human nervous sys-

tern in that it processes information in a distributed manner, and has 

the ability to resist local damage. If one RAM in an N tuple processor 

fails, the ability of the system to recognise patterns will only drop 

slightly. 

3.8. The N Tuple Method as ~ Feature Recognition Process 

The use of N tuples effectively allows recognition of general features 

present within a pattern. Features in their strict sense are common 

sub-elements of a pattern, i.e vertices, edges etc. A pattern can be 

stored by remembering the features that make it up. If each feature 

was given a label needing less storage space than a feature, memory 

storage would be saved. 

Approaches made by others (Waltz1975) defined exactly what features 

were to be recognised and stored a priori. The problem with these 

approaches is that it is not clear which features may be present in a 

pattern. The process of devising and labelling all possible features 

that could be present becomes a long and arduous task. The use of ~ 

tuples overcomes these problems. Each N tuple decoder effectively 

codes all allowable states that could appear on its N inputs. 

The output of the decoder is effectively a label representing one pos-

sible input feature. Furthermore all possible features over the ~ 
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inputs to a decoder are represented on the decoder's output as dis-

tinct states. The discriminator records which features have been 

present during teaching. The memory space saved by this process is 

obvious. If you have a 4 tuple decoder it can represent 16 features 

and respond to any subset of these. If each tuple was represented in 

its entirety, it would require 16 x 4 = 64 bits of storage. 

3.9. Response Thresholding 

The basic N tuple technique can be depicted by the block diagram shown 

in Fig 3.12. There are various ways in which the responses can be 

processed to indicate what images are being recognised. 

The simplest technique is to indicate which discriminator is respond-

ing highest (using an absolute threshold). Since each discriminator 

belongs to a certain class of shape, this process is sufficient to 

indicate which object the system is looking at. It is also normal 

practice to give a confidence value for this decision. This confidence 

value can be used to determine whether the decision is an acceptable 

one. If the confidence is above a set value (relative threshold) the 

decision is passed, if not, it fails. More formally, the process of 

Input 
pattern 

o 

Fig 3.12 
N-tuple process. 
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accepting a classification is as follows. 

X is a member of riff Rr > Ki 
and Rr - Rs > Kj 

where Ki = Absolute threshold 
Kj = Relative threshold 
Rx = Response of discriminator 
X = Input pattern 
r = classification 

x 

Another method of determining the class of th . t t e lnpu pa tern was 

described by Bledsoe and Browning (Bledsoe1959). This uses the pro-

file of the responses from all of the discriminators to determine the 

class of the shape. 

If we have a system with, say 4 discriminators taught on an alphabet 

of 'A' , 'C', and 'D', we can then use this to recognise all of 

the remaining letters 'E' to 'Z'. The first stage is to teach the pat-

terns for the letters 'A' to 'D', then test the memory on all the 

other letters noting the response from all the discriminators, such 

that we now have a data base of responses one for each letter. 

On testing an unknown pattern the responses generated are compared 

with each in the data base the best match wins. 

This results in a reduced memory use (only 4 discriminators are 

needed). Bledsoe and Browning used a variation of this by teaching 

only basic feature patterns to the memory, one to each discriminator. 

The result was recognition which was as least as good, if not better 

when recognising hand written characters. 

This approach has been looked at more recently by Stonham (Ston-

ham1986). 

This method can be compared to natural systems, where it is unlikely 

35 



that each pattern recognised by the nervous system has one cell relat-

ing to it. It is more likely that the responses from a collection of 

cells indicates the label of a pattern. The idea is extended in the 

associative memory to be described later, in the way the class pattern 

is used to identify one particular pattern. 

3.10. Input Processing Variations 

The basic N tuple processing input has four broad areas of variation. 

These relate to:-

1 Distribution of N tuple samples - Random or regular 

2 Distribution of N tuple samples - Local or global 

3 Distribution of N tuple samples - Multiple or singular 

4 Input data - Binary, grey scale or colour. 

3.10.1. Random/Regular Distribution of N Tuple Samples 

In the discussion of the N tuple method, it was indicated that the N 

tuple samples are randomly distributed over the input array, rather 

than being distributed in a fixed orderly fashion. The main reason for 

this is to allow global relational properties present within the image 

to be recognised. (See next section for fuller description). Bledsoe 

and Browning (Bledsoe1959) looked at the effects of using different 

random placing of tuple samples, (Random mapping), and found little 

effect on the overall recognition of hand written characters. However, 

it will be shown later that non random mappings may be used in some 

circumstances to improve recognition success. 
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3. 10.2. Local/Global Distribution of N Tuple Samples 

Within the random distribution of N tuple samples it is possible to 

constrain the limits over which the samples are placed, as shown in 

Fig 3.13. With local samples, N tuple samples have a fixed small dis-

tance between individual sample elements within the input array. With 

global N tuple samples, the samples are placed at random over a wide 

area of the input array. 

The effects of local and global N tuple sampling can be shown by con-

sidering a system which must recognise the circle in Fig 3.14. This 

shows a cicle present along with a square. Fig 3.15 top shows the N 

tuple codes generated by local and global N tuple samples when looking 

at a scene containing only the circle. The image shown in Fig 3.15 

bottom gives the N tuple codes generated when the scene contains 

another shape. Note that the local N tuple sample is not effected by 

o 
Each descriminator N tuple 
sample distributed within 
a set region 

Fig 3.13 
Limiting the distribution of N-tuples 

Fig 3.14 
Simple scene containing two shapes 
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the new shape whilst the global sample is. Thus, in general, global N 

tuple states are corrupted by peripheral shapes leading to reduced 

recognition success, whilst local N tuple samples are not. 

However, the N tuple samples must not be distributed too locally, 

since this effects the ability to distinguish certain shapes, this is 

illustrated in Fig 3.16. If class A patterns were taught into one 

discriminator and class B into another, presentation of class B would 

yield the responses shown in Fig 3.17 using local N tuple samples. 

The confidence is very low and, as a result, if the image of class B 

1 I 
Local N tuple 
code 

o 
1 Global N tuple 

code 
---+---t 0 

Local N tuple 
code 

Fig 3.15 

Global N 
tuple code 

Patterns taught into a system containing local and 
global distributions of N tuples. 

~'\~ 
ii ~ ClassB 

Class A 

Fig 3.16 
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DA DB 
Discriminator 

Fig 3.17 

was at all distorted, recognition would fail. This happens because 

all the N tuple samples for the class A discriminator have been taught 

on an all black pattern - except for those at the boundary as shown in 

Fig 3.18. The N tuple samples in region A are the only ones discrim-

inating. If the samples are placed more globally, i.e. into the 

region B, the confidence of recognition between class A and class B 

would increase. 

The outcome of all this is that, ideally, N tuple samples should be 

placed globally enough to allow high confidences to arise, as in the 

example, but not too globally to be adversely effected by peripheral 

noise. 

3.10.3. Multiple and Singular Distribution of N Tuple Samples 

In normal N tuple sampling each pixel in the input array is connected 

to only one tuple. This is not absolutely necessary and it is possible 

to connect many N tuple samples to each pixel. The effect of this was 

studied by Bledsoe and Browning and found to improve recognition to 

ii 

A 
V 

[JtJ 
Fig 3.18 

Distributions of patterns. 
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some extent. 

3.10.4. Input Data Binary, Grey Scale, Colour. 

Data in the scene can be represented in many ways in the input array. 

However, the N tuple method requires binary values to be presented. So 

far only a binary threshold input image has been considered. In some 

circumstances it may be necessary to use grey scale or colour informa-

tion, where discriminating information is only available in these 

modalities. To present grey scale data to an N tuple system some 

binary representation must be used. Aleksander and Wilson (Alek-

sander1985) suggest three variations in work done on adaptive edge 

detectors. These are as follows:-

Binary Coded Grey level 

Here the grey level intensity value is put onto the input array as a 

binary number. 

Thermometer Coding 

In this case a 'bar graph' is used to depict the grey levels - one bar 

per pixel in the scene. 

Bit-sliced Connection 

This is similar to the binary coded grey level variation. The first 

stage is to obtain the grey level values of each pixel in the scene 

and represent it as a binary number. Then B different input windows 

are created, where B equals 10g2 the maximum grey level in the image. 

The windows are then filled with the binary pixel values, the first 

the lowest order bits of each pixel value, the 
window contains all 

second window contains the next order bit and so on for all hits In 
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the pixel values. A separate N tuple system is used for each window. 

The response during testing is formed by adding together all the 

responses of each tuple system, Responses from discriminators 

representing the same class are added to each other. 

The conclusions were that bit-slicing was prone to incorrect recogni-

tion, but was the most memory efficient method, thermometer coding, 

was more reliable, and binary coding used a vast amount of memory. For 

further details see the paper cited above. 

Colour input could be done in a variety of ways. Perhaps the simplest 

is to have an input image and an N tuple process for each primary 

colour, similar to bit-slicing. For work done in this area see 

Zissors(ZissorsI983). 

3.11. Optimisation of N Tuple Sample Distributions 

The process of randomly selecting the pixels to which each N tuple 

sample is assigned has resulted in good overall recognition abilities 

for the recognition of a general set of undefined patterns. If the 

pattern set is well defined, in the sense that it is known a priori 

what patterns are to be recognised, it is possible to manipulate the 

positioning of tuples within the input field to obtain better recogni-

tion i.e. higher confidence levels and less probability of error. 

This approach was taken by Aleksander and Stonham (StonhamI974) in 

recognising mass spectra. In a set of any given patterns it was found 

that some tuples were receiving the same tuple codes for all classes 

of patterns. Hence these tuples did not contribute to the recognition 

of the patterns. These tuples were then reconnected to other areas of 

the input array. Also it was found that some tuples were receiving 

2N bi· f tt . thin one particular class. all com natlons 0 pa erns Wl These 
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tuples were not contributing to the recognition of that particular 

class in any way, and so these tuples were alio redistributed. This 

process resulted in an overall improvement of recognition by increas-

ing the confidence of recognition. The limiting factors in this pro-

cess are the time taken to instigate optimisation, and the fact that 

the process can only be carried out when the teach images are rigidly 

defined. 

Optimisation of N tuples was also explored by Bledsoe and Bisson 

(Bledsoe1962). This was applied to a maximum likelihood N tuple 

memory (see later) and resulted in improved recognition. Recent work 

done on optimisation of N tuple samples can be found in Patel 

(Patel1986) • 

3.12. Recognition Optimisation by Controlling Pattern Presentation 

By careful positioning of the patterns to be taught in the input 

image, the recognition abilities of the N tuple process can be 

improved. If the input shape is constrained to a particular position 

and orientation within the input image then recognition will inevit-

ably be more reliable. Similarly, if the input image is carefully 

selected in such a way as to present a good sample of the expected 

variations present within the test set, recognition will improve. No 

qualitative work has been done on the effect careful selection has on 

recognition abilities. However, Bledsoe and Browning reported the 

effects of ~osition and rotation control, and found that it increased 

recognition success to some extent. 
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3. 13. Position Invariant Recognition 

One of the maJ'or drawbacks with the N tuple pattern ' , recogn1t10n system 

is its inability to recognise patterns not in the position in which 

they were taught. To produce position independent recognition a pre 

processor can be used to align the image before recognition. Alterna-

tively, the object can be taught over a range of positions. 

An interesting idea used by Bledsoe and Browning may also overcome the 

problem of position independence. This is similar to a process 

described earlier where the response from a set of discriminators, 

taught on a subset of the shapes to be recognised, was used to iden-

tify the unknown shape. If this process is altered slightly position 

independence may result. 

The first thing to do is to select, say, 5 discriminators to be 

taught. Each discriminator is taught a different shape allover the 

image, at all rotations. This would result in optimum recognition of 

the particular shapes anywhere in the input array. 

Next select a shape from the set of shapes to be recognised. Place it 

in the scene and test. The response profile from the discriminators 

will now be invariant for that object anywhere in the input scene. A 

record of the response profile can be made for comparison later. 

This process is possibly the same as the 'Distributed Processing' used 

by Bledsoe and Browning, but they did not emphasise the position 

invariance of the process. In addition it is also not clear how the 

response profile would change in the presence of noise in the input 

image. The problems of position independent recognition are looked at 

in detail in chapter 10. 

43 



3.13.1. Optimising the Storage of Logic Functions 

Most of the above optimisation schemes have concentrated on altering 

the N tuple sampling and controlling the patterns being taught. The 

following section considers the effects of alterations to the memory 

structure used to store the logic functions. 

The basics of memory optimisation were described by Bledsoe and Brown-

ing. The process effectively records the probability of a particular N 

tuple state occurring, rather than a logical 1 if it has occurred dur-

ing teaching, else a logical 0 if it has not. During teaching the 

number of times each N tuple state has occurred is recorded in the 

memory. Then this total is divided by the number of teach patterns 

presented. The result is a value between 0 and 1. This process was 

reported to give a greatly improved recognition ability when applied 

to typed or hand written characters (BledsoeI959). Similar conclu-

sions were drawn by Bledsoe and Bisson (BledsoeI962). 

Various other optimisation processes along similar lines as above were 

investigated by Bledsoe and Browning (BledsoeI959). The process which 

resulted in the lowest error rate was the 'Maximum likelihood' tech-

nique. The process was similar to that described above, only instead 

of recording the probability of a tuple being activated during teach-

ing, the logarithm of frequency of occurrence was recorded, giving the 

tuples not activated a negative value. This process resulted in a far 

better probability of successful recognition than for any other method 

tried. However this optimisation should be weighed against the pro-

cessing needed to undertake such an operation and the amount of memory 

needed to store all the data. No indication as to the scale of these 

parameters was given. 

The use of the probabilistic and 'maximum likelihood' methods was 
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examined by Ullman (Ullman1969) and found not to be better than the 

ordinary N tuple method over the complete range of N tuple sizes. 

Whilst the .... maximum likelihood' method showed better recognition for 

low values of N (as in Bledsoe and Brownings experiments), high values 

of N resulted in poor recognition Sllccess when compared to the normal 

binary N tuple method. These experiments used character data. It. can 

be concluded that the binary storage method is most optimal. 

Ullman (Ullman1971) suggested other ways in which memory use could be 

reduced. Normally P x 2N bits of storage are needed for each discrimi­

nator, where P = the number of N tuple samples taken from the image. 

Ullman used some interesting data packing techniques to reduce memory 

whilst retaining performance (by presumably getting rid of redun­

dancy). This process will be described in detail since it is very 

similar to the methods used in the associative memory to be described 

later in the thesis. 

To appreciate Ullman's approach a different view of the N tuple pro-

cess must be considered. The memory system is shown in Fig 3. 19. The 

input image is accessed by a number of decoders with N = 2. These per-

form the same operation as previously, to indicate the state that 

appears on the tuple lines. The memory is shown as a bank of binary 

locations. Each decoder serves 2 power N binary words made up of 4 

locations each. Each column of bits is the same as one discriminator 

(Vi - 4). 

The class patterns shown are used in teaching and testing. Consider 

the normal N tuple process first in which the 'normal' class patterns 

apply. For each class there is one row in the class patterns table. 

In this case there are fOllr classes Cl to C4. 
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0 0 1 0 

0 0 0 1 

Normal class patterns 
Table A 

Fig 3.19 
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Merrory array 

1 1 0 0 

1 0 1 0 
- ----- --._- --

1 0 0 1 

0 1 0 1 

0 1 1 0 

0 0 1 1 

Packed class patterns 
Table B 

To teach an image a class pattern is selected relating to the image. 

The image is placed on the input array causing the decoders to indi-

cate the state of the tuples. Each decoder will now have one output 

line active, indicating one row in the memory array. These rows can 

now be said to be 'addressed'. Now for every row addressed the class 

pattern selected is logically OR'ed with the data present in memory. 

More formally, if any unknown pattern is denoted by X, then the i'th 

pattern in the r'th class training set will be denoted by Xtj. Furth-

ermore we denote Cr as the class pattern for the r'th class, teaching 
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can be expressed 

Bj(Xri) = Bj(Xri) V Cr where V <=> Logical 'OR' (FromUllmanI971) 

For all N tuples, where Bj represents the selection of the j'th set of 

2N words (of length V) within the memory matrix B, and Bj(T) 

represents the selection of the T'th tuple state within a particular 2 

power N set of words. This is the same process as teaching in the 

normal N tuple system. 

Testing is a similar process, but now instead of OR'ing each word 

addressed memory with the class pattern, a logical AND is performed. 

If the result of the comparison is the same as the class pattern, then 

a count is made for that class. A similar comparison is made for all 

other class patterns. 

This can be expressed as, 

if Bj(X) & Cr = Cr then count 1 for class Cr 

else if Bj(X) & Cr <> Cr then no count 

for all Cr and j. 

This The maximum responding class then belongs to the input pattern. 

process is also the same as for the original N tuple process. Now Ull-

k as 'Random Superimposed Coding' or man introduces a process nown 

f Calvl"n Mooer (see refs 3 and 4 in Ullman1971). Zatocoding a ter 

b represen ted for a given number of This allows more classes to e 

discriminators than was possible with the original method. In the 

" 1 4 discriminators (VI to V4), thus example above there are effectlve Y 

ld be rep resented and there are, therefore, 4 class 
only 4 classes cou 

patterns in table A (in fig 3.19). 
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By altering the class patterns to contain Z bits at 1 (Z > 1) rather 

than 1 b;t at log;cal 1 1 
L L , more c aSJes can be represented. 

~/ C~ 
for N discriminators we have ~~ possible classes. This is 

In general 

done in 

table B (in Fig 3.19), where Z equals 2, allowing 6 classes. 

The process of teaching and testing is exactly the same as before, 

only now OR'ing and AND'ing all six class patterns. The effect of this 

is to allow efficient data packing into the memory. 

The process is extended by Ullman to another 2 stages. The next stage 

packs tuples as well as classes in a similar way. These processes 

will not be described here. The full process has been shown to pack 

data 4 times as efficiently as normal binary N tupling, while still 

retaining the same pattern recognition abilities when applied to char-

acter recognition. 

It is important to note the similarity of this process with that used 

in associative memory which will be described later on. The use of 

class patterns is exactly the same and the process of teaching is also 

comparable. The difference arises during recall since Ullman uses an 

'AND' process in recall while associative memory performs normal 

recall as described in the original N tuple process. The response 

recovered from both processes is then processed to recover the class 

pattern. There are some cases where Ullman's process may result in 

more reliable recognition but no comparative studies have been made. 

3.13.2. Overview of Formal Methods of Analysis 

It is accepted that an exact prediction of the abilities of an N tuple 

system to recognise an arbitrary set of patterns is not possible due 

to the fact that the input data is indeterminate. It is, however, pos­

sible to give some indication of the possible responses from ,m :J 
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tuple system if the pattern variability is known, as Steck (Steck1962) 

has shown. Roy and Sherman (Roy1967) contrast N tuple pattern recog-

nition with a statistical approximation and also correlate the N tuple 

technique with a phi processor learning machine (perceptron). Finally, 

a thorough analysis by Aleksander (Aleksander1985 •• ) has been applied 

to simple objects, and it was found that the response depended on the 

intersection of all patterns within the training set and objects 

presently being tested. Thus a general method of response prediction 

cannot be derived without resorting to explicit knowledge of patterns 

being taught. 

3. 1 3. 3. Summa ry 

This chapter has given a review of N tuple pattern recognition. The 

basic principal of the method have been discussed together with exten-

sions and enhancements of the process. 
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CHAPTER 4 

Methods of Occlusion Analysis 

4. Introduction 

The methods of scene analysis described in chapter 

drawbacks. 

man1968), and secondly they can only been applied to restricted scenes 

(i.e Ullmann1983,Boden1977). The occlusion analysis process described 

here has concentrated on providing a method in which occlusion can be 

determined in natural scenes containing many unrestricted shapes. The 

process was also designed so that it could be implemented on a paral­

lel machine, thus providing the speed necessary to process the infor-

mation present in the large input image (greater than 256 x 256 pix­

els). 

4.1. Input Image Preprocessing 

In chapter 1 it was proposed that the system should recognise both 

'block filled' and 'line drawn' images. If we consider a block filled 

image, a complete 'natural' description of the scene is present. How-

ever, in 'line drawn' images only the outline of the shape is present. 

A recognition system which utilises the information contained in the 

body of the shape could only cope with block filled images as this 

information is not present in line drawn images. Conversely, a system 

which recognises occlusion using the outline of the shape would fail 

on block filled images where edge information is not explicit. 

Although it may be possible to construct a system whi,ch takes dif­

ferent approaches to occlusion analysis for each representation, a 

d b th types of image to a common 
better solution is to re uce 0 
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representation. This process would incur an overhead in preprocessing 

the image to one description, but this unification reduces the problem 

to the recognition of just one type of image, therefore producing a 

simpler system. 

A simple method of edge detection which reduces a grey scale, block 

filled image to a line drawn image was chosen. The problems of con-

verting a line drawing to a block filled image are much more complex 

and may not be possible until object recognition has been performed 

(i.e identification of object boundaries). 

Many methods are available to reduce images to edge descriptions using 

edge operators, see Torre and Poggio(Torre19~~). The process is dis-

cussed with respect to input processing in general in chapter 9. The 

description below assumes this process has taken place. 

4.2. The Occlusion Analysis Process 

'd h ' I ~ F~g 4 1 where one square occludes Cons~ er t e s~mp e scene ~n ~ ., 

another of similar size. For simplicity we assume shape (i) is a com-

plete square occluded by (ii), and not a square with a section removed 

that is occupied by (ii). 

1 , , s to use motion parallax which One method of finding occ us~on ~ 

I 

I 
L.---

II 

'---

Fig 4. 1 
Example of occlusion. 
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detects occlusion by a slight motion of the camera viewing the scene. 

When this is done the relative positions of objects can be measured 

ann hidden boundaries found. However, this process was rejected as it 

could not cope with photographs of occluded objects. The use of 

stereopsis (see Wilsonl985) was also rejected for this reason and 

because of the need to use two cameras, increasing the cost and com-

plexity of the system. 

The detection of hinden lines is another method of determining occlu-

sion. If it is possible to identify the parts of an object that are 

missing, and then deduce that another shape occupies the position of 

these missing parts, occlusion can be inferred. This process is shown 

in Fig 4.2. The input image is shown in 1. This is passed to a recog-

nition system which identifies the objects in the scene and recalls 

1 Input iITEge 

D D 2 Recalled image 

, 
Canparison (see text) , Canp3rison , 

3 

Difference ~s 

Fig 4.2 
Occlution Analysis 
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their complete shapes from memory, as shown. The recalled images are 

then compared to the input image giving the position of missing parts 

from shapes in the input image. The comparison is such that if a point 

occurs in the recalled image which is not present in the input image a 

difference is noted, points only in the input image are ignored. By 

comparing the positions where missing parts are found with other 

images recalled it may be possible to infer that object B is occluding 

object A. However, because we are using edge images the part missing 

from object A will not occupy any part of the recalled image B (com-

pare the difference image in 3 with the recalled image of B above). If 

this approach were continued with, a possible solution may be to find 

whether any shape has edges which enclose the part missing from A. 

Unfortunately this solution would be computationally expensive. Prob-

lems would also arise when complete descriptions of shapes were not 

available, i.e if some shapes were not totally enclosed by edges. 

Occlusion can only be resolved at the point where two edges in two 

different objects meet. At this point a 'T' junction is always formed 

and thus it may be possible to look locally for these junctions. The 

problem to overcome here is the detection of 'T' junctions. One 

approach is to design a 'T' junction recogniser which can first be 

scanned over the scene to detect 'T' junctions present. The system can 

on to infer which object occludes which by using knowledge of 
then go 

how occluded shapes produce 'T' junctions. This approach has been 

taken by many workers (see(Boden1977). 
Problems with this method lie 

in the time taken to scan the scene with the 'T' recogniser. With 

can take K2 operations, where X = Y = K. Also, the 
large images this 

design of such operators 
is complex, although N tuple recognisers, 

( i1 1985) may be used. 
proposed by Wilson W son , 

Furthermore, after 

occlusion analysis has 
taken place the scene would still need to be 
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processed to find which shapes are present. 

The following solution uses a simpler process which combines the 

recognition of objects in the scene with the search for 'T' junctions. 

He can assume that we have a recognition system which is able to 

recognise all objects in the scene and recall a complete description 

of each. These descriptions may be stored in separate image arrays as 

shown in Fig 4.3 •• 

The process of recognition and recall of the shapes is left to later 

chapters. Note that the recognition system recalls the shape in regis-

tration with the input image so that points in the recalled images 

will map one to one with points in the input image. 

The first stage of the occlusion analysis process identifies possible 

'T' junctions, by considering only information present in the the 

recalled images. 
A 

B o o 
A B 

Input scene 
Recalled inEges 

B' 

o o 
C~didate junctions found 
by canparing A and B above 

~: Candidate junction 

Fig 4.3 
Detection of occlusion. 



Taking the example shown in Fig 4.3, images A and B can be compared to 

find at which point vertices in each shape cross. These points indi-

cate occluding junctions. Once identified the system can go in to pro­

cess these areas locally to discover any occluding information in the 

following way. Consider Fig 4.4, which shows the image of one junction 

from the image in fig. 4.3:- The diagram shows a local point of inter-

section in the edged objects A and B shown in figure 4.3, and the 

corresponding area in the input image. 

The system can infer occlusion from this data by the following pro-

cess. Same sized regions around a junction are selected from the two 

recalled images and the input image in fig. 4.4. The points in the 

image A' can be compared to those in I'; points at 1 in both A' and I' 

are counted and assigned to a variable pA. A similar process is done 

for the image B' and I' - the value here is assigned to a variable pB. 

Both pB and pA are then divided by the total points at 1 in A' (Ta) 

and the total points at 1 in B' (Tb) such that pB' = pB/Tb and pA' = 

pA/Ta. Thus the values pB' and pA' give an indication as to the 

number of points in the input image that match with the response 

image. We can now infer occlusion from these values. If pB' ) pA', 

then B occludes A at this point in the image; if pA')pB', then object 

A occludes B. 

Sections of recalled 
irrEges 

o 0 1 0 0 
o 0 1 0 0 
o 0 ~ 0 0 
o 0 1 0 0 
o 0 1 0 0 
o 0 1 0 0 

A' 

elOOOO 
o 0 0 0 0 
1 1 l: 1 1 
o 0 '0 0 0 
o 0 0 0 0 o 0 0 0 0 

S' 

X : Centre of wind~ 

Fig 4.4 

Sectioo of 
inp.lt :iJTage \ 

o 0 1 0 0 
o 0 1 0 0 
o 0 X 1 1 
o 0 1 0 0 
o 0 1 0 0 
o 0 1 0 0 

I' 

One junction from Fig 4.3 
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This simple process for occlusion analysis has some powerful proper-

ties. First of all it is fast in both finding 'T' junctions and rea-

soning which object occludes which since simple comparisons are per-

formed. In addition it can be done on all recognisable scenes and it 

performs the process locally so that complex occluding shapes can be 

analysed such as the one given in Fig 4.5. 

Unfortunately, however, shapes need to be accurately recognised so 

that their edges exactly register with the recalled line image. The 

process can be assisted by further processing to align the edges of 

the shapes. After a proposed junction has been found the image is 

scanned within the area where a junction is expected with a 'T' junc-

tion detector of the type described above. Hence, the possible posi-

tions of junctions within the scene can be located. 

The input window is then aligned with the junction in the scene that 

best 'fits' the data found locally around the proposed junction in the 

recognition array (a simple Hamming distance check can be used to find 

the best fit). 

This process eliminates a large part of the misalignment between the 

objects recalled and the scene data. Once alignment has been done the 

occlusion analysis process described continues. 

Fig 4.5 
Complex occlusion problem. 
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4.3. Summary 

This chapter has introduced the basic occlusion analysis process which 

uses a novel process to detect 'T' junctions. Once detected these 

junctions can then be processed locally to discover the order of 

occlusion. The process identifies the need for a recognition system 

which recalls the complete object from a partial description of the 

object in the input array. Furthermore, the object recalled should be 

in the same position in the response array as the object is in the 

input array. The input image, which may be of 'block filled' or 'line 

drawn' objects, is reduced to a common edge description which simpli­

fies the recognition problem. 
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CHAPTER 5 

A Review of Associative Memories 

5. Introduction 

The occlusion analysis process described in chapter 4 identified the 

need for a memory device that could recall a complete description of a 

shape if given an incomplete description of the same shape. Such a 

device is an associative memory (see definition that follows). This 

chapter considers different approaches to the design of these systems, 

highlighting the strengths and weakness of each in the present appli­

cation. 

5.1. Definition of Associative Memory 

The theoretical aspects of associative memory can be stated as fol-

lows. It is the need to link patterns such that if a pattern A is 

paired with a pattern B, pattern B may be recalled at any time by 

presentation of pattern A. In the case consirtered here, pattern A may 

only be an approximation to the original pattern A, in so much as a 

subset of the original non zero elements of A are set to 0, and origi­

nal zero elements of A are now set to 1 (considering binary patterns). 

In general two types of association can be definedPalm1980, heteroas­

sociation is the process defined above where patterns A and B differ, 

autoassociation is the case where patterns A and B are the same. (In 

both cases recall is assumed to be possible on an incomplete input 

pattern as defined above). 
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5.2. Different Approaches to Associative Memories' 

The study of the associative memories is being pursued in two subject 

areas. Computer scientists and engineers are looking toward a practi-

cal realisation of data association, whilst psychologists and neuro-

physiologists are seeking a model for natural memory processes. 

Computer scientists' needs are constrained by practical considera-

tions, whilst neurophysiologists' by what is known of the structure of 

the brain. As a result approaches differ in many respects. There is 

also a third section of researchers whos aim is to span both discip-

lines, utilising knowledge from brain scientists to indicate guide-

lines to the solution of a practical computer system and visa versa. 

To some extent this is the position taken by researchers in artificial 

intelligence and by cognitive scientists. 

5.3. Listing and Mapping Memories 

The two basic approaches to implementing associative memories have 

been defined by Palm (Palm1980) as listing and mapping memories. The 

basic distinctions are as follows. 

5.3.1. Listing Memory 

In this case each association is stored individually, and sequentially 

in a conventional computer memory. In the autoassociative case just 

one copy of each pattern is stored and retrieval can be a trivial pro-

cess of sequential pattern matching. On each match the Hamming dis-

tance between patterns is found. After all patterns have been tested, 

the pattern with the lowest hamming distance is chosen as the associ-

ated pattern. In the heteroassociative case matching and searching is 

done in the same way but two patterns are stored, the matching pattern 

59 



and the key pattern. 

The process described above is commonly known as a content address-

able memory (Kohonen1984), and has been studied intensely for micro-

chip fabrication (Lee1985), although these systems can be made to 

recall at high speed through specialised coding techniques (e.g hash 

coding), they are usually complex and use vast amounts of memory to 

store the data. 

5.3.2. Mapping Memories 

The difference between mapping (Palm1980) and listing memories can be 

described as follows. In a listing memory an association is recalled 

by comparison to all other associations stored to find the best match. 

In a mapping memory an association is only recalled by reference to 

the input key, not by a search; a direct, possibly single cycle, is 

needed to move from the input key to the associated data. 

The strength of mapping memories lies in only one cycle being required 

for effective recall. This process is identical to that of the associ-

ative memory developed in this thesis; an input pattern is presented 

and directly a class pattern is recalled in one cycle. There is no 

sequential search. 

It will become apparent that mapping memories have the following 

advantages over listing memories, with perhaps a separate relevance in 

there correlation to neurophysiologically plausible constructions of 

human memory. 

Speed 

Generalisation abilities 
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Efficient data storage 

Fail soft abilities 

Little predetermined structure. 

5.4. Variations of Mapping Memories 

Mapping memories can be divided into two basic groups, continuous, or 

discrete. Discrete types store data in binary storage elements, 

whereas continuous types store data in the form of continuous, mul-

tivalued data elements. All the mapping memories considered here can 

be reduced to the basic structure shown in Fig 5.1. Two input arrays 

and one output array are used. The associated pair of patterns are 

placed on the key array and the teach array, and the storage elements 

modified to allow association between the two, such that on presenta-

tion of a key array, the associated array can be recalled on the out-

put data lines. The vertical and horizontal wires can be seen to carry 

data. Where they intersect a modifiable 'link' can be made which is 

implemented as a element. This effectively couples the specific key 

and teach lines by a certain amount, which may be all or nothing (i.e. 

Key 
input 

IBta or teach input 
) ~ 0 0 0 

-:-
"l1li 

0 

-:-

I 
l.:l 

l.:l 

~ 

Output or' recall data 

Fig 5.1 
Basic associative memory. 
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binary) or graded (i.e. continuous). On recall the strength of this 

coupling allows data flowing down a key line to be transferred onto 

the recall lines by some amount. The sum of all such data on one 

recall line is given at the output of the memory. 

As well as the distinction between continuous and discrete storage 

elements, there is a further separation between studies on memories 

with continuous (i.e grey scale) and discrete (i.e Binary) input pat-

terns. 

5.4.1. Continuous input and storage 

This class of associative memory has been studied in depth by Kohonen 

(Kohonen 1972,1977,1984,1973). His method can be explained by matrix 

algebra as follows. The set of links forming the basis of the memory 

is seen as a matrix M, the key patterns forming the columns of a 

matrix X and the data patterns as the columns of a matrix Y. 

He defines the problem as one in which a matrix M must be found such 

that, 

Y = MX 

The problem is easy to solve if both X and Yare square matrices, 

since 

-1 
where X =)inverse of X 

but it is unlikely that X and Yare square, thus a pseudoinverse (X+) 

must be found instead, as described by Kohonen (Kohonen1977). 

In the case of progressive learning, Kohonen describes a method 

whereby tl1e original M may be updated for the new pair of associated 
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patterns, he gives this as 

T 
Mk = ~ -1 + (Yk - ~ -1 ~) Ck 

Mk = Mk-1 + (Yk - Mk-1 Xk) CkAT 

The K .... th patterns are ~ and Y
k

, the term Y
k 

- M
k

-
1 
~ effectively 

finds the error between what is needed to get Y
k

, and what is 

presently associated. The C
k

T 
is the transpose of a weighting array, 

used to move the matrix M nearer to recalling Y
k

• 

These process are both computationally expensive in time and memory 

use, although they are an important part of the general work in asso-

ciative memories. 

5.4.2. Discrete Input and Storage 

These memories are designed to process binary input images with asso-

ciated binary storage. They are the type of memory developed in this 

thesis. 

Storage in these memories can be defined as 

Image A = Ai 

Image B = Bi 

Memory matrix = Mij 

Mij = 1 if Ai & Bi = 1 

else 0 

For all and j 
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For the case where image vectors A and B are to be associated via the 

memory matrix M, such that presentation of A will recall B from the 

memory. 

Recall can similarly be defined as 

Recall vector R = Rj 

Input vector A = Ai 

Memory vector M = Mij 

p=i 

Rj = L Mpj x Ap 

p=O 

For all j 

which results in a vector, R, containing a set of continuous (mul-

tivariable) elements. 

This process is a common way to teach and test the memory. The problem 

concerning most workers is that of retrieving the original binary 

teach pattern from the response array R after testing, especially 

where the pattern being used as the key is incomplete and contains 

noise. 

Many approaches to solving this problem have been made and they will 

now be discussed. 

5.5. Approaches to the thresholding problem 

The problem of thresholding the output of a memory is central to all 

the mapping memories described above. After a test the output will 

look like that shown in Fig 5.2. The output from the memory has to be 

thresholded to produce a binary image of the pattern originally 
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taught. The simple approach of setting a preselected threshold was 

considered by Gardener-Medwin (Gardener-Medwin1976r, He worked towards 

an understanding of associative memory in man. A preselected threshold 

could only be calculated for a set of memory parameters, i.e the aver-

age number of elements at logical 1 within the teach patterns, and the 

number of patterns that would be taught. Even with knowledge of the 

memory parameters it was difficult to set a threshold that would 

always work (i.e. give an exact recall of the stored patterns). 

An important variation of Gardener-Medwins model prevented what other-

wise could be an acceptable method of recovering patterns. He used an 

associative memory in which all links were not possible, that is, not 

all intersections of the horizontal and vertical wires could form 

links. This variation is neurophysiologically valid. In computational 

terms it could also be valid, in that it may be a possible way to 

reduce storage costs whilst retaining storage abilities. 

A recall procedure similar to this was presented by Willshaw, 

Longuit-Higgins and Buneman (Willshaw1969,Heerden1970) , but here all 

the links were present. An acceptable threshold level could be calcu-

Respons 

1 ------, 

o 

Fig 5.2 

- Ideal 
threshold B 

Recalled pattern 

Pattern or~inally 
associ;::lted A 

Thresholding an output vector in an associative memory. 
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lated, given a fixed set of network parameters, particularly if the 

input patterns were restrained such that they contained a set number 

of elements at logical 1. The output was thresholded at a level x, 

where x equaled the number of bits in the input key pattern at 1. The 

result was a memory in which recall could be made if the input pattern 

was reduced, i.e. some points removed, but not if extra points were 

added (not original to the input key pattern). This problem is dis­

cussed in the design of the associative memory (chap. 6). 

Although the approaches described above do not result in error free 

recall, they have the ability to recall in only one cycle, that is, 

they only need one test of the memory to obtain a result. This ability 

to recall data fast is a particular attraction of these memories, cou­

pled with N point thresholding (to be described in chapter 6) they 

show even greater attraction. 

5.6. Iterative Recall 

Another approach to recall has been investigated by many researchers. 

Iterative recall entails many test cycles to 'build up' a complete 

output image. Essentially these are relaxation processes (seeBal-

lardI983). The basic idea is as follows. The image to be used as a 

key is placed on the input; a test is made resulting in a partial 

associated image on the output of the memory. This output image is 

used to create a new key image that is closer to the required output 

image, but not exactly like it. The new key image is then put through 

the memory again and another key image is created from the response 

which is now closer still to the required image. The process continues 

until perfect recall is obtained. 

Lansner and Ekeberg (LansnerI985) investigated this type of process. 
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They taught an associative memory autoassociatively on many patterns, 

then used the following procedure to recall, 

1) Place key pattern on input (assumed to be complete) 

2) Test the memory , obtain response vector r. 

3) Select one highest responding element within r that is not a part 

of the present key pattern, and place a logical 1 in the key pattern 

at the same position. 

4) Re test on the new key pattern. 

5) Repeat 3 and 4 until there are N logical 1 points on input key pat­

tern, where N is the expected number of logical l's in the response 

pattern. 

This process was found to be effective in memories with sparsely 

taught data. However, if the memories had many patterns taught the 

recall quality degraded greatly. To overcome this a further process 

has been introduced. 

On each iteration, the response vector r is thresholded at the level 

X, where X is the average response of all points in r which correspond 

with points in the key vector at 1. The result is then placed in the 

key vector. 

This has the effect of removing elements erroneously set to 1 on early 

iterations. This process was found to work effectively. The process of 

learning heteroassociatively can be achieved by storing a different 

associated pattern alongside the original, as illustrated in Fig 5.3 .. 

This is an effective in that it can recall patterns reliably, 'but 
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Fig 5.3 
Heteroassociation in the memories. 

suffers from being slow, needing at least n iterations to recall a 

pattern, where n is the Hamming distance between the taught pattern 

and the presented pattern. It also provides little control of memory 

use, requiring P x P storage elements to construct a memory, where p 

is the size of the key pattern. 

5.7. Implementation of Mapping Memories 

Little work has been done on implementing mapping memories in 

hardware, although Palm and Bonheffer (Palm1984) have developed a 

multiprocessor system for testing theories about both continuous and 

discrete mapping memories. Sivilotti (Sivilotti198s) has recently 

fabricated a Hopfield memory (Hopfield1982) in VLSI, this memory is 

similar to Willshaws except it uses three state logic and iterative 

recall. 

5.8. Summary 

A review of the approaches to associative memory has been given here, 

with particular reference to binary storage and input systems of the 

type described in the next chapter. It has identified the central 

problems of associative memories, in particular the problem of obtain-

ing a perfect recall image of the shape previously taught. The design 
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of the associative memory described in the next chapter was based upon 

the mapping memory described above. Although the thresholding of the 

recalled information needed to be improved this memory can recall data 

in one operation and could store data distributively - and so has the 

possibility for efficient storage. 
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CHAPTER 6 

Memory Design 

6. Introduction 

The occlusion analysis process described in chapter 4 required a 

memory which could retrieve an image of a possibly incomplete input 

pattern. The pattern retrieved needed to be in registration with parts 

of the same pattern on the input array to allow successful occlusion 

analysis. Furthermore, because many views of the object would need to 

be stored and an unlimited number of shapes could be presented the 

memory needed to store data efficiently. The previous chapter reviewed 

possible memory systems available that could store data associatively. 

It was shown that a conventional listing memory was inadequate for 

storing the many patterns required. Although the function of these 

memories is well understood the problems of storage and speed required 

the use of an alternative form of memory. The mapping memories have 

the features required by the system. These memories have a fast search 

time, and because patterns are not stored individually but distribu­

tively the memory used by mapping memories can be reduced compared to 

listing memories. The exact storage ability of these memories depends 

on many factors, the most important of which is the process by which 

the output of the memory is thresholded to obtain correct recovery of 

the stored pattern. The problems of thresholding are covered below. 

As well as providing the speed and storage abilities needed, mapping 

memories have the advantage of a fail soft ability. That is, if a part 

of the memory is destroyed, recall of any of the stored patterns only 

deteriorates slightly. The memories have also been studied in relation 

to the human nervous system as a mechanism for storing information 
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(Kohonen1977) , which is of interest to the work described here. 

In chapter 2 and 3 the methods of recognising patterns were discussed, 

it was considered that the N tuple recognition process was a raliable 

method of recognising the occluded shapes present in the scene. The 

merits of the process were discussed in chapter 3. This chapter 

discusses how the N tuple pattern recognition process is linked to a 

mapping memory and considers the problems of recall and storage con-

trol of these memories. 

6.1. Using N tuple Logic Functions as an Input to Mapping Memories 

A mapping memory can be depicted schematically as shown in Fig 6.1. 

The patterns to be taught are presented on the teach array and the key 

array. The key pattern is used in subsequent recall of the 'teach' 

pattern. The memory is taught be actuating the r/w control line to 

write mode. Recall takes place by presentation of the key pattern and 

setting the r/w control to 'read' mode. The recalled image is then 

presented on the recall array. The key pattern can be viewed as an 

indexing pattern as in the listing memories, but here recall is 

achieved by one 'read' from the memory matrix that makes up the map-

Key 
Input 

/ t 1 line ~r w con ro 

Associative 
: 

mapping 
memory 

t 
Teach 
input 

Fig 6.1 
Mapping memory. 
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ping memory. 

As explained in chapter 3, N tuple processing of an image derives a 

set of logic functions that describe the input pattern. It was shown 

how the logic functions can be arranged in the form of an array (see 

section 3.)l chapter 3) which can record the individual functions 

present on each presentation of a pattern. 

When used with a mapping memory the tuple array which records the 

logic functions from the scene can be used as the key array shown in 

fig 6.1. The unprocessed input image can be applied to the teach array 

during teaching for subsequent recall. Because the tuple array is 

binary (a 1 representing the presence of one function for one N tuple 

sample) the binary mapping memory (see chapter 5) is used. 

This arrangement, along with the N tuple processing is shown in fig 

6.2. The output thresholding process as proposed by Willshaw will be 

included to illustrate the functioning of this memory (WillshawI969). 

6.2. Teaching the Memory 

The process of teaching the memory is as follows, with reference to 

fig 6.2. The input image is converted to pixels and placed on array 

I , and array A. The N tuple sampling of the image takes place on 
a a 

image I , via the input lines on n (for clarity the regularly mapped N 
a 

tuple sampling is shown). The functions on each N tuple sample are 

then computed by the decoders (r) producing a set of functions over 

all the decoders in R (see chapter 3 for more details of this pro­
a 

cess). The memory matrix M is the mapping memory shown in fig 6.1. 

The teaching continues by setting a link in the memory matrix where a 

row wire and a column wire both at 1 intersect. The row and column 

wires are driven directly from the arrays A and I • 
a a 

When all such 
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I a: Inout array 
Ra: Row array 

Au: Associated array 

R Response 

T Thresholding units 
r : N tuple decoders 
M Memory matrix 

n N tuple samole lines 

Fig 6.2 
Details of the mapping memory. 

intersections have been set the pattern has been taught and an associ-

ation been made between A and R. subsequent patterns are taught 
a a 

into the memory in the same way. 

It is useful to add the similarity between this process and the pro-

cess of storing logic functions in discriminators described in chapter 

3. If the first location in the array A is set to 1 on every teach 
a 

the column wire leading from this location is exactly the same as a 
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discriminator discussed in chap3 sect 3.3. 

6.3. Recall from the Memory 

Recall of an associated pattern is as follows. The input pattern is 

placed on R as in teaching. The row wires are activated by locations 
a 

in R that are set 1. Now for each column wire the total number of row a 

wires at 1 that intersect with a column wire where a link is set is 

calculated. The values appear on the output R. Now there is a set of 

responses that need to be converted to a binary pattern to recover the 

original pattern placed in the array R
A

• To allow this the responses 

need to be thresholded. The process shown here is that proposed by 

Willshaw (WillshawI969). To derive a threshold level the number of 

elements at 1 in the input array R are summed. Values above this in R 
a 

are set to 1 else they are set to O. The associated pattern has now 

been recovered. Willshaws thresholding process works when the input 

pattern is exactly the same as the one presented during teaching, but 

fails to recover the correct pattern if the input image contains 

noise. This will be shown after a consideration of an alternative 

method of thresholding has been explained. 

The next section describes the problems of storage in the above memory 

and then goes on to discuss thresholding problems in the light of 

this. 

6.4. Memory Use in Associative Memories 

The simple associative memory defined above uses a very large amount 

of storage. This can be shown if we consider a average size example 

with an input key array and an associated teach array of 256 x256 pix-

els and set the N tuple size to 4. The size of the memory matrix 'can 
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be calculated by multiplying the size of the vector that drives the 

row wires by the size of the vector that drives the column wires. The 

column wires are directly driven by the associated teach array which 

is 256 x 256 pixels in size. The row wires are driven by the N tuple 

processed key array. The size of this array is 

(Key array size / N tuple size) x 2N 

= (256 x 256 / 4) x 16 = 262000 bits 

This assumes that every pixel in the input key image is connected to 

one wire in a decoder. 

Thus the total size of the memory matrix is 

262000 x 256 x 256 = 1.7 x 10 10 bits 

It can be seen that this is a vast memory requirement. 

The reason for the large storage requirement is basically because we 

are associating two very large patterns. We can reduce the storage 

dramatically if one of these patterns is made smaller. This could be 

most effectively done by reducing the size of the associated pattern, 

in essence, replace this pattern with a completely different pattern. 

This new pattern is called the 'class' pattern. So that the original 

associated teach pattern can still be recalled this pattern is sent to 

a second associative memory which links the class pattern to the ori­

ginal key pattern. This arrangement is shown in Fig 6.3. 

In practice the class pattern is a unique pattern that effectively 

links the input key pattern with the associated teach pattern by way 

of the two associative memories. Recall and teaching will now be done 

on both memories in the same way as one associative memory was taught 

previously. 
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Use of a 'class' pattern. 

To provide the associative properties of the memory the second memory 

that recalls the teach image from the class needs one of its input 

patterns tupled. In this case we assume the associated teach image is 

tupled, the reason for this is covered in the next chapter as it 

relates to storage abilities of the memory. 

By using this two stage system memory system the storage requirement 

of the memory can be reduced, and furthermore, because the class image 

is not dependent upon any input image the storage requirement can be 

accurately controlled. 

To illustrate the difference in storage abilities between the one 

stage and two stage memories consider the following. 

The two stage memory has the following storage requirement, 

kiN x 2N x C x 2 

Where k is the input pattern size (both patterns to be associated are 

of the same size), C is the class array size and N is the N tuple 

size. 
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The one stage memory the storage requirement is, 

N kiN x 2 x k 

By manipulation this shows a storage difference of 

K C x 2 (Single stage two stage memory) 

Thus as long as the class image is less than half the size of the 

input associated image the storage requirement is less in the two 

stage memory. In practice the class image is very small and is set to 

a size dependent on how many patterns will be stored in the memory, 

this will be discussed in chapter 7. 

6.5. Thresholding Strategies 

The problem of thresholding the output of the memory to recover a 

binary image can now be looked at. The two tiers of memory described 

above have to be considered separately; call the memory which has the 

input as the key P -) C (picture to class), and the memory that has 

the class as the key C -) P (class to picture). 

On presentation of a pattern to the P-)C associative memory, an 

analogue response forms on the output of memory after a test. This 

pattern must be thresholded to recover the class pattern, as explained 

above. Since the class pattern can be any binary pattern, it can be 

designed so that successful thresholding is possible. The form it 

should take is to have exactly N bits set to 1, where N is a constant 

value for all class patterns selected. In recall the response pattern 

can be scanned for the N highest responding elements. These points are 

set to logical 1, all others are set to logical zero. This threshold-

ing process is termed N point thresholding. Consider the graph shown 

in Fig 6.4, which is a graphical representation of a response from the 
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p -) C memory. 

The class array originally taught had 3 randomly placed points set to 

1. So, after testing, the 3 highest responding points in the class 

response image are set to 1 (the reason why this works is considered 

later). 

This process effectively copes with highly changing average response 

values. A low responding test is coped with as easily as a high 

responding output. 

Now consider the C -) P memory. This system uses the class as its key 

pattern to recover the image pattern associated with it. It is not 

possible to use the thresholding process as described above, as the 

number of points on the response is no longer under control. However, 

this thresholding process is no longer necessary since we we can now 

assume the class pattern is exactly the same as the one used as a key 

during teaching. Instead a simple threshold process is used (the same 

as is done by Willshaw, see above), where all the points in the 

response array which show maximum response can be set to 1, and all 

those below maximum response set to zero. 

The recognition/memory device described above fulfils all the require-
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Examples of a class response. 
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ments of our initial specification, i.e 

1) Performs association. 

2) Uses optimised memory storage. 

3) Recall possible on incomplete test pattern. 

4) Indicates the class to which the input pattern belongs to. 

5) Can be implemented directly in parallel hardware. 

The essentials of the design are:-

1) A memory in the form of a matrix of storage elements. 

2) Two stage associative store to cut down memory use. 

3) A class pattern with a fixed set of points set to 1. 

4) Every point in the image addresses a whole class pattern, thus ena­

bling associative recall on incomplete images. 

5) Binary storage, allowing construction using RAM's. 

6.6. Factors Relating to the Efficiency of the System 

The system so far described has various variables which effect its 

storage, retrieval and recognition properties. Later on a full review 

of quantitative aspects of the performance will be given; only quali­

tative aspects will be given here. 

To appreciate how storage is effected by altering the variables, an 

indication of the statistical factors involved in image recovery must 

be made and a clear description of operation discussed. 

illustrates the system so far described. 
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Two stage associative memory. 

For this part of the analysis, the memory matrix can be considered 

without N tuple sampling, i.e we assume the input image feeds directly 

into the memory matrix. The input and class are 1 dimensional binary 

vectors labeled 'I' and 'c' respectively. A simple representation is 

shown in fig 6.6. 

The memory matrix is shown after one teach with 'I' and 'c' binary 

vectors. Coincident 1's in 'c' and 'I' have caused elements to be set 

to 1 in the matrix. Now consider Fig 6.7 where a second pattern has 

been taught into the same memory. The class pattern still has two 

points at 1 but now in a different position. Coincident points in the 

memory have a 1 written as be fore. 

If we now consider recall as shown in Fig 6.8. Now only image 'I' is 
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Recall of C by presentation of I. 

presented, it accesses the memory and for each column any points that 

are at 1 in the input and at 1 in the in the column are activated. All 

active points in each column are summed. The class response shown is 

then N point thresholded. Since 2 points are expected to be at 1 in 

the class pattern, the first 2 highest responding points are 
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identified in the response and set to 1. The power of this process is 

shown by the example shown in Fig 6.9. 

One noise point is then added to the input pattern; the effect of this 

is to make the output response more irregular. N point thresholding 

recovers the class pattern successfully. It is interesting to note 

that Willshaws' thresholding processes described earlier would not 

recover the correct pattern in this case. Willshaws method would pro-

duce a threshold level of 3 in the examples shown in fig 6.9 (the sum 

of bits set to 1 in I). Thresholding the output at this level would 

result in an incorrect recall in this case. In general, any noise 

added to the input pattern (such as that produced by an occluding 

shape) would cause incorrect recall. 

6.7. Limits to Memory Capacity 

The memory system will fail in two circumstances. Either the image is 

so distorted as to make recovery impossible, or the memory is 

'saturated', i.e. has reached its limits of storage; this causes a 

false class response even with a perfect input image. 

Saturation occurs when the memory has many of its locations filled. 
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Fig 6.9 
Recall of a pattern containing noise. 
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The process would not result in certain recovery failure unless the 

memory were 100% full, i.e. every location set to 1. The rate of 

saturation is dependent on the nature of the input patterns taught. 

Successful recall is a probabilistic process which is a function of 

the level of saturation. To illustrate this consider the examples in 

Fig 6.10. This illustrates a memory taught with one pattern. Recovery 

results in the correct class as shown. An error in recovery can happen 

when one of the columns b or c have enough points in them to cause a 

rise in responses great enough to produce an extra point on the out-

put. A point in the class which is not a part of the original teach 

pattern is called a ghost point as these do not occur directly from 

teaching, but a~e due to internal memory saturation. 

Obviously, as the memory is taught more patterns there is a greater 

likelihood of a ghost point occurring. The actual statistics of this 

will be examined in chapter 7. 

The other factor that effects recovery is distortion of the test pat-

tern. The ability of the system to cope with noise and distortion is a 

function of the saturation of the system. The more saturated the 

memory the less distortion that can be tolerated in obtaining an accu-
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x = Recall fails 

if set to 1 

Fig 6.10 
Examples of saturation. 
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rate recall. 

Saturation is obviously effected by the size and number of elements 

set to 1 in the class and input arrays. Basically, if the class array 

contains 4 points set to 1, and the input array has 20 points set to 1 

the memory will have 20 points set to one on each teach. As more pat­

terns are taught into the system, the rate of saturation drops due to 

the probabilistic nature of the element setting in the memory. 

N tuple sampling effects saturation in the following way. It will be 

noted that if both the input and class arrays have every point set to 

1 , one teach will totally saturate the memory. In practice the class 

array has only a set proportion of elements set to 1 and so saturation 

is controlled to some degree. In the case of the input array, the pro­

cess of N tuple sampling also prevents alII's being presented to the 

input array and so further prevents saturation. Furthermore, N tuple 

sampling dictates the total number of points set to one in the memory 

on every teach, and thus saturation can be controlled exactly. The 

input pattern can have all points set to 1 and still the memory will 

only be taught a set number of points. This process of controlling 

both images presented to the associative memory has overcome one of 

the main obstacles present in these memories. This is discused in con­

text to other approaches in chapter 8. 

Figure 6.11 illustrates how N tuple sampling constrains the number of 

points set to one in the input to the memory. The saturation rate of 

the P -) C and the C -) P memories will be equal since the number of 

bits set in both memories on each teach will be the same. Unfor-

tunately the recall properties of the two memories differ since the P 

-) C memory input array is large with few points set, whilst the C -) 

P memory has a small input array with a comparatively high number' of 
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Logical N tuple sampling. 

point set to 1. This results in the P -) C memory being more reliable 

in recall than the C -) P memory. This imbalance does not degrade the 

system since the P -) C memory needs to cope with noise in its input 

array, whereas the C -) P memory does not. The better recall abilities 

of the P -) C memory allow it a high resilience to noise, whilst the P 

-) C memory. can be run at a lower average recall ability to achieve 

the same performance. 

Another important aspect of saturation is the randomness of the input 

patterns taught. If the input pattern remains the same on every teach 

and a different class pattern is chosen on every teach i.e when a 

shape presented to the system is the same as one previously taught, 

this will saturate the memory in local areas, i.e along the rows feed-

ing from each point in the teach pattern at 1. This process is to some 

extent uncontrollable and is dependent on the type of patterns taught. 

If the memory matrix is made large enough the process will be less 

likely to occur. A possible solution is to provide time dependent 
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removal of elements set to one in rows that are saturated. This is 

similar to a process of forgetting, and is an area of great interest, 

although it is outside the terms of reference of this thesis. 

6.8. Generalisation Abilities 

One of the important attributes of a pattern recognition system is 

that of generalisation. This process allows recognition of patterns 

outside the training set. Generalisation can be made to occur in the 

associative memory by selecting the same class pattern as in a previ-

ous teach and teaching a new picture under that class. The problem 

here is one of teaching strategy and will be covered in greater detail 

la te r. 

An interesting aspect of generalisation in this context is as follows. 

If two patterns are taught under two different classes but the pat-

terns belong to the same pattern class and are very similar, will gen-

eralisation still occur and how will it manifest itself ? Consider 

the patterns shown in Fig 6.12. In the example above the test pattern 

is a generalisation of the two teach patterns and as a result, the 

recovered pattern would be a generalisation of the teach patterns. 

OJ 

Fig 6.12 
Example of recall generalisation. 
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Note that the class pattern is taught with 3 points set to 1 , but the 

response pattern has points all responding at the same level. N point 

thresholding with N = 3 has the effect of setting all 5 equally 

responding points to 1, effectively recalling both class patterns 

taught previously. If this is done the C -) P memory will recall both 

teach images at the same time, i.e if the taught images were A and B, 

the resultant image would be A OR B, where OR represents a logical 

or'ing of the points in A and B. 

6.9. Linear Input Array 

In some circumstances it may be necessary to use linear input arrays 

to teach and test the memory. For instance, although the occlusion 

analysis system described is chapter 4 produces a binary image it may 

be possible to present a more graded description of the scene to the 

memory in the form of a linear array. This aspect of input processing 

is covered later in the thesis. The memory described above may be 

adapted to accept linear input arrays during testing although it is 

not possible during teaching. Teaching the memory requires binary 

values to be presented so that the memory can determine whether a 

location should be set to 1 or O. However, testing the memory can be 

done on linear data in the following way. Considering the memory as a 

normal mathematical matrix and the input vector as a similar one 

dimensional vector T, recall can be defined as T x M. Thresholding 

etc. can be performed on the result of this operation in the normal 

way. Although linear recall will appreciably slow down the system, it 

may be outwayed by the improvement in recognition performance. This is 

also considered later. 

87 



6. 10. Summary 

This chapter has described the development of the basic associative 

memory system as well as its general properties. It is the associative 

memory that forms the centre of the system to be described. 
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CHAPTER 7 

Memory Performance Analysis 

7. Introduction 

This chapter looks at the performance of the memory system discussed 

in the preceding chapters. 

7.1. Formal Specification of Memory 

The associative memory described in chapter 6 has the form shown in 

Fig 7.1. Consider this in relation to the P -) C (picture to class) 

associative store. The row vector R contains data relating to the N 

tuple sampled input image. The column vector C relates directly to the 

class data. The column response vector contains values generated by 

recognition and memory access. The threshold column vector CT is the 

R 
I I( 

-

I 

I 

I 
,-

I J CR 

L-____________ ~I(T 

R : Row vector 
( : C..olumn vector 
(R Column response vector 
(T : Thresholded column response vector 

Fig 7. 1 
The associative memory. 
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recovered class after N point thresholding (note, the values of N in 

'N' tuple sampling and 'N' point thresholding are different). 

During teaching the N tupled image data is placed on R and the relat­

ing class on C. These vectors activate the row and column wires in the 

memory matrix and where two activated column and row wires coincide a 

link is made. 

Associative recall is performed by placing the N tuple sampled image 

on the vector R. Then for each column wire, the number coincident row 

wires where a link is present with a row wire is recorded. 

This can be expressed mathematically in the following terms, 

If a location in 

R vector is expressed as Ri 

C vector is expressed as Cj 

CR vector is expressed CRj 

and one element in the memory matrix as Mij 

where o < i =< Rmax 

o < j =< Cmax 

Rmax = Number of rows 

Cmax = Number of columns 

also Ri, Cj, CRj, Mij = 0 or 1 

Teaching can be expressed as 

Mij = Ri • Cj for all i and j 

Recall can he expressed as 
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CR' J 

i=Rmax 

i=1 

Ri • ~1ij for all j 

Followed by N point thresholding on CR, taking the maximum responding 

N points in CR and settJng them to 1. 

7.2. Limitations of Recall in the Memory 

The memory described above is used back to back with another similar 

memory to produce autoassociative recall (see chapter 5 and Fig 7.2). 

This allows an object to be recognised and its recorded shape to be 

recovered. The memory description above relates to the P -) C memory; 

the C -) P memory has the same structure but the thresholding of the 

output is different. 

The conditions of failure for the two memories are slightly different. 

The C -) P memory requires that the exact reproduction of the class 

pattern occurs during testing. Thus the C -) P memory needs no ability 

to recall on incomplete data. 

The P -) C memory does not have this restriction. The input pattern 

during testing is expected to be quite different to that on a teach. 

Both memories require the output image to be an exact reproduction of 
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the image that was taught. 

The main failure in both memories is saturation as discussed in 

chapter 5. To recap, the effect of saturation is twofold. It affects:-

1) The memories ability to recognise incomplete patterns as their com­

plete counterpart is diminished. 

2) The probability of extra points in the output array, not a part of 

the original pattern, increases ('ghost' points). 

Case one only effects the P -) C memory as the C -) P memory only 

matches on complete class images. 

As well as predicting the conditions of failure in the memory, the 

effects on the performance by varying its various parameters will also 

be examined. A design criteria will be given to enable optimal con­

struction of the memory for specific applications. 

7.3. Mathematical Performance Analysis 

A mathematical analysis to show the effects of various parametres on 

memory performance will be given first, followed by empirical investi­

gations to verify the analysis. As described in the previous section, 

it is intended to describe errors of the output from the memory due to 

saturation. These errors are probabilistic, and they occur in the 

following way. Consider a pattern being placed on the input array R 

as shown in Fig 7.3. This activates the row lines in the memory 

matrix M. Considering one column in the matrix, the active row wires 

will coincide with the column where a location mayor may not be set. 

If this column wire was one set in a previously taught pattern, all 

row wires active during the test would coincide with a link that is 

set. The number of active rows coinciding with locations that are set 
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Memory access. 

to 1 is recorded in the response array at the position representing 

this column. 

The response on the output is then thresholded using the N point 

thresholding on the class response output, and thresholding at p in 

the picture response array, where p in this case is 3. 

Now consider the case where the column in the matrix was not activated 

during the teaching of this pattern. The possibility that the active 

rows will coincide with a set location is purely random. The probabil-

ity that enough coincidents will occur to allow the total to go above 

threshold will depend on the saturation level of the memory. Obviously 

with many locations set it is likely that enough coincidents will 

occur. 

For analysis, the case where a perfect input image is presented to the 

memory in any test i.e. the complete pattern that was taught shall be 

considered. This restriction simplifies the analysis. Cases where 

the input pattern is not exactly the same as the one taught lead to 

somewhat intractable probability equations, see the discussion on this 
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below. 

The basic form of the analysis is as follows. The use of a perfect 

input pattern as described above means that the response pattern will 

be perfect when the memory is well below saturation. Above saturation 

errors will manifest themselves as 'ghost' points, not belonging to 

the original pattern but created by 'internal' effects on the memory. 

The process causing ghost point production is explained in Fig 7.4. 

The probability that a ghost point occurs is dependent on the satura-

tion level of the memory, since this determines the probability that 

anyone location selected in memory at random will be on. Once this 

probability P has been found the probability that the N active rows in 

the test image will coincide with a complete set of these locations is 

pN. From this the probability of any column responding with a ghost 

point can be found and consequently the probability of failure after a 

set of images has been stored. A fuller description accompanies the 
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Fig 7.4 
Ghost point production 

Pattern P was taught when B was active 
and not A, thus the pattern should only 
activate B maximaly. Due to coincident 
points in A, this column also responds 
maximaly causing a ghost point to occur 

with a resultant failure in recall. 
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following mathematical analysis. 

7.4. Conventions 

The following are used throughout the analysis 

P-)C C-)P Label 

------------------------------

Column vector Class Picture CV 

Row vector Picture Class RV 

No. elements in CV Size of array H 

No. points in CV Active elements* N 

No. elements in RV Size of array R 

No. points in RV Active elements* NI 

Probability of failure P 

Number of images stored T 

* : For the class array, the number of active elements is the N points 

selected within the class to represent the class pattern. For the pic-

ture array, the active points depend on the N tuple size (see section 

on input processing chapter 9 to see how this relates to real input 

image size). 

7.5. Saturation Level of Memory After T Teaches 

The analysis starts by predicting the number of points set in the 

memory after T teach iterations. The full analysis and approximations 

are given in appendix 1. The equation derived is 

T 
s = H.R (1 - (1 - (N.NI/H.R)) ) 

t 
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Where St = number of the points set in a memory of H x R points after 

T teaches. 

The probability of selecting an active location in the memory is given 

by, 

St St 
----~------------------ = total memory locations H.R 

=) p(active location) = 

1 - (1 - (N.NI/H.R))T ( 1 ) 

7.6. Probability of ~ Corrupted Output Pattern 

Its is now possible, using the above equations, to predict when a 

recovered pattern will not be an exact reproduction of the original. 

The probability will reduce as more patterns are stored. 

--------------- ----------

T 
Graph 7.1 T 

St = H.R (1 - (1 - (N.NI/H.R)) ) 
For typical values. 
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First the probability, P(Cl)' of one error occurring in anyone column 

P(Cl) = p(active location)NI 

NI = peal) 

=) Probability, P(Cl)' of an error not occurring 

Probability, P(Cl_H) of this happening in all columns 

(C ) (1 - p(al)NI)H p l-H = 

Probability, P(Cl_H)' of an error in any column 

Giving 

T 

In (1 - (1 - (1 - P(Cl_H»l/H)l/NI) 

In (1 - (N.NI/H.R» 

(2) 

(3) 

Thus we now have 2 equations which can be used to calculate the proba-

bility of not recovering a perfect pattern after T teaches and, at a 

given probability, the number of patterns that can be stored up to the 

given probability of error. 

The following analysis illustrates the effect of altering the various 

parameters in the memory on recall. The picture to class memory is far 

more efficient than the class to picture memory for array sizes where 
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the picture is of much greater size than the class. The consequence of 

this will be discussed below. 

7.7. Performance of the 'Picture to Class' Memory 

The first graph A 2 illustrates how the probability of error is 

effected by the number of class points in the class array. The parame­

ters selected are within the range used in the simulation package 

written to explore the systems capabilities. It shows that a small 

number of class points produces less likellyhood of error for a given 

number of patterns taught. The graph also illustrates how the memory 

will effectively recover all the images with a very low probability of 

error until the number of images taught reaches a particular level 

whereupon the probability of error suddenly rises. This illustrates 

how the memory could be constructed so that the probability of error 

is very low under specified conditions. This error profile remains if 

other variables such as picture array size and picture points are 

varied. The results of these variations are shown in graphs B 2 and 

C 2. 

Using equation 3 for T a specified error rate can be chosen. Then, for 

various values of parameters, the ability of the memory to store 

images can be estimated. 

Graph F 1 shows how many patterns can be stored up to a probability of 

error of 0.001 whilst altering the number of points in each class pat-

tern. The three plots are for different class array sizes. These 

graphs show that the class points should be as low as possible to 

obtain optimum storage capacity. It is worthwhile pointing out here 

that the number of class points should not be too small else the 

number of individual class patterns that can be generated would' be 
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less than the sto~age capacity of the memory as an associative memory. 

The number of patterns that can be generated for class points of Nand 

a class array size of H is 

H! 
FJ(H - R)! = Number of class patterns 

It will be noted that for large class array sizes the number of class 

points needed to obtain enough individual class patterns can be quite 

small. For example, the graph F 1 shows that for a class array size of 

128 points the storage capacity is approximately 2000 patterns with 3 

class points set per pattern. Using the above equation this gives the 

number of class patterns possible as c;28, which is quite adequate. 

The final graphs for P -) C memory illust~ates the relationship 

between class size and the number of images that the memory can store 

(Graph H_1 and H 2). Since the the class ar~ay size directly effects 

the amount of memory used the x axis of the graph is described in 

terms of memory bytes used and is equal to the class array size x pic-

ture array size. For this graph the number of class point was main-

tained at 5. 

The important aspect of this plot is that as class array size 

increases the storage capacity of the system rises linearly. 

The 3 plots show the storage ability for various sizes of picture 

array. The number of,picture points is calculated for the regularly 

mapped edge detector input system (see later chapters). This relates 

to a single resolution field, broken up with eoge detectors and then 

mappeo on to the input a~ray of the memory as shown in Fig 7.5. The 

natllre of processing between each stage is described in chapter 9. In 

the example, the region covered by each edge detector is 8 x 8 pixels 

on I, with a reduction of 1 in 8 between image and memory. 
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Input processing stages. 

7.8. Storage Efficiency of the Associative Memory 

Graphs H 1 and H 2 can be used to discover the memory's efficiency in 

storing images compared to a conventional file system. Each image in a 

linear file system is stored separately, hence the storage would equal 

image size times number of images to store. Similarly, the storage 

amount needed by the memory used here can be read off the graphs H 1 

and H 2. Dividing the memory needed by a conventional system by the 

memory needed by this system yields an efficiency figure. Table A (in 

appendix) shows results for various values. 

Although an exact comparison with a conventional file store cannot be 

made since the associative memory assumes an error level of one in one 

thousand images recovered, the comparisons given in the table give 

some idea of storage efficiency. The efficiency is greater than one in 

all cases, indicating better storage abilities than the conventional 

file store. The greatest storage improvement factor is 21.8 (21.8 

times less storage needed in the associative memory compared to the 

listing memory), shown by the random mapped system, this yields a 

difference in storage ability between this system and a conventional 

file store of 668 megabytes to store 21500 images(total storage is 700 

megabytes for the listing memory - 32 megabytes in the associative 

memory). This is a vast storage saving, and greatly alleviates the 

storage problem. It is important to note that the picture size quoted 

is the input to memory size, and not the actual image size. 
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7.9. Performance of the 'Class to Picture' Memory 

This memory differs from the picture to class memory in that its input 

array is much smaller than the output array. Also, the class array is 

the input to the memory, alteration of which is used to control the 

storage abilities of the memory. These two factors lead to quite dif­

ferent storage properties between the P -) C and C -) P memories. 

The same equations that were used in the P -) C memory can be used 

here by changing the meanings of the parameters of the equations. The 

new assignments are, 

H Size of picture array 

N Number of elements at 1 in each picture array 

R Size of class array 

NI : Number of points in each class array set to 1 

As in the P -) C memory, graphs were generated using the equations 

given previously to ascertain the storage properties of the memory. 

The first graph E 2 indicates how many patterns can be stored in the 

memory before the probability of an incorrect recovery rises above a 

set level. In this graph the number of class points in each class pat­

tern was varied, whilst holding all other parameters steady. 

The graph shows a very important feature of the C -) P memory; the 

storage ability does not rise linearly as the number of class points 

is increased. The graph gives optimal storage at a particular number 

of class points, indicating that the number of class points need to be 

carefully set using the equations given above to obtain optimal 

storage capacity at a given error rate. 

Graph F_2 shows a set of graphs of different class array sizes, main-

taining the probability of error at the same level for all graphs and 
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varying the number of class points as in the previous graph. Again 

the storage ability is plotted for different expected error rates. The 

graph shows the same function as before, but the important factor is 

that the maximum storage ability occurs at approximately 18 class 

points in all plots (line a in graph F 2). This is an important find­

ing. Graph G 1 examines this for a wide range of class array sizes. In 

this graph the maximum storage ability of the memory is plotted over a 

set of class array sizes. (i.e. the maximum points of the F 2 graph 

for different sizes of class array). The plot shows that there is a 

linear relationship between storage ability and class size for dif­

ferent probabilities of error. This is a very interesting outcome, 

the effect of which is to make memory design very simple. In general, 

for a given input image size and number of image points active in each 

image the number of class point can be estimated and fixed. The class 

array need then only be altered to set the storage level or error rate 

required. 

Graph I_I shows a plot of class points needed for maximum storage 

ability. This plot appears to be linear, as expected from graph G_l, 

but a detailed analysis indicates this is not the case (see graph 

I 2). The number of class points needed varies very slightly and so, 

to achieve maximum storage, the number of class points only needs to 

be varied slightly for different sizes of picture array etc. But 

since the variation is only very slight the effect is negligible when 

brought up to the nearest integer. 

It is worthwhile asking why the relationship shown in F 2 is non 

linear and what causes maximisation. As the number of class points 

increases so does the rate of saturation of the memory, this is shown 

in graph J 1. But as the number of class points increases the proba­

bility of getting an error on the output decreases (for a fixed 
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saturation rate). This follows from equation (3) above, i.e 

p(error) = 1 - (1 - p(active location)NI)H 

p(active location) is a constant at a particular saturation level of 

memory. NI is the number of class points, as this increases p(error), 

decreases. From this we can deduce that, 

a) Increasing NI =) increasing saturation rate =) increasing error as 

NT increases. 

but, 

b) Increasing NI =) increases power to prevent error =) decreasing 

error rate as NI increases. 

This can be plotted as shown in Graph 7.2 (below). The two individual 

effects comhine to produce the overall effect found in the previous 

plots. 

The C-)P memory shows a lower storage capacity compared with the P -) 

C memory. Table B (in appendix) contrasts storage capacities in the 

P-)C and C-)P memories with equal sized picture arrays and picture 

Error 
rate 

Error 
rate 

A+B 

o Number of class points 

A 

B 

o Number of class points 

Graph 7.2 
Explanation of Error rates. 

103 



points and with a set number of class points. The table shows two 

sets of calculations. The first (A) is the storage ability and effi-

ciency for a picture array of 896 bits and picture points set to 64· , 

the second (B) is for 16 picture points in the same sized array. 

For results in row A, the table shows that the P-)C memory stores two 

times the number of images than the C-)P memory. Also, an important 

point here is that the efficient of the C-)P memory under the condi-

tions selected is'less than 1, which means it is inefficient compared 

to a conventional file store. 

The only way the C-)P memory efficiency can be increased (and thus 

match its abilities with that of the P-)C memory) is by either 

increasing the picture array size, or by reducing the number of pic-

ture points. Altering the class size will have no effect since it will 

affect both the P-)C memory and C-)P memory equally. 

The second set of calculations (B) in the table show the effect of 

reducing the number of picture points in each pattern from 64 to 16. 

This has the effect of increasing the efficiency of the C-)P memory by 

a large margin, whilst only increasing the efficiency of the P-)C 

memory slightly, thus making the efficiencies of the two memories 

match better. This is due to the non linear change in storage abili-

tys (different for the two memories) as the number of picture points 

is altered (see previous graphs). 

7.10. Matching the Storage Properties of the Memories 

Formulae derived to predict the storage abilities of the memories do 

not take into account the effect of noise in the input pattern. If the 

input pattern is distorted due to noise or shape distortion, the 

recall efficiency of the memory will be reduced. Because the C-)P 
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memory is expected to receive the pattern presented in teaching (i.e 

the N point class, and so not distorted), the formulae can be used 

directly to derive the storage ability and error rates required for 

this memory. However, the P-)C memory receives the input scene and 

thus will not be presented with the pattern taught on in every test. 

Thus the error rates and the storage abilities given by the formulae 

will be greater than those found in practice. A consideration of 

recall in the presence of a noisy input image is given later. 

In the above discussion it was shown how the two memories differ in 

their predicted storage abilities. Under certain conditions (see table 

B), the P-)C memory exhibits far better storage properties than the 

C-)P memory. In the light of the above this is not a disadvantage 

since in practice the storage ability as predicted from the formulae 

needs to give the P-)C memory far better storage abilities than the 

C-)P memory. Thus a system can be designed in 'which the differential 

in storage between the two memories is highly biased in favour of the 

P-)C memory. A large bias will mean a reduced storage ability and a 

high resilience to noise, a low bias will provide high storage ability 

but a low resilience to noise 

7.11. Analysis of Recall Abilities in the Presence of Noise 

This section covers an extension of the basic recall analysis to see 

what factors are involved in recall on an input pattern containing 

noise. The analysis is on the same lines as above, with a more 

detailed look at the threshold process. 

Variables 

Picture array size R 

Number of elements at 1 in teach picture array NI 
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Class array size H 

No of elements set to 1 in each class pattern N 

No of elements at 1 in test picture X 

(where X < NI) 

No of elements at 1 in test picture that were 

not a part of the original pattern S 

Again we assume a memory matrix of binary points of size R x 

H. On each teach NI x N points are accessed in the matrix and set to 

logical 1. The matrix is initially assumed to be set to all O. 

As before, we need to know the probability of obtaining an incorrect 

recall when a given number of patterns have been taught in to the 

memory, where recall is the case when the recalled pattern and taught 

pattern differ, or have a hamming distance of greater than or equal to 

1. As in the preceding analysis, it is evident that the conditions of 

failure differ for the P-)C memory and the C-)P memory. In the follow-

ing analysis only the P-)C memory will be considered, since it is 

expected that only this memory will receive a pattern that is dif-

ferent to that taught. 

7.11.1. Recall Error for a Complete Pattern 

An error occurs when, after teaching on a complete input pattern, the 

class pattern differs from that taught. The response of each element 

in the recovered class pattern will be maximal and equal to NI (the 

number of elements at 1 in the input pattern). An error will occur if 

other points in the class array have a response equal to NI. This will 

be due entirely to saturation of the memory (note we are considering 

the case where the input image is exactly that taught). The probabil-

. by NIP ity of one of these extra points reaching the value NT is glven 
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where P is the probability of finding an element in the matrix at log-

ical 1, after T patterns have been taught. 

7.11.2. Recall error in the case of an input pattern with elements 

set to 1 removed 

In earlier chapters it was shown how the memory will fail when noise 

is added to the input pattern. The quantitative effect this has on the 

class response will now be described more fully. 

To make explanation clearer, the class elements which are correctly 

recovered will be defined as C and the points that are incorrectly 

recovered defined as -C, such that -c = 0 and C = N if the class is 

correctly recovered. In the case of a complete input pattern, errors 

occur in such a way as to cause C to remain the same and -C to 

increase. This can be shown graphically as in Fig 7.6. In this graph, 

all the responses X are the responses relating to the correct class 

pattern. The responses Y and Y' are due to random interference within 

the recall process. The mean response of sum Y + sum Y' is approxi-

p 
mately NI • If N point thresholding is applied to the above to recall 

the class, where N = 3, all the bars in the graph marked X and Y' will 

be set to 1 (a total of 4 points set to 1 in the class). Thus, after 

lOt wl°11 be evident that -C = 1 and C = 3. In this case the N recall, 

R 

NI 

Fig 7.6 
Typical response of the class output for a test on ~ complete 

pattern, where the memory is taught to saturatlon. 
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point thresholding can be reduced to a simple 'effective' threshold at 

NI because the input pattern is exactly that taught. This effective 

threshold is the same as is applied to the C-)P output response to 

recover the picture. 

Now consider what happens to the graph above if the input picture 

taught has elements set to 1 removed, and the image is then retested. 

The number of elements at 1 in this pattern is given as X and is a 

subset of the original elements set to 1 (see Fig 7.7). 

It can be seen that since only X points are now at one in the input 

pattern, the effective threshold has now reduced to a value X. Because 

of the reduced number of input points the effect of the Y responses in 

corrupting the recovered class has increased. (It will also be noted 

that the Y responses have also decreased in comparison with the origi-

nal). 

7.11.3. Effect of N Tuple Sampling on Recall 

We must now incorporate the effect of N tuple sampling (where N pixels 

are associated together using a logical operator) the input image 

before presentation to the memory. In the case above N tuple sampling 

was assumed not to occur, the input pattern was fed directly to the 

R 

NI 

X 
x - x y' x y' 

~-L~-L~lJ-L~-L~~H 

000010001011001 

Fig 7.7 
Response of an input pattern where elements at 1 are a subset 

of the original pattern taught. 
('_' indicates the level associated with a complete input pattern) 
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memory. For the analysis of a complete pattern there is no change in 

the result hecause the input to the memory has not changed in testing 

compared to teaching. In the case where the input pattern is reduced 

the only effect is to accelerate the reduction in X as the pattern 

subset is reduced, and so the conclusions above still hold. 

7.11.4. Effect of Noise Peripheral to the Pattern on Recall 

In considering the effect of random noise on the system we must take 

into account the N tuple process acting on the input field. We con-

sider here the random mapped type N tuple sampling with no all 1's or 

all O's addresses (This will be explained in chapter 9, basically 

theses N tuple states do not contribute to the recognition of the pat-

tern). If we consider a simple pattern presented to the system, and 

then the system is tested on this pattern with varying amounts of 

noise added, as shown in Fig 7.8. With no noise added the number of 

elements at 1 in the array presented to the memory will be X, as noise 

is adrlerl a further S elements will be included in this pattern up to a 

maximum of, X + S = R'/N where R' is the input image size (before N 

tuple sampling) and N is the N tuple size. If a large amount of noise 

is added all 1's addresses will be generated reducing X + S eventually 

to zero (i.e an empty array being presented to the memory). This is 

shown in Fig 7.9. 

N tuole sampling 

.------= ~ ~RfdW1~ 
IrrEge Input to merrory 
Size = R Size = R 
ElEments at = NI' Elements at 1 = NT 

Fig 7.8 
A simple pattern presented to the system. 
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, 
R/n 

x 

% of noise in R' 

Fig 7.9 
Change in class response as noise is added to the input pattern. 

So as noise is added both N tuples activated by the original pattern 

and N tuples not previously active will be effected (active: meaning 

registering a tuple which is not all zero or alII). The graphs in 

Fig 7.10 and 7.11 show the typical changes in the response of the 

class to a taught complete input picture, before and after noise is 

added. The original correct class pattern V is both decreased due to 

'correct' N tuples on the input and increased due to other N tuples 

not in the original pattern becoming active. The elements in the class 

pattern not in the original taught pattern also change. 

The processes involved here are complex and would be the topic of 

R 

X 
v v v 

Fig 7.10 
Class response - no noise added. 

R 

X v 
v V 

Fig 7.11 
Class response - with noise added. 
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further studies. It is true to say that it is impossible to predict 

accurately the effect of 'real' noise (i.e non random) on the memory 

as opposed to the ideal case (as studied above) where noise is purely 

random. Further complications need also to be investigated such as 

the effect of using local N tuples formed out of edge detectors and 

the effect of having different patterns taught under the same class 

pattern as is done in the final scene analysis system. 

7. 12. Processing the Input Image to Allow Memory Storage Control 

The number of picture elements set to 1 in the input image array must 

be restricted in some way if storage control of the type outlined 

above is to be allowed. Chapter 9 discuses the use of two different 

input processing systems, random mapped and confidance tupling. In the 

process of random mapping control can be in the form of altering the N 

tuple size. In the confidance process eoge detectors are used and a 

similar control can be also be used here. In some cases it may be 

necessary to have a different number of picture elements set to 1 in 

the array feeding the P-)C memory and the array feeding the C-)P 

memory (i.e to obtain the desired storage properties). This can be 

done by randomly removing N tuples in one input array until, say, only 

16 N tuples are 'active'. This process has not been used in practice 

and remains theoretical. 

7 • 13. Summary 

The above discussion illustrated the general properties of the 

memories by considering their probabilistic behaviour. It can be seen 

that the P-)C memory has very good storage abilities compared with a 

conventional linear file store. The C-)P memory does not have such 

efficient storage but, since it receives undistorted patterns, it can 
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be used effectively. In general the memories can be designed to fit 

specifications, although further work is needed, especially in 

predicting the recall abilities in the presence of noise in the input 

image. 

It is now possible to analyse the memory's performance experimentally 

with use of simulations of hardware implementations. This will be 

covered in the next chapter. 
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CHAPTER 8 

Empirical Investigations into Memory Storage 

8. Introduction 

The following covers the experiments done on a computer simulation of 

the memory structure laid out in chapter 6. The theoretical behaviour 

has been considered in chapter 6. The practical performance will now 

be examined and the correlation of the predicted and the experimental 

behaviour assessed. 

It will be shown that the results differ for the predicted onset of 

recall failure. The mathematical probability of failure was given as 

'the probability that perfect recovery of a pattern will not occur 

after T patterns have been taught into the memory'. The experimental 

data was derived from the following 'The number of patterns that can 

be taught before the Hamming distance between a taught and tested pat-

tern, averaged over a number of tests, becomes greater than one' i.e. 

the point at which the memory fails to recall correctly after a number 

of patterns have been taught. A formula for calculating this latter 

condition has been derived from the existing formula (see appendix 2 

for derivation). This is given as a function of H,NI,N and R as 

defined previously and is :-

In (1 - (I/H(I/NI))) 
T = In (1 - (N.NI/H.R)) 

H = No of elements in the column vector. 
NT = No of points set to 1 in the row vector. 
N = No of points set to 1 in the column vector. 
R = Size of the row vector. 
T = No of patterns taught before hamming distance of 1. 
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8.1. Simulation Details 

Simulations were performed for the basic associative memory as 

described in chapter 5, the basic form of the memory is shown in Fig 

8.1. The picture vector was fed directly into the rows of the memory 

matrix; similarly the class vector fed directly onto the columns. The 

data used for the picture vector was 'binary simulated tupling', 

intended to to give a close approximation to the data that would be 

produced by the regularly N tupled confidance system in chapter 9. The 

input picture vector was broken into N tuple groups, each group only 

having one bit set at random within it (see Fig 8.2). 

It is useful to explain the process of confidance tupling which is 

defined in chapter 9. First the input scene is first edge processed. 

Four edge operators of different orientations are used to form the 

L--

Picture 
vector 

Class vector 

Memory Matrix 

Class response vec. 
I 

N point thresholded 
class vector 

Fig 8.1 

1 

Basic simulation model for the picture to class memory 

Picture vector 

\ I \ I 
\ \ 

24 binary elements 
for each secton of the 
picture vector 

Fig 8.2 
Construction of a binarised picture vector. 
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data for one N tuple. The values from the 4 edge operators are then 

reduced to one of 16 states by the process of confidance tupling. 

8.2. Picture to Class Simulations 

The results of these simulations are given in the graphs Y1 to Y3 in 

the appendix. Their purpose is primarily to substantiate the equa­

tions derived previously. 

The first three graphs show plots of mathematically predicted and 

simulated results for experiments where the number of points set to 1 

in the class array varies. Each graph has all other variables con­

stant, with differing class array sizes for each. 

Table of variable settings. 

Graph Picture 

Size 

Y1 

Y2 

Y3 

896 

896 

896 

Picture 

Points 

22 

22 

22 

Class 

Size 

32 

64 

96 

class 

Points 

1 - 30 

1 - 64 

1 - 96 

The procedure used for all the graphs was as follows, 

I) Teach N patterns into the memory. On each teach store the class 

pattern and picture pattern used to teach each picture. Randomly gen­

erating both the class pattern and the binary simulated tupled image. 

2) Test on first N patterns in teach set. After each test calculate 

the Hamming distance between the stored class and the recoved class 

pattern, then average the Hamming distance for all tests. 

3) If the average Hamming distance is greater than 1, then stop, else 
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teach a further P new patterns. 

The reason for testing only the first N patterns taught on each cycle 

is due to the problem of storing a vast number of patterns. In all 

cases N was set to 20. The coarseness of the graphs was due to the 

size of P (the number of new patters taught on each cycle), this was 

set to 100 in all cases. This provided a programme that ran in an 

acceptable length of time (many days in most cases). 

It can be seen that the predicted results show a good relation to the 

experimental results (shown best by graph Y3), thus supporting the 

mathematical analysis. 

8.3. Class to Picture Simulations 

These graphs show results from experiments with the class to picture 

memory (recover picture from class). Two sets are provided, Zl - Z3 

and Zl.l to Z3.3 • These results are slightly more complex to inter­

pret than for the P -) C memory. 

Graphs Zl to Z3 show the number of images that can be stored in the 

memory for an optimal number of class elements at 1 and for each class 

array size. The number of picture elements at 1 and the size of the 

picture array was held constant for each plot. The picture image was 

formed in the same way as previously i.e. a simulated N tuple image 

was used. Basically, for each class array size, the number of class 

points needed for optimal storage was found. The plots show the class 

size and the number of patterns taught. Recall was said to fail when 

the picture recalled differed from the picture expected by one bit 

averaged over a number tests in the same way as in the previous exper-

iments. 
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In each graph the number of picture points set to 1 was varied, this 

is shown in the following table, 

Graph 

ZI 

Z2 

Z3 

Pic. array size 

896 

896 

896 

Pic. points Class array size 

22 

16 

13 

1 - 800 

1 - 400 

1 - 800 

The results are compared with those in graph G 1 in the previous 

mathematical predictions. 

The results compare favourably with the expected results, although 

they are a little lower than expected. The reason for the difference 

is not clear but is probably due to approximations that were entered 

in the equations. 

The second set of results ZI.1 Z2.2 and Z3.3 are coupled to the previ­

ous graphs. These give the number of class points needed to obtain 

maximum storage. They are paired to the previous graphs in the follow­

ing way, ZI with ZI.I, Z2 with Z2.2 and Z3 with Z3.3. 

These graphs show a wide variation in response, although it can be 

generaly concluded that the number of class points does not rise as 

the class array size grows. The reason why the results are not smooth 

is because the number of patterns tested after each teach cycle was 

perhaps too small and the number of class points needed is obviously 

very sensitive to the randomness present in the teach patterns. Over 

all, the results do not contradict what is expected, i.e that the 

number of class points needed for optimal storage in the C-)P memory 

remains constant over a large range of class sizes. 
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8.4. Summary 

This chapter has compared the predicted storage properties of the 

associative memory described in chapter 6 with experimentally derived 

results, the equations used for comparison were derived from the equa­

tions in chapter 7. In general the results show that these equations 

can be used effectively to predict the storage abilities of the memory 

in the case where the input pattern is complete. 
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CHAPTER 9 

Optimisation of N Tuple Samples 

9. Introduction 

In the N tuple process described in chapter 3 various optimisation 

schemes for the mapping of N tuple samples within the input image were 

described. This chapter covers the specific mapping strategies for 

reliable recognition of edge representations of occluded objects. 

9.1. Occlusion Analysis and Random N Tuple Sampling 

As explained in chapter 4, the input image needs to be edge processed 

to allow occlusion analysis to be effective. This results in problems 

when using random N tuple processing. 

Consider a large image containing a small shape as shown in Fig 9.1. 

Because only a small amount of the image is filled with black lines 

only a small amount of the input array will contain elements at logi-

call. 

Fig 9.1 
Small line drawing in a large scene 

If an image is considered convolved with N tuple samples from a set of 

d it is like ly that only a few N tuples will have 
decoders at ran om, 

decoder lines which fallon an object edge (a dark area of the image). 
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The probability of obtaining an all O's N tuple state when an n tuple 

sample is randomly placed within a scene is given by, 

For N » n 

H = Number of dark pixels 

N = Number of light pixels 

n = Tuple sample size 

This gives a probability of 0.96 with H = 10, N = 1000 and n = 4, This 

means that for every pattern taught most of the N tuple states will be 

all zero. If the input image is taught at various positions within 

the scene, most of the locations in the memory matrix concerned with 

o 
storing the 2 N tuple states will be set to 1. 

After a number of patterns have been taught the locations in the 

memory which record the occurrence of all O's N tuple samples will be 

filled or 'saturated', thus they will have no discriminating power 

and, as a consequence, have no part to play in discriminating the pat-

terns. This process also occurs to a lesser extent in line drawn 

images of larger shapes. A problem exists during recall when these 

memory locations are near saturation. The responses from the all zero 

N tuples will mask the responses from all other samples (defined as 

'active' tuples), expressed as a large amount of 'background' noise in 

the recalled class pattern. 

Because of this problem the locations for all zeros detector lines are 

not implemented in the memory. This overcomes the problem above and 

introduces a useful property into the system. This process is 

equivalent to training on an all zeros input pattern as investiga~ed 

by Wilkie (Wilkie1983). 
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Now that all zero locations are not represented in the memory, the 

average response from the memory will depend on the size of the object 

being recognised or, more accurately, the number of elements at logi-

cal one in the object. Consider the two simple patterns shown in Fig 

9.2. Pattern A has more black lines present than pattern B, thus pat-

tern A is likely to create more 'active' tuples than pattern B. The 

total number of active lines entering the picture input to the memory 

will therefore be greater in A than in B. 

If we teach A under one class and B under another, then present both A 

and B in the same scene as shown in Fig 9.3, on testing the memory 

will 'see' A rather than B. This is because A has more active N 

tuples than B. This would not occur if all zeros N tuples had been 

included, in that case A would produce the same amount of N tuples 

responding for its pattern as B, this would be reflected in the output 

in that the response for A would equal that for B, leading to confused 

recognition. 

This is a very important feature of the system allowing the analysis 

of complex multi object scenes. The system would identify the major 

shapes in the scene first then, by the process described in chapter 4, 

A B 

o o 

Fig 9.2 
Two different sized squares. 

EJ Response = A 

Memory 
A+B 

Fig 9.3 
The large square is recognised before the small square 
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go on to iteratively find other shapes in the scene. 

The fact that line drawings only activate a small percentage of the 

pixels in a scene causes problems by restricting tuple codes in 

'active' tuples. It is quite likely that only one line from any tuple 

connects to an 'on' pixel in the scene. Thus N tuple codes are reduced 

to those N tuples containing only one bit set to 1. This is a sever 

problem since the logical process that operates due to the random map-

ping of the tuples is defeated. This is illustrated in Fig 9.4. The 

two images need an N tuple to straddle both 'ij' positions to allow 

recognition of both A and B to take place (Suitable positions for an N 

tuple are shown in the diagram). This is unlikely to happen in a ran-

dom mapped system. The solution to this can only be by controlling the 

mapping of N tuples in some way, this will be expanded on in the next 

section. 

9.2. Non Random N Tuple Samples 

To prevent the restricted N tuple codes as described above, the map-

ping of decoder lines on to the image array must be restricted in some 

way. The N tuple samples must be distributed both globally to allow 

for logical relations over a large area to be recognised, and also 

locally for similar reasons. 

Local N tuple samples need to be grouped closely to recognise local 

A B 
x •••• x One N tuple sample 

(N = 2) 

Fig 9.4 
2 ij's problem 
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logical relations as shown in Fig 9.5. Since the area of spread of 

the N tuple samples is small, it is likely that a wide range of N 

tuple codes will appear. If the distribution area is enlarged and the 

N tuple size is maintained, the likelyhood of a wide range of N tuple 

codes is reduced. For very large distribution areas the number of 

codes is very small. Fig 9.6 illustrates a case where an N tuple sam-

pIe is distributed globally. 

To offset this process the receptive area of each N tuple line can be 

increased (i.e pixel size). Thus the probability that an N tuple line 

will see an edge increases. This is shown in Fig 9.7 for the shape 

shown in Fig 9.6. Note how the N tuple receives more inputs at logical 

1. 

In general, as N tuples are distributed over an increasingly larger 
One N tuple locally 

r-------~---, p 1 aced 

xXx 
x 

Fig 9.5 
An example of locally distributed N tuple samples 

Pattern 
/ 

x 
x 

x 

x : N tuple lines 
Fig 9.6 

An N tuple sample distributed globally 

Receptive regions 

Fig 9.7 
Global N tuple sampling with large receptive fields 
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area, the receptive fields can be made larger in sympathy. The optimal 

distribution of N tuple samples will depend on the patterns being 

taught. 

The system has local N tuple samples with small receptive fields, and 

more globally distributed N tuple samples with larger receptive 

fields. This allows a wide spread of N tuple codes to appear for both 

local and global N tuple samples when viewing line or edge processed 

drawings. 

Producing the distribution of N tuple samples given above was thought 

unnecessary in preliminary work; a simplified scheme was thought ade-

quate at this stage. The processing used in the simulation was as fol-

lows. 

The input image was windowed by a set of processing windows or fields 

of differing resolution. The resolution was uniform within each win-

dow. In the simulation two such windows were implemented, this is 

illustrated in Fig 9.8. Furthermore, the windows were labeled 'high 

resolution' and 'low resolution' for obvious reasons. Each window was 

Low resol~tion 
window pixels 

High resolution 
window !pixels 

\ 

image 

Fig 9.8 
Views from high and low resolution windows 
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made up of an equal number of pixels, and placed concentrically with 

each other, thus the high resolution window only looks at the center 

section of the image. By reducing the centre window size in this way 

storage cost are reduced because the memory size is linked directly to 

the window size. 

Because the high resolution window does not cover the whole scene, 

some form of camera control is necessary to center the high resolution 

window at areas where detailed discrimination is needed. The following 

chapters discuss this aspect of the system. 

The concepts used above relate closely to the construction of the 

human visual system. It is known (Wright1983) that the retina of the 

eye contains a high resolution 'foveal' region and a low resolution 

peripheral region. The reasons why such an implementation is used in 

the human visual system are likely to be similar to the reasons con­

sidered here in that the processing capacity is limited, although it 

is unknown whether any N tuple process occurs in humans. 

9.3. Organisation of N Tuple Samples 

Random mapping of N tuple samples over the scene causes problems when 

an image of an occluded object is considered. The image shown in Fig 

9.9 illustrates this problem. It shows a small shape near the centre 

of the input image surrounded by other shapes. If we consider that 

the N tuple samples are randomly mapped over the scene. The global N 

tuple samples (dnes which span the whole scene) will receive data from 

the shape in the centre of the scene and be effected by the other 

objects in the scene. The effect of this is to corrupt N tuple samples 

which receive inputs outside the shape to be recognised. To overcome 

this the N tuple samples are restricted to local regions, which 
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Shape to be 
recognised 

Shrtp~s that can 
be regarded as 
noise 

Fig 9.9 
A cluttered scene 

prevents N tuple samples from being corrupted by other objects in the 

scene. Because the receptive fields of the individual inputs to each 

N tuple sample in the low resolution field are large, global relations 

between different parts of the scene can still be recognised, although 

some restriction has occurred. The addition of more windows at greater 

resolutions overcomes these restrictions. 

Fig 9.10 shows examples of a low and high resolution N tuple samples. 

The high resolution sample consisting of four pixels (labeled 1 to 4) 

is shown in B, the low resolution sample, made up of larger pixels, in 

A. Effectively the low resolution tuple will detect coarse features 

within patterns, whilst the the small high resolution tuple will iden-

tify small local features. 

1 A 

4 2 

3 

~
B 

4 2 
3 

Fig 9.10 
An example of low (A) and high (B) resolution N tuple samples 
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9.4. Edge Operator Construction 

The discuss~on ahove outlined the following processes to map the input 

image on to the N tuples of each decoder. The image is first broken up 

into two fields, one large covering the whole image the other small 

covering a small centre section. The large field would be broken up 

into x regions or pixels and be used for coarse detection of informa-

tion in the image. The small field would also be broken up into x 

regions, each smaller than the ones in the low resolution field. This 

would be used to detect fine detail. 

The next stage is to map the values from each pixel on to the 

decoders. If we consider decoders with 4 inputs (thus 24 outputs) 

these would be taken from the fields in local groups. 

At this stage the decoders require binary inputs, i.e. logical 1 or 

logical O. Thus each pixel must signal 1 or 0 depending on the con­

tents of the region it is assigned to. 

\ve assume that the input image originates from an imaging device, such 

as a line scan television camera. It is then processed into a high 

resolution pixel image of grey scale values, perhaps of 256 by 256 

pixels. This image is then reduced to create the low resolution win­

dow, of perhaps 32 by 32 samples, and the high resolution window also 

of 32 by 32 samples. The high resolution image may need no reduction 

to achieve the required sampling, other than selecting the center 32 

by 32 pixels of the input image and mapping each pixel directly onto 

each sample. The low resolution image needs to reduce the input image 

of 256 by 256 pixels to one of 32 by 32 samples. Effectively, each 

sample in the low resolution window receives data from an 8 by 8 pixel 

region in the input window. 
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It was pointed out in section 1 that the image is to be edge pro-

cessed. A simple form of edge operator was needed to preserve process-

ing speed during simulation, because a vast number of operations would 

be needed to convolve an image with the edge operator. 

The placing of the edge operators is shown in fig 9.11. This organisa-

tion was selected to provide optimal detection of vertex constructions 

within the scene. A four tuple arrangement is shown, with each edge 

operator set at 45
0 

intervals around a central point. Further edge 

operators can be added to increase the N tuple sample size, as each 

operator provides an N tuple input. 

There are many designs for edge detectors (seeDavis1976,Torre1986), 

the choice was based on the following criteria, 

1) The detector must be orientation specific. 

2) They must not be upset by changes in overall illumination. 

3) They must detect an edge of the preferred orientation anywhere in 

the detector area. 

4) They must be equally good at detecting edges and lines. 

5) They must not be unduly complex, i.e. must work fast. 

The detector must be orientation specific because of the overlapped 

construction shown in Fig 9.11, i.e.detector 1 must be orientation 

1 

3 

Fig 9.11 
Edge detector orientations (1 - 4) 
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sensitive to lines and edges within a range not extending into de tec-

tor 2 or 4's sensitivity region (see Fig 9.11). If this were not so, 

a lack of detail would result in the N tuple state produced by each 

group of edge detectors i.e. a vertical could be given the N tuple 

state for an 'X' (a vertex). 

The illumination condition (2) is important, consider the graphs of 

two linear light intensivity profiles shown Fig 9.12. Even though the 

average light intensity in A and B varies, the edge strength must be 

registered as the same, i.e. the strength is given as the difference 

between the maximum and minimum light values of the defined region. 

The ability for the detector to detect an edge anywhere in its recep-

tive area is also important. To explain why, consider the edge opera-

tor in Fig 9.13 which does not forefil this criteria. This detector is 

modeled upon an edge detector thought to be used in the human visual 

system, see (Davis1976). 

The detector processing is shown at the top of Fig 9.13, edge profile 

'A' produces a response as shown in the graph below it. Similarly for 

edge 'B'. In both edge profiles the central position of the edge is 

the same but as the detector is scanned across the edge, it signals a 

different position for the edge in 'A' and 'B'. The result of this is 

to confuse recognition in some circumstances. Consider a grey circle 

Intensity~-----

A 
Distance 

Fig 9.12 

B 
Dist~ce 

Simple light intensity profiles of an edge 
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Position 

Edge detector 
response when 
scanned over edge B 

Fig 9.13 
A simple edge detector 

on a white background then on a black background. The result if the 

above edge detectors were viewing the circle would be a different 

sized circle in each case. This would mean that a system trained on a 

circle on a black background might not be able to recognised the same 

circle if placed on a white background, unless it receives experience 

of this situation. 

To overcome the above problem a simple Roberts (Davis1975) edge 

detector shown in Fig 9.14 was used. This detector fulfills all the 

requirements listed above, It is easy to implement and fast to com-

. pute. It is not effected by overall illumination as both A - Band B -

A remain constant if both A and B are varied. The detector is able to 

detect lines as well as edges with good selectivity, dependent on the 

width of the detector. The detector gives a good linear response which 
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A B 
R~..sponse = 

/A-BI+\B-A\ 

Fig 9.14 
Edge detector used by the system 

may be thresholded to produce a binary output. 

The output response of the edge detector described above is shown in 

images op6 and op7. Op6a is an image of 128 x 128 pixels with 64 grey 

levels of a simple star pattern drawn on paper and presented to the 

camera. The four outputs b,c,d and e represent the responses from the 

4 different angles of edge operator expressed in the form of grey lev-

els, the whiter the area the more the detector responded to its pre-

ferred orientation. The detectors were 16 x 16 pixels square, sampled 

every 8,8 pixels in the image 'a'. The detectors show good selectivity 

to their preferred orientation. 

The sensitivity to a line drawing compared to a block filled drawing 

is shown in op7. Both images are 128 x 128 pixels, generated as 

described above. The output responses from the 90 degree edge operator 

is shown. The output illustrates how a 'block filled' and 'line draw-

ing' can be reduced to the same representation., allowing recognition 

of both types of images after exposure to just one. 

The following input processing stages have been defined, 

1) Reduction of the input image to a grey scale pixel image. 

2) Calculation of edge detection values for 2 input windows of dif-

ferent resolution. 

N 
3) Construction of logical N tuples and decoding to one of 2 states. 
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Fig 9.15 illustrates the elements of the system described so far. 

9.5. Edge Operator Thresholding 

The edge operators described previously need a specified threshold to 

convert the response to a binary value for the formation of N tuples. 

Whilst this process is fast it suffers from some problems. 

The main problem involves the selection of a suitable threshold which 

covers all lighting conditions experienced in natural scenes. The sim-

plest process is to select a theoretical threshold but this invariable 

means that data is lost in very bright or very dark areas of the 

scene. 

A better way is to derive the threshold from the scene data itself. To 

do this the average response of all edge operators can be taken and 

used as a threshold. This process is acceptable since it would allow a 

threshold that varies in sympathy with the overall lighting levels in 

One process~ 
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the scene. 

Problems still occur with this approach when one considers a large 

scene containing brightly lit and well defined edges in one region of 

the scene, and dimly lit and less well defined areas in other regions 

of the scene. Fig 9. 16 shows such a situation. Two N tuple groups are 

considered. N tuple group (i) is placed in a well lit part of the 

scene such that the responses from the N tuples are high. The tuples 

in group (ii) are placed in a less well lit part of the scene. The 

average response of all edge detectors are shown, along with the N 

tuple codes generated after thresholding. If the tuple codes indi-

cated are compared with the profile of the responses of the edge 

operators, there is little similarity. What is evident is that the 

information contained in the tuple responses is not expressed well in 

this threshold process. 

A process was needed which faithfully represented the response pro-

files of the N tuple samples and which is insensitive to local and 

global average changes in light intensity. 

After consideration of what remains invariant over all light levels 

the following solution was used. 

If a single N tuple group is considered the ordering of the responses 

Response 

~I 
------GI -Threshold 

~Ic level 
~~ [J A B C 

N tuple i N tuple ii 

Codes after thresholding ABCD = 1111 
A' B' C' D' = 0001 , , , 

Fig 9.16 
Responses from the two sets of edge detectors 
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from the operators making up the N tuple remains constant. If figure 

9.16 is considered, the ordering of the responses A,B,C,D and 

A',B',C',D' is the most important factor in the data to be expressed. 

Consider N tuple group (ii), the ordering of this group is D,B,C,A 

with D maximum response and A minimum. If this ordering is mapped back 

into the scene the relevance of the process becomes obvious. This is 

shown in Fig 9.18 (the labelling of edge detectors given in Fig 9.17). 

The responses given in Fig 9.18 relate to the strength of this edge as 

'seen' by each detector. 

This coding procedure allows the grey scale 'landscape' within the 

detector region to be recorded. It is insensitive to overall lighting 

levels both locally and globally. 

orderings 

ofN
lldi

( tv -1)'" 
N edge detectors under this scheme is ~, which, 

This process is implemented in the following way. The number 

tinct of 

for the example above (N = 4), gives 256 orderings of the responses­

which is much more than the 24 states available in the normal N tuple 

process. If all 256 states for each N tuple sample were to be recorded 

the memory used by the system would be very large. 

A 

c 

Fig 9.17 
Edge detector labeling 

Fig 9.18 
An N tuple ranking mapped back into the image domain 
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It is important to note that this value (256) includes the instances 

where all the responses are equal or cases where pairs of edge detec-

tor responses are equal. The occurrence of these states would be sus-

ceptible to any slight deviations in the input pattern, which is 

undesirable. The process can be made insensitive to these small 

changes by reducing the number of states each N tuple sample can 

detect. 

Fig 9.19 illustrates the process. The first stage is to find the max-

imum and minimum responding edge detectors within one N tuple, the 

range of responses between these maximum and minimum responses is then 

hroken up in to regions. In this case two regions are used, one for 

responses determined as being within the the maximum responding range, 

the other for responses lying within the minimum responding range 

(1'st and 2'nd regions in the diagram). The overlap region is the case 

where it is not clear whether the response is to fall in the 1'st or 

2'nd region. For the edge detector responses shown in Fig 9.19 the 

ranking is C and D in the 1'st rank, A and B in the second rank. In 

the simulation of this the intermediate region was not implemented. If 

this was included it would produce two possible states if one edge 

detector response fell within the intermediate range, i.e if B fell 

into this region instead of into the lower rank, the states signaled 

by the N tuple sample would he, 

Response 

- .. Max 
f----- .. 

- - -~ 

r-- - - - - Min 
A B C 0 

N tuple 

Fig 9.19 
Assignment of thresholds 
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or 

l .... st rank 

BCD 
CD 

2 .... nd rank 

A 
AB 

In general, 'the number of possible states with this process is given 

by 2N where N is the number of edge detectors within one group 

(synonymous with an N tuple). 

Whilst this approach may seem like a local threshold scheme, witll ord-

ering of no particular importance, the theory allows extension to a 

more varied number of states. For instance if there were 3 threshold 
". 3'" - 1.,tJ 

regions, the number of possible states becomes ~. This case is shown 

~ 
in Fig 9.20. The possible states in general equals ~ where R is the 

L IZJJ- ((z'-l.)~ 
number of threshold regions or ranks, and N is the number of edge 

detectors (N tuple size). 

The number of possible states and codes used for a two ranked system 

is shown in table 9.1 below. 

Indeterminate 

/r egion 

/ , 

Response 

-- -- - --- ------

A B C 0 
-- -- -- --

N tuple 

Fig 9.20 
A three ranked example 
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RANK TUPLE CODE 
1 2 ABCD 
------------------------------
A BCD 1000 
B ACD 0100 
AB CD 1100 
C ABD 0010 
AC BD 1010 
BC AD 0110 
ABC D 1110 
D ABC 0001 
AD BC 1001 
BD AC 0101 
ABD C 1101 
CD AB 0011 
ACD B 1011 
BCD A 0111 
ABCD 1111 * 

ABCD 0000 * 

* = See discussion 

Table 9. 1 
N tuple codes generated for different 

rankings of edge detectors 

This table can be converted to the normal tuple representation of the 

16 binary numbers, which can then be used as the inputs to the 1 in N 

decoders used in the N tuple process, and then applied to the memory 

in the normal way. The process of converting each particular ranking 

to a binary number is simple. If we assign one bit of a 4 bit code to 

each edge detector, i.e bit positions of a 4 bit code are A,B, and C, 

then A represents the edge detector at 0 degrees, B for the detector 

at 45 degrees, C for 90 deg. and D for 135 deg. We then set the bit to 

1 if the edge detector response falls in the first rank, and set it to 

o if it falls in the second rank. The tuple codes in table 9.1 were 

formed by this method. 

It can be seen that a problem occurs when all edge detector responses 

Are equal. In this case ranking is either l'st = ABCD and 2'nd = none, 

or I'st = none 2'nd = ABCD. This case mllst be covered in more detail, 

as it is equivalent to the all O's and alII's tuple codes discused 
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earlier in the chapter. These codes are not represented in the decoder 

process because they frequently occur in images and cause saturation 

of memory locations addressed by them. The problem here is that the 

particular codes can be generated by two types of input pattern. If 

all edge detectors in a tuple see uniform grey level, then all the 

edge operators responses will be zero and generate the ranked codes 

1111 or 0000. The problem is that this code can also be generated by a 

star pattern as shown in Fig 9.21. This pattern needs to be 

represented in the tuple coding in a different way to the pattern for 

an all grey input. In the arrangement described above a star pattern 

and an equal grey level input pattern are not assigned an N tuple 

state, the solution to this problem is covered later in the chapter. 

9.6. Examples of Grey Level N Tuple Processing 

The result of grey level N tuple processing is shown in op8 and op1 

acting on a simple square and a more complex face. Op8 is a 128 x 128 

grey scale image of a simple drawn square. To represent the N tuple 

code formed, the image of the tuple output is given in a graphic form. 

This shows a collection of four possible orientations of edges for 

each tuple. The ones shown are the edge detectors whose responses 

falls in the upper rank. i.e the four edge detectors at 0, 45, 90 and 

135 degrees are given the following patterns 

Fig 9.21 
An input pattern that can cause an all O's or alII's 

N tuple state to be generated 
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respectively. If one N tuple in the N tuple output image shows a 'I' 

on top of '\', this means that edge operators 0 and 135 degrees lie in 

the upper rank (and by default the 45 and 90 degree detectors lie in 

the lower rank). 

Image op8 clearly shows the outline of the square in the tuple codes. 

The dark corners in the peripheral regions of the image are due to 

camera non linearities; they were not present in the scene. The N 

tuple patterns reflect this illumination gradient. 

Pattern op1 is much more complex, and contains a lot of detail not 

resolvable by the edge operators in this low resolution view (see 

appendix 3.1 for a description of edge operator sizes). Careful 

inspection of the N tuple patterns will reveal the outline of the 

head. 

9.7. Extending the N Tuple Process to give Confidences 

The binary tuple process described above used 4 edge operators to 

detect 14 illumination gradients. The images shown in op2 illustrate a 

limitation of this process when applied to grey scale input images. 

Images Ai in op2 show a representation of the states generated when 

the hinary tuple process is applied to a binary image of a square. 

Image Bi illustrates the result of the same process when applied to a 

grey scale image of the same square. 

The regions in image Ai where no N tuple state is indicated illus­

trates areas where all the edge detector responses were equal (all O's 

or all l's). As explained in the previous section these states are not 

given N tuple states. In image Bi, which is processing a grey scale 

image, all edge detector groups are assigned a state (i.e no all l's 

or all O's states are present). This results because there are no 
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uniform contrast regions in the grey scale image thus no edge detec­

tors respond with a zero illumination gradient (required to produce 

all O's N tuple states). 

The following can be deduced from images Ai and Bi in op2. An N tuple 

state is an all or nothing response to a contrast gradient viewed by 

the four tuple of edge detectors. Even if the illumination profile 

viewed by the N tuple sample of edge detectors is only slightly uneven 

an N tuple state will be generated. In binary images this does not 

cause any problems because large areas of the image will have a uni­

form illumination gradient. However, in grey scale images this is a 

problem. Edges of shapes as well as clear areas of the scene will 

generate particular N tuple states, effectively indicating edges 

present in areas of uniform illumination. This would adversely effect 

recognition in that the system would recognise shapes present in 

regions where no shapes are actually present. 

To overcome this problem each N tuple state is given a confidence 

value, calculated from the 'quality' of the pattern the edge detectors 

are seeing'. This is passed to the memory to aid recognition. (How 

this is used by the memory is shown below). A group of edge detectors 

viewing an edge may give rise to an N tuple state of 1010, with an 

associated confidence of 0.95 out of 1.0, whilst an area of near uni­

form illumination might generate the same state but with a confidence 

of O. 1. 

Fig 9.22 shows how the confidences may be calculated. These graphs are 

representations of the edge detector responses for each of four tuple 

group of edge operators. To calculate the N tuple code the average 

response of the maximum responding and minimum responding edge detec­

tors is used and then ranking occurs (see above). The calculation of 
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confidences is simple, and is given by 

Confidence 

Confidence 
0.5 

Confidence 

Confidence 

o. 15 

Average response of edge 

operators ranked top - Average of edge operator responses of edge 

operators in the bottom rank. 

This gives a confidence value independent of overall response of the 

edge detectors and so gives a true reading of the presence of a par-

ticular N tuple state. The result of this process is shown in op2, 

Aii and Bii for the same images as before. 

The process above has heen termed confidence tupling, the process used 

to find the N tuple codes is called binary tupling. The use of the 

confidence output hy tl1e memory will he described later. 
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9.7.1. Recognition of a 'star' or Uniform Intensity Profile 

It was shown earlier that a problem existed in assigning ranking to a 

set of equally responding edge operators. The binary tuple process 

gave the same ranking to a 'star' pattern and a uniform grey level 

pattern. It was required that the 'star' pattern be represented in the 

N tuple states but not the area of equal grey level. By using confi-

dences this requirement can be met. As a uniform grey level area would 

give all edge operators a zero response, thus the confidence for this 

pattern in all N tuple samples would be zero. Conversely the star pat-

tern would produce non zero responses from the edge detectors, thus a 

non zero confidence for some N tuples. For all 1's n tuples and all 

O's n tuple the average res ponce of each edge detector in the n tuple 

is used for the confidance of the n tuple. By correlating the confi-

dences of a N tuple with the N tuple state the memory can be made to 

ignore all uniformly illuminated areas. 

For interest op 4 has been included. This shows the confidence tuple 

process acting on the same image as used in fig op1. To show up the 

outline of the face the confidences of the N tuple samples have been 

thresholded at a suitable level. This has then been used to select N 

tuple samples for the N tuple output image also shown. 

The effect of changes in illumination on N tuple confidences is shown 

opS. This is a view of the star image shown in op6. The top image 

differs by three camera 'f' stops compared to the bottom. It can be 

seen that the N tuple patterns still show a good relation to the input 

pattern, although the N tuple confidences have fallen dramatically. 
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9.8. Using N Tuple Confidences in the Memory 

The following formally describes how the confidences of each N tuple 

state are used by the memory described in chapter 6. If we consider 

the mathematical representation of the memory system given in chapter 

7, 

R. = picture vector 
l 

C. = class vector (teach) 
J 

CR. = class response vector 
J 

where 

o < i <= Rmaximum 

where Rmaximum = Size of the picture array R. 

where P = no of pixels in input image 

n = number of edge operators or n tuple size 

and 

o < j <= Cmaxjmllm 

where Cmaximum = size of class array 

and now 

Q. = vector of confidence values for N tuple states. 
l 

M .. = Memory array 
1J 

R.,C.,M .. can take the values 0 or 1 
l .1 lJ 

Q. can take the values 0 To 1 
l 
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CR. can take the values 0 to n before N point 
J 

thresholding ano take 0 or 1 after 

Teaching dose not use the confidence tuple information Q. 
1 

thus it is the same as before 

M .. = R. 
1J 1 

C. for all i and j 
J 

Testing or recall is now altered to 

CR. = 
J 

i=Rmaximum 

i=1 

Q. x R. x M .. 
1 1 1J 

The teaching process requires the inputs to be 0 or 1 to allow the 

switch of a memory location to be determined. Alternatives incorporat-

ing the confidence values would be the subject of further investiga-

tion and could involve probabilistic switching of the memory elements 

depending on the confidence values of the input N tuple and possibly 

the use of a linear memory matrix instead of a binary matrix. 

9.9. Summary 

to summaries, the following attributes of the system have been dis-

cussed. 

All O's N tuple states are not implemented in the memory. 

This overcomes the memory saturation problem and allows 

iterative recognition of objects, starting at the largest. 

N tuple groups of edge detectors are distributed locally. 

This allows logical relations between elements of line 

drawings to be recorded, and reduces interference in N 

tuple states in cluttered scenes. 
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Two fields of different resolution are implemented in the input win­

dow. 

This allows global as well as local logical relations to 

be detected in the input scene. 

A simple Roberts edge detector is used as an input to the N tuple pro­

cess. 

This is fast to compute and can be made sensitive to a 

preferred orientation. 

A ranking process is used to assign a state to each N tuple group of 

responses. 

This records the illumination landscape over the N tuple 

sample for grey scale images whilst being insensitive to 

the overall lighting level in the scene. 

A confidence is assigned to each N tuple state. 

This allows edge features to be detected in presidence to 

slight background illumination non-linearities. 

The use of N tuple confidences in the associative memory has been 

defined. 

The recognition of grey scale scenes perhaps containing many objects 

where lighting conditions are not consistent is a central problem in 

scene analysis. The aspects of the scene analysis system described 

above were designed to overcome these problems. Furthermore, the abil­

ity to recognise line drawn and block filled objects is a novel aspect 

of the system. 

The methods by which the human visual system is able to cope with 

these problems is central to the studies of visual cognition 

(Pinker1985). The methods llsed above incorporate many features of the 
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human visual system (i.e foveation, input image resolution changes and 

edge processing) and may lead to a better understanding of the ways 

humans overcome the problems. 

From now on the normal N tuple process will be called the 'random 

mapped' input process, and the ranking system described above as 

'binary tuple' input process. 
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CHAPTER 10 

Position Independent Recognition 

10. Introduction 

The discussion in chapter 3 pointed out that N tuple pattern recogni­

tion only recognises shapes at the position in the input window that 

they were taught. To overcome this limitation the image can be taught 

as it is moved around the input window. Unfo~tunately this leads to a 

larger teach set and broader generalisation. 

This has been overcome by using a preprocessor to align the object 

before teaching and ~ecognition of the object. Many methods of align­

ment are possible, however, alignment on one object in a scene con­

taining many objects poses specific problems. A method derived from 

studies on the human visual system has been used. The human visual 

system is able to select objects present in the peripheral visual 

field for attention, and align the eye so that objects fall at the 

centre of the retina or fovea of the eye. The visual system appears to 

use a simple criteria to select which parts of the scene are to be 

foveated. Work done by Yarbus (Yarbus1967) and by Makworth and 

Morandi (Makworth1967) suggests that we attend to areas of 'high 

information' content. No exact definition of what information may be 

bllt it is suggested that it is where the illumination profile varies 

widely. A similar idea has been used in the system described here to 

provide position independent recognition. 

It will be evident from chapter 9 that a process of foveation is 

needed to align a~eas of highest detail in the high resolution window. 

These problems are discussed in later chapters. 
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10. 1. Selection of Areas of Interest 

If we are able to detect illumination independent features, we can use 

these points to align the input window during teaching. During testing 

the same points can be used to recentre the shape. Moravec 

(Moravec1977) used an 'interest operator' similar to the one described 

below in an automatic obstacle avoidance system for a mobile vehicle. 

This operator detected any objects in the vehicles path, prior to 

recognition of the object. 

In the selection of an area of interest there has to be a high proba-

bility of it still existing when lighting levels change and other 

objects enter the scene. An area of interest having such a property 

can be said to be highly salient. If an area of interest mingles into 

the scene when small lighting changes are made, the feature selected 

has low saliency. Furthermore, by assigning a value of saliency to 

each feature selected allows the system to recognise the objects 

quickly. i.e a system can be taught with highly salient features at 

the centre of the processing window, these features can be found dur-

ing recognition and recent red upon. A low saliency feature may not be 

present when lighting levels change. 

TI1US in recognition the system windows on areas of highest saliency 

first and if recognition fails at these points moves to other features 

of lower saliency until recognition succeeds. 

10.2. Detection of Highly Salient Features 
--

A hjghly salient feature of scenes is a contrast gradient. High con-

trast gradients within a scene are less sensitive to illumination 

changes than low contrast gradients, in that a low contrast gradient 

becomes undetectable if illumination of the scene is reduced. 
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Quantification of contrast gradients are already made by the edge 

detectors which are used to reduce the image to an edge description 

prior to N tuple sampling, thus they can be used to detect areas of 

interest. Vertices are also used to quantify saliency in the system. 

Vertices with many edges converging are given a high saliency, while 

simple vertices are given a low saliency. Other similar features 

which could be used are colour gradients and changes, and motion gra-

dients. These latter features have not been explored here. 

The two measures, contrast gradient and vertex complexity, can be 

expressed in an interest map as shown in Fig 10.1, which illustrates 

how the two measures may be combined. This illustrates a shape with 

various measures of interest, the 'interest' map is shown at the top 

with the shape represented below it. The top right hand corner of the 

shape shown has a vertex with two edges meeting and with high contrast 

for both its edges, thus it has a high saliency as shown in the 

100 

Vertex 
Complexityi; . 

(J-- Hip:h interest 
corner 

v- Low interest corner 

o 100 Contrast of edgeS 

INTERFST MAP 

Hipt1 interest 
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Low interest comer 

SHAPE REPRESENTED IN THE INTERFSf MAP 

Fig 10.1 
Interest area maps 
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interest map. The bottom left hand corner of the shape has the same 

vertex complexity but lower contrast and thus has a lo.er saliency. 

This is depicted in the interest map at the bottom right hand corner. 

Other parts of the shape may be mapped in a similar way. 

10.3. Design of a Saliency Operator 

A saliency operator that did not forefil requirements is shown in Fig 

10.2, this is made up of 4 edge detectors at different angles. Each 

edge detector quantifies the contrast gradient in one dimension (a 

grey scale input image is assumed). The formula used to compute the 

contrast gradient by each edge detector is, 

R = Ir(a) - r(b)1 + Ir(b) - r(a)1 

The values for rex) are given by the sum of the responses of indivi-

dual pixels in the regions shown in Fig 10.3, which illustrates one 

edge detector. 

Fig 10.2 
A saliency operator 

Q b 

Fig 10.3 
Edge detector construction 
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The simplest function to compute the saliency measure 'I' from the group 
of four edge detectors is : 

where R(X) = Response of an edge detector at an angle X. 

Unfortunately this function does not give a good measure of vertex 

complexity although it deals with the contrast gradient well. Fig 

10.4 shows the responses of a group of detectors viewing a simple 

corner vertex and a simple 'edge', and gives the saliency value for 

each. The saliency values (I) are almost identical in both cases (1.6 

compared to 1.3), although the vertex complexity differs. It was con-

sidered that the difference between these values was not great enough 

to allow accurate repeatable foveation to take place. It was important 

to have a clear difference in I for an edge and a simple vertex. If 

this were not so the system would need to foveate on all edge pixels 

to provide fast recognition. 

Responses of 
edge detectors~-+~~~~ 
(Normalized) 
o o = 1.0 

o 
45 = 0.3 o 
90 = 0.0 

o 
135 = 0.3 
Sum = 1.6 

00 = 0.5 

o 45 = 0.1 
o 

90 =1,0'.,5 

135°= 0.2 

Sum = 1.3 

Ed!2=e detectors 
looking at an edge 

Edge detectors 
looking at a vertex 

Fig lO.4 
Response of the saliency operator for 

two different edge constructs 
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Fig op9 illustrates the use of this operator when applied to the image 

in op7. The responses are shown as raw data and as a grey scale image. 

It can be seen that the vertex of the square has a lower saliency 

value than the edges as predicted (see Fig 10.4). 

To overcome this an alternative process was used which used the primi­

tive processes that make up the edge operators used in the N tuple 

sampling process (i.e to maintain speed). The new saliency operator 

was specifically designed to give a maximum response to a simple ver-

tex. This is shown in Fig 10.5 

A vertex is only present when both the x and y axis shown in Fig 10.5 

cross an edge. To detect an edge passing through either axis the fol­

lowing functions are used. These operate on the sum of the response of 

pixels in the regions a,b and c shown in Fig 10.5. 

detector x = Ib - al + la - bl 

detector y = la - cl + Ic - al 

The responses for x and yare multiplied to give a single measure of 

b 

p 

-
Typical vertex 

a,b and c Elements of the 
Edge detector 

Fig 10.5 
A simple saliency operator 
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vertex strength. To detect a vertex over a range of angles the same 

function is applied to a detector rotated in 8 equal increments around 

P (in Fig 10.5). The total information measure value is given by 

averaging all 8 response from all orientations. 

The result of this process is given in Fig oplO on a 128 x 128 pixel 

grey scale image given previously. The top shows a square with 

responses for the corners greater than the surrounding edges. Over the 

whole image the bottom left hanrl corner gives the highe~t response. 

The other two images are for the star pattern in op6 and the face in 

opl. In the star image a high response is given for the centre of the 

star which is what is required. In the image of a face the outline of 

the head has been selected as the most interesting, with the highest 

responses for the top of the hair line, internal features give a lower 

response. 

Fig oplO shows that the detectors are sensitive to changes in lighting 

levels. In this image the top right hand corner is less well lit than 

the bottom left hand corner, as a result the latter gives a higher 

saliency value than the former. In some circumstances this may cause 

the system to concentrate windowing at the brightest area of the 

scene. However, because saliency is measured with respect to the con­

trast values of a set of edges this result is unavoidable. 

This operator is also sensitive to small off-sets in the image. Fig 

opl1 illustrates this, the image being viewed is the same as that in 

oplO top, but the image has been off-set by -2,-2, +2,+2 and -2,+2 

pixels respectively. It can be seen that the information measure 

response varies widely. This can be explained by the movement of edges 

within the detector group. However apart from the difference in ver-

tex responses due to lightlng the responses to vertices are 
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constantly above surrounding values. 

To combat any missed vertices due to lack of resolution four samples 

are made at n pixel offsets, the responses from each edge operator are 

then averaged, where n = detector element size / 2. 

10.4. Summary 

A process for measuring a particular position and lighting invariant 

feature within an image has been defined. This allows translation 

independent recognition to be performed by shifting the centre of the 

processing window to the feature. It has the property that simple ver-

tices have a higher information measure than straight edges, and 

higher contrast vertices can give a similar but higher measure. The 

process has been designed to incorporate processes already being per-

formed in the calculation of edge operators thus it effects the pro-

cessing speed as little as possible. 
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CHAPTER 11 

Image Acquisition and Recognition Strategies using a Movable Window 

11. Introduction 

This chapter considers the image acquisition and recognition stra-

tegies used to recognise complex scenes using a movable window. It 

also considers the means hy which high and low resolution windows 

described in chapter 6 are connected to the associative memories. 

The format of the system described so far is shown in Fig 11.1. The 

scene is imaged by the camera to form a grey level image array on 

which N tuple processing is performed using one of the methods 

described in chapter 9. This results in a key pattern which is used 

to access and teach the memory section. The memory section is formed 

from two associative memories as described in chapter 6, the first 

associating from the picture to the class such that in recognition a 

class pattern is generated. A 'class' pattern is an individual label 

or identifier which identifies each particular input pattern. The 

,scene 

Cd 
Camra Grey Input N tuple 
..1 r-------,. S 1 . ut'--...... processing 11<--_-, ca e l11P -

Position 

control 

ir.B.ge 

1 
Picture t.o ~_ Teach 

clai lIlEfiDry 4 Class 

Recalled pict.ure ..-Class t.o 
Picture rnerrory 

Fig 11.1 
Format of the recognition system 
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second memory associates from the class pattern back to the picture 

such that a complete image of the object in view can be generated for 

occlusion analysis. 

11. 1. Connecting the High and Low Resolution Windows to the Associa-

tive Memory 

Chapter 9 (input processing) introduced the use of a high and low 

resoilition window to allow global and local relations between features 

within shapes to be detected. The problem of coupling two windows to 

the associative memory was considered with the following conclusions. 

There were two possible ways of implementing this using either one or 

two associative memories. If one is used the two input fields gen-

erated by the separate high and low resolution windows are combined 

into a single input array, using one class pattern for both low and 

high resolution images. If two associative memories are used, each 

input window is served by one memory, and each window has its own 

class pattern. Since the latter construction could be easily reduced 

to tl1e former by providing the same class pattern to both memories and 

combining the class response outputs, two associative memories were 

used. This arrangement is shown in Fig 11.2. It can be seen that this 

reslilts in two parallel systems. This can be extended to more windows 

by the addition of another system, as might be the case if more reso-

lution is needed. 

11.2. Teaching and Testing Strategies 

We now consider the teaching and recognition of images. In this sec-

tion tl1e discussion concentrates on a system using the low resolution 

window only. Integration of data from the high resolution window is 
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Fig 11.2 

Recalled IrrEge 

Using parallel systems for each resolution of window. 

considered later. 

Although it will become apparent that the process of teaching and 

recognition by the system must interact, the two process will be con-

sinered separately. 

11.2.1. Teaching 

The process of teaching involves the acquisition of the shape into the 

memory such that it can be successfully recognised and recalled later. 

Only case where the object to be learned is present within the image 

clear of any other objects is considered. 

Consider a simple teaching strategy 

1) Find positions of high interest. 

2) Move the window to centre on each area of high interest. 

3) Teach the image at each position of high interest with a new ran-

domly generated class. 
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4) Stop when all high interest regions have been visited. 

This process will teach the object at recognisable high interest areas 

so that in recognition the object can be successfully recalled. 

Problems arise with such a simple procedure. First there is a problem 

if shapes only differ by a small amount. This may result in two pat-

terns only differing by one N tuple code. As a result there is a high 

probability that dllring recall these two patterns will be confused. 

This applies to learning two simple patterns as well as teaching the 

same pattern over a number of interest points. 

This is shown in the example in Fig 11.3. Patterns A and B have been 

taught at the position shown under different classes. The image to 

recognise has a small portion missing, which is the only part of the 

shapes which separate the two patterns into the two classes. Thus on 

recall the class pattern is confused, shown by the occurrence of both 

class patterns in the response class. The small part missing could be 

a small distortion between the two patterns, which would produce the 

same effect. 

~ Pattern A 

G Pattern 8 

~ Recalled 
~ oatterns 

(confused) 

Fig 11.3 
Teaching and recognising similar patterns. 
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At tlle extremes the patterns may only differ by a unit hamming dis-

tance. In this case only a small amount of noise would cause confu-

sion, i.e an inability to get an N point class. 

The problem can be overcome by teaching a new class pattern when the 

input and recalled pictures have a hamming distance greater than x. If 

the patterns differ by less than x the high resolution window is used 

to discriminate the patterns. The size of x would define the noise 

immune of the system. If x were large all patterns would be defined as 

the same class in low resolution. If x were very small then the prob-

lem sited above would occur. 

In order to do the above it is necessary to find the closest pattern 

to the one presented then find the difference between this pattern and 

the input pattern. To enable this a test is done prior to a teach. If 

the difference found is less than x then the recovered class pattern 

(if correct, with N points) is used in teaching along with the input 

pattern, otherwise a new class is generated. 

The process of using the recovered class as the teach class provides a 

generalisation process. Since many similar patterns will be taught 

under the same class a generalisation will take place between these 

patterns such that a larger set of input patterns than that taught 

could be recognised. 

11.2.2. Teaching Strategy 

The following teach process incorporates what was described above. 

(this is also shown in flow chart 1 in the appendix). 

I) Find the areas of interest. 

2) Saccade to a 'high interest area 
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3) Test the memory at this point P-)C then C-)P. 

4) Calculate the difference between the memory input and response from 

the memory. 

5) If the difference found is greater than x then 

5i) Create a new class and teach P-)C and C-)P memories. 

If the difference found is less than x then 

5ii) Using the recovered class teach the P-)C memory only. 

7) Repeat until all areas of interest have been visited. 

When teaching on the recovered class at stage sii) there is a choice 

whether to teach just the 'picture to class' memory or both this and 

the 'class to picture' memory. If the class to picture memory is 

taught in this instance the result will he a blurring of the response 

picture when testing occurs. The result would be to make separation 

(i. e. difference greater than x) possible on images which do not 

differ by an amount greater than x. Thus to prevent this only the pic-

ture to class memory is taught. As a result generalisation occurs in 

recognition but not in recall. 

11.2.3. A Strategy for Limiting the Number of Window Positions ---

Taught 

In the example above teaching stops when all high interest areas have 

been visited. In practice this would be to thorough, resulting in many 

views of the same pattern being taught. To reduce this number a thres-

hold can be set on the number of points that should be taught at. An 

alternative approach is to monitor the level of activity (The complex-

ity and contrast of the vertex) in the interesting area detectors and 
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only teach at a percentage of the highest responding detectors. 

Ideally there needs to be a process of verification which checks that 

the system can reliably recognise the object when slightly shifted 

after each P patterns have been taught. 

11. 3. Recognition Strategy 

This process involves recognition of all shapes within the scene and 

recall of the associated patterns of each shape. Recognition is to be 

performed on complex scenes of many overlapping shapes. The basic pro-

cess of recognising one object involves the following important 

aspects, 

1) Recall of the associated pattern from the image presently viewed. 

2) A level of confidence assigned to the recognition process such 

that it is known when recognition has failed. 

3) An ability to place the recognised object within a class of shapes, 

i.e. find its identity. 

Recall of the associated pattern is done in two stages as previously 

described. First the P-)C memory is tested to recover the class, sub-

sequently the C-)P memory is tested to recover the associated image. 

It is important that that the class pattern recovered is correct (i.e. 

one previously taught) otherwise recalling the associated picture from 

it will be unsuccessful. Verification of the validity of the class 

pattern can be made by checking that N class points have been 

recovered, where N is the number of points set to one in class pat-

terns taugh t. If the class does not contain N points at 1 recognition 

has failed. 

The process above indicates a definite recovery failure if the class 
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points do not equal N. However, if the class points do equal N there 

is still a possibility that recall has failed. It is either due to 

saturation of the memory or because there is an unknown pattern on the 

input that is slightly like two or more patterns previously taught. 

(This is expanded on in chapter 12). To overcome this a process of 

picture confirmation is used. To do this the recovered picture is fed 

back on to the input array and re-tested to get another class image. 

If this class image is the same as the one previously recovered (on 

the original pattern) then recognition can be said to be successful; 

if the class patterns differ then the recognition can be said to have 

failed. 

The whole problem of 'when can a system know if it has recalled a 

correct pattern' is very important. In the case above a process of 

confimation is used. This gives an all or nothing measure of correct 

recovery. Ideally a linear measure needs to be assigned, in the form 

of a confidence value which indicates how sure the system is in the 

recognition it has performed. This can be obtained by considering the 

response profile of the class pattern shown in Fig 11.4. The confi-

dence is the difference in response between the minimum responding 

point set to 1 after N point thresholding and the highest other 

Response 

c 

Class array elements 

_ Class elements set to logical 
one after thresholding 

- Class confidence 

Fig 11.5 
Deriving a 'confidence' figure from the class pattern. 
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element responding which has not been set to one by thresholding. 

The value produced by this process is used to decide whether the class 

pattern is accepted or rejected. Unfortunately this requires the 

selection of a SU1" table thres1101d. The " t t prevlous re- es process 

requires no threshold and is more sensitive and easier to use. The 

only problem with the confirmation method is that it requires a second 

test of the system which could be prohibitively slow, it is also shown 

in chapter 12 that this process is unreliable. 

The test process can now be defined, see flow chart 2. 

11. 4. Providing a Label to Identify the Class of the Input Object 

In the process above there is no facility for determining which pat-

tern class the shape which has been recognised belongs to. Each view 

of every shape has a different class pattern assigned to it. This 

means that each pattern class has a set of class patterns that can 

identify it. To be able to assign a specific label to a shape, the set 

of class patterns belonging to the shape must be mapped to a specific 

label. 

There are many ways in which this can be done, the class pattern can 

converted to a number and this looked up in a table which records 

which numbers relate to which classes of patterns. This process would 

be simple, although the conversion of the class pattern to to a number 

is problematic. This approach has not been adopted on the grounds of 

speed and uniformity. Since the output is a pattern it is quite 

straight forward to create another associative memory that links the 

class patterns under a specific shape to a single image or 'identifier 

image' that identities the pattern class to which the shape belongs. 

The use of this associative memory would provide a uniform system 
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where all llnits are associative memories instead of separate associa­

tive memories and look-up tables. 

The only problem with this approach is the amount of storage required 

and the recall abilities when associating a class with an identifier 

pattern. In the other associative memories one pattern is N tuple 

processed and the other supplied directly to the memory. This produces 

an efficient system since N tuple processing reduces the ratio of bits 

at 1 and bits at 0 in the inpllt to the associative memory. This means 

that only a small proportion of bits are set to one in the memory 

matrix compared to the overall size of the memory matrix. If the class 

pattern is associated with the identifier pattern it would necessitate 

the need for N tuple processing on either the class pattern or/and the 

identifier pattern to provide the same storage properties as is found 

in the other memories. N tuple processing need not be done if the 

response picture from the memory is used to associate the identifier 

in the ide.ntifier memory. This provides the same conditions as is 

found in the picture to class memory as long as the number of bits set 

to one in the identifier pattern is restricted to a particular value 

(to prevent instant saturation on teaching). Since the recalled pic­

ture will be exactly the same as the picture that was taught, the 

thresholding of the identifier pattern after testing can be a simple 

threshold of the highest responding points in the response array. 

Fig 11.5 shows how the identity image is linked into the rest of the 

system. This shows a system where only one resolution window is imple­

mented. When two or more windows are implemented the identifier pat­

tern is the same for both systems (two identifier memories being 

used). 
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Single resolution system - integrating the identity image. 

11. 5. Incorporating the Identifier into the Teaching Procedure 

Little alteration is needed to the present teach procedure to incor-

porate the identity image. When teaching a new shape the identity 

image is presented which belongs to the shape being taught. The input 

image is provided as the associating image for the identity pattern 

when testing occurs the input to the identity image is then switched 

to the output of the C-)P memory. 

11. 6. Incorporating the Identifier into the Recognition Procedure 

When successful recall has taken place as defined earlier the output 

image is supplied to the identity memory to recover the associated 

identifier. 

11 • 7 • Summary 

The definition of a simple teach and test procedure has been given 

such tllat shapes can be learned and recognised using the low resolu-

tion window (see flow charts 1 and 2). We shall now go on to look at 
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how to determine occlusion and how the high resolution window can be 

incorporated to resolve the identity of the shapes which are confused 

at low resolution. 
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CHAPTER 12 

Investigations into the Recognition Systems Performance using 

Natural Images 

12. Introduction 

This chapter gives the results of investigations performed on the 

recognition system using 'natural' images. The qualitative effects on 

recognition performance using different input processing methods dur-

ing teaching and testing are reported. Recognition abilities are 

examined using only the low resolution window. 

12. 1. Description of th~ Recognition System 

The investigations were performed using a grey scale image which is 

convolved with edge operators. This is then N tuple processed to pro-

duce the N tuple state data and confidences relating to these states. 

This data is presented to the first memory denoted 'picture to class' 

or P-)C. The output generated by this memory during testing is N point 

thresholded and then fed to the second memory, the 'class to picture' 

memory or C-)P. The recovered picture is sent to the identifier memory 

to recover the identity image for the object recognised. The constant 

system parameters which would allow these investigations to be 

repeated are given in appendix 4. 

12. 2. Description of the Investigations Performed 

The results of the following three investigations are reported. 

1 d th ff ts on recognition per-l) The first investigation exp ore e e ec 
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formance for a system taught on N tuple data which was not thresholded 

and a system taught on N tuple data which was thresholded. Threshold-
'. 

ing the N tuple data takes the following form. If a particular N 

tuple state is set and has a confidence that is above threshold it 

remains, if it has a confidence below threshold it is removed. The 

threshold is calculated as half the average confidence of all N tuple 

confidences of the pattern being windowed. More details are reported 

below. 

2) The second investigation extended the results of the first investi-

gation by examining the effects of using or not using the N tuple 

confidence data during recognition, as well as exploring the combined 

effects of using thresholding of the N tuple state data along with 

confidences during recognition. 

3) The last investigation explored the effects on recognition success 

as more patterns are taught into the system. 

12.2.1. Description of Image Data Used in the Investigations 

Grey scale input images are used, consisting of grey scale shapes cut 

out from suitable card and placed on an uneven black reflective 

polythene background. Lighting is provided to produce a suitable depth 

of illumination over the grey scale to allow shapes to be well 

defined. 

Test images used are shown in opI2 as well as the originals in opl3. 

Those in opI2 contain two shapes, both show the triangle occluding the 

. I? th t· gle is darker than the square. In the top image 1n op _ e r1an 

square, in the bottom image the square is darker than the triangle. 

By using shapes with different grey levels the system can be 'forced' 
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to centre the darker shape first. This is because of the nature of the 

'interesting area' finding process, various parts of the image are 

found more interesting than others, in the following manner. 

Most interesting ••••. High contrast vertices 

High contrast edges 

Low contrast vertices 

Least interesting •••• Low contrast edges 

Only enough interesting areas were windowed on to maintain foveation 

within the shape required. 

12.3. Positions of the Input Window at which Each Shape was Taught 

In all investigations the images in op13 were used to teach the sys-

tern. The 'interesting area' process described in chapter 10 identi-

fied the points shown in op13 (crosses) for windowing at. The center 

of the processing window was placed at these points where upon the 

system was taught. 
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12.4. Parameters Noted in the Investigations for Each Test 

At each window position tested, various parameters were noted concern-

ing the response given by the system. The results of the investiga-

tions are given in tables 1 - 4 in the appendix. 

The following typical data was recorded in investigation 1 after each 

test cycle (the label used in the results is given in brackets). The 

explanation of the entries in tables 2 and 3 are given along with the 

tables in the appendix. 

Recovery of known identity image. (Identity) 

Whether or not a known identity image was recovered, 

assessed by visual inspection. 

Image out. (Image out) 

Whether a recognisable shape was recalled on the particu-

lar test, assessed by inspection. 

Image out analysis. (Response in number of points at logical 1 in 

response and in input images / numher of points at logical 1 in 

response that are not in the input image) 

Two variables were recorded, the input pattern and the 

response pattern were compared. The number of points both 

in the input and the response image were noted along with 

the number of points in the response that were not in the 

input image. If recall was successful, this indicates how 

much of the input image was involved in recalling the 

image. The sum of these values gives the total numher of 

states at 1 in the N tuple data array presented to the 

memory. 

Class response analysis. (Worst case) 
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This is the confidence the system gives to the class that 

is recalled. See chapter 11 and Fig 11.4 for a discussion 

of this value. It is the difference between the maximum 

responding class point set to 0 and the minimum response 

of the class point set to 1 after N point thresholding. 

Class response analysis. (Class analysis) 

The left value of each entry is the average response of 

class points that remain at one after N point threshold-

ing. The right value is the average response of class 

points that are switched to zero after N point threshold-

ing. 

Class points recovered. (cl. p. 1 and cl. p. 2) 

The number of class points at one recovered on the first 

test (cl p. 1) and second test (cl p. 2). 

12.5. Investigation! : Into the effects of teaching non thresholded 

and thresholded N tuple data 

This investigation compared the recall ability of the system after 

teaching the system on thresholded or non thresholded picture N 

tuples. N tuple confidence data was supplied to the memory in all test 

runs (as described at the end of chapter 9). 

12.5.1. Teaching Procedure 

The images shown in op13 were presented to the system along with the 

identifier patterns shown in Fig 12.2. Each pattern (one of a square 

and one of a triangle) was taught at 10 window positions, with a dif-

ferent 4 hit random class generated at each view. The teaching pro-

cedure is shown in flow chart 1. 

171 



square x 
triangle + 

Fig 12.2 
Images and Identifiers used in investigation 1. 

Two different teach process were performed, one in which the N tuple 

confidences were thresholded at the average confidance level of all n 

tuples and one in no thresholding occurred. 

12.5.2. Recognition Procedure 

Tests were performed after teaching the system on thresholded N tuple 

data and then after teaching the system on non thresholded N tuple 

data. In this investigation the square was presented (op13 top) to 

the system and tested in the same 10 window positions at which it was 

taught. The input N tuple pattern was thresholded in all cases, and N 

tuple confidence data was supplied to the memory. 

12.5.3. Findings of Investigation 1 

This investigation illustrated the effect of teaching the system non 

thresholded and thresholded data. Two patterns were taught to the sys-

tern a square and a triangle. Testing was only done on the square. The 

results of the investigation are shown in table 1. 
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12.5.3.1. Window Positions at which the System Taught the Image 

As explained in chapter 11, during teaching a pre test is done to see 

whether an acceptable number of N tuple states differ between the 

response image at that position and the present image, if an accept-

able difference is found the present image is taught. In all investi-

gations the acceptable difference was set to 20. All teach views 

obtained a difference greater than this, and as a result all window 

positions were taught at. 

12.5.3.2. Effects on Class Recall 

The first observation is that the class pattern is recalled correctly 

with 4 class points recovered after N point thresholding. This indi-

cates that the 'picture to class' memory recalls which pattern is 

associated with which class successfully. However, a 4 point class 

which is different to the original taught could he occurring (this is 

explained below). The only way this can be checked from the results 

given is by inspection of the picture and identity image recovered. 

Recall of these patterns is discussed below. 

The results also show that the class is more 'confidant1y' recovered 

when the N tuple data is thresho1ded prior to teaching i.e the 'worst 

case' values in table 1 give an average response of 44.9 for non 

thresho1ded' teach data and an average response of 52.9 for 'thres-

holoed' teach data indicating it is better to use thresholded N tuple 

data in teaching. This is due to less saturation occurring in the P-)C 

. . . tl1resho1ded (less bl'tS set in the memory when the l.npllt lmage lS 

memory on every teach). 
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12.5.3.3. Effects on Image Recall 

The image output could not be visually recognised in the case where 

the system is taught on non thresholded data. This is because a shape 

can only be visually seen when thresholding occurs. For a system 

taught on non thresholded teach data the results for 'points in the 

response not in the input' is high because testing is done on thres-

holded data (i.e the recalled image is non thresholded and the input 

image is thresholded- thus even if the recalled image was perfect a 

difference between the inpnt and output image will occur). 

The results for a system taught on thresholded data show slight 

differences between taught and tested images (small values occurring 

in the table under the heading 'points in response not in input'). 

This indicates that slight saturation is occurring in the C-)P memory. 

12.5.3.4. Effects on the Recall of the Identity Image 

When the system is taught on thresholded data the identity image is 

recovered correctly on every test, when taught on non thresholded data 

the system recovers the identity image only six out of ten times. 

This indicates that saturation is occurring in the identity image 

memory when teaching a system on non thresholded N tuple data (since 

the response image was heing recovered successfully). This is a great 

prohlem in llsing this type of teach data. Since the identity patterns 

contained a high proportion of bits set to one compared those set to 

zero and hecause identity patterns remain the same over many teach 

cycles this memory is likely to saturate quickly. To alleviate tllis 

.J h" . or to teaching can be used, the thresholliing t e input image pri 

results for a thresholrled input image support this. 
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12.5.3.5. The Effects of Testing on Thresholded N Tuple Data 

In all recognition tests the input image N tuple data was thresholded. 

This retained all N tuples relating to well defined features of the 

shape such as those for edges and vertices of the object, and removed 
, 

N tuples responding to the background and solid body of the shape. The 

problem with thresholding during testing is that it may remove N 

tuples necessary for discriminating very similar shapes. This is not a 

problem here since the high resolution window can be used to detect 

these areas as will be explained later. 

12.6. Investigation ~ : The effects of testing on non thresholded N 

tuple data combined with the use of confidences' 

This investigation explored the difference in recognition properties 

when using N tuple confidence data during recognition, as well as'the 

12.~.!. Teaching Procedure 

The teaching fbr this investigation was exactly the same as for inves-

tigation one. Two patterns were taught, a square and a triangle, at 10 

window positions each (images taught are shown in opI3). The recogni-

tion investigations were applied to a system which had been taught on 

thresholded N tuple data and then to a system which had been taught on 

non thresholded N tuple data. 

12.~.~. Recognition Procedure 

Testing the memory was performed on the images shown in opl2, visiting 

the points shown in the imag~s in the order shown in Fig 12.1. Ten 
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window positions were tested at for each shape. The following varia­

tions in teaching were looked at, 

1) Test images 

Light triangle on dark square (Figure opl2 bottom) 

Dark triangle on light square (Figure opl2 top) 

As explained earlier, this arrangement means that the system effec­

tively confines its windowing in the vicinity of one shape. In the 

first case the window is confined to the triangle, in the second case 

the window is confined to the square. 

2) Tuple confidences used in testing or not used in testing. 

3) Input tllples thresholded or not thresholded. 

All combinations od the above parameters were investigated as shown in 

the table below. This gave 8 different test runs. Furthermore, all 8 

tests were performed on a system taught on thresholded N tuple data 

and then on a system taught on non thresholded N tuple data. The 

results are given in table 2 and table 3 respectively in the appendix 

- note that some results from table 2 are repeated in table 3 for com-

parison. 
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Test Threshold Mem type Image 
-------------------------------------------------
A NO Con Wt on Rs 
B NO Bin Wt on Rs 
C NO Con Rt on Ws 
D NO Bin Rt on Ws 
l~ YES Con Wt on Rs 
F YES Bin Wt on Rs 
G YES Con Rt on Ws 
H YES Bin Rt on Ws 

Test 
threshold 

Test number. 
Whether or not thresholding 

Mem type 

Image 

was applied to the input N tuple data. 
Con =) Confidences of each 

tuple were supplied to the memory. 
Bin =) confidence non 

supplied to the memory. 
Pattern type presented 

Wt =) light triangle 
Ws =) light square 
Rt =) dark triangle 
Rs =) dark square 

Wt on Rt, A light triangle appears on a dark 
square - effectively forcing the system to 
confine window positions to the vicinity of 

the triangle. 

12.6.3. Expected Results for Investigation 2 

By considering the window position during teaching and its position 

dllring testing a prediction can be made as to whether the triangle or 

the square should be recognised. By doing this it is possible to say 

whether the recognition results are far below or above what might be 

expected. In the table below OK is placed in a row if the response 

would be expected, since the point visited by the window during test-

ing is close to one visited during teaching. A '?' indicates that it 

is not clear which object should be recognised. 
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Pattern Description 
Window position D~rk square light square 

L1ght triangle Dark triangle 
(Respond as Triangle) (Respond as square) 

0 OK ? 
1 OK OK 
2 OK OK 
3 ? OK 
4 OK ? 
5 OK ? 
6 ? ? 
7 OK OK 
8 OK ? 
9 ? OK 

Total 7 Total 5 

From the table it is apparent that the triangle will be better seen 

than the square. (as explained earlier). 

12.6.4. Results of Investigation 2: For thresholded teach data 

The results in table 2 are for tests performed on a system taught on 

thresholded N tuple data. The set up for each investigation was given 

above. 

Although this investigation was small some conclusions can be gained. 

The first is that the triangle is recognised correctly more often than 

the square, as predicted above. Correct recall can be seen in the 

correct recovery of the relevant identifier and image (identifiers, 

square = x and triangle = +). 

The results also indicate that the use of confidences in recognition 

results in both more successful recognition and higher class confi-

dences. Tests A,E,C and G all used N tuple confidances during testing, 

the results show appreciably higher success in recalling the image 

than in tests B,F,D and H where N tuple confidences were not used. In 

all these cases the worst case class distance was greater when confi-
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dence data was supplied to the memory on each test. 

The results for the 'number of points in the response image also in 

the input' and 'the number of points in the response not in the input' 

gives an indication of the peripheral noise in the input image during 

testing. Given that the input image has been correctly recovered, the 

results for run A give the average number of N tuples in the response 

that were not in the input image as 26 and the number of N tuples 

belonging to the shape as 15. If these two values are summed the 

result is the total number of active N tuples in the N tupled input 

picture (after thresholding and out of a total possible of 64): The 

results show a high degree of noise in all images due to occluding or 

occluded shapes. When the recall of the image was not successful the 

response image was unrecognisable. This is reflected in the low 

responses for image out in the results. 

The effects of thresholding the input image on the recognition ability 

of the system can now be looked at. Consider the tests where confi-

dences were used i.e in tests A,E,C and G. Little appreciable differ-

ences in either successful recognition or in class confidences are 

found when thresholding is or is not performed during recognition. 

The results for runs A and E, E show more success at obtaining a clear 

picture of a triangle, but since this test is objective, i.e by visual 

inspection, it is not a reliable measure. Considering the average 

worst case class response between A and E, A shows a larger difference 

than E, but if we consider test C and G the opposite is true, G shows 

a greater difference. 

"Thus the first set of reslllts show that using confidences in recogni-

tion does 11 Wlli 1 e t11e ef fect O r thres-
seem to improve reca Sllccess, 

holding the input pattern during testing is inconclusive. 
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12.6.4.1. Failure of the 're-test' procedure for verification of 

recognition success 

In chapter 11 a process was given which verified whether correct class 

recovery had occurred. To do this a process of retesting the response 

image was used. If the class resulting from this test and the original 

test was the same then class was successful. Inspection of the results 

found this process not to be successful, the class patterns remained 

the same in both tests even though recovery of the complete image was 

unsuccessful. 

The following is one reason why this process failed. Consider Fig 

12.4. This shows a typical image of a triangle and square, along with 

two class patterns which have been taught in to a typical memory. The 

areas highlighted between the two images indicate the position where 

both images produce the same N tuple states. all other areas produc-

ing N tuples with different states. 

A test image is presented to the system, i.e. a distorted triangle as 

shown, with the areas highlighted forming N tuples common to the areas 

highlighted on the taught images. Because the tested pattern 'i' only 

contains N tuples in common with the test pattern at positions where N 

tuples were the same in both test patterns, testing on 'a' will pro-

duce a class pattern which is the coalition of taught class patterns 

(as shown). Although this class would be rejected as having greater 

than two class points active after thresholding, it can be seen that 

a C -) P test on this class would result in a pattern containing the 

common parts of the input pattern and the two taught patterns. Furth-

ermore a retest on this recovered image would result in the s~me class 

f "'Ill·cll l·ll"tlstrates how this retest verification pro-pattern as be ore, w 

cess fails. 

181 



A 

x x 

x x 
x x 

B 

o Teach images 

Common parts 
between A 
and B 

r--x----x--~I Class points 
taught 

J I 

/ Test images 

X 
L-x ______ ~ Recalled 

class 

Recovered 
/ image 

Fig 12.4 
Figure to illustrate class point recovery. 

In the above case above the recognition could be recognised as failing 

because a two point class image was not recovered. Unfortunately it is 

possible to get a correct number of class points in a class pattern 

which has not been taught, and still retain this same class pattern on 

a retest (as has been found in this investigation). This is illus-

trated in 'ji' above. In this image the input is the same as in 'i' 

but now there is a separate set of pixels active which generate N 

tuple states which are not present in the teach images A and B, but 

ARE present in other images taught into the memory. These states will 

have the effect of raising the response of two of the previous four 

points above threshold in the class pattern shown for 'i', thus now N 

point thresholding will result in a correct class pattern with two 

points active. This now means the recall cannot be rejected. The 

response image will again show the areas common to the two class 
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points in the response, and again a retest on this recoved image will 

not result in a different class pattern. 

There is no simple way to alleviate the above problem, although the 

retest process works in some cases and checking for the correct number 

of class points also helps. The way this problem was overcome is 

covered in the next chapter as it involves the occlusion analysis pro-

cess. It basically consists of averaging the response from the memory 

over a number of views to smooth out occasional inconsistencies. 

12.6.5. Results of Investigation 2: For non thresholded teach data 

The investigation above was repeated on a system that was taught on 

non thresholded N tuple data with the same teaching procedure. The 

results are shown in table 3 in the same format as before, some 

results are shown from the thresholded teach data for comparison. 

It was suggested earlier that the use of non thresholded N tuple data 

dllring teaching caused saturation of the identifier memory and also 

produced a response pattern that prevented adequate occlusion analysis 

to take place. Because of this the results of this investigation are 

more difficult to interpret. Identifier recall success is low and 

there is no way to tell if the pattern recalled was the correct one. 

This is because all N tuple states are active in the output image and 

hence no outline of the shape is present; this prevents recognition of 

recall success by inspection. However by inspection of the results and 

comparison with the results of the previous run it was possible to 

rletermine that the class was recovered correctly in most cases where 

the identifier was recovererl correctly. When the identifier was not 

recovered neither was the class pattern. This suggests that reca 11 

success in recognition could be determined by seeing if the identirier 
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was correctly recoved, thus allowing some analysis to be done on this 

data. 

By comparing the results of the two investigations it is obvious that 

the use of the thresholded N tupled input pattern during teaching 

resulted in a much better recall success (also using confidences from 

the N tuple pattern in the test), which agrees with the conclusions of 

the previous investigation. 

By considering tIle confidence levels for worst case class recovery it 

can be seen that the results are constantly lower than in the previous 

investigation. This would be expected because the saturated memory 

(caused by teaching a non thresholded picture) would yield a greater 

'background' response on each test. This is also shown by the results 

given in the 'Average of class threshold when output is correct'. 

In conclusion, the greater saturation of the memories caused by 

teaching non thresholded N tuple data is not offset by the benefits 

provided by teaching non thresholded N tuple data (the teaching of non 

thresholded N tllple data was thought to allow greater distortion in 

the teach patterns). Generalisation abilities are better served by 

having a thresholded teach process resulting in less saturation and 

easier occlusion analysis, then testing on a non thresholded input 

image which would result in a greater proportion of N tuples to be 

available to the recognition process and thus result in improved 

recognition. 

Although this last statment has not been verified, the first set of 

resllits which used a thresholded teach image show no appreciable defi-

h i l's done with or without a thresholded cit in performance. W en test ng 

N tuple data. Further work needs to be done to check the exact vali-

dity of this claim. 
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12.7. Investigation 3 Into the effects of teaching many patterns 

into the system 

The final investigation examined the effect of recognition performance 

for increasing number of patterns taught into the system. 

12.7.1. Teach Procedure 

For this investigation the system was taught on thresholded N tuple 

data in one case and non thresholded N tuple data in the other, as in 

investigation 2. 10 window positions were taught for each shape 

(square and triangle) as described previously. After this initial 

teaching a new pattern was selected to be taught, this is shown in opl 

(face), This was selected so that it would be appreciably different 

than the patterns taught earlier, forcing every window position to be 

taught at, because the difference between the input image and the 

pre-teach test image would be greater than the threshold x. 

Procedure '-

1) Provide a new identifier (different than previously taught). 

2) Teach 4 window positions on the new pattern. 

3) Test recall abilities (see below). 

4) Goto 2 until halted. 

12.7.2. Test Procedure 

The test process consisted of testing five repeatable window positions 

on the image of a square and then five on the image of the triangle 

after each teach cycle. In this investigation the effect on the class 

confidences in the P-)C recall process and of the accuracy of image 
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recall in the C -) P process are of interest. The following results 

were recorded, the results are given in table 4a - recognising a 

square, and in table 4b - recognising a triangle. 

P-)C test 

i = Average of the response of points in the class above threshold. 

ii = Average of response points in the class pattern below threshold. 

iii = Worst case class points distance. 

C-)P tset 

i = Tuples active in the response pattern not present in the input 

pattern. 

ii = Tuples active in the response pattern also present in the input 

pattern. 

iii = Number of class points active after N point thresholding. 

Because testing is done on the same image as used in teaching and at 

the same positions the C-)P, test should result in no points differ­

ence between the response pattern and the input pattern if recognition 

recall is perfect. 

The values for the class response are a factor of 100 greater than 

actnal and should be read by dividing by 100 to obtain the real 

reslllts, this is due to integer arithmetic used throughout the simula-

tions. 

A11 tests were done with a thresholded input N tuple image and N tuple 

confidences were provided to the memory. 
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12.7.3. The Effects on Class Recall of Teaching Many Patterns into 

the System 

The following refers to the results for the P-)C tests given in table 

4a and 4h. The main conclusion is that the response of class points 

above threshold remains constant as more images are taught into the 

memory whilst points below threshold rise with teaching. This confirms 

expectations from the analysis of memory properties (chap 7). As the 

memory becomes more saturated it causes more spuriolls outputs from the 

memory due to coincidences with N tuples taught on different class 

patterns. N tuples taught on the correct class for that pattern have 

all links formed thus further teaching on the same pattern cannot 

raise the response any further. The responses are not purely integer 

because confidences fed from the N tuples raise each link response of 

1 by a factor given by the confidence. 

The worst case class points distance rises in jumps as more patterns 

are taught • This is expected since data taught into the memory by the 

new pattern is randomly distributed and has a probability of effecting 

or not effecting a N tuple in the present input image. 

The responses for the square are on average higher than those for the 

triangle and indicate that the the square has more active N tuples in 

its input pattern after teaching and/or the associated confidences of 

each N tuple are higher. 

2 7 4 The Effect on Picture Recall of Teaching Many Patterns in to 1 • • • 

the System 

The following refers to the results for the C-)P test given in tahle 

4a and 4b. The 
. that the class was always recovered first point 1S 

with four points active indicating a high probability of a correctly 
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recovered class. 

The number of N tuples active in the response and also present in the 

input image remains constant indicating a correct recovery on every 

test. The number of points in the response that are not in the input 

image after each test is above zero in most cases, indicating satura-

tion occurring in the C -) P memory, even though only 24 patterns have 

been taught (6 sets of results, 4 patterns taught successively for 

each). The numher of these points raises as teaching progresses as 

would be expected. Although the average error is quite low after 6 

teach cycles (a total of 24 patterns taught) the results for indivi-

dual tests vary widely, from a difference of 20% error between input 

and output patterns, to a perfect recall. Because of this wide varia-

tion in results no general conclusions can be gained. 

12.8. Summary 

To summerise, the following points can be made. 

a) Teaching should be done using thresholded N tuple data. Threshold-

ing consisting of taking the average confidence of all the N tuples 

in the N tupled input pattern and deleting all N tuples active in the 

input pattern whose confidence is less this average confidance. 

(Investigation 2) 

b) Testing should involve using the confidences produced in the N 

tuple process to increase the effect of 'sure' N tuples agains the 

'unsure' N tuples. (Investigation 2) 

c) Testing should take place on non thresholded confidence tuples 

although no difference in reliability of the memory was found when 

Dnd not threcl10lding was used. Theory suggests it should thresholding 0 .., 
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improve recognition of a greater generalised set of patterns. It has 

the added effect of increasing processing speed during testing. 

(Investigation 2) 

d) Re-testing the response picture to check the class patterns is 

ineffective at detecting recall error. (Investigation 2) 

e) Occlusion analysis is more straight forward if thresholding the 

input N tuple pattern is performed. (Investigation 2) 

f) Saturation of the identifier store is accelerated if non thres­

holded N tuples are taught. (Investigation 1) 

g) Progressive teaching results in increased below threshold values 

in the class response image, with the effect that noise margins are 

reduced, and also increased probability of error in picture recall. 

(Investigation 1) 

The results also indicate that recognition of occluded and occluding 

objects is possible using the system. 
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CHAPTER 13 

Representation and Processing of 3 Dimensional Scenes of Occluded 

Objects. 

13. Introduction 

This chapter describes the process of occillsion analysis described in 

chapter 4 in relation to the memory and input processing described 

earlier. It covers the representation used to describe the 3 dimen-

sional relationship between shapes present in a 3D scene and 

discusses the use of the high resolution window to disambiguate 

objects which cannot be classified using the low resolution window 

data. 

The following attributes of the system are discussed. 

1) Detection of correct recall of the patterns from the memory. 

2) Formation of a complete description of a shape, after recognition 

over a numher of window positions. 

3) Production of a 3 dimensional description of a scene. 

4) Use of the high resolution window to resolve ambiguity, and 

integration of high resolution data with the low resolution data. 

13.1. Representation of Object Descriptions after Recognition 

1· mage it's individual shape is As each object is recognised in an 

stored in a data structllre which allows the 3 dimensional relations 

be t \vc e 11 s hap est 0 be a 11 a 1 y sed ;ill d des c d bed. 

In this system, each shape recognised is allocated a storage array. 
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Data within each array describes the N tuple data for each object in 

the scene. 

Because a unique identifier is available for each shape recognised, 

this is used to index the storage planes associated with each object. 

To make this process as simple as possible each identifier pattern is 

a pattern where only one element is set to 1, all others are set to 

zero. Each element of the output identifier pattern points to one 

storage plane. As shown in Fig 13.1. Each storage plane consists of a 

set of locations exactly in the form of the N tuple response image but 

now each element is non binary, i.e can store values greater than one. 

An ohject description is built in these planes using the response from 

the recognition system in the following way. 

Upon each test, an identifier image and a response image is produced. 

The identifier pattern indexes one storage plane, in which the 

response image can he added. 

Each successive test produces an identifier image which indexes 

further planes in the storage arrays to which response images are 

added. The position the images are added in the storage planes is 

1 

2 

3 

n-1 

n 

/ 
Identifier 

array 

/ 

Fig 13.1 

Image storage 
Planes 

Image storage planes 
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relative to the scene ' 1.e the array in which the responses from the 

memory occur in l'S pI d i h , ace n t e image array at a point relative to 

the position of the input window in the input array. As each pattern 

occurs in the output from the memory it reinforces images previously 

added into the storage planes. Furthermore the images generated in the 

storage planes are in registration with the objects in the input 

image, this is necessary for occlusion analysis as will be explained 

later. 

Before adding a shape to the storage planes each response image is 

first checked to see if it is a valid image by checking whether it was 

generated by an N point class. If it was the image is added. Other 

tests to check for correct recall are be done as explained in chapters 

11 and 12, such as the response image feedback process, but as 

explained in chapter 12, it is impossible to reliably check whether 

the recalled image is correct or not. The process of adding the 

response image to the storage planes is used to build up a reliable 

image of what the system recognises in the input image. Incorrect 

recognition of shapes would constitute a small number of the total 

number images recalled from the memory, addition of these images to 

the storage planes effectively adds noise to the the storage planes. 

The correctly recovered shapes reinforce each other, whilst incorrect 

images added remain as background noise within the storage arrays. 

After recall and addition of a number of images into the storage 

arrays, the arrays are thresholded to recover the binary tuple pat-

terns of the objects recognised. Fig 13.2 illustrates a triangle with 

'X's marking the four positions visited in the image, out of these 4,3 

and 2 had been previously visited and taught. Position 1 has not been 

taught on the triangle. The system is also assumed to have been taught 

on a square. 
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Response = 3 
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Fig 13.2 

Images recalled at 
positions visited 

Building a consistent representation of a shape. 

The response images show the correct responses at the positions 4,3, 

and 2. At position 1 a square is incorrectly recovered. These images 

are assumed to generate the same identifier pattern thus the same 

storage plane is indexed on each recall. The storage plane is shown 

with the images recalled added into it. The three correct images 

recalled prevail over the incorrect image which, after thresholding, 

is reduced to a binary tupled image of the correct object. 

Because each image plane contains information pertaining to one object 

in the scene, and that that object position in the image plane is 

relative to the position of the object in the input image, the image 

planes are termed 'Object Rased frames'. The term 'frames' is derived 

from its use in AI as defined by Minsky Minsky1975 only its use here 

is a simple form of the concept of frames. 

The process of thresholding the data within the object frames remains 
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problematic. As with earlier work on thresholding the class response 

from the memory, the proce f h h ld ss 0 t res 0 ing the object frames should 

not be based upon an arbitrary selected value. Ideally some recall 

information should be used to find the ideal threshold so that the 

threshold is sensitive to variations in recall ability. At present no 

such process has been found, the image is thresholded at the average 

response of all the data points in each object frame. 

The summing of recalled images into the object frames must be linked 

to some value indicating the measure of certainty that the recalled 

image is correct. For instance if a recalled image can be said to have 

a confidence of 0.5 of being correct then each value for each tuple in 

the recalled image can be multiplied by 0.5 and added to the relevant 

object frame. Those recalled images which have little likely hood of 

being correct do not overly effect the values so far summed into the 

object frame. The confidence that the recalled image is correct is 

derived from the class response data on the P-)C memory test in the 

following way. First the input image is tested in the normal way to 

produce a class response array. This is then thresholded at the set N 

point threshold. The difference between the highest responding non 

selected class point and the lowest responding selected class point is 

noted. This value is divided by the maximum possible class point 

response to derive a figure of confidence of correct recall. 

The object frame process has not been fully implemented and thus 

remains a topic for further work. Initial simulations show recall 

inaccuracies in the positioning of the window in the input image, this 

is due to the coarseness of the edge detectors and results in a 

blurred image of the shape in the object frames. It is not yet clear 

whether this will effect the occlusion analysis process described in 

chapter 4. 
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13.2. Recognition of all Objects within a Scene 

The recognition system recognises the 'largest' object in the image 

first, that is objects which contain the largest number of N tuples. 

This was explained in chapter 6, it concerns the case shown in Fig 

13.3 where two shapes share the same boundaries. In this example two 

squares are shown, the small square sharing two of its edges with a 

part of the large square. If the system were to window on point p 

(and assuming the system has seen this view of the two shapes previ-

ous1y) the system would respond with the large square in preference to 

the small. 

If the system were to window on the interesting point marked i, only 

the small square would be recognised. This is because the large square 

would not have been taught at these positions, since no interesting 

areas would have occurred at these points. Recognition of the small 

square can also be aided by the use of the high resolution window 

since it would restrict the systems view to that of the small square. 

The system slowly builds up views of each object in the object frames 

until thresholding shows that most input image points belong to some 

shape. Areas of the image that are not represented in the object 

frames are selectively centred upon to find their identity. 

xp Interestin~ point 
on both souares 

x i Interesting point 
only on small 
souare 

Fig 13.3 
Recognition of two squares. 
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13.3. Analysis 

After the whole scene has been parsed for objects the system analyses 

the scene for occlusion information. The method described in chapter 4 

is applied to the data in the object hased frames. Briefly, this 

method starts by identitying candidate occluding features by comparing 

all object frames with each other, then following on to analyse each 

feature found for the occluding and occluded feature. Each object 

frame is then he lahelled to indicate which ohject the shape 

represented within is occluding (if any). 

13.4. Use of High Resolution Data 

To enahle separation of very similar images, the high resolution win-

dow is used. To show how this is used, consider Fig 13.4. This shows 

two images which are to be taught and recognised. The two images 

differ by only a small amount, i.e. the small section in the top right 

hand corner. Let us assume that the image A has been taught under the 

identifier shown at four window positions, these being the corners of 

the shape A. Each is taught under a separate class pattern randomly 

selected. 

Shape B is now presented for testing. The process starts by identify-

ing positions of interest, i.e. the four corners of the shape B. The 

Sh2pes 

EJ 0 Identifiers 

A B 

Fig 13.4 
Separation of two similar shapes. 
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first point is selected, this could be the bottom left hand corner, 

the window centred at this point and the memory tested. This results 

in the responses from the system shown in Fig 13.5. The class and 

recovered image are recalled along with the identifier for shape A. 

Comparing the input with the response shows a difference occurring at 

the point indicated. As explained previously, if the difference 

between the input image and the response is less than threshold, 

teaching cannot take place in the low resolution window in the normal 

way as this would result in poor recovery during testing due to rea-

sons discussed previously. 

The high resolution window is now used to separate shape A from shape 

B. Before going on to teach the high resolution window it is necessary 

to indicate that the recognition of shape A cannot be done wholly in 

the low resolution window. To do this the following teach process is 

used, 

1) The input image is taught under the current class only into the P-

D 
INPUT IMAGE 

\ 
POSITION 

* OF 

p->cJ 
DIFFERENCE 

TEST FOUND 

a..AS.S IT? / RECOVERJo]) 

D _(:COVERFf IDENTIFIER 

TEST P->I 

RECOVERED IMAGE 

Fig 13.5 
Identification of positions of interest. 
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)C memory - this resllits in generalisation between patterns A and B 

under the current class, thus both A and B will respond with this 

class on subsequent tests. 

2) The C-)P memory is taught on the input image and the recovered 

class this 

recognition. 

results in generalisation between A and B images for 

This image will then be used to identify high resolution 

points visited as explained below. 

3) A new identifier is taught under the input pattern in to the iden­

tifier memory - This results in a generalisation between the two iden­

tifiers for shapes A and B. Testing will result in the output of both 

identifiers. 

Before going on to teach the high resolution data, it is necessary to 

visit all other points of interest in the low resolution window at 

which shape A was taught, at each point the above teaching should be 

performed to prevent the system recognising shape shape A at any win­

dow position. 

The above low resolution process obliterates the ability to recall 

image A and its identifier. Testing along the lines discussed at the 

beginning of the chapter will result in two object frames holding 

exactly the same image. This is because testing at any positions in A 

or B will produce an identifier pattern which will index two object 

frames. Both frames will be updated accordingly with the generalised 

patterns of A and B. 

The output during testing is shown in Fig 13.6. Most N tuple data in 

the oh.iect frames would be singular, i.e only one state active in any 

one N tuple. But, at the point indicated in the diagram, a confusion 

would exist where two N tuple states within one N tuple would be 

198 



D~ 
OBJECT FRAME 

FOR A 

~ 
~--------~ CONFUSION 

D OBJECT fRAME 
FOR B 

Fig 13.6 
Confusion in object frames. 

equally active. This indicates to the recognition system that confu-

sion exists and that high resolution windowing is needed at the point 

where confusion exists. 

Thus, the low resolution window has been taught to indicate to the 

testing process that recognition confusion exists. 

The high resolution window teaching is now performed. At one point 

visited in the low resolution window, the area of difference can be 

identified between the input image and the response image and move the 

high resolution window to this position. The system moves on to detect 

the point of interest in the high resolution window, as done in the 

low resolution window. At each point found the the pre-test process is 

repeated and a difference test done. If a difference results in a 

value greater than threshold teaching takes place. The system teaches 

a new class and identifier for shape B in both the high and low reso-

lutton memories. If a difference is not found to be greater than 

threshold then the system teaches just the inputed image on the 

recovered class into both P-)C and C-)P memories and teaches a new 

identifier under the inputed image to produce similar confusion in 
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recall as in the low resolution case explained above. 

The result of the above process is to allow recognition of shape B 

during testing. The high resolution image recovered on each test is 

disguarded and the identifier recoved used to index the object frames 

for storage of the low resolution image. 

Disguarding the high resolution image data is perhaps a waste of 

storage. If small objects were to be recognised or detail in larger 

objects needed to be examined, this information would be essential. To 

allow this the resolution of the object frames is altered - to allow 

storage of detailed image information. 

The above process resulted in the ability to recognise shape B by 

access to high resolution data, but an inability to recognise shape A. 

This resulted because high resolution information is not available to 

recognise shape A particularly. To enable this shape to be recognised 

it is re-presented to the system and the system allowed to learn the 

high resolution information needed to recognise it. Some form of 

inference mechanism may be used to indicate if both A and B were 

equally recognisable in low resolution and just B was NOT recognised 

in high resolution then the input object could be classified as A. 

In the case illustrated, the difference between image A and B could be 

discriminated in low resolution. It is quite possible that two shapes 

are different but no indication would be present in low resolution. 

This makes the above process ineffective. The difficulty in recognis­

ing StIch objects is great. Scanning the high resolution image over the 

scene could be performed when such differences cannot be recognised in 

low resolution, but this causes problems in recognition, i.e. the ina­

bility of the system to identify where the high resolution window is 

to be placed. This necessitates the use of a storage process involved 
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in memorising the positions that the high resolution window was taught 

at. This is left for further work. 

13.5. Summary 

This chapter has described how objects recognised within a complex 3D 

scene may be stored in a number of object frames. These frames are 

indexed by the identifier pattern which is recalled along with each 

pattern. Upon recognition each pattern is added to an object plane, 

which may be subsequently thresholded to recover the prevailing pat-

terns 1n the scene. Occlusion analysis as described in chapter 4 is 

then applied to the data contained in the object planes to discover 

the relative depth of objects within the input scene. 
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CHAPTER 14 

Conclusions and Further Work 

1. Conclusions 

This thesis has investigated a novel scene analysis system which 

is capable of recognising occluded objects within a three dimen­

sional scene. A method of discovering the relative positions of 

shapes has been proposed, along with a novel representation of 

this information. Briefly this is based upon the associative 

recall of a complete shape from its incomplete input image. After 

all shapes have been recognised and stored in object frames a 

simple occlusion analysis process is performed. To enable this 

process of occlusion analysis to operate an associative memory 

has been developed which has been shown to be effective at 

recognising and recalling complete descriptions of objects in 

simple scenes. The associative memory has been based upon a sim-

pIe mapping memory. It is a two stage device, where binary 

storage elements have been used to give the memory a simple 

implementation and efficient storage ability. A formal analysis 

of the storage properties and recall abilities of the associative 
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memory has been given, and it has been shown to operate effi­

ciently in terms of storage, accuracy and recall ability. In com­

parison with other mapping associative memories this new device 

shows a number of distinct advantages. These relate to the con­

trol of storage ability, the method and accuracy of recall, and 

the memories pattern recognition abilities. The use of a 2 stage 

memory is unique and has allowed a reduction in storage. The use 

of an intermediate class, pattern and the N point thresholding 

process enables recall to be made in a fast and accurate manner 

(previous methods discussed in chapter 5 were either slow or 

inaccurate). The new memory allows greater flexibility in design 

and using the formulae described in chapter 7, the storage abil­

ity and error rates may be accurately set. The memory offers a 

fail soft ability which introduces a high degee of reliability 

into the memory. The memory has many other applications outside 

the area of the present study, i.e in the area of speech recogni­

tion and large database design. 

The N tuple preprocessing stage which is added to the associative 

memory allows for flexible storage control, however its main 

application is to enhance the pattern recognition abilities of 

the memory. A thorough analysis has been given to the N tuple 
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process in the context of occlusion analysis and has resulted in 

a new and efficient mapping of N tuple samples over a number of 

windows of different resolutions. Furthermore, it has meant the 

design of a grey scale encoding process. This allows direct 

encoding of the grey scale landscape seen by one N tuple as one 

of a particular set of binary states. This technique has been 

evaluated in comparison with the normal binary N tuple technique 

and has shown distinct advantages, manifested as increased recall 

success from the associative memory. This technique may be 

applied to other areas where the recognition of grey scale images 

is required. 

To enable the recognition of both block filled and line drawn 

lmages an edge operator pre-processing stage has been imple­

mented. This, in conjunction with a fovial multi window input 

system, has allowed a certain amount of similarity with the human 

visual system to be introduced, the implementation involves a 

simple Roberts style operater which has been shown to be suffi-

cient in this application. Later work may use this implementa-

tion to investigate the reasons why the human visual system 

incorporates these facets. In the present context multiple con­

centric windows of different resolutions have allowed a reduction 
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of processing and storage requirements leading to lower cost and 

higher processing speeds. 

The use of a fovial window input stage has meant the development 

of various high level recognition strategies to resolve ambiguity 

when dealing with recognition a number of different resolutions. 

It has been shown how a high resolution window may be used to 

remove confusion when an object is not recognisible in low reso­

lution. 

The system has been shown to be effective at recognising simple 

3D scenes containing 2D objects. The representation of the 

objects after recognition in the form of 'object frames' has pro-

vided the possibility of applying the occlusion analysis 

processes proposed, as it provides a complete description of all 

objects present in their relative 2D positions. 

It has been shown that a radical approach to the problem of scene 

analysis by the design of inherently parallel algorithms results 

in a system which may be implemented directly in hardware. It 

must be noted that the associative memory was simulated at a 

level which is very close to one possible method of dedicated 

implementation, thus the evaluation of this system effectively 
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has also evaluated this implementation. 

1.1. Further Work 

Further work remains to be done on many aspects of the system. 

Work needs to be done on predicting the memory storage abilities 

in the case where the input pattern contains noise during recall, 

thus allowing a far more accurate prediction of the performance 

of the memory. The effects of using more than two resolutions of 

input windows needs to be investigated along with the use of more 

edge detectors and different N tuple sample sizes and mappings. 

The realisation of the inherent hardware model needs to be inves-

tigated - this would allow proceesing of complex scenes within 

one second. 

Throughout the thesis the model proposed has been compared to the 

human visual system. A more detailed investigation is needed that 

examines the similarity of the system with the known neurophy­

siology of the brain. This would both help the understanding of 

the brain and perhaps lead to the solution of many remaining 

problems in the model. 
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While the associative memory is ideal for the recognition of data 

in the spatial dimention, it may be easily extended for to be 

able to analyse temporal data by the addition of pattern feedback 

(output -> input). This may allow the syntactic analysis of com-

plex scenes as well as motion analysis. 

The control alogarithms, which are used to sequence the analysis 

of scenes may be developed much further. Particularly in to merg­

ing recognition with teaching as suggested in the text. The alog­

arithm may also incorporate the distinction between passive scene 

analysis (i.e "Whats in the scene?") and active scene analysis 

(i.e "Where is the cube ?"). 

At present the system only deals with rotation and scale 

invarient recognition by a brute force approach (i.e teaching all 

views) . Further work needs to be done on this aspect of the sys-

tern, perhaps using parallel devices with similar structure as the 

associative memory used in the system. 
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1. APPENDIX 1 Derivation Memory Saturation Formula 

Derivation of the equation to give the number of bits set in the 

memory after T teach iterations used in chapter 7. 

Label conventions 

R = Number of rows in memory matrix 

NI = Number of rows selected in R on every teach/test 

H = Number of columns in memory matrix 

N = Number of columns selected in H on every teach/test 

The memory consists of a matrix of points R by H in size. Each time a 

pattern or pair of patterns is taught into the memory it becomes 

filled by a certain amount. This is represented by the number of bits 

set in the matrix. 

To simplify consider the case where R = 1 (H > 1). Thus we have one a 

one dimensional matrix of H elements. On each teach we place N points 

into the array at random. After a number of trials a certain number of 

locations will be set in the array. This will be derived in the fol-

lowing. 

let St = Number of elements set after t teaches 

P
t 

= Number of elements set in trial t + 1 

H - S t-l 
Pt = N x H 

( 1 ) 

(2) 



so after the first teach •.• 

S = N 
1 

Then after the second ••• 

P2 N x 
H-N 

From ( 1 ) = H 

N N2 
= H 

S2 N + N 
N2 

From (2) = --
H 

2.N 
N2 

= H 

After the 3'ed ... 

H - S 
2 

P3 = N x H 

2 
= N ( 1 - 2.N + ~) 

H H2 

After the forth ••• 

2 N3 N
4 

P3 = N - 3~ + 3- --
11 H2 H3 

S4 N
2 N2 N

4 
= 4N - 6- + 4- --

H H2 H3 



It can be seen that S is progressing as a series with binomial coef­
t 

ficient. 

ct (_1)r-1 • (N / H)r-1 • N 
r 

So now we have a formula for a one dimensional matrix that gives the 

number of points set after t teaches. 

This now needs to be extended to a 2D matrix. The equation for 

now 

H • R - St-1 
P

t 
= N • NI • H • R 

Which follows through to make 

t 

S - '\' 
t - / I 

r-1 

t r-1 r-1 
c (-1) • (N • NI/H • R) • N • NI 

r 

This equation can be reduced to a polynomial and simplified, 

P 
t 

is 



2. APPENDIX 2 Derivation of Formulae in Chapter 9 

The following gives the derivation of the formula in chapter 9 to give 

the 'number of patterns that can be taught before the Hamming distance 

between a taught and a tested pattern, averaged over a number of 

tests, becomes greater than one' following the conventions used in 

Chapter 7. 

The probability of selecting a point in the memory matrix that is 1, 

after T patterns have been taught is given by, 

p(active location) = 1 - (1 - (N.NI/H.R))T 

From equation (3) chap 6 

And so the probability of getting one error in one column can be 

expressed as, 

p(error column) = p(active 10cation)NI 

= (1 - (1 - (N.NI/H.R))T)NI 

Now the probability of getting one and only one error in all columns 
~c~~,., Q4--~ 

of the memory matrix on a test is given by the~binomial, 

e(1) 

H 
(p(active location) + p(not active location)) 

H . ) 1 = C
1 

p(acive locatlon • 
H-1 

(1 - p(activelocation)) 

Now C~ = H, so substituting, 



e(l) = H(l - (1 - (N.NI/H.R))T)NI . 

This gives the probability of getting one and only one error out of 

all columns in the memory array on anyone test. Thus represents the 

probability of getting one bit hamming distance on a test compared to 

that taught. 

We now need to know when it is most likely , on average, to get a ham-

ming distance of 1. So after, say, 100 patterns are taught, if 20 pat-

terns were tested the average hamming distance would be 1. 

This can be found, since the function for e(l) has a maximum, which 

represents the time at which you are most likely to get one error from 

memory. If the equation were to give the probability of getting two 

errors, the maximum would be at a different point. 

Thus to obtain the maximum of the function e(l) we need to first dif-

ferentiate e(l) with respect to T, 

de 
d1 

aT)bC)-.' b(l _ aT)b-1. T = (1 - (c + 1)(1 - a • ln a 

where 

a = 1 _ N. NI 
H.R 

b = NI 

c = H - 1 

de 
Now find the maxmimum, when dt 

This reduces eventually to 

= 0 



In (1 - (1 / H(l/NI))) 
T = In (1 - (N.NI/H.R)) 



3. APPENDIX 3 Construction of Edge Operators 

The physical realjsation of a tuple formed from edge detectors is 

given here. 

x 
-I -

Q b 

x n 
~ 

( d 

Fig A.l 
Format of edge operator 

The figure above shows the format of an edge operator with a central 

point p. The o vertical line from p is given the classification 0 to 

give a datum for edge operators. The four quadrants of the above 

region are labelled a - d each covering an area of (x/2)2 pixels in 

o 0 
the scene. The equations for the edge operators 0 and 90 are 

90
0 = I(a + b) - (c + d)1 + I(c + d) - (a + b)1 

0
0 = I(a + c) - (b + d)1 + I(b + d) - (a + d)1 

For the edge operators at 45
0 and 135

0 
the above grid is rotated by 

45
0 

and the same formulae used. 

These four responses are then supplied to the tuple process described 

in chapter 3. The value of x differs for the high resolution and low 

resolution jmages. In all cases x = 16 pixels for low resolution image 

and x = 8 for high resolution images. Sampling with the N tuples is 



done at x/2 intervals across the image. 

3.1. Relative Sizes of Windows 

The simulation presently has two windows, low and high resolution the 

relative sizes of these are low 1:2 (high resolution:low resolution). 



4. APPENDIX 4 

12 

System Parameters to Repeat Experiments in Chapter 

This lists the various system parameters which would be needed to 

repeat the experiments reported in chapter 12. 

Input image size 128 x 128 pixels, 256 grey scale. 

Class image size 4 x 8 pixels 

Points set to one in class pattern 4 

Edge operator dimensions See appendix 3 

Identifier Image 

tity. 

8 x 8 pixels, arbitrary shapes used to denote iden-

Interesting area detection using edge operator primitives. 

Threshold of confidence tuples When used, threshold at average 

response of all confidences in present response image. 

As well as these parameters a process of reducing the time calculating 

edge operator responses was used. By reducing the 16 x 16 values col­

lected per edge operator by a factor of x, named the mapping factor. 

In all experiments x was set to 4. So only 1 in 4 samples of 16 x 16 

possible edge operator samples were actually collected. 



Appendix 

5. APPENDIX 5 Graphs 

The following describes the graphs shown on the following pages. 

Graph A 2 

This gives the predicted probability of error for the 'picture to 

class memory' after a number of patterns have been taught. The number 

of class points set to 1 is varied for each plot. 

Picture array size = 896 

Number of elements in the picture set to 1 = 64 

Class array size = 128 

Number of class points set to 1 A=8 B=15 C=30 

Graph B 2 

As for graph A 2, but varying the size of the picture array in each 

plot. 

Picture array size: A=896 B=1792 C=2688 

Number of elements in the picture set to 1 = 64 

Class array size = 128 

Number of class points set to 1 = 15 

Graph C 2 

As for A 2 and B 2, but varying the number of points in the picture 

set to one in each plot. 

Picture array size = 896 

Number of elements in the picture set to 1: A=64 B=40 C=20 

Class array size = 128 

Number of class points set to 1 = 15 



Graph E 2 

This graph gives the number of patterns that can be stored in the 

class to picture memory before the error rate raises above 'x' (given 

below), over a range of class points set to 1. Each plot is for a dif­

ferent value of 'x'. 

x (probability of error threshold): A=O.l B=O.Ol C=O.OOl 

Picture array size = 896 

Number of points set to 1 in the picture = 64 

The class array size = 32 

Graph F 1 

The number of images that can be taught into the picture to class 

memory for different numbers of class points set to 1, for a given 

probability of error (0.001). Different plots are for different class 

array sizes. 

Picture array size = 896 

Number of points set to 1 in the picture = 64 

Probability of error = 0.001 

Class array sizes : A=32 B=64 C=128 

Graph F 2 

As in Graph F 1 but for the class to picture memory. 

Picture array size = 896 

Number of points set to 1 in the picture = 64 

Probability of error = 0.001 

Class array sizes : A=32 B=64 C=128 

Graph G 1 



See chapter 6 for explanation. 

Probability of error: A=O.OOl B=O.Ol C=O.l 

Picture array size = 896 

Number of points set to 1 in picture = 64 

Graph H 1 

The number of images that can be stored before error = 0.001 as the 

class array is varied in size. Each plot is for different picture 

sizes. 

Number of class points set to 1 = 5 

Picture array size : A=1024 B=2048 C=4096 

Number of picture points set to 1 : A=64 B=128 C=256 

Graph H 2 

As for graph H 1, but of much larger picture sizes. 

Number of class points set to 1 = 5 

Picture array size : A=16384 B=65536 C=262144 

Number of picture points set to 1 : A=1024 B=4096 C=16384 

Graph I 1 

This contrasts two mesurments, first, plot A, the number of class 

points set to 1 needed to obtain optimal storage from the memory, for 

a given class array size. Second, plot B, the number of pattern asso­

ciations that can be stored at the optimal number of class points set 

to 1. This relate to the class to picture memory. 

Picture array size = 896 

Points set to 1 in the picture = 64 



Probability of error = 0.001 

Graph I 2 This gives the number of class points set to 1 needed for 

optimal storage in the class to picture memory (it expands plot A in 

graph I 1). 

Picture array size = 896 

number of points set to 1 in the picture 64 

Probability of error in recall = 0.001 

Graph J 1 

This gives the saturation rate of the memory. Different plots are 

given for different numbers of class points set to 1. 

Number of picture points set to 1 = 64 

Size of the picture array = 896 

Class array size = 64 

The number of class points set to 1 A=32 B=16 C=4 

5.1. Simulation and Mathamatically Predicted Results Graphs 

The following graphs compare the mathematically predicted results with 

those from simulations. The system set up for each is given in the 

text (chapter 6). 

Graphs Y 1 Y 2 and Y 3 

This gives the number of images that can be stored in the picture to 

class memory before the hamming distance between the recoverd and 

expected pattern is greater than 1. 

Y 1 and Y 3 

A = Simulation result. 



B = Mathematically predicted. 

Y 2 

B = Simulation result. 

A = Mathematically predicted. 

Graphs Z 1 Z 2 and Z 3 

These compare the number of images that can be stored over a set of 

class array sizes. Mathematical and simulation results are compared. 

Z 1, Z 2 and Z 3 

A = Mathematically predicted. 

B = Simulation result. 

Graphs Zl.l Z2.2 and Z3.3 

These graphs compare the mathematical and simulated predictions for 

the number of class points set to 1 needed to get optimal storage in 

the class to picture memory. 

Zl.l, Z2.2 and Z3.3 

A = Mathematically predicted. 

B = Simulation results. 
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6. APPENDIX 6 Grey Level Images 

The following describes the images given in the following pages, see 

text for details of explanation. 

opl 

a : An input image of 128 x 128 pixel resolution reduced to 64 x 64 

pixel resolution. 64 grey levels, contrast setting 1.8. 

b : N tuple codes for the image above, non thresholded, ranked 

process- top rank N tuple shown. 

op2 

Bi : N tuple codes for a grey scale representation of the square shown 

in op3, after 100 random points of noise have been placed in op3. 

Bii The confidence values of the N tuple codes given in Bi. 

Ai : The N tuple codes for a binary representation of the image given 

in op3. 

Aii The confidence values of the N tuple codes given in Ai. 

op3 

Image used in op2. 

op4 

a : The N tuple codes for the image shown in opl a, after thresholding 

N tuple codes below threshold away. 

b The confidences of the tuples given in a. 

opS 



a N tuple codes and confidences of a 'star' image (see op6). 

b: As for 'a' but for n image from . h' , a camera Wlt lts f' stop reduced 

by 3 compared to that used in 'a'. 

op6 

Top image of a 'star' 128 x 128 pixels 64 grey levels. 

Small images : response of edge operators of the prefered orientation 

given when scanned over the star pattern : edge operator size = 16 x 

16 pixels, sampled every 8 pixels. 

op7 

Images of squares of 128 x 128 pixels 64 grey levels, each scanned 

with a 90 degree edge detector of 16 x 16 pixels. Top shows a solid 

square with the response of the edge operator to the right, below it 

is the same for a line drawn square. 

op8 

Image of the line drawn square shown in op7, and the N tuple codes 

generated. 

op9 

The results of processing the filled square in op7 with 4 edge detec-

tors. The response of the 4 edge detectors are summed at each sample 

d . th shown A grey scale image of these an glven as e responses • 

responses is also given. 

oplO 

Images using edge operator primitives to find areas of interest in 



various scenes. 

Images processed: 

Top : Solid square shown in op7 

Middle 

Bottom 

Star pattern shown in op6 

Face shown in op1. 

all 128 x 128 pixels. 

op11 

As for op10, but after a small shift (micro saccade) of the square. 

Top: shift -2,-2 pixels 

Middle shift +2.+2 pixels 

Bottom shift -2,+2 pixels 

op12 

Triangle on top of a square 128 x 128 pixels grey level. 

op13 

Images of a square and a treiangle 128 x 128 pixels grey level. 
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Let Q = Q + 1 

NO 

START 

I 
Process the low resolution image for 
areas of 'interest'. 
Rank areas of interest depending on 
detector response, max. responding 
area la t. 'the top of the list. 
Set Q = 0 

Move to area of interest Q in list 
where Q = 0 is the area of most interest. 
Test 'picture to class' memory. 
Save class recovered in class1. 

~ 
Test 'class to picture' memory on 
class1. 

~ 
Is the hamming distance between the 
recalled picture and the input picture 
greater than x ? 

YES ~ 
Create a new N point class pattern. 
Teach 'picture to class' memory on the 
input pattern and the new class. 
Teach the 'class to picture' memory 
on the inptt image and the new class. 

Teach the 'class to picture' memory on 
class1 and the input picture. 

NO Is Q set to the last interest area 
L--------------in the list ? 

YES \ 

STOP~ 



Flow chart 2 Reconition Procedure 

STOP 
'I 

Image not recognised 

I 
Let Q = Q + 1 

I 
Is Q set to last 

START 
I 

Process the low resolution image for 
'areas of interest'. 
Rank areas of interest depending on 
detector response, max responding at 
the top of the list . . 
Set Q = 0 

Move to area of interest Q in list, where 
Q = 0 is the area of most interest. 
Test the' picture to class' memory. 
Save recalled class in class1. interest area in 

list ? 
NO I r--------------- Does class1 have N elements at 1 ? 

NOTES 

YES I 
Test the 'class to picture' memory on 
class1. 
Save the recalled picture in picture1. 
Test the 'picture ta class' memory on 
picture1. 
Save the recalled class in class2. 

1 
NO Does class1 and class2 have a hamming 

~--------------

distance of 0 ? 

YES 

Input image recognised, contained in 
picture1. 

STOP 

The input picture is N tuple processed in one of the ways described 
in chapter 9 before each teach or test. 

References to 'picture' relate to the N tuple state data. 

References to 'class' relate to the N point thresholded class. 



Table A - Chapter 7 

Efficiency figures for P -> C memory 

Input type Picture Size Images Stored ListingMem Associative Mem. efficiency 

factor 

Confidence 1024 5000 640000 125000 5.12 

" 2048 7000 1792000 250000 7.17 

I 

l 
" 4096 9000 4608000 500000 9.2 

Random 16384 12000 23 x 10 A 6 2x lO A 6 11.5 

" 65536 16500 1.3 10 A 8 9xlO A 6 14.4 

I " 262144 21500 7.0 10 A 8 32 x 10 A 6 21.8 

NOTES 

Input type : Type of input processing used on input image. 

Picture size: Size of key vector to the memory in bits. 

Images Stored: The Number of images stored. 

Listing Mem : Memory needed to store the number of images in a listing memory, given in bytes = Picture 

size x images stored. 

Associative Mem. : Memory needed to store the images in the associative memory. Figures are calculated 

from the equations given in chapter 7 with probability of error set to 0.001 and class points set to 5 for all 

calculations. Results in bytes of storage. 
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Efficiency factor: Storage needed to store patterns in a listing memory / storage needed in an associative 

memory. 

Table B - Chapter 7 

This compares the storage efficiencies of the two associative memories. 

Class Size Images Stored Images Stored Picture points Efficiency Efficiency 

(P->C) (C->P) (P->C) (C->P) 

A 

32 40 20 64 1.2 0.6 

64 82 41 64 1.2 0.6 

128 164 82 64 1.2 0.6 

B 

32 63 74 16 1.9 2.3 

64 126 139 16 1.9 2.3 

128 251 261 16 1.9 2.3 

NOTES 

Picture array size = 896 

Number of picture points set to one = as in table 

Class array size = as in table 

Number of class points = 18 
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Probability of error = 0.001 

Images stored is the number of images stored by each memory, this is derived from equation number 3. 

chapter 7. 

The efficiency figure is given by 

Conventional file store memory use 

----------------------------------

Associative memory storage 

Images stored x Size of image 

= -------------------------------------

Class array size x picture array size 
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TABLE 2 

Results for investigation 2, chapter 12. 

These results are for the tests listed in chapter 12 when 
applied to a system which was taught on thresholded N 
tuple ·data. See following pages for a description of 
variables. 
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TABLE 3 

These results are for ihv:estigation 2 
in chapter 12, when applied to a sytem 
which was taught on non thresholded 
N tuple data. Some results from 
table 2 are included for comparison. 
See the followin pages for a 
description oft the results. 
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TABLE 44 Test on the square. 
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Description of variables from tables 2 and 3. 

Experiment 

Individual runs on the taught system, each with a dif­

ferent set up as given by the 'test arrangement'. 

Input image thresholded : 

Whether or not (y or n) the input N tuple data was thres­

holded prior to testing. 

Confidence used : 

Whether or not (y or n) confidences were used during 

memory recall. 

Image tested : 

Which shape the system confined its window positions to 

tr = triangle - sq = square. 

No of identities with + recovered No of identities with x recovered 

How many tests resulted in the recovery of a '+' or a 

identity pattern. 

Image recovered:triangle : Image recovered:square 

The number of tests that resulted in the recovery of a 

square or a triangle. 

Ave. of worst case when image OK : 

The average worst case class distance (class confidence) 

when the image recovered was that expected by predictions 

(see text). 

Ave of worst case when image wrong 

The average worst case class distance (class confidence) 



when the image recovered was that not expected by predic­

tions (see text). 

Ave. class < thresh OK : 

When ever a test resulted in the expected recall pattern 

the average response of the class points which were set to 

o was recorded. These values were averaged over all tests 

for each run and given in the table. 

Ave. class > thresh OK : 

As above but relating to the average response of class 

points which were set to 1 after N point thresholding. 
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